WO2024009975A1 - 銅合金接合体 - Google Patents

銅合金接合体 Download PDF

Info

Publication number
WO2024009975A1
WO2024009975A1 PCT/JP2023/024697 JP2023024697W WO2024009975A1 WO 2024009975 A1 WO2024009975 A1 WO 2024009975A1 JP 2023024697 W JP2023024697 W JP 2023024697W WO 2024009975 A1 WO2024009975 A1 WO 2024009975A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
copper
alloy
joined body
weight
Prior art date
Application number
PCT/JP2023/024697
Other languages
English (en)
French (fr)
Inventor
正章 赤岩
貴浩 石川
和弘 野村
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2024009975A1 publication Critical patent/WO2024009975A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a copper alloy joined body.
  • pre-coolers are installed to enable rapid supply of high-pressure hydrogen cooled to approximately -45°C.
  • the heat exchanger which is the main component of the pre-cooler for hydrogen stations, not only does not exhibit hydrogen embrittlement, but also has tensile strength that can withstand high pressure and thermal conductivity that enables efficient cooling. It is preferable to use a material provided with the following.
  • Beryllium copper known as a material with high tensile strength and thermal conductivity, is suitable as a material for heat exchangers, and it has been confirmed that it does not cause hydrogen embrittlement even under high pressure hydrogen.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 9-87780
  • the Be content is 1.0 to 2.5%
  • the total content of Ni and Co is 0.2 to 0.
  • a beryllium-copper alloy for a heat exchanger is disclosed, which consists of .6% Cu and the balance Cu and unavoidable impurities.
  • Patent Document 2 Japanese Patent Application Laid-open No.
  • the Be content is 0.20 to 2.70% by weight
  • the total content of Co, Ni, and Fe is 0.20 to 2.50% by weight.
  • a beryllium copper alloy in which the total content of Cu, Be, Co, Ni and Fe is 99% by weight or more is disclosed, and is said to be excellent in hydrogen embrittlement resistance, tensile strength and thermal conductivity.
  • beryllium copper alloys In addition to not exhibiting hydrogen embrittlement (i.e., being resistant to hydrogen embrittlement), beryllium copper alloys have a tensile strength higher than that of high-pressure hydrogen stainless steel (e.g., approximately 1.5 to 2.5 times) and higher than that of stainless steel.
  • the size of high-pressure hydrogen heat exchangers can be made much smaller than stainless steel ones, which cannot be achieved with low-purity copper or low-strength copper alloys (for example, about 1/4).
  • the heat exchanger of the pre-cooler for a hydrogen station has a structure in which metal plates with slits or grooves are bonded in multiple layers to form flow paths through which hydrogen and refrigerant pass.
  • the currently adopted method for joining stainless steel for high-pressure hydrogen is to remove the surface oxide film by sublimation during the process of reducing pressure and raising the temperature to the joining temperature, and then applying adhesive pressure to the joint at a high temperature below the melting point of the stainless steel plate. Diffusion bonding is widely known.
  • copper alloys (i) have a strong oxide film that is difficult to remove by simple reduced pressure and temperature increase, and/or (ii) even if the oxide film is removed before bonding, copper alloys cannot be used under high vacuum during the bonding process.
  • the present inventor selectively adopted an age-hardenable copper alloy with a beryllium content of 0.7% by weight or less, finished the joint surface to a predetermined flatness and removed the oxide film, and then performed diffusion bonding (and Solution treatment and aging treatment are performed to reduce the proportion of inclusions such as oxides that may exist at the bonding interface (or at the location where the bonding interface used to be) when homogenization treatment is performed as necessary.
  • the inventors have found that it is possible to provide a copper alloy bonded body with extremely high bonding strength.
  • an object of the present invention is to provide a bonded body of age-hardenable copper alloy that achieves extremely high bonding strength.
  • a copper alloy joined body composed of a plurality of age hardenable copper alloy members diffusion bonded to each other, the bonding interface of the plurality of members remaining, (i)
  • the age-hardenable copper alloy is a beryllium copper alloy with a beryllium content of 0.7% by weight or less, and the oxidation that occupies a HAADF-STEM image of a rectangular cross section of 800 nm on the long side and 400 nm on the short side including the bonding interface.
  • the age hardenable copper alloy is a beryllium-free copper alloy;
  • the area ratio of inclusions composed of oxides, carbides and/or intermetallic compounds in a HAADF-STEM image of a rectangular cross section of 800 nm long side x 400 nm short side including the interface is 30% or less,
  • the copper alloy joined body wherein the long side is parallel to the bonding interface, and the short side is perpendicular to the bonding interface.
  • the age hardenable copper alloy is beryllium copper 11 alloy (JIS alloy number C1751, EN material number CW110C, and UNS alloy number C17510), beryllium copper 10 alloy (EN material number CW104C and UNS alloy number C17500), beryllium copper CuCo1Ni1Be ( EN material number CW103C), beryllium copper 14Z alloy (Be: 0.2 to 0.6 wt%, Ni: 1.4 to 2.4 wt%, Zr: 0 to 0.5 wt%, balance Cu and inevitable impurities ), beryllium copper 50 alloy (Be: 0.2-0.6% by weight, Ni: 1.4-2.1% by weight, Ag: 0.1-0.3% by weight, Zr: 0-0 .5% by weight, balance consisting of Cu and unavoidable impurities), beryllium copper 10Zr alloy (Be: 0.4-0.7% by weight, Co: 2.0-2.8% by weight, Zr: 0-0.3 % by weight, balance consisting of Cu and unavoidable impurities
  • the age hardenable copper alloys include beryllium copper 11 alloy (JIS alloy number C1751, EN material number CW110C, and UNS alloy number C17510) and Corson copper (EN material number CW109C, CW111C, UNS alloy number C19010, C70250, AMPCO944 ( Ni: 6.5 to 7.5% by weight, Si: 1.5 to 2.5% by weight, Cr: 0.5 to 1.5% by weight, the balance consisting of Cu and inevitable impurities), and AMPCO940 (Ni: 1.5 to 3.0% by weight, Si: 0.5 to 1.5% by weight, Cr: 0.3 to 1.5% by weight, the balance consisting of Cu and unavoidable impurities)
  • the copper alloy joined body according to aspect 10 which is at least one kind.
  • the positions of the open and close surfaces and the appearance of the sample are shown.
  • the XPS results of beryllium copper 25 alloy, beryllium copper 165 alloy, beryllium copper 11 alloy, beryllium copper 10Zr alloy, beryllium copper 50 alloy, and chromium copper alloy are shown.
  • BF-STEM images of cross sections including the bonding interface of copper alloy bonded bodies produced through solution treatment and aging treatment in Examples 4a, 5, and 6 are shown.
  • 2 shows HAADF-STEM images of cross sections including the bonding interface of copper alloy bonded bodies produced through solution treatment and aging treatment in Examples 4a, 5, and 6.
  • HAADF-STEM image of a cross-section including the joint interface of the copper alloy joints produced through homogenization annealing, solution treatment and aging treatment (Example 4b) or solution treatment and aging treatment (Example 7) in Examples 4b and 7. shows. 1 shows a STEM image and an EELS/EDX elemental mapping image of a cross section including the joint interface BI of the copper alloy joined body produced through solution treatment and aging treatment in Example 1a.
  • the abbreviation BI shown in the STEM image means bonding interface.
  • the copper alloy joined body of the present invention is composed of a plurality of age hardenable copper alloy members that are diffusion bonded to each other, and is typically subjected to solution treatment and aging treatment. . The bonded interfaces of the plurality of members remain in this copper alloy joined body.
  • the age hardenable copper alloy is (i) a beryllium copper alloy with a beryllium content of 0.7% by weight or less, or (ii) a beryllium-free copper alloy.
  • the age-hardenable copper alloy is a beryllium copper alloy with a beryllium content of 0.7% by weight or less
  • oxides occupy a HAADF-STEM image of a rectangular cross section of 800 nm on the long side and 400 nm on the short side including the bonding interface.
  • the area ratio of inclusions composed of carbides and/or intermetallic compounds is 7.5% or less.
  • the age hardenable copper alloy is a copper alloy that does not contain beryllium, oxides, carbides and/or The area ratio of inclusions composed of intermetallic compounds is 30% or less.
  • the long side is parallel to the bonding interface, and the short side is perpendicular to the bonding interface.
  • inclusions such as oxides that may exist at the bonding interface (or at the location where the bonding interface used to be) are eliminated.
  • copper alloys that (i) have a strong oxide film that is difficult to remove by simple temperature reduction and/or (ii) re-form an oxide film even under high vacuum can be diffused in the same process.
  • bonding is performed, a certain level of bonding strength is ensured, but it is difficult to obtain the same structure and strength as the base metal.
  • age-hardenable copper alloys it is necessary to subject age-hardenable copper alloys to solution treatment and aging treatment. Diffusion bonded bodies of copper alloys have a problem in that they cannot withstand the severe thermal shock and dimensional changes associated with solution treatment and aging treatment, and break at the joint.
  • the proportion of inclusions such as oxides at the bonding interface (or the position of the bonding interface) formed in the age-hardenable copper alloy with a beryllium content exceeding 0.7% by weight decreases; High-quality diffusion bonding that can sufficiently withstand solution treatment and aging treatment is achieved.
  • stainless steel has a dense chromium oxide film on its surface that is formed in the atmosphere and serves as a protective film and has strong weather resistance, but this oxide film sublimes when heated at a temperature exceeding 700° C. under a high vacuum. For this reason, it is easy to obtain an active stainless steel surface with no oxide film on the surface layer, which is naturally removed during the temperature rise in diffusion bonding. It is possible to perform good bonding without leaving any foreign matter.
  • pure copper has a copper oxide (CuO) film on its surface layer, but the oxide decomposes while being held at the diffusion bonding temperature and oxygen diffuses into the copper matrix. Good bonding without leaving oxides or other foreign substances can be achieved.
  • CuO copper oxide
  • test piece 10 was lapped to achieve a flatness of 0.1 mm or less and After flattening to a surface roughness Rzjis of 0.8 ⁇ m or less, the oxide film was removed by cleaning with 30% nitric acid immediately before testing.
  • Three test pieces 10 were made for each alloy. As shown in FIG. 1A, one of the test pieces 10 is in contact with the vacuum atmosphere in the furnace, and the remaining two test pieces 10 are stacked and brought into close contact (like bonding surfaces in diffusion bonding). Then, each was placed in a bonding furnace.
  • the specimens were taken out after being heat-treated in the welding furnace under various reduced pressure conditions in the same manner as during joining. While argon etching the surface (hereinafter referred to as the adhesion surface), the surface oxide film 12 was subjected to elemental analysis using an X-ray photoelectron spectrometer (XPS, product name: Quantera SXM, manufactured by ULVAC-PHI).
  • XPS X-ray photoelectron spectrometer
  • FIGS. 1B and 1C show the measurement results of the oxide film of each alloy after pickling, after heat treatment on the open surface in the furnace, and/or after heat treatment on the contact surface. These results show that the oxide film was completely removed by pickling in all alloy tests, and that there was a very thick oxide film on the open surface of the furnace even under a high vacuum of 5 ⁇ 10 -5 Torr. It can be seen that it is formed.
  • the degree of oxide film formation on the adhesion surface which is a problem in bonding, is i) Each alloy with a beryllium content of 0.7% by weight or less (beryllium copper 11 alloy, beryllium copper 50 alloy, beryllium copper 10Zr alloy, chromium copper alloy, Corson copper AMPCO940, and Corson copper AMPCO944) at 5 ⁇ 10 -5 When processed at a bonding temperature under a high vacuum of Torr (vacuum level achieved during continuous evacuation with a diffusion pump), no oxide film is formed, or only a very slight oxide film is formed; ii) Even in each alloy with a beryllium content of 0.7% by weight or less, an oxide film can be formed by oxygen penetrating into the adhesion surface at a vacuum level of about 1 ⁇ 10 ⁇ 1 Torr, and iii) Alloys with a beryllium content exceeding 0.7% by weight (beryllium copper 25 alloy and beryllium copper 165 alloy) are oxidized by oxygen
  • beryllium has an extremely high affinity for oxygen, so if the concentration of beryllium exceeds a certain level, even if the adhesion of the parts is increased under a high degree of vacuum, the formation of an oxide film due to oxygen penetrating between the bonded surfaces will not occur. It was found that it is difficult to suppress the beryllium content, and in order to prevent the oxide film from remaining on the joint surface, the beryllium content must be taken into account when selecting the material.
  • the age-hardenable copper alloy used in the copper alloy joined body of the present invention is not particularly limited as long as the beryllium content is 0.7% by weight or less, and it may be one that does not contain beryllium (that is, the beryllium content is 0% by weight). There may be.
  • a bonded body using a beryllium copper alloy with a high Be content exceeding 0.7% by weight (for example, beryllium copper 25 alloy (JIS alloy number C1720)) has a significant oxide film remaining on the bonded surface, and cannot be subjected to solution treatment or It cannot withstand aging treatment and breaks at the joint after solution treatment or aging treatment.
  • an age-hardenable copper alloy with a low Be content of 0.7% by weight or less and performing diffusion bonding, a copper alloy bonded product that can withstand solution treatment and aging treatment and has extremely high bonding strength. can be realized.
  • age hardenable copper alloys include beryllium copper 11 alloy (JIS alloy number C1751, EN material number CW110C, and UNS alloy number C17510), beryllium copper 10 alloy (EN material number CW104C and UNS alloy number C17500).
  • beryllium copper CuCo1Ni1Be (EN material number CW103C), beryllium copper 14Z alloy, beryllium copper 50 alloy, beryllium copper 10Zr alloy, chromium copper (UNS alloy number C18200), chrome zirconium copper (UNS alloy number C18510 and EN material number CW106C), Zirconium copper (UNS alloy number C15000, EN material number CW120C), and Corson copper (EN material number CW109C, CW111C, UNS alloy number C19010, C70250, AMPCO944, and AMPCO940), more preferably beryllium copper 11 alloy, or Corson copper, most preferably beryllium copper 11 alloy.
  • the bonded interfaces of the plurality of members remain. Whether the bonding interface disappears or remains can be determined by observing a cross section of the copper alloy bonded body including the bonded portion using an optical microscope or a scanning transmission electron microscope (STEM). Disappearance/remaining of the bonding interface is determined by whether or not traces of the bonding surface of the copper alloy member before bonding remain. If the bonding interface between multiple components remains, extremely high bonding strength can be achieved by making the copper alloy satisfy either of the following conditions (i) or (ii) depending on the beryllium content. be done.
  • the area ratio of inclusions composed of oxides, carbides, and/or intermetallic compounds in a HAADF-STEM image of a rectangular cross section of 800 nm long side x 400 nm short side including the bonding interface is 7.5% or less. , preferably 5.0% or less, more preferably 4.0% or less, even more preferably 2.5% or less.
  • the lower limit of the area ratio of inclusions is not particularly limited, but is ideally 0%, typically 1.0% or more, and more typically 2.0% or more.
  • the area ratio of inclusions composed of oxides, carbides and/or intermetallic compounds in a HAADF-STEM image of a rectangular cross section of 800 nm long side x 400 nm short side including the bonding interface is preferably 30% or less. is 20% or less, more preferably 10% or less.
  • the lower limit of the area ratio of inclusions is not particularly limited, but is ideally 0%, typically 1.0% or more, and more typically 2.0% or more.
  • a rectangular cross section of 800 nm on the long side and 400 nm on the short side including the bonding interface is obtained by cutting out the cross section including the bonding interface of the bonded sample and processing it into a thin piece using a focused ion beam (FIB). It can be obtained by observing a cross section including the bonding interface using a scanning transmission electron microscope (STEM) with a spherical aberration correction function.
  • STEM scanning transmission electron microscope
  • inclusions composed of oxides, carbides, and/or intermetallic compounds can be identified by electron energy loss spectroscopy (EELS)/energy dispersive This can be done by performing elemental analysis in the vicinity and comparing the STEM image and the EELS/EDX elemental mapping image. Then, the area ratio of inclusions in the HAADF-STEM image of the rectangular cross section is determined by analyzing the HAADF-STEM image obtained by EELS/EDX elemental analysis using the image analysis software ImageJ, using the operating procedure (steps) of the example described later. 1 to 7), the image can be binarized into areas corresponding to inclusions and areas other than inclusions, and automatic calculations may be performed.
  • EELS electron energy loss spectroscopy
  • the copper alloy joined body of the present invention that satisfies the above (i) or (ii) has extremely high joint strength.
  • the strength of the joint of the copper alloy joined body is preferably 70% or more, more preferably 80% or more, and still more preferably 85% or more of the strength of the base material of the copper alloy joined body. .
  • the upper limit is not particularly limited, but is typically 100% or less of the strength of the base material of the copper alloy joint, and more typically 98% or less, more typically 95% or less.
  • the above strength is typically the strength after solution aging treatment.
  • the strength of the base material and joint of the copper alloy joint is determined by preparing a test piece in accordance with ASTM E8M Specimen 3 so that the joint is located at the center of the test piece, and using the procedure for the test piece in accordance with ASTM E8M. It can be measured by performing a tensile test.
  • An oxide film may exist at the bonding interface of the copper alloy bonded body of the present invention.
  • the thickness of the oxide film is typically 0 nm or more and 5.0 nm or less, preferably 0 nm or more and 4.0 nm or less, more preferably 0 nm or more and 3.0 nm or less, even more preferably 0 nm or more and 2.0 nm or less, and particularly preferably is 0 nm or more and 1.5 nm or less, most preferably 0 nm or more and 1.0 nm or less.
  • the thickness of the oxide film at the bonding interface can be determined by observing a cross section including the bonding interface using a scanning transmission electron microscope (STEM), and mapping the elements of the cross section using electron energy loss spectroscopy (EELS)/energy dispersive X-ray analysis (EDX). By acquiring an image and comparing the STEM image and the EELS/EDX elemental mapping image, the oxide film can be identified and its thickness determined. Note that the oxide film that exists at the bonding interface is not only a layered film but also a particulate film (i.e., oxide particles), and in that case, the height of the oxide particles is also included in the thickness of the oxide film. shall be taken as a thing.
  • STEM scanning transmission electron microscope
  • EELS electron energy loss spectroscopy
  • EDX energy dispersive X-ray analysis
  • the copper alloy bonded body of the present invention may contain age-hardenable copper alloy crystal grains that have grown beyond the bonding interface or the position that was the bonding interface (former bonding interface). That is, the copper alloy bonded body of the present invention has a structure in the bond interface or the old bond interface in which the crystal grains that were on the bond surface of the copper alloy members before bonding are rearranged and recrystallized after bonding. It can be observed that the original bonding interface does not remain. When the copper alloy joined body has such a joining microstructure, the joining strength becomes more excellent.
  • the copper alloy bonded body of the present invention has high bonding strength equivalent to the strength of the base material because there is no residual component derived from materials other than the age-hardening copper alloy at the bonding interface or at the location where the bonding interface was (former bonding interface). This is preferable from the viewpoint of ensuring hydrogen resistance properties equivalent to those of the base material. Therefore, it is desirable that the copper alloy bonded body of the present invention does not contain a bonding agent such as a brazing material during bonding. That is, the copper alloy joined body of the present invention preferably consists only of inclusions composed of an age-hardenable copper alloy and oxides, carbides, and/or intermetallic compounds derived therefrom.
  • the strength after solution aging treatment of the base material and the joint of the copper alloy joined body is preferably 520 MPa or more, more preferably 690 MPa or more. Since the copper alloy bonded body has such strength, it fully satisfies the standards required for high-strength applications such as use as a heat exchanger for pre-coolers for hydrogen stations. Since high strength is desired, the upper limit should not be specified, but solution aging of the base material and joint of the copper alloy joint with a beryllium content of 0.7% by weight or less according to the present invention The strength after treatment is typically 895 MPa or less.
  • the strength before and after solution aging treatment of the base material and joint of a copper alloy joint is determined by preparing a test piece in accordance with ASTM E8M Specimen 3 so that the joint is at the center of the test piece, and It can be measured by performing a tensile test in accordance with ASTM E8M.
  • the base material including the joint portion of the copper alloy joined body has high thermal conductivity.
  • Thermal conduction like electrical conduction, is an energy transfer based on conduction electrons, so there is a correlation between the two called the Wiedemann-Franz law, and thermal conductivity can be converted into electrical conductivity, which can be measured more easily. be able to.
  • the thermal conductivity (and its converted electrical conductivity) of the base material including the joint of the copper alloy joined body is preferably 209 W/mK or more (converted electrical conductivity 50 IACS% or more), more preferably 228 W/mK or more. (converted electrical conductivity of 55 IACS% or more), more preferably 246 W/mK or more (converted electrical conductivity of 60 IACS% or more).
  • Such a high thermal conductivity has the advantage of extremely high heat exchange efficiency when used in heat exchangers (for example, it is currently used in pre-cooler heat exchangers due to its excellent hydrogen properties).
  • the thermal conductivity of the SUS316LNi equivalent product is extremely low at 16 W/mK, and its poor heat exchange efficiency is a difficult point in operation). Since a high thermal conductivity is desired, the upper limit thereof should not be specified, but the base material including the joint part of the copper alloy joint according to the present invention with a beryllium content of 0.7% by weight or less However, although the base material and the joint strength can be ensured at 520 MPa or more, the thermal conductivity is typically 280 W/mK or less.
  • the copper alloy joined body including the joint part was subjected to a Slow Strain Rate Tensile (SSRT) test conducted at a strain rate of 5 ⁇ 10 -5 s -1 or less (for example, 5 ⁇ 10 -5 s -1 ).
  • the tensile strength in hydrogen gas is preferably 520 MPa or more, more preferably 690 MPa or more.
  • This copper alloy bonded body has excellent hydrogen embrittlement resistance including the bonded portion and high tensile strength.
  • This low strain rate tensile test shall be conducted in accordance with ASTM-G-142.
  • the low strain rate tensile test may be performed using, for example, a regular-shaped test piece (smooth test piece).
  • hydrogen sensitivity is evaluated using relative tensile strength RTS or relative reduction RRA, which is obtained by dividing the tensile strength or area of area in hydrogen gas by the tensile strength or area of area in a reference gas that is not affected by hydrogen.
  • RTS relative tensile strength
  • RRA relative reduction
  • measurement may be performed at a strain rate of 5 ⁇ 10 ⁇ 5 s ⁇ 1 .
  • this low strain rate tensile test is conducted at a hydrogen gas pressure of 95 MPa or higher.
  • test piece conforming to ASTM E8M Specimen 4 may be prepared by cutting out a copper alloy joined body so that the joint is located at the center of the test piece.
  • the relative reduction RRA is preferably 0.8 or more, more preferably is 0.9 or more.
  • the tensile strength RTS is preferably 0.8 or more, more preferably 0.9 or more. This means that the tensile strength of the copper alloy joined body including the joint part is within the above range at room temperature or under a hydrogen gas pressure of 95 MPa or more, and that its RRA and RTS also satisfy the values within the above range. This means that the copper alloy joined body has high strength and excellent hydrogen embrittlement resistance, and is therefore particularly suitable for use as a heat exchanger for pre-coolers for hydrogen stations. Since the above-mentioned tensile strength is desired to be high, its upper limit should not be specified.
  • the tensile strength in a low strain rate tensile test under hydrogen gas pressure is typically 895 MPa or less.
  • the copper alloy joined body may be provided with a flow passage space inside thereof.
  • the channel space can be used as an internal space for passing a medium such as hydrogen or a refrigerant. Therefore, a copper alloy assembly with flow passage spaces is preferably used as a heat exchanger for a pre-cooler for a hydrogen station, which is desired to have a plurality of flow passage spaces through which hydrogen and refrigerant pass respectively. can.
  • the copper alloy bonded body of the present invention is produced by bonding a plurality of age-hardening copper alloy members, smoothing the bonding surface (optional step), removing the oxide film, and hot press bonding (diffusion bonding) as necessary. , can be manufactured by sequentially performing homogenization treatment (optional step), solution treatment, and aging treatment as necessary. Specifically, the details are as follows.
  • (a) Preparation of copper alloy members First, a plurality of age hardenable copper alloy members to be used for joining are prepared. This age hardenable copper alloy has a beryllium content of 0.7% by weight or less, and can be used as described above.
  • the uppermost surface material and the lowermost surface material of the laminated assembly manufactured as a heat exchanger are rolled materials or forged materials, and many laminated materials with or without internal cooling channels other than the uppermost surface and the lowermost surface are rolled materials. Preferably used.
  • copper alloy material that does not undergo hydrogen deterioration for the copper alloy joined body of the present invention.
  • copper alloy materials for example, in cupronickel (Cu-10% to 30%), the hydrogen properties deteriorate significantly when the Ni concentration is 20% or more, and even in tough pitch copper (pure copper that has not been deoxidized), the hydrogen properties deteriorate. known to occur significantly.
  • the copper alloy joined body of the present invention has an RRA (relative reduction of area) of 0.8 or more in hydrogen gas, as measured by a low strain rate tensile test conducted at a strain rate of 5 ⁇ 10 ⁇ 5 s ⁇ 1 or less. It is preferable that it is made using a copper alloy member that is, and more preferably, it is 0.9 or more.
  • the plurality of age hardenable copper alloy members to be used for joining have flat surfaces to be joined having a flatness of 0.1 mm or less and an arithmetic mean roughness Ra of 3.0 ⁇ m or less.
  • the oxide film on the surface of the bonded parts is removed, in order to prevent re-oxidation of the bonded surface during hot press bonding (diffusion bonding), it is necessary for the oxide film to invade the bonded surface even in a high vacuum atmosphere. It is necessary to ensure the adhesion of the bonded surface so that the number of oxygen atoms present is sufficiently reduced, and this adhesion can be ensured if the flatness and Ra are within the above ranges.
  • the flatness and Ra within the above ranges are often satisfied, so a special smoothing step is not necessary.
  • a flat surface having a flatness and Ra within the above range is formed by polishing, cutting, and/or other methods.
  • the plate material may have curls, etc., but the plate thickness accuracy has been well adjusted, and the flatness will be 0.1 mm or less when the necessary load is applied during hot press bonding (diffusion bonding). There is no problem as long as the desired adhesion can be ensured.
  • the arithmetic mean roughness Ra is the surface roughness defined in JIS B 0601-2001.
  • the arithmetic mean roughness Ra of the flat surface is 3.0 ⁇ m or less, preferably 1.0 ⁇ m or less, more preferably 0.50 to 1.0 ⁇ m, and still more preferably 0.10 to 0.50 ⁇ m.
  • flatness is a parameter defined in JIS B 0621-1984 as "the amount of deviation of a planar shape from a geometrically correct plane (geometric plane)", and It means the value of the width when sandwiched between a pair of planes.
  • the grooves may be formed by various known methods such as etching, press working, and machining. By doing so, it can be used to manufacture a copper alloy joined body having a flow path space inside as described above. For example, by alternately stacking and bonding grooved copper alloy plates and non-grooved copper alloy plates, it is possible to manufacture a copper alloy laminate in which a large number of channels are formed.
  • a multilayer assembly having such a configuration can be preferably used as a heat exchanger for a pre-cooler for a hydrogen station, which is desired to have a plurality of channel spaces through which hydrogen and refrigerant pass, respectively.
  • an oxide film exists on the surface of the copper alloy member.
  • the oxide film present on the surfaces of the copper alloy members to be joined is removed.
  • the oxide film is preferably removed by cleaning the surfaces of the copper alloy members to be joined with an inorganic acid solution, since the oxide film can be effectively removed.
  • the inorganic acid solution include nitric acid, sulfuric acid, chemical polishing solution, hydrochloric acid, Kirin's bath, hydrofluoric acid, etc., and nitric acid is particularly preferred.
  • the chemical polishing liquid is an acid obtained by adding hydrogen peroxide, which is an oxidizing agent, to sulfuric acid
  • the Kirinsu bath is a mixed acid of sulfuric acid, nitric acid, and hydrochloric acid, and a small amount of sodium hydroxide may be added.
  • the oxide film may be removed by mechanical polishing, or mechanical polishing and cleaning with an inorganic acid solution may be used in combination.
  • Hot press bonding (diffusion bonding) A plurality of copper alloy members are joined by hot pressing to form an intermediate joined body. This bonding can be performed according to a diffusion bonding method. For example, hot pressing is performed at a temperature of 500 to 1050°C for 30 to 480 minutes in a furnace with a vacuum higher than 1.0 ⁇ 10 -2 Torr (i.e., a pressure lower than 1.0 ⁇ 10 -2 Torr). It is preferable to carry out by applying a pressure of 5.0 MPa or more (preferably 10 MPa or more).
  • hot pressing is performed under a vacuum equal to or higher than 1.0 ⁇ 10 -1 Torr (i.e., 1.0 ⁇ 10 -1 Torr). This can be carried out by applying a pressure of 5.0 MPa or more at a temperature of 500 to 1050° C. for 30 to 480 minutes in a furnace at a pressure equivalent to or lower than Torr.
  • the amount of length deformation in the pressing direction during joining of copper alloy members is preferably 0.5% or more and 35% or less, more preferably 0.5% or more and 30% or less, and The content is preferably 1% or more and 20% or less, particularly preferably 2% or more and 8% or less.
  • hot press temperature and pressure preferably 5.0 MPa or more and 20 MPa or less when exceeding 840°C and below 1050°C, 2 MPa or more and 24 MPa or less when exceeding 720°C and below 840°C, and 600° C. or above and below 24 MPa. °C or more and 720°C or less, the pressure is 4 MPa or more and 50 MPa or less.
  • the hot pressing time is preferably 15 to 480 minutes, more preferably 30 to 150 minutes, and even more preferably 30 to 60 minutes.
  • the degree of vacuum in the furnace during hot pressing is preferably less than 1.0 ⁇ 10 ⁇ 3 Torr, more preferably less than 1.0 ⁇ 10 ⁇ 4 Torr, and more preferably 5 It is less than .0 ⁇ 10 ⁇ 5 Torr.
  • the hot pressing in this embodiment is performed at a vacuum higher than 1.0 ⁇ 10 ⁇ 2 Torr (i.e., a pressure lower than 1.0 ⁇ 10 ⁇ 2 Torr), more preferably at a pressure lower than 1.0 ⁇ 10 ⁇ 4 Torr. In a furnace with a higher vacuum level (i.e.
  • a pressure lower than 1.0 ⁇ 10 ⁇ 4 Torr (i) Applying a pressure of 1 MPa or more and 4 MPa or less for 30 to 480 minutes (preferably 30 to 60 minutes) at a temperature of more than 840°C and less than 930°C, or (ii) At a temperature of more than 720°C and less than 840°C. Applying a pressure of 2 MPa or more and 8 MPa or less for 30 to 480 minutes (preferably 30 to 60 minutes), or (iii) 4 MPa for 30 to 480 minutes (preferably 30 to 60 minutes) at a temperature of 600°C or more and 720°C or less By applying a pressure of 30 MPa or more, It is preferable to do so.
  • the intermediate assembly preferably has a vacuum greater than 1.0 ⁇ 10 ⁇ 1 Torr (i.e., a pressure less than 1.0 ⁇ 10 ⁇ 1 Torr), or nitrogen or other non-oxidizing material (at normal or reduced pressure). It is preferable to perform homogenization treatment in a furnace with a gas atmosphere (inert atmosphere) at a temperature of 900 to 1050° C. for 60 to 480 minutes.
  • a gas atmosphere inert atmosphere
  • the homogenization treatment is also called homogenization annealing
  • the term homogenization treatment will be used in this specification.
  • the bonding interface tends to remain, but by performing homogenization treatment, the bonding interface can be reduced or eliminated, and the subsequent solution treatment Extremely high bonding strength can be achieved through treatment and aging treatment. That is, it is possible to achieve both suppression of channel collapse and high bonding strength.
  • the homogenization treatment is carried out in an atmospheric atmosphere with a pressure lower than 1.0 ⁇ 10 ⁇ 1 Torr, or in a nitrogen atmosphere at a pressure lower than normal pressure or 1.0 ⁇ 10 ⁇ 1 Torr. Treatment in an inert atmosphere is preferred.
  • the homogenization temperature is preferably 900 to 1050°C, more preferably 930 to 1000°C, and still more preferably 960 to 990°C.
  • the holding time at the above homogenization temperature is 60 to 480 minutes, more preferably 60 to 360 minutes, and still more preferably 60 to 240 minutes.
  • the above-mentioned homogenization treatment may be performed as necessary.
  • hot press bonding (diffusion bonding) and (d) homogenization treatment are preferably performed continuously by releasing the press load and increasing the temperature without lowering the furnace temperature.
  • hot press bonding (diffusion bonding) is performed under temperature and pressure conditions that do not crush the channel space excessively
  • hot press bonding (diffusion bonding) and homogenization treatment are performed to reduce the flow channel space. Since the homogenization treatment at a temperature effective for homogenizing the tissue can be performed as a series of continuous operations without applying crushing pressure, it is advantageous not only from an economic point of view but also from an improvement in the reliability of the joint.
  • the intermediate bonded body is subjected to solution treatment.
  • This melting treatment is preferably carried out by heating the intermediate joined body in a furnace such as an air furnace, a non-oxidizing atmosphere furnace, or a salt bath furnace for 1 to 180 minutes at a temperature of 700 to 1100° C., and then cooling it with water.
  • the copper alloy used in the present invention is an age-hardening alloy, and after eliminating the bonding interface or adjusting the thickness of the oxide film at the bonding interface to a certain level or less, the copper alloy is subjected to solution treatment and subsequent aging treatment. , the desired tempering properties (e.g. high strength), in particular extremely high bond strength, can be exhibited.
  • the appropriate solution treatment temperature range varies somewhat depending on the alloy composition, but is preferably 700 to 1100°C, more preferably 800 to 1050°C, and still more preferably 900 to 1000°C.
  • the actual holding time at the solution treatment temperature is preferably 1 to 180 minutes, more preferably 5 to 90 minutes, and even more preferably 10 to 60 minutes.
  • the intermediate joined body that has been subjected to solution treatment is subjected to aging treatment.
  • this aging treatment is preferably carried out at 350 to 550° C. for 30 to 480 minutes.
  • age hardening alloys such as beryllium copper alloys can exhibit desired thermal properties (for example, high strength), particularly extremely high bonding strength, by undergoing solution treatment and aging treatment.
  • the aging treatment temperature is preferably 350 to 550°C, more preferably 400 to 500°C, even more preferably 450 to 480°C.
  • the holding time at the aging treatment temperature is preferably 30 to 480 minutes, more preferably 30 to 300 minutes, even more preferably 60 to 240 minutes, particularly preferably 90 to 180 minutes.
  • aging treatment can be performed in a vacuum higher than 1.0 ⁇ 10 ⁇ 1 Torr (that is, at a pressure lower than 1.0 ⁇ 10 ⁇ 1 Torr) or in a furnace in a non-oxidizing atmosphere such as nitrogen. preferable.
  • Examples 1a-7 A copper alloy joined body was produced according to the following procedure, and various evaluations were performed.
  • the surface used for joining each copper alloy member (hereinafter referred to as the joint surface) is processed by lathe processing, lap polishing, etc. so that the arithmetic mean roughness Ra measured in accordance with JIS B 0601-2001 is 3.0 ⁇ m or less. It is small and has a flat surface with a flatness of 0.1 mm or less as measured in accordance with JIS B 0621-1984. Typical values of the arithmetic mean roughness Ra measured on the joint surfaces after surface treatment were as shown in Table 2.
  • Ra As a representative value of Ra shown in Table 2, in the case of two copper alloy round bars (Examples 1a, 1b and 4a to 7), Ra at the joint surface of the upper bar and Ra at the joint surface of the lower bar are The average value was used. In addition, in the case of two forged materials and 10 rolled materials (Examples 2a, 2b, and 3a to 3c), Ra at the upper plate joint surface and the lower plate joint surface at one joint position of 10 rolled materials. The average value of Ra was used as a representative value.
  • Example 1a, 1b, and 4a to 7 the joint surfaces of two copper alloy round bars that had been cleaned with nitric acid were butted directly against each other (without using a brazing material), and the Hot pressing was performed under the bonding conditions shown in Figure 1 to obtain a round bar-shaped intermediate bonded body.
  • Example 2a, 2b, and 3a to 3c 10 rolled copper alloy materials (square plates) were inserted between the joint surfaces of two copper alloy cast materials (square bars) that had been cleaned with nitric acid. (without intervening materials), and hot pressing was performed in a vacuum furnace under the joining conditions shown in Table 2 to obtain a rectangular bar-shaped intermediate joined body.
  • inclusions composed of oxides, carbides, and/or intermetallic compounds are expressed brightly (identified as whitish areas), while in the HAADF-STEM images of FIGS. In the STEM image, the inclusion is expressed darkly (identified as a dark area). Since a HAADF-STEM image provides a contrast proportional to the atomic weight, differences in contrast between inclusions and the matrix tend to appear, and are suitable for image analysis. Further, in FIG. 8, only the EELS/EDX elemental mapping image of Example 1a is shown together with the STEM image due to space limitations, and the abbreviation BI shown in the STEM image means bonding interface.
  • HAADF-STEM image obtained by the above EELS/EDX elemental analysis using the image analysis software ImageJ according to the following operating procedures.
  • Step 7 When the command is selected in the order of "Analyze” ⁇ "Measure", the occupancy rate (area rate) of the region of interest in the 800 nm x 400 nm area is automatically calculated and displayed as the value of "%Area". This value may be employed as the area ratio of inclusions.
  • Examples 1a to 3c are examples using CuBe11, and in the joined bodies produced in Examples 1a, 1b, 2a, and 2b in which the area ratio of inclusions is 7.5% or less, the area ratio of inclusions is 7.5% or less. Higher bond strengths were achieved than the bonds made in Examples 3a-3c, which were greater than 5%.
  • Examples 4a to 7 are examples using Corson copper AMPCO940 or Corson copper AMPCO944, and Examples 4a to 6 in which the area ratio of inclusions is 30% or less are produced in Example 7 in which the area ratio of inclusions exceeds 30%. A higher bonding strength was achieved than that of the bonded body.
  • the strengths of the joints of the copper alloy joined bodies of Examples 1a, 1b, 2a, 2b and 4a to 6 that meet the requirements of the present invention are all 70% or more of the strength of the base material of the copper alloy joined bodies. Met.
  • the electrical conductivity (IACS%) of the bonded body sample was measured at room temperature using an eddy current conductivity meter (product name: Hocking AutoSigma 3000DL, manufactured by GE Sensing & Inspection Technologies).
  • the thermal conductivity (W/mK) was determined by converting the obtained electrical conductivity using a correlation equation based on the Wiedemann-Franz law.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

極めて高い接合強度が実現された時効硬化性銅合金の接合体が提供される。この銅合金接合体は、互いに拡散接合された複数の時効硬化性銅合金製の部材で構成される。当該銅合金接合体は、複数の部材の接合界面が残留しており、(i)時効硬化性銅合金がベリリウム含有量0.7重量%以下のベリリウム銅合金であり、接合界面を含む長辺800nm×短辺400nmの矩形断面のHAADF-STEM像に占める、酸化物、炭化物及び/又は金属間化合物で構成される介在物の面積比率が、7.5%以下である、又は(ii)時効硬化性銅合金がベリリウムを含まない銅合金であり、接合界面を含む長辺800nm×短辺400nmの矩形断面のHAADF-STEM像に占める、酸化物、炭化物及び/又は金属間化合物で構成される介在物の面積比率が、30%以下である。

Description

銅合金接合体
 本発明は、銅合金接合体に関する。
 燃料電池車等に水素を補給する水素ステーションでは、約-45℃に冷却された高圧水素の急速な供給を可能とするためのプレクーラーが設置されている。すなわち、燃料電池車等のタンクに水素を急速に充填すると断熱圧縮によりタンク温度が上昇し危険であるため、供給時にプレクーラーで水素を冷却しておくことで、燃料電池車等への高圧水素の安全かつ急速な供給を可能としている。したがって、水素ステーション用プレクーラーの主要構成部品である熱交換器には、水素脆性を呈しないことは勿論のこと、高圧に耐えうる引張強度、及び効率的な冷却を可能とする熱伝導性を備えた材料を用いることが好ましい。現在、水素ステーション用プレクーラーの熱交換器には水素脆化を起こさないという要件から、SUS316L(Ni当量材)等の高圧水素用ステンレス鋼が採用されているが、引張強度及び熱伝導性の観点で改善の余地を残している。
 高い引張強度と熱伝導性を有する材料として知られているベリリウム銅は、熱交換器用素材として好適であり、高圧水素下でも水素脆化を起こさないことも確認されている。例えば、特許文献1(特開平9-87780号公報)には、水素ステーション用途ではないものの、Be含有率が1.0~2.5%、NiとCoの合計含有率が0.2~0.6%、残部がCu及び不可避不純物からなる熱交換器用ベリリウム銅合金が開示されている。また、特許文献2(特開2017-145472号公報)には、Be含有量が0.20~2.70重量%、Co、Ni及びFeの合計含有量が0.20~2.50重量%、Cu、Be、Co、Ni及びFeの合計含有量が99重量%以上であるベリリウム銅合金が開示されており、耐水素脆性、引張強度及び熱伝導性に優れるとされている。ベリリウム銅合金は、水素脆性を呈しない(すなわち耐水素脆性を有する)のに加え、高圧水素用ステンレス鋼よりも高い引張強度(例えば約1.5~2.5倍)、ステンレス鋼よりも高い熱伝導性(例えば約7~16倍)を有するため、低純銅や低強度の銅合金では実現できない高圧水素用熱交換器のサイズをステンレス鋼製のものよりも格段に小さくすることができる(例えば約4分の1)。
特開平9-87780号公報 特開2017-145472号公報
 水素ステーション用プレクーラーの熱交換器は、水素及び冷媒を通す流路を形成するため、スリット又は溝を備えた金属板を多層接合した構造を有する。現在採用されている高圧水素用ステンレス鋼の接合方法としては、接合温度への減圧昇温過程で表層の酸化被膜を昇華除去し、融点以下の高温下で接合部に密着圧力を加えてステンレス鋼板同士を接合させる拡散接合が広く知られている。しかしながら、銅合金は、(i)単純な減圧昇温では容易に除去し難い強固な酸化被膜を有する、及び/又は(ii)接合前に酸化被膜を除去しても接合工程における高真空下の昇温中において接合面(密着面)においても酸化被膜が再形成しやすい(しかも接合温度近くの温度になっても当該酸化被膜が昇華しにくい)。かかる銅合金を同様の工程で拡散接合を行った場合、一定の接合強度は確保されるが、母材同等の組織と強度を得ることは困難であった。特に、上述した高圧の熱交換器用途で求められるような極めて高い強度の銅合金部材を実現するために、時効硬化性銅合金に溶体化処理及び時効処理を施す必要がある。しかし、十分な接合強度が確保されていない時効硬化性銅合金の拡散接合体は溶体化処理及び時効処理に伴う厳しい熱衝撃や寸法変動に耐え切れず、接合部で破断してしまうという問題があった。
 本発明者は、今般、ベリリウム含有量0.7重量%以下の時効硬化性銅合金を選択的に採用し、接合面を所定の平坦性に仕上げて酸化被膜を除去した後に、拡散接合(及び必要に応じて均質化処理)を行った場合に、接合界面(又は接合界面であった位置)に存在しうる酸化物等の介在物の割合を減少させるように溶体化処理及び時効処理を施すことができ、それにより極めて高い接合強度を有する銅合金接合体を提供できるとの知見を得た。
 したがって、本発明の目的は、極めて高い接合強度が実現された時効硬化性銅合金の接合体を提供することにある。
 本発明によれば、以下の態様が提供される。
[態様1]
 互いに拡散接合された複数の時効硬化性銅合金製の部材で構成される銅合金接合体であって、前記複数の部材の接合界面が残留しており、
(i)前記時効硬化性銅合金がベリリウム含有量0.7重量%以下のベリリウム銅合金であり、前記接合界面を含む長辺800nm×短辺400nmの矩形断面のHAADF-STEM像に占める、酸化物、炭化物及び/又は金属間化合物で構成される介在物の面積比率が、7.5%以下である、又は
(ii)前記時効硬化性銅合金がベリリウムを含まない銅合金であり、前記接合界面を含む長辺800nm×短辺400nmの矩形断面のHAADF-STEM像に占める、酸化物、炭化物及び/又は金属間化合物で構成される介在物の面積比率が、30%以下であり、
 上記(i)及び(ii)において、前記長辺が前記接合界面と平行であり、かつ、前記短辺が前記接合界面と垂直である、銅合金接合体。
[態様2]
 前記銅合金接合体は溶体化処理及び時効処理が施されたものである、態様1に記載の銅合金接合体。
[態様3]
 前記銅合金接合体の接合部の強度が、前記銅合金接合体の母材の強度の70%以上である、態様1又は2に記載の銅合金接合体。
[態様4]
 前記接合界面、又は接合界面であった位置を超えて成長した前記時効硬化性銅合金の結晶粒を含む、態様1~3のいずれか一つに記載の銅合金接合体。
[態様5]
 前記接合界面、又は前記接合界面であった位置には、前記時効硬化性銅合金以外の材料に由来する残留成分が無い、態様1~4のいずれか一つに記載の銅合金接合体。
[態様6]
 前記銅合金接合体の母材及び接合部の強度が520MPa以上である、態様1~5のいずれか一つに記載の銅合金接合体。
[態様7]
 前記銅合金接合体の母材及び接合部の強度が690MPa以上である、態様6に記載の銅合金接合体。
[態様8]
 前記銅合金接合体の接合部を含む母材の熱伝導率が209W/mK以上である、態様1~7のいずれか一つに記載の銅合金接合体。
[態様9]
 前記銅合金接合体の接合部を含む母材の電気伝導率が50IACS%以上である、態様1~9のいずれか一つに記載の銅合金接合体。
[態様10]
 前記時効硬化性銅合金が、ベリリウム銅11合金(JIS合金番号C1751、EN材料番号CW110C、及びUNS合金番号C17510)、ベリリウム銅10合金(EN材料番号CW104C及びUNS合金番号C17500)、ベリリウム銅CuCo1Ni1Be(EN材料番号CW103C)、ベリリウム銅14Z合金(Be:0.2~0.6重量%、Ni:1.4~2.4重量%、Zr:0~0.5重量%、残部Cu及び不可避不純物からなる)、ベリリウム銅50合金(Be:0.2~0.6重量%、Ni:1.4~2.1重量%、Ag:0.1~0.3重量%、Zr:0~0.5重量%、残部Cu及び不可避不純物からなる)、ベリリウム銅10Zr合金(Be:0.4~0.7重量%、Co:2.0~2.8重量%、Zr:0~0.3重量%、残部Cu及び不可避不純物からなる)、クロム銅(UNS合金番号C18200)、クロムジルコニウム銅(UNS合金番号C18510及びEN材料番号CW106C)、ジルコニウム銅(UNS合金番号C15000、EN材料番号CW120C)、並びにコルソン銅(EN材料番号CW109C、CW111C、UNS合金番号C19010、C70250、AMPCO944(Ni:6.5~7.5重量%、Si:1.5~2.5重量%、Cr:0.5~1.5重量%、残部Cu及び不可避不純物からなる)、及びAMPCO940(Ni:1.5~3.0重量%、Si:0.5~1.5重量%、Cr:0.3~1.5重量%、残部Cu及び不可避不純物からなる))からなる群から選択される少なくとも1種である、態様1~9のいずれか一つに記載の銅合金接合体。
[態様11]
 前記時効硬化性銅合金が、ベリリウム銅11合金(JIS合金番号C1751、EN材料番号CW110C、及びUNS合金番号C17510)、並びにコルソン銅(EN材料番号CW109C、CW111C、UNS合金番号C19010、C70250、AMPCO944(Ni:6.5~7.5重量%、Si:1.5~2.5重量%、Cr:0.5~1.5重量%、残部Cu及び不可避不純物からなる)、及びAMPCO940(Ni:1.5~3.0重量%、Si:0.5~1.5重量%、Cr:0.3~1.5重量%、残部Cu及び不可避不純物からなる))からなる群から選択される少なくとも1種である、態様10に記載の銅合金接合体。
[態様12]
 前記銅合金接合体がその内部に流路空間を備えた、態様1~11のいずれか一つに記載の銅合金接合体。
高真空炉での熱処理において各種銅合金の表面に形成される酸化被膜を元素分析する実験の手順を説明するための図であり、酸化の進行を概念的に示すとともに、元素分析を行う炉内開放面及び密着面の位置、並びにサンプルの外観を示す。 図1Aに示される実験手順に従い、高真空炉で熱処理を行った際に各種銅合金の表面(酸洗面、炉内開放面及び/又は密着面)に形成される酸化被膜を元素分析した結果である。具体的には、ベリリウム銅25合金、ベリリウム銅165合金、ベリリウム銅11合金、ベリリウム銅10Zr合金、ベリリウム銅50合金、及びクロム銅合金のXPS結果が示される。 図1Aに示される実験手順に従い、高真空炉で熱処理を行った際に各種銅合金の表面(酸洗面、炉内開放面及び/又は密着面)に形成される酸化被膜を元素分析した結果である。具体的には、コルソン銅AMPCO940及びコルソン銅AMPCO944のXPS結果が示される。 例1a~6で溶体化処理及び時効処理を経て作製された銅合金接合体の接合界面を含む断面のBF-STEM像を示す。 図2に示される接合界面を含む断面の2箇所を拡大観察したHAADF-STEM像である。 例4a、5及び6で溶体化処理及び時効処理を経て作製された銅合金接合体の接合界面を含む断面のBF-STEM像を示す。 例4a、5及び6で溶体化処理及び時効処理を経て作製された銅合金接合体の接合界面を含む断面のHAADF-STEM像を示す。 例4b及び7で均質化焼鈍、溶体化処理及び時効処理(例4b)又は溶体化処理及び時効処理(例7)を経て作製された銅合金接合体の接合界面を含む断面のBF-STEM像を示す。 例4b及び7で均質化焼鈍、溶体化処理及び時効処理(例4b)又は溶体化処理及び時効処理(例7)を経て作製された銅合金接合体の接合界面を含む断面のHAADF-STEM像を示す。 例1aで溶体化処理及び時効処理を経て作製された銅合金接合体の接合界面BIを含む断面のSTEM像及びEELS/EDX元素マッピング像を示す。STEM像に示されるBIなる略称は接合界面を意味する。
 銅合金接合体
 本発明の銅合金接合体は、互いに拡散接合された複数の時効硬化性銅合金製の部材で構成され、典型的には、溶体化処理及び時効処理が施されたものである。この銅合金接合体には、複数の部材の接合界面が残留している。時効硬化性銅合金は(i)ベリリウム含有量0.7重量%以下のベリリウム銅合金であるか、又は(ii)ベリリウムを含まない銅合金である。(i)時効硬化性銅合金がベリリウム含有量0.7重量%以下のベリリウム銅合金である場合、接合界面を含む長辺800nm×短辺400nmの矩形断面のHAADF-STEM像に占める、酸化物、炭化物及び/又は金属間化合物で構成される介在物の面積比率が、7.5%以下である。一方、(ii)時効硬化性銅合金がベリリウムを含まない銅合金である場合、接合界面を含む長辺800nm×短辺400nmの矩形断面のHAADF-STEM像に占める、酸化物、炭化物及び/又は金属間化合物で構成される介在物の面積比率が、30%以下である。上記(i)及び(ii)において、長辺が接合界面と平行であり、かつ、短辺が接合界面と垂直である。このように、ベリリウム含有量0.7重量%以下の時効硬化性銅合金を選択的に採用した場合に、接合界面(又は接合界面であった位置)に存在しうる酸化物等の介在物の割合を減少させるように、(必要に応じて均質化処理を行った後)溶体化処理及び時効処理を施すことで、極めて高い接合強度を有する銅合金接合体を提供することができる。
 前述したとおり、(i)単純な減圧昇温では容易に除去し難い強固な酸化被膜を有する、及び/又は(ii)高真空下においても酸化被膜を再形成する銅合金を同様の工程で拡散接合を行った場合、一定の接合強度は確保されるが、母材と同等の組織と強度を得ることは困難であった。特に、上述した熱交換器用途で求められるような極めて高い強度の銅合金部材を実現するためには、時効硬化性銅合金に溶体化処理及び時効処理を施すことが必要であるが、時効硬化性銅合金の拡散接合体は溶体化処理及び時効処理に伴う厳しい熱衝撃や寸法変動に耐え切れず、接合部で破断してしまうという問題があった。
 この点、本発明の上記構成によれば、このような問題が好都合に解消され、極めて高い接合強度を有する銅合金接合体を提供することが可能となる。その理由は、後述する本発明者の確認試験において明らかとなったように、以下のとおりである。すなわち、ベリリウム含有量0.7重量%以下の時効硬化性銅合金を選択的に採用し、接合面の平坦性と表面粗さを拡散接合に適するように調整した上で接合面の酸化被膜を除去し、銅合金部材の接合界面同士を密着させて加圧昇温して拡散接合を行う。この場合には、ベリリウム含有量が0.7重量%を超える時効硬化性銅合金において形成される接合界面(又は接合界面であった位置)における酸化物等の介在物の割合が減少するため、溶体化処理及び時効処理に十分に耐えうる高品質の拡散接合が実現される。
 ところで、ステンレス鋼、純銅等は拡散接合により高い信頼性を持つ接合を行うことができることが知られている。ステンレス鋼は大気下で形成される表層の緻密なクロム酸化被膜が保護被膜となり強い耐候性を有するが、この酸化被膜は高真空下で700℃を越える温度で加温すると昇華する。このため、拡散接合における昇温中に自然に除去されて表層に酸化被膜の無い活性なステンレス鋼の表面が容易に得られるので、接合温度で加圧するだけで、接合界面に酸化物及びその他の異物が残らない良好な接合を行うことができる。また、純銅は表層に酸化銅(CuO)皮膜を有するが、拡散接合温度で保持している間に当該酸化物は分解し、酸素は銅マトリックス中に拡散するので、ステンレス鋼同様、接合界面に酸化物及びその他の異物が残らない良好な接合を行うことができる。
 本発明者は、本発明の完成に先立つ試験において、時効硬化性銅合金に従前より知られる拡散接合を行った際には一定の接合強度が得られるが、得られた接合体に溶体化時効処理を施した場合に接合強度が劣化して破断してしまうことが多いことを確認した。この現象は、時効硬化性銅合金中最も高い強度が得られることで知られるベリリウム銅25合金(JIS C1720)において顕著であった。本発明者は、この原因がステンレス鋼や純銅においては確認されない、接合面に残留する酸化被膜であると推定し、酸化被膜が残留するメカニズムを明らかにするため、図1Aに示されるような以下の実験を行った。図1B及び1Cに示される各合金を15mm×15mm×5mmの寸法の板状に加工後、得られた試験片10の15mm×15mmの上下面をラップ加工して、平面度0.1mm以下及び表面粗さRzjis0.8μm以下に平坦化した後、試験を行う直前に30%硝酸で洗浄して酸化被膜を除去した。各合金について3つの試験片10を作製した。図1Aに示されるように、試験片10の1つは炉内真空雰囲気に触れる状態で、残りの2枚の試験片10は積層して(拡散接合における接合面のように)密着させた状態で、それぞれ接合炉内に入れた。接合炉内にて各種減圧条件下で、接合時と同様の熱処理を行った後に取出し、前者は炉内雰囲気に触れていた面(以下、炉内解放面という)、後者は試料相互が密着していた面(以下、密着面という)をアルゴンエッチングしながら、表層の酸化被膜12をX線光電子分光分析装置(XPS、製品名:Quantera SXM、アルバック・ファイ社製)で元素分析した。
 図1B及び1Cに各合金の、酸洗後、炉内解放面熱処理後、及び/又は密着面熱処理後の酸化被膜の測定結果を示す。これらの結果から、いずれの合金の試験も酸洗により完全に酸化被膜が除去されていること、炉内解放面は5×10-5Torrの高真空下であっても非常に厚い酸化被膜が形成されることが分かる。接合において問題となる、密着面の酸化被膜形成度合いは、
i)ベリリウム含有量が0.7重量%以下の各合金(ベリリウム銅11合金、ベリリウム銅50合金、ベリリウム銅10Zr合金、クロム銅合金、コルソン銅AMPCO940、及びコルソン銅AMPCO944)を5×10-5Torr(拡散ポンプで連続排気している際に達成される真空度)の高真空下で接合温度で処理した際には酸化被膜が形成されないか、あるいは非常に軽微にしか形成されないこと、
ii)ベリリウム含有量が0.7重量%以下の各合金であっても、1×10-1Torr程度の真空度では、密着面に侵入する酸素により酸化被膜が形成されうること、及び
iii)ベリリウム含有量が0.7重量%を越える各合金(ベリリウム銅25合金及びベリリウム銅165合金)は、5×10-5Torrの高真空下で処理しても、密着面に侵入する酸素により酸化被膜が形成されること
が確認された。以上の結果から、ベリリウムは酸素との親和性が極めて高いため、一定以上のベリリウム濃度の場合、高い真空度下で部材の密着度を上げても接合面間に侵入する酸素による酸化被膜形成を抑止することが困難であり、接合面に酸化被膜を残留させないためには素材の選定にあたりベリリウム含有量を考慮しなければならないことが分かった。
 本発明の銅合金接合体に用いる時効硬化性銅合金は、ベリリウム含有量が0.7重量%以下であれば特に限定されず、ベリリウムを含まないもの(すなわちベリリウム含有量が0重量%)であってもよい。0.7重量%を超える高Be含有量のベリリウム銅合金(例えばベリリウム銅25合金(JIS合金番号C1720))を用いた接合体は接合面の酸化被膜が顕著に残留して、溶体化処理及び時効処理に耐えることができず、溶体化処理又は時効処理後に接合部で破断してしまう。しかし、0.7重量%以下もの低Be含有量の時効硬化性銅合金を選択的に用いて拡散接合させることで、溶体化処理及び時効処理に耐え、極めて高い接合強度を有する銅合金接合体を実現することができる。このような時効硬化性銅合金の例としては、ベリリウム銅11合金(JIS合金番号C1751、EN材料番号CW110C、及びUNS合金番号C17510)、ベリリウム銅10合金(EN材料番号CW104C及びUNS合金番号C17500)、ベリリウム銅CuCo1Ni1Be(EN材料番号CW103C)、ベリリウム銅14Z合金、ベリリウム銅50合金、ベリリウム銅10Zr合金、クロム銅(UNS合金番号C18200)、クロムジルコニウム銅(UNS合金番号C18510及びEN材料番号CW106C)、ジルコニウム銅(UNS合金番号C15000、EN材料番号CW120C)、並びにコルソン銅(EN材料番号CW109C、CW111C、UNS合金番号C19010、C70250、AMPCO944、及びAMPCO940)が挙げられ、より好ましくは、ベリリウム銅11合金、又はコルソン銅であり、最も好ましくはベリリウム銅11合金である。これらの好ましい時効硬化性合金は、溶体化時効後の極めて高い接合強度を実現できるのみならず、耐水素脆化特性及び熱伝導性にも優れており、水素ステーション用プレクーラーの熱交換器用の材料として特に有利である。上述した各種銅合金の組成を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 前述したとおり、本発明の銅合金接合体は、複数の部材の接合界面が残留している。接合界面の消失ないし残留は、銅合金接合体の接合部を含む断面を光学顕微鏡や走査透過電子顕微鏡(STEM)により観察することにより判定することができる。接合界面の消失/残留は、接合前の銅合金部材の接合面の痕跡が残っているか否かで判定される。そして、複数の部材の接合界面が残留している場合には、銅合金がベリリウム含有量に応じて以下の条件(i)及び(ii)のいずれかを満たすことで、極めて高い接合強度が実現される。
(i)ベリリウム含有量0.7重量%以下のベリリウム銅合金の場合:
 接合界面を含む長辺800nm×短辺400nmの矩形断面のHAADF-STEM像に占める、酸化物、炭化物及び/又は金属間化合物で構成される介在物の面積比率が、7.5%以下であり、好ましくは5.0%以下、より好ましくは4.0%以下、さらに好ましくは2.5%以下である。介在物の面積比率の下限は特に限定されないが、理想的には0%であり、典型的には1.0%以上、より典型的には2.0%以上である。
(ii)ベリリウムを含まない銅合金の場合:
 接合界面を含む長辺800nm×短辺400nmの矩形断面のHAADF-STEM像に占める、酸化物、炭化物及び/又は金属間化合物で構成される介在物の面積比率が、30%以下であり、好ましくは20%以下、より好ましくは10%以下である。介在物の面積比率の下限は特に限定されないが、理想的には0%であり、典型的には1.0%以上、より典型的には2.0%以上である。
 なお、上記(i)及び(ii)において、長辺は接合界面と平行であり、かつ、短辺は接合界面と垂直であるものとする。また、接合界面を含む長辺800nm×短辺400nmの矩形断面は、接合体試料の接合界面を含む断面を切り出し、集束イオンビーム(FIB)により薄片状に加工し、得られた接合体試料の接合界面を含む断面を球面収差補正機能付き走査透過電子顕微鏡(STEM)によって観察することに得ることができる。また、酸化物、炭化物及び/又は金属間化合物で構成される介在物の特定は、STEMに付設された電子エネルギー損失分光装置(EELS)/エネルギー分散型X線分析装置(EDX)により接合界面及びその近傍の元素分析を行って、STEM像とEELS/EDX元素マッピング像とを照合することにより行うことができる。そして、上記矩形断面のHAADF-STEM像に占める介在物の面積比率は、EELS/EDX元素分析で得られたHAADF-STEM像を画像解析ソフトウェアImageJを用いて、後述する実施例の操作手順(ステップ1~7)に従って、介在物に相当する領域とそうでない部分とに画像を二値化して自動計算することにより行うことができる。
 上記(i)又は(ii)を満たす本発明の銅合金接合体は、極めて高い接合強度を有する。すなわち、酸化物、炭化物及び/又は金属間化合物で構成される介在物の面積比率を上記範囲に収まるように小さくすることで、引張試験時に亀裂発生起点が減少する又は亀裂伝播速度が低減する結果、極めて高い接合強度が実現される。具体的には、銅合金接合体の接合部の強度は、銅合金接合体の母材の強度の70%以上であるのが好ましく、より好ましくは80%以上、さらに好ましくは85%以上である。銅合金接合体の接合部の強度は高い方が望ましいため、その上限は特に限定されないが、典型的には、銅合金接合体の母材の強度の100%以下であり、より典型的には98%以下、さらに典型的には95%以下である。上記強度は、典型的には溶体化時効処理後の強度である。銅合金接合体の母材及び接合部の強度は、接合部が試験片中央位置となるようにASTM E8M Specimen3に準拠される試験片を作製し、当該試験片に対してASTM E8Mに準じた手順で引張試験を行うことにより測定することができる。
 本発明の銅合金接合体の接合界面には酸化被膜が存在しうる。酸化被膜の厚さは典型的には0nm以上5.0nm以下であり、好ましくは0nm以上4.0nm以下、より好ましくは0nm以上3.0nm以下、さらに好ましくは0nm以上2.0nm以下、特に好ましくは0nm以上1.5nm以下、最も好ましくは0nm以上1.0nm以下である。このように薄い酸化被膜であれば、接合界面が消失した場合と同様、溶体化時効処理に耐え、時効処理後に極めて高い接合強度の銅合金接合体が得られる。接合界面の酸化被膜の厚さは、接合界面を含む断面を走査透過電子顕微鏡(STEM)で観察し、電子エネルギー損失分光(EELS)/エネルギー分散型X線分析(EDX)により当該断面の元素マッピング像を取得し、STEM像とEELS/EDX元素マッピング像とを照合することにより酸化被膜を特定し、その厚さを決定することができる。なお、接合界面に存在する酸化被膜は、層状の被膜のみならず、粒子状の被膜(すなわち酸化物粒子)であることもあり、その場合は酸化物粒子の高さも酸化被膜の厚さに含めるものとする。
 本発明の銅合金接合体は、接合界面又は接合界面であった位置(旧接合界面)を超えて成長した時効硬化性銅合金の結晶粒を含むものでありうる。すなわち、本発明の銅合金接合体は、接合前の銅合金部材の接合面にあった結晶粒が接合後に組み変わって再結晶された構造を接合界面ないし旧接合界面に有しており、接合当初の接合界面のままではないことが観察され得る。銅合金接合体がこのような接合微構造を有することで、接合強度がより優れたものとなる。
 本発明の銅合金接合体は、接合界面又は接合界面であった位置(旧接合界面)には時効硬化性銅合金以外の材料に由来する残留成分が無いことが母材強度同等の高い接合強度と母材同等の耐水素特性を確保する観点から好ましい。したがって、本発明の銅合金接合体は接合にろう材等の接合剤を含まないことが望まれる。すなわち、本発明の銅合金接合体は、時効硬化性銅合金並びにそれに由来する酸化物、炭化物及び/又は金属間化合物で構成される介在物のみからなるものが好ましい。
 銅合金接合体の母材及び接合部の溶体化時効処理後強度は、好ましくは520MPa以上であり、より好ましくは690MPa以上である。銅合金接合体がこのような強度であることで、水素ステーション用プレクーラーの熱交換器としての用途を始めとする高強度用途で求められる基準を十分に満たしたものとなる。強度は高いことが望まれるため、その上限値は規定されるべきではないが、本発明に係るベリリウム含有量が0.7重量%以下の銅合金接合体の母材及び接合部の溶体化時効処理後の強度は、典型的には895MPa以下である。銅合金接合体の母材及び接合部の溶体化時効処理前後の強度は、接合部が試験片中央位置となるようにASTM E8M Specimen3に準拠される試験片を作製し、当該試験片に対してASTM E8Mに準じた手順で引張試験を行うことにより測定することができる。
 銅合金接合体の接合部を含む母材の熱伝導率は高いことが望まれる。熱伝導は電気伝導同様、伝導電子に基づくエネルギー伝達であるので、両者間にはヴィーデマン・フランツ則と呼ばれる相関関係があり、熱伝導率は、より簡便に計測できる電気伝導率と相互に換算することができる。銅合金接合体の接合部を含む母材の熱伝導率(及びその換算電気伝導率)は、好ましくは209W/mK以上(換算電気伝導率50IACS%以上)であり、より好ましくは228W/mK以上(換算電気伝導率55IACS%以上)、さらに好ましくは246W/mK以上(換算電気伝導率60IACS%以上)である。このように高い熱伝導率であると、熱交換器に用いた際に熱交換効率が極めて高い点が有利となる(例えば水素特性が優れるために現在プレクーラーの熱交換器に用いられているSUS316LNi当量品の熱伝導率は16W/mKと非常に低く、熱交換効率が悪い点が運用上の難点となっている)。熱伝導率が高いことが望まれるため、その上限値は規定されるべきではないが、本発明に係るベリリウム含有量が0.7重量%以下の銅合金接合体の接合部を含む母材であって、母材及び接合部強度520MPa以上を確保できるものの熱伝導率は、典型的には280W/mK以下である。
 接合部を含む銅合金接合体は、ひずみ速度5×10-5-1以下の範囲(例えば5×10-5-1)で行う低ひずみ速度引張(SSRT:Slow Strain Rate Tensile)試験において、水素ガス中での引張強度が520MPa以上であることが好ましく、より好ましくは690MPa以上である。この銅合金接合体は、接合部を含め耐水素脆化特性に優れると共に高い引張強度を有する。この低ひずみ速度引張試験は、ASTM-G-142に準じて行うものとする。低ひずみ速度引張試験では、例えば、定形の試験片(平滑試験片)を用いて行えばよい。一般的に、平滑試験片では、水素ガス中の引張強度や絞りを水素の影響のない参照ガス中の引張強度や絞りで除した相対引張強度RTSや相対絞りRRAを用いて水素感受性を評価する。平滑試験片の低ひずみ速度引張試験では、例えば、ひずみ速度5×10-5-1で測定するものとしてもよい。70MPa級のFCV(燃料電池自動車)や水素ステーションを想定し、この低ひずみ速度引張試験を、95MPa以上の水素ガス圧力で行うものとする。水素ガス圧がより高ければ、材料中に侵入する水素量が多くなるため、試験片が水素曝露による影響を受けやすく、水素脆性をより適切に評価することができる。本願に関する試験では定形の試験片(平滑試験片)を用いて相対引張強度RTSや相対絞りRRAを用いて水素特性を評価するのが好ましい。例えば、銅合金接合体を切り出して、接合部が試験片中央位置となるようにASTM E8M Specimen4に準拠される試験片を作製すればよい。
 この接合部を含む銅合金接合体では、上記低ひずみ速度引張試験において、引張強度が520MPa以上、望ましくは690MPa以上であるときに、相対絞りRRAが0.8以上であることが好ましく、より好ましくは0.9以上である。また、引張強度RTSが0.8以上であることが好ましく、より好ましくは0.9以上である。接合部を含む銅合金接合体の引張強度が常温大気下又は95MPa以上の水素ガス圧下で上記範囲内の値であり、かつ、そのRRA及びRTSも上記範囲内の値を充足することは、この銅合金接合体が高強度でありかつ耐水素脆化特性にも優れることを意味し、それ故、水素ステーション用プレクーラーの熱交換器としての用途に特に適したものとなる。上記引張強度は高いことが望まれるため、その上限値は規定されるべきではないが、本発明に係るベリリウム含有量が0.7重量%以下の銅合金接合体の常温大気下又は95MPa以上の水素ガス圧下での低ひずみ速度引張試験における引張強度は、典型的には895MPa以下である。
 銅合金接合体は、その内部に流路空間を備える形態としてもよい。この場合、流路空間を水素や冷媒等の媒体を通すための内部空間として利用することができる。したがって、流路空間を備えた銅合金接合体は、水素及び冷媒をそれぞれ通す複数の流路空間を備えていることが望まれる水素ステーション用プレクーラーの熱交換器としての用途に好ましく用いることができる。
 製造方法
 本発明の銅合金接合体は、複数の時効硬化性銅合金製の部材に、必要に応じて接合表面の平滑化(任意工程)、酸化被膜の除去、熱間プレス接合(拡散接合)、必要に応じて均質化処理(任意工程)、溶体化処理、及び時効処理を順次行うことにより、製造することができる。具体的には以下のとおりである。
(a)銅合金部材の用意
 まず、接合に用いるための複数の時効硬化性銅合金製の部材を用意する。この時効硬化性銅合金は、ベリリウム含有量が0.7重量%以下であり、前述したとおりのものを用いることができる。熱交換体として製造される積層接合体の最上面材と最下面材は圧延材もしくは鍛造材、最上面と最下面以外の冷却水路を内部に有する又は有しない多数の積層材には圧延材が好ましく用いられる。
 本発明の銅合金接合体には水素劣化を起こさない銅合金素材を用いることが好ましい。銅合金素材に関して、例えば、白銅(Cu-10%~30%)においてNi濃度が20%以上で水素特性劣化が顕著になることや、タフピッチ銅(脱酸していない純銅)でも水素特性劣化が顕著に起こることが知られている。したがって、本発明の銅合金接合体に用いる銅合金を選択するにあたり、大気中及び高圧水素下(例えば95MPa水素中)の各雰囲気で低ひずみ速度引張試験(例えば、ASTM-G-142に準じ、平滑試験片では変位速度を0.001mm/sec(ひずみ速度0.00005/sec))を行い、大気中での試験結果と高圧水素下での試験結果とを比較することで、水素下での劣化を起こさない銅合金材料であることを確認することが望まれる。例えば、本発明の銅合金接合体は、ひずみ速度5×10-5-1以下で行われる低ひずみ速度引張試験で測定される、水素ガス中でのRRA(相対絞り)が0.8以上である銅合金部材を用いて作製されたものであるのが好ましく、より好ましくは0.9以上である。
 ここで、接合に用いるための複数の時効硬化性銅合金製の部材は、接合されるべき面が0.1mm以下の平面度、及び3.0μm以下の算術平均粗さRaを有する平坦面を有する必要がある。すなわち、前述したとおり、接合部材表面の酸化被膜を除去しても、熱間プレス接合(拡散接合)において接合面の再酸化を抑止するためには、高真空雰囲気下でも接合面に侵入してくる酸素原子が十分に少なくなるよう接合面の密着性を確保する必要があり、上記範囲内の平面度及びRaであればこの密着性を確保することができる。接合される部材が圧延材である場合は上記範囲内の平面度及びRaを満たしていることが多いため、特段の平滑化工程は不要である。一方、上記範囲内の平面度及びRaを充足していない場合には、研磨、切削加工、及び/又はその他の手法により上記範囲内の平面度及びRaを有する平坦面を形成する。なお、板材にカール等がある場合があるが、板厚精度が良好に調整されており、熱間プレス接合(拡散接合)において必要な荷重をかけた際に平面度が0.1mm以下となり目的とする密着性が確保できるのであれば問題はない。なお、算術平均粗さRaは、JIS B 0601-2001に規定される表面粗さである。平坦面の算術平均粗さRaは、3.0μm以下であり、好ましくは1.0μm以下、より好ましくは0.50~1.0μm、さらに好ましくは0.10~0.50μmである。また、本明細書において、平面度は、JIS B 0621-1984において「平面形体の幾何学的に正しい平面(幾何学的平面)からの狂いの大きさ」と定義されるパラメータであり、対象を1対の平面で挟んだ時、その幅の示す値を意味する。
 必要に応じて、次工程の酸化被膜の除去に先立ち、複数の部材の接合されるべき表面に、接合後に流路空間をもたらす溝を形成するのが好ましい。溝の形成は、エッチング、プレス加工、機械加工等、公知の様々な方法で行えばよい。こうすることで、前述したように内部に流路空間を備えた銅合金接合体の製造に用いることができる。例えば、溝入りの銅合金板と溝なしの銅合金板とを交互に積層して接合することで、流路が多数形成された銅合金積層体を製造することができる。このような構成の多層接合体は、水素及び冷媒をそれぞれ通す複数の流路空間を備えていることが望まれる水素ステーション用プレクーラーの熱交換器としての用途に好ましく用いることができる。
(b)酸化被膜の除去
 前述したとおり、銅合金部材の表面には酸化被膜が存在する。このため、銅合金部材の接合されるべき表面に存在する酸化被膜を除去する。酸化被膜の除去は、銅合金部材の接合されるべき表面を無機酸溶液で洗浄することにより行われるのが酸化被膜を効果的に除去できる点で好ましい。無機酸溶液の例としては、硝酸、硫酸、化学研磨液、塩酸、キリンス浴、フッ酸等が挙げられ、特に好ましくは硝酸である。なお、化学研磨液は、硫酸に酸化剤である過酸化水素を添加した酸であり、キリンス浴は、硫酸、硝酸及び塩酸の混合酸であり、水酸化ナトリウムを少量加えることもある。キリンス浴における好ましい混合比の例としては、硫酸:硝酸:塩酸=61:4:4、81:1:0.02、又は11:1:0.02等が挙げられる。あるいは、酸化被膜の除去は、機械的研磨によって行われてもよく、機械的研磨と無機酸溶液での洗浄とを併用してもよい。
(c)熱間プレス接合(拡散接合)
 複数の銅合金部材を熱間プレスにより接合させて中間接合体とする。この接合は拡散接合の手法に準じて行うことができる。例えば、熱間プレスは、1.0×10-2Torrより高い真空度(すなわち1.0×10-2Torrより低い圧力)の炉内において、500~1050℃の温度で30~480分間、5.0MPa以上(好ましくは10MPa以上)の圧力を加えることにより行われるのが好ましい。もっとも、時効硬化性銅合金がBeを含まない場合(例えばコルソン銅)は、熱間プレスは、1.0×10-1Torrと同等又はそれより高い真空度(すなわち1.0×10-1Torrと同等又はそれより低い圧力)の炉内において、500~1050℃の温度で30~480分間、5.0MPa以上の圧力を加えることにより行うことができる。いずれにしても、この熱間プレスは、銅合金部材の接合時の加圧方向長さ変形量が好ましくは0.5%以上35%以下、より好ましくは0.5%以上30%以下、さらに好ましくは1%以上20%以下、特に好ましくは2%以上8%以下となるよう行われる。熱間プレス温度と圧力には適正な組み合わせがあり、好ましくは、840℃を越え1050℃以下では5.0MPa以上20MPa以下であり、720℃を越え840℃以下では2MPa以上24MPa以下であり、600℃以上720℃以下では4MPa以上50MPa以下である。熱間プレス時間は、15~480分間が好ましく、より好ましくは30~150分間であり、さらに好ましくは30~60分間である。なお、熱間プレス時の炉内真空度は、酸化の進行を抑える観点から、好ましくは1.0×10-3Torr未満、より好ましくは1.0×10-4Torr未満、より好ましくは5.0×10-5Torr未満である。
 特に、銅合金部材の表面に溝を形成して中間接合体に流路空間を持たせる場合、上記熱間プレスを比較的低温かつ比較的高めの圧力で行うのが、プレスによる流路潰れを軽微とするよう制御できる点で好ましい。具体的には、この態様における熱間プレスは1.0×10-2Torrより高い真空度(すなわち1.0×10-2Torrより低い圧力)、より好ましくは1.0×10-4Torrより高い真空度(すなわち1.0×10-4Torrより低い圧力)の真空度の炉内において、
(i)840℃を越え930℃以下の温度で30~480分間(好ましくは30~60分間)、1MPa以上4MPa以下の圧力を加えること、又は
(ii)720℃を越え840℃以下の温度で30~480分間(好ましくは30~60分間)、2MPa以上8MPa以下の圧力を加えること、又は
(iii)600℃以上720℃以下の温度で30~480分間(好ましくは30~60分間)、4MPa以上30MPa以下の圧力を加えることにより、
行うのが好ましい。
(d)均質化処理(任意工程)
 銅合金部材の表面に溝を形成して中間接合体に流路空間を持たせる場合であって、上記比較的低温かつ比較的高めの圧力で熱間プレスを実施した場合、溶体化処理に先立ち、中間接合体に、好ましくは1.0×10-1Torrより高い真空度(すなわち1.0×10-1Torrより低い圧力)、又は(常圧若しくは減圧の)窒素若しくはその他の非酸化性ガス雰囲気(不活性雰囲気)の炉内において、900~1050℃の温度で60~480分間の均質化処理を施すのが好ましい。均質化処理は、均質化焼鈍とも称される処理であるが、本明細書においては均質化処理の用語を用いるものとする。すなわち、比較的低温かつ比較的高めの圧力で熱間プレスを実施した場合、接合界面が残留しやすいが、均質化処理を行うことで接合界面を低減又は消失させることができ、後続の溶体化処理及び時効処理を経ることで極めて高い接合強度を実現することができる。すなわち、流路の潰れ抑制と高い接合強度の両立を実現することができる。均質化処理は、酸化の進行を抑えるため、1.0×10-1Torrより低い圧力の大気雰囲気中、又は常圧若しくは1.0×10-1Torrより低い圧力に減圧された窒素等の不活性雰囲気中での処理が好ましい。均質化処理温度は、好ましくは900~1050℃、より好ましくは930~1000℃、さらに好ましくは960~990℃である。上記均質化処理温度での保持時間は60~480分、より好ましくは60~360分、さらに好ましくは60~240分である。もっとも、銅合金部材の表面に溝を形成しない場合であっても、上記均質化処理を必要に応じて行ってよいことはいうまでもない。
 なお、(c)熱間プレス接合(拡散接合)及び(d)均質化処理が、炉内温度を下げることなくプレス加重を解放して昇温することにより、連続的に行われるのが好ましい。こうすることで、流路空間が過度に潰れない温度加圧条件での熱間プレス接合(拡散接合)を行った後に、熱間プレス接合(拡散接合)及び均質化処理を、流路空間を潰す加圧を行うことなく、組織均質化に有効な温度での均質化処理を一連の連続作業として行うことができので、接合部の信頼性向上のみならず経済的観点からも有利となる。
(e)溶体化処理
 中間接合体には溶体化処理が施される。この溶解化処理は700~1100℃の温度で1~180分間、中間接合体を大気炉、非酸化雰囲気炉、塩浴炉等の炉で加熱した後、水冷することにより行うのが好ましい。本発明に用いる銅合金は時効硬化型合金であり、接合界面を消失させ、又は接合界面の酸化被膜の厚さを一定以下に調整した上で、溶体化処理及び後続の時効処理を経ることで、所望の調質特性(例えば高強度)、特に極めて高い接合強度を呈することができる。溶体化処理温度は、合金組成により多少適正域が異なるが、好ましくは700~1100℃であり、より好ましくは800~1050℃、さらに好ましくは900~1000℃である。上記溶体化処理温度での実質保持時間は、好ましくは1~180分であり、より好ましくは5~90分、さらに好ましくは10~60分である。
(f)時効処理
 溶体化処理が施された中間接合体には時効処理が施される。この時効処理は、合金組成により多少適正域が異なるが、350~550℃で30~480分間の時効処理を施すことにより行うのが好ましい。上述のとおり、ベリリウム銅合金等の時効硬化型合金は、溶体化処理及び時効処理を経ることで所望の調質特性(例えば高強度)、特に極めて高い接合強度を呈することができる。時効処理温度は好ましくは350~550℃であり、より好ましくは400~500℃、さらに好ましくは450~480℃である。上記時効処理温度での保持時間は、好ましくは30~480分、より好ましくは30~300分、さらに好ましくは60~240分、特に好ましくは90~180分である。時効処理は酸化抑止の観点から、1.0×10-1Torrより高い真空度(すなわち1.0×10-1Torrより低い圧力)、又は窒素等の非酸化雰囲気の炉内で行うことが好ましい。
 本発明を以下の例によってさらに具体的に説明する。
 例1a~7
 銅合金接合体を以下の手順により作製し、各種評価を行った。
(1)銅合金の用意
 各例において、表2に示される合金種及び組成で構成され、かつ、以下の形態を有する、複数の銅合金部材を用意した。
‐ 直径80mm×長さ50mmの2本の銅合金丸棒(例1a、1b及び4a~7)
‐ 150mm×220mm×長さ(厚さ)25mmの2本の鍛造材(角棒又は直方体ブロック)及び150mm×220mm×厚さ1.3mmの10枚の圧延材(角板)(例2a、2b及び3a~3c)
 各銅合金部材の接合に用いられる面(以下、接合面という)を旋盤加工、ラップ研磨等の加工により、JIS B 0601-2001に準拠して測定される算術平均粗さRaが3.0μmより小さく、かつ、JIS B 0621-1984に準拠して測定される平面度が0.1mm以下の平坦面とした。表面処理後の接合面について測定された算術平均粗さRaの代表値は表2に示されるとおりであった。なお、表2に示されるRaの代表値として、2本の銅合金丸棒の場合(例1a、1b及び4a~7)、上側棒の接合面におけるRaと下側棒の接合面におけるRaとの平均値を用いた。また、2本の鍛造材及び10枚の圧延材の場合(例2a、2b及び3a~3c)、10枚の圧延材のある1箇所の接合位置における上側板接合面におけるRaと下側板接合面におけるRaの平均値を代表値として用いた。
(2)酸化被膜の除去
 各銅合金部材の接合面を30%硝酸で洗浄し、接合面に存在する酸化被膜を除去した。
(3)熱間プレス
 例1a、1b及び4a~7においては、硝酸で洗浄された2本の銅合金丸棒の接合面同士を(ろう材を介することなく)直接突き合わせ、真空炉で表2に示される接合条件で熱間プレスを行い、丸棒状の中間接合体を得た。例2a、2b及び3a~3cにおいては、硝酸で洗浄された2本の銅合金鋳造材(角棒)の接合面同士の間に10枚の銅合金圧延材(角板)を介して(ろう材を介することなく)突き合わせ、真空炉で表2に示される接合条件で熱間プレスを行い、角棒状の中間接合体を得た。このときの接合時変形量ΔLを、接合前の銅合金部材の接合方向長さの積算長さをL、接合後の接合方向試料長さLとして、次式:
 ΔL=[(L-L)/L]×100
により求めたところ、表2に示されるとおりであった。各種評価を行うため、各例について、複数本の引張試験片を作製した。
(4)均質化処理(例1b、2b及び4bのみ)
 例1b及び2bにおいては、後続の溶体化処理に先立ち、加熱プレスを経た中間接合体に960℃での均質化処理(高温ソーキング)を8時間施して炉冷した。
(5)溶体化処理
 上記(2)又は(3)で得られた中間接合体に溶体化処理を施した。この溶体化処理は銅合金接合体を溶融塩浴中930℃で5分間保持した後、水冷することにより行った。
(5)時効処理
 上記溶体化処理された中間接合体に時効処理を施した。この時効処理は銅合金接合体を1×10-1Torrの真空度の真空炉中450℃で3時間(例1a~3c)又は500℃で2時間(例4a~7)保持した後、炉冷することにより行った。こうして、溶体化処理及び時効処理(例1a、2a、3a、4a及び5~7)又は均質化処理、溶体化処理及び時効処理(例1b、2b及び4b)により調質された、丸棒又は角棒状の銅合金接合体を得た。
(6)評価
 上記熱間プレスで接合されたままの中間接合体及び上記時効処理で得られた銅合金接合体(以下、これらをまとめて接合体試料という)に対して以下の評価を行った。
<接合強度>
 各接合体試料を加工して、接合部が試験片中央位置となるようにASTM E8M Specimen3に準拠される試験片を作製した。この試験片に対してASTM E8Mに準拠して引張試験を行い、引張強度(接合強度)を測定した後、破断位置を確認した。結果は表3及び4に示されるとおりであった。
<STEM観察及びEELS/EDX元素分析>
 各接合体試料の接合界面を含む断面を切り出し、集束イオンビーム(FIB、製品名:NB5000、日立ハイテクノロジーズ製)により薄片状に加工した。得られた接合体試料の接合界面を含む断面を球面収差補正機能付き走査透過電子顕微鏡(STEM、製品名:HD-2700、日立ハイテクノロジーズ製)によって加速電圧:200kVの測定条件で観察し、接合界面の残留を確認した。また、STEMに付設された電子エネルギー損失分光装置(EELS、商品名:Enfinium、Gatan社製)/エネルギー分散型X線分析装置(EDX、商品名:XMAXN 100TLE、Oxford社製)により接合界面及びその近傍の元素分析も行った。それらの結果は、表2~4及び図2~8に示されるとおりであった。図2、4及び6のBF-STEM像において酸化物、炭化物及び/又は金属間化合物で構成される介在物は明るく表現(白っぽい領域として特定)される一方、図3、5及び7のHAADF-STEM像において当該介在物は暗く表現(黒っぽい領域として特定)される。HAADF-STEM像は、原子量に比例したコントラストが得られることから、介在物と母相のコントラストに差が出やすく、画像解析に好適である。また、図8には、紙面の都合上、例1aのEELS/EDX元素マッピング像のみがSTEM像とともに示されており、STEM像に示されるBIなる略称は接合界面を意味する。
<介在物の面積比率>
 上記EELS/EDX元素分析で得られたHAADF-STEM像を、画像解析ソフトウェアImageJを用いて以下の操作手順に従って解析することにより、接合界面を含む長辺800nm×短辺400nmの矩形断面のHAADF-STEM像に占める、酸化物、炭化物及び/又は金属間化合物で構成される介在物の面積比率を決定した。
(ImageJにおける操作手順)
‐ステップ1:HAADF-STEM(High-angle Annular Dark Field Scanning TEM)像を画像解析ソフトウェアImageJへ取り込む。
‐ステップ2:接合界面を含む800nm×400nmのエリアを切り取る(このエリアを「注目領域」と呼ぶ)。
‐ステップ3:「Image」→「Type」→「16-bit」の順にコマンドを選択して、画像を「16-bit」へ変換する。 
‐ステップ4:「Process」→「Filters」→「Gaussian Blur」の順にコマンドを選択して、ガウシアンぼかし機能で「Sigma(Radius)」の値を(例えば0.1に)調整してノイズを軽減する。
‐ステップ5:「Image」→「Adjust」→「Threshold」の順にコマンドを選択して、閾値の値を介在物の領域(黒色~灰色)を色付けする。このとき、「Threshold」ウィンドウにおいて、閾値の値を介在物のみが選択的に赤色に変色されるように調整することにより(今回の解析では閾値を90~170の範囲内の値とした)介在物に相当する領域を選択する。
‐ステップ6:介在物が色付けされた状態で「Threshold」ウィンドウにおける「Apply」のコマンドを選択して、注目領域を二値化処理する。
‐ステップ7:「Analyze」→「Measure」の順にコマンドを選択すると、800nm×400nmのエリアにおける注目領域の占有率(面積率)が自動計算され、「%Area」の値として表示される。この値を介在物の面積比率として採用すればよい。
 結果は、表3及び4に示されるとおりであった。これらの表に示される結果から以下のことが分かる。例1a~3cはCuBe11を用いた例であり、介在物の面積比率が7.5%以下である例1a、1b、2a及び2bで作製された接合体では、介在物の面積比率が7.5%を超える例3a~3cで作製された接合体よりも、高い接合強度が実現された。例4a~7はコルソン銅AMPCO940又はコルソン銅AMPCO944を用いた例であり、介在物の面積比率が30%以下である例4a~6では、介在物の面積比率が30%を超える例7で作製された接合体よりも、高い接合強度が実現された。具体的には、本発明の要件を満たす例1a、1b、2a、2b及び4a~6の銅合金接合体の接合部の強度は、いずれも銅合金接合体の母材の強度の70%以上であった。
<電気伝導率の測定及び熱伝導率への換算>
 渦電流式導電率計(製品名:Hocking AutoSigma 3000DL、GEセンシング&インスペクション・テクノロジーズ社製)を用いて接合体試料の電気伝導率(IACS%)を室温で測定した。得られた電気伝導率をヴィーデマン・フランツ則に基づく相関式より換算して熱伝導率(W/mK)を求めた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (12)

  1.  互いに拡散接合された複数の時効硬化性銅合金製の部材で構成される銅合金接合体であって、前記複数の部材の接合界面が残留しており、
    (i)前記時効硬化性銅合金がベリリウム含有量0.7重量%以下のベリリウム銅合金であり、前記接合界面を含む長辺800nm×短辺400nmの矩形断面のHAADF-STEM像に占める、酸化物、炭化物及び/又は金属間化合物で構成される介在物の面積比率が、7.5%以下である、又は
    (ii)前記時効硬化性銅合金がベリリウムを含まない銅合金であり、前記接合界面を含む長辺800nm×短辺400nmの矩形断面のHAADF-STEM像に占める、酸化物、炭化物及び/又は金属間化合物で構成される介在物の面積比率が、30%以下であり、
     上記(i)及び(ii)において、前記長辺が前記接合界面と平行であり、かつ、前記短辺が前記接合界面と垂直である、銅合金接合体。
  2.  前記銅合金接合体は溶体化処理及び時効処理が施されたものである、請求項1に記載の銅合金接合体。
  3.  前記銅合金接合体の接合部の強度が、前記銅合金接合体の母材の強度の70%以上である、請求項1又は2に記載の銅合金接合体。
  4.  前記接合界面、又は接合界面であった位置を超えて成長した前記時効硬化性銅合金の結晶粒を含む、請求項1又は2に記載の銅合金接合体。
  5.  前記接合界面、又は前記接合界面であった位置には、前記時効硬化性銅合金以外の材料に由来する残留成分が無い、請求項1又は2に記載の銅合金接合体。
  6.  前記銅合金接合体の母材及び接合部の強度が520MPa以上である、請求項1又は2に記載の銅合金接合体。
  7.  前記銅合金接合体の母材及び接合部の強度が690MPa以上である、請求項6に記載の銅合金接合体。
  8.  前記銅合金接合体の接合部を含む母材の熱伝導率が209W/mK以上である、請求項1又は2に記載の銅合金接合体。
  9.  前記銅合金接合体の接合部を含む母材の電気伝導率が50IACS%以上である、請求項1又は2に記載の銅合金接合体。
  10.  前記時効硬化性銅合金が、ベリリウム銅11合金(JIS合金番号C1751、EN材料番号CW110C、及びUNS合金番号C17510)、ベリリウム銅10合金(EN材料番号CW104C及びUNS合金番号C17500)、ベリリウム銅CuCo1Ni1Be(EN材料番号CW103C)、ベリリウム銅14Z合金(Be:0.2~0.6重量%、Ni:1.4~2.4重量%、Zr:0~0.5重量%、残部Cu及び不可避不純物からなる)、ベリリウム銅50合金(Be:0.2~0.6重量%、Ni:1.4~2.1重量%、Ag:0.1~0.3重量%、Zr:0~0.5重量%、残部Cu及び不可避不純物からなる)、ベリリウム銅10Zr合金(Be:0.4~0.7重量%、Co:2.0~2.8重量%、Zr:0~0.3重量%、残部Cu及び不可避不純物からなる)、クロム銅(UNS合金番号C18200)、クロムジルコニウム銅(UNS合金番号C18510及びEN材料番号CW106C)、ジルコニウム銅(UNS合金番号C15000、EN材料番号CW120C)、並びにコルソン銅(EN材料番号CW109C、CW111C、UNS合金番号C19010、C70250、AMPCO944(Ni:6.5~7.5重量%、Si:1.5~2.5重量%、Cr:0.5~1.5重量%、残部Cu及び不可避不純物からなる)、及びAMPCO940(Ni:1.5~3.0重量%、Si:0.5~1.5重量%、Cr:0.3~1.5重量%、残部Cu及び不可避不純物からなる))からなる群から選択される少なくとも1種である、請求項1又は2に記載の銅合金接合体。
  11.  前記時効硬化性銅合金が、ベリリウム銅11合金(JIS合金番号C1751、EN材料番号CW110C、及びUNS合金番号C17510)、並びにコルソン銅(EN材料番号CW109C、CW111C、UNS合金番号C19010、C70250、AMPCO944(Ni:6.5~7.5重量%、Si:1.5~2.5重量%、Cr:0.5~1.5重量%、残部Cu及び不可避不純物からなる)、及びAMPCO940(Ni:1.5~3.0重量%、Si:0.5~1.5重量%、Cr:0.3~1.5重量%、残部Cu及び不可避不純物からなる))からなる群から選択される少なくとも1種である、請求項10に記載の銅合金接合体。
  12.  前記銅合金接合体がその内部に流路空間を備えた、請求項1又は2に記載の銅合金接合体。
PCT/JP2023/024697 2022-07-06 2023-07-03 銅合金接合体 WO2024009975A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-109355 2022-07-06
JP2022109355 2022-07-06

Publications (1)

Publication Number Publication Date
WO2024009975A1 true WO2024009975A1 (ja) 2024-01-11

Family

ID=89453397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024697 WO2024009975A1 (ja) 2022-07-06 2023-07-03 銅合金接合体

Country Status (1)

Country Link
WO (1) WO2024009975A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120270070A1 (en) * 2011-04-22 2012-10-25 The Industry & Academic Coorporation in Chungnam National University (IAC) Hybrid copper alloy realizing simultaneously high strength, high elastic modulus, high corrosion-resistance, wear resistance, and high conductivity and manufacturing method thereof
WO2021002364A1 (ja) * 2019-07-04 2021-01-07 日本碍子株式会社 ベリリウム銅合金接合体及びその製造方法
JP2021115631A (ja) * 2020-01-27 2021-08-10 日本碍子株式会社 接合方法および熱交換部材
WO2022149561A1 (ja) * 2021-01-08 2022-07-14 国立大学法人九州大学 銅合金接合体及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120270070A1 (en) * 2011-04-22 2012-10-25 The Industry & Academic Coorporation in Chungnam National University (IAC) Hybrid copper alloy realizing simultaneously high strength, high elastic modulus, high corrosion-resistance, wear resistance, and high conductivity and manufacturing method thereof
WO2021002364A1 (ja) * 2019-07-04 2021-01-07 日本碍子株式会社 ベリリウム銅合金接合体及びその製造方法
JP2021115631A (ja) * 2020-01-27 2021-08-10 日本碍子株式会社 接合方法および熱交換部材
WO2022149561A1 (ja) * 2021-01-08 2022-07-14 国立大学法人九州大学 銅合金接合体及びその製造方法

Similar Documents

Publication Publication Date Title
EP0060083B1 (en) Titanium clad steel plate
JP6452627B2 (ja) アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法
JP7211558B2 (ja) 銅合金接合体及びその製造方法
CN114072531B (zh) 铍铜合金接合体及其制造方法
EP3916119A1 (en) Aluminum alloy for brazing and aluminum brazing sheet
JP5805213B2 (ja) タングステン焼結合金
EP3915719A1 (en) Aluminum brazing sheet for flux-free brazing
WO2018066413A1 (ja) 放熱部品用銅合金板、放熱部品、及び放熱部品の製造方法
JP4974193B2 (ja) 電気電子部品用銅合金板材
KR20230098875A (ko) 오스테나이트계 스테인리스강대의 제조방법
JP4492342B2 (ja) ろう付け用クラッド材及びそれを用いたろう付け方法並びにろう付け製品
WO2024009975A1 (ja) 銅合金接合体
WO2019044545A1 (ja) 熱交換器フィン用ブレージングシート及びその製造方法
EP2189548B1 (en) Stress-buffering material
WO2024009974A1 (ja) 銅合金接合体
JP5084490B2 (ja) アルミニウム合金クラッド材
WO2012060359A1 (ja) 銅合金熱間鍛造品及び銅合金熱間鍛造品の製造方法
JP6094725B1 (ja) チタン複合材および熱間加工用チタン材
JP3297012B2 (ja) 冷延性に優れた高強度チタン合金
WO2017018509A1 (ja) チタン複合材および熱間圧延用チタン材
WO2022196574A1 (ja) ろう付用アルミニウムブレージングシートおよびその製造方法
JP6848991B2 (ja) 熱間圧延用チタン材
JP5354202B2 (ja) チタンクラッド鋼刃物及びその製造方法
JP2022142972A (ja) アルミニウムろう付用ブレージングシートおよびアルミニウムろう付用ブレージングシートの製造方法
JP2021058901A (ja) アルミニウムブレージングシートおよびアルミニウム部材のフラックスフリーろう付方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835507

Country of ref document: EP

Kind code of ref document: A1