WO2011019160A2 - 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법 - Google Patents

반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법 Download PDF

Info

Publication number
WO2011019160A2
WO2011019160A2 PCT/KR2010/005135 KR2010005135W WO2011019160A2 WO 2011019160 A2 WO2011019160 A2 WO 2011019160A2 KR 2010005135 W KR2010005135 W KR 2010005135W WO 2011019160 A2 WO2011019160 A2 WO 2011019160A2
Authority
WO
WIPO (PCT)
Prior art keywords
probe
insulator
flat panel
panel display
semiconductor
Prior art date
Application number
PCT/KR2010/005135
Other languages
English (en)
French (fr)
Other versions
WO2011019160A3 (ko
Inventor
임영순
윤채영
방용우
이해원
최윤숙
이장희
Original Assignee
(주)메리테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)메리테크 filed Critical (주)메리테크
Priority to CN2010800356995A priority Critical patent/CN102597787A/zh
Publication of WO2011019160A2 publication Critical patent/WO2011019160A2/ko
Publication of WO2011019160A3 publication Critical patent/WO2011019160A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes

Definitions

  • the present invention relates to a probe used for inspecting a semiconductor or flat panel display device and a method of manufacturing the same. Specifically, a probe tip coated with an insulating material is used to prevent a short circuit caused by contact of adjacent probe tips or to remove noise.
  • the present invention relates to a probe used for inspecting a semiconductor or a flat panel display device which can improve electrical characteristics of a probe by blocking interference of an adjacent signal that may be generated during a frequency signal test, and a method of manufacturing the same.
  • LCDs liquid crystal displays
  • PDPs plasma display panels
  • FED field emission display
  • the test of the semiconductor and the flat panel display device is performed by using a probe that can determine whether or not a failure by applying an electrical signal to the pad electrode.
  • Probes for testing flat panel display devices include needle type, which is manufactured only by hand, blade type, which is produced by hand by introducing new technology, film type, and MEMS ( MEMS type using MEMS (Micro Electro Mechanical System) technology.
  • Needle-type probes include bending a straight tungsten beam, attaching it to the reinforcement plate with adhesive, and matching the coordinate position of the contact surface to be in contact with the pad electrode to be examined and the contact surface to be in contact with the signal transfer device. And physically correcting the position, and cleaning the position-corrected inspection probe.
  • the blade-type probe is manufactured through a process of manufacturing a frame into which a blade is to be inserted, manufacturing a blade, inserting a blade, and covering a cover on an upper surface of the frame into which the blade is inserted. .
  • the MEMS type probe may include fabricating an inspection probe beam and a probe tip, which are conductive materials on an insulator, removing an insulator, covering a protective cover on the inspection probe, and correcting a position of the inspection probe. Produced through a process consisting of steps.
  • a method of manufacturing a MEMS type probe has been published in Korean Patent Application No. 10-2004-0004540, "Method for Producing a Plate Inspection Device and Probe According to It".
  • the center of the conventional probe is composed of an insulator
  • the probe tip exposed to the outside for inspection has a problem that a conductor may be shorted or noise may be generated due to the contact of adjacent probe tips.
  • an object of the present invention is to display a semiconductor or a flat panel that can prevent a short circuit caused by contact of adjacent probe tips or remove noise by vacuum depositing a polymer insulating material on the entire surface of the probe tip except for a lower portion for transmitting an electrical signal.
  • the present invention provides a probe used for device inspection and a method of manufacturing the same.
  • an object of the present invention is to improve the electrical properties of the probe by blocking the interference of the adjacent signal that can be generated during the frequency signal test by vacuum deposition with a polymer insulating material on the front of the probe tip except the lower portion for transmitting the electrical signal.
  • the present invention provides a probe used for inspecting a semiconductor or flat panel display device and a method of manufacturing the same.
  • a plurality of probe beams provided at equal intervals with a conductive material for applying an electrical signal to the semiconductor and the flat panel display device, and formed on the lower side end of the probe beam to contact the semiconductor and the flat panel display device
  • the probe tip is formed, and the seating space of the probe beam is formed on the silicon substrate
  • the insulator is made of a silicon material consisting of electrical wiring connected to the probe beam in the center, and includes a plate-shaped reinforcement plate attached to the upper center of the insulator It is achieved by a probe used for the inspection of semiconductors and flat panel display elements characterized in that.
  • the probe beam surface is characterized in that the vacuum deposition with an insulating material.
  • the probe tip is vacuum-deposited with a polymer insulating material on the front surface except for the lower portion for transmitting the electrical signal.
  • the insulating material may be made of a parylene resin.
  • the probe beam and the probe tip may be made of any one of nickel or nickel alloy material.
  • the probe beam is characterized in that the insulating adhesive material is attached to define the central portion.
  • the probe is characterized in that it is formed in a structure that is attached to the test pad including the film and the test driver IC for transmitting an electrical signal to the lower back of the probe beam.
  • the probe tip and the probe beam may be formed to have a structure that varies width, width, length, and depth, respectively.
  • the probe may be fastened to a mechanism that is a block that is universally mounted on semiconductor and flat panel display device inspection equipment.
  • the probe beams may be arranged in an up and down multilayer structure.
  • forming an insulator on which a probe beam is seated on a silicon substrate, and forming a first protective film with a gap under the insulator Physically etching to form an exposed portion of the probe beam at a portion of the lower portion of the insulator where the first protective layer is not formed, removing the first protective layer, and spaced at equal intervals on the upper portion of the insulator.
  • a fourth passivation layer defining a central portion of the group of probe beams in which the electrical signal transmission system including the processed probe tip is formed, and attaching a reinforcement plate to the center portion of the defined probe beam using the fourth passivation layer as a mask And removing the fourth passivation layer, forming a fifth passivation layer for defining a lower central portion of the insulator. And exposing other portions to the outside through the etching process using the fifth protective film as a mask, except for the center portion of the insulator. Is achieved by.
  • the first passivation layer, the second passivation layer, the third passivation layer, the fourth passivation layer, the fifth passivation layer, and the plating frame use a photolithography process.
  • the groove corresponding to the probe tip shape is formed using a dry etching process.
  • the probe beam surface and the probe tip are vacuum deposited with a polymer insulating material.
  • the polymer insulating material may be provided with a parylene resin.
  • the plating mold may be formed using a photoresist.
  • the probe beam and the probe tip may be made of any one of nickel or nickel alloy material.
  • the insulator is removed using dry etching except for the center part by using the fifth passivation layer as a mask.
  • the probe beam is characterized in that to attach an insulating material to define the central portion.
  • the trench is formed by a dry etching process, characterized in that to apply the leading material on the entire surface.
  • the probe beams may be manufactured to form an array in a vertical structure.
  • the probe used in the semiconductor or flat panel display device inspection and the method for manufacturing the same according to the present invention by vacuum deposition with a polymer insulating material on the entire surface of the probe tip except the lower portion for transmitting the electrical signal, by the contact of the adjacent probe tip It has the effect of preventing short circuit or removing noise.
  • FIG. 1 is a perspective view showing a probe used for inspecting a semiconductor or flat panel display device according to an embodiment of the present invention
  • FIG. 2 is a perspective view illustrating a mechanical part equipped with a probe used for inspecting a semiconductor or flat panel display device according to an exemplary embodiment of the present invention
  • FIG. 3 is a perspective view showing a test equipment equipped with a probe used for testing a semiconductor or flat panel display device according to an embodiment of the present invention
  • FIG. 4 is a view showing an inspection process of a probe used for inspecting a semiconductor or flat panel display device according to an embodiment of the present invention
  • 5 to 19 are process perspective views illustrating a method of manufacturing a probe used for inspecting a semiconductor or flat panel display device according to an exemplary embodiment of the present invention.
  • insulator 110 first protective film
  • mechanism 800 inspection equipment
  • FIG. 1 is a perspective view illustrating a probe used for inspecting a semiconductor or a flat panel display device according to an exemplary embodiment of the present invention
  • FIG. 2 is a mechanism unit equipped with a probe used for inspecting a semiconductor or flat panel display device according to an exemplary embodiment of the present invention
  • 3 is a perspective view illustrating an inspection apparatus equipped with a probe used to inspect a semiconductor or a flat panel display device according to an embodiment of the present invention
  • FIG. 4 is a semiconductor or flat plate according to an embodiment of the present invention.
  • a probe used for inspecting a semiconductor or a flat panel display device includes a probe beam 350 provided with a plurality of equally spaced conductive materials for applying an electrical signal to the semiconductor and the flat panel display device, and the probe.
  • the probe tip 360 is formed below the side end of the beam 350 to contact the semiconductor and flat panel display device, and a seating space of the probe beam 350 is formed on the silicon substrate.
  • It includes an insulator 100 made of a silicon material consisting of a connected electrical wiring, and a plate-shaped reinforcement plate 600 attached to the upper center of the insulator 100.
  • the bottom of each surface of the probe beams 350 and an electrical signal are transmitted.
  • a polymer insulating material is deposited on the entire surface of the probe tip 360 except for the portion.
  • the probe beam 350 and the probe tip 360 form an insulating material on the surface by a vacuum deposition method using a parylene resin that is easy to vacuum deposition.
  • the probe beam 350 and the probe tip 360 use various nickel alloy materials such as nickel (Ni) and nickel iron (Ni-Fe) in consideration of electrical conductivity and elasticity.
  • the probe beam 350 may be formed in an up and down multilayer structure for arranging more probe beams than in the prior art in order to improve inspection efficiency.
  • the probe tip 360 and the probe beam 350 are formed to have a structure that differs in width, width, length, and depth, respectively.
  • the probe tip 360 is deposited with a polymer insulating material on the front surface except for a lower portion that transmits an electrical signal, and the probe beam 350 is attached with an insulating material to define a central portion, thereby improving the insulating property to reduce noise. It is completely removed and may be configured so that a short circuit does not occur even when the probe beams 350 contact each other.
  • the probe is formed in a structure in which a test pad 750 including a film and an inspection driving IC for transmitting an electrical signal is attached to a lower back side of the probe beam 350.
  • a protruding pin is formed at the bottom of the rear side of the probe, and the test pad 750 in which the electrical signal transmission probe is connected to the test driver IC is located behind the probe.
  • Probe guide film that delivers electrical signal for safe contact with stage and test driver IC.
  • the probe is configured to be fastened to the mechanism 700 which is a block which is mounted universally on the semiconductor and flat panel display device inspection equipment 800.
  • the instrument part 700 to which the probe is fastened is modularized and mounted on the probe inspection device 800.
  • a plurality of probes are provided in the inspection apparatus 800, and each probe is formed with a probe beam 350 having the probe tip 360 contacting the semiconductor and the flat panel display device, as shown in FIG. The group is made to contact and inspect the panel under test.
  • 5 to 19 are process perspective views illustrating a method of manufacturing a probe used for inspecting a semiconductor or flat panel display device according to an exemplary embodiment of the present invention.
  • an insulator 100 on which a probe beam 350 is seated is formed on a silicon substrate that is not deformable, such as temperature and humidity.
  • a first passivation layer 110 is formed in a gap below the insulator 100.
  • the first passivation layer 110 is coated with a polyamide photoresist on a lower portion of the insulator 100 to a predetermined thickness, and then exposed to light and developed, thereby performing a probe beam on one unit probe by performing a subsequent process. It is formed through a photolithography process that forms a gap to define a location where the 350 is exposed.
  • the photolithography process includes photoresist coating, photoresist soft-baking, exposure, photoresist hard-baking, and rinsing. Rinse) can be formed by sequentially performing the process.
  • the probe beam exposed portion 115 is etched to form a portion of the lower portion of the insulator 100 where the first protective layer 110 is not formed.
  • the probe beam exposure unit 115 is a sand blast process, which is a part of the physical etching process is masked by the first protective layer, the remaining area other than the portion to be removed to remove the selective insulator 100 on the back of the insulator 100 It is formed by removing only the insulator 100 at a thickness of several tens of micrometers.
  • the first passivation layer 110 may be removed, where the first passivation layer 110 may be removed by wet etching using a chemical such as acetone (CH 3 COCH 3).
  • a second passivation layer 120 is formed on the insulator 100 to define the shape of the probe tips 360 arranged at equal intervals.
  • the second passivation layer 120 is formed by a photolithography process similar to the process of forming the first passivation layer 110.
  • the groove 200 corresponding to the shape of the probe tip 360 is formed by using the second passivation layer 120 as a mask, and the etching process is performed on a machine. It is formed by a dry etching process.
  • the second passivation layer 120 is removed by wet etching using chemicals.
  • an insulating layer 250 is formed by applying a silicon dioxide layer, which is an insulating material forming an oxide layer, on the insulator 100.
  • the insulating film 250 is formed to electrically insulate the probe beam 350 formed in the insulator 100, and the insulating film 250 injects a predetermined oxidizing gas into the furnace. It may be formed by inducing an oxidizing gas and the upper surface of the insulator 100 to react at a predetermined high temperature.
  • the silicon oxide film is formed using the insulating film 250, but in another embodiment, the insulating film 250 may be formed using a nitride layer.
  • the third passivation layer 300 is masked.
  • the trench 310 is formed by removing the insulating layer 250 in a shape corresponding to the lower end of the probe tip 360.
  • the trench 310 may be formed so that the unit probe beams 350 may be spaced apart from each other by a predetermined interval, and the trench 310 may be formed by applying a leading material to the front surface after the physical dry etching process. .
  • the probe beam 350 may form the trench 310 in a plurality of layers so that the upper and lower multilayer structures are arranged.
  • the third passivation layer 300 is removed by wet etching using a chemical such as acetone (CH 3 COCH 3).
  • a conductive material is formed in the trench 310 of the insulator 100 having the silicon oxide layer formed thereon.
  • a plating mold 330 for embedding by the electroplating process.
  • the plating mold 330 may be formed by coating a photoresist made of polyamide to a predetermined thickness on the trench 310.
  • an electroplating seed layer 400 is formed by applying a conductive material on the plating mold 330.
  • the seed layer 400 may be formed of a copper (Cu) layer by a sputtering process as a physical vapor deposition (PVD) method.
  • Cu copper
  • PVD physical vapor deposition
  • the nickel-iron alloy which is a conductive material
  • the upper surface of the insulator 100 is flattened.
  • the plating frame 330 is removed to form a probe beam 350 that forms a probe group with unit probes spaced a predetermined distance apart.
  • the probe beam 350 is not limited to the nickel-cobalt alloy material of the present embodiment in consideration of electrical conductivity and elasticity, and may be modified to various materials such as nickel and nickel iron alloys (Ni-Fe).
  • planarization process may use techniques such as grinding and chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • the electroplating seed layer 400 is removed to form electrical wiring on the probe beam 350, and then the insulating polymer is formed on the probe beam 350 and the probe tip surface.
  • the insulating material is formed by vacuum deposition.
  • the probe tip 360 is deposited on a portion other than a lower portion for transmitting an electrical signal.
  • a parylene resin that is easily vacuum deposited is used as the insulating material.
  • a fourth passivation layer 450 is formed to define a central portion of the group of probe beams 350 formed with the electrical signal transmission system having the insulated probe tip 360.
  • the reinforcing plate 600 is attached to the center portion of the limited probe beam 350 using the fourth passivation layer 450 as a mask.
  • the reinforcement plate 600 is formed to open one end and the other end of the probe by closing only the central portion of the probe beam 350 assembly with a ceramic material, the adhesive of an insulating material such as epoxy It is attached and fixed to the upper portion of the insulator 100 by using.
  • the fourth protective layer 450 is removed by wet etching.
  • a fifth passivation layer 500 for defining a central portion of the lower portion of the insulator 100 is formed, and the insulator is formed through an etching process using the fifth passivation layer 500 as a mask. Except for the center portion of the (100) through to expose the other portion to the outside to produce a probe.
  • the fifth passivation layer 500 is formed by coating a photoresist to a predetermined thickness by a photolithography process, exposing and developing the photoresist, and confining and closing only the central portion of the probe in the same manner as the reinforcement plate 600. Form a pattern to open one end and the other end of the.
  • the exposed portion except for the center portion of the insulator 100 may be completely removed by using a dry etching process such as a sandblast process by using the fifth passivation layer 500 as a mask.
  • one end and the other end of the probe beam 350 is completely opened by the etching removal of the insulator 100, and the probe 20 fixed by the insulator 100 is completed.
  • the probe beam 350 is buried and fixed in the trench 310, and the probe and the insulator 100 are insulated from each other by an insulating film 250 made of a silicon oxide film, and each unit probe beam ( 350 is also insulated with an insulating material such as polyamide.
  • the fifth passivation layer 500 is removed by the same method as that of removing the first to fourth passivation layers 450.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Leads Or Probes (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Geometry (AREA)

Abstract

본 발명은 반도체나 평판표시소자 검사에 사용되는 프로브 및 그 제조방법에 관한 것으로서, 반도체 및 평판표시소자에 전기적 신호를 인가하는 전도성 소재로 등간격 이격되어 다수 마련된 프로브 빔;과, 상기 프로브빔의 측단 하부에 형성되어 상기 반도체 및 평판표시소자와 접촉되는 프로브 팁;과, 실리콘 기판상에 프로브 빔의 안착공간이 이 형성되며, 중심부에 프로브 빔과 연결된 전기배선이 구성되는 실리콘 소재로 마련된 절연체;와, 상기 절연체 상부 중앙에 부착된 판형의 보강판;을 포함한다. 또한, 상기 프로브의 제조방법은 실리콘 기판상에 프로브 빔이 안착되는 절연체를 형성하는 단계;와, 상기 절연체 하부에 간극을 이루며 제1보호막을 형성하는 단계;와, 상기 절연체 하부 중 제1보호막이 형성되지 않은 부분에 프로브 빔의 노출부를 형성하기 위하여 물리적으로 식각하는 단계;와, 상기 제1보호막을 제거하는 단계;와, 상기 절연체 상부에 등간격 이격 배열되는 프로브 팁의 형상을 한정하는 제2 보호막을 형성하는 단계;와, 상기 제2보호막을 마스크로 사용하여 프로브 팁의 형상과 대응되는 홈을 식각공정으로 형성하는 단계;와, 상기 제2보호막을 제거하는 단계;와, 상기 절연체 위에 산화막을 이루는 절연물질을 도포하는 단계;와, 상기 절연물질이 도포된 절연체 상부에 프로브 빔 하단을 한정하는 제3보호막을 형성하는 단계;와, 상기 제3보호막을 마스크로 하여 물질적인 식각공정을 사용하여 프로브 팁 하단부와 대응되는 형상으로 절연막을 제거하여 트렌치를 형성하는 단계;와, 상기 제3보호막을 제거하는 단계;와, 상기 절연체 상부에 프로브 빔을 형성하기 위한 전기도금공정을 위해 도금틀을 형성하는 단계;와, 상기 도금틀 위에 전도성 물질을 도포하여 전기도금 씨앗층을 형성하는 단계;와, 상기 도금틀을 제거하는 단계;와, 상기 전기도금 씨앗층을 제한적으로 제거하여 프로브 빔에 전기배선을 형성하는 단계;와, 상기 전기배선 하단부분을 제외한 프로브에 팁을 가진 전기신호전달 프로브 전면에 절연성 고분자를 도포하는 단계;와, 상기 절연 처리된 프로브 팁을 포함한 전기신호전달 체계가 형성된 프로브 빔의 집단 중앙부분을 한정하는 제4보호막을 형성하는 단계;와, 상기 제4보호막을 마스크로 하여 한정된 프로브 빔의 중앙부에 보강판을 부착하는 단계;와, 상기 제4보호막을 제거하는 단계;와, 상기 절연체 하부 중앙부분을 한정하기 위한 제5보호막을 형성하는 단계;와, 상기 제5보호막을 마스크로 하여 식각공정을 통해 상기 절연체의 중앙부분을 제외하고 통해 다른 부분을 외부로 노출시키는 단계;를 포함하여 이루어지는 것을 특징으로 한다. 이에 의해, 인접하는 프로브 팁의 접촉에 의한 단락을 방지하거나 노이즈를 제거할 수 있으며, 주파수 신호 테스트시 발생될 수 있는 인접신호의 간섭을 차단함으로써 프로브의 전기적 특성을 향상시킬 수 있는 효과가 있다.

Description

반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법
본 발명은 반도체나 평판표시소자 검사에 사용되는 프로브 및 그 제조방법에 관한 것으로서, 상세하게는 절연물질로 코팅된 프로브 팁을 사용하여 인접하는 프로브 팁의 접촉에 의한 단락을 방지하거나 노이즈를 제거할 수 있으며, 주파수 신호 테스트시 발생될 수 있는 인접신호의 간섭을 차단함으로써 프로브의 전기적 특성을 향상시킬 수 있는 반도체나 평판표시소자 검사에 사용되는 프로브 및 그 제조방법에 관한 것이다.
일반적으로 반도체 및 액정표시소자(LCD; Liquid Crystal Display), 플라즈마표시패널(PDP; Plasma Display Panel), 전계 방출표시소자(FED; Field Emission Display)평판표시소자는 신호인가를 위한 패드전극을 구비한다.
이러한 반도체 및 평판표시소자의 테스트는 패드전극에 전기신호를 인가하여 불량여부를 판별할 수 있는 프로브(probe)를 이용하여 수행된다.
평판표시소자 테스트를 위한 프로브는, 수작업으로만 제작되는 니들 타입(needle type)과, 신기술을 도입하여 수작업과 함께 제작되는 블레이드 타입(blade type)과, 필름 타입(film type)과, 그리고 멤스(MEMS; Micro Electro Mechanical System) 기술을 이용하는 멤스 타입(MEMS type) 등이 있다.
니들 타입의 프로브는, 직선의 텅스텐 빔을 구부리는 단계와, 보강판에 접착제를 사용하여 붙이는 단계와, 검사를 요하는 패드전극에 접촉할 접촉면과 신호이송장치에 접촉할 접촉면의 좌표위치를 맞추기 위해 물리적으로 위치를 보정하는 단계와, 그리고 위치가 보정된 검사용 프로브의 세정단계로 이루어지는 과정을 통해 제작된다.
그러나 이와 같은 일련의 과정은 모두 수작업으로 이루어지며, 이에 따라 제작에 많은 시간이 소요되고, 불량률이 높아지며, 또한 공정이 복잡하여 생산성이 떨어진다는 한계를 갖는다.
블레이드 타입의 프로브는, 블레이드가 삽입될 틀을 제작하는 단계와, 블레이드를 제작하는 단계와, 블레이드를 삽입하는 단계와, 그리고 블레이드가 삽입된 틀 윗면에 커버를 덮는 단계로 이루어지는 과정을 통해 제작된다.
그러나 이와 같은 일련의 과정 중 일부도 여전히 수작업에 의해 이루어지며, 특히 제조단가가 높다.
멤스 타입의 프로브는, 절연체 위에 전도성 물질인 검사용 프로브빔 및 프로브 팁을 제작하는 단계와, 절연체를 제거하는 단계와, 검사용 프로브에 보호커버를 덮는 단계와, 검사용 프로브의 위치를 보정하는 단계로 이루어지는 과정을 통해 제작된다.
이러한 멤스 타입의 프로브 제조방법은 한국 특허 출원 10-2004-0004540호"평판소자 검사용 프로브 제조방법 및 이에 따른 프로브"에 게재된 바 있다.
상기 특허 출원 10-2004-0004540호에 의한 평판표시소자 검사용 프로브의 제조방법은, 실리콘기판 상에 프로브의 형상을 한정하는 제 1 보호막 패턴을 형성하는 단계, 상기 제 1 보호막 패턴을 마스크로 사용하여 식각공정을 진행하여 트렌치를 형성하는 단계, 상기 제 1 보호막 패턴을 제거하는 단계, 상기 실리콘기판상에 절연막을 형성하는 단계, 상기 절연막이 형성된 실리콘기판의 상기 트렌치 내부에 도전성 물질을 매립하여 프로브를 형성하는 단계, 상기 프로브가 형성된 상기 실리콘기판의 상면이 노출되도록 평탄화하는 단계, 상기 프로브의 중앙부를 한정함으로써 상기 프로브의 일단 및 타단을 개방하는 보강판을 상기 실리콘기판의 상면에 부착하는 단계, 상기 보강판이 부착된 실리콘기판의 반대측에 상기 프로브의 일단 및 타단을 한정 개방하는 제 2 보호막 패턴을 형성하는 단계, 상기 제 2보호막 패턴에 의해서 개방된 상기 실리콘기판을 제거함으로써 상기 프로브의 일단 및 타단을 외부로 완전히 노출시키는 단계 및 상기 제 2 보호막 패턴을 제거하는 단계를 포함하여 이루어지는 것을 특징으로 한다.
이러한 종래의 프로브는 중심부는 절연체로 구성되어 있지만, 검사를 위해 외부로 노출된 프로브 팁은 전도체가 그대로 노출되어 있기 때문에 인접하는 프로브 팁의 접촉에 의해 단락되거나 노이즈가 발생될 수 있는 문제점이 있다.
또한, 갈수록 고성능화 되는 반도체나 평판소자에서 처리되는 수십 Hz에서 수백 Hz에 이르는 주파수 신호를 테스트하는 경우 종래의 프로브는 프로브 팁의 전도체가 그대로 노출되어 있기 때문에 프로브 팁 사이에 형성되는 커패시턴스에 의한 인접신호의 간섭으로 인해 전기적 특성이 저하되어 제대로 테스트를 수행하지 못하는 문제점이 있다.
따라서, 본 발명의 목적은 전기 신호를 전달하는 하단부분을 제외한 프로브 팁 전면에 고분자 절연물질로 진공증착시킴으로써, 인접하는 프로브 팁의 접촉에 의한 단락을 방지하거나 노이즈를 제거할 수 있는 반도체나 평판표시소자 검사에 사용되는 프로브 및 그 제조방법을 제공하는 데 있다.
또한, 발명의 목적은 전기 신호를 전달하는 하단부분을 제외한 프로브 팁 전면에 고분자 절연물질로 진공증착시킴으로써, 주파수 신호 테스트시 발생될 수 잇는 인접신호의 간섭을 차단함으로써 프로브의 전기적 특성을 향상시킬 수 있는 반도체나 평판표시소자 검사에 사용되는 프로브 및 그 제조방법을 제공하는 데 있다.
상기 목적은 본 발명에 따라, 상기 반도체 및 평판표시소자에 전기적 신호를 인가하는 전도성 소재로 등간격 이격되어 다수 마련된 프로브 빔과, 상기 프로브빔의 측단 하부에 형성되어 상기 반도체 및 평판표시소자와 접촉되는 프로브 팁과, 실리콘 기판상에 프로브 빔의 안착공간이 이 형성되며, 중심부에 프로브 빔과 연결된 전기배선이 구성되는 실리콘 소재로 마련된 절연체와, 상기 절연체 상부 중앙에 부착된 판형의 보강판을 포함하는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브에 의해 달성된다.
여기서, 상기 프로브 빔 표면은 절연물질로 진공증착되는 것을 특징으로 한다.
여기서, 상기 프로브 팁은 전기 신호를 전달하는 하단부분을 제외하고 전면에 고분자 절연물질로 진공증착되는 것을 특징으로 한다.
바람직하게는, 상기 절연물질은 패럴린(Parylene) 수지로 마련될 수 있다.
또한, 상기 프로브 빔과 프로브 팁은 니켈 또는 니켈 합금 재질 중 어느 하나로 마련될 수 있다.
여기서, 상기 프로브 빔은 중앙부를 한정하기 위해 절연성 접착물질이 부착된 것을 특징으로 한다.
또한, 상기 프로브는 프로브 빔 후면 하부에 전기신호를 전달하는 필름 및 검사구동IC가 포함된 검사패드가 부착되는 구조로 형성되는 것을 특징으로 한다.
바람직하게는, 상기 프로브 팁과 프로브 빔은 폭과 넓이, 길이, 깊이를 각각 달리하는 구조를 가지도록 형성될 수 있다.
또한, 상기 프로브는 반도체 및 평판표시소자 검사장비에 범용으로 장착되는 블록인 기구부에 체결될 수 있다.
상기 프로브 빔은 상하 복층구조를 이루며 배열 형성될 수 있다.
한편, 상기 목적은 본 발명에 따라, 실리콘 기판상에 프로브 빔이 안착되는 절연체를 형성하는 단계와, 상기 절연체 하부에 간극을 이루며 제1보호막을 형성하는 단계와. 상기 절연체 하부 중 제1보호막이 형성되지 않은 부분에 프로브 빔의 노출부를 형성하기 위하여 물리적으로 식각하는 단계와, 상기 제1보호막을 제거하는 단계와, 상기 절연체 상부에 등간격 이격 배열되는 프로브 팁의 형상을 한정하는 제2 보호막을 형성하는 단계와, 상기 제2보호막을 마스크로 사용하여 프로브 팁의 형상과 대응되는 홈을 식각공정으로 형성하는 단계와, 상기 제2보호막을 제거하는 단계와, 상기 절연체 위에 산화막을 이루는 절연물질을 도포하는 단계와, 상기 절연물질이 도포된 절연체 상부에 프로브 빔 하단을 한정하는 제3보호막을 형성하는 단계와, 상기 제3보호막을 마스크로 하여 물질적인 식각공정을 사용하여 프로브 팁 하단부와 대응되는 형상으로 절연막을 제거하여 트렌치를 형성하는 단계와, 상기 제3보호막을 제거하는 단계와, 상기 절연체 상부에 프로브 빔을 형성하기 위한 전기도금공정을 위해 도금틀을 형성하는 단계와, 상기 도금틀 위에 전도성 물질을 도포하여 전기도금 씨앗층을 형성하는 단계와, 상기 도금틀을 제거하는 단계와, 상기 전기도금 씨앗층을 제한적으로 제거하여 프로브 빔에 전기배선을 형성하는 단계와, 전기신호를 전달하는 하단부분을 제외한 프로브 팁의 전면에 고분자 절연물질을 증착하는 단계와, 상기 절연 처리된 프로브 팁을 포함한 전기신호전달 체계가 형성된 프로브 빔의 집단 중앙부분을 한정하는 제4보호막을 형성하는 단계와, 상기 제4보호막을 마스크로 하여 한정된 프로브 빔의 중앙부에 보강판을 부착하는 단계와, 상기 제4보호막을 제거하는 단계와, 상기 절연체 하부 중앙부분을 한정하기 위한 제5보호막을 형성하는 단계와, 상기 제5보호막을 마스크로 하여 식각공정을 통해 상기 절연체의 중앙부분을 제외하고 통해 다른 부분을 외부로 노출시키는 단계를 포함하여 이루어지는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법에 의해 달성된다.
여기서, 상기 제1보호막과, 제2보호막과, 제3보호막과, 제4보호막과, 제5보호막과, 도금틀은 포토리소그래피(Photo Lithography)공정을 사용한다.
또한, 상기 프로브 팁 형상과 대응되는 홈은 건식식각공정을 사용하여 형성된다.
여기서, 상기 프로브 빔 표면 및 프로브 팁은 고분자 절연물질로 진공증착된다.
바람직하게는, 상기 고분자 절연물질은 패럴린(Parylene) 수지로 마련될 수 있다.
바람직하게는, 상기 도금틀을 포토레지스트(Photoresist)를 사용하여 형성할 수 있다.
또한, 상기 프로브 빔과 프로브 팁은 니켈 또는 니켈 합금 재질 중 어느 하나로 마련될 수 있다.
여기서, 상기 절연체는 상기 제5보호막을 마스크로 사용하여 상기 중앙부를 제외하고 건식식각을 사용하여 제거하는 것을 특징으로 한다.
또한, 상기 프로브 빔은 중앙부를 한정하기 위해 절연물질을 부착하는 것을 특징으로 한다.
또한, 상기 트렌치는 건식식각공정으로 형성한 후 전면에 전연물질을 도포하는 것을 특징으로 한다.
상기 프로브 빔은 상하 복층구조를 이루며 배열 형성되도록 제조될 수 있다.
따라서, 본 발명에 따른 반도체나 평판표시소자 검사에 사용되는 프로브 및 그 제조방법은 전기 신호를 전달하는 하단부분을 제외한 프로브 팁 전면에 고분자 절연물질로 진공증착시킴으로써, 인접하는 프로브 팁의 접촉에 의한 단락을 방지하거나 노이즈를 제거할 수 있는 효과가 있다.
또한, 주파수 신호 테스트시 발생될 수 있는 인접신호의 간섭을 차단함으로써 프로브의 전기적 특성을 향상시킬 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 반도체나 평판표시소자 검사에 사용되는 프로브를 도시한 사시도,
도 2는 본 발명의 실시예에 따른 반도체나 평판표시소자 검사에 사용되는 프로브가 장착된 기구부를 도시한 사시도,
도 3은 본 발명의 실시예에 따른 반도체나 평판표시소자 검사에 사용되는 프로브가 장착된 검사장비를 도시한 사시도,
도 4는 본 발명의 실시예에 따른 반도체나 평판표시소자 검사에 사용되는 프로브의 검사과정을 나타낸 도면,
도 5 내지 도 19는 본 발명의 실시 예에 따른 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법을 설명하기 위한 공정사시도들이다.
*도면의 주요부분에 대한 부호의 설명*
100 : 절연체 110 : 제1보호막
120 : 제2보호막 250 : 절연막
300 : 제3보호막 310 : 트렌치
320 : 도금틀 350 : 프로브 빔
360 : 프로브 팁 400 : 씨앗층
450 : 제4보호막 500 : 제5보호막
600 : 보강판 700 : 검사패드
750 : 기구부 800 : 검사장비
이하, 본 발명의 구체적인 실시예를 첨부한 도면을 참조하여 상세히 설명한다.
도 1은 본 발명의 실시예에 따른 반도체나 평판표시소자 검사에 사용되는 프로브를 도시한 사시도이며, 도 2는 본 발명의 실시예에 따른 반도체나 평판표시소자 검사에 사용되는 프로브가 장착된 기구부를 도시한 사시도이며, 도 3은 본 발명의 실시예에 따른 반도체나 평판표시소자 검사에 사용되는 프로브가 장착된 검사장비를 도시한 사시도이며, 도 4는 본 발명의 실시예에 따른 반도체나 평판표시소자 검사에 사용되는 프로브의 검사과정을 나타낸 도면이다.
도 1을 참조하면, 본 발명에 따른 반도체나 평판표시소자 검사에 사용되는 프로브는 반도체 및 평판표시소자에 전기적 신호를 인가하는 전도성 소재로 등간격 이격되어 다수 마련된 프로브 빔(350)과, 상기 프로브 빔(350)의 측단 하부에 형성되어 상기 반도체 및 평판표시소자와 접촉되는 프로브 팁(360)과, 실리콘 기판상에 프로브 빔(350)의 안착공간이 형성되며, 중심부에 프로브 빔(350)과 연결된 전기배선이 구성되는 실리콘 소재로 마련된 절연체(100)와, 상기 절연체(100) 상부 중앙에 부착된 판형의 보강판(600)을 포함한다.
여기서, 상기 이격 형성된 프로브 빔(350)의 좁은 이격간격 때문에 상호 접촉에 의한 노이즈 및 인접신호의 간섭에 의해 전기적 특성이 저하되는 것을 방지하기 위하여 각 프로브 빔(350) 표면 및 전기 신호를 전달하는 하단부분을 제외한 프로브 팁(360) 전면에 고분자 절연물질을 증착시킨다.
여기서, 상기 프로브 빔(350) 및 프로브 팁은(360)은 진공증착이 용이한 패럴린(Parylene)수지를 이용한 진공증착 방법으로 표면에 절연물질을 형성한다.
상기 프로브 빔(350)과 프로브 팁(360)은 전기전도성 및 탄성 등을 감안하여 니켈(Ni) 및 니켈철(Ni-Fe) 등과 같은 다양한 니켈 합금 재질을 사용한다.
여기서, 상기 프로브 빔(350)은 검사효율을 향상시키기 위하여 종래보다 더 많은 프로브 빔 배열을 위하여 상하 복층구조로 형성되도록 할 수 있다.
여기서, 상기 프로브 팁(360)과 프로브 빔(350)은 폭과 넓이, 길이, 깊이를 각각 달리하는 구조를 가지도록 형성된다.
상기 프로브 팁(360)은 전기 신호를 전달하는 하단부분을 제외하고 전면에 고분자 절연물질로 증착되며, 상기 프로브 빔(350)은 중앙부를 한정하기 위해 절연물질이 부착되어서 절연특성을 향상시켜 노이즈가 완전 제거되며 프로브 빔(350)이 서로 접촉을 하여도 단락현상이 발생하지 않도록 구성할 수 있다.
또한, 도 2 및 도 3을 참조하면, 상기 프로브는 프로브 빔(350) 후면 하부에 전기신호를 전달하는 필름 및 검사구동IC가 포함된 검사패드(750)가 부착되는 구조로 형성된다.
또한 팁을 가진 프로브 빔(350) 후단에 돌출 핀을 형성하여 검사패드(750)와의 탈착이 용이하게 구성하였다.
즉, 검사구동IC가 포함된 상기 검사패드(750)와의 분리를 용이하게 하기 위해 프로브 후면 하단에는 돌출핀이 형성되며, 전기신호전달 프로브가 검사구동IC에 연결되는 검사패드(750)에는 프로브 뒷단과 검사구동IC와 안전한 접촉을 위해 전기신호를 전달하는 프로브 가이드필름을 형성한다.
여기서, 상기 프로브는 반도체 및 평판표시소자 검사장비(800)에 범용으로 장착되는 블록인 기구부(700)에 체결되도록 구성된다.
상기 프로브가 체결된 상기 기구부(700)는 모듈화되어 프로브 검사장비(800)에 장착된다.
상기 프로브는 상기 검사장비(800)에 다수 마련되며, 각각의 프로브는 도4에 도시된 바와 같이, 반도체 및 평판표시소자와 접촉하는 상기 프로브 팁(360)이 형성된 프로브 빔(350)이 형성된 프로브 군이 검사대상 패널에 접촉하여 검사하도록 이루어진다.
도 5 내지 도 19는 본 발명의 실시예에 따른 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법을 설명하기 위한 공정사시도들이다.
이하, 도면을 참조하여 본 발명의 실시예에 따른 반도제 및 평판표시소자 검사용 프로브의 제조방법을 설명하기로 한다.
먼저, 도 5에 도시된 바와 같이, 온도 및 습도 등과 같은 변형성이 없는 실리콘 기판상에 프로브 빔(350)이 안착되는 절연체(100)를 형성한다.
다음으로, 도 6에 도시된 바와 같이, 상기 절연체(100) 하부에 간극을 이루며 제1보호막(110)을 형성한다.
상기 제1보호막(110)은 상기 절연체(100) 하부에 폴리아미드 재질의 포토레지스트(Photoresist)를 소정두께로 도포한 후, 노광 및 현상함으로써 후속공정의 수행에 의해서 하나의 단위 프로브에 프로브 빔(350)이 노출되는 위치를 한정하기 위한 간극을 이루며 형성되는 포토리소그래피(Photo Lithography) 공정을 통해 형성된다.
이때, 상기 포토리소그래피(Photo Lithography) 공정은 포토레지스트 코팅(Photoresist coating), 포토레지스트 소프트-베이킹(Photoresist soft-baking), 노광(Exposure), 포토레지스트 하드-베이킹(Photoresist hard-baking) 및 린스(Rinse) 공정을 순차적으로 수행함으로써 형성할 수 있다.
다음으로, 도 7에 도시된 바와 같이, 상기 절연체(100) 하부 중 제1보호막(110)이 형성되지 않은 부분에 프로브 빔 노출부(115)를 형성하기 위하여 식각한다.
이때, 상기 프로브 빔 노출부(115)는 절연체(100) 뒷면에 선택적 절연체(100) 제거를 위해 제거할 부분 외 나머지 영역은 상기 제1 보호막에 의해 마스킹 되고, 물리적 식각공정의 하나인 샌드블러스터 공정으로 수십마이크로 두께에 절연체(100)만 남기고 제거하는 것에 의해 형성된다.
다음으로, 도 8에 도시된 바와 같이, 상기 제1보호막(110)을 제거하는데, 여기서 상기 제1보호막(110)은 아세톤(CH3COCH3) 등과 같은 케미컬을 이용한 습식식각에 의해서 제거할 수 있다.
다음으로, 도 9에 도시된 바와 같이, 상기 절연체(100) 상부에 등간격 이격 배열되는 프로브 팁(360)의 형상을 한정하는 제2보호막(120)을 형성한다.
여기서, 상기 제2보호막(120)은 상기 제1보호막(110) 형성 공정과 같은 포토리소그래피 공정으로 형성된다.
다음으로, 도 10에 도시된 바와 같이, 상기 제2보호막(120)을 마스크로 사용하여 프로브 팁(360)의 형상과 대응되는 홈(200)을 식각공정으로 형성하며, 이러한 식각공정은 기계에 의한 건식식각 공정에 의해 형성된다.
계속해서, 도 11에 도시된 바와 같이, 케미컬을 이용한 습식식각에 의해서 상기 제2보호막(120)을 제거한다.
다음으로, 도 12에 도시된 바와 같이, 상기 절연체(100) 위에 산화막을 이루는 절연물질인 실리콘 산화막(Silicon dioxide layer)을 도포하여 절연막(250)을 형성한다.
상기 절연막(250)은 절연체(100) 내부에 형성되는 프로브 빔(350)의 전기적 절연을 위하여 형성하는 것이며, 이러한 절연막(250)은 소정의 산화성 가스를 퍼니스(Furnace) 내부에 투입한 후, 상기 산화성 가스와 절연체(100) 상부 표면이 소정의 고온에서 반응하도록 유도함으로써 형성할 수 있다.
여기서, 상기 절연막(250)으로 실리콘 산화막을 형성하였으나 다른 실시예로 나이트라이드막(Nitride layer)을 사용하여 절연막(250)을 형성할 수도 있다.
다음으로, 도 13에 도시된 바와 같이, 상기 절연물질이 도포된 절연체(100) 상부에 프로브 빔(350) 하단을 한정하는 제3보호막(300)을 형성한 후 제3보호막(300)을 마스크로 하여 물리적 식각공정을 수행함으로써, 프로브 팁(360) 하단부와 대응되는 형상으로 절연막(250)을 제거하여 트렌치(310)를 형성한다.
여기서, 상기 트렌치(310)는 단위 프로브 빔(350)이 소정간격 이격되어 위치할 수 있도록 형성되며, 상기 트렌치(310)는 물리적 건식식각 공정으로 형성한 후 전면에 전연물질을 도포하여 이루어질 수 있다.
여기서, 상기 프로브 빔(350)은 상하 복층구조 배열되도록 상기 트렌치(310)를 복층으로 형성할 수 있다.
이어서, 상기 제3보호막(300)을 아세톤(CH3COCH3) 등과 같은 케미컬을 이용한 습식식각에 의해서 제거한다.
다음으로, 도 14에 도시된 바와 같이, 상기 절연체(100) 상부에 프로브 빔(350)을 형성하기 위하여 상기 절연막(250)으로 실리콘 산화막이 형성된 절연체(100)의 트렌치(310) 내부에 도전성 물질을 전기도금공정에 의해서 매립하기 위한 도금틀(330)을 형성한다.
상기 도금틀(330)은 상기 트렌치(310) 위에 폴리아미드 재질의 포토레지스트(Photoresist)를 소정두께로 도포하여 형성할 수 있다.
다음으로, 도 15에 도시된 바와 같이, 상기 도금틀(330) 위에 전도성 물질을 도포하여 전기도금 씨앗층(400)을 형성한다.
이때, 상기 씨앗층(400)은 PVD(Physical Vapor Deposition) 방법으로서의 스퍼터링(Sputtering)공정에 의해서 구리(Cu)층으로 형성될 수 있다.
계속해서, 도 16에 도시된 바와 같이, 상기 씨앗층(400)이 형성된 트렌치(310) 내부에 도전성 물질인 니켈-철 합금 등을 매립한 후, 상기 절연체(100)가 노출되도록 그 상면을 평탄화한 후 상기 도금틀(330)을 제거하여 단위 프로브가 소정간격 이격되어 프로브군을 이루는 프로브 빔(350)을 형성한다.
상기 프로브 빔(350)은 전기 전도성 및 탄성 등을 감안하여 본 실시예의 니켈-코발트 합금 재질에 한정되지 않고 니켈, 니켈철 합금(Ni-Fe) 등과 같은 다양한 재질로 변형이 가능하다.
또한, 상기 평탄화공정은 그라인딩(Grinding) 및 CMP(Chemical Mechanical Polishing) 등과 같은 기술을 사용할 수 있다.
다음으로, 도 17에 도시된 바와 같이, 상기 전기도금 씨앗층(400)을 제한적으로 제거하여 프로브 빔(350)에 전기배선을 형성한 다음, 프로브 빔(350) 및 프로브 팁 표면에 절연성 고분자인 절연물질을 진공증착 방법으로 형성한다.
여기서, 상기 프로브팁(360)의 경우에는 전기신호를 전송하는 하단부분을 제외한 부분에 증착시키며, 이러한 절연물질로는 진공증착이 용이한 패럴린(Parylene) 수지가 사용된다.
다음으로, 도 18에 도시된 바와 같이, 상기 절연 처리된 프로브 팁(360)을 가진 전기신호전달 체계 형성된 프로브 빔(350)의 집단 중앙부분을 한정하는 제4보호막(450)을 형성하며, 상기 제4보호막(450)을 마스크로 하여 한정된 프로브 빔(350)의 중앙부에 보강판(600)을 부착한다.
여기서, 상기 보강판(600)은 세라믹(Ceramic) 재질로 프로브 빔(350) 집단의 중앙부분만을 한정하여 폐쇄함으로써 프로브의 일단 및 타단을 개방하도록 형성되며, 에폭시(Epoxy) 등과 같은 절연물질의 접착제를 이용하여 상기 절연체(100)의 상부에 부착 고정된다.
이어서, 상기 보강판(600)이 부착된 다음 상기 제4보호막(450)을 습식식각에 의해 제거한다.
다음으로, 도 19에 도시된 바와 같이, 상기 절연체(100) 하부 중앙부분을 한정하기 위한 제5보호막(500)을 형성하며, 상기 제5보호막(500)을 마스크로 하여 식각공정을 통해 상기 절연체(100)의 중앙부분을 제외하고 통해 다른 부분을 외부로 노출시켜서 프로브를 제작한다.
여기서, 상기 제5보호막(500)은 포토리소그래피 공정에 의해 소정두께로 포토레지스트를 코팅하고 노광 및 현상함으로써 상기 보강판(600)과 동일하게 프로브의 중앙부분만을 한정하여 폐쇄함으로써 프로브 빔(350)의 일단 및 타단을 개방하는 패턴을 형성한다.
또한, 상기 절연체(100)를 중앙부분을 제외한 노출부는 상기 제5보호막(500)을 마스크로 사용하여 샌드블러스터 공정과 같은 건식식각공정을 이용하여 완전히 제거한다.
이때, 상기 절연체(100)의 식각 제거에 의해서 프로브 빔(350)의 일단 및 타단은 완전히 개방되고 중앙부는 절연체(100)에 의해서 고정된 프로브(20)가 완성된다.
그리고, 이와 같은 상기 프로브 빔(350)은 트렌치(310) 내부에 매립 고정되어 있으며, 상기 프로브와 절연체(100)는 실리콘 산화막으로 이루어진 절연막(250)에 의해서 서로 절연되며, 각각의 단위 프로브 빔(350)도 폴리아미드 등과 같은 절연물질에 의해 각각 절연되어 있다.
이후, 상기 제5보호막(500)은 상기 제1내지 제4보호막(450) 제거방법과 동일한 방법에 의해서 제거된다.
상기 본 명세서에 기재된 내용 및 청구범위에 사용된 용어는 사전적인 의미로 한정 해석되어서는 아니되며, 발명자는 자신의 발명을 최선의 방법으로 설명하기 위해 용어의 개념을 적절히 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예 뿐만 아니라 도면에 도시된 형상 및 구성은 본 발명의 본 발명의 기술적 사상을 모두 표현하는 것은 아니므로, 본 발명의 출원시점에 있어 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.

Claims (21)

  1. 반도체 및 평판표시소자에 전기 신호를 인가하여 전기적 특성을 검사하는 검사장비에 사용되는 검사용 프로브에 있어서,
    상기 반도체 및 평판표시소자에 전기적 신호를 인가하는 전도성 소재로 등간격 이격되어 다수 마련된 프로브 빔;
    상기 프로브빔의 측단 하부에 형성되어 상기 반도체 및 평판표시소자와 접촉되는 프로브 팁;
    실리콘 기판상에 프로브 빔의 안착공간이 이 형성되며, 중심부에 프로브 빔과 연결된 전기배선이 구성되는 실리콘 소재로 마련된 절연체;
    상기 절연체 상부 중앙에 부착된 판형의 보강판;을 포함하는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브.
  2. 제1항에 있어서,
    상기 프로브 빔 표면은 고분자 절연물질로 진공증착되는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브.
  3. 제1항에 있어서,
    상기 프로브 팁은 전기 신호를 전달하는 하단부분을 제외하고 전면에 고분자 절연물질로 진공증착되는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브.
  4. 제2항 또는 제3항에 있어서,
    상기 고분자 절연물질은 패럴린(Parylene) 수지로 마련되는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브.
  5. 제1항에 있어서,
    상기 프로브 빔과 프로브 팁은 니켈 또는 니켈 합금 재질 중 어느 하나로 마련되는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브.
  6. 제1항에 있어서
    상기 프로브 빔은 중앙부를 한정하기 위해 절연성 접착물질이 부착된 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브.
  7. 제1항에 있어서,
    상기 프로브는 프로브 빔 후면 하부에 전기신호를 전달하는 필름 및 검사구동IC가 포함된 검사패드가 부착되는 구조로 형성되는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브.
  8. 제1항에 있어서,
    상기 프로브 팁과 프로브 빔은 폭과 넓이, 길이, 깊이를 각각 달리하는 구조를 가지도록 형성되는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브.
  9. 제1항에 있어서,
    상기 프로브는 반도체 및 평판표시소자 검사장비에 범용으로 장착되는 블록인 기구부에 체결되는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브.
  10. 제1항에 있어서,
    상기 프로브 빔은 상하 복층구조를 이루며 배열 형성되는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브.
  11. 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법에 있어서,
    실리콘 기판상에 프로브 빔이 안착되는 절연체를 형성하는 단계;
    상기 절연체 하부에 간극을 이루며 제1보호막을 형성하는 단계;
    상기 절연체 하부 중 제1보호막이 형성되지 않은 부분에 프로브 빔의 노출부를 형성하기 위하여 물리적으로 식각하는 단계;
    상기 제1보호막을 제거하는 단계;
    상기 절연체 상부에 등간격 이격 배열되는 프로브 팁의 형상을 한정하는 제2 보호막을 형성하는 단계;
    상기 제2보호막을 마스크로 사용하여 프로브 팁의 형상과 대응되는 홈을 을 식각공정으로 형성하는 단계;
    상기 제2보호막을 제거하는 단계;
    상기 절연체 위에 산화막을 이루는 절연물질을 도포하는 단계;
    상기 절연물질이 도포된 절연체 상부에 프로브 빔 하단을 한정하는 제3보호막을 형성하는 단계;
    상기 제3보호막을 마스크로 하여 물질적인 식각공정을 사용하여 프로브 팁 하단부와 대응되는 형상으로 절연막을 제거하여 트렌치를 형성하는 단계;
    상기 제3보호막을 제거하는 단계;
    상기 절연체 상부에 프로브 빔을 형성하기 위한 전기도금공정을 위해 도금틀을 형성하는 단계;
    상기 도금틀 위에 전도성 물질을 도포하여 전기도금 씨앗층을 형성하는 단계;
    상기 도금틀을 제거하는 단계;
    상기 전기도금 씨앗층을 제한적으로 제거하여 프로브 빔에 전기배선을 형성하는 단계;
    전기신호를 전달하는 하단부분을 제외한 프로브 팁의 전면에 고분자 절연물질을 증착하는 단계;
    상기 절연 처리된 프로브 팁을 포함한 전기신호전달 체계가 형성된 프로브 빔의 집단 중앙부분을 한정하는 제4보호막을 형성하는 단계;
    상기 제4보호막을 마스크로 하여 한정된 프로브 빔의 중앙부에 보강판을 부착하는 단계;
    상기 제4보호막을 제거하는 단계;
    상기 절연체 하부 중앙부분을 한정하기 위한 제5보호막을 형성하는 단계;
    상기 제5보호막을 마스크로 하여 식각공정을 통해 상기 절연체의 중앙부분을 제외하고 통해 다른 부분을 외부로 노출시키는 단계;를 포함하여 이루어지는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법.
  12. 제11항에 있어서,
    상기 제1보호막과, 제2보호막과, 제3보호막과, 제4보호막과, 제5보호막과, 도금틀은 포토리소그래피(Photo Lithography)공정을 사용하는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법.
  13. 제11항에 있어서,
    상기 프로브 팁 형상과 대응되는 홈은 건식식각공정을 사용하여 형성되는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법.
  14. 제11항에 있어서,
    상기 프로브 팁은 고분자 절연물질로 진공증착되는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브 제조방법.
  15. 제14항에 있어서,
    상기 고분자 절연물질은 패럴린(Parylene) 수지로 마련되는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브 제조방법.
  16. 제11항에 있어서,
    상기 도금틀을 포토레지스트(Photoresist)를 사용하여 형성하는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법.
  17. 제11항에 있어서,
    상기 프로브 빔과 프로브 팁은 니켈 또는 니켈 합금 재질 중 어느 하나로 마련되는 것을 특징으로 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법.
  18. 제11항에 있어서,
    상기 절연체는 상기 제5보호막을 마스크로 사용하여 상기 중앙부를 제외하고 건식식각을 사용하여 제거하는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법.
  19. 제11항에 있어서,
    상기 프로브 빔은 중앙부를 한정하기 위해 절연물질을 부착하는 것을 특징으로 하는 반도체 및 평판표시소자 장비 에서 검사용 프로브의 제조방법.
  20. 제11항에 있어서,
    상기 트렌치는 건식식각공정으로 형성한 후 전면에 전연물질을 도포하는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브 제조방법.
  21. 제11항에 있어서,
    상기 프로브 빔은 상하 복층구조를 이루며 배열 형성되는 것을 특징으로 하는 반도체나 평판표시소자 검사에 사용되는 프로브 제조방법.
PCT/KR2010/005135 2009-08-11 2010-08-05 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법 WO2011019160A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800356995A CN102597787A (zh) 2009-08-11 2010-08-05 用来检查半导体或平板显示元件的探针的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0073873 2009-08-11
KR1020090073873A KR100955597B1 (ko) 2009-08-11 2009-08-11 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법

Publications (2)

Publication Number Publication Date
WO2011019160A2 true WO2011019160A2 (ko) 2011-02-17
WO2011019160A3 WO2011019160A3 (ko) 2011-06-09

Family

ID=42281322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005135 WO2011019160A2 (ko) 2009-08-11 2010-08-05 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법

Country Status (3)

Country Link
KR (1) KR100955597B1 (ko)
CN (1) CN102597787A (ko)
WO (1) WO2011019160A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116106591A (zh) * 2023-01-10 2023-05-12 佛山市蓝箭电子股份有限公司 一种微波探针的制作方法及微波探针

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975921A (zh) * 2010-09-29 2011-02-16 上海天臣威讯信息技术有限公司 芯片测试板及测试方法、dfn封装器件测试板及测试方法
CN108663553B (zh) * 2017-03-29 2022-01-25 上海中船电气有限公司 一种接触式半导体材料测试头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064980A (ja) * 2005-08-29 2007-03-15 Mjc Probe Inc プローブカードの電気的接続装置
KR20070099322A (ko) * 2006-04-04 2007-10-09 주식회사 코넴 평판표시소자 테스트를 위한 검사장치 및 그 제조방법
KR20080005288A (ko) * 2005-05-03 2008-01-10 에스브이 프로브 피티이 엘티디 유전체 구조를 갖는 프로브 카드 어셈블리
KR20080103784A (ko) * 2007-05-25 2008-11-28 세크론 주식회사 프로브 어셈블리 및 이를 가지는 프로브 카드

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465995B2 (ja) * 2003-07-02 2010-05-26 株式会社日立製作所 プローブシート、プローブカード、半導体検査装置および半導体装置の製造方法
CN100343677C (zh) * 2005-03-16 2007-10-17 胜华科技股份有限公司 接触式薄膜探针及其制造方法
KR100653636B1 (ko) * 2005-08-03 2006-12-05 주식회사 파이컴 수직형 프로브, 그 제조 방법 및 프로브의 본딩 방법
JP2007093232A (ja) * 2005-09-27 2007-04-12 Seiko Epson Corp 電子デバイスの検査及び/又は調整方法、プローブピンの接触構造
KR100703043B1 (ko) * 2006-09-21 2007-04-09 (주)에이펙스 검사용 프로브 기판 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080005288A (ko) * 2005-05-03 2008-01-10 에스브이 프로브 피티이 엘티디 유전체 구조를 갖는 프로브 카드 어셈블리
JP2007064980A (ja) * 2005-08-29 2007-03-15 Mjc Probe Inc プローブカードの電気的接続装置
KR20070099322A (ko) * 2006-04-04 2007-10-09 주식회사 코넴 평판표시소자 테스트를 위한 검사장치 및 그 제조방법
KR20080103784A (ko) * 2007-05-25 2008-11-28 세크론 주식회사 프로브 어셈블리 및 이를 가지는 프로브 카드

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116106591A (zh) * 2023-01-10 2023-05-12 佛山市蓝箭电子股份有限公司 一种微波探针的制作方法及微波探针
CN116106591B (zh) * 2023-01-10 2023-09-19 佛山市蓝箭电子股份有限公司 一种微波探针的制作方法及微波探针

Also Published As

Publication number Publication date
CN102597787A (zh) 2012-07-18
WO2011019160A3 (ko) 2011-06-09
KR100955597B1 (ko) 2010-05-03

Similar Documents

Publication Publication Date Title
WO2019216503A1 (ko) 반도체소자 테스트소켓
US7928751B2 (en) MEMS interconnection pins fabrication on a reusable substrate for probe card application
WO2015012498A1 (ko) 도전성 커넥터 및 그 제조방법
WO2012033338A2 (ko) 프로브 카드 및 이의 제조 방법
KR100787160B1 (ko) 평판표시소자 테스트를 위한 검사장치 및 그 제조방법
WO2011019160A2 (ko) 반도체나 평판표시소자 검사에 사용되는 프로브의 제조방법
WO2023128428A1 (ko) 신호 손실 방지용 테스트 소켓
WO2015156653A1 (ko) 검사용 시트의 제조방법 및 검사용 시트
KR100977289B1 (ko) 반도체나 평판표시소자 검사에 사용되는 프로브
WO2017061656A1 (ko) 켈빈 테스트용 프로브, 켈빈 테스트용 프로브 모듈 및 그 제조방법
WO2022181951A1 (ko) 전기 전도성 접촉핀의 정렬 모듈 및 정렬 이송방법
KR100543684B1 (ko) 평판표시소자 검사용 프로브의 제조방법 및 이에 따른프로브
WO2022164173A1 (ko) 전기 전도성 접촉핀 및 이의 제조방법 및 전기 전도성 접촉핀 모듈
WO2017183788A1 (ko) 반도체소자 테스트소켓
KR100395780B1 (ko) 액정디스플레이 패널 검사용 프로브장치의 니들 어셈블리및 그 제조방법
WO2018199601A1 (ko) 센서 탑재 웨이퍼
RU2272335C2 (ru) Способ испытаний и контроля электронных компонентов
WO2015023062A1 (ko) 미세 전극 회로 검사용 핀 제조 방법 및 이의 방법으로 제조된 미세 전극 회로 검사용 핀
WO2022039439A1 (ko) 양극산화막 몰드 및 이를 포함하는 몰드구조체, 이를 이용한 성형물의 제조방법 및 그 성형물
KR20040055849A (ko) 평판표시소자 검사용 프로브의 제조방법, 이에 따른프로브, 이를 구비한 프로브 조립체
WO2024111711A1 (ko) 마이크로 프로브
KR101290668B1 (ko) 평판표시소자 검사용 글라스 타입 점등 검사장치 제조방법
CN110035625B (zh) 一种讯号量测介质软板的制作方法
WO2023195622A1 (ko) 패치형 플라즈마 진단장치 및 이를 포함하는 플라즈마 진단모듈
WO2023277452A1 (ko) 전기 전도성 접촉핀 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035699.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808309

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808309

Country of ref document: EP

Kind code of ref document: A2