WO2022149561A1 - 銅合金接合体及びその製造方法 - Google Patents

銅合金接合体及びその製造方法 Download PDF

Info

Publication number
WO2022149561A1
WO2022149561A1 PCT/JP2021/049009 JP2021049009W WO2022149561A1 WO 2022149561 A1 WO2022149561 A1 WO 2022149561A1 JP 2021049009 W JP2021049009 W JP 2021049009W WO 2022149561 A1 WO2022149561 A1 WO 2022149561A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
copper
alloy
joint
weight
Prior art date
Application number
PCT/JP2021/049009
Other languages
English (en)
French (fr)
Inventor
脩 高桑
久生 松永
貴浩 石川
洋充 内山
将人 ▲榊▼原
正章 赤岩
Original Assignee
国立大学法人九州大学
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 日本碍子株式会社 filed Critical 国立大学法人九州大学
Priority to JP2022523805A priority Critical patent/JP7211558B2/ja
Priority to CN202180071156.7A priority patent/CN116323066A/zh
Priority to EP21917780.5A priority patent/EP4275826A1/en
Priority to KR1020237020498A priority patent/KR20230104291A/ko
Publication of WO2022149561A1 publication Critical patent/WO2022149561A1/ja
Priority to JP2022207703A priority patent/JP2023040084A/ja
Priority to US18/341,063 priority patent/US20230356321A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a copper alloy joint and a method for manufacturing the same.
  • a precooler is installed to enable the rapid supply of high-pressure hydrogen cooled to about -45 ° C. That is, if the tank of a fuel cell vehicle or the like is rapidly filled with hydrogen, the tank temperature rises due to adiabatic compression, which is dangerous. Therefore, by cooling the hydrogen with a precooler at the time of supply, high-pressure hydrogen to the fuel cell vehicle or the like can be obtained. Allows for safe and rapid supply. Therefore, the heat exchanger, which is the main component of the precooler for hydrogen stations, not only does not exhibit hydrogen embrittlement, but also has tensile strength that can withstand high pressure and thermal conductivity that enables efficient cooling. It is preferable to use the provided material. Currently, stainless steel for high-pressure hydrogen such as SUS316L (Ni equivalent material) is used for the heat exchanger of the precooler for hydrogen stations because it does not cause hydrogen embrittlement. There is room for improvement from the perspective.
  • Beryllium copper which is known as a material with high tensile strength and thermal conductivity, is suitable as a material for heat exchangers, and it has been confirmed that hydrogen embrittlement does not occur even under high-pressure hydrogen.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 9-87780
  • the Be content is 1.0 to 2.5% and the total content of Ni and Co is 0.2 to 0.
  • a beryllium copper alloy for heat exchangers is disclosed, which comprises 6.6%, the balance of Cu and unavoidable impurities.
  • Patent Document 2 Japanese Unexamined Patent Publication No.
  • the Be content is 0.20 to 2.70% by weight
  • the total content of Co, Ni and Fe is 0.20 to 2.50% by weight.
  • Cu, Be, Co, Ni and Fe are disclosed as beryllium copper alloys having a total content of 99% by weight or more, and are said to be excellent in hydrogen brittle resistance, tensile strength and thermal conductivity.
  • beryllium copper alloys In addition to not exhibiting hydrogen brittleness (that is, having hydrogen brittleness resistance), beryllium copper alloys have higher tensile strength than stainless steel for high-pressure hydrogen (for example, about 1.5 to 2.5 times) and higher than stainless steel.
  • the size of the heat exchanger for high-pressure hydrogen which cannot be realized with low-pure copper or low-strength copper alloy, can be made much smaller than that made of stainless steel (for example, it is made of stainless steel). For example, about a quarter).
  • the heat exchanger of the precooler for a hydrogen station has a structure in which metal plates having slits or grooves are joined in multiple layers in order to form a flow path through which hydrogen and a refrigerant pass.
  • the currently adopted method for joining stainless steel for high-pressure hydrogen is to sublimate and remove the oxide film on the surface layer in the process of depressurizing and raising the temperature to the joining temperature, and applying adhesion pressure to the joint at a high temperature below the melting point to apply stainless steel sheet.
  • Diffusion joining which joins each other, is widely known.
  • the copper alloy has (i) a strong oxide film that is difficult to remove by simple vacuum heating and / or (ii) even if the oxide film is removed before joining, under high vacuum in the joining step.
  • the oxide film is easily reformed even on the joint surface (adhesion surface) during the temperature rise (and the oxide film is difficult to sublimate even when the temperature is close to the joint temperature).
  • a certain bonding strength is secured, but it is difficult to obtain a structure and strength equivalent to that of the base metal.
  • the diffusion-hardened body of aging-hardening copper alloy which does not have sufficient bonding strength, cannot withstand severe thermal shock and dimensional fluctuations due to solution heat treatment and aging treatment, and has a problem that it breaks at the joint. there were.
  • the present inventor has now selectively adopted an age-hardening copper alloy having a beryllium content of 0.7% by weight or less, finished the bonding surface to a predetermined flatness, removed the oxide film, and then diffusion-bonded (and). If necessary, homogenization treatment) is performed, and solution treatment and aging treatment are performed so that the bonding interface disappears (or even if it is not, the oxide film on the bonding interface has a thickness of 5.0 nm or less). It was found that it can be applied, thereby providing a copper alloy bonded body having extremely high bonding strength.
  • an object of the present invention is to provide a bonded body of an age-hardening copper alloy in which extremely high bonding strength is realized by withstanding the solution heat treatment and the aging treatment after the bonding treatment.
  • it is a copper alloy bonded body composed of a plurality of age-hardening copper alloy members that are diffusion-bonded to each other, and the copper alloy bonded body is subjected to solution heat treatment and aging treatment.
  • the beryllium content of the age-hardening copper alloy is 0.7% by weight or less, and (I) The bonding interface of the plurality of members has disappeared, and / or (ii) the bonding interface of the plurality of members remains, and the thickness of the oxide film at the bonding interface is 0 nm or more and 5.0 nm.
  • the following copper alloy joints are provided.
  • the present invention is a method for manufacturing a copper alloy bonded body.
  • the surface to be joined is a flat surface having a flatness of 0.1 mm or less and a ten-point average roughness Rzjis of 6.3 ⁇ m or less.
  • the process of preparing multiple parts of The step of removing the oxide film existing on the surface of the plurality of members to be joined, and A step of diffusing and bonding the plurality of members by hot pressing to form an intermediate bonded body, and a process of forming an intermediate bonded body.
  • a step of subjecting the solution-treated intermediate junction to a aging treatment at 350 to 550 ° C. for 30 to 480 minutes, and A method for manufacturing a copper alloy joint including the above is provided.
  • a hydrogen resistant member made of Corson copper (EN material numbers CW109C, CW111C, UNS alloy numbers C19010, C70250, AMPCO944, and AMPCO940) is provided.
  • a method for producing a hydrogen resistant member which comprises using Corson copper in a hydrogen resistant member or using Corson copper, is provided. The present inventor has confirmed that Corson copper does not cause hydrogen embrittlement even under high pressure hydrogen.
  • XPS results of beryllium copper 25 alloy, beryllium copper 165 alloy, beryllium copper 11 alloy, beryllium copper 10Zr alloy, beryllium copper 50 alloy, and chromium copper alloy are shown.
  • the XPS results of Corson copper AMPCO 940 and Corson copper AMPCO 944 are shown.
  • 6 is a STEM image (HAADF image) of a cross section including a joint surface of a copper alloy joint body (CuBe25) shown in FIG. 6A.
  • 6A is a STEM image and an EELS / EDX element mapping image of a cross section including a joint surface of a copper alloy joint (CuBe25) shown in FIG. 6A. It is a STEM image and an EELS / EDX element mapping image of the cross section including the bonding surface of the copper alloy bonding body (Corson copper AMPCO940) of Example 47 which was subjected to the solution heat treatment and the aging treatment after the diffusion bonding. It is a STEM image and an EELS / EDX element mapping image of the cross section including the junction surface of the copper alloy junction (Colson copper AMPCO944) of Example 53 (which was subjected to solution heat treatment and aging treatment after diffusion bonding).
  • FIG. 3 is a stress-stroke diagram of a low strain rate tensile test (SSRT) performed in air or hydrogen gas on a solution-aged Corson copper AMPCO940 used as a bonding material.
  • FIG. 3 is a stress-stroke diagram of a low strain rate tensile test (SSRT) performed in air or hydrogen gas on a solution-aged Corson copper AMPCO944 used as a bonding material.
  • It is an SEM image which observed the fracture surface of the copper alloy junction (CuBe11) of Example 17 produced through the solution treatment and the aging treatment after the low strain rate tensile test (SSRT) in the air.
  • It is a magnified SEM image which observed the specific position of the fracture surface shown in FIG. 10A.
  • It is an optical microscope image which observed the cross section including the junction part of the junction sample of Example 62 provided with the flow path space, which was produced through the homogenization treatment at 980 ° C.
  • the copper alloy joining body of the present invention is composed of a plurality of age-hardening copper alloy members that are diffusion-bonded to each other, and has undergone solution heat treatment and aging treatment.
  • the beryllium content of the age-hardening copper alloy is 0.7% by weight or less.
  • the bonding interface of the plurality of members has disappeared, and / or (ii) the bonding interface of the plurality of members remains, and the thickness of the oxide film at the bonding interface is thick.
  • the value is 0 nm or more and 5.0 nm or less.
  • a copper alloy bonded body having extremely high bonding strength can be provided by subjecting the solution treatment and the aging treatment (after performing the homogenization treatment as necessary) so as to be 0 nm or less.
  • the oxide film on the joint surface formed in the age-hardening copper alloy having a beryllium content of more than 0.7% by weight is not formed or is formed very slightly, the solution treatment and the aging treatment are performed. A high quality diffusion bond that can withstand the pressure is realized.
  • stainless steel has a strong weather resistance due to the dense chromium oxide film on the surface formed in the atmosphere as a protective film, and this oxide film sublimates when heated at a temperature exceeding 700 ° C. under high vacuum. For this reason, an active stainless steel surface that is naturally removed during the temperature rise in diffusion bonding and has no oxide film on the surface layer can be easily obtained. Good joining can be performed without leaving foreign matter.
  • pure copper has a copper oxide (CuO) film on the surface layer, but the oxide decomposes and oxygen diffuses into the copper matrix while it is held at the diffusion bonding temperature. Good bonding can be performed without leaving oxides and other foreign substances.
  • CuO copper oxide
  • the present inventor obtained a certain bonding strength when performing diffusion bonding, which has been known from the past, for age-hardening copper alloys. It was confirmed that the joint strength deteriorates and breaks often occur when the treatment is applied. This phenomenon was remarkable in the beryllium copper 25 alloy (JIS C1720), which is known to have the highest strength among the age-hardening copper alloys.
  • JIS C1720 beryllium copper 25 alloy
  • the present inventor presumes that the cause of this is an oxide film remaining on the joint surface, which is not confirmed in stainless steel or pure copper, and in order to clarify the mechanism by which the oxide film remains, the following as shown in FIG. 1A. The experiment was conducted. After each alloy shown in FIGS.
  • test piece 10 is processed into a plate having dimensions of 15 mm ⁇ 15 mm ⁇ 5 mm, the upper and lower surfaces of the obtained test piece 10 of 15 mm ⁇ 15 mm are wrapped to have a flatness of 0.1 mm or less and a flatness of 0.1 mm or less.
  • the oxide film was removed by washing with 30% nitric acid immediately before the test.
  • Three test pieces 10 were made for each alloy. As shown in FIG. 1A, one of the test pieces 10 is in contact with the vacuum atmosphere in the furnace, and the remaining two test pieces 10 are laminated (like a joint surface in diffusion bonding) and brought into close contact with each other.
  • the sample is taken out. While the surface (hereinafter referred to as the contact surface) was etched with argon, the oxide film 12 on the surface layer was elementally analyzed by an X-ray photoelectron spectroscopy analyzer (XPS, product name: Quantera SXM, manufactured by ULVAC-PHI).
  • XPS X-ray photoelectron spectroscopy analyzer
  • FIGS. 1B and 1C show the measurement results of the oxide film of each alloy after pickling, heat treatment on the open surface in the furnace, and / or heat treatment on the contact surface. From these results, in all the alloy tests, the oxide film was completely removed by pickling, and the open surface in the furnace had a very thick oxide film even under a high vacuum of 5 ⁇ 10-5 Torr. It can be seen that it is formed.
  • the degree of oxide film formation on the contact surface which is a problem in joining, is i) 5 ⁇ 10-5 of each alloy having a beryllium content of 0.7% by weight or less (berylium copper 11 alloy, beryllium copper 50 alloy, beryllium copper 10Zr alloy, chromium copper alloy, Corson copper AMPCO940, and Corson copper AMPCO944).
  • No oxide film is formed or very slightly formed when treated at the junction temperature under high vacuum of Torr (the degree of vacuum achieved during continuous exhaust with a diffusion pump).
  • the age-hardening copper alloy used for the copper alloy joint of the present invention is not particularly limited as long as the beryllium content is 0.7% by weight or less.
  • Beryllium copper alloys with a high Be content of more than 0.7% by weight (for example, beryllium copper 25 alloy (JIS alloy No. C1720)) have a significant residual oxide film on the joint surface, and are subjected to solution treatment and solution treatment. It cannot withstand the aging treatment and breaks at the joint after the solution treatment or the aging treatment.
  • an aging-hardening copper alloy having a low Be content of 0.7% by weight or less for diffusion bonding it can withstand solution heat treatment and aging treatment, and has extremely high bonding strength. Can be realized.
  • Examples of such aging curable copper alloys include beryllium copper 11 alloys (JIS alloy number C1751, EN material number CW110C, and UNS alloy number C17510) and beryllium copper 10 alloys (EN material number CW104C and UNS alloy number C17500).
  • Berylium copper CuCo1Ni1Be (EN material number CW103C), beryllium copper 14Z alloy, beryllium copper 50 alloy, beryllium copper 10Zr alloy, chromium copper (UNS alloy number C18200), chromium zirconium copper (UNS alloy number C18510 and EN material number CW106C), Examples thereof include zirconium copper (UNS alloy number C15000, EN material number CW120C) and Corson copper (EN material numbers CW109C, CW111C, UNS alloy numbers C19010, C70250, AMPCO944, and AMPCO940), and more preferably berylium copper 11 alloy.
  • beryllium copper 10 alloy is a beryllium copper 10 alloy, beryllium copper CuCo1Ni1Be, beryllium copper 14Z alloy, beryllium copper 50 alloy, or beryllium copper 10Zr alloy, and most preferably beryllium copper 11 alloy.
  • These preferred age hardening alloys not only can achieve extremely high bonding strength after solution aging, but also have excellent hydrogen embrittlement resistance and thermal conductivity, and are suitable for heat exchangers of precoolers for hydrogen stations. It is particularly advantageous as a material.
  • Table 1 The compositions of the various copper alloys described above are shown in Table 1 below.
  • the copper alloy bonded body of the present invention subjected to solution treatment and aging treatment has one or both of the following conditions: (I) The joint interface of a plurality of members has disappeared. (Ii) The joining interface of a plurality of members remains, and the thickness of the oxide film at the joining interface is 0 nm or more and 5.0 nm or less. It meets the requirements and contributes to the realization of high bonding strength. The disappearance or residue of the joint interface shall be determined by observing the cross section including the joint portion of the copper alloy joint with an optical microscope at a magnification of 200 to 1000 times (see, for example, FIGS. 2 and 3).
  • the disappearance / residue of the joint interface should be determined by whether or not there are traces of the joint surface of the copper alloy member before joining, and the grain boundaries derived from the joint surface move due to grain growth beyond the joint interface. If so, it is not determined that the joint interface remains.
  • the thickness of the oxide film at the bonding interface can be measured to determine whether or not the thickness is 0 nm or more and 5.0 nm or less. good.
  • the thickness of the oxide film at the junction interface is determined by observing the cross section including the junction interface with a scanning transmission electron microscope (STEM) and element mapping of the cross section by electron energy loss spectroscopy (EELS) / energy dispersive X-ray analysis (EDX).
  • the oxide film By acquiring an image and comparing the STEM image with the EELS / EDX element mapping image, the oxide film can be identified and its thickness can be determined.
  • the oxide film existing at the bonding interface may be not only a layered film but also a particulate film (that is, oxide particles), in which case the height of the oxide particles is included in the thickness of the oxide film. It shall be.
  • the presence or absence of the bonding interface can be confirmed with an optical microscope, it can be performed relatively easily and inexpensively, while STEM-EELS / EDX is a laborious and expensive analysis method. Therefore, in determining whether or not the above conditions (i) and / or (ii) are satisfied.
  • the thickness of the oxide film that can exist at the bonding interface of the copper alloy bonded body of the present invention is 0 nm or more and 5.0 nm or less, preferably 0 nm or more and 4.0 nm or less, more preferably 0 nm or more and 3.0 nm or less, and further. It is preferably 0 nm or more and 2.0 nm or less, particularly preferably 0 nm or more and 1.5 nm or less, and most preferably 0 nm or more and 1.0 nm or less.
  • the copper alloy bonded body of the present invention may contain crystal grains of an age-hardening copper alloy that has grown beyond the position (formerly bonded interface) that was the bonded interface or the bonded interface. That is, the copper alloy bonded body of the present invention has a structure in which the crystal grains on the bonded surface of the copper alloy member before bonding are reassembled and recrystallized after bonding at the bonding interface or the old bonding interface. It can be observed that the original bonding interface does not remain. When the copper alloy joint has such a joint microstructure, the joint strength becomes more excellent.
  • the copper alloy bonded body of the present invention has a high bonding strength equivalent to that of the base metal, that there is no residual component derived from a material other than the age-hardening copper alloy at the position where the bonding interface or the bonding interface was (former bonding interface). It is preferable from the viewpoint of ensuring the same hydrogen resistance as the base material. Therefore, it is desired that the copper alloy joint of the present invention does not contain a bonding agent such as a brazing material in the bonding. That is, the copper alloy joint of the present invention is preferably made of only age-hardening copper alloy.
  • the strength after solution aging treatment of the base material and the joint portion of the copper alloy joint is preferably 520 MPa or more, more preferably 690 MPa or more.
  • the strength of the copper alloy joint sufficiently meets the standards required for high-strength applications such as those used as heat exchangers for precoolers for hydrogen stations. Since high strength is desired, the upper limit should not be specified, but the solution aging of the base material and the joint portion of the copper alloy joint having a beryllium content of 0.7% by weight or less according to the present invention.
  • the strength after the treatment is typically 895 MPa or less.
  • test piece conforming to ASTM E8M Specimen 3 so that the joint is located at the center of the test piece, and for the test piece. It can be measured by performing a tensile test according to the procedure according to ASTM E8M.
  • the thermal conductivity (and its equivalent electric conductivity) of the base material including the joint portion of the copper alloy joint is preferably 209 W / mK or more (converted electric conductivity 50 IACS% or more), and more preferably 228 W / mK or more. (Conversion electric conductivity 55 IACS% or more), more preferably 246 W / mK or more (converted electric conductivity 60 IACS% or more).
  • Such a high heat conductivity has an advantage that the heat exchange efficiency is extremely high when used in a heat exchanger (for example, it is currently used in a heat exchanger of a precooler because of its excellent hydrogen characteristics.
  • the heat conductivity of the SUS316LNi equivalent product is as low as 16 W / mK, and the poor heat exchange efficiency is an operational difficulty). Since high thermal conductivity is desired, the upper limit should not be specified, but the base material containing the joint portion of the copper alloy joint having a beryllium content of 0.7% by weight or less according to the present invention. Therefore, although the strength of the base material and the joint portion can be secured at 520 MPa or more, the thermal conductivity is typically 280 W / mK or less.
  • the copper alloy joint including the joint is subjected to a low strain rate tensile (SSRT: Slow Straight Rate Tensile) test performed in a strain rate range of 5 ⁇ 10 -5 s -1 or less (for example, 5 ⁇ 10 -5 s -1 ).
  • the tensile strength in hydrogen gas is preferably 520 MPa or more, more preferably 690 MPa or more.
  • This copper alloy joint has excellent hydrogen embrittlement resistance including the joint and has high tensile strength.
  • This low strain rate tensile test shall be performed according to ASTM-G-142. In the low strain rate tensile test, for example, a standard test piece (smoothness test piece) may be used.
  • the strain rate may be measured at a strain rate of 5 ⁇ 10-5 s -1 . Assuming a 70 MPa class FCV (fuel cell vehicle) or a hydrogen station, this low strain rate tensile test shall be performed at a hydrogen gas pressure of 95 MPa or more.
  • the hydrogen characteristics were evaluated using the relative tensile strength RTS and the relative drawing RRA using a standard test piece (smoothness test piece).
  • the relative drawing RRA is preferably 0.8 or more, more preferably, when the tensile strength is 520 MPa or more, preferably 690 MPa or more in the low strain rate tensile test. Is 0.9 or more.
  • the tensile strength RTS is preferably 0.8 or more, more preferably 0.9 or more. It is this that the tensile strength of the copper alloy joint including the joint is a value within the above range under normal temperature atmosphere or hydrogen gas pressure of 95 MPa or more, and its RRA and RTS also satisfy the values within the above range.
  • the copper alloy joint has high strength and excellent hydrogen embrittlement resistance, and therefore, it is particularly suitable for use as a heat exchanger of a precooler for a hydrogen station. Since it is desired that the tensile strength is high, the upper limit thereof should not be specified, but the beryllium content of the copper alloy bonded body according to the present invention is 0.7% by weight or less under normal temperature atmosphere or 95 MPa or more. The tensile strength in the low strain rate tensile test under hydrogen gas pressure is typically 895 MPa or less.
  • the copper alloy joint may be in the form of having a flow path space inside thereof.
  • the flow path space can be used as an internal space for passing a medium such as hydrogen or a refrigerant. Therefore, the copper alloy junction provided with the flow path space is preferably used as a heat exchanger for a precooler for a hydrogen station, which is desired to have a plurality of flow path spaces through which hydrogen and a refrigerant each pass. can.
  • the copper alloy joint of the present invention is made of a plurality of age-hardening copper alloy members, if necessary, smoothing of the joint surface (arbitrary process), removal of oxide film, hot press bonding (diffusion bonding). It can be produced by sequentially performing a homogenization treatment (arbitrary step), a solution treatment, and an aging treatment, if necessary. Specifically, it is as follows.
  • (A) Preparation of Copper Alloy Member First, a plurality of age-hardening copper alloy members for use in joining are prepared.
  • the age-hardening copper alloy the beryllium content is 0.7% by weight or less, and the one as described above can be used.
  • the uppermost surface material and the lowermost surface material of the laminated joint manufactured as a heat exchanger are rolled materials or forged materials, and the rolled material is used for many laminated materials having or not having a cooling water channel other than the uppermost surface and the lowermost surface. It is preferably used.
  • a copper alloy material that does not cause hydrogen deterioration for the copper alloy joint of the present invention.
  • copper alloy materials for example, cupronickel (Cu-10% to 30%) has remarkable deterioration of hydrogen characteristics when the Ni concentration is 20% or more, and tough pitch copper (pure copper that has not been deoxidized) also has deterioration of hydrogen characteristics. It is known to occur prominently. Therefore, in selecting the copper alloy to be used for the copper alloy joint of the present invention, a low strain rate tensile test (for example, according to ASTM-G-142) in each atmosphere in the atmosphere and under high pressure hydrogen (for example, in 95 MPa hydrogen) is applied.
  • the displacement rate is 0.001 mm / sec (strain rate 0.00005 / sec)), and the test results in the atmosphere are compared with the test results under high-pressure hydrogen, and the test results are compared under hydrogen. It is desirable to confirm that the copper alloy material does not deteriorate.
  • the copper alloy joint of the present invention has an RRA (relative drawing) of 0.8 or more in hydrogen gas as measured by a low strain rate tensile test performed at a strain rate of 5 ⁇ 10 -5 s -1 or less. It is preferably made by using the copper alloy member, and more preferably 0.9 or more.
  • the plurality of age-hardening copper alloy members to be used for joining have a flatness of 0.1 mm or less and ten points of 6.3 ⁇ m or less (preferably 2.0 ⁇ m or less). It is necessary to have a flat surface with an average roughness Rzjis. That is, as described above, even if the oxide film on the surface of the joining member is removed, in order to suppress the reoxidation of the joining surface in hot press joining (diffusion joining), it penetrates into the joining surface even in a high vacuum atmosphere. It is necessary to secure the adhesion of the joint surface so that the number of oxygen atoms to come is sufficiently reduced, and this adhesion can be ensured if the flatness and the ten-point average roughness are within the above range.
  • the member to be joined is a rolled material, it often satisfies the flatness and the ten-point average roughness within the above range, so that no special smoothing step is required.
  • the flatness and the ten-point average roughness within the above range are not satisfied, the flatness having the flatness and the ten-point average roughness within the above range is obtained by polishing, cutting, and / or other methods. Form a surface.
  • the plate material may have curls, etc., the plate thickness accuracy is well adjusted, and the flatness becomes 0.1 mm or less when the necessary load is applied in hot pressing bonding (diffusion bonding). There is no problem as long as the adhesion can be ensured.
  • the ten-point average roughness Rzjis is the surface roughness specified in JIS B 0601-2001.
  • the flatness is a parameter defined in JIS B 0621-1984 as "the magnitude of deviation from a geometrically correct plane (geometric plane) of a plane shape", and the object is targeted. When sandwiched between a pair of planes, it means the value indicated by the width.
  • the groove may be formed by various known methods such as etching, pressing, and machining. By doing so, it can be used for manufacturing a copper alloy bonded body having a flow path space inside as described above. For example, by alternately laminating and joining a grooved copper alloy plate and a grooveless copper alloy plate, it is possible to manufacture a copper alloy laminate having a large number of flow paths.
  • the multilayer junction having such a configuration can be preferably used as a heat exchanger of a precooler for a hydrogen station, which is desired to have a plurality of flow path spaces through which hydrogen and a refrigerant each pass.
  • (B) Removal of oxide film As described above, an oxide film is present on the surface of the copper alloy member. Therefore, the oxide film existing on the surface of the copper alloy member to be joined is removed.
  • the removal of the oxide film is preferably performed by washing the surface of the copper alloy member to be joined with an inorganic acid solution, because the oxide film can be effectively removed.
  • the inorganic acid solution include nitric acid, sulfuric acid, chemical polishing liquid, hydrochloric acid, giraffe bath, hydrofluoric acid and the like, and nitric acid is particularly preferable.
  • the chemical polishing liquid is an acid obtained by adding hydrogen peroxide, which is an oxidizing agent, to sulfuric acid
  • the giraffe bath is a mixed acid of sulfuric acid, nitric acid and hydrochloric acid, and a small amount of sodium hydroxide may be added.
  • the removal of the oxide film may be performed by mechanical polishing, or mechanical polishing and cleaning with an inorganic acid solution may be used in combination.
  • Hot pressing bonding (diffusion bonding) A plurality of copper alloy members are joined by hot pressing to form an intermediate joint.
  • This joining can be performed according to the method of diffusion joining.
  • a hot press is performed in a furnace with a degree of vacuum higher than 1.0 ⁇ 10 -2 Torr (ie lower pressure than 1.0 ⁇ 10 -2 Torr) at a temperature of 500-1050 ° C. for 30-480 minutes. It is preferably carried out by applying a pressure of 1.0 MPa or more.
  • the hot press will have a higher vacuum than 1.0 ⁇ 10 -1 Torr (ie, a pressure lower than 1.0 ⁇ 10 -1 Torr).
  • the amount of length deformation in the pressing direction at the time of joining the copper alloy member is preferably 0.5% or more and 30% or less, more preferably 1% or more and 20% or less, still more preferably. It is performed so as to be 2% or more and 8% or less.
  • hot pressing temperature and pressure preferably 1 MPa or more and 16 MPa or less at 840 ° C or higher and 1050 ° C or lower, 2 MPa or higher and 24 MPa or lower at 720 ° C or higher and 840 ° C or lower, and 600 ° C or higher.
  • the hot pressing time is preferably 15 to 480 minutes, more preferably 30 to 150 minutes, and even more preferably 30 to 60 minutes.
  • the degree of vacuum in the furnace during hot pressing is preferably less than 1.0 ⁇ 10 -3 Torr, more preferably less than 1.0 ⁇ 10 -4 Torr, and more preferably 5 from the viewpoint of suppressing the progress of oxidation. .0 ⁇ 10 -5 Torr or less.
  • the hot pressing is performed at a relatively low temperature and a relatively high pressure to prevent the flow path from being crushed by the press. It is preferable in that it can be controlled to be minor.
  • the hot press in this embodiment has a higher degree of vacuum than 1.0 ⁇ 10 ⁇ 2 Torr (ie, a pressure lower than 1.0 ⁇ 10 ⁇ 2 Torr), more preferably 1.0 ⁇ 10 -4 Torr.
  • (D) Homogenization treatment (arbitrary step) When a groove is formed on the surface of the copper alloy member to give the intermediate joint a flow path space, and when hot pressing is performed at a relatively low temperature and a relatively high pressure, prior to the solution treatment.
  • the homogenization treatment is also referred to as homogenization annealing, but the term homogenization treatment is used in the present specification.
  • the bonding interface tends to remain, but the bonding interface can be reduced or eliminated by performing the homogenization treatment, and the subsequent solution formation.
  • Extremely high bonding strength can be achieved by undergoing treatment and aging treatment. That is, it is possible to achieve both suppression of crushing of the flow path and high joint strength.
  • the homogenization treatment is carried out in the atmosphere at a pressure lower than 1.0 ⁇ 10 -1 Torr, or nitrogen reduced to normal pressure or a pressure lower than 1.0 ⁇ 10 -1 Torr in order to suppress the progress of oxidation. Treatment in an inert atmosphere is preferred.
  • the homogenization treatment temperature is preferably 900 to 1050 ° C, more preferably 930 to 1000 ° C, and even more preferably 960 to 990 ° C.
  • the holding time at the homogenization treatment temperature is 60 to 480 minutes, more preferably 60 to 360 minutes, still more preferably 60 to 240 minutes. Needless to say, the homogenization treatment may be performed as necessary even when the groove is not formed on the surface of the copper alloy member.
  • thermoforming bonding (diffusion bonding) and (d) homogenization treatment are continuously performed by releasing the press load and raising the temperature without lowering the temperature inside the furnace.
  • hot press bonding (diffusion bonding) under temperature and pressurization conditions where the flow path space is not excessively crushed
  • hot press bonding (diffusion bonding) and homogenization processing are performed on the flow path space. Since the homogenization treatment at a temperature effective for microstructure homogenization can be performed as a series of continuous operations without crushing and pressurizing, it is advantageous not only from the viewpoint of improving the reliability of the joint but also from the economical point of view.
  • the intermediate junction is subjected to solution treatment.
  • This dissolution treatment is preferably carried out by heating the intermediate junction in a furnace such as an atmosphere furnace, a non-oxidizing atmosphere furnace, a salt bath furnace, etc. for 1 to 180 minutes at a temperature of 700 to 1100 ° C., and then cooling with water.
  • the copper alloy used in the present invention is an aging hardening type alloy, and is obtained by eliminating the bonding interface or adjusting the thickness of the oxide film at the bonding interface to a certain level or less, and then undergoing a solution treatment and a subsequent aging treatment. , Desired tempering properties (eg, high strength), especially very high bonding strength can be exhibited.
  • the solution treatment temperature varies slightly depending on the alloy composition, but is preferably 700 to 1100 ° C, more preferably 800 to 1050 ° C, and even more preferably 900 to 1000 ° C.
  • the substantial holding time at the solution treatment temperature is preferably 1 to 180 minutes, more preferably 5 to 90 minutes, and even more preferably 10 to 60 minutes.
  • (F) Aging treatment The intermediate junction that has been subjected to the solution treatment is subjected to aging treatment.
  • aging treatment The appropriate range of the aging treatment differs slightly depending on the alloy composition, it is preferable to carry out the aging treatment at 350 to 550 ° C. for 30 to 480 minutes.
  • an aging-hardened alloy such as a beryllium copper alloy can exhibit desired tempering characteristics (for example, high strength), particularly extremely high bonding strength, by undergoing solution heat treatment and aging treatment.
  • the aging treatment temperature is preferably 350 to 550 ° C, more preferably 400 to 500 ° C, and even more preferably 450 to 480 ° C.
  • the holding time at the aging treatment temperature is preferably 30 to 480 minutes, more preferably 30 to 300 minutes, still more preferably 60 to 240 minutes, and particularly preferably 90 to 180 minutes.
  • the aging treatment may be performed in a furnace with a vacuum degree higher than 1.0 ⁇ 10 -1 Torr (that is, a pressure lower than 1.0 ⁇ 10 -1 Torr) or a non-oxidizing atmosphere such as nitrogen. preferable.
  • a hydrogen resistant member composed of Corson copper (EN material numbers CW109C, CW111C, UNS alloy numbers C19010, C70250, AMPCO944, and AMPCO940).
  • the hydrogen resistant member of this embodiment is not limited to the copper alloy joint as described above, and may be various forms of copper alloy products. That is, as demonstrated in Examples described later, even Corson copper has hydrogen embrittlement resistance, and therefore has utility value as a hydrogen resistance member.
  • Corson copper has an advantage that a product with a joint can be stably manufactured, and thus is advantageous in that a product made of a hydrogen resistant member can be stably supplied.
  • a hydrogen resistant member is defined as a member used in contact with hydrogen.
  • Examples of applications of the hydrogen resistant member are connected to a storage member that stores hydrogen, a heat exchange member that circulates hydrogen and exchanges heat (for example, a heat exchanger), a piping member that circulates hydrogen, and a piping member that circulates hydrogen.
  • This hydrogen resistant member may be used in a state of being in contact with medium pressure hydrogen such as 30 MPa or more or 45 MPa or more and high pressure hydrogen such as 70 MPa or more or 90 MPa or more.
  • the hydrogen resistant member may be used in, for example, a hydrogen station that handles high-pressure hydrogen or a fuel cell vehicle (FCV).
  • FCV fuel cell vehicle
  • Examples 1-57 A copper alloy joint was prepared by the following procedure and various evaluations were performed.
  • the end faces (hereinafter referred to as joint surfaces) used for joining copper alloy round bars are measured in accordance with JIS B 0601-2001 by lathe processing, lap polishing and the like.
  • a flat surface having an average roughness Rzjis of less than 6.3 ⁇ m and a flatness of 0.1 mm or less measured in accordance with JIS B 0621-1984 was used.
  • each joint surface of the two copper alloy round bars is a flat surface having a flatness of 0.1 mm or less measured in accordance with JIS B 0621-1984, but has a ten-point average roughness. It was intentionally adjusted so that Rzjis had a value larger than 6.3 ⁇ m. Further, in Example 42, the ten-point average roughness Rzjis measured on each joint surface of the two copper alloy round bars in accordance with JIS B 0601-2001 is smaller than 6.3 ⁇ m, but JIS B 0621-. It was intentionally adjusted so that the flatness measured according to 1984 was a value larger than 0.2 mm.
  • Example 36 Removal of oxide film (excluding Example 36)
  • the joint surfaces of the two copper alloy round bars were washed with 30% nitric acid to remove the oxide film existing on the joint surfaces.
  • Example 55 the joint surface of the two copper alloy round bars was washed with a chemical polishing solution (20% sulfuric acid containing 3% hydrogen peroxide solution) to remove the oxide film existing on the joint surface.
  • Example 49, 54 and 56 the joint surfaces of the two copper alloy round bars were mechanically polished with # 600 Emery paper to remove the oxide film existing on the joint surfaces.
  • Example 57 the joint surface of the two copper alloy round bars was mechanically polished with a # 320 buff (nylon / polyester non-woven fabric) to remove the oxide film existing on the joint surface. In Example), the oxide film was not removed.
  • FIG. 3 shows the cross-sectional photographs obtained in Examples 26, 27 and 28, and FIG. 4 shows the cross-sectional photographs obtained in Examples 47 and 53.
  • Each photo is shown.
  • Examples 2 CuBe11
  • 30 CuBe10Zr
  • the bonding interface has disappeared, suggesting high bonding quality, while Comparative Example 43 (CuBe25).
  • Example 46 CuBe165
  • the residue of the bonding interface was confirmed.
  • the bonded samples of Examples 33 CuBe50), Example 26 (CuCr), Example 27 (CuCrZr), Examples 28 and 47 (Corson Copper AMPCO940) and Example 53 (Corson Copper AMPCO944) have high bonding strength. Despite being obtained, residual bonding interface has been confirmed.
  • Examples 2 and 3 are examples in which a bonded body having a high bonding strength (> 690Ma) was realized as a result of withstanding the solution aging by using CuBe11.
  • the bonded surface was not confirmed by the observation with an optical microscope, but there was a place where the bonded surface could be specified by STEM.
  • the STEM image and the EELS / EDX element mapping image shown in FIG. 5 no residual oxide film was observed on the joint surface in Example 2 (that is, the thickness of the oxide film was 0 nm). ). No residual oxide film was confirmed by EELS mapping.
  • Example 3 an oxide film having a thickness of 0.7 nm was observed in some parts.
  • EELS mapping also confirmed the residual oxide film with a thickness of 1 nm or less.
  • CuBe11 has an oxide film having a thickness of 0 to 1 nm, but it can be seen that a good bonding strength can be ensured if the oxide film is as thin as this.
  • Example 30 is an example in which a bonded body having a high bonding strength (> 690Ma) is realized as a result of withstanding the solution aging by using CuBe10Zr.
  • a bonded body having a high bonding strength > 690Ma
  • EELS / EDX elemental analysis no residual oxide film was observed as in Example 2 (CuBe11).
  • a concentrated portion of Zr was confirmed in the base metal matrix, but it was not an oxide (ZrO) residue at the bonding interface and therefore did not affect the bonding quality.
  • Example 33 is an example in which a bonded body having a high bonding strength (> 690Ma) is realized as a result of withstanding the solution aging by using CuBe50.
  • a bonded body having a high bonding strength > 690Ma
  • EELS / EDX elemental analysis no residual oxide film was observed as in Example 2 (CuBe11) and Example 19 (CuBe10Zr).
  • Example 26 is an example in which a bonded body having high bonding strength is realized as a result of using CuCr to withstand solution aging.
  • Example 2 CuBe11
  • Example 30 CuBe10Zr
  • Example 33 CuBe50
  • Cr enriched parts were found in the base metal matrix and at the bonding interface, but they are not oxide (CrO) residues at the bonding interface and therefore do not affect the bonding quality.
  • Example 43 is a comparative example of a bonded body broken during solution aging as a result of using CuBe25.
  • a homogeneous oxide film of about 6 nm was observed over the entire surface of the bonding interface in the bonded body (as it was bonded).
  • the thickness of the oxide film at the two specific locations was 5.8 nm and 6.2 nm (see FIG. 6A).
  • a thick spherical oxide film was present in some places as shown by black dots (emphasized by arrows) in the region where the BeO concentration was high in FIG. 6B.
  • the thickness of the oxide film of these spherical portions was determined to be about 15 to 20 nm from the ELLS mapping shown in FIG. 6C.
  • Example 46 is a comparative example of a bonded body broken during solution aging as a result of using CuBe165.
  • a uniform oxide film was not observed over the entire surface of the joint surface, and a site where no oxide film was present was locally observed.
  • a thick spherical oxide film due to high concentration BeO was observed in some places.
  • the thickness of these spherical oxide films was determined to be about 20 nm to a little over 50 nm. It was determined that the thickness of the oxide film including both the homogeneous oxide film and the spherical oxide film was in the range of 1 to 80 nm.
  • Examples 47 and 53 are examples in which a bonded body having high bonding strength is realized as a result of using Corson copper AMPCO 940 and Corson copper AMPCO 944, respectively, to withstand solution aging.
  • the joint surface could be specified by STEM.
  • FIGS. 7 and 8 corresponding to Examples 47 and 53, respectively
  • Example 47 and 53 residual oxide film was observed on the joint surface. No (ie, the thickness of the oxide film was 0 nm). No residual oxide film was confirmed by EELS mapping.
  • the electric conductivity (IACS%) of the bonded sample was measured at room temperature using an eddy current type conductivity meter (product name: Hocking AutoSigma 3000DL, manufactured by GE Sensing & Inspection Technologies). The obtained electric conductivity was converted into a correlation formula based on the Wiedemann-Franz law to obtain the thermal conductivity (W / mK).
  • FIGS. 9A and 9B show stress-stroke diagrams
  • FIGS. 10A and 10B show SEM images of the fracture surface of the test piece of Example 17, respectively.
  • the fractures shown in FIGS. 10A and 10B occurred in the base metal portion, the fracture form was cup-and-cone fracture, and the fracture surface had a dimple shape characteristic of ductile fracture. From these, it was found that the bonding material of the present invention has high tensile strength and excellent hydrogen embrittlement resistance.
  • Example 58-67 Bonded samples with a flow path space inside were prepared under various conditions and evaluated.
  • a plurality of copper alloy plates (cast products) having a thickness of 1.6 mm and a size of 50 mm ⁇ 50 mm having the alloy types and compositions shown in Table 7 were prepared.
  • a groove having an arch-shaped cross section having a width of 2.4 mm and a depth of 1.2 m was formed by etching to form a flow path space.
  • the grooved copper alloy plates and the ungrooved copper alloy plates are alternately laminated, or the grooved alloy plates having grooves on both sides are alternately laminated.
  • Diffusion bonding was performed by hot pressing under the bonding conditions and the amount of deformation during bonding shown in Table 7. In this way, an intermediate junction having a flow path space was obtained. The degree of collapse of the flow path of the obtained intermediate joint and the joint state were evaluated by microscopic observation. Diffusion bonding is more advantageous at higher temperatures, but as can be seen from the results shown in Table 7, the hollow body of this example in which the flow path is formed becomes significantly crushed at high temperature and high pressure, the flow path becomes narrow, and further, the flow path is blocked. I tend to do it. In order to reduce such crushing, it is considered that the joining conditions of a temperature of 840 ° C. or lower and a pressure of 5 MPa or higher are preferable for the hollow body.
  • the bonding state of the intermediate bonded body was observed under a microscope, it was confirmed that the bonded surface disappeared under high temperature and high pressure bonding conditions, but as the temperature decreased, the bonding surface remained regardless of the bonding pressure.
  • the joint surface can be lost by the homogenization treatment at high temperature. Therefore, it can be said that it is advantageous in the production of a bonded body having a flow path space to perform a high-temperature homogenization treatment after performing a high-load bonding at a temperature slightly lower so that the flow path collapse is suppressed. ..
  • Example 62 the intermediate bonded body provided with the flow path space prepared in Example 62 (840 ° C., 3 Pa) was subjected to homogenization treatment (high temperature soaking) at 980 ° C. for 8 hours.
  • This intermediate bonded body was held at 930 ° C. for 5 minutes and cooled with water (solution treatment).
  • the obtained bonded body was held at 450 ° C. for 3 hours and then cooled in a furnace (aging treatment).
  • a copper alloy bonded body (including a flow path) subjected to homogenization treatment and solution aging was obtained.
  • FIG. 11 shows an optical microscope image obtained by observing a cross section including a joint portion in the vicinity of the flow path of the prepared copper alloy joint body of Example 62.
  • the disappearance of the bonding interface was confirmed in the homogenized bonded body.
  • the bonding interface disappears, it becomes indistinguishable from the base metal, and it becomes completely homogenous (that is, the aging hardening copper alloy that has grown beyond the old bonding interface at the joint). Crystal grains will be present).
  • the base metal is broken instead of the joint surface (there are some joints that break the base metal even without homogenization, and the crystal grains exceed the old bonding interface.
  • Homogenization treatment is not essential for the growth of Therefore, as described above, although the residue of the joint surface is confirmed when the low temperature and high load joint with less water channel collapse is performed, the joint surface can be eliminated by performing the high temperature homogenization treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

接合処理後の溶体化処理及び時効処理に耐えることで、極めて高い接合強度が実現された時効硬化性銅合金の接合体が提供される。この銅合金接合体は、互いに拡散接合された複数の時効硬化性銅合金製の部材で構成される。銅合金接合体は溶体化処理及び時効処理が施されたものであり、時効硬化性銅合金のベリリウム含有量が0.7重量%以下であり、かつ、(i)複数の部材の接合界面が消失している、及び/又は(ii)複数の部材の接合界面が残留しており、該接合界面の酸化被膜の厚さが0nm以上5.0nm以下である。

Description

銅合金接合体及びその製造方法
 本発明は、銅合金接合体及びその製造方法に関する。
 燃料電池車等に水素を補給する水素ステーションでは、約-45℃に冷却された高圧水素の急速な供給を可能とするためのプレクーラーが設置されている。すなわち、燃料電池車等のタンクに水素を急速に充填すると断熱圧縮によりタンク温度が上昇し危険であるため、供給時にプレクーラーで水素を冷却しておくことで、燃料電池車等への高圧水素の安全かつ急速な供給を可能としている。したがって、水素ステーション用プレクーラーの主要構成部品である熱交換器には、水素脆性を呈しないことは勿論のこと、高圧に耐えうる引張強度、及び効率的な冷却を可能とする熱伝導性を備えた材料を用いることが好ましい。現在、水素ステーション用プレクーラーの熱交換器には水素脆化を起こさないという要件から、SUS316L(Ni当量材)等の高圧水素用ステンレス鋼が採用されているが、引張強度及び熱伝導性の観点で改善の余地を残している。
 高い引張強度と熱伝導性を有する材料として知られているベリリウム銅は、熱交換器用素材として好適であり、高圧水素下でも水素脆化を起こさないことも確認されている。例えば、特許文献1(特開平9-87780号公報)には、水素ステーション用途ではないものの、Be含有率が1.0~2.5%、NiとCoの合計含有率が0.2~0.6%、残部がCu及び不可避不純物からなる熱交換器用ベリリウム銅合金が開示されている。また、特許文献2(特開2017-145472号公報)には、Be含有量が0.20~2.70重量%、Co、Ni及びFeの合計含有量が0.20~2.50重量%、Cu、Be、Co、Ni及びFeの合計含有量が99重量%以上であるベリリウム銅合金が開示されており、耐水素脆性、引張強度及び熱伝導性に優れるとされている。ベリリウム銅合金は、水素脆性を呈しない(すなわち耐水素脆性を有する)のに加え、高圧水素用ステンレス鋼よりも高い引張強度(例えば約1.5~2.5倍)、ステンレス鋼よりも高い熱伝導性(例えば約7~16倍)を有するため、低純銅や低強度の銅合金では実現できない高圧水素用熱交換器のサイズをステンレス鋼製のものよりも格段に小さくすることができる(例えば約4分の1)。
特開平9-87780号公報 特開2017-145472号公報
 水素ステーション用プレクーラーの熱交換器は、水素及び冷媒を通す流路を形成するため、スリット又は溝を備えた金属板を多層接合した構造を有する。現在採用されている高圧水素用ステンレス鋼の接合方法としては、接合温度への減圧昇温過程で表層の酸化被膜を昇華除去し、融点以下の高温下で接合部に密着圧力を加えてステンレス鋼板同士を接合させる拡散接合が広く知られている。しかしながら、銅合金は、(i)単純な減圧昇温では容易に除去し難い強固な酸化被膜を有する、及び/又は(ii)接合前に酸化被膜を除去しても接合工程における高真空下の昇温中において接合面(密着面)においても酸化被膜が再形成しやすい(しかも接合温度近くの温度になっても当該酸化被膜が昇華しにくい)。かかる銅合金を同様の工程で拡散接合を行った場合、一定の接合強度は確保されるが、母材同等の組織と強度を得ることは困難であった。特に、上述した高圧の熱交換器用途で求められるような極めて高い強度の銅合金部材を実現するために、時効硬化性銅合金に溶体化処理及び時効処理を施す必要がある。しかし、十分な接合強度が確保されていない時効硬化性銅合金の拡散接合体は溶体化処理及び時効処理に伴う厳しい熱衝撃や寸法変動に耐え切れず、接合部で破断してしまうという問題があった。
 本発明者は、今般、ベリリウム含有量0.7重量%以下の時効硬化性銅合金を選択的に採用し、接合面を所定の平坦性に仕上げて酸化被膜を除去した後に、拡散接合(及び必要に応じて均質化処理)を行った場合に、接合界面を消失させる(あるいはそうでなくても接合界面の酸化被膜を厚さ5.0nm以下とする)ように溶体化処理及び時効処理を施すことができ、それにより極めて高い接合強度を有する銅合金接合体を提供できるとの知見を得た。
 したがって、本発明の目的は、接合処理後の溶体化処理及び時効処理に耐えることで、極めて高い接合強度が実現された時効硬化性銅合金の接合体を提供することにある。
 本発明の一態様によれば、互いに拡散接合された複数の時効硬化性銅合金製の部材で構成される銅合金接合体であって、前記銅合金接合体は溶体化処理及び時効処理が施されたものであり、
 前記時効硬化性銅合金のベリリウム含有量が0.7重量%以下であり、かつ、
(i)前記複数の部材の接合界面が消失している、及び/又は
(ii)前記複数の部材の接合界面が残留しており、該接合界面の酸化被膜の厚さが0nm以上5.0nm以下である、銅合金接合体が提供される。
 本発明の他の一態様によれば、銅合金接合体の製造方法であって、
 接合されるべき面が0.1mm以下の平面度及び6.3μm以下の十点平均粗さRzjisを有する平坦面である、ベリリウム含有量が0.7重量%以下である時効硬化性銅合金製の複数の部材を用意する工程と、
 前記複数の部材の接合されるべき表面に存在する酸化被膜を除去する工程と、
 前記複数の部材を熱間プレスにより拡散接合させて中間接合体とする工程と、
 前記中間接合体に、700~1100℃の温度で1分~3時間の加熱及びその後の水冷を伴う溶体化処理を施す工程と、
 前記溶体化処理が施された中間接合体に350~550℃で30分~480分間の時効処理を施す工程と、
を含む、銅合金接合体の製造方法が提供される。
 本発明の別の態様によれば、コルソン銅(EN材料番号CW109C、CW111C、UNS合金番号C19010、C70250、AMPCO944、及びAMPCO940)で構成される耐水素部材が提供される。あるいは、コルソン銅の耐水素部材における使用、又はコルソン銅を使用することを含む耐水素部材の製造方法が提供される。コルソン銅は高圧水素下でも水素脆化を起こさないことを本発明者は今回確認した。
高真空炉での熱処理において各種銅合金の表面に形成される酸化被膜を元素分析する実験の手順を説明するための図であり、酸化の進行を概念的に示すとともに、元素分析を行う炉内開放面及び密着面の位置、並びにサンプルの外観を示す。 図1Aに示される実験手順に従い、高真空炉で熱処理を行った際に各種銅合金の表面(酸洗面、炉内開放面及び/又は密着面)に形成される酸化被膜を元素分析した結果である。具体的には、ベリリウム銅25合金、ベリリウム銅165合金、ベリリウム銅11合金、ベリリウム銅10Zr合金、ベリリウム銅50合金、及びクロム銅合金のXPS結果が示される。 図1Aに示される実験手順に従い、高真空炉で熱処理を行った際に各種銅合金の表面(酸洗面、炉内開放面及び/又は密着面)に形成される酸化被膜を元素分析した結果である。具体的には、コルソン銅AMPCO940及びコルソン銅AMPCO944のXPS結果が示される。 溶体化処理及び時効処理を経て作製された例2、30、33、43及び46の銅合金接合体の接合部を含む断面を観察した、200倍、500倍及び1000倍の光学顕微鏡像である。 溶体化処理及び時効処理を経て作製された例26、27及び28の銅合金接合体の接合部を含む断面を観察した、200倍、500倍及び1000倍の光学顕微鏡像である。 溶体化処理及び時効処理を経て作製された例47及び53の銅合金接合体の接合部を含む断面を観察した、200倍、500倍及び1000倍の光学顕微鏡像である。 拡散接合されたままの(溶体化処理及び時効処理を経ていない)例2の銅合金接合体(CuBe11)の接合面を含む断面のSTEM像及びEELS/EDX元素マッピング像である。 拡散接合されたままの(溶体化処理及び時効処理を経ていない)例43(比較)の銅合金接合体(CuBe25)の接合面を含む断面のSTEM像及びEELS/EDX元素マッピング像である。 図6Aに示される銅合金接合体(CuBe25)の接合面を含む断面のSTEM像(HAADF像)である。 図6Aに示される銅合金接合体(CuBe25)の接合面を含む断面のSTEM像及びEELS/EDX元素マッピング像である。 拡散接合後に溶体化処理及び時効処理が施された例47の銅合金接合体(コルソン銅AMPCO940)の接合面を含む断面のSTEM像及びEELS/EDX元素マッピング像である。 拡散接合後に溶体化処理及び時効処理が施された)例53の銅合金接合体(コルソン銅AMPCO944)の接合面を含む断面のSTEM像及びEELS/EDX元素マッピング像である。 溶体化処理及び時効処理を経て作製された例2の銅合金接合体(CuBe11)に対して空気中又は水素ガス中で行われた低ひずみ速度引張試験(SSRT)の応力-ストローク線図である。 溶体化処理及び時効処理を経て作製された例17及び18の銅合金接合体(CuBe11)に対して空気中又は水素ガス中で行われた低ひずみ速度引張試験(SSRT)の応力-ストローク線図である。 接合素材として用いた、溶体化時効処理を行ったベリリウム銅11合金又はベリリウム銅25合金に対して空気中又は水素ガス中で行われた低ひずみ速度引張試験(SSRT)の応力-ストローク線図である。 接合素材として用いた、溶体化時効処理を行ったコルソン銅AMPCO940に対して空気中又は水素ガス中で行われた低ひずみ速度引張試験(SSRT)の応力-ストローク線図である。 接合素材として用いた、溶体化時効処理を行ったコルソン銅AMPCO944に対して空気中又は水素ガス中で行われた低ひずみ速度引張試験(SSRT)の応力-ストローク線図である。 溶体化処理及び時効処理を経て作製された例17の銅合金接合体(CuBe11)の、空気中での低ひずみ速度引張試験(SSRT)後の破断面を観察したSEM像である。 図10Aに示される破断面の特定位置を観察した拡大SEM像である。 980℃での均質化処理を経て作製された、流路空間を備えた例62の接合体試料の接合部を含む断面を観察した光学顕微鏡像である。
 銅合金接合体
 本発明の銅合金接合体は、互いに拡散接合された複数の時効硬化性銅合金製の部材で構成され、溶体化処理及び時効処理が施されたものである。時効硬化性銅合金のベリリウム含有量は0.7重量%以下である。そして、この銅合金接合体は、(i)複数の部材の接合界面が消失している、及び/又は(ii)複数の部材の接合界面が残留しており、該接合界面の酸化被膜の厚さが0nm以上5.0nm以下であるものである。このように、ベリリウム含有量0.7重量%以下の時効硬化性銅合金を選択的に採用した場合に、接合界面を消失させる(あるいはそうでなくても接合界面の酸化被膜を厚さ5.0nm以下とする)ように、(必要に応じて均質化処理を行った後)溶体化処理及び時効処理を施すことで、極めて高い接合強度を有する銅合金接合体を提供することができる。
 前述したとおり、(i)単純な減圧昇温では容易に除去し難い強固な酸化被膜を有する、及び/又は(ii)高真空下においても酸化被膜を再形成する銅合金を同様の工程で拡散接合を行った場合、一定の接合強度は確保されるが、母材と同等の組織と強度を得ることは困難であった。特に、上述した熱交換器用途で求められるような極めて高い強度の銅合金部材を実現するためには、時効硬化性銅合金に溶体化処理及び時効処理を施すことが必要であるが、時効硬化性銅合金の拡散接合体は溶体化処理及び時効処理に伴う厳しい熱衝撃や寸法変動に耐え切れず、接合部で破断してしまうという問題があった。
 この点、本発明の上記構成によれば、このような問題が好都合に解消され、極めて高い接合強度を有する銅合金接合体を提供することが可能となる。その理由は、後述する本発明者の確認試験において明らかとなったように、以下のとおりである。すなわち、ベリリウム含有量0.7重量%以下の時効硬化性銅合金を選択的に採用し、接合面の平坦性と表面粗さを拡散接合に適するように調整した上で接合面の酸化被膜を除去し、銅合金部材の接合界面同士を密着させて加圧昇温して拡散接合を行う。この場合には、ベリリウム含有量が0.7重量%を超える時効硬化性銅合金において形成される接合面の酸化被膜が形成されない、あるいは極めて軽微にしか形成されないために、溶体化処理及び時効処理に十分に耐えうる高品質の拡散接合が実現される。
 ところで、ステンレス鋼、純銅等は拡散接合により高い信頼性を持つ接合を行うことができることが知られている。ステンレス鋼は大気下で形成される表層の緻密なクロム酸化被膜が保護被膜となり強い耐候性を有するが、この酸化被膜は高真空下で700℃を越える温度で加温すると昇華する。このため、拡散接合における昇温中に自然に除去されて表層に酸化被膜の無い活性なステンレス鋼の表面が容易に得られるので、接合温度で加圧するだけで、接合界面に酸化物及びその他の異物が残らない良好な接合を行うことができる。また、純銅は表層に酸化銅(CuO)皮膜を有するが、拡散接合温度で保持している間に当該酸化物は分解し、酸素は銅マトリックス中に拡散するので、ステンレス鋼同様、接合界面に酸化物及びその他の異物が残らない良好な接合を行うことができる。
 本発明者は、本発明の完成に先立つ試験において、時効硬化性銅合金に従前より知られる拡散接合を行った際には一定の接合強度が得られるが、得られた接合体に溶体化時効処理を施した場合に接合強度が劣化して破断してしまうことが多いことを確認した。この現象は、時効硬化性銅合金中最も高い強度が得られることで知られるベリリウム銅25合金(JIS C1720)において顕著であった。本発明者は、この原因がステンレス鋼や純銅においては確認されない、接合面に残留する酸化被膜であると推定し、酸化被膜が残留するメカニズムを明らかにするため、図1Aに示されるような以下の実験を行った。図1B及び1Cに示される各合金を15mm×15mm×5mmの寸法の板状に加工後、得られた試験片10の15mm×15mmの上下面をラップ加工して、平面度0.1mm以下及び表面粗さRzjis0.8μm以下に平坦化した後、試験を行う直前に30%硝酸で洗浄して酸化被膜を除去した。各合金について3つの試験片10を作製した。図1Aに示されるように、試験片10の1つは炉内真空雰囲気に触れる状態で、残りの2枚の試験片10は積層して(拡散接合における接合面のように)密着させた状態で、それぞれ接合炉内に入れた。接合炉内にて各種減圧条件下で、接合時と同様の熱処理を行った後に取出し、前者は炉内雰囲気に触れていた面(以下、炉内解放面という)、後者は試料相互が密着していた面(以下、密着面という)をアルゴンエッチングしながら、表層の酸化被膜12をX線光電子分光分析装置(XPS、製品名:Quantera SXM、アルバック・ファイ社製)で元素分析した。
 図1B及び1Cに各合金の、酸洗後、炉内解放面熱処理後、及び/又は密着面熱処理後の酸化被膜の測定結果を示す。これらの結果から、いずれの合金の試験も酸洗により完全に酸化被膜が除去されていること、炉内解放面は5×10-5Torrの高真空下であっても非常に厚い酸化被膜が形成されることが分かる。接合において問題となる、密着面の酸化被膜形成度合いは、
i)ベリリウム含有量が0.7重量%以下の各合金(ベリリウム銅11合金、ベリリウム銅50合金、ベリリウム銅10Zr合金、クロム銅合金、コルソン銅AMPCO940、及びコルソン銅AMPCO944)を5×10-5Torr(拡散ポンプで連続排気している際に達成される真空度)の高真空下で接合温度で処理した際には酸化被膜が形成されないか、あるいは非常に軽微にしか形成されないこと、
ii)ベリリウム含有量が0.7重量%以下の各合金であっても、1×10-1Torr程度の真空度では、密着面に侵入する酸素により酸化被膜が形成されうること、及び
iii)ベリリウム含有量が0.7重量%を越える各合金(ベリリウム銅25合金及びベリリウム銅165合金)は、5×10-5Torrの高真空下で処理しても、密着面に侵入する酸素により酸化被膜が形成されること
が確認された。以上の結果から、ベリリウムは酸素との親和性が極めて高いため、一定以上のベリリウム濃度の場合、高い真空度下で部材の密着度を上げても接合面間に侵入する酸素による酸化被膜形成を抑止することが困難であり、接合面に酸化被膜を残留させないためには素材の選定にあたりベリリウム含有量を考慮しなければならないことが分かった。
 本発明の銅合金接合体に用いる時効硬化性銅合金は、ベリリウム含有量が0.7重量%以下であれば特に限定されない。0.7重量%を超える高Be含有量のベリリウム銅合金(例えばベリリウム銅25合金(JIS合金番号C1720))を用いた接合体は接合面の酸化被膜が顕著に残留して、溶体化処理及び時効処理に耐えることができず、溶体化処理又は時効処理後に接合部で破断してしまう。しかし、0.7重量%以下もの低Be含有量の時効硬化性銅合金を選択的に用いて拡散接合させることで、溶体化処理及び時効処理に耐え、極めて高い接合強度を有する銅合金接合体を実現することができる。このような時効硬化性銅合金の例としては、ベリリウム銅11合金(JIS合金番号C1751、EN材料番号CW110C、及びUNS合金番号C17510)、ベリリウム銅10合金(EN材料番号CW104C及びUNS合金番号C17500)、ベリリウム銅CuCo1Ni1Be(EN材料番号CW103C)、ベリリウム銅14Z合金、ベリリウム銅50合金、ベリリウム銅10Zr合金、クロム銅(UNS合金番号C18200)、クロムジルコニウム銅(UNS合金番号C18510及びEN材料番号CW106C)、ジルコニウム銅(UNS合金番号C15000、EN材料番号CW120C)、並びにコルソン銅(EN材料番号CW109C、CW111C、UNS合金番号C19010、C70250、AMPCO944、及びAMPCO940)が挙げられ、より好ましくは、ベリリウム銅11合金、ベリリウム銅10合金、ベリリウム銅CuCo1Ni1Be、ベリリウム銅14Z合金、ベリリウム銅50合金、又はベリリウム銅10Zr合金であり、最も好ましくはベリリウム銅11合金である。これらの好ましい時効硬化性合金は、溶体化時効後の極めて高い接合強度を実現できるのみならず、耐水素脆化特性及び熱伝導性にも優れており、水素ステーション用プレクーラーの熱交換器用の材料として特に有利である。上述した各種銅合金の組成を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 前述したとおり、溶体化処理及び時効処理が施された本発明の銅合金接合体は、以下のいずれか一方又は両方の条件:
(i)複数の部材の接合界面が消失している、
(ii)複数の部材の接合界面が残留しており、該接合界面の酸化被膜の厚さが0nm以上5.0nm以下である、
を満たすものであり、高い接合強度の実現に寄与する。接合界面の消失ないし残留は、銅合金接合体の接合部を含む断面を光学顕微鏡により200~1000倍の倍率で観察することにより判定するものとする(例えば図2及び3を参照)。接合界面の消失/残留は、接合前の銅合金部材の接合面の痕跡が残っているか否かで判定されるべきであり、接合界面を超える粒成長により接合面由来の粒界が移動している場合には接合界面が残留しているとは判定しないものとする。その結果、複数の部材の接合界面が残留している場合には、接合界面の酸化被膜の厚さを測定して、その厚さが0nm以上5.0nm以下であるか否かを判定すればよい。接合界面の酸化被膜の厚さは、接合界面を含む断面を走査透過電子顕微鏡(STEM)で観察し、電子エネルギー損失分光(EELS)/エネルギー分散型X線分析(EDX)により当該断面の元素マッピング像を取得し、STEM像とEELS/EDX元素マッピング像と対比することにより酸化被膜を特定し、その厚さを決定することができる。なお、接合界面に存在する酸化被膜は、層状の被膜のみならず、粒子状の被膜(すなわち酸化物粒子)であることもあり、その場合は酸化物粒子の高さも酸化被膜の厚さに含めるものとする。いずれにしても、接合界面の有無は光学顕微鏡で確認できるため、比較的簡便かつ安価に行える一方、STEM-EELS/EDXは手間のかかる高価な分析手法である。したがって、上記条件(i)及び/又は(ii)を満たすか否かを判定するにあたり、
1)上記条件(i)を満たすか否かを光学顕微鏡で確認する(条件(i)を満たしていれば酸化被膜の確認は不要とする)、
2)上記条件(i)を満たさない場合には、STEM-EELS/EDXにより接合界面の酸化被膜の厚さを測定する、
のスキームを採用するのが好ましい。
 本発明の銅合金接合体の接合界面に存在しうる酸化被膜の厚さは0nm以上5.0nm以下であるが、好ましくは0nm以上4.0nm以下、より好ましくは0nm以上3.0nm以下、さらに好ましくは0nm以上2.0nm以下、特に好ましくは0nm以上1.5nm以下、最も好ましくは0nm以上1.0nm以下である。このように薄い酸化被膜であれば、接合界面が消失した場合と同様、溶体化時効処理に耐え、時効処理後に極めて高い接合強度の銅合金接合体が得られる。
 本発明の銅合金接合体は、接合界面又は接合界面であった位置(旧接合界面)を超えて成長した時効硬化性銅合金の結晶粒を含むものでありうる。すなわち、本発明の銅合金接合体は、接合前の銅合金部材の接合面にあった結晶粒が接合後に組み変わって再結晶された構造を接合界面ないし旧接合界面に有しており、接合当初の接合界面のままではないことが観察され得る。銅合金接合体がこのような接合微構造を有することで、接合強度がより優れたものとなる。
 本発明の銅合金接合体は、接合界面又は接合界面であった位置(旧接合界面)には時効硬化性銅合金以外の材料に由来する残留成分が無いことが母材強度同等の高い接合強度と母材同等の耐水素特性を確保する観点から好ましい。したがって、本発明の銅合金接合体は接合にろう材等の接合剤を含まないことが望まれる。すなわち、本発明の銅合金接合体は、時効硬化性銅合金のみからなるものが好ましい。
 銅合金接合体の母材及び接合部の溶体化時効処理後強度は、好ましくは520MPa以上であり、より好ましくは690MPa以上である。銅合金接合体がこのような強度であることで、水素ステーション用プレクーラーの熱交換器としての用途を始めとする高強度用途で求められる基準を十分に満たしたものとなる。強度は高いことが望まれるため、その上限値は規定されるべきではないが、本発明に係るベリリウム含有量が0.7重量%以下の銅合金接合体の母材及び接合部の溶体化時効処理後の強度は、典型的には895MPa以下である。銅合金接合体の母材及び接合部の溶体化時効処理前後の強度は、接合部が試験片中央位置となるようにASTM E8M Specimen3に準拠される試験片を作製し、当該試験片に対してASTM E8Mに準じた手順で引張試験を行うことにより測定することができる。
 銅合金接合体の接合部を含む母材の熱伝導率は高いことが望まれる。熱伝導は電気伝導同様、伝導電子に基づくエネルギー伝達であるので、両者間にはヴィーデマン・フランツ則と呼ばれる相関関係があり、熱伝導率は、より簡便に計測できる電気伝導率と相互に換算することができる。銅合金接合体の接合部を含む母材の熱伝導率(及びその換算電気伝導率)は、好ましくは209W/mK以上(換算電気伝導率50IACS%以上)であり、より好ましくは228W/mK以上(換算電気伝導率55IACS%以上)、さらに好ましくは246W/mK以上(換算電気伝導率60IACS%以上)である。このように高い熱伝導率であると、熱交換器に用いた際に熱交換効率が極めて高い点が有利となる(例えば水素特性が優れるために現在プレクーラーの熱交換器に用いられているSUS316LNi当量品の熱伝導率は16W/mKと非常に低く、熱交換効率が悪い点が運用上の難点となっている)。熱伝導率が高いことが望まれるため、その上限値は規定されるべきではないが、本発明に係るベリリウム含有量が0.7重量%以下の銅合金接合体の接合部を含む母材であって、母材及び接合部強度520MPa以上を確保できるものの熱伝導率は、典型的には280W/mK以下である。
 接合部を含む銅合金接合体は、ひずみ速度5×10-5-1以下の範囲(例えば5×10-5-1)で行う低ひずみ速度引張(SSRT:Slow Strain Rate Tensile)試験において、水素ガス中での引張強度が520MPa以上であることが好ましく、より好ましくは690MPa以上である。この銅合金接合体は、接合部を含め耐水素脆化特性に優れると共に高い引張強度を有する。この低ひずみ速度引張試験は、ASTM-G-142に準じて行うものとする。低ひずみ速度引張試験では、例えば、定形の試験片(平滑試験片)を用いて行えばよい。一般的に、平滑試験片では、水素ガス中の引張強度や絞りを水素の影響のない参照ガス中の引張強度や絞りで除した相対引張強度RTSや相対絞りRRAを用いて水素感受性を評価する。平滑試験片の低ひずみ速度引張試験では、例えば、ひずみ速度5×10-5-1で測定するものとしてもよい。70MPa級のFCV(燃料電池自動車)や水素ステーションを想定し、この低ひずみ速度引張試験を、95MPa以上の水素ガス圧力で行うものとする。水素ガス圧がより高ければ、材料中に侵入する水素量が多くなるため、試験片が水素曝露による影響を受けやすく、水素脆性をより適切に評価することができる。本願に関する試験では定形の試験片(平滑試験片)を用いて相対引張強度RTSや相対絞りRRAを用いて水素特性を評価した。
 この接合部を含む銅合金接合体では、上記低ひずみ速度引張試験において、引張強度が520MPa以上、望ましくは690MPa以上であるときに、相対絞りRRAが0.8以上であることが好ましく、より好ましくは0.9以上である。また、引張強度RTSが0.8以上であることが好ましく、より好ましくは0.9以上である。接合部を含む銅合金接合体の引張強度が常温大気下又は95MPa以上の水素ガス圧下で上記範囲内の値であり、かつ、そのRRA及びRTSも上記範囲内の値を充足することは、この銅合金接合体が高強度でありかつ耐水素脆化特性にも優れることを意味し、それ故、水素ステーション用プレクーラーの熱交換器としての用途に特に適したものとなる。上記引張強度は高いことが望まれるため、その上限値は規定されるべきではないが、本発明に係るベリリウム含有量が0.7重量%以下の銅合金接合体の常温大気下又は95MPa以上の水素ガス圧下での低ひずみ速度引張試験における引張強度は、典型的には895MPa以下である。
 銅合金接合体は、その内部に流路空間を備える形態としてもよい。この場合、流路空間を水素や冷媒等の媒体を通すための内部空間として利用することができる。したがって、流路空間を備えた銅合金接合体は、水素及び冷媒をそれぞれ通す複数の流路空間を備えていることが望まれる水素ステーション用プレクーラーの熱交換器としての用途に好ましく用いることができる。
 製造方法
 本発明の銅合金接合体は、複数の時効硬化性銅合金製の部材に、必要に応じて接合表面の平滑化(任意工程)、酸化被膜の除去、熱間プレス接合(拡散接合)、必要に応じて均質化処理(任意工程)、溶体化処理、及び時効処理を順次行うことにより、製造することができる。具体的には以下のとおりである。
(a)銅合金部材の用意
 まず、接合に用いるための複数の時効硬化性銅合金製の部材を用意する。この時効硬化性銅合金は、ベリリウム含有量が0.7重量%以下であり、前述したとおりのものを用いることができる。熱交換体として製造される積層接合体の最上面材と最下面材は圧延材もしくは鍛造材、最上面と最下面以外の冷却水路を内部に有する又は有しない多数の積層材には圧延材が好ましく用いられる。
 本発明の銅合金接合体には水素劣化を起こさない銅合金素材を用いることが好ましい。銅合金素材に関して、例えば、白銅(Cu-10%~30%)においてNi濃度が20%以上で水素特性劣化が顕著になることや、タフピッチ銅(脱酸していない純銅)でも水素特性劣化が顕著に起こることが知られている。したがって、本発明の銅合金接合体に用いる銅合金を選択するにあたり、大気中及び高圧水素下(例えば95MPa水素中)の各雰囲気で低ひずみ速度引張試験(例えば、ASTM-G-142に準じ、平滑試験片では変位速度を0.001mm/sec(ひずみ速度0.00005/sec))を行い、大気中での試験結果と高圧水素下での試験結果とを比較することで、水素下での劣化を起こさない銅合金材料であることを確認することが望まれる。例えば、本発明の銅合金接合体は、ひずみ速度5×10-5-1以下で行われる低ひずみ速度引張試験で測定される、水素ガス中でのRRA(相対絞り)が0.8以上である銅合金部材を用いて作製されたものであるのが好ましく、より好ましくは0.9以上である。
 ここで、接合に用いるための複数の時効硬化性銅合金製の部材は、接合されるべき面が0.1mm以下の平面度、及び6.3μm以下(好ましくは2.0μm以下)の十点平均粗さRzjisを有する平坦面を有する必要がある。すなわち、前述したとおり、接合部材表面の酸化被膜を除去しても、熱間プレス接合(拡散接合)において接合面の再酸化を抑止するためには、高真空雰囲気下でも接合面に侵入してくる酸素原子が十分に少なくなるよう接合面の密着性を確保する必要があり、上記範囲内の平面度及び十点平均粗さであればこの密着性を確保することができる。接合される部材が圧延材である場合は上記範囲内の平面度及び十点平均粗さを満たしていることが多いため、特段の平滑化工程は不要である。一方、上記範囲内の平面度及び十点平均粗さを充足していない場合には、研磨、切削加工、及び/又はその他の手法により上記範囲内の平面度及び十点平均粗さを有する平坦面を形成する。なお、板材にカール等がある場合があるが、板厚精度が良好に調整されており、熱間プレス接合(拡散接合)において必要な荷重をかけた際に平面度が0.1mm以下となり目的とする密着性が確保できるのであれば問題はない。なお、十点平均粗さRzjisは、JIS B 0601-2001に規定される表面粗さである。また、本明細書において、平面度は、JIS B 0621-1984において「平面形体の幾何学的に正しい平面(幾何学的平面)からの狂いの大きさ」と定義されるパラメータであり、対象を1対の平面で挟んだ時、その幅の示す値を意味する。
 必要に応じて、次工程の酸化被膜の除去に先立ち、複数の部材の接合されるべき表面に、接合後に流路空間をもたらす溝を形成するのが好ましい。溝の形成は、エッチング、プレス加工、機械加工等、公知の様々な方法で行えばよい。こうすることで、前述したように内部に流路空間を備えた銅合金接合体の製造に用いることができる。例えば、溝入りの銅合金板と溝なしの銅合金板とを交互に積層して接合することで、流路が多数形成された銅合金積層体を製造することができる。このような構成の多層接合体は、水素及び冷媒をそれぞれ通す複数の流路空間を備えていることが望まれる水素ステーション用プレクーラーの熱交換器としての用途に好ましく用いることができる。
(b)酸化被膜の除去
 前述したとおり、銅合金部材の表面には酸化被膜が存在する。このため、銅合金部材の接合されるべき表面に存在する酸化被膜を除去する。酸化被膜の除去は、銅合金部材の接合されるべき表面を無機酸溶液で洗浄することにより行われるのが酸化被膜を効果的に除去できる点で好ましい。無機酸溶液の例としては、硝酸、硫酸、化学研磨液、塩酸、キリンス浴、フッ酸等が挙げられ、特に好ましくは硝酸である。なお、化学研磨液は、硫酸に酸化剤である過酸化水素を添加した酸であり、キリンス浴は、硫酸、硝酸及び塩酸の混合酸であり、水酸化ナトリウムを少量加えることもある。キリンス浴における好ましい混合比の例としては、硫酸:硝酸:塩酸=61:4:4、81:1:0.02、又は11:1:0.02等が挙げられる。あるいは、酸化被膜の除去は、機械的研磨によって行われてもよく、機械的研磨と無機酸溶液での洗浄とを併用してもよい。
(c)熱間プレス接合(拡散接合)
 複数の銅合金部材を熱間プレスにより接合させて中間接合体とする。この接合は拡散接合の手法に準じて行うことができる。例えば、熱間プレスは、1.0×10-2Torrより高い真空度(すなわち1.0×10-2Torrより低い圧力)の炉内において、500~1050℃の温度で30~480分間、1.0MPa以上の圧力を加えることにより行われるのが好ましい。もっとも、時効硬化性銅合金がBeを含まない場合(例えばコルソン銅)は、熱間プレスは、1.0×10-1Torrより高い真空度(すなわち1.0×10-1Torrより低い圧力)の炉内において、500~1050℃の温度で30~480分間、1.0MPa以上の圧力を加えることにより行うことができる。いずれにしても、この熱間プレスは、銅合金部材の接合時の加圧方向長さ変形量が好ましくは0.5%以上30%以下、より好ましくは1%以上20%以下、さらに好ましくは2%以上8%以下となるよう行われる。熱間プレス温度と圧力には適正な組み合わせがあり、好ましくは、840℃を越え1050℃以下では1MPa以上16MPa以下であり、720℃を越え840℃以下では2MPa以上24MPa以下であり、600℃以上720℃以下では4MPa以上50MPa以下である。熱間プレス時間は、15~480分間が好ましく、より好ましくは30~150分間であり、さらに好ましくは30~60分間である。なお、熱間プレス時の炉内真空度は、酸化の進行を抑える観点から、好ましくは1.0×10-3Torr未満、より好ましくは1.0×10-4Torr未満、より好ましくは5.0×10-5Torr未満である。
 特に、銅合金部材の表面に溝を形成して中間接合体に流路空間を持たせる場合、上記熱間プレスを比較的低温かつ比較的高めの圧力で行うのが、プレスによる流路潰れを軽微とするよう制御できる点で好ましい。具体的には、この態様における熱間プレスは1.0×10-2Torrより高い真空度(すなわち1.0×10-2Torrより低い圧力)、より好ましくは1.0×10-4Torrより高い真空度(すなわち1.0×10-4Torrより低い圧力)の真空度の炉内において、
(i)840℃を越え930℃以下の温度で30~480分間(好ましくは30~60分間)、1MPa以上4MPa以下の圧力を加えること、又は
(ii)720℃を越え840℃以下の温度で30~480分間(好ましくは30~60分間)、2MPa以上8MPa以下の圧力を加えること、又は
(iii)600℃以上720℃以下の温度で30~480分間(好ましくは30~60分間)、4MPa以上30MPa以下の圧力を加えることにより、
行うのが好ましい。
(d)均質化処理(任意工程)
 銅合金部材の表面に溝を形成して中間接合体に流路空間を持たせる場合であって、上記比較的低温かつ比較的高めの圧力で熱間プレスを実施した場合、溶体化処理に先立ち、中間接合体に、好ましくは1.0×10-1Torrより高い真空度(すなわち1.0×10-1Torrより低い圧力)、又は(常圧若しくは減圧の)窒素若しくはその他の非酸化性ガス雰囲気(不活性雰囲気)の炉内において、900~1050℃の温度で60~480分間の均質化処理を施すのが好ましい。均質化処理は、均質化焼鈍とも称される処理であるが、本明細書においては均質化処理の用語を用いるものとする。すなわち、比較的低温かつ比較的高めの圧力で熱間プレスを実施した場合、接合界面が残留しやすいが、均質化処理を行うことで接合界面を低減又は消失させることができ、後続の溶体化処理及び時効処理を経ることで極めて高い接合強度を実現することができる。すなわち、流路の潰れ抑制と高い接合強度の両立を実現することができる。均質化処理は、酸化の進行を抑えるため、1.0×10-1Torrより低い圧力の大気雰囲気中、又は常圧若しくは1.0×10-1Torrより低い圧力に減圧された窒素等の不活性雰囲気中での処理が好ましい。均質化処理温度は、好ましくは900~1050℃、より好ましくは930~1000℃、さらに好ましくは960~990℃である。上記均質化処理温度での保持時間は60~480分、より好ましくは60~360分、さらに好ましくは60~240分である。もっとも、銅合金部材の表面に溝を形成しない場合であっても、上記均質化処理を必要に応じて行ってよいことはいうまでもない。
 なお、(c)熱間プレス接合(拡散接合)及び(d)均質化処理が、炉内温度を下げることなくプレス加重を解放して昇温することにより、連続的に行われるのが好ましい。こうすることで、流路空間が過度に潰れない温度加圧条件での熱間プレス接合(拡散接合)を行った後に、熱間プレス接合(拡散接合)及び均質化処理を、流路空間を潰す加圧を行うことなく、組織均質化に有効な温度での均質化処理を一連の連続作業として行うことができので、接合部の信頼性向上のみならず経済的観点からも有利となる。
(e)溶体化処理
 中間接合体には溶体化処理が施される。この溶解化処理は700~1100℃の温度で1~180分間、中間接合体を大気炉、非酸化雰囲気炉、塩浴炉等の炉で加熱した後、水冷することにより行うのが好ましい。本発明に用いる銅合金は時効硬化型合金であり、接合界面を消失させ、又は接合界面の酸化被膜の厚さを一定以下に調整した上で、溶体化処理及び後続の時効処理を経ることで、所望の調質特性(例えば高強度)、特に極めて高い接合強度を呈することができる。溶体化処理温度は、合金組成により多少適正域が異なるが、好ましくは700~1100℃であり、より好ましくは800~1050℃、さらに好ましくは900~1000℃である。上記溶体化処理温度での実質保持時間は、好ましくは1~180分であり、より好ましくは5~90分、さらに好ましくは10~60分である。
(f)時効処理
 溶体化処理が施された中間接合体には時効処理が施される。この時効処理は、合金組成により多少適正域が異なるが、350~550℃で30~480分間の時効処理を施すことにより行うのが好ましい。上述のとおり、ベリリウム銅合金等の時効硬化型合金は、溶体化処理及び時効処理を経ることで所望の調質特性(例えば高強度)、特に極めて高い接合強度を呈することができる。時効処理温度は好ましくは350~550℃であり、より好ましくは400~500℃、さらに好ましくは450~480℃である。上記時効処理温度での保持時間は、好ましくは30~480分、より好ましくは30~300分、さらに好ましくは60~240分、特に好ましくは90~180分である。時効処理は酸化抑止の観点から、1.0×10-1Torrより高い真空度(すなわち1.0×10-1Torrより低い圧力)、又は窒素等の非酸化雰囲気の炉内で行うことが好ましい。
 耐水素部材
 本発明の別の態様によれば、コルソン銅(EN材料番号CW109C、CW111C、UNS合金番号C19010、C70250、AMPCO944、及びAMPCO940)で構成される耐水素部材が提供される。本態様の耐水素部材は、上述したような銅合金接合体に限らず、様々な形態の銅合金製品であることができる。すなわち、後述する実施例で実証されるように、コルソン銅であっても耐水素脆化特性を有するため、耐水素部材としての利用価値がある。特に、コルソン銅は、接合を伴う製品を安定的に製造できるという利点を有するため、耐水素部材で作られた製品を安定的に供給できる点で有利となる。耐水素部材は、水素と接触する状態で用いられる部材として定義される。耐水素部材の用途の例としては、水素を収容する収容部材、水素を流通し熱交換する熱交換部材(例えば熱交換器)、水素を流通する配管部材、水素を流通する配管部材に接続される弁部材、水素を流通する配管部材に接続されるシール部材、及びそれらの組合せが挙げられる。この耐水素部材は、例えば、30MPa以上や45MPa以上などの中圧水素、70MPa以上、90MPa以上等の高圧水素と接触する状態で用いられるものでありうる。耐水素部材は、例えば、高圧水素を取り扱う水素ステーションや燃料電池自動車(FCV)において用いられるものであってもよい。
 本発明を以下の例によってさらに具体的に説明する。
 例1~57
 銅合金接合体を以下の手順により作製し、各種評価を行った。
(1)銅合金の用意
 各例について、表2A、3A、4A及び5Aに示される合金種及び組成の、直径32mm×長さ50mm又は直径80mm×長さ50mmの銅合金丸棒を複数本用意した。
 例1~40及び43~57においては、銅合金丸棒の接合に用いられる端面(以下、接合面という)を旋盤加工、ラップ研磨等の加工により、JIS B 0601-2001に準拠して測定される十点平均粗さRzjisが6.3μmより小さく、かつ、JIS B 0621-1984に準拠して測定される平面度が0.1mm以下の平坦面とした。
 一方、例41については、2本の銅合金丸棒の各接合面を、JIS B 0621-1984に準拠して測定される平面度が0.1mm以下の平坦面ではあるが、十点平均粗さRzjisが6.3μmより大きい値となるように、意図的に調整した。また、例42については、2本の銅合金丸棒の各接合面を、JIS B 0601-2001に準拠して測定される十点平均粗さRzjisは6.3μmより小さいが、JIS B 0621-1984に準拠して測定される平面度が0.2mmよりも大きい値となるように、意図的に調整した。
(2)酸化被膜の除去(例36を除く)
 例1~35、37~48及び50~53においては、上記2本の銅合金丸棒の接合面を30%硝酸で洗浄し、接合面に存在する酸化被膜を除去した。例55においては上記2本の銅合金丸棒の接合面を化学研磨液(過酸化水素水3%を含む20%硫酸)で洗浄し、接合面に存在する酸化被膜を除去した。例49、54及び56においては、上記2本の銅合金丸棒の接合面を#600のエメリー(Emery)紙で機械研磨して、接合面に存在する酸化被膜を除去した。例57においては、上記2本の銅合金丸棒の接合面を#320のバフ(ナイロン・ポリエステル不織布)で機械研磨して、接合面に存在する酸化被膜を除去した、なお、例36(比較例)においては、酸化被膜の除去は行わなかった。
(3)熱間プレス
 硝酸で洗浄された2本の銅合金丸棒の接合面同士を(ろう材を介することなく)直接突き合わせ、真空炉で表2A、3A、4A及び5Aに示される接合条件で熱間プレスを行い、丸棒状の中間接合体を得た。このときの接合時変形量Dを、接合前の2試料の接合方向長さの積算長さをL、接合後の接合方向試料長さLとして、次式:
 D=[(L-L)/L]×100
により求めたところ、表2A、3A、4A及び5Aに示されるとおりであった。各種評価を行うため、各例について、複数本の引張試験片と、その隣接位置から熱処理前後の組織観察用サンプルを作製した。
(4)溶体化処理
 上記中間接合体に溶体化処理を施した。この溶体化処理は銅合金接合体を溶融塩浴中930℃で5分間(例1~42及び47~57)又は780℃で5時間(例43~46)保持した後、水冷することにより行った。
(5)時効処理
 上記溶体化処理された中間接合体に時効処理を施した。この時効処理は銅合金接合体を1×10-1Torrの真空度の真空炉中450℃で3時間(例1~42及び55~57)、320℃で3時間(例43~46)又は500℃で2時間(例47~54)保持した後、炉冷することにより行った。こうして、溶体化処理及び時効処理により調質された丸棒状の銅合金接合体を得た。
(6)評価
 上記熱間プレスで接合されたままの中間接合体、溶体化処理されたままの銅合金接合体、溶体化処理及び時効処理を経た銅合金接合体、及び/又は中間接合体に各種温度時間条件で均質化処理を行った後に溶体化処理及び時効処理を経た銅合金接合体(以下、これらをまとめて接合体試料という)に対して以下の評価を行った。
<接合強度>
 各接合体試料を加工して、接合部が試験片中央位置となるようにASTM E8M Specimen3に準拠される試験片を作製した。この試験片に対してASTM E8Mに準拠して引張試験を行い、引張強度(接合強度)を測定した後、破断位置を確認した。結果は表2A~表5Cに示されるとおりであった。
<光学顕微鏡による接合部断面の観察>
 接合されたまま、又は接合後に溶体化処理及び時効処理を更に施した接合体試料の接合部を含む断面を切り出して研磨した。観察試料としては、前記のとおり引張試験片を切り出した部位と隣接する部位であって同一の接合熱処理工程を経たものを利用した。得られた断面を光学顕微鏡で200倍、500倍及び1000倍の各倍率で観察して、接合界面が消失しているか否か(言い換えれば接合界面が残留しているか否か)を調べた。結果は表2B、3B、4B及び5Bに示されるとおりであった。図2に例2、30、33、43及び46で得られた断面写真を、図3に例26、27及び28で得られた断面写真を、図4に例47及び53で得られた断面写真をそれぞれ示す。これらの図に示されるように、実施例である例2(CuBe11)及び例30(CuBe10Zr)は接合界面が消失しており、高い接合品質が示唆される一方、比較例である例43(CuBe25)及び例46(CuBe165)の接合体試料は接合界面の残留が確認された。もっとも、実施例である例33(CuBe50)、例26(CuCr)、例27(CuCrZr)、例28及び47(コルソン銅AMPCO940)並びに例53(コルソン銅AMPCO944)の接合体試料は高い接合強度が得られているにもかかわらず、接合界面の残留が確認されている。このことから、接合界面の消失は本発明の目的とする高い接合強度を実現する上で有効であるものの、必須ではないことが分かる。接合界面の残留が確認された例33、26、27、28、47及び53の接合体試料も、高い接合強度が得られている事実に基づけば、例2及び30と同様、良好な接合状態が実現されているといえる。
<接合界面のSTEM観察及びEELS/EDX元素分析>
 例2、3、26、30、33、43、46、47及び53の、拡散接合されたままの接合体試料、及び/又は溶体化処理及び時効処理(以下、溶体化時効という)を経た接合体試料の接合界面を含む断面を切り出し、集束イオンビーム(FIB、製品名:NB5000、日立ハイテクノロジーズ製)により薄片状に加工した。得られた接合体試料の接合界面を含む断面を球面収差補正機能付き走査透過電子顕微鏡(STEM、製品名:HD-2700、日立ハイテクノロジーズ製)によって加速電圧:200kVの測定条件で観察し、接合界面における酸化被膜の有無ないしその厚さを測定した。また、STEMに付設された電子エネルギー損失分光装置(EELS、商品名:Enfinium、Gatan社製)/エネルギー分散型X線分析装置(EDX、商品名:XMAXN 100TLE、Oxford社製)により接合面及びその近傍の元素分析も行った。それらの結果は、表2B、3B、4B及び5B並びに図5~8に示され、かつ、以下に説明されるとおりであった。
 例2及び3はCuBe11を用いて、溶体化時効に耐えた結果、高い接合強度(>690Ma)を有する接合体が実現された例である。この例2及び3の接合体試料は、光学顕微鏡観察では接合面が確認されなかったものであるが、STEMにより接合面を特定可能な箇所が存在した。しかしながら、図5に示されるSTEM像及びEELS/EDX元素マッピング像から分かるように、例2においては当該接合面に酸化被膜の残留は観察されなかった(すなわち酸化被膜の厚さは0nmであった)。EELSマッピングからも酸化被膜の残留は確認されなかった。また、例3の接合体(接合されたままのもの)においては、一部箇所において厚さ0.7nmの酸化被膜が観察された。EELSマッピングからも厚さ1nm以下の酸化被膜の残留が確認された。このようにCuBe11では厚さ0~1nmの酸化被膜が存在するが、この程度の薄さの酸化被膜であれば良好な接合強度の確保が可能なことが分かる。
 例30はCuBe10Zrを用いて、溶体化時効に耐えた結果、高い接合強度(>690Ma)を有する接合体が実現された例である。STEM観察及びEELS/EDX元素分析の結果、例2(CuBe11)と同様、酸化被膜の残留は観察されなかった。母材マトリックス内にZrの濃縮部が確認されたが、接合界面の酸化物(ZrO)残留ではなく、それ故、接合品質に影響するものではない。
 例33はCuBe50を用いて、溶体化時効に耐えた結果、高い接合強度(>690Ma)を有する接合体が実現された例である。STEM観察及びEELS/EDX元素分析の結果、例2(CuBe11)及び例19(CuBe10Zr)と同様、酸化被膜の残留は観察されなかった。これらの結果は溶体化時効に耐えるという機械特性挙動と合致する。
 例26はCuCrを用いて、溶体化時効に耐えた結果、高い接合強度を有する接合体が実現された例である。STEM観察及びEELS/EDX元素分析の結果、例2(CuBe11)、例30(CuBe10Zr)及び例33(CuBe50)と同様、酸化被膜の残留は観察されなかった。母材マトリックス内及び接合界面にCrの濃縮部が確認されたが、接合界面の酸化物(CrO)残留ではなく、それ故、接合品質に影響するものではない。これらの結果は溶体化時効に耐えるという機械特性挙動と合致する。
 例43(比較)はCuBe25を用いた結果、溶体化時効時に破断した接合体に関する比較例である。STEM観察及びEELS/EDX元素分析の結果、接合体(接合されたままのもの)における接合界面の全面にわたって6nm程度の均質な酸化被膜が観察された。特定の2箇所における酸化被膜の厚さは5.8nm及び6.2nm(図6Aを参照)であった。また、図6BにBeOが高濃度の領域が黒点(矢印で強調される)で示されるように、所々に球状に厚い酸化被膜が存在することが観察された。図6Bにおいて、これらの球状部の酸化被膜の厚さは図6Cに示されるELLSマッピングから15~20nm程度と判断された。
 例46(比較)はCuBe165を用いた結果、溶体化時効時に破断した接合体に関する比較例である。STEM観察及びEELS/EDX元素分析の結果、接合面全面にわたる均質な酸化被膜は観察されず、酸化被膜の存在しない部位も局所的に観察された。しかし、高濃度BeOに起因する球状の厚い酸化被膜が所々に観察された。これらの球状の酸化被膜の厚さは20nm程度ないし50nm強と判断された。均質な酸化被膜及び球状の酸化被膜の両方を包含する酸化被膜の厚さは1~80nmの範囲内であると判定した。
 例47及び53はコルソン銅AMPCO940及びコルソン銅AMPCO944をそれぞれ用いて、溶体化時効に耐えた結果、高い接合強度を有する接合体が実現された例である。この例47及び53の接合体試料は、STEMにより接合面を特定可能な箇所が存在した。しかしながら、図7及び8(例47及び53にそれぞれ対応する)に示されるSTEM像及びEELS/EDX元素マッピング像から分かるように、例47及び53においては当該接合面に酸化被膜の残留は観察されなかった(すなわち酸化被膜の厚さは0nmであった)。EELSマッピングからも酸化被膜の残留は確認されなかった。
<電気伝導率の測定及び熱伝導率への換算>
 渦電流式導電率計(製品名:Hocking AutoSigma 3000DL、GEセンシング&インスペクション・テクノロジーズ社製)を用いて接合体試料の電気伝導率(IACS%)を室温で測定した。得られた電気伝導率をヴィーデマン・フランツ則に基づく相関式より換算して熱伝導率(W/mK)を求めた。
<均質化処理温度の検討>
 例1~3、8~11、16~25、30、32~35、47、48、53及び55~57の加熱プレスを経た中間接合体(溶体化処理が施される前のもの)に、900℃、930℃、960℃又は980℃という異なる温度での均質化処理(高温ソーキング)を8時間施して炉冷した後、930℃で5分間保持して水冷した(溶体化処理)。得られた接合体を450℃で3時間(例1~3、8~11、16~25、30、32~35及び55~57)又は500℃で2時間(47、48及び53)保持した後、炉冷した(時効処理)。各接合体試料を加工して、接合部が試験片中央位置となるようにASTM E8M Specimen3に準拠される試験片を作製した。この試験片に対してASTM E8Mに準じた手順で引張試験を行い、引張強度(接合強度)を測定した後、破断位置を確認した。結果は表2C、3C、4C及び5Cに示されるとおりであった。これらの表に示される結果から明らかなように、均質化処理温度が高くなるほど、接合界面は消失して、引張試験において接合面ではなく母材破壊をするようになる(もっとも均質化処理を施さなくても母材破壊をする接合体もあり、接合界面、又は接合界面であった位置を超える結晶粒の成長において均質化処理は必須ではないが、均質化処理でより完全に接合面が消失し全ての部位で母材破壊する)。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
<低ひずみ速度引張試験(SSRT)による耐水素脆化特性の評価>
 例2、17及び18で接合及び溶体化時効を経て作製された銅合金接合体(CuBe11)を切り出して、接合部が試験片中央位置となるようにASTM E8M Specimen4に準拠される試験片を作製した。なお、これら試験片には均質化処理は施していない。低ひずみ速度引張試験は、ASTM-G-142に準じ、平滑試験片では変位速度を0.001mm/sec(ひずみ速度0.00005/sec)で、大気中又は95MPa水素中で試験を行った。なお、平滑試験片の低ひずみ速度引張試験では、RRA(相対絞り)により水素脆化特性を評価した。表6Aに試験結果を、図9A及び9Bに応力-ストローク線図を、図10A及び10Bに例17の試験片の破断面を観察したSEM像をそれぞれ示す。各試験片の大気下又は水素下における引張強度及び絞りに変化はなく、水素脆化は認められなかった。図10A及び10Bに示す破壊は母材部で生起しておりその破壊形態はカップ・アンド・コーン破壊であり、破断面は延性破壊に特徴的なディンプル形状をしていた。これらより、本発明の接合材は引張強度が高くかつ耐水素脆化特性に優れた良好な特性を示すことが分かった。
 また、銅合金接合体ではなく、銅合金接合体の作製に用いる銅合金素材そのものについての耐水素脆化特性の評価も行った。具体的には、接合素材として用いたCuBe25合金(素材1)、CuBe11合金(素材2)、コルソン銅AMPCO940(素材3)及びコルソン銅AMPCO944(素材4)の溶体化時効処理済みの素材を切り出して、ASTM E8M Specimen4に準拠される試験片を作製した。低ひずみ速度引張試験は、ASTM-G-142に準じ、平滑試験片では変位速度を0.001mm/sec(ひずみ速度0.00005/sec)で、大気中又は95MPa水素中で試験を行った。なお、平滑試験片の低ひずみ速度引張試験では、RRA(相対絞り)により水素脆化特性を評価した。表6Bに試験結果を、図9C~9Eに応力-ストローク線図を示す。各試験片の大気下又は水素下における引張強度及び絞りに変化はなく、水素脆化は認められなかった。破壊形態はカップ・アンド・コーン破壊であり、破断面は延性破壊に特徴的なディンプル形状をしていた。これらの結果から、これらの素材は本発明の銅合金接合材の作製に用いる銅合金素材として、時効後の引張強度が高くかつ耐水素脆化特性に優れた良好な特性を示すことが分かった。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 例58~67
 内部に流路空間を備えた接合体試料を様々な条件で作製して、評価を行った。
<流路潰れを低減するための接合条件の検討>
 表7に示される合金種及び組成の、厚さ1.6mm、サイズ50mm×50mmの銅合金板(鋳造品)を複数枚用意した。そのうち半数の銅合金板の表面に、流路空間を形成するための幅2.4mm×深さ1.2mのアーチ形断面の溝をエッチングにより形成した。接合面の酸化被膜を30%硝酸で除去した後、溝入りの銅合金板と溝なしの銅合金板とを交互に、あるいは両面に溝を設けた溝入合金板同士を交互に積層し、表7に示される接合条件及び接合時変形量で熱間プレスにより拡散接合させた。こうして流路空間を有する中間接合体を得た。得られた中間接合体の流路の潰れ具合と接合状態を顕微鏡観察により評価した。拡散接合は高温ほど有利であるが、表7に示される結果から分かるように、流路を形成した本例の中空体は高温高圧であると潰れが顕著となり流路が狭くなり、さらには閉塞してしまう傾向がある。このような潰れを低減するためには、温度840℃以下、圧力5MPa以上の接合条件が中空体では好ましいと考えられる。また、中間接合体の接合状態を顕微鏡観察したところ、高温高圧の接合条件では接合面の消失が確認されたが、低温になるに従い接合圧力によらず接合面の残留が確認された。しかしながら、前述した実施例で実証されるとおり、高温での均質化処理で接合面消失が可能である。したがって、流路潰れが抑制される程度に幾分低めの温度で高荷重の接合を行った後、高温均質化処理を行うことが、流路空間を備えた接合体の製造においては有利といえる。
Figure JPOXMLDOC01-appb-T000016
 このことを裏付けるため、例62の中間接合体に高温均質化処理を施すことを含む以下の実験を行った。まず、例62(840℃、3Pa)で作製された流路空間を備えた中間接合体に、980℃で均質化処理(高温ソーキング)を8時間施した。この中間接合体を、930℃で5分間保持して水冷した(溶体化処理)。得られた接合体を450℃で3時間保持した後、炉冷した(時効処理)。こうして均質化処理並びに溶体化時効を施した銅合金接合体(流路を含む)を得た。図11に、作製された例62の銅合金接合体の流路近傍の接合部を含む断面を観察した光学顕微鏡像を示す。図11に示されるように、均質化処理を施した接合体においては接合界面の消失が確認された。このように拡散接合後に均質化処理をすると、接合界面が消失し、母材との見分けがつかなくなり、完全同質化する(つまり接合部には旧接合界面を超えて成長した時効硬化性銅合金の結晶粒が存在することとなる)。このため、引張試験を行った場合に、接合面ではなく母材破壊をするようになる(もっとも均質化処理を施さなくても母材破壊をする接合体もあり、旧接合界面を超える結晶粒の成長のために均質化処理は必須ではない)。したがって、上述したとおり、水路潰れが小さい低温高荷重接合を行った場合には接合面の残留が確認されるものの、高温均質化処理を行うことで接合面を消失させることができる。

Claims (23)

  1.  互いに拡散接合された複数の時効硬化性銅合金製の部材で構成される銅合金接合体であって、前記銅合金接合体は溶体化処理及び時効処理が施されたものであり、
     前記時効硬化性銅合金のベリリウム含有量が0.7重量%以下であり、かつ、
    (i)前記複数の部材の接合界面が消失している、及び/又は
    (ii)前記複数の部材の接合界面が残留しており、該接合界面の酸化被膜の厚さが0nm以上5.0nm以下である、銅合金接合体。
  2.  前記接合界面、又は接合界面であった位置を超えて成長した前記時効硬化性銅合金の結晶粒を含む、請求項1に記載の銅合金接合体。
  3.  前記酸化被膜の厚さが0nm以上1.0nm以下である、請求項1又は2に記載の銅合金接合体。
  4.  前記接合界面、又は前記接合界面であった位置には、前記時効硬化性銅合金以外の材料に由来する残留成分が無い、請求項1~3のいずれか一項に記載の銅合金接合体。
  5.  前記銅合金接合体の母材及び接合部の強度が520MPa以上である、請求項1~4のいずれか一項に記載の銅合金接合体。
  6.  前記銅合金接合体の母材及び接合部の強度が690MPa以上である、請求項5に記載の銅合金接合体。
  7.  前記銅合金接合体の接合部を含む母材の熱伝導率が209W/mK以上である、請求項1~6のいずれか一項に記載の銅合金接合体。
  8.  前記銅合金接合体の接合部を含む母材の電気伝導率が50IACS%以上である、請求項1~7のいずれか一項に記載の銅合金接合体。
  9.  前記時効硬化性銅合金が、ベリリウム銅11合金(JIS合金番号C1751、EN材料番号CW110C、及びUNS合金番号C17510)、ベリリウム銅10合金(EN材料番号CW104C及びUNS合金番号C17500)、ベリリウム銅CuCo1Ni1Be(EN材料番号CW103C)、ベリリウム銅14Z合金(Be:0.2~0.6重量%、Ni:1.4~2.4重量%、Zr:0~0.5重量%、残部Cu及び不可避不純物からなる)、ベリリウム銅50合金(Be:0.2~0.6重量%、Ni:1.4~2.1重量%、Ag:0.1~0.3重量%、Zr:0~0.5重量%、残部Cu及び不可避不純物からなる)、ベリリウム銅10Zr合金(Be:0.4~0.7重量%、Co:2.0~2.8重量%、Zr:0~0.3重量%、残部Cu及び不可避不純物からなる)、クロム銅(UNS合金番号C18200)、クロムジルコニウム銅(UNS合金番号C18510及びEN材料番号CW106C)、ジルコニウム銅(UNS合金番号C15000、EN材料番号CW120C)、並びにコルソン銅(EN材料番号CW109C、CW111C、UNS合金番号C19010、C70250、AMPCO944(Ni:6.5~7.5重量%、Si:1.5~2.5重量%、Cr:0.5~1.5重量%、残部Cu及び不可避不純物からなる)、及びAMPCO940(Ni:1.5~3.0重量%、Si:0.5~1.5重量%、Cr:0.3~1.5重量%、残部Cu及び不可避不純物からなる))からなる群から選択される少なくとも1種である、請求項1~8のいずれか一項に記載の銅合金接合体。
  10.  前記時効硬化性銅合金が、ベリリウム銅11合金(JIS合金番号C1751、EN材料番号CW110C、及びUNS合金番号C17510)、ベリリウム銅10合金(EN材料番号CW104C及びUNS合金番号C17500)、ベリリウム銅CuCo1Ni1Be(EN材料番号CW103C)、ベリリウム銅14Z合金(Be:0.2~0.6重量%、Ni:1.4~2.4重量%、Zr:0~0.5重量%、残部Cu及び不可避不純物からなる)、ベリリウム銅50合金(Be:0.2~0.6重量%、Ni:1.4~2.1重量%、Ag:0.1~0.3重量%、Zr:0~0.5重量%、残部Cu及び不可避不純物からなる)、並びにベリリウム銅10Zr合金(Be:0.4~0.7重量%、Co:2.0~2.8重量%、Zr:0~0.3重量%、残部Cu及び不可避不純物からなる)からなる群から選択される少なくとも1種である、請求項9に記載の銅合金接合体。
  11.  ひずみ速度5×10-5-1以下で行われる低ひずみ速度引張試験で測定される、水素ガス中でのRRA(相対絞り)が0.8以上である銅合金部材を用いて作製された、請求項1~10のいずれか一項に記載の銅合金接合体。
  12.  ひずみ速度5×10-5-1以下で行われる低ひずみ速度引張試験で測定される、水素ガス中での接合部を含む銅合金接合体の引張強度が520MPa以上である、請求項1~11のいずれか一項に記載の銅合金接合体。
  13.  ひずみ速度5×10-5-1以下で行われる低ひずみ速度引張試験で測定される、水素ガス中での接合部を含む銅合金接合体の引張強度が690MPa以上である、請求項12に記載の銅合金接合体。
  14.  前記銅合金接合体がその内部に流路空間を備えた、請求項1~13のいずれか一項に記載の銅合金接合体。
  15.  請求項1~14のいずれか一項に記載の銅合金接合体の製造方法であって、
     接合されるべき面が0.1mm以下の平面度及び6.3μm以下の十点平均粗さRzjisを有する平坦面である、ベリリウム含有量が0.7重量%以下である時効硬化性銅合金製の複数の部材を用意する工程と、
     前記複数の部材の接合されるべき表面に存在する酸化被膜を除去する工程と、
     前記複数の部材を熱間プレスにより拡散接合させて中間接合体とする工程と、
     前記中間接合体に、700~1100℃の温度で1~180分間の加熱及びその後の水冷を伴う溶体化処理を施す工程と、
     前記溶体化処理が施された中間接合体に350~550℃で30~480分間の時効処理を施す工程と、
    を含む、銅合金接合体の製造方法。
  16.  前記酸化被膜の除去が、前記複数の部材の接合されるべき表面を無機酸溶液で洗浄することにより行われる、請求項15に記載の方法。
  17.  前記熱間プレスが、1.0×10-2Torrより高い真空度(すなわち1.0×10-2Torrより低い圧力)の炉内において、500~1050℃の温度で30~480分間、1.0MPa以上の圧力を加えることにより行われる、請求項15又は16に記載の方法。
  18.  前記時効硬化性銅合金がBeを含まない場合、前記熱間プレスが、1.0×10-1Torrより高い真空度(すなわち1.0×10-1Torrより低い圧力)の炉内において、500~1050℃の温度で30~480分間、1.0MPa以上の圧力を加えることにより行われる、請求項15又は16に記載の方法。
  19.  前記方法が、前記溶体化処理に先立ち、前記中間接合体に、1.0×10-1Torrより高い真空度(すなわち1.0×10-1Torrより低い圧力)、又は窒素若しくはその他の非酸化性ガス雰囲気の炉内において、900~1050℃の温度で60~480分間の均質化処理を施す工程をさらに含む、請求項15~18のいずれか一項に記載の方法。
  20.  前記熱間プレス及び前記均質化処理が、炉内温度を下げることなくプレス加重を解放して昇温することにより、連続的に行われる、請求項19に記載の方法。
  21.  前記方法が、前記酸化被膜の除去に先立ち、前記複数の部材の接合されるべき表面に、接合後に流路空間をもたらす溝を形成する工程をさらに含む、請求項15~20のいずれか一項に記載の方法。
  22.  前記熱間プレスが1.0×10-2Torrより高い真空度(すなわち1.0×10-2Torrより低い圧力)の炉内において、
    (i)840℃を越え930℃以下の温度で30~480分間、1MPa以上4MPa以下の圧力を加えること、又は
    (ii)720℃を越え840℃以下の温度で30~480分間、2MPa以上8MPa以下の圧力を加えること、又は
    (iii)600℃以上720℃以下の温度で30~480分間、4MPa以上30MPa以下の圧力を加えることにより行われ、かつ、
     前記方法が、前記溶体化処理に先立ち、前記中間接合体に、1.0×10-1Torrより高い真空度(すなわち1.0×10-1Torrより低い圧力)、又は窒素若しくはその他の非酸化性ガス雰囲気の炉内において、900~1050℃の温度で60~480分間の均質化処理を施す工程をさらに含む、請求項21に記載の方法。
  23.  前記熱間プレス及び前記均質化処理が、炉内温度を下げることなくプレス加重を解放して昇温することにより、連続的に行われる、請求項22に記載の方法。
PCT/JP2021/049009 2021-01-08 2021-12-28 銅合金接合体及びその製造方法 WO2022149561A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022523805A JP7211558B2 (ja) 2021-01-08 2021-12-28 銅合金接合体及びその製造方法
CN202180071156.7A CN116323066A (zh) 2021-01-08 2021-12-28 铜合金接合体及其制造方法
EP21917780.5A EP4275826A1 (en) 2021-01-08 2021-12-28 Copper alloy assembly and production method therefor
KR1020237020498A KR20230104291A (ko) 2021-01-08 2021-12-28 구리 합금 접합체 및 그 제조 방법
JP2022207703A JP2023040084A (ja) 2021-01-08 2022-12-26 銅合金接合体及びその製造方法
US18/341,063 US20230356321A1 (en) 2021-01-08 2023-06-26 Copper alloy assembly and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021002418 2021-01-08
JP2021-002418 2021-01-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/341,063 Continuation US20230356321A1 (en) 2021-01-08 2023-06-26 Copper alloy assembly and production method therefor

Publications (1)

Publication Number Publication Date
WO2022149561A1 true WO2022149561A1 (ja) 2022-07-14

Family

ID=82357771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/049009 WO2022149561A1 (ja) 2021-01-08 2021-12-28 銅合金接合体及びその製造方法

Country Status (6)

Country Link
US (1) US20230356321A1 (ja)
EP (1) EP4275826A1 (ja)
JP (2) JP7211558B2 (ja)
KR (1) KR20230104291A (ja)
CN (1) CN116323066A (ja)
WO (1) WO2022149561A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009974A1 (ja) * 2022-07-06 2024-01-11 日本碍子株式会社 銅合金接合体
WO2024009975A1 (ja) * 2022-07-06 2024-01-11 日本碍子株式会社 銅合金接合体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533187A (ja) * 2002-07-16 2005-11-04 ハネウェル・インターナショナル・インコーポレーテッド 銅スパッタリングターゲット及び銅スパッタリングターゲットの形成方法
US20120270070A1 (en) * 2011-04-22 2012-10-25 The Industry & Academic Coorporation in Chungnam National University (IAC) Hybrid copper alloy realizing simultaneously high strength, high elastic modulus, high corrosion-resistance, wear resistance, and high conductivity and manufacturing method thereof
JP2017145472A (ja) 2016-02-18 2017-08-24 日本碍子株式会社 耐水素部材及び耐水素部材の使用方法
JP2018059198A (ja) * 2016-10-05 2018-04-12 株式会社神戸製鋼所 放熱部品用銅合金板
WO2021002364A1 (ja) * 2019-07-04 2021-01-07 日本碍子株式会社 ベリリウム銅合金接合体及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987780A (ja) 1995-09-26 1997-03-31 Chubu Electric Power Co Inc 熱交換器用ベリリウム銅合金

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533187A (ja) * 2002-07-16 2005-11-04 ハネウェル・インターナショナル・インコーポレーテッド 銅スパッタリングターゲット及び銅スパッタリングターゲットの形成方法
US20120270070A1 (en) * 2011-04-22 2012-10-25 The Industry & Academic Coorporation in Chungnam National University (IAC) Hybrid copper alloy realizing simultaneously high strength, high elastic modulus, high corrosion-resistance, wear resistance, and high conductivity and manufacturing method thereof
JP2017145472A (ja) 2016-02-18 2017-08-24 日本碍子株式会社 耐水素部材及び耐水素部材の使用方法
JP2018059198A (ja) * 2016-10-05 2018-04-12 株式会社神戸製鋼所 放熱部品用銅合金板
WO2021002364A1 (ja) * 2019-07-04 2021-01-07 日本碍子株式会社 ベリリウム銅合金接合体及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009974A1 (ja) * 2022-07-06 2024-01-11 日本碍子株式会社 銅合金接合体
WO2024009975A1 (ja) * 2022-07-06 2024-01-11 日本碍子株式会社 銅合金接合体

Also Published As

Publication number Publication date
JPWO2022149561A1 (ja) 2022-07-14
KR20230104291A (ko) 2023-07-07
CN116323066A (zh) 2023-06-23
JP7211558B2 (ja) 2023-01-24
US20230356321A1 (en) 2023-11-09
EP4275826A1 (en) 2023-11-15
JP2023040084A (ja) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2022149561A1 (ja) 銅合金接合体及びその製造方法
EP0060083B1 (en) Titanium clad steel plate
CN114072531B (zh) 铍铜合金接合体及其制造方法
EP2508635A1 (en) Copper alloy sheet and process for producing same
JP6452627B2 (ja) アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法
EP2228460A1 (en) High-strength highly heat-conductive copper alloy pipe and process for producing the same
TWI461548B (zh) 銅-鎳-矽合金
WO2014184890A1 (ja) ステンレス鋼拡散接合製品の製造方法
TW200821394A (en) Copper alloy sheet material for electric and electronic instruments and method of producing the same
JP4974193B2 (ja) 電気電子部品用銅合金板材
CN113478063B (zh) 以难熔金属为中间层的钛锆钼合金真空扩散连接方法
US7527187B2 (en) Titanium braze foil
EP3827922B1 (en) Method of diffusion bonding a nickel-based superalloy.
KR20200041630A (ko) 고엔트로피 합금 및 그 제조방법
WO2024009975A1 (ja) 銅合金接合体
WO2024009974A1 (ja) 銅合金接合体
Bhanumurthy et al. Transition joints between Zircaloy-2 and stainless steel by diffusion bonding
WO2022091766A1 (ja) 複合材料
US20220205074A1 (en) Copper alloys with high strength and high conductivity, and processes for making such copper alloys
Eff et al. The effects of postweld processing on friction stir welded, additive manufactured AlSi10Mg
JP3297012B2 (ja) 冷延性に優れた高強度チタン合金
WO2017018519A1 (ja) チタン複合材および熱間加工用チタン材
Hadi et al. Effect of Solution Treatment on the Rollability of a Cu-Ni-Mn-Sn Alloy
JP5354202B2 (ja) チタンクラッド鋼刃物及びその製造方法
JP2023139814A (ja) 耐水素部材用銅合金素材及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022523805

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237020498

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021917780

Country of ref document: EP

Effective date: 20230808