WO2021101125A2 - 유연한 기판의 3차원 구조물 기반의 신경전극 및 이의 제조 방법 - Google Patents
유연한 기판의 3차원 구조물 기반의 신경전극 및 이의 제조 방법 Download PDFInfo
- Publication number
- WO2021101125A2 WO2021101125A2 PCT/KR2020/015172 KR2020015172W WO2021101125A2 WO 2021101125 A2 WO2021101125 A2 WO 2021101125A2 KR 2020015172 W KR2020015172 W KR 2020015172W WO 2021101125 A2 WO2021101125 A2 WO 2021101125A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer layer
- thin film
- layer
- metal thin
- polymer
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0529—Electrodes for brain stimulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0472—Structure-related aspects
- A61N1/0492—Patch electrodes
- A61N1/0496—Patch electrodes characterised by using specific chemical compositions, e.g. hydrogel compositions, adhesives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/251—Means for maintaining electrode contact with the body
- A61B5/257—Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/291—Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0551—Spinal or peripheral nerve electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0551—Spinal or peripheral nerve electrodes
- A61N1/0553—Paddle shaped electrodes, e.g. for laminotomy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00107—Coatings on the energy applicator
- A61B2018/00136—Coatings on the energy applicator with polymer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0209—Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/12—Manufacturing methods specially adapted for producing sensors for in-vivo measurements
- A61B2562/125—Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
Definitions
- the present invention relates to a neural electrode that selectively improves adhesion to a desired site using a three-dimensional structure of a flexible substrate, and a method for manufacturing the same, and more particularly, to a flexible electrode that improves adhesion to an object by using a three-dimensional structure. It relates to nerve electrodes.
- a planar nerve electrode that measures or stimulates nerve signals from nerve cells or peripheral nerves of the brain is formed on the surface of the brain or surrounds the peripheral nerve. Since such a planar electrode is applied to a surface having a large number of curves or a complex shape, matters related to adhesion are an important issue in the related art. Accordingly, in order to increase the adhesion between the planar electrode and the object, research and development of making the substrate of the electrode thinner to a thickness of a thin film or making the substrate material of a flexible polymer material are continuing.
- the flexible planar electrode is limited to two dimensions by the deposition and patterning process of the polymer substrate and metal, it is difficult to completely adhere the two-dimensional electrode to an object having a curvature of a three-dimensional structure. have.
- An object of the present invention for solving the above problems is to provide a flexible planar neural electrode with improved selective adhesion to an object.
- an object of the present invention is to provide a neural electrode in which a three-dimensional structure is formed, and such a three-dimensional structure is formed by a simple process.
- the configuration of the present invention for achieving the above object is a first polymer layer formed of a polymer material, flexible, and performing a base function; At least one photoresist portion formed on a portion of the surface of the first polymer layer and forming a three-dimensional structure; A second polymer layer formed on the remaining portion of the surface of the first polymer layer and on the photoresist portion, and having a protrusion portion due to the photoresist portion; A metal thin film layer formed by patterning a metal thin film on the surface of the second polymer layer and the surface of the protrusion; And a third polymer layer formed on the surface of the second polymer layer and on the metal thin film layer to perform a cover function, and having a perforated measurement hole such that a portion of the metal thin film layer formed at the end of the protrusion is exposed to the outside.
- the first polymer layer may be formed on a wafer.
- At least one layer selected from among the first polymer layer, the second polymer layer, and the third polymer layer may be formed by vapor deposition.
- At least one layer selected from among the first polymer layer, the second polymer layer, and the third polymer layer may be formed of parylene.
- the configuration of the present invention for achieving the above object is a first step of preparing a wafer and depositing a sacrificial layer on the surface of the wafer, and then depositing and forming the first polymer layer on the surface of the sacrificial layer.
- the configuration of the present invention for achieving the above object is a first polymer layer formed of a polymer material, flexible, and performing a base function; At least one photoresist portion formed on a portion of the surface of the first polymer layer and forming a three-dimensional structure; A second polymer layer formed on the remaining portion of the surface of the first polymer layer and on the photoresist portion, and having a protrusion portion due to the photoresist portion; A metal thin film layer formed by patterning a metal thin film on a portion of the surface of the second polymer layer and the surface of the protrusion; A third polymer layer formed on the surface of the second polymer layer and on the metal thin film layer to perform a cover function, and having a perforated measurement hole such that a portion of the metal thin film layer formed at an end of the protrusion is exposed to the outside; And a conductive portion passing through the first polymer layer and the second polymer layer to contact the metal thin film layer and connected to an external terminal.
- the first polymer layer may be formed on a wafer.
- At least one layer selected from among the first polymer layer, the second polymer layer, and the third polymer layer may be formed by vapor deposition.
- At least one layer selected from among the first polymer layer, the second polymer layer, and the third polymer layer may be formed of parylene.
- the conductive part may be formed of a conductive epoxy.
- the configuration of the present invention for achieving the above object is a first step of preparing a wafer and depositing a sacrificial layer on the surface of the wafer, and then depositing and forming the first polymer layer on the surface of the sacrificial layer.
- the configuration of the present invention for achieving the above object is a first polymer layer formed of a polymer material, flexible, performing a base function, and having at least one perforated connection hole; A first metal thin film layer formed by patterning a metal thin film on a portion of the connection hole and the surface of the first polymer layer adjacent to the connection hole; A photoresist part formed on the surface of the first metal thin film layer and forming a three-dimensional structure; A second metal thin film layer formed on the photoresist part as a metal thin film and connected to the first metal thin film layer; The first metal thin film layer, the second metal thin film layer, and the remaining portion of the first polymer layer surface are formed to perform a cover function, and a portion of the second metal thin film layer positioned at an end of the photoresist part is externally formed. A second polymer layer having a perforated measurement hole to be exposed; And a conductive part introduced into the connection hole to contact the first metal thin film layer and connected to an external terminal.
- the first polymer layer may be formed on a wafer.
- the first polymer layer or the second polymer layer may be formed by vapor deposition.
- the first polymer layer or the second polymer layer may be formed of parylene.
- the conductive part may be formed of a conductive epoxy.
- the configuration of the present invention for achieving the above object is to prepare a wafer, deposit a sacrificial layer on the surface of the wafer, and then form the first polymer layer by patterning deposition on the surface of the sacrificial layer.
- a third step of patterning and reflowing the photoresist part by forming a three-dimensional photoresist structure on the surface of the first metal thin film layer;
- a fourth step of forming the second metal thin film layer by patterning a metal thin film on the photoresist part, and connecting the first metal thin film layer and the second metal thin film layer;
- the first metal thin film layer, the second metal thin film layer, and the second polymer layer are deposited on
- Step 5 A sixth step of separating and removing the wafer and the sacrificial layer; And a seventh step of removing the temporary lead-in body that has been introduced into the connection hole, and forming the conductive part that is introduced into the connection hole to contact the first metal thin film layer.
- the effect of the present invention according to the above configuration is that the electrode is formed in a three-dimensional shape, so that the adhesion between the nerve electrode and the object can be improved.
- the effect of the present invention is that the shape of the neural electrode can be diversified by forming different protrusion heights of each three-dimensional structure due to the formation of the photoresist portion.
- the effect of the present invention is that a polymer material and a metal are sequentially stacked, and only an additional etching process is performed, and a separate insulating process is omitted, so that a manufacturing method is simple and a structure can be easily changed.
- FIG. 1 is an external perspective view and an internal configuration diagram of a nerve electrode according to a first embodiment of the present invention.
- FIG. 2 is a plan view of an external and internal configuration of a nerve electrode according to a first embodiment of the present invention.
- FIG 3 is a cross-sectional view of a process of manufacturing a nerve electrode according to the first embodiment of the present invention.
- FIG 4 is an image of a nerve electrode according to the first embodiment of the present invention.
- FIG. 5 is a cross-sectional view of a process of manufacturing a nerve electrode according to a second embodiment of the present invention.
- FIG. 6 is a cross-sectional view of a process of manufacturing a neural electrode according to a third embodiment of the present invention.
- the present invention relates to a nerve electrode that measures or stimulates a nerve signal from a nerve cell or a peripheral nerve of the brain, and may be placed on the surface of an organ where nerve cells such as the brain exist, or may be formed to surround the peripheral nerve. That is, the object to be used may be a brain, an eyeball, or a peripheral nerve.
- the present invention will be described in detail with reference to the accompanying drawings.
- FIG. 1 is an external perspective view and an internal configuration diagram of a nerve electrode according to a first embodiment of the present invention
- FIG. 2 is a plan view illustrating an external and internal configuration of a nerve electrode according to a first embodiment of the present invention
- Figure 3 is a cross-sectional view of the manufacturing process of the nerve electrode according to the first embodiment of the present invention
- Figure 4 is an image of the nerve electrode according to the first embodiment of the present invention.
- FIG. 1A is an external perspective view of a nerve electrode according to a first embodiment of the present invention
- FIG. 1B is a third polymer layer 330 in the nerve electrode according to the first embodiment of the present invention.
- Figure 2 (a) is an external plan view of the nerve electrode according to the first embodiment of the present invention
- Figure 2 (b) is a third polymer layer 330 in the nerve electrode according to the first embodiment of the present invention. This is the interior floor plan of the items except ). 3 will be described in detail in the following manufacturing method.
- the neural electrode according to the first embodiment of the present invention includes a first polymer layer 310 formed of a polymer material, flexible, and performing a base function; At least one photoresist unit 100 formed on a portion of the surface of the first polymer layer 310 and forming a three-dimensional structure; A second polymer layer 320 formed on the rest of the surface of the first polymer layer 310 and on the photoresist unit 100 and having a protrusion 321 formed by the photoresist unit 100; A metal thin film layer 200 formed by patterning a metal thin film on the surface of the second polymer layer 320 and the surface of the protrusion 321; And it is formed on the surface of the second polymer layer 320 and the metal thin film layer 200 to perform a cover function, and a measurement in which a portion of the metal thin film layer 200 formed at the end of the protrusion 321 is exposed to the outside. And a third polymer layer 330 having a hole 340.
- At least one layer selected from among the first polymer layer 310, the second polymer layer 320, and the third polymer layer 330 may be formed of parylene.
- Feralin is a plastic obtained by paraxylene polymerization and is harmless to the human body, and when feralin coating is performed on a predetermined surface using a conventional parylene coating equipment, a micrometer ( ⁇ m) on the object to be coated Evaporation and polymer coating may be performed in units of thickness. Since the parylene coating equipment corresponds to the prior art, detailed information using this will be omitted.
- At least one layer selected from among the first polymer layer 310, the second polymer layer 320, and the third polymer layer 330 is formed of parylene. It is not limited, and any material that is harmless to the human body and capable of forming a coating layer with a thickness of a micrometer ( ⁇ m) or nanometer (nm) may be used.
- the photoresist unit 100 may be formed of a photoresist, which is a polymer material that changes resistance to chemicals by being exposed to light, and patterning the three-dimensional structure of the photoresist by patterning the photoresist on the first polymer layer 310 Then, the photoresist unit 100 may be formed by reflowing the three-dimensional structure of the photoresist using a photoresist reflow device. Since the photoresist reflow device corresponds to the prior art, details of using the photoresist reflow device will be omitted.
- One or more layers selected from the first polymer layer 310, the second polymer layer 320, and the third polymer layer 330 may be formed by deposition. Specifically, one or more layers selected from among the first polymer layer 310, the second polymer layer 320, and the third polymer layer 330 may be formed by chemical vapor deposition. And, as described above, when each layer is formed of parylene, each layer may be formed by chemical vapor deposition of each layer using a parylene coating equipment.
- the metal thin film layer 200 may be formed of one or more materials selected from the group consisting of gold (Au), platinum (Pt), iridium (Ir), and iridium oxide (IrOx).
- the metal thin film layer 200 may be formed by being deposited on the surface of the second polymer layer 320 and the surface of the protrusion 321, and may be deposited by a sputtering process or a chemical vapor deposition (CVD) process. .
- the metal thin film layer 200 is connected to the measurement thin film 201 formed along the end of the protrusion 321 and the body surface of the protrusion 321, and the second polymer layer 320 is connected to the surface of the second polymer layer 320.
- a transmission line 202 formed according to and connected to an external terminal may be provided.
- a portion of the measurement thin film 201 exposed through the measurement hole 340 may be in contact with the object.
- the measurement thin film 201 may be exposed to the outside through the measurement hole 340 to contact the object. And, when the plurality of protrusions 321 are formed by the plurality of photoresist units 100, each of the plurality of measurement thin films 201 is formed on the ends of the protrusions 321 and the body surface, and the plurality of measurement thin films ( 201) A plurality of transmission lines 202 connected to each may be formed and disposed along the surface of the second polymer layer 320, and each transmission line 202 may be connected to an external terminal. Electrical signal exchange may be performed between the external terminal and the measurement thin film 201 through the transmission line 202.
- the first polymer layer 310 may be formed on the wafer 510.
- a sacrificial layer 520 may be formed between the first polymer layer 310 and the wafer 510.
- the sacrificial layer 520 is formed between the first polymer layer 310 and the wafer 510 and can be selectively removed to perform a function of separating the wafer 510 from the first polymer layer 310.
- a material such as polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), polystyrene (PS), etc. that is selectively dissolved only in an organic solvent such as water, acetone, or toluene may be used.
- FIG. 3(a) is a cross-sectional view of a wafer 510, a sacrificial layer 520, and a first polymer layer 310 sequentially stacked
- FIG. 3(b) is a first polymer layer 310
- Figure 3(c) shows the surface of the second polymer layer 320 and the protrusion 321 after the second polymer layer 320 is formed on the surface of the first polymer layer 310 and the photoresist unit 100.
- FIG. 3 It is a cross-sectional view of the matter in which the metal thin film layer 200 is formed on the surface of.
- (d) of FIG. 3 is a cross-sectional view of the surface of the second polymer layer 320 and the third polymer layer 330 formed on the metal thin film layer 200.
- a wafer 510 is prepared and a sacrificial layer 520 is deposited on the surface of the wafer 510, and then the surface of the sacrificial layer 520 A first polymer layer 310 may be deposited thereon.
- deposition-forming may mean forming one layer. Hereinafter, it is the same.
- the photoresist part 100 is patterned and reflowed on a portion of the surface of the first polymer layer 310 to form a three-dimensional structure.
- the second polymer layer 320 may be deposited on the rest of the surface of the first polymer layer 310 and the photoresist part 100.
- the metal thin film layer 200 may be deposited by depositing and patterning a metal thin film on the surface of the second polymer layer 320 and the surface of the protrusion 321.
- a third polymer layer 330 is deposited on the surface of the second polymer layer 320 and the metal thin film layer 200, and the measurement hole 340 ) May be formed on a portion of the third polymer layer 330.
- the measurement hole 340 may be formed by etching (etching, etching) a portion of the third polymer layer 330 to perforate, and fine patterning for etching a portion of the third polymer layer 330 This possible dry etching can be used. However, the present invention is not limited thereto, and wet etching may be used.
- the sacrificial layer 520 is removed, so that the wafer 510 may be separated from the first polymer layer 310.
- the sacrificial layer 520 may be removed by dissolving the sacrificial layer 520 using an organic solvent.
- FIG. 5 is a cross-sectional view of a process of manufacturing a nerve electrode according to a second embodiment of the present invention.
- (a) of FIG. 5 is a cross-sectional view of the wafer 510, the sacrificial layer 520, and the first polymer layer 310 are sequentially stacked
- (b) of FIG. 5 is a first polymer layer ( 310)
- FIG. 5 shows a portion and a protrusion of the surface of the second polymer layer 320 after the second polymer layer 320 is formed on the surface of the first polymer layer 310 and the photoresist unit 100 It is a cross-sectional view of the matter in which the metal thin film layer 200 is formed on the surface of 321.
- (d) of FIG. 5 is a cross-sectional view of the surface of the second polymer layer 320 and the third polymer layer 330 formed on the metal thin film layer 200.
- FIG. 5(e) shows the first polymer layer 310, the second polymer layer 320, the metal thin film layer 200, and the third polymer layer 330 to form a through hole 350 by drilling.
- the neural electrode according to the second embodiment of the present invention includes: a first polymer layer 310 formed of a polymer material, flexible, and performing a base function; At least one photoresist unit 100 formed on a portion of the surface of the first polymer layer 310 and forming a three-dimensional structure; A second polymer layer 320 formed on the rest of the surface of the first polymer layer 310 and on the photoresist unit 100 and having a protrusion 321 formed by the photoresist unit 100; A metal thin film layer 200 formed by patterning a metal thin film on a portion of the surface of the second polymer layer 320 and the surface of the protrusion 321; A measurement hole formed on the surface of the second polymer layer 320 and on the metal thin film layer 200 to perform a cover function, and to expose a portion of the metal thin film layer 200 formed at the end of the protrusion 321 to the outside A third polymer layer 330 having 340; And a conductive portion 410 passing through the first
- the first polymer layer 310 and the second polymer layer 320, as well as the metal thin film layer 200 and the third polymer layer 330 are perforated to form a through hole 350, and a through hole 350 Since the conductive part 410 is formed by being inserted into the inside, the conductive part 410 and the metal thin film layer 200 may be in contact with each other. As shown in (c) and (d) of FIG. 5, the first polymer layer 310, the second polymer layer 320, the metal thin film layer 200, and the third polymer layer are used to form the through hole 350.
- Each of the 330 may have a perforated portion, and in this case, by forming the perforated portion of the third polymer layer 330 larger than the diameter of the perforated portion of the other layer, the metal thin film layer 200 and the conductive portion 410 A contact area may be maximized, and an electrical signal exchange efficiency between the metal thin film layer 200 and an external terminal may be maximized.
- At least one layer selected from among the first polymer layer 310, the second polymer layer 320, and the third polymer layer 330 may be formed of parylene.
- Feralin is a plastic obtained by paraxylene polymerization and is harmless to the human body, and when feralin coating is performed on a predetermined surface using a conventional parylene coating equipment, a micrometer ( ⁇ m) on the object to be coated Evaporation and polymer coating may be performed in units of thickness. Since the parylene coating equipment corresponds to the prior art, detailed information using this will be omitted.
- At least one layer selected from among the first polymer layer 310, the second polymer layer 320, and the third polymer layer 330 is formed of parylene. It is not limited, and any material that is harmless to the human body and capable of forming a coating layer with a thickness of a micrometer ( ⁇ m) or nanometer (nm) may be used.
- the photoresist unit 100 may be formed of a photoresist, which is a polymer material that changes resistance to chemicals by being exposed to light, and patterning the three-dimensional structure of the photoresist by patterning the photoresist on the first polymer layer 310 Then, the photoresist unit 100 may be formed by reflowing the three-dimensional structure of the photoresist using a photoresist reflow device. Since the photoresist reflow device corresponds to the prior art, details of using the photoresist reflow device will be omitted.
- One or more layers selected from the first polymer layer 310, the second polymer layer 320, and the third polymer layer 330 may be formed by deposition. Specifically, one or more layers selected from among the first polymer layer 310, the second polymer layer 320, and the third polymer layer 330 may be formed by chemical vapor deposition. And, as described above, when each layer is formed of parylene, each layer may be formed by chemical vapor deposition of each layer using a parylene coating equipment.
- the metal thin film layer 200 may be formed of gold (Au) or platinum (Pt).
- the metal thin film layer 200 may be formed by being deposited on a portion of the surface of the second polymer layer 320 and the surface of the protrusion 321, and may be deposited by a sputtering process or a chemical vapor deposition (CVD) process. I can.
- the metal thin film layer 200 includes a measurement thin film 201 formed along the end of the protrusion 321 and the body surface of the protrusion 321, and a second polymer layer connected to the measurement thin film 201 and adjacent to the protrusion 321
- a bonding thin film 203 which is formed on a portion of the surface of 320 and has a perforated portion by the through hole 350, may be provided.
- a portion of the measurement thin film 201 exposed through the measurement hole 340 may be in contact with the object.
- the measurement thin film 201 may be exposed to the outside through the measurement hole 340 to contact the object. And, when the plurality of protrusions 321 are formed by the plurality of photoresist units 100, each of the plurality of measurement thin films 201 is formed on the ends of the protrusions 321 and the body surface, and the plurality of measurement thin films ( 201) A plurality of bonding thin films 203 connected to each may be formed. In addition, the bonding thin film 203 comes into contact with a conductive portion 410 formed by being inserted into the through hole 350, and the conductive portion 410 may be connected to an external terminal. Electrical signal exchange may be performed between the external terminal and the measurement thin film 201 through the bonding thin film 203 and the conductive part 410.
- the first polymer layer 310 may be formed on the wafer 510.
- a sacrificial layer 520 may be formed between the first polymer layer 310 and the wafer 510.
- the sacrificial layer 520 is formed between the first polymer layer 310 and the wafer 510 and can be selectively removed to perform a function of separating the wafer 510 from the first polymer layer 310.
- a material such as polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), polystyrene (PS), etc. that is selectively dissolved only in an organic solvent such as water, acetone, or toluene may be used.
- the conductive part 410 may be formed of a conductive epoxy.
- the conductive epoxy in a dissolved state may be introduced into the through hole 350 and then cured to form the conductive part 410.
- the conductive part 410 is formed of conductive epoxy, but is not limited thereto, and a polymer material having conductivity may be used as a material of the conductive part 410.
- a wafer 510 is prepared and a sacrificial layer 520 is deposited on the surface of the wafer 510, and then the surface of the sacrificial layer 520 A first polymer layer 310 may be deposited thereon.
- the photoresist unit 100 is patterned and reflowed on a portion of the surface of the first polymer layer 310 to form a three-dimensional structure. I can.
- the second polymer layer 320 may be deposited on the rest of the surface of the first polymer layer 310 and the photoresist part 100.
- a metal thin film layer 200 having a perforated portion is formed by depositing and patterning a metal thin film on a portion of the surface of the second polymer layer 320 and the surface of the protruding portion 321. can do.
- a perforated portion of the metal thin film layer 200 for forming the through hole 350 may be formed in the bonding thin film 203 by patterning the metal thin film.
- a third polymer layer 330 is deposited on the surface of the second polymer layer 320 and the metal thin film layer 200, and the measurement hole 340 ) May be formed on a portion of the third polymer layer 330.
- the measurement hole 340 may be formed by etching (etching, etching) a portion of the third polymer layer 330 to perforate, and fine patterning for etching a portion of the third polymer layer 330 This possible dry etching can be used. However, the present invention is not limited thereto, and wet etching may be used.
- step 6 based on the perforated portion of the metal thin film layer 200, the first polymer layer 310, the second polymer layer 320, and the third polymer layer By performing perforation on 330, the through hole 350 may be formed.
- perforation of the first polymer layer 310, the second polymer layer 320, and the third polymer layer 330 may be performed by an etching process.
- the diameter of the perforated portion of the third polymer layer 330 may be formed larger than the diameter of the perforated portion of the other layer.
- the wafer 510 and the sacrificial layer 520 are separated and removed, formed along the through hole 350, and contacted with the metal thin film layer 200.
- a conductive part 410 may be formed.
- the sacrificial layer 520 may be removed by dissolving the sacrificial layer 520 using an organic solvent.
- the conductive part 410 includes a portion of the surface of the second polymer layer 320, a metal thin film layer 200 formed on a portion of the surface of the second polymer layer 320, a first polymer layer 310, and a third polymer. It penetrates through the layer 330 and may contact the metal thin film layer 200.
- the conductive part 410 may be connected to an external terminal. Accordingly, an electrical signal exchange may be performed between the external terminal and the measurement thin film 201 through the conductive part 410 and the bonding thin film 203.
- FIG. 6 is a cross-sectional view of a process of manufacturing a neural electrode according to a third embodiment of the present invention.
- (a) of FIG. 6 is a cross-sectional view of the connection hole 360 formed after the wafer 510, the sacrificial layer 520, and the first polymer layer 310 are sequentially stacked
- the ( b) is a first metal thin film layer 210 on a portion of the surface of the first polymer layer 310 adjacent to the connection hole 360 and the connection hole 360 by inserting the temporary lead 420 into the connection hole 360
- FIG. 6C is a cross-sectional view of a case in which the photoresist part 100 is formed on the surface of the first metal thin film layer 210 and the second metal thin film layer 220 is formed. Further, (d) of FIG. 6 is a cross-sectional view of a matter in which the second polymer layer 320 is formed and a portion of the second polymer layer 320 is etched to form the measurement hole 340. Next, (e) of FIG. 6 is a cross-sectional view of a matter in which the conductive part 410 is formed in the connection hole 360 from which the temporary lead-in body 420 is removed.
- the neural electrode according to the third embodiment of the present invention is formed of a polymer material, is flexible, performs a base function, and has at least one perforated connection hole 360.
- a first metal thin film layer 210 formed by patterning a metal thin film on a portion of the connection hole 360 and the surface of the first polymer layer 310 adjacent to the connection hole 360;
- a photoresist unit 100 formed on the surface of the first metal thin film layer 210 and forming a three-dimensional structure;
- a second metal thin film layer 220 formed on the photoresist part 100 as a metal thin film and connected to the first metal thin film layer 210;
- the first metal thin film layer 210, the second metal thin film layer 220, and the second polymer layer 310 are formed on the rest of the surface to perform a cover function, and are located at the end of the photoresist unit 100.
- the first polymer layer 310 or the second polymer layer 320 may be formed of parylene.
- Feralin is a plastic obtained by paraxylene polymerization and is harmless to the human body, and when feralin coating is performed on a predetermined surface using a conventional parylene coating equipment, a micrometer ( ⁇ m) on the object to be coated Evaporation and polymer coating may be performed in units of thickness. Since the parylene coating equipment corresponds to the prior art, detailed information using this will be omitted.
- At least one layer selected from among the first polymer layer 310, the second polymer layer 320, and the third polymer layer 330 is formed of parylene. It is not limited, and any material that is harmless to the human body and capable of forming a coating layer with a thickness of a micrometer ( ⁇ m) or nanometer (nm) may be used.
- the photoresist unit 100 may be formed of a photoresist, which is a polymer material that changes resistance to chemicals by being exposed to light, and patterning the three-dimensional structure of the photoresist by patterning the photoresist on the first polymer layer 310 Then, the photoresist unit 100 may be formed by reflowing the three-dimensional structure of the photoresist using a photoresist reflow device. Since the photoresist reflow device corresponds to the prior art, details of using the photoresist reflow device will be omitted.
- the first polymer layer 310 or the second polymer layer 320 may be formed by vapor deposition. Specifically, the first polymer layer 310 or the second polymer layer 320 may be formed by chemical vapor deposition. And, as described above, when each layer is formed of parylene, each layer may be formed by chemical vapor deposition of each layer using a parylene coating equipment.
- the first metal thin film layer 210 and the second metal thin film layer 220 may be formed of gold (Au) or platinum (Pt).
- the first metal thin film layer 210 and the second metal thin film layer 220 may be deposited by a sputtering process or a chemical vapor deposition (CVD) process.
- one part of the first metal thin film layer 210 is formed while sealing the connection hole 360, and the other part of the first metal thin film layer 210 is formed with the connection hole 360 It may be formed on a portion of the surface of the adjacent first polymer layer 310.
- the second metal thin film layer 220 may be formed along the surface of the body and the end of the photoresist unit 100 forming a protruding three-dimensional structure, and the second metal thin film layer 220 formed as described above is 1 It may be connected to the thin metal layer 210.
- a portion of the second metal thin film layer 220 exposed through the measurement hole 340 may be in contact with the object.
- the second metal thin film layer 220 may be exposed to the outside through the measurement hole 340 to contact the object.
- each of the plurality of second metal thin film layers 220 are formed on the ends of the photoresist unit 100 and on the body surface, and the plurality of second metal thin film layers 220 A plurality of first metal thin film layers 210 connected to each may be formed.
- the first metal thin film layer 210 may come into contact with a conductive portion 410 formed by being inserted into the connection hole 360, and the conductive portion 410 may be connected to an external terminal. Electricity exchange may be performed between the external terminal and the second metal thin film layer 220 through the first metal thin film layer 210 and the conductive portion 410.
- the first polymer layer 310 may be formed on the wafer 510.
- a sacrificial layer 520 may be formed between the first polymer layer 310 and the wafer 510.
- the sacrificial layer 520 is formed between the first polymer layer 310 and the wafer 510 and can be selectively removed to perform a function of separating the wafer 510 from the first polymer layer 310.
- a material such as polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA), polystyrene (PS), etc. that is selectively dissolved only in an organic solvent such as water, acetone, or toluene may be used.
- the conductive part 410 may be formed of a conductive epoxy. After the temporary lead-in body 420 inserted into the connection hole 360 is removed, the conductive epoxy is introduced into the inside of the connection hole 360 and then cured to form the conductive part 410. In the exemplary embodiment of the present invention, it is described that the conductive part 410 is formed of conductive epoxy, but is not limited thereto, and a polymer material having conductivity may be used as a material of the conductive part 410.
- a wafer 510 is prepared and a sacrificial layer 520 is deposited on the surface of the wafer 510, and then the surface of the sacrificial layer 520
- a first polymer layer 310 may be formed by patterning deposition on the first polymer layer 310 to provide a connection hole 360 in the first polymer layer 310.
- the connection hole 360 may be formed by patterning a perforated portion when forming the first polymer layer 310.
- connection hole 360 and the first polymer layer 310 are The first metal thin film layer 210 may be formed by patterning a metal thin film on a portion of the surface adjacent to the connection hole 360.
- the temporary lead-in body 420 may be formed of a photoresist.
- a second metal thin film layer 220 is formed by patterning a metal thin film on the photoresist part 100, and the first metal thin film layer 210 and the second metal thin film layer 220 are connected. I can make it.
- a second polymer is formed on the remaining portions of the first metal thin film layer 210, the second metal thin film layer 220, and the first polymer layer 310.
- the layer 320 may be deposited and a portion of the second polymer layer 320 may be etched to form the measurement hole 340.
- a portion of the second polymer layer 320 to be etched may be a portion in contact with a portion of the second metal thin film layer 220 located at an end of the photoresist portion 100.
- the measurement hole 340 may be formed by etching (etching, etching) a portion of the second polymer layer 320 to perforate, and fine patterning for etching a portion of the second polymer layer 320 This possible dry etching can be used. However, the present invention is not limited thereto, and wet etching may be used.
- the wafer 510 and the sacrificial layer 520 may be separated and removed.
- the sacrificial layer 520 may be removed by dissolving the sacrificial layer 520 using an organic solvent.
- the temporary lead-in body 420 that has been inserted into the connection hole 360 is removed, and the conductive part 410 that is inserted into the connection hole 360 and in contact with the first metal thin film layer 210 is removed.
- the conductive part 410 may be connected to an external terminal. Accordingly, an electric signal exchange may be performed between the external terminal and the second metal thin film layer 220 through the conductive part 410 and the first metal thin film layer 210.
- a three-dimensional structure is formed by the photoresist unit 100, and a metal thin film is formed at the end of the three-dimensional structure.
- a metal thin film formed together and performing the function of an electrode may be connected to an external terminal.
- the metal thin film positioned at the end of the 3D structure is exposed to the outside through the measurement hole 340, so that it may contact the object.
- the electrode is formed in a three-dimensional shape to improve the adhesion between the nerve electrode and the object.
- the shape of the neural electrode can be diversified.
- a polymer material and a metal are sequentially stacked, and only an additional etching process is performed, and a separate insulating process is omitted, so that a manufacturing method is simple and a structure can be easily changed.
- a planar electrode according to the prior art has a limitation in that accessibility to a target cell is inferior on a curved surface, and since a three-dimensional electrode according to the prior art is manufactured based on a rigid substrate, adhesion to an object is lowered, Since it is manufactured by growing carbon nanotubes (CNTs) or printing using liquid metal, there is a limitation in that the manufacturing method is complicated.
- CNTs carbon nanotubes
- the neural electrode according to the present invention basically has a shape of a planar electrode, but since the electrode part measuring a neural signal has a three-dimensional shape, it is possible to have the selective accessibility of the three-dimensional electrode together with the high adhesion of the planar electrode. have.
- the neural electrode according to the present invention can be applied to various types of neural electrodes because the manufacturing method is simple and the structure can be easily deformed according to need.
- the neural electrode according to the present invention can be used as a neural electrode that measures or stimulates nerve signals from nerve cells or peripheral nerves of the brain, and in particular, replaces the function of retinal optic cells (photoreceptors) that have died due to aging. It can be applied to the artificial retina
- the present invention when the present invention is applied to an artificial retina, the effects of the prior art will be described in more detail.
- the artificial retina according to the prior art since it adopts a structure that is placed on the retina in the form of a flat film, tacking for fixation is required, and thus, tissue damage may be caused, and it is difficult to maintain a stable close contact with the retinal surface. .
- the artificial retina according to the prior art since close contact between a flat two-dimensional electrode and a target cell to be stimulated is difficult, more current must be passed for stimulation. And, accordingly, the excessive current affects not only the target cell but also the adjacent cells, causing crosstalk, and as a result, it is difficult to secure a clear image.
- the neural electrode according to the present invention can be used not only as an epi-retinal electrode, but also a sub-retinal electrode, in which it is difficult to fix the electrode, and as described above through various embodiments, the target It has a three-dimensional structure (braille shape) to improve contact with cells. Therefore, according to the present invention, since the electrode can be inserted under the retina, it is easy to adhere between the electrode and the retina, and the distance between the target cell and the electrode can be minimized through a three-dimensional convex structure, whereby a lower current is used. Since it can stimulate target cells, it can provide a safe artificial retina. In addition, when the neural electrode according to the present invention is implemented as a three-dimensional retinal electrode formed on a flexible substrate, damage to the retinal tissue can be minimized due to the three-dimensional structure having a round shape of a semicircular structure.
- the neural electrode according to the present invention has been described in detail by taking the case where the neural electrode according to the present invention is implemented in the artificial retina as an example, but this is only for explaining in detail the effect according to an embodiment of the present invention. Of course, this is not limited to this. That is, the neural electrode according to the present invention can be applied regardless of the object such as the brain, the eyeball, and the peripheral nerve.
- the neural electrode according to the present invention may be used as a brain interface such as an electrocorticogram (ECoG) measurement electrode, and may be applied not only to nerve cells of the human body but also to nerve cells of animals.
- EoG electrocorticogram
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Cardiology (AREA)
- Psychology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Micromachines (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
본 발명의 일 실시 예는 3차원 구조를 이용하여 대상체와의 밀착력을 향상시킨 유연한 신경 전극을 제공한다. 본 발명의 실시 예에 따른 유연한 기판의 3차원 구조물 기반의 신경전극은, 고분자 물질로 형성되고 유연하며 베이스 기능을 수행하는 제1폴리머층; 제1폴리머층 표면의 일 부위 상에 적어도 하나 이상 형성되고 3차원 구조를 형성하는 포토레지스트부; 제1폴리머층 표면의 나머지 부위와 포토레지스트부 상에 형성되며, 포토레지스트부에 의한 돌출부를 구비하는 제2폴리머층; 제2폴리머층 표면과 돌출부의 표면 상에 금속 박막이 패터닝되어 형성되는 금속박막층; 및 제2폴리머층의 표면과 금속박막층 상에 형성되어 커버 기능을 수행하며, 돌출부의 말단에 형성된 금속박막층의 일 부위가 외부로 노출되도록 타공된 측정홀을 구비하는 제3폴리머층;을 포함한다.
Description
본 발명은 유연한 기판의 3차원 구조물을 이용하여 원하는 부위의 밀착력을 선택적으로 향상시킨 신경전극 및 이의 제조 방법에 관한 것으로, 더욱 상세하게는, 3차원 구조를 이용하여 대상체와의 밀착력을 향상시킨 유연한 신경 전극에 관한 것이다.
뇌의 신경 세포나 말초신경으로부터 신경신호를 측정하거나 자극을 주는 평면형 신경전극은, 뇌의 표면에 얹거나 말초신경을 감싸는 형태로 형성된다. 이러한 평면형 전극은 굴곡이 많은 표면이나 복잡한 형상의 표면에서 적용되기 때문에, 관련 기술분야에서 밀착성과 관련된 사항이 중요한 이슈이다. 이에 따라, 평면형 전극과 대상체의 밀착성을 높이기 위해서 전극의 기판을 박막 정도의 두께로 얇게 만들거나 기판의 소재를 유연한 폴리머 재질로 만드는 연구 개발이 지속되고 있다.
하지만, 종래기술을 이용하는 경우, 유연한 평면형 전극이 폴리머 기판 및 메탈의 증착과 패터닝 공정에 의해 2차원에 한정됨으로써, 3차원 구조의 굴곡을 가진 대상체에 2차원의 전극을 완벽하게 밀착시키기에는 한계점이 있다.
대한민국 등록특허 제10-1452908호(발명의 명칭: 3차원 신경 전극의 제조 방법 및 제조 장치)에서는, 평면형 신경 전극의 하부에 위치하는 하판, 상기 평면형 신경 전극의 상부에 위치하는 상판 및 상기 상판 및 상기 하판에 연결되어 상기 상판 및 상기 하판에 열 또는 압력을 가하는 열압력부를 포함하며, 상기 상판과 상기 하판 중 어느 하나는 양각의 형태인 볼록부를 포함하고 다른 하나는 음각의 형태인 오목부를 포함하는 3차원 신경 전극이 개시되어 있다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 대상체와의 선택적 밀착력을 향상시킨 유연한 평면형 신경 전극을 제공하는 것이다.
그리고, 본 발명의 목적은, 3차원의 구조체가 형성된 신경 전극을 제공하며, 이와 같은 3차원의 구조체 형성이 단순한 공정에 의해 수행되도록 하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 고분자 물질로 형성되고 유연하며 베이스 기능을 수행하는 제1폴리머층; 상기 제1폴리머층 표면의 일 부위 상에 적어도 하나 이상 형성되고 3차원 구조를 형성하는 포토레지스트부; 상기 제1폴리머층 표면의 나머지 부위와 상기 포토레지스트부 상에 형성되며, 상기 포토레지스트부에 의한 돌출부를 구비하는 제2폴리머층; 상기 제2폴리머층 표면과 상기 돌출부의 표면 상에 금속 박막이 패터닝되어 형성되는 금속박막층; 및 상기 제2폴리머층의 표면과 상기 금속박막층 상에 형성되어 커버 기능을 수행하며, 상기 돌출부의 말단에 형성된 상기 금속박막층의 일 부위가 외부로 노출되도록 타공된 측정홀을 구비하는 제3폴리머층;을 포함한다.
본 발명의 실시 예에 있어서, 상기 제1폴리머층은 웨이퍼 상에 형성될 수 있다.
본 발명의 실시 예에 있어서, 상기 제1폴리머층, 상기 제2폴리머층 또는 상기 제3폴리머층 중 선택되는 하나 이상의 층은 증착으로 형성될 수 있다.
본 발명의 실시 예에 있어서, 상기 제1폴리머층, 상기 제2폴리머층 또는 상기 제3폴리머층 중 선택되는 하나 이상의 층은 페럴린(parylene)으로 형성될 수 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 웨이퍼를 마련하고 상기 웨이퍼의 표면 상에 희생층을 증착시킨 후, 상기 희생층의 표면 상에 상기 제1폴리머층을 증착 형성시키는 제1단계; 상기 제1폴리머층 표면의 일 부위 상에 상기 포토레지스트부를 패터닝 및 리플로우하여 3차원 구조를 형성하는 제2단계; 상기 제1폴리머층 표면의 나머지 부위와 상기 포토레지스트부 상에 상기 제2폴리머층을 증착 형성하는 제3단계; 상기 제2폴리머층 표면과 상기 돌출부의 표면 상에 금속 박막을 증착시켜 패터닝함으로써 상기 금속박막층을 증착 형성하는 제4단계; 및 상기 제2폴리머층의 표면과 상기 금속박막층 상에 상기 제3폴리머층을 증착 형성하고 상기 측정홀의 형성을 위해 상기 제3폴리머층의 일 부위를 식각하는 제5단계;를 포함한다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 고분자 물질로 형성되고 유연하며 베이스 기능을 수행하는 제1폴리머층; 상기 제1폴리머층 표면의 일 부위 상에 적어도 하나 이상 형성되고 3차원 구조를 형성하는 포토레지스트부; 상기 제1폴리머층 표면의 나머지 부위와 상기 포토레지스트부 상에 형성되며, 상기 포토레지스트부에 의한 돌출부를 구비하는 제2폴리머층; 상기 제2폴리머층 표면의 일 부위와 상기 돌출부의 표면 상에 금속 박막이 패터닝되어 형성되는 금속박막층; 상기 제2폴리머층의 표면과 상기 금속박막층 상에 형성되어 커버 기능을 수행하며, 상기 돌출부의 말단에 형성된 상기 금속박막층의 일 부위가 외부로 노출되도록 타공된 측정홀을 구비하는 제3폴리머층; 및 상기 제1폴리머층과 상기 제2폴리머층을 관통하여 상기 금속박막층과 접촉하며, 외부 단자와 연결되는 전도부;를 포함한다.
본 발명의 실시 예에 있어서, 상기 제1폴리머층은 웨이퍼 상에 형성될 수 있다.
본 발명의 실시 예에 있어서, 상기 제1폴리머층, 상기 제2폴리머층 또는 상기 제3폴리머층 중 선택되는 하나 이상의 층은 증착으로 형성될 수 있다.
본 발명의 실시 예에 있어서, 상기 제1폴리머층, 상기 제2폴리머층 또는 상기 제3폴리머층 중 선택되는 하나 이상의 층은 페럴린(parylene)으로 형성될 수 있다.
본 발명의 실시 예에 있어서, 상기 전도부는 전도성 에폭시로 형성될 수 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 웨이퍼를 마련하고 상기 웨이퍼의 표면 상에 희생층을 증착시킨 후, 상기 희생층의 표면 상에 상기 제1폴리머층을 증착 형성시키는 제1단계; 상기 제1폴리머층 표면의 일 부위 상에 상기 포토레지스트부를 패터닝 및 리플로우하여 3차원 구조를 형성하는 제2단계; 상기 제1폴리머층 표면의 나머지 부위와 상기 포토레지스트부 상에 상기 제2폴리머층을 증착 형성하는 제3단계; 상기 제2폴리머층의 표면 일 부위와 상기 돌출부의 표면 상에 금속 박막을 증착시켜 패터닝함으로써 타공 부위를 구비한 상기 금속박막층을 증착 형성하는 제4단계; 상기 제2폴리머층의 표면과 상기 금속박막층 상에 상기 제3폴리머층을 증착 형성하고 상기 측정홀의 형성을 위해 상기 제3폴리머층의 일 부위를 식각하는 제5단계; 상기 금속박막층의 타공 부위를 기준으로, 상기 제1폴리머층과 상기 제2폴리머층 및 상기 제3폴리머층에 대한 타공을 수행하여, 관통홀을 형성하는 제6단계; 및 상기 웨이퍼 및 상기 희생층을 분리 제거하고, 상기 관통홀을 따라 형성되며 상기 금속박막층과 접촉하는 상기 전도부를 형성하는 제7단계;를 포함한다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 고분자 물질로 형성되고 유연하며 베이스 기능을 수행하고, 타공된 적어도 하나 이상의 연결홀을 구비하는 제1폴리머층; 상기 연결홀과 상기 제1폴리머층의 표면에서 상기 연결홀에 인접한 일 부위 상에 금속 박막이 패터닝되어 형성되는 제1금속박막층; 상기 제1금속박막층의 표면 상에 형성되고 3차원 구조를 형성하는 포토레지스트부; 상기 포토레지스트부 상에 금속 박막으로 형성되고, 상기 제1금속박막층과 연결되는 제2금속박막층; 상기 제1금속박막층, 상기 제2금속박막층 및 상기 제1폴리머층 표면의 나머지 부위 상에 형성되어 커버 기능을 수행하며, 상기 포토레지스트부의 말단에 위치하는 상기 제2금속박막층의 일 부위가 외부로 노출되도록 타공된 측정홀을 구비하는 제2폴리머층; 및 상기 연결홀에 인입되어 상기 제1금속박막층과 접촉하며, 외부 단자와 연결되는 전도부;를 포함한다.
본 발명의 실시 예에 있어서, 상기 제1폴리머층은 웨이퍼 상에 형성될 수 있다.
본 발명의 실시 예에 있어서, 상기 제1폴리머층 또는 상기 제2폴리머층은 증착으로 형성될 수 있다.
본 발명의 실시 예에 있어서, 상기 제1폴리머층 또는 상기 제2폴리머층은 페럴린(parylene)으로 형성될 수 있다.
본 발명의 실시 예에 있어서, 상기 전도부는 전도성 에폭시로 형성될 수 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 웨이퍼를 마련하고 상기 웨이퍼의 표면 상에 희생층을 증착시킨 후, 상기 희생층의 표면 상에 상기 제1폴리머층을 패터닝 증착 형성시켜, 상기 제1폴리머층에 상기 연결홀을 구비시키는 제1단계; 상기 연결홀에 임시인입체를 인입시켜 채운 후, 상기 연결홀과 상기 제1폴리머층의 표면에서 상기 연결홀에 인접한 일 부위 상에 금속 박막을 패터닝하여 상기 제1금속박막층을 형성하는 제2단계; 상기 제1금속박막층의 표면 상에 3차원의 포토레지스트 구조체를 형성하여 상기 포토레지스트부를 패터닝 및 리플로우하는 제3단계; 상기 포토레지스트부 상에 금속 박막을 패터닝하여 상기 제2금속박막층을 형성하고, 상기 제1금속박막층와 상기 제2금속박막층을 연결시키는 제4단계; 상기 제1금속박막층, 상기 제2금속박막층 및 상기 제1폴리머층 표면의 나머지 부위 상에 상기 제2폴리머층을 증착 형성하고 상기 측정홀의 형성을 위해 상기 제2폴리머층의 일 부위를 식각하는 제5단계; 상기 웨이퍼 및 상기 희생층을 분리 제거하는 제6단계; 및 상기 연결홀에 인입되어 있던 상기 임시인입체를 제거하고, 상기 연결홀에 인입되어 상기 제1금속박막층과 접촉하는 상기 전도부를 형성하는 제7단계;를 포함한다.
상기와 같은 구성에 따른 본 발명의 효과는, 3차원 형상으로 전극이 형성되어 신경전극과 대상체의 밀착력을 향상시킬 수 있다는 것이다.
또한, 본 발명의 효과는, 포토레지스트부의 형성에 의한 각각의 3차원 구조체의 돌출 높이를 각각 상이하게 형성함으로써, 신경전극의 형상을 다변화시킬 수 있다는 것이다.
그리고, 본 발명의 효과는, 고분자 물질과 금속을 순차적으로 적층시키고, 추가적으로 식각 공정 등만 수행하며, 별도의 절연 공정이 생략되어, 제작 방법이 간단하고 구조의 변경이 용이할 수 있다는 것이다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 제1실시 예에 따른 신경전극의 외부 사시도와 내부 구성도이다.
도 2는 본 발명의 제1실시 예에 따른 신경전극의 외부 평면도와 내부 구성에 대한 평면도이다.
도 3은 본 발명의 제1실시 예에 따른 신경전극의 제조 공정에 대한 단면도이다.
도 4는 본 발명의 제1실시 예에 따른 신경전극의 이미지이다.
도 5는 본 발명의 제2실시 예에 따른 신경전극의 제조 공정에 대한 단면도이다.
도 6은 본 발명의 제3실시 예에 따른 신경전극의 제조 공정에 대한 단면도이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시 예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 뇌의 신경 세포나 말초신경으로부터 신경신호를 측정하거나 자극을 주는 신경전극에 관한 것으로써, 뇌 등 신경세포가 존재하는 기관의 표면에 얹거나 말초신경을 감싸는 형태로 형성될 수 있다. 즉, 이용되는 대상체는 뇌, 안구, 말초신경 등일 수 있다. 이하 첨부된 도면을 참고하여 본 발명에 대하여 상세히 설명하기로 한다.
먼저, 본 발명의 제1실시 예에 따른 신경전극에 대해 설명하기로 한다.
도 1은 본 발명의 제1실시 예에 따른 신경전극의 외부 사시도와 내부 구성도이며, 도 2는 본 발명의 제1실시 예에 따른 신경전극의 외부 평면도와 내부 구성에 대한 평면도이다. 그리고, 도 3은 본 발명의 제1실시 예에 따른 신경전극의 제조 공정에 대한 단면도이며, 도 4는 본 발명의 제1실시 예에 따른 신경전극의 이미지이다.
도 1의 (a)는 본 발명의 제1실시 예에 따른 신경전극의 외부 사시도이고, 도 1의 (b)는 본 발명의 제1실시 예에 따른 신경전극에서 제3폴리머층(330)이 제외된 사항에 대한 내부 구성도이다. 그리고, 도 2의 (a)는 본 발명의 제1실시 예에 따른 신경전극의 외부 평면도이고, 도 2의 (b)는 본 발명의 제1실시 예에 따른 신경전극에서 제3폴리머층(330)이 제외된 사항에 대한 내부 평면도이다. 도 3에 대해서는 하기의 제조 방법에서 상세히 설명하기로 한다.
도 1 내지 도 4에서 보는 바와 같이, 본 발명의 제1실시 예에 따른 신경전극은, 고분자 물질로 형성되고 유연하며 베이스 기능을 수행하는 제1폴리머층(310); 제1폴리머층(310) 표면의 일 부위 상에 적어도 하나 이상 형성되고 3차원 구조를 형성하는 포토레지스트부(100); 제1폴리머층(310) 표면의 나머지 부위와 포토레지스트부(100) 상에 형성되며, 포토레지스트부(100)에 의한 돌출부(321)를 구비하는 제2폴리머층(320); 제2폴리머층(320) 표면과 돌출부(321)의 표면 상에 금속 박막이 패터닝되어 형성되는 금속박막층(200); 및 제2폴리머층(320)의 표면과 금속박막층(200) 상에 형성되어 커버 기능을 수행하며, 돌출부(321)의 말단에 형성된 금속박막층(200)의 일 부위가 외부로 노출되도록 타공된 측정홀(340)을 구비하는 제3폴리머층(330);을 포함한다.
제1폴리머층(310), 제2폴리머층(320) 또는 제3폴리머층(330) 중 선택되는 하나 이상의 층은 페럴린(parylene)으로 형성될 수 있다. 페럴린은 파라크실렌 중합으로 획득되는 플라스틱으로써 인체에 무해하며, 종래기술의 페럴린 코팅(Parylene Coating) 장비를 이용하여 소정의 표면에 페럴린 코팅을 수행하는 경우, 코팅 대상체에 마이크로미터(㎛) 두께 단위로 증착, 고분자 코팅될 수 있다. 페럴린 코팅(Parylene Coating) 장비는 종래기술에 해당하므로, 이를 이용한 상세한 사항에 대해서는 생략하기로 한다.
본 발명의 실시 예에서는 제1폴리머층(310), 제2폴리머층(320) 또는 제3폴리머층(330) 중 선택되는 하나 이상의 층이 페럴린(parylene)으로 형성된다고 설명하고 있으나, 반드시 이에 한정되는 것은 아니고, 인체에 무해하며 마이크로미터(㎛) 또는 나노미터(nm) 단위의 두께로 코팅층 형성이 가능한 소재는 모두 이용될 수 있다.
포토레지스트부(100)는 광에 노출됨으로써 약품에 대한 내성이 변화하는 고분자 재료인 포토레지스트로 형성될 수 있으며, 포토레지스트를 제1폴리머층(310)에 패터닝하여 포토레지스트의 3차원 구조체를 패터닝하고, 포토레지스트 리플로우 장치를 이용하여 포토레지스트의 3차원 구조체를 리플로우함으로써 포토레지스트부(100)를 형성할 수 있다. 포토레지스트 리플로우 장치는 종래기술에 해당하므로, 이를 이용한 상세한 사항에 대해서는 생략하기로 한다.
제1폴리머층(310), 제2폴리머층(320) 또는 제3폴리머층(330) 중 선택되는 하나 이상의 층은 증착으로 형성될 수 있다. 구체적으로, 제1폴리머층(310), 제2폴리머층(320) 또는 제3폴리머층(330) 중 선택되는 하나 이상의 층은 화학 증착에 의해 형성될 수 있다. 그리고, 상기와 같이, 각각의 층이 페럴린(parylene)으로 형성되는 경우, 페럴린 코팅(Parylene Coating) 장비를 이용하여 각각의 층을 화학 증착 시킴으로써, 각각의 층이 형성될 수 있다.
금속박막층(200)은 금(Au), 백금(Pt), 이리듐(Ir) 및 산화이리듐(IrOx)으로 이루어진 군에서 선택되는 하나 이상의 물질로 형성될 수 있다. 금속박막층(200)은 제2폴리머층(320)의 표면과 돌출부(321)의 표면 상에 증착되어 형성될 수 있으며, 스퍼터링(sputtering) 공정 또는 화학 기상 증착(CVD) 공정에 의해 증착될 수 있다.
금속박막층(200)은, 돌출부(321)의 말단과 돌출부(321)의 몸체 표면을 따라 형성되는 측정박막(201) 및, 측정박막(201)과 연결되고 제2폴리머층(320)의 표면을 따라 형성되며 외부 단자와 연결되는 트랜스미션라인(202),을 구비할 수 있다. 측정홀(340)을 통해 노출되는 측정박막(201)의 일 부위가 대상체와 접촉될 수 있다.
측정박막(201)은 측정홀(340)을 통해 외부로 노출되어 대상체와 접촉될 수 있다. 그리고, 복수 개의 포토레지스트부(100)에 의해 복수 개의 돌출부(321)가 형성되는 경우, 복수 개의 측정박막(201) 각각이 돌출부(321)의 말단과 몸체 표면에 형성되고, 복수 개의 측정박막(201) 각각과 연결되는 트랜스미션라인(202)이 복수 개 형성되어 제2폴리머층(320)의 표면을 따라 배치되고, 각각의 트랜스미션라인(202)이 외부 단자와 연결될 수 있다. 트랜스미션라인(202)을 통해 외부 단자와 측정박막(201) 간 전기 신호 교환이 수행될 수 있다.
제1폴리머층(310)은 웨이퍼(510)(wafer) 상에 형성될 수 있다. 여기서, 제1폴리머층(310)과 웨이퍼(510) 사이에는 희생층(520)이 형성될 수 있다. 희생층(520)은, 제1폴리머층(310)과 웨이퍼(510) 사이에 형성되며, 선택적으로 제거가 가능하여 제1폴리머층(310)으로부터 웨이퍼(510)가 분리되도록 하는 기능을 수행할 수 있다. 희생층(520)으로는 물이나 아세톤, 톨루엔과 같은 유기용매에만 선택적으로 용해되는 폴리비닐알콜(PVA), 폴리메틸메타크릴레이트(PMMA), 폴리스티렌(PS) 등과 같은 물질이 이용될 수 있다.
이하, 본 발명의 제1실시 예에 따른 신경전극의 제조 방법에 대해 설명하기로 한다. 도 3의 (a)는 웨이퍼(510), 희생층(520) 및 제1폴리머층(310)이 순차적으로 적층된 사항에 대한 단면도이고, 도 3의 (b)는 제1폴리머층(310) 표면 상에 포토레지스트부(100)가 형성된 사항에 대한 단면도이다. 또한, 도 3의 (c)는 제1폴리머층(310) 표면과 포토레지스트부(100) 상에 제2폴리머층(320)이 형성된 후 제2폴리머층(320)의 표면과 돌출부(321)의 표면에 금속박막층(200)이 형성된 사항에 대한 단면도이다. 그리고, 도 3의 (d)는 제2폴리머층(320)의 표면과 금속박막층(200) 상에 제3폴리머층(330)이 형성된 사항에 대한 단면도이다.
먼저, 도 3의 (a)에서 보는 바와 같이, 제1단계에서, 웨이퍼(510)를 마련하고 웨이퍼(510)의 표면 상에 희생층(520)을 증착시킨 후, 희생층(520)의 표면 상에 제1폴리머층(310)을 증착 형성시킬 수 있다. 여기서, 증착 형성된다는 것은 하나의 레이어를 형성한다는 것일 수 있다. 이하, 동일하다.
다음으로, 도 3의 (b)에서 보는 바와 같이, 제2단계에서, 제1폴리머층(310) 표면의 일 부위 상에 포토레지스트부(100)를 패터닝 및 리플로우하여 3차원 구조를 형성할 수 있다. 그리고, 도 3의 (c)에서 보는 바와 같이, 제3단계에서, 제1폴리머층(310) 표면의 나머지 부위와 포토레지스트부(100) 상에 제2폴리머층(320)을 증착 형성할 수 있으며, 제4단계에서, 제2폴리머층(320) 표면과 돌출부(321)의 표면 상에 금속 박막을 증착시켜 패터닝함으로써 금속박막층(200)을 증착 형성할 수 있다.
이어서, 도 3의 (d)에서 보는 바와 같이, 제5단계에서, 제2폴리머층(320)의 표면과 금속박막층(200) 상에 제3폴리머층(330)을 증착 형성하고 측정홀(340)의 형성을 위해 제3폴리머층(330)의 일 부위를 식각할 수 있다. 상기와 같이, 제3폴리머층(330)의 일 부위를 식각(에칭, etching)하여 타공함으로써 측정홀(340)이 형성될 수 있으며, 제3폴리머층(330)의 일 부위 식각을 위해 미세 패터닝이 가능한 건식 식각이 이용될 수 있다. 다만, 이에 한정되는 것은 아니며, 습식 식각이 이용될 수도 있다. 마지막으로, 상기된 제5단계 이후, 희생층(520)이 제거됨으로써, 제1폴리머층(310)으로부터 웨이퍼(510)가 분리될 수 있다. 여기서, 유기용매를 이용하여 희생층(520)을 용해시킴으로써 희생층(520)을 제거할 수 있다.
이하, 본 발명의 제2실시 예에 따른 신경전극에 대해 설명하기로 한다. 도 5는 본 발명의 제2실시 예에 따른 신경전극의 제조 공정에 대한 단면도이다. 여기서, 도 5의 (a)는 웨이퍼(510), 희생층(520) 및 제1폴리머층(310)이 순차적으로 적층된 사항에 대한 단면도이고, 도 5의 (b)는 제1폴리머층(310) 표면 상에 포토레지스트부(100)가 형성된 사항에 대한 단면도이다. 또한, 도 5의 (c)는 제1폴리머층(310) 표면과 포토레지스트부(100) 상에 제2폴리머층(320)이 형성된 후 제2폴리머층(320) 표면의 일 부위와 돌출부(321)의 표면에 금속박막층(200)이 형성된 사항에 대한 단면도이다. 그리고, 도 5의 (d)는 제2폴리머층(320)의 표면과 금속박막층(200) 상에 제3폴리머층(330)이 형성된 사항에 대한 단면도이다. 다음으로, 도 5의 (e)는 제1폴리머층(310), 제2폴리머층(320), 금속박막층(200) 및 제3폴리머층(330)을 타공하여 관통홀(350)을 형성하고, 관통흘을 통과하는 전도부(410)가 형성된 사항에 대한 단면도이다.
도 5의 (e)에서 보는 바와 같이, 본 발명의 제2실시 예에 따른 신경전극은, 고분자 물질로 형성되고 유연하며 베이스 기능을 수행하는 제1폴리머층(310); 제1폴리머층(310) 표면의 일 부위 상에 적어도 하나 이상 형성되고 3차원 구조를 형성하는 포토레지스트부(100); 제1폴리머층(310) 표면의 나머지 부위와 포토레지스트부(100) 상에 형성되며, 포토레지스트부(100)에 의한 돌출부(321)를 구비하는 제2폴리머층(320); 제2폴리머층(320) 표면의 일 부위와 돌출부(321)의 표면 상에 금속 박막이 패터닝되어 형성되는 금속박막층(200); 제2폴리머층(320)의 표면과 금속박막층(200) 상에 형성되어 커버 기능을 수행하며, 돌출부(321)의 말단에 형성된 금속박막층(200)의 일 부위가 외부로 노출되도록 타공된 측정홀(340)을 구비하는 제3폴리머층(330); 및 제1폴리머층(310)과 제2폴리머층(320)을 관통하여 금속박막층(200)과 접촉하며, 외부 단자와 연결되는 전도부(410);를 포함한다.
여기서, 제1폴리머층(310)과 제2폴리머층(320) 뿐만 아니라, 금속박막층(200)과 제3폴리머층(330)도 타공되어 관통홀(350)이 형성되며, 관통홀(350) 내부로 전도부(410)가 인입되어 형성됨으로써, 전도부(410)와 금속박막층(200)이 접촉될 수 있다. 도 5의 (c)와 (d)에서 보는 바와 같이, 관통홀(350)의 형성을 위해 제1폴리머층(310), 제2폴리머층(320), 금속박막층(200) 및 제3폴리머층(330) 각각은 타공 부위를 구비할 수 있고, 이 때, 제3폴리머층(330)의 타공 부위를 다른 층의 타공 부위의 직경 보다 크게 형성함으로써, 금속박막층(200)와 전도부(410)의 접촉 면적을 최대화하고, 금속박막층(200)과 외부 단자 간 전기 신호 교환 효율이 극대화될 수 있다.
제1폴리머층(310), 제2폴리머층(320) 또는 제3폴리머층(330) 중 선택되는 하나 이상의 층은 페럴린(parylene)으로 형성될 수 있다. 페럴린은 파라크실렌 중합으로 획득되는 플라스틱으로써 인체에 무해하며, 종래기술의 페럴린 코팅(Parylene Coating) 장비를 이용하여 소정의 표면에 페럴린 코팅을 수행하는 경우, 코팅 대상체에 마이크로미터(㎛) 두께 단위로 증착, 고분자 코팅될 수 있다. 페럴린 코팅(Parylene Coating) 장비는 종래기술에 해당하므로, 이를 이용한 상세한 사항에 대해서는 생략하기로 한다.
본 발명의 실시 예에서는 제1폴리머층(310), 제2폴리머층(320) 또는 제3폴리머층(330) 중 선택되는 하나 이상의 층이 페럴린(parylene)으로 형성된다고 설명하고 있으나, 반드시 이에 한정되는 것은 아니고, 인체에 무해하며 마이크로미터(㎛) 또는 나노미터(nm) 단위의 두께로 코팅층 형성이 가능한 소재는 모두 이용될 수 있다.
포토레지스트부(100)는 광에 노출됨으로써 약품에 대한 내성이 변화하는 고분자 재료인 포토레지스트로 형성될 수 있으며, 포토레지스트를 제1폴리머층(310)에 패터닝하여 포토레지스트의 3차원 구조체를 패터닝하고, 포토레지스트 리플로우 장치를 이용하여 포토레지스트의 3차원 구조체를 리플로우함으로써 포토레지스트부(100)를 형성할 수 있다. 포토레지스트 리플로우 장치는 종래기술에 해당하므로, 이를 이용한 상세한 사항에 대해서는 생략하기로 한다.
제1폴리머층(310), 제2폴리머층(320) 또는 제3폴리머층(330) 중 선택되는 하나 이상의 층은 증착으로 형성될 수 있다. 구체적으로, 제1폴리머층(310), 제2폴리머층(320) 또는 제3폴리머층(330) 중 선택되는 하나 이상의 층은 화학 증착에 의해 형성될 수 있다. 그리고, 상기와 같이, 각각의 층이 페럴린(parylene)으로 형성되는 경우, 페럴린 코팅(Parylene Coating) 장비를 이용하여 각각의 층을 화학 증착 시킴으로써, 각각의 층이 형성될 수 있다.
금속박막층(200)은 금(Au) 또는 백금(Pt)으로 형성될 수 있다. 금속박막층(200)은 제2폴리머층(320) 표면의 일 부위와 돌출부(321)의 표면 상에 증착되어 형성될 수 있으며, 스퍼터링(sputtering) 공정 또는 화학 기상 증착(CVD) 공정에 의해 증착될 수 있다.
금속박막층(200)은, 돌출부(321)의 말단과 돌출부(321)의 몸체 표면을 따라 형성되는 측정박막(201) 및, 측정박막(201)과 연결되고 돌출부(321)와 인접한 제2폴리머층(320)의 표면 일 부위에 형성되며 관통홀(350)에 의한 타공 부위를 구비하는 접합박막(203),을 구비할 수 있다. 측정홀(340)을 통해 노출되는 측정박막(201)의 일 부위가 대상체와 접촉될 수 있다.
측정박막(201)은 측정홀(340)을 통해 외부로 노출되어 대상체와 접촉될 수 있다. 그리고, 복수 개의 포토레지스트부(100)에 의해 복수 개의 돌출부(321)가 형성되는 경우, 복수 개의 측정박막(201) 각각이 돌출부(321)의 말단과 몸체 표면에 형성되고, 복수 개의 측정박막(201) 각각과 연결되는 접합박막(203)이 복수 개 형성될 수 있다. 그리고, 접합박막(203)은 관통홀(350)에 인입되어 형성되는 전도부(410)와 접촉하게 되고, 전도부(410)가 외부 단자와 연결될 수 있다. 접합박막(203)과 전도부(410)를 통해 외부 단자와 측정박막(201) 간 전기 신호 교환이 수행될 수 있다.
제1폴리머층(310)은 웨이퍼(510) 상에 형성될 수 있다. 여기서, 제1폴리머층(310)과 웨이퍼(510) 사이에는 희생층(520)이 형성될 수 있다. 희생층(520)은, 제1폴리머층(310)과 웨이퍼(510) 사이에 형성되며, 선택적으로 제거가 가능하여 제1폴리머층(310)으로부터 웨이퍼(510)가 분리되도록 하는 기능을 수행할 수 있다. 희생층(520)으로는 물이나 아세톤, 톨루엔과 같은 유기용매에만 선택적으로 용해되는 폴리비닐알콜(PVA), 폴리메틸메타크릴레이트(PMMA), 폴리스티렌(PS) 등과 같은 물질이 이용될 수 있다.
전도부(410)는 전도성 에폭시로 형성될 수 있다. 상기와 같이 관통홀(350)이 형성되면 용해된 상태의 전도성 에폭시가 관통홀(350)로 인입된 후 경화되어 전도부(410)가 형성될 수 있다. 본 발명의 실시 예에서는 전도부(410)가 전도성 에폭시로 형성된다고 설명하고 있으나, 반드시 이에 한정되는 것은 아니고, 전도성을 구비한 고분자 물질은 전도부(410)의 소재로 이용될 수 있다.
이하, 본 발명의 제2실시 예에 따른 신경전극의 제조 방법에 대해 설명하기로 한다.
먼저, 도 5의 (a)에서 보는 바와 같이, 제1단계에서, 웨이퍼(510)를 마련하고 웨이퍼(510)의 표면 상에 희생층(520)을 증착시킨 후, 희생층(520)의 표면 상에 제1폴리머층(310)을 증착 형성시킬 수 있다. 다음으로, 도 5의 (b)에서 보는 바와 같이, 제2단계에서, 제1폴리머층(310) 표면의 일 부위 상에 포토레지스트부(100)를 패터닝 및 리플로우하여 3차원 구조를 형성할 수 있다.
그리고, 도 5의 (c)에서 보는 바와 같이, 제3단계에서, 제1폴리머층(310) 표면의 나머지 부위와 포토레지스트부(100) 상에 제2폴리머층(320)을 증착 형성할 수 있고, 그 후, 제4단계에서, 제2폴리머층(320)의 표면 일 부위와 돌출부(321)의 표면 상에 금속 박막을 증착시켜 패터닝함으로써 타공 부위를 구비한 금속박막층(200)을 증착 형성할 수 있다. 여기서, 금속 박막의 패터닝에 의해 관통홀(350)의 형성을 위한 금속박막층(200)의 타공 부위가 접합박막(203)에 형성될 수 있다.
그리고, 도 5의 (d)에서 보는 바와 같이, 제5단계에서, 제2폴리머층(320)의 표면과 금속박막층(200) 상에 제3폴리머층(330)을 증착 형성하고 측정홀(340)의 형성을 위해 제3폴리머층(330)의 일 부위를 식각할 수 있다. 상기와 같이, 제3폴리머층(330)의 일 부위를 식각(에칭, etching)하여 타공함으로써 측정홀(340)이 형성될 수 있으며, 제3폴리머층(330)의 일 부위 식각을 위해 미세 패터닝이 가능한 건식 식각이 이용될 수 있다. 다만, 이에 한정되는 것은 아니며, 습식 식각이 이용될 수도 있다.
이어서, 도 5의 (d) 에서 보는 바와 같이, 제6단계에서, 금속박막층(200)의 타공 부위를 기준으로, 제1폴리머층(310)과 제2폴리머층(320) 및 제3폴리머층(330)에 대한 타공을 수행하여, 관통홀(350)을 형성할 수 있다. 여기서, 제1폴리머층(310), 제2폴리머층(320) 및 제3폴리머층(330)에 대한 타공은 식각 공정에 의해 수행될 수 있다. 상기된 바와 같이, 제3폴리머층(330)의 타공 부위의 직경은 다른 층의 타공 부위 직경보다 크게 형성될 수 있다.
다음으로, 도 5의 (e) 에서 보는 바와 같이, 제7단계에서, 웨이퍼(510) 및 희생층(520)을 분리 제거하고, 관통홀(350)을 따라 형성되며 금속박막층(200)과 접촉하는 전도부(410)를 형성할 수 있다. 여기서, 유기용매를 이용하여 희생층(520)을 용해시킴으로써 희생층(520)을 제거할 수 있다. 그리고, 전도부(410)는, 제2폴리머층(320) 표면의 일 부위, 제2폴리머층(320) 표면의 일 부위 상 형성된 금속박막층(200), 제1폴리머층(310) 및 제3폴리머층(330)을 관통하며 금속박막층(200)과 접촉할 수 있다. 또한, 전도부(410)는 외부 단자와 연결될 수 있다. 이에 따라, 전도부(410)와 접합박막(203)을 통해 외부 단자와 측정박막(201) 간 전기 신호 교환이 수행될 수 있다.
이하, 본 발명의 제3실시 예에 따른 신경전극에 대해 설명하기로 한다. 도 6은 본 발명의 제3실시 예에 따른 신경전극의 제조 공정에 대한 단면도이다. 여기서, 도 6의 (a)는 웨이퍼(510), 희생층(520) 및 제1폴리머층(310)이 순차적으로 적층된 후 연결홀(360)이 형성된 사항에 대한 단면도이고, 도 6의 (b)는 연결홀(360)에 임시인입체(420)를 인입시키고 연결홀(360)과 연결홀(360)과 인접한 제1폴리머층(310)의 표면 일 부위에 제1금속박막층(210)을 형성한 사항에 대한 단면도이다. 또한, 도 6의 (c)는, 제1금속박막층(210)의 표면 상에 포토레지스트부(100)가 형성되고, 제2금속박막층(220)이 형성된 사항에 대한 단면도이다. 그리고, 도 6의 (d)는, 제2폴리머층(320)이 형성되고, 제2폴리머층(320)의 일 부위를 식각하여 측정홀(340)을 형성한 사항에 대한 단면도이다. 다음으로, 도 6의 (e)는, 임시인입체(420)를 제거한 연결홀(360)에 전도부(410)를 형성한 사항에 대한 단면도이다.
도 6의 (e)에서 보는 바와 같이, 본 발명의 제3실시 예에 따른 신경전극은, 고분자 물질로 형성되고 유연하며 베이스 기능을 수행하고, 타공된 적어도 하나 이상의 연결홀(360)을 구비하는 제1폴리머층(310); 연결홀(360)과 제1폴리머층(310)의 표면에서 연결홀(360)에 인접한 일 부위 상에 금속 박막이 패터닝되어 형성되는 제1금속박막층(210); 제1금속박막층(210)의 표면 상에 형성되고 3차원 구조를 형성하는 포토레지스트부(100); 포토레지스트부(100) 상에 금속 박막으로 형성되고, 제1금속박막층(210)과 연결되는 제2금속박막층(220); 제1금속박막층(210), 제2금속박막층(220) 및 제1폴리머층(310) 표면의 나머지 부위 상에 형성되어 커버 기능을 수행하며, 포토레지스트부(100)의 말단에 위치하는 제2금속박막층(220)의 일 부위가 외부로 노출되도록 타공된 측정홀(340)을 구비하는 제2폴리머층(320); 및 연결홀(360)에 인입되어 제1금속박막층(210)과 접촉하며, 외부 단자와 연결되는 전도부(410);를 포함한다.
제1폴리머층(310) 또는 제2폴리머층(320)은 페럴린(parylene)으로 형성될 수 있다. 페럴린은 파라크실렌 중합으로 획득되는 플라스틱으로써 인체에 무해하며, 종래기술의 페럴린 코팅(Parylene Coating) 장비를 이용하여 소정의 표면에 페럴린 코팅을 수행하는 경우, 코팅 대상체에 마이크로미터(㎛) 두께 단위로 증착, 고분자 코팅될 수 있다. 페럴린 코팅(Parylene Coating) 장비는 종래기술에 해당하므로, 이를 이용한 상세한 사항에 대해서는 생략하기로 한다.
본 발명의 실시 예에서는 제1폴리머층(310), 제2폴리머층(320) 또는 제3폴리머층(330) 중 선택되는 하나 이상의 층이 페럴린(parylene)으로 형성된다고 설명하고 있으나, 반드시 이에 한정되는 것은 아니고, 인체에 무해하며 마이크로미터(㎛) 또는 나노미터(nm) 단위의 두께로 코팅층 형성이 가능한 소재는 모두 이용될 수 있다.
포토레지스트부(100)는 광에 노출됨으로써 약품에 대한 내성이 변화하는 고분자 재료인 포토레지스트로 형성될 수 있으며, 포토레지스트를 제1폴리머층(310)에 패터닝하여 포토레지스트의 3차원 구조체를 패터닝하고, 포토레지스트 리플로우 장치를 이용하여 포토레지스트의 3차원 구조체를 리플로우함으로써 포토레지스트부(100)를 형성할 수 있다. 포토레지스트 리플로우 장치는 종래기술에 해당하므로, 이를 이용한 상세한 사항에 대해서는 생략하기로 한다.
제1폴리머층(310) 또는 제2폴리머층(320)은 증착으로 형성될 수 있다. 구체적으로, 제1폴리머층(310) 또는 제2폴리머층(320)은 층은 화학 증착에 의해 형성될 수 있다. 그리고, 상기와 같이, 각각의 층이 페럴린(parylene)으로 형성되는 경우, 페럴린 코팅(Parylene Coating) 장비를 이용하여 각각의 층을 화학 증착 시킴으로써, 각각의 층이 형성될 수 있다.
제1금속박막층(210)과 제2금속박막층(220)은, 금(Au) 또는 백금(Pt)으로 형성될 수 있다. 그리고, 제1금속박막층(210)과 제2금속박막층(220)은, 스퍼터링(sputtering) 공정 또는 화학 기상 증착(CVD) 공정에 의해 증착될 수 있다.
도 6의 (b)에서 보는 바와 같이, 제1금속박막층(210)의 일 부위는 연결홀(360)을 밀폐시키면서 형성되고, 제1금속박막층(210)의 타 부위는 연결홀(360)과 인접한 제1폴리머층(310)의 표면 일 부위 상에 형성될 수 있다. 그리고, 제2금속박막층(220)은, 돌출된 3차원 구조를 형성하는 포토레지스트부(100)의 말단과 몸체의 표면을 따라 형성될 수 있으며, 이와 같이 형성된 제2금속박막층(220)은 제1금속박막층(210)과 연결될 수 있다. 그리고, 측정홀(340)을 통해 노출되는 제2금속박막층(220)의 일 부위가 대상체와 접촉될 수 있다.
제2금속박막층(220)은 측정홀(340)을 통해 외부로 노출되어 대상체와 접촉될 수 있다. 그리고, 복수 개의 포토레지스트부(100)가 형성되는 경우, 복수 개의 제2금속박막층(220) 각각이 포토레지스트부(100)의 말단과 몸체 표면에 형성되고, 복수 개의 제2금속박막층(220) 각각과 연결되는 제1금속박막층(210)이 복수 개 형성될 수 있다. 그리고, 제1금속박막층(210)은 연결홀(360)에 인입되어 형성되는 전도부(410)와 접촉하게 되고 전도부(410)가 외부 단자와 연결될 수 있다. 제1금속박막층(210)와 전도부(410)를 통해 외부 단자와 제2금속박막층(220) 간 전기 신효 교환이 수행될 수 있다.
제1폴리머층(310)은 웨이퍼(510) 상에 형성될 수 있다. 여기서, 제1폴리머층(310)과 웨이퍼(510) 사이에는 희생층(520)이 형성될 수 있다. 희생층(520)은, 제1폴리머층(310)과 웨이퍼(510) 사이에 형성되며, 선택적으로 제거가 가능하여 제1폴리머층(310)으로부터 웨이퍼(510)가 분리되도록 하는 기능을 수행할 수 있다. 희생층(520)으로는 물이나 아세톤, 톨루엔과 같은 유기용매에만 선택적으로 용해되는 폴리비닐알콜(PVA), 폴리메틸메타크릴레이트(PMMA), 폴리스티렌(PS) 등과 같은 물질이 이용될 수 있다.
전도부(410)는 전도성 에폭시로 형성될 수 있다. 연결홀(360)에 인입되어 있던 임시인입체(420)가 제거된 후의 연결홀(360)의 내부에 전도성 에폭시가 인입된 후 경화되어 전도부(410)가 형성될 수 있다. 본 발명의 실시 예에서는 전도부(410)가 전도성 에폭시로 형성된다고 설명하고 있으나, 반드시 이에 한정되는 것은 아니고, 전도성을 구비한 고분자 물질은 전도부(410)의 소재로 이용될 수 있다.
이하, 본 발명의 제3실시 예에 따른 신경전극의 제조 방법에 대해 설명하기로 한다.
먼저, 도 6의 (a)에서 보는 바와 같이, 제1단계에서, 웨이퍼(510)를 마련하고 웨이퍼(510)의 표면 상에 희생층(520)을 증착시킨 후, 희생층(520)의 표면 상에 제1폴리머층(310)을 패터닝 증착 형성시켜, 제1폴리머층(310)에 연결홀(360)을 구비시킬 수 있다. 여기서, 연결홀(360)은, 제1폴리머층(310)을 형성시키는 경우 타공 부위를 패터닝하여 형성될 수 있다.
그리고, 도 6의 (b)에서 보는 바와 같이, 제2단계에서, 연결홀(360)에 임시인입체(420)를 인입시켜 채운 후, 연결홀(360)과 제1폴리머층(310)의 표면에서 연결홀(360)에 인접한 일 부위 상에 금속 박막을 패터닝하여 제1금속박막층(210)을 형성할 수 있다. 여기서, 임시인입체(420)는 포토레지스트로 형성될 수 있다.
다음으로, 도 6의 (c)에서 보는 바와 같이, 제3단계에서, 제1금속박막층(210)의 표면 상에 3차원의 포토레지스트 구조체를 형성하여 포토레지스트부(100)를 패터닝 및 리플로우할 수 있고, 제4단계에서, 포토레지스트부(100) 상에 금속 박막을 패터닝하여 제2금속박막층(220)을 형성하고, 제1금속박막층(210)와 제2금속박막층(220)을 연결시킬 수 있다.
이어서, 도 6의 (d)에서 보는 바와 같이, 제5단계에서, 제1금속박막층(210), 제2금속박막층(220) 및 제1폴리머층(310) 표면의 나머지 부위 상에 제2폴리머층(320)을 증착 형성하고 측정홀(340)의 형성을 위해 제2폴리머층(320)의 일 부위를 식각할 수 있다. 여기서, 식각되는 제2폴리머층(320)의 일 부위는, 포토레지스트부(100)의 말단에 위치한 제2금속박막층(220)의 일 부위에 접하는 부위일 수 있다. 상기와 같이, 제2폴리머층(320)의 일 부위를 식각(에칭, etching)하여 타공함으로써 측정홀(340)이 형성될 수 있으며, 제2폴리머층(320)의 일 부위 식각을 위해 미세 패터닝이 가능한 건식 식각이 이용될 수 있다. 다만, 이에 한정되는 것은 아니며, 습식 식각이 이용될 수도 있다.
그 후, 제6단계에서, 웨이퍼(510) 및 상기 희생층(520)을 분리 제거할 수 있다. 여기서, 유기용매를 이용하여 희생층(520)을 용해시킴으로써 희생층(520)을 제거할 수 있다.
다음으로, 제7단계에서, 연결홀(360)에 인입되어 있던 임시인입체(420)를 제거하고, 연결홀(360)에 인입되어 제1금속박막층(210)과 접촉하는 전도부(410)를 형성할 수 있다. 임시인입체(420)는 포토레지스트로 형성되므로, 포토레지스트 용해용 용액을 이용하여 임시인입체(420)를 제거할 수 있다. 그리고, 전도부(410)는 외부 단자와 연결될 수 있다. 이에 따라, 전도부(410)와 제1금속박막층(210)을 통해 외부 단자와 제2금속박막층(220) 간 전기 신호 교환이 수행될 수 있다.
상기에서 보는 바와 같이, 본 발명에 해당하는 각각의 실시 예에 있어서, 포토레지스트부(100)에 의해 3차원 형상의 구조체가 형성되고, 이와 같은 3차원 구조체의 말단에는 금속 박막이 형성되며, 이와 같이 형성되 전극의 기능을 수행하는 금속 박막이 외부 단자와 연결될 수 있다. 그리고, 3차원 구조체의 말단에 위치하는 금속 박막이 측정홀(340)을 통해 외부로 노출됨으로써, 대상체와 접촉할 수 있다.
상기와 같은 구성에 의하여, 3차원 형상으로 전극이 형성되어 신경전극과 대상체의 밀착력을 향상시킬 수 있다. 또한, 포토레지스트부(100)의 형성에 의한 각각의 3차원 구조체의 돌출 높이를 각각 상이하게 형성함으로써, 신경전극의 형상을 다변화시킬 수 있다.
그리고, 고분자 물질과 금속을 순차적으로 적층시키고, 추가적으로 식각 공정 등만 수행하며, 별도의 절연 공정이 생략되어, 제작 방법이 간단하고 구조의 변경이 용이할 수 있다.
이상에서 상술한 바와 같은 다양한 실시 예에 따르면, 종래 기술에 따른 신경전극에 비해 대상체와의 선택적 밀착력이 현저하게 향상된 유연한 평면형 신경 전극을 제공할 수 있다.
구체적으로, 종래 기술에 따른 평면형 전극은 굴곡이 있는 면에서 타겟 세포에 대한 접근성이 떨어진다는 한계가 있으며, 종래 기술에 따른 3 차원 전극은 딱딱한 기판을 기반으로 제조되기 때문에 대상체에 대한 밀착력이 떨어지며, 탄소나노튜브(carbon nanotube, CNT)를 성장시켜 제작하거나 액체 금속을 사용하여 프린팅하는 등의 방식으로 제조되기 때문에 제조 방법이 복잡하다는 한계가 있다.
그러나, 본 발명에 따른 신경전극은 기본적으로 평면형 전극의 형상을 가지면서도 신경 신호를 측정하는 전극 부분은 3 차원의 형태를 가지기 때문에, 평면형 전극의 높은 밀착력과 함께 3 차원 전극의 선택적 접근성을 가질 수 있다. 또한, 본 발명에 따른 신경전극은 제조 방법이 간단하고 필요에 따른 구조물의 변형이 용이하기 때문에 다양한 유형의 신경전극에 적용될 수 있다. 구체적으로, 본 발명에 따른 신경전극은 뇌의 신경 세포나 말초신경으로부터 신경신호를 측정하거나 자극을 주는 신경전극으로 활용될 수 있으며 특히, 노화로 인해 사멸된 망막 시세포(광수용체)의 기능을 대체하기 위한 인공망막에 적용될 수 있다. 이하에서는 본 발명이 인공망막에 적용되는 경우 종래 기술에 비해 갖는 효과에 대해 보다 상세하게 설명한다.
종래 기술에 따른 인공망막의 경우, 평편한 필름 형태로 망막 위에 올려지는 구조를 채택하기 때문에 고정을 위한 tacking이 필요하고, 따라서 조직 손상 유발할 수 있으며 망막 표면과의 안정적인 밀착을 유지하기 어렵다는 한계가 있다. 또한, 종래 기술에 따른 인공 망막의 경우, 평편한 2차원 형태 전극과 자극하고자 하는 타겟 세포 사이의 긴밀한 접촉이 어렵기 때문에 자극을 위해 더 많은 전류를 흘려주어야 한다. 그리고, 이에 따라 과도한 전류가 타겟 세포뿐만 아니라 인접 세포에까지 영향을 주게 되어 누화(crosstalk)를 발생시키며, 그 결과 선명한 상을 확보하기 어렵게 된다.
반면, 본 발명에 따른 신경전극은 전극의 고정이 어려운 망막 위(epi-retinal) 전극뿐만 아니라 망막 아래(sub-retinal) 전극으로도 활용될 수 있으며, 다양한 실시 예를 통해 상술한 바와 같이, 타겟 세포와의 접촉을 향상시키기 위한 3 차원 구조(점자 형태)를 가진다. 따라서, 본 발명에 따르면, 망막 아래에 전극을 삽입할 수 있어 전극과 망막 간 밀착이 용이하고, 또한 3 차원의 볼록한 구조를 통해 타겟 세포와 전극 간 거리를 최소화할 수 있으며, 이로써 보다 낮은 전류로 타겟 세포를 자극할 수 있으므로 안전한 인공망막을 제공할 수 있다. 또한, 본 발명에 따른 신경전극이 유연한 기판에 형성된 3 차원 형태의 망막전극으로 구현되는 경우, 반원 구조의 둥근 형상을 갖는 3 차원 구조로 인해 망막 조직의 손상을 최소화할 수 있다.
이상에서는 특히 본 발명에 따른 신경전극이 인공망막에 구현되는 경우를 예로 들어 본 발명에 따른 효과에 대해 상술하였으나, 이는 본 발명의 일 실시 예에 따른 효과를 상세하게 설명하기 위한 것일 뿐이며, 본 발명이 이에 국한되는 것이 아님은 물론이다. 즉, 본 발명에 따른 신경전극은 뇌, 안구, 말초신경 등 그 대상체를 가리지 않고 적용될 수 있다. 일 예로서, 본 발명에 따른 신경 전극은 뇌피질전도(ECoG; electrocorticogram) 측정 전극과 같은 뇌 인터페이스로서 활용될 수도 있으며, 인체의 신경 세포뿐만 아니라 동물의 신경 세포를 대상으로 적용될 수도 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
Claims (15)
- 고분자 물질로 형성되고 유연하며 베이스 기능을 수행하는 제1폴리머층;상기 제1폴리머층 표면의 일 부위 상에 적어도 하나 이상 형성되고 3차원 구조를 형성하는 포토레지스트부;상기 제1폴리머층 표면의 나머지 부위와 상기 포토레지스트부 상에 형성되며, 상기 포토레지스트부에 의한 돌출부를 구비하는 제2폴리머층;상기 제2폴리머층 표면과 상기 돌출부의 표면 상에 금속 박막이 패터닝되어 형성되는 금속박막층; 및상기 제2폴리머층의 표면과 상기 금속박막층 상에 형성되어 커버 기능을 수행하며, 상기 돌출부의 말단에 형성된 상기 금속박막층의 일 부위가 외부로 노출되도록 타공된 측정홀을 구비하는 제3폴리머층;을 포함하는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극.
- 청구항 1에 있어서,상기 제1폴리머층은 웨이퍼 상에 형성되는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극.
- 청구항 1에 있어서,상기 제1폴리머층, 상기 제2폴리머층 또는 상기 제3폴리머층 중 선택되는 하나 이상의 층은 증착으로 형성되는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극.
- 청구항 1에 있어서,상기 제1폴리머층, 상기 제2폴리머층 또는 상기 제3폴리머층 중 선택되는 하나 이상의 층은 페럴린(parylene)으로 형성되는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극.
- 청구항 1에 기재된 유연한 기판의 3차원 구조물 기반의 신경전극의 제조 방법에 있어서,웨이퍼를 마련하고 상기 웨이퍼의 표면 상에 희생층을 증착시킨 후, 상기 희생층의 표면 상에 상기 제1폴리머층을 증착 형성시키는 제1단계;상기 제1폴리머층 표면의 일 부위 상에 상기 포토레지스트부를 패터닝 및 리플로우하여 3차원 구조를 형성하는 제2단계;상기 제1폴리머층 표면의 나머지 부위와 상기 포토레지스트부 상에 상기 제2폴리머층을 증착 형성하는 제3단계;상기 제2폴리머층 표면과 상기 돌출부의 표면 상에 금속 박막을 증착시켜 패터닝함으로써 상기 금속박막층을 증착 형성하는 제4단계; 및상기 제2폴리머층의 표면과 상기 금속박막층 상에 상기 제3폴리머층을 증착 형성하고 상기 측정홀의 형성을 위해 상기 제3폴리머층의 일 부위를 식각하는 제5단계;를 포함하는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극의 제조 방법.
- 고분자 물질로 형성되고 유연하며 베이스 기능을 수행하는 제1폴리머층;상기 제1폴리머층 표면의 일 부위 상에 적어도 하나 이상 형성되고 3차원 구조를 형성하는 포토레지스트부;상기 제1폴리머층 표면의 나머지 부위와 상기 포토레지스트부 상에 형성되며, 상기 포토레지스트부에 의한 돌출부를 구비하는 제2폴리머층;상기 제2폴리머층 표면의 일 부위와 상기 돌출부의 표면 상에 금속 박막이 패터닝되어 형성되는 금속박막층;상기 제2폴리머층의 표면과 상기 금속박막층 상에 형성되어 커버 기능을 수행하며, 상기 돌출부의 말단에 형성된 상기 금속박막층의 일 부위가 외부로 노출되도록 타공된 측정홀을 구비하는 제3폴리머층; 및상기 제1폴리머층과 상기 제2폴리머층을 관통하여 상기 금속박막층과 접촉하며, 외부 단자와 연결되는 전도부;를 포함하는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극.
- 청구항 6에 있어서,상기 제1폴리머층은 웨이퍼 상에 형성되는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극.
- 청구항 6에 있어서,상기 제1폴리머층, 상기 제2폴리머층 또는 상기 제3폴리머층 중 선택되는 하나 이상의 층은 증착으로 형성되는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극.
- 청구항 6에 있어서,상기 제1폴리머층, 상기 제2폴리머층 또는 상기 제3폴리머층 중 선택되는 하나 이상의 층은 페럴린(parylene)으로 형성되는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극.
- 청구항 6에 있어서,상기 전도부는 전도성 에폭시로 형성되는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극.
- 청구항 6에 기재된 유연한 기판의 3차원 구조물 기반의 신경전극의 제조 방법에 있어서,웨이퍼를 마련하고 상기 웨이퍼의 표면 상에 희생층을 증착시킨 후, 상기 희생층의 표면 상에 상기 제1폴리머층을 증착 형성시키는 제1단계;상기 제1폴리머층 표면의 일 부위 상에 상기 포토레지스트부를 패터닝 및 리플로우하여 3차원 구조를 형성하는 제2단계;상기 제1폴리머층 표면의 나머지 부위와 상기 포토레지스트부 상에 상기 제2폴리머층을 증착 형성하는 제3단계;상기 제2폴리머층의 표면 일 부위와 상기 돌출부의 표면 상에 금속 박막을 증착시켜 패터닝함으로써 타공 부위를 구비한 상기 금속박막층을 증착 형성하는 제4단계;상기 제2폴리머층의 표면과 상기 금속박막층 상에 상기 제3폴리머층을 증착 형성하고 상기 측정홀의 형성을 위해 상기 제3폴리머층의 일 부위를 식각하는 제5단계;상기 금속박막층의 타공 부위를 기준으로, 상기 제1폴리머층과 상기 제2폴리머층 및 상기 제3폴리머층에 대한 타공을 수행하여, 관통홀을 형성하는 제6단계; 및상기 웨이퍼 및 상기 희생층을 분리 제거하고, 상기 관통홀을 따라 형성되며 상기 금속박막층과 접촉하는 상기 전도부를 형성하는 제7단계;를 포함하는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극의 제조 방법.
- 고분자 물질로 형성되고 유연하며 베이스 기능을 수행하고, 타공된 적어도 하나 이상의 연결홀을 구비하는 제1폴리머층;상기 연결홀과 상기 제1폴리머층의 표면에서 상기 연결홀에 인접한 일 부위 상에 금속 박막이 패터닝되어 형성되는 제1금속박막층;상기 제1금속박막층의 표면 상에 형성되고 3차원 구조를 형성하는 포토레지스트부;상기 포토레지스트부 상에 금속 박막으로 형성되고, 상기 제1금속박막층과 연결되는 제2금속박막층;상기 제1금속박막층, 상기 제2금속박막층 및 상기 제1폴리머층 표면의 나머지 부위 상에 형성되어 커버 기능을 수행하며, 상기 포토레지스트부의 말단에 위치하는 상기 제2금속박막층의 일 부위가 외부로 노출되도록 타공된 측정홀을 구비하는 제2폴리머층; 및상기 연결홀에 인입되어 상기 제1금속박막층과 접촉하며, 외부 단자와 연결되는 전도부;를 포함하는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극.
- 청구항 12에 있어서,상기 제1폴리머층은 웨이퍼 상에 형성되는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극.
- 청구항 12에 있어서,상기 제1폴리머층 또는 상기 제2폴리머층은 증착으로 형성되는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극.
- 청구항 12에 기재된 유연한 기판의 3차원 구조물 기반의 신경전극의 제조 방법에 있어서,웨이퍼를 마련하고 상기 웨이퍼의 표면 상에 희생층을 증착시킨 후, 상기 희생층의 표면 상에 상기 제1폴리머층을 패터닝 증착 형성시켜, 상기 제1폴리머층에 상기 연결홀을 구비시키는 제1단계;상기 연결홀에 임시인입체를 인입시켜 채운 후, 상기 연결홀과 상기 제1폴리머층의 표면에서 상기 연결홀에 인접한 일 부위 상에 금속 박막을 패터닝하여 상기 제1금속박막층을 형성하는 제2단계;상기 제1금속박막층의 표면 상에 3차원의 포토레지스트 구조체를 형성하여 상기 포토레지스트부를 패터닝 및 리플로우하는 제3단계;상기 포토레지스트부 상에 금속 박막을 패터닝하여 상기 제2금속박막층을 형성하고, 상기 제1금속박막층와 상기 제2금속박막층을 연결시키는 제4단계;상기 제1금속박막층, 상기 제2금속박막층 및 상기 제1폴리머층 표면의 나머지 부위 상에 상기 제2폴리머층을 증착 형성하고 상기 측정홀의 형성을 위해 상기 제2폴리머층의 일 부위를 식각하는 제5단계;상기 웨이퍼 및 상기 희생층을 분리 제거하는 제6단계; 및상기 연결홀에 인입되어 있던 상기 임시인입체를 제거하고, 상기 연결홀에 인입되어 상기 제1금속박막층과 접촉하는 상기 전도부를 형성하는 제7단계;를 포함하는 것을 특징으로 하는 유연한 기판의 3차원 구조물 기반의 신경전극의 제조 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/611,273 US20220339431A1 (en) | 2019-11-18 | 2020-11-02 | Neural electrode based on three-dimensional structure of flexible substrate, and manufacturing method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0148128 | 2019-11-18 | ||
KR1020190148128A KR102411960B1 (ko) | 2019-11-18 | 2019-11-18 | 유연한 기판의 3차원 구조물 기반의 신경전극 및 이의 제조 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2021101125A2 true WO2021101125A2 (ko) | 2021-05-27 |
WO2021101125A3 WO2021101125A3 (ko) | 2021-07-22 |
Family
ID=75981342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/015172 WO2021101125A2 (ko) | 2019-11-18 | 2020-11-02 | 유연한 기판의 3차원 구조물 기반의 신경전극 및 이의 제조 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220339431A1 (ko) |
KR (1) | KR102411960B1 (ko) |
WO (1) | WO2021101125A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114634151A (zh) * | 2022-02-28 | 2022-06-17 | 复旦大学 | 一种易释放的超薄柔性神经电极阵列及其制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230127545A (ko) * | 2022-02-25 | 2023-09-01 | 주식회사 엔포마레 | 뉴럴프로브 |
KR20240041033A (ko) * | 2022-09-22 | 2024-03-29 | 재단법인 아산사회복지재단 | 재생 말초신경 인터페이스 및 그 제조방법 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6236302B1 (en) * | 1998-03-05 | 2001-05-22 | Bourns, Inc. | Multilayer conductive polymer device and method of manufacturing same |
KR101033907B1 (ko) * | 2010-02-23 | 2011-05-11 | 한국과학기술연구원 | 미세전극 어레이 제조방법 및 이를 이용한 커넥터 연결방법 |
WO2014071153A1 (en) * | 2012-11-01 | 2014-05-08 | The George Washington University | Selective autonomic stimulation of the av node fat pad to control rapid post-operative atrial arrhythmias |
KR101452908B1 (ko) | 2013-11-05 | 2014-10-22 | 서울대학교산학협력단 | 3차원 신경 전극의 제조 방법 및 제조 장치 |
KR20170071261A (ko) * | 2015-12-15 | 2017-06-23 | 한국전자통신연구원 | 금속 전극의 형성 방법 |
JP6865427B2 (ja) * | 2016-08-09 | 2021-04-28 | 国立大学法人大阪大学 | 電極シート及びその製造方法 |
AT519280B1 (de) * | 2016-10-21 | 2019-08-15 | Leonh Lang | Elektrode zum Anbringen auf der menschlichen Haut |
KR102141048B1 (ko) * | 2018-04-05 | 2020-08-06 | 재단법인대구경북과학기술원 | 3차원 전극장치 및 이의 제조방법 |
-
2019
- 2019-11-18 KR KR1020190148128A patent/KR102411960B1/ko active IP Right Grant
-
2020
- 2020-11-02 WO PCT/KR2020/015172 patent/WO2021101125A2/ko active Application Filing
- 2020-11-02 US US17/611,273 patent/US20220339431A1/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114634151A (zh) * | 2022-02-28 | 2022-06-17 | 复旦大学 | 一种易释放的超薄柔性神经电极阵列及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102411960B1 (ko) | 2022-06-22 |
WO2021101125A3 (ko) | 2021-07-22 |
KR20210060272A (ko) | 2021-05-26 |
US20220339431A1 (en) | 2022-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021101125A2 (ko) | 유연한 기판의 3차원 구조물 기반의 신경전극 및 이의 제조 방법 | |
US5388577A (en) | Electrode array microchip | |
US9386954B2 (en) | Method of fabricating a multi-electrode array | |
US20200085375A1 (en) | Electrode fabrication and design | |
WO2024046186A1 (zh) | 脑部电极装置及其制备方法、电极装置、电子设备 | |
WO2016201746A1 (zh) | 具有空心凸起结构的柔性神经微电极阵列及其制备方法 | |
WO2011105664A1 (en) | Manufacturing method of microelectrode array and connector connection method using the same | |
WO2011142509A1 (ko) | 관통 비아홀 연결을 포함하고 적어도 하나의 나노와이어를 이용하는 신경 소자 | |
WO1999049934A1 (en) | Implantable medical electrode comprising a flexible printed circuit | |
WO2018004313A1 (ko) | 멀티 채널을 갖는 표면 근전도 센서 | |
CN107758605B (zh) | 一种微电极阵列芯片及其制作方法 | |
CN112657053A (zh) | 植入式的双面电极及其制备方法 | |
CN111717885A (zh) | 一种硅基微纳结构柔性化加工方法 | |
WO2012047071A9 (ko) | 플렉서블 나노제너레이터 제조방법 및 이에 의하여 제조된 플렉서블 나노제너레이터 | |
WO2011078595A2 (ko) | 플렉서블 기판을 이용한 압력센서 및 이를 이용한 5.1 채널 마이크로폰 제조방법 | |
WO2011019160A2 (ko) | 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법 | |
WO2020226288A1 (ko) | 전해질을 포함하는 스파이크열 출력형 압력센서 및 그의 제조방법 | |
WO2022203118A1 (ko) | 뇌 삽입용 그래핀 복합 전극을 이용한 다중 채널 어레이 소자 | |
Perlin et al. | A compact architecture for three-dimensional neural microelectrode arrays | |
WO2024063219A1 (ko) | 재생 말초신경 인터페이스 장치 및 그 제조방법 | |
WO2012050270A1 (ko) | 압력 측정 장치 및 그 제조 방법 | |
WO2023033277A1 (ko) | 뉴럴 다기능 소자 및 그 제조 방법 | |
WO2023085653A1 (ko) | 생체 삽입형 방광 치료 장치 및 이에 포함되는 전자 망, 전자 실 제조 방법 | |
WO2023163390A1 (ko) | 뉴럴프로브 | |
WO2023163392A1 (ko) | 뉴럴프로브 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20890565 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20890565 Country of ref document: EP Kind code of ref document: A2 |