WO2024009775A1 - Substrate processing device and substrate processing method - Google Patents

Substrate processing device and substrate processing method Download PDF

Info

Publication number
WO2024009775A1
WO2024009775A1 PCT/JP2023/022971 JP2023022971W WO2024009775A1 WO 2024009775 A1 WO2024009775 A1 WO 2024009775A1 JP 2023022971 W JP2023022971 W JP 2023022971W WO 2024009775 A1 WO2024009775 A1 WO 2024009775A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
section
unit
liquid
suction
Prior art date
Application number
PCT/JP2023/022971
Other languages
French (fr)
Japanese (ja)
Inventor
宗久 児玉
孝彬 若松
弘 財前
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024009775A1 publication Critical patent/WO2024009775A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/06Dust extraction equipment on grinding or polishing machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the substrate grinding system described in Patent Document 1 includes a grinding device that grinds a substrate, and a cleaning device that cleans the substrate after being ground by the grinding device.
  • the grinding device has a chuck that suctions and holds the substrate. The substrate is ground while being held by the chuck.
  • a substrate processing apparatus includes a substrate suction section that suctions a substrate, a supply section that supplies fluid to the inside of the substrate suction section, and a suction section that suctions the fluid from inside the substrate suction section. , a first transport section that holds the substrate from a side opposite to the substrate suction section, and a control section that controls the supply section, the suction section, and the first transport section.
  • the control unit is configured to control the substrate suctioned by the substrate suction unit to be held by the first transport unit from the side opposite to the substrate suction unit, and control to supply a liquid into the inside of the substrate suction unit; control to separate the substrate from the substrate adsorption unit by a set distance by moving the first transport unit a predetermined distance; and control to separate the substrate from the substrate adsorption unit by a set distance; Control is performed to suck the remaining liquid into the inside of the substrate suction section.
  • FIG. 1 is a plan view showing a substrate processing apparatus according to one embodiment.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a flowchart illustrating a substrate processing method according to one embodiment.
  • FIG. 4 is a cross-sectional view showing a substrate holding mechanism according to one embodiment.
  • FIG. 5 is a flowchart showing an example of step S102.
  • FIG. 6(A) is a sectional view showing an example of step S204
  • FIG. 6(B) is a sectional view showing an example of step S205
  • FIG. 6(C) is a sectional view showing an example of step S207.
  • FIG. 6(D) is a sectional view showing an example of the first stage of step S208, and FIG.
  • FIG. 6(E) is a sectional view showing an example of the second stage of step S208.
  • FIG. 7 is a sectional view showing an example of a cleaning section, and is a sectional view showing an example of a state in which a substrate is held by a substrate holding section.
  • FIG. 8 is a cross-sectional view showing an example of a cleaning section, and is a cross-sectional view showing an example of a state in which a substrate is held by a pair of suction pads.
  • FIG. 9 is a sectional view showing an example of the standby section.
  • the same or corresponding configurations are denoted by the same reference numerals, and the description thereof may be omitted.
  • the X-axis direction, Y-axis direction, and Z-axis direction are directions perpendicular to each other.
  • the X-axis direction and the Y-axis direction are horizontal, and the Z-axis direction is vertical.
  • the substrate processing apparatus 1 processes a substrate W and cleans the processed substrate W.
  • the substrate processing apparatus 1 includes, for example, a loading/unloading block 2, a cleaning block 3, and a processing block 5.
  • the loading/unloading block 2, the cleaning block 3, and the processing block 5 are arranged in this order from the X-axis negative direction side to the X-axis positive direction side.
  • the loading/unloading block 2 includes a loading section 21 on which the cassette C is placed.
  • the cassette C accommodates a plurality of substrates W.
  • the substrate W includes a semiconductor substrate such as a silicon wafer or a compound semiconductor wafer.
  • the substrate W may further include a device layer formed on the surface of the semiconductor substrate.
  • the device layer includes, for example, electronic circuitry.
  • the substrate W may include a glass substrate instead of a semiconductor substrate.
  • the cleaning block 3 includes, for example, cleaning sections 31A and 31B for cleaning the substrate W after processing, etching sections 32A and 32B for etching the substrate W after cleaning, a reversing section 34 for reversing the substrate W, and a reversing section 34 for reversing the substrate W. and a transition unit 35 for relaying. Further, the cleaning block 3 includes a second transport section 36 and a third transport section 37.
  • the second transport section 36 transports the substrate W between a plurality of devices adjacent to the second transport section 36 .
  • the second transport section 36 has a transport arm that holds the substrate W.
  • the transport arm can move in the horizontal direction (both the X-axis direction and the Y-axis direction) and the vertical direction, and can rotate about the vertical axis.
  • the third transport section 37 transports the substrate W between a plurality of devices adjacent to the third transport section 37 .
  • the third transport section 37 has a transport arm that holds the substrate W.
  • the transport arm can move in the horizontal direction (both the X-axis direction and the Y-axis direction) and the vertical direction, and can rotate about the vertical axis.
  • the processing block 5 includes a processing section 50 that processes the substrate W.
  • the processing unit 50 grinds the substrate W, for example. Grinding includes polishing.
  • the processing section 50 includes, for example, four holding sections 52A, 52B, 52C, and 52D that hold the substrate W, and two tool drive sections 53A and 53B that drive the tool D pressed against the substrate W.
  • the tool drive units 53A and 53B rotate the tool D and move it up and down.
  • the processing section 50 may further include a rotary table 51 that is rotated about the rotation center line R1.
  • the four holding parts 52A to 52D are rotated together with the rotary table 51.
  • the four holding parts 52A to 52D are provided at intervals around the rotation center line R1 of the rotary table 51, and are rotated simultaneously about the rotation center line R1.
  • the four holding parts 52A to 52D are independently rotated about their respective rotation center lines R2.
  • the two holding parts 52A and 52C are arranged symmetrically about the rotation center line R1 of the rotary table 51.
  • Each holding unit 52A, 52C moves between a first loading/unloading position A3 where the substrate W is loaded/unloaded by the first transport unit 54 and a first processing position A1 where the substrate W is processed by one tool driving unit 53A. do.
  • the two holding parts 52A and 52C move between the first loading/unloading position A3 and the first processing position A1 every time the rotary table 51 rotates 180 degrees.
  • the nozzle 59 (see FIG. 2) supplies a processing liquid such as water to the upper surface of the substrate W during processing of the substrate W.
  • the other two holding parts 52B and 52D are arranged symmetrically about the rotation center line R1 of the rotary table 51.
  • Each holding unit 52B, 52D moves between a second loading/unloading position A0 where the substrate W is loaded/unloaded by the first transport unit 54 and a second processing position A2 where the substrate W is processed by another tool driving unit 53B. do.
  • the other two holding parts 52B and 52D move between the second loading/unloading position A0 and the second processing position A2 every time the rotary table 51 rotates 180 degrees.
  • a nozzle (not shown) supplies a processing liquid such as water to the upper surface of the substrate W during processing of the substrate W.
  • the first loading/unloading position A3, the second loading/unloading position A0, the first processing position A1, and the second processing position A2 are arranged counterclockwise in this order.
  • the holding portion 52A, the holding portion 52B, the holding portion 52C, and the holding portion 52D are arranged in this order at a pitch of 90° counterclockwise.
  • the positions of the first carry-in/out position A3 and the second carry-in/out position A0 may be reversed, and the positions of the first processing position A1 and second processing position A2 may also be reversed.
  • the first loading/unloading position A3, the second loading/unloading position A0, the first processing position A1, and the second processing position A2 are arranged in this order clockwise.
  • the holding portion 52A, the holding portion 52B, the holding portion 52C, and the holding portion 52D are arranged in this order at a pitch of 90 degrees clockwise.
  • the number of holding parts is not limited to four.
  • the number of tool drive units is also not limited to two.
  • the rotary table 51 may not be provided.
  • a slide table may be provided instead of the rotary table 51.
  • the processing block 5 includes a first transport section 54 that transports the substrate W inside the processing block 5.
  • the first transport section 54 includes a suction pad that holds the substrate W.
  • the suction pad can move in the horizontal direction (both the X-axis direction and the Y-axis direction) and the vertical direction, and can rotate about the vertical axis.
  • the processing block 5 includes standby sections 57A, 57B, and 57C (see FIG. 2) in which the substrate W is temporarily placed on standby.
  • the standby parts 57A, 57B, and 57C relay the substrates W between the first transport part 54 and the second transport part 36.
  • the standby parts 57A and 57B relay the substrate W from the second transport part 36 to the first transport part 54.
  • the standby section 57C relays the substrate W from the first transport section 54 to the second transport section 36.
  • the standby sections 57A and 57B also serve as alignment sections that adjust the center position of the substrate W.
  • the alignment section aligns the center position of the substrate W to a desired position using a guide or the like.
  • the alignment unit may detect the center position of the substrate W using an optical system or the like. Further, the alignment unit may also detect the crystal orientation of the substrate W using an optical system or the like, and specifically may also detect a notch representing the crystal orientation of the substrate W.
  • the crystal orientation of the substrate W can be aligned to a desired orientation in the rotating coordinate system that rotates together with each of the holding parts 52A to 52D.
  • the processing block 5 may include an inversion section 58 (see FIG. 2) that inverts the substrate W.
  • the reversing section 58, the standby section 57C, the standby section 57B, and the standby section 57A are stacked in this order from top to bottom. Note that the order of lamination is not particularly limited.
  • the reversing section 58 also serves as a standby section that temporarily waits the substrate W on the transport path of the substrate W from the processing section 50 to the cleaning section 31A.
  • the reversing unit 58 relays the substrate W from the first transport unit 54 to the second transport unit 36. Note that although the reversing section 58 also serves as a standby section, the reversing section 58 and the standby section may be provided separately.
  • the substrate processing apparatus 1 further includes a control section 9.
  • the control unit 9 is, for example, a computer, and includes a calculation unit 91 such as a CPU (Central Processing Unit), and a storage unit 92 such as a memory.
  • the storage unit 92 stores programs that control various processes executed in the substrate processing apparatus 1.
  • the control unit 9 controls the operation of the substrate processing apparatus 1 by causing the calculation unit 91 to execute a program stored in the storage unit 92.
  • a unit control section that controls the operation of the unit may be provided for each unit constituting the substrate processing apparatus 1, and a system control section may be provided that centrally controls a plurality of unit control sections.
  • the control section 9 may be composed of a unit control section and a system control section.
  • the substrate processing method includes steps S101 to S110 shown in FIG. 3, for example. Steps S101 to S110 are performed under the control of the control section 9. Note that the substrate processing method may not include all the steps shown in FIG. 3, or may include steps not shown in FIG. 3.
  • the third transport section 37 takes out the substrate W from the cassette C and transports it to the transition section 35.
  • the second transport section 36 takes out the substrate W from the transition section 35 and transports it to the standby section 57A.
  • the substrate W has a first main surface and a second main surface facing oppositely to each other, and is transported with the first main surface facing upward.
  • the standby unit 57A adjusts the center position of the substrate W (step S101).
  • the first transport section 54 takes out the substrate W from the standby section 57A and transports it to the holding section (for example, the holding section 52C) located at the first loading/unloading position A3.
  • the substrate W is placed on the holding portion 52C with the first main surface facing upward.
  • the center of the substrate W and the rotation center line R2 of the holding portion 52C are aligned.
  • the rotary table 51 is rotated 180 degrees, and the holding section 52C is moved from the first carry-in/out position A3 to the first processing position A1.
  • the tool driving unit 53A drives the tool D to grind the first main surface of the substrate W (step S102). Thereafter, the rotary table 51 is rotated 180 degrees, and the holding part 52C is moved from the first processing position A1 to the first loading/unloading position A3. Subsequently, the first transport section 54 takes out the substrate W from the holding section 52C located at the first loading/unloading position A3, and transports it to the reversing section 58.
  • the reversing unit 58 reverses the substrate W (step S103).
  • the substrate W is turned upside down so that the first main surface faces downward and the second main surface faces upward.
  • the second transport section 36 takes out the substrate W from the reversing section 58 and transports it to the cleaning section 31A.
  • the cleaning unit 31A cleans the first main surface of the substrate W (step S104). Particles such as processing waste can be removed by the cleaning section 31A.
  • the cleaning unit 31A scrubs and cleans the substrate W, for example.
  • the cleaning unit 31A may clean not only the first main surface of the substrate W but also the second main surface.
  • the second transport section 36 takes out the substrate W from the cleaning section 31A and transports it to the standby section 57B.
  • the standby unit 57B adjusts the center position of the substrate W (step S105).
  • the first transport section 54 takes out the substrate W from the standby section 57B and transports it to the holding section (for example, the holding section 52D) located at the second loading/unloading position A0.
  • the substrate W is placed on the holding portion 52D with the second main surface facing upward.
  • the center of the substrate W and the rotation center line R2 of the holding part 52D are aligned.
  • the rotary table 51 is rotated 180 degrees, and the holding part 52D is moved from the second loading/unloading position A0 to the second processing position A2.
  • the tool driving unit 53B drives the tool D to grind the second main surface of the substrate W (step S106).
  • the rotary table 51 is rotated 180 degrees, and the holding part 52D is moved from the second processing position A2 to the second carry-in/out position A0.
  • the first transport section 54 takes out the substrate W from the holding section 52D located at the second carry-in/out position A0, and transports it to the standby section 57C.
  • the second transport section 36 takes out the substrate W from the standby section 57C and transports it to the cleaning section 31B.
  • the cleaning unit 31B cleans the second main surface of the substrate W (step S107). Particles such as processing waste can be removed by the cleaning section 31B.
  • the cleaning unit 31B scrubs and cleans the substrate W, for example.
  • the cleaning unit 31B may clean not only the second main surface of the substrate W but also the first main surface.
  • the third transport section 37 takes out the substrate W from the cleaning section 31B and transports it to the etching section 32B.
  • the etching unit 32B etches the second main surface of the substrate W (step S108). Machining marks on the second main surface can be removed by the etching portion 32B.
  • the third transport section 37 takes out the substrate W from the etching section 32B and transports it to the reversing section 34.
  • the reversing unit 34 reverses the substrate W (step S109).
  • the substrate W is turned upside down so that the first main surface faces upward and the second main surface faces downward.
  • the third transport section 37 takes out the substrate W from the reversing section 34 and transports it to the etching section 32A.
  • the etching unit 32A etches the first main surface of the substrate W (step S110). Machining marks on the first main surface can be removed by the etched portion 32A. After drying the substrate W, the third transport section 37 takes out the substrate W from the etching section 32A and stores it in a cassette C. After that, the current process ends.
  • the substrate processing apparatus 1 may simultaneously perform a plurality of processes at a plurality of positions in order to improve throughput. For example, the substrate processing apparatus 1 simultaneously processes the substrate W at each of the first processing position A1 and the second processing position A2. During this time, the substrate processing apparatus 1 performs, for example, spray cleaning of the substrate W, measurement of the thickness distribution of the substrate W, unloading of the substrate W, and cleaning of the substrate W at the first loading/unloading position A3 and the second loading/unloading position A0. Cleaning of the suction surface (upper surface), loading of the substrate W, etc. are performed in this order.
  • the substrate processing apparatus 1 rotates the rotary table 51 by 180 degrees. Subsequently, the substrate processing apparatus 1 simultaneously processes the substrate W again at each of the first processing position A1 and the second processing position A2. During this time, the substrate processing apparatus 1 again performs spray cleaning of the substrate W, measurement of the thickness distribution of the substrate W, transport of the substrate W, and operation of the holding unit at each of the first loading/unloading position A3 and the second loading/unloading position A0. Cleaning of the substrate suction surface (upper surface), loading of the substrate W, etc. are performed in this order.
  • the processing unit 50 of this embodiment is a grinding unit that grinds the substrate W
  • the processing section 50 may be a cutting section that cuts the substrate W protected by a protection member, a cutting section that cuts the substrate W, or the like.
  • a grinding section a grindstone or the like is used as the tool D.
  • a cutting section a blade or the like is used as the tool D.
  • an end mill or the like is used as the tool D.
  • the substrate holding mechanism 60 is used in the processing section 50.
  • the substrate holding mechanism 60 includes, for example, a substrate suction section 61, a suction section 62, and a supply section 63.
  • the substrate suction unit 61 suctions the substrate W.
  • the substrate suction unit 61 is, for example, a vacuum chuck, and includes a porous body 611 that vacuum suctions the substrate W, and a holding table 612 that holds the porous body 611.
  • the porous body 611 has an adsorption surface that adsorbs the substrate W.
  • the substrate adsorption section 61 is used, for example, as the holding sections 52A to 52D shown in FIG. 1, although it is not particularly limited.
  • the suction unit 62 sucks fluid from inside the substrate suction unit 61.
  • the suction unit 62 includes a valve that switches between suctioning and stopping fluid suction under the control of the control unit 9 .
  • the valve is connected to a source of fluid suction.
  • the suction unit 62 does not include a suction source, but may include a suction source.
  • a valve may be provided for each type of fluid, or a common valve may be provided.
  • the suction unit 62 sucks gas from inside the porous body 611, for example. As a result, the pressure of the porous body 611 is reduced to lower than atmospheric pressure, and the porous body 611 vacuum-adsorbs the substrate W. Thereafter, when the suction unit 62 stops sucking gas and the pressure of the porous body 611 returns to atmospheric pressure, the vacuum suction force disappears.
  • the substrate suction unit 61 is not limited to a vacuum chuck, and may be, for example, an electrostatic chuck.
  • the electrostatic chuck has an insulating substrate and electrodes (not shown).
  • An electrostatic adsorption force is generated by a charge supply unit (not shown) supplying charges to the electrodes.
  • the electrostatic adsorption force disappears as a charge discharging section (not shown) discharges the charge from the electrode.
  • the substrate W When processing the substrate W, the substrate W is sucked by the substrate suction unit 61.
  • a processing liquid such as water is supplied to the substrate W for purposes such as reducing frictional resistance, cooling, and preventing adhesion of processing debris.
  • the processing liquid enters between the substrate suction part 61 and the substrate W.
  • the supply section 63 supplies the liquid L into the substrate adsorption section 61 to remove the substrate W, and presses the substrate W with the pressure of the liquid L (FIGS. 6(B) and 6(C)). )reference).
  • the liquid L is, for example, water.
  • the supply unit 63 may supply a mixed fluid of liquid L and gas into the substrate adsorption unit 61, or may push the substrate W with the pressure of the mixed fluid.
  • the gas is, for example, air.
  • the supply unit 63 pushes the substrate W with the pressure of the liquid L, for example, by supplying the liquid L into the inside of the porous body 611.
  • the substrate suction unit 61 is an electrostatic chuck
  • a plurality of holes may be formed in the suction surface of the electrostatic chuck, and the supply unit 63 may supply the liquid L to the holes.
  • the pressure of the liquid L can push the substrate W.
  • the substrate W is peeled off from the substrate suction unit 61 by the pressure of the liquid L and transferred from the substrate suction unit 61 to the first transport unit 54. Utilizing the pressure of the liquid L is particularly effective when grinding the substrate W.
  • the tool D presses the substrate W against the substrate suction part 61. This is because, as a result, the substrate W comes into close contact with the substrate adsorption section 61.
  • the suction unit 62 sucks the liquid L remaining between the substrate suction unit 61 and the substrate W into the inside of the substrate suction unit 61 (see FIGS. 6(D) and 6(E)). Thereby, after the substrate W is pushed by the pressure of the liquid L in order to remove the substrate W from the substrate suction part 61, the amount of the liquid L remaining on the substrate W can be reduced. It is possible to suppress the liquid L from scattering inside the substrate processing apparatus 1 due to subsequent transportation of the substrate W.
  • the suction unit 62 In order to reduce the amount of liquid L remaining on the substrate W, it is also possible to use a sponge roller or the like instead of the suction unit 62.
  • the sponge roller is provided next to the substrate suction unit 61, and removes the liquid L remaining on the substrate W during the transport path of the substrate W. According to this embodiment, since the liquid L is removed from the substrate W above the substrate suction unit 61, there is no need to secure a dedicated space in the middle of the transport path of the substrate W. Furthermore, according to this embodiment, it is possible to save the effort of cleaning the sponge roller.
  • step S102 in FIG. 3 will be described with reference to FIGS. 5 and 6.
  • Step S106 in FIG. 3 is performed in the same manner as step S102, so the explanation will be omitted.
  • step S102 includes steps S201 to S209, for example. Steps S201 to S209 are performed under the control of the control section 9.
  • the first transport section 54 carries the substrate W into the processing section 50 (step S201). Subsequently, the substrate suction section 61 in the processing section 50 suctions the substrate W (step S202). Thereafter, the first conveyance section 54 exits the processing section 50. With the substrate suction unit 61 suctioning the substrate W, the processing unit 50 processes the substrate W (step S203).
  • the first transport section 54 enters the processing section 50 and is placed on the substrate W as shown in FIG. 6(A). After that, the first transport section 54 holds the substrate W from the side opposite to the substrate suction section 61 (for example, from the upper side) (step S204).
  • the first transport section 54 includes a suction pad 54a that suctions the substrate W, for example.
  • the suction pad 54a only needs to suction the center portion of the upper surface of the substrate W, and does not need to suction the outer peripheral portion of the upper surface of the substrate W.
  • the substrate suction section 61 suctions the substrate W so that the substrate W does not shift when the first transport section 54 suctions the substrate W. Both the substrate suction section 61 and the first transport section 54 suction the substrate W. Thereafter, the suction section 62 stops sucking the gas, and the substrate suction section 61 stops suctioning the substrate W. Then, only the first transport section 54 attracts the substrate W. Note that the first transport section 54 may hold the substrate W with a mechanical chuck instead of the suction pad 54a.
  • the supply unit 63 supplies the liquid L to the inside of the substrate suction unit 61, and pushes the substrate W upward with the pressure of the liquid L (step S205).
  • the first transport section 54 presses the substrate W from the side opposite to the substrate suction section 61 to prevent the substrate W from being blown away.
  • the liquid L leaks out laterally from between the substrate suction part 61 and the substrate W.
  • control unit 9 determines whether the substrate W is held in the first transport unit 54 (step S206). For example, when the first transport unit 54 vacuum-chucks the substrate W, the pressure sensor 82 detects the pressure representing the vacuum suction force. The control unit 9 makes the determination based on the detected value of the pressure sensor 82. If the substrate W is vacuum-adsorbed by the first transfer unit 54 and there is no vacuum leak, the pressure will be below the threshold value.
  • step S206 if it is determined in step S206 that the substrate W is not held in the first transport unit 54, the processes from step S204 onward are performed again, for example. Alternatively, the processing of the substrate W may be interrupted and maintenance of the substrate processing apparatus 1 may be performed.
  • step S206 If it is determined in step S206 that the substrate W is held by the first transport section 54, the first transport section 54 is raised as shown in FIG. 6(C). As a result, the substrate W is separated from the substrate adsorption section 61 (step S207). A gap is formed between the substrate adsorption section 61 and the substrate W. The size of the gap is equal to the amount of rise of the substrate W. The larger the amount of rise of the substrate W is, the larger the gap is.
  • step S208 the substrate W is raised by a set distance D0, and the substrate W is separated from the substrate suction unit 61 by a set distance D0.
  • the space between the substrate W and the substrate adsorption section 61 is filled with a film of the liquid L.
  • the set distance D0 is determined in consideration of the suction time of the liquid L in step S208 and the like. The larger the set distance D0 is, the larger the remaining amount of liquid L is, the longer the liquid L suction time becomes, and the throughput decreases. However, if the set distance D0 is too small, there is a risk that the substrate W may come into contact with the substrate suction section 61 due to the suction force.
  • the suction unit 62 sucks the liquid L remaining between the substrate suction unit 61 and the substrate W into the inside of the substrate suction unit 61. Thereby, the amount of liquid L remaining on the substrate W can be reduced. Splashing of the liquid L due to subsequent transportation of the substrate W can be suppressed, and the inside of the substrate processing apparatus 1 can be kept clean. As shown in FIG. 6E, a small amount of liquid L may remain on the substrate W.
  • the first transport section 54 moves in the horizontal direction while holding the substrate W, exits the processing section 50, and carries out the substrate W from the processing section 50 (step S209).
  • the cleaning step includes rotating the substrate suction unit 61 while supplying the liquid L to the inside of the substrate suction unit 61.
  • a cleaning step is performed after the substrate W is separated from the substrate suction unit 61 so that the substrate suction unit 61 and the substrate W do not rub against each other by rotating the substrate suction unit 61. Therefore, the cleaning step is performed after the start of step S207.
  • the liquid L may be supplied to the inside of the substrate suction section 61, or a mixed fluid of liquid L and gas may be supplied to the inside of the substrate suction section 61.
  • the size of the gap formed between the substrate suction unit 61 and the substrate W in the cleaning step may be larger, smaller, or the same as the size D0 of the gap formed in step S208. But that's fine.
  • the cleaning step includes rotating the substrate suction unit 61 while supplying the liquid L to the inside of the substrate suction unit 61.
  • the liquid L flows from the inside in the radial direction of the substrate W to the outside in the radial direction due to centrifugal force while contacting both the substrate suction part 61 and the substrate W.
  • step S208 is performed.
  • the substrate suction unit 61 may be rotated, but it is preferable that the substrate suction unit 61 is not rotated. In the latter case, generation of centrifugal force can be prevented. If centrifugal force is not generated, the liquid L is likely to be drawn from the radially outer side to the radially inner side of the substrate W while contacting both the substrate W and the substrate suction part 61.
  • the cleaning section 31B includes, for example, a substrate holding section 311 that holds the substrate W, a rotation mechanism 312 that rotates the substrate holding section 311, a ring cover 314 that surrounds the periphery of the substrate W, and a friction section 315 that contacts the substrate W. , a moving part 316 that moves the friction part 315, a lower nozzle 317 that supplies cleaning liquid to the lower surface of the substrate W, and an upper nozzle 318 that supplies the cleaning liquid to the upper surface of the substrate W.
  • the substrate holding unit 311 holds the substrate W horizontally from below, for example.
  • the substrate holding unit 311 attracts the first region of the substrate W.
  • the first region is, for example, the center of the lower surface of the substrate W.
  • the rotation mechanism 312 rotates the substrate W by rotating the substrate holding part 311.
  • the ring cover 314 suppresses the scattering of the cleaning liquid shaken off from the rotating substrate W.
  • a pair of suction pads 313 (only one is shown in FIGS. 7 and 8) are provided inside the ring cover 314, sandwiching the substrate holding part 311 in the Y-axis direction.
  • the pair of suction pads 313 and the ring cover 314 are integrated, and are movable in the X-axis direction and the Z-axis direction simultaneously, for example, but are immovable in the Y-axis direction.
  • the friction part 315 contacts the lower surface of the substrate W, for example, and rubs the lower surface of the substrate W.
  • the friction part 315 is a brush or a sponge.
  • the friction section 315 is rotated by a motor 319 and moved in the Y-axis direction by a moving section 316 .
  • the rotation mechanism 312 rotates the substrate W, and the moving section 316 moves the friction section 315 in the Y-axis direction. let As a result, the area outside the first area on the lower surface of the substrate W is scrub-cleaned.
  • a drive unit moves the pair of suction pads 313 and the ring cover 314 in the X-axis direction, and the moving unit 316 The friction portion 315 is moved in the Y-axis direction. As a result, the first region of the lower surface of the substrate W is scrub-cleaned.
  • the substrate holding section 311 and the pair of suction pads 313 sequentially hold the substrate W, so that the friction section 315 can scrub the entire lower surface of the substrate W.
  • the friction part 315 is arranged below the substrate W in this embodiment, it may be arranged above the substrate W, and the upper surface of the substrate W may be scrubbed.
  • the friction portions 315 may be arranged on both the upper and lower sides of the substrate W.
  • the substrate W is transported from the processing section 50 to the cleaning sections 31A and 31B in a wet state with the liquid supplied by the processing section 50.
  • the reason why the substrate W is transported while wet with liquid is that if the substrate W dries before cleaning, processing debris will firmly adhere to the substrate W, making it difficult to remove the processing debris by cleaning. Because it will be.
  • the liquid contaminated with processing waste is brought into the cleaning parts 31A, 31B.
  • the liquid contaminated with processing waste adheres to the substrate holding parts 311 of the cleaning parts 31A and 31B, thereby staining the substrate holding parts 311. Thereafter, the substrate W held by the substrate holder 311 is adversely affected.
  • the standby section 57C includes a liquid removal section 70 that removes the liquid from the first region of the substrate W. As described above, the standby section 57C temporarily waits the substrate W wet with the liquid supplied in the processing section 50 in the middle of the substrate W transport path from the processing section 50 to the cleaning section 31B. be.
  • the standby section 57C includes, for example, a plurality of support pins 571 that support the outer periphery of the substrate W, and a horizontal plate 572 on which the support pins 571 are erected.
  • the plurality of support pins 571 support the substrate W horizontally.
  • a gap is formed between the substrate W and the horizontal plate 572, and at least a portion of the liquid removal section 70 is disposed in the gap.
  • the liquid removal unit 70 dries the first region of the substrate W.
  • the first region of the substrate W is a region with which the substrate holding section 311 of the cleaning section 31B comes into contact.
  • By drying the first region of the substrate W it is possible to suppress the liquid contaminated with processing waste from adhering to the substrate holding part 311 of the cleaning part 31B, and it is possible to suppress the substrate holding part 311 from becoming dirty. Therefore, the cleaning section 31B can be kept clean.
  • the first region of the substrate W is, for example, the center of the bottom surface of the substrate W. Since the center of the lower surface of the substrate W is an area where hardly any processing debris accumulates compared to not only the upper surface of the substrate W but also the outer periphery of the lower surface of the substrate W, there is no problem even if it is dried before cleaning. Note that since the upper surface of the substrate W is processed, processing debris tends to accumulate thereon, and processing debris that has come around from the upper surface of the substrate W can accumulate on the outer periphery of the lower surface of the substrate W.
  • the liquid removal unit 70 only needs to remove the liquid from a part of the substrate W, and does not need to remove the liquid from the entire substrate W.
  • the liquid removal unit 70 only needs to remove the liquid from the center of the lower surface of the substrate W, and does not need to remove the liquid from the outer periphery of the lower surface of the substrate W. Thereby, processing debris can be prevented from firmly adhering to the substrate W before cleaning, and processing debris can be easily removed by cleaning.
  • the liquid removal section 70 includes, for example, a gas discharge section 71 that discharges gas toward the first region of the substrate W. By adjusting the gas discharge direction, gas discharge flow rate, etc., the area where the gas hits the substrate W can be adjusted, and the area of the substrate W from which liquid is removed can be adjusted.
  • the gas discharge section 71 includes a nozzle 711 that discharges gas.
  • the nozzle 711 is erected vertically, for example, and discharges gas directly upward.
  • the discharged gas is, for example, air.
  • the gas to be discharged may be any dry gas, and may be an inert gas such as nitrogen gas. Although the number of nozzles 711 is one in this embodiment, it may be plural.
  • the gas discharged from the nozzle 711 hits the center of the lower surface of the substrate W, it flows radially along the lower surface of the substrate W, gradually decelerating, and gradually reaching atmospheric pressure.
  • the Bernoulli effect operates in the gap between the nozzle 711 and the substrate W, a negative pressure is generated at the center of the lower surface of the substrate W, and the substrate W is sucked by the negative pressure. Therefore, the substrate W is stably supported.
  • the gas discharge section 71 may discharge a cleaning liquid such as water before discharging the gas.
  • the cleaning liquid and gas are discharged through the same nozzle 711.
  • the first region of the substrate W can be cleaned with a cleaning liquid before drying with the gas. Therefore, it is possible to further suppress processing debris from adhering to the substrate holding section 311 of the cleaning section 31B.
  • the liquid removal unit 70 has a supply line 73 that supplies gas and cleaning liquid to the nozzle 711.
  • the supply line 73 has a common line 731 and a plurality of branch lines 732 and 733.
  • a common line 731 connects the nozzle 711 and the plurality of branch lines 732 and 733. Note that the supply line 73 may supply only gas to the nozzle 711.
  • a branch line 732 connects the common line 731 and the gas supply source 74.
  • An on-off valve 75 is provided in the middle of the branch line 732. When the on-off valve 75 opens the flow path of the branch line 732, the nozzle 711 discharges gas. When the on-off valve 75 closes the flow path of the branch line 732, the nozzle 711 stops discharging gas.
  • a branch line 733 connects the common line 731 and the cleaning liquid supply source 76.
  • An on-off valve 77 is provided in the middle of the branch line 733. When the on-off valve 77 opens the flow path of the branch line 733, the nozzle 711 discharges the cleaning liquid. When the on-off valve 77 closes the flow path of the branch line 733, the nozzle 711 stops discharging the cleaning liquid.
  • the liquid removal unit 70 may include an air volume amplification unit 72 that amplifies the air volume hitting the substrate W by drawing gas around the gas discharge unit 71 into the flow of gas discharged from the gas discharge unit 71 using the Coanda effect. .
  • an air volume amplification unit 72 that amplifies the air volume hitting the substrate W by drawing gas around the gas discharge unit 71 into the flow of gas discharged from the gas discharge unit 71 using the Coanda effect.
  • the air volume amplification section 72 has, for example, an annular section 721 that surrounds the entire circumference of the gas discharge section 71.
  • the annular portion 721 allows gas to be taken in from the entire periphery of the gas discharge portion 71 .
  • the annular portion 721 preferably has an annular shape. Gas can be evenly taken in from the entire surrounding area around the gas discharge part 71. Note that the annular portion 721 may have a rectangular ring shape.
  • the gas discharge part 71 may protrude more toward the substrate W than the air volume amplification part 72, and may protrude above the air volume amplification part 72, for example.
  • the nozzle 711 of the gas discharge section 71 may protrude further toward the substrate W than the annular portion 721 of the air volume amplifying section 72, and may protrude upward than the annular portion 721, for example.
  • the nozzle 711 protrudes more toward the substrate W than the annular portion 721, the gas discharged from the nozzle 711 easily passes between the annular portion 721 and the substrate W. Therefore, the flow rate of the gas that spreads radially along the lower surface of the substrate W can be increased. A wide area of the substrate W can be dried with a small discharge flow rate of gas. Furthermore, floating of the substrate W due to gas discharge can be suppressed.
  • the air volume amplification section 72 has an intake port 722 between the annular section 721 and the horizontal plate 572 to take in the surrounding gas.
  • the area of the intake port 722 is, for example, equal to the product of the height of the gap between the annular portion 721 and the horizontal plate 572 and the outer circumference length of the annular portion 721.
  • the air volume amplifying section 72 has an air outlet 723 on the surface of the annular section 721 facing the substrate W that blows out gas toward the substrate W.
  • the area of the air outlet 723 is, for example, the area of an opening formed in the surface of the annular portion 721 that faces the substrate W.
  • the area of the intake port 722 may be larger than the area of the air outlet 723. Thereby, a large amount of gas can be taken in from around the air volume amplifying section 72, and the amount of air hitting the substrate W can be further amplified.
  • the annular portion 721 may have a tapered surface 724 at the air outlet 723 that widens toward the substrate W (for example, upward).
  • the gas flow can be smoothly bent along the tapered surface 724, suppressing the generation of vortices and suppressing gas stagnation.
  • the annular portion 721 has an opening 725 on a surface opposite to the surface facing the substrate W (for example, the bottom surface).
  • the annular portion 721 may have a tapered surface (not shown) in the opening 725 that widens toward the side opposite to the substrate W (for example, toward the bottom).
  • the liquid removing section 70 is provided in a waiting section 57C that temporarily waits the substrate W in the middle of the transport path of the substrate W from the processing section 50 to the cleaning section 31B. It may be provided in a standby section (for example, the reversing section 58) that temporarily waits the substrate W on the transport path of the substrate W to the section 31A. Note that, as described above, the reversing section 58 and the standby section may be provided separately.
  • the liquid removal unit 70 removes the liquid L adhering to the substrate W in the standby unit. This not only prevents the liquid L from scattering into the interior of the substrate processing apparatus 1, but also prevents the substrate holding parts 311 of the cleaning parts 31A and 31B from getting dirty.
  • Control section 54 First transport section 61
  • Suction section 63 Supply section L Liquid W Substrate

Abstract

This substrate processing device comprises: a substrate clamping unit that clamps a substrate; a supply unit the supplies a fluid to the inside of the substrate clamping unit; a suction unit that suctions the fluid from the inside of the substrate clamping unit; a first transport unit that holds the substrate from the side opposite from the substrate clamping unit; and a control unit that controls the supply unit, the suction unit, and the first transport unit. The control unit performs: control for holding the substrate that is clamped by the substrate clamping unit with the first transport unit from the side opposite from the substrate clamping unit; control for supplying a liquid to the inside of the substrate clamping unit; control for moving the first transport unit a set distance so as to separate the substrate from the substrate clamping unit by the set distance; and control for suctioning, to the inside of the substrate clamping unit, the liquid that remains between the substrate clamping unit and the substrate, in a state where the substrate is separated from the substrate clamping unit by the set distance.

Description

基板処理装置および基板処理方法Substrate processing equipment and substrate processing method
 本開示は、基板処理装置および基板処理方法に関する。 The present disclosure relates to a substrate processing apparatus and a substrate processing method.
 特許文献1に記載の基板研削システムは、基板を研削する研削装置と、研削装置で研削された後の基板を洗浄する洗浄装置と、を備える。研削装置は、基板を吸着保持するチャックを有する。基板は、チャックに吸着保持されている状態で、研削される。 The substrate grinding system described in Patent Document 1 includes a grinding device that grinds a substrate, and a cleaning device that cleans the substrate after being ground by the grinding device. The grinding device has a chuck that suctions and holds the substrate. The substrate is ground while being held by the chuck.
日本国登録実用新案第3227448号公報Japanese registered utility model No. 3227448
 本開示の一態様は、チャックなどの基板吸着部の内部に液体を供給し、液体の圧力で基板吸着部から基板を取外した後に、基板の基板吸着部に対向する面に残存する液体の量を低減する、技術を提供する。 One aspect of the present disclosure provides an amount of liquid remaining on a surface of the substrate facing the substrate suction portion after supplying liquid to the inside of a substrate suction portion such as a chuck and removing the substrate from the substrate suction portion using the pressure of the liquid. Provide technology to reduce
 本開示の一態様に係る基板処理装置は、基板を吸着する基板吸着部と、前記基板吸着部の内部に流体を供給する供給部と、前記基板吸着部の内部から流体を吸引する吸引部と、前記基板を前記基板吸着部とは反対側から保持する第1搬送部と、前記供給部、前記吸引部および前記第1搬送部を制御する制御部と、を備える。前記制御部は、前記基板吸着部で吸着した前記基板を前記基板吸着部とは反対側から前記第1搬送部で保持する制御と、前記基板吸着部の内部に液体を供給する制御と、前記第1搬送部を設定距離移動させることで前記基板を前記基板吸着部から設定距離離隔させる制御と、前記基板を前記基板吸着部から設定距離離隔させた状態で、前記基板吸着部と前記基板の間に残る前記液体を前記基板吸着部の内部に吸引する制御と、を行う。 A substrate processing apparatus according to an aspect of the present disclosure includes a substrate suction section that suctions a substrate, a supply section that supplies fluid to the inside of the substrate suction section, and a suction section that suctions the fluid from inside the substrate suction section. , a first transport section that holds the substrate from a side opposite to the substrate suction section, and a control section that controls the supply section, the suction section, and the first transport section. The control unit is configured to control the substrate suctioned by the substrate suction unit to be held by the first transport unit from the side opposite to the substrate suction unit, and control to supply a liquid into the inside of the substrate suction unit; control to separate the substrate from the substrate adsorption unit by a set distance by moving the first transport unit a predetermined distance; and control to separate the substrate from the substrate adsorption unit by a set distance; Control is performed to suck the remaining liquid into the inside of the substrate suction section.
 本開示の一態様によれば、基板の基板吸着部に対向する面に残存する液体の量を低減することができる。 According to one aspect of the present disclosure, it is possible to reduce the amount of liquid remaining on the surface of the substrate facing the substrate adsorption section.
図1は、一実施形態に係る基板処理装置を示す平面図である。FIG. 1 is a plan view showing a substrate processing apparatus according to one embodiment. 図2は、図1のII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 図3は、一実施形態に係る基板処理方法を示すフローチャートである。FIG. 3 is a flowchart illustrating a substrate processing method according to one embodiment. 図4は、一実施形態に係る基板保持機構を示す断面図である。FIG. 4 is a cross-sectional view showing a substrate holding mechanism according to one embodiment. 図5は、ステップS102の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of step S102. 図6(A)はステップS204の一例を示す断面図であり、図6(B)はステップS205の一例を示す断面図であり、図6(C)はステップS207の一例を示す断面図であり、図6(D)はステップS208の第1段階の一例を示す断面図であり、図6(E)はステップS208の第2段階の一例を示す断面図である。FIG. 6(A) is a sectional view showing an example of step S204, FIG. 6(B) is a sectional view showing an example of step S205, and FIG. 6(C) is a sectional view showing an example of step S207. , FIG. 6(D) is a sectional view showing an example of the first stage of step S208, and FIG. 6(E) is a sectional view showing an example of the second stage of step S208. 図7は、洗浄部の一例を示す断面図であって、基板保持部によって基板を保持した状態の一例を示す断面図である。FIG. 7 is a sectional view showing an example of a cleaning section, and is a sectional view showing an example of a state in which a substrate is held by a substrate holding section. 図8は、洗浄部の一例を示す断面図であって、一対の吸着パッドによって基板を保持した状態の一例を示す断面図である。FIG. 8 is a cross-sectional view showing an example of a cleaning section, and is a cross-sectional view showing an example of a state in which a substrate is held by a pair of suction pads. 図9は、待機部の一例を示す断面図である。FIG. 9 is a sectional view showing an example of the standby section.
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。本明細書において、X軸方向、Y軸方向、Z軸方向は互いに垂直な方向である。X軸方向及びY軸方向は水平方向、Z軸方向は鉛直方向である。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that in each drawing, the same or corresponding configurations are denoted by the same reference numerals, and the description thereof may be omitted. In this specification, the X-axis direction, Y-axis direction, and Z-axis direction are directions perpendicular to each other. The X-axis direction and the Y-axis direction are horizontal, and the Z-axis direction is vertical.
 先ず、図1及び図2を参照して、一実施形態に係る基板処理装置1について説明する。基板処理装置1は、基板Wを加工し、加工した基板Wを洗浄する。基板処理装置1は、例えば、搬入出ブロック2と、洗浄ブロック3と、加工ブロック5と、を備える。搬入出ブロック2と、洗浄ブロック3と、加工ブロック5とは、この順番で、X軸負方向側からX軸正方向側に並んでいる。 First, a substrate processing apparatus 1 according to an embodiment will be described with reference to FIGS. 1 and 2. The substrate processing apparatus 1 processes a substrate W and cleans the processed substrate W. The substrate processing apparatus 1 includes, for example, a loading/unloading block 2, a cleaning block 3, and a processing block 5. The loading/unloading block 2, the cleaning block 3, and the processing block 5 are arranged in this order from the X-axis negative direction side to the X-axis positive direction side.
 搬入出ブロック2は、カセットCが載置される載置部21を含む。カセットCは、複数枚の基板Wを収容する。基板Wは、シリコンウェハ又は化合物半導体ウェハ等の半導体基板を含む。基板Wは、半導体基板の表面に形成されるデバイス層を更に含んでもよい。デバイス層は、例えば、電子回路を含む。基板Wは、半導体基板の代わりに、ガラス基板を含んでもよい。 The loading/unloading block 2 includes a loading section 21 on which the cassette C is placed. The cassette C accommodates a plurality of substrates W. The substrate W includes a semiconductor substrate such as a silicon wafer or a compound semiconductor wafer. The substrate W may further include a device layer formed on the surface of the semiconductor substrate. The device layer includes, for example, electronic circuitry. The substrate W may include a glass substrate instead of a semiconductor substrate.
 洗浄ブロック3は、例えば、加工後の基板Wを洗浄する洗浄部31A、31Bと、洗浄後の基板Wをエッチングするエッチング部32A、32Bと、基板Wを反転する反転部34と、基板Wを中継するトランジション部35と、を含む。また、洗浄ブロック3は、第2搬送部36と、第3搬送部37と、を含む。 The cleaning block 3 includes, for example, cleaning sections 31A and 31B for cleaning the substrate W after processing, etching sections 32A and 32B for etching the substrate W after cleaning, a reversing section 34 for reversing the substrate W, and a reversing section 34 for reversing the substrate W. and a transition unit 35 for relaying. Further, the cleaning block 3 includes a second transport section 36 and a third transport section 37.
 上方から見たときに、第2搬送部36と第3搬送部37は、矩形状の洗浄ブロック3の対角線上に設けられる。第2搬送部36は、加工ブロック5に隣接しており、搬入出ブロック2に隣接していない。これに対し、第3搬送部37は、搬入出ブロック2に隣接しており、加工ブロック5に隣接していない。 When viewed from above, the second conveyance section 36 and the third conveyance section 37 are provided on a diagonal line of the rectangular cleaning block 3. The second transport section 36 is adjacent to the processing block 5 and not adjacent to the loading/unloading block 2. On the other hand, the third conveyance section 37 is adjacent to the loading/unloading block 2 and not adjacent to the processing block 5.
 第2搬送部36は、第2搬送部36に隣接する複数の装置間で、基板Wを搬送する。第2搬送部36は、基板Wを保持する搬送アームを有する。搬送アームは、水平方向(X軸方向およびY軸方向の両方向)および鉛直方向への移動ならびに鉛直軸を中心とする回転が可能である。 The second transport section 36 transports the substrate W between a plurality of devices adjacent to the second transport section 36 . The second transport section 36 has a transport arm that holds the substrate W. The transport arm can move in the horizontal direction (both the X-axis direction and the Y-axis direction) and the vertical direction, and can rotate about the vertical axis.
 第3搬送部37は、第3搬送部37に隣接する複数の装置間で、基板Wを搬送する。第3搬送部37は、基板Wを保持する搬送アームを有する。搬送アームは、水平方向(X軸方向およびY軸方向の両方向)および鉛直方向への移動ならびに鉛直軸を中心とする回転が可能である。 The third transport section 37 transports the substrate W between a plurality of devices adjacent to the third transport section 37 . The third transport section 37 has a transport arm that holds the substrate W. The transport arm can move in the horizontal direction (both the X-axis direction and the Y-axis direction) and the vertical direction, and can rotate about the vertical axis.
 加工ブロック5は、基板Wを加工する加工部50を備える。加工部50は、例えば、基板Wを研削する。研削は、研磨を含む。加工部50は、例えば、基板Wを保持する4つの保持部52A、52B、52C、52Dと、基板Wに押し当てられる工具Dを駆動する2つの工具駆動部53A、53Bと、を含む。工具駆動部53A、53Bは、工具Dを回転させたり昇降させたりする。 The processing block 5 includes a processing section 50 that processes the substrate W. The processing unit 50 grinds the substrate W, for example. Grinding includes polishing. The processing section 50 includes, for example, four holding sections 52A, 52B, 52C, and 52D that hold the substrate W, and two tool drive sections 53A and 53B that drive the tool D pressed against the substrate W. The tool drive units 53A and 53B rotate the tool D and move it up and down.
 加工部50は、回転中心線R1を中心に回転させられる回転テーブル51を更に含んでもよい。4つの保持部52A~52Dは、回転テーブル51と共に回転させられる。4つの保持部52A~52Dは、回転テーブル51の回転中心線R1の周りに間隔をおいて設けられ、回転中心線R1を中心に同時に回転させられる。4つの保持部52A~52Dは、各々の回転中心線R2を中心に独立に回転させられる。 The processing section 50 may further include a rotary table 51 that is rotated about the rotation center line R1. The four holding parts 52A to 52D are rotated together with the rotary table 51. The four holding parts 52A to 52D are provided at intervals around the rotation center line R1 of the rotary table 51, and are rotated simultaneously about the rotation center line R1. The four holding parts 52A to 52D are independently rotated about their respective rotation center lines R2.
 2つの保持部52A、52Cは、回転テーブル51の回転中心線R1を中心に対称に配置される。各保持部52A、52Cは、第1搬送部54によって基板Wを搬入出する第1搬入出位置A3と、1つの工具駆動部53Aによって基板Wを加工する第1加工位置A1との間で移動する。2つの保持部52A、52Cは、回転テーブル51が180°回転する度に、第1搬入出位置A3と、第1加工位置A1との間で移動する。第1加工位置A1では、基板Wの加工時に、ノズル59(図2参照)が基板Wの上面に水などの加工液を供給する。 The two holding parts 52A and 52C are arranged symmetrically about the rotation center line R1 of the rotary table 51. Each holding unit 52A, 52C moves between a first loading/unloading position A3 where the substrate W is loaded/unloaded by the first transport unit 54 and a first processing position A1 where the substrate W is processed by one tool driving unit 53A. do. The two holding parts 52A and 52C move between the first loading/unloading position A3 and the first processing position A1 every time the rotary table 51 rotates 180 degrees. At the first processing position A1, the nozzle 59 (see FIG. 2) supplies a processing liquid such as water to the upper surface of the substrate W during processing of the substrate W.
 別の2つの保持部52B、52Dは、回転テーブル51の回転中心線R1を中心に対称に配置される。各保持部52B、52Dは、第1搬送部54によって基板Wを搬入出する第2搬入出位置A0と、別の工具駆動部53Bによって基板Wを加工する第2加工位置A2との間で移動する。別の2つの保持部52B、52Dは、回転テーブル51が180°回転する度に、第2搬入出位置A0と、第2加工位置A2との間で移動する。第2加工位置A2では、基板Wの加工時に、図示しないノズルが基板Wの上面に水などの加工液を供給する。 The other two holding parts 52B and 52D are arranged symmetrically about the rotation center line R1 of the rotary table 51. Each holding unit 52B, 52D moves between a second loading/unloading position A0 where the substrate W is loaded/unloaded by the first transport unit 54 and a second processing position A2 where the substrate W is processed by another tool driving unit 53B. do. The other two holding parts 52B and 52D move between the second loading/unloading position A0 and the second processing position A2 every time the rotary table 51 rotates 180 degrees. At the second processing position A2, a nozzle (not shown) supplies a processing liquid such as water to the upper surface of the substrate W during processing of the substrate W.
 上方から見たときに、第1搬入出位置A3と、第2搬入出位置A0と、第1加工位置A1と、第2加工位置A2とは、この順番で、反時計回りに配置されている。この場合、上方から見たときに、保持部52Aと、保持部52Bと、保持部52Cと、保持部52Dとは、この順番で、反時計回りに90°ピッチで配置されている。 When viewed from above, the first loading/unloading position A3, the second loading/unloading position A0, the first processing position A1, and the second processing position A2 are arranged counterclockwise in this order. . In this case, when viewed from above, the holding portion 52A, the holding portion 52B, the holding portion 52C, and the holding portion 52D are arranged in this order at a pitch of 90° counterclockwise.
 なお、第1搬入出位置A3と第2搬入出位置A0の位置が逆であって、且つ第1加工位置A1と第2加工位置A2の位置も逆であってもよい。つまり、上方から見たときに、第1搬入出位置A3と、第2搬入出位置A0と、第1加工位置A1と、第2加工位置A2とは、この順番で、時計回りに配置されてもよい。この場合、上方から見たときに、保持部52Aと、保持部52Bと、保持部52Cと、保持部52Dとは、この順番で、時計回りに90°ピッチで配置される。 Note that the positions of the first carry-in/out position A3 and the second carry-in/out position A0 may be reversed, and the positions of the first processing position A1 and second processing position A2 may also be reversed. In other words, when viewed from above, the first loading/unloading position A3, the second loading/unloading position A0, the first processing position A1, and the second processing position A2 are arranged in this order clockwise. Good too. In this case, when viewed from above, the holding portion 52A, the holding portion 52B, the holding portion 52C, and the holding portion 52D are arranged in this order at a pitch of 90 degrees clockwise.
 但し、保持部の数は、4つには限定されない。工具駆動部の数も、2つには限定されない。また、回転テーブル51は無くてもよい。回転テーブル51の代わりに、スライドテーブルが設けられてもよい。 However, the number of holding parts is not limited to four. The number of tool drive units is also not limited to two. Further, the rotary table 51 may not be provided. A slide table may be provided instead of the rotary table 51.
 加工ブロック5は、加工ブロック5の内部で基板Wを搬送する第1搬送部54を備える。第1搬送部54は、基板Wを保持する吸着パッドを含む。吸着パッドは、水平方向(X軸方向およびY軸方向の両方向)および鉛直方向への移動ならびに鉛直軸を中心とする回転が可能である。 The processing block 5 includes a first transport section 54 that transports the substrate W inside the processing block 5. The first transport section 54 includes a suction pad that holds the substrate W. The suction pad can move in the horizontal direction (both the X-axis direction and the Y-axis direction) and the vertical direction, and can rotate about the vertical axis.
 加工ブロック5は、基板Wを一時的に待機させる待機部57A、57B、57C(図2参照)を含む。待機部57A、57B、57Cは、第1搬送部54と第2搬送部36との間で基板Wを中継する。待機部57A、57Bは、第2搬送部36から第1搬送部54に基板Wを中継する。待機部57Cは、第1搬送部54から第2搬送部36に基板Wを中継する。 The processing block 5 includes standby sections 57A, 57B, and 57C (see FIG. 2) in which the substrate W is temporarily placed on standby. The standby parts 57A, 57B, and 57C relay the substrates W between the first transport part 54 and the second transport part 36. The standby parts 57A and 57B relay the substrate W from the second transport part 36 to the first transport part 54. The standby section 57C relays the substrate W from the first transport section 54 to the second transport section 36.
 待機部57A、57Bは、基板Wの中心位置を調節するアライメント部を兼ねている。アライメント部は、ガイドなどで基板Wの中心位置を所望の位置に合わせる。これにより、第1搬送部54が各保持部52A~52Dに基板Wを渡す際に、各保持部52A~52Dの回転中心線R2と基板Wの中心とを一致させることができる。 The standby sections 57A and 57B also serve as alignment sections that adjust the center position of the substrate W. The alignment section aligns the center position of the substrate W to a desired position using a guide or the like. Thereby, when the first transport section 54 transfers the substrate W to each of the holding sections 52A to 52D, the rotation center line R2 of each of the holding sections 52A to 52D can be made to coincide with the center of the substrate W.
 なお、アライメント部は、光学系などで基板Wの中心位置を検出してもよい。また、アライメント部は、光学系などで基板Wの結晶方位をも検出してもよく、具体的には基板Wの結晶方位を表すノッチをも検出してもよい。各保持部52A~52Dと共に回転する回転座標系において、基板Wの結晶方位を所望の方位に位置合わせできる。 Note that the alignment unit may detect the center position of the substrate W using an optical system or the like. Further, the alignment unit may also detect the crystal orientation of the substrate W using an optical system or the like, and specifically may also detect a notch representing the crystal orientation of the substrate W. The crystal orientation of the substrate W can be aligned to a desired orientation in the rotating coordinate system that rotates together with each of the holding parts 52A to 52D.
 加工ブロック5は、基板Wを反転する反転部58(図2参照)を含んでもよい。反転部58と、待機部57Cと、待機部57Bと、待機部57Aとは、この順番で上から下に積層されている。なお、積層の順番は、特に限定されない。 The processing block 5 may include an inversion section 58 (see FIG. 2) that inverts the substrate W. The reversing section 58, the standby section 57C, the standby section 57B, and the standby section 57A are stacked in this order from top to bottom. Note that the order of lamination is not particularly limited.
 反転部58は、加工部50から洗浄部31Aに至る基板Wの搬送経路の途中で、基板Wを一時的に待機させる待機部を兼ねる。反転部58は、第1搬送部54から第2搬送部36に基板Wを中継する。なお、反転部58は待機部を兼ねるが、反転部58と待機部が別々に設けられてもよい。 The reversing section 58 also serves as a standby section that temporarily waits the substrate W on the transport path of the substrate W from the processing section 50 to the cleaning section 31A. The reversing unit 58 relays the substrate W from the first transport unit 54 to the second transport unit 36. Note that although the reversing section 58 also serves as a standby section, the reversing section 58 and the standby section may be provided separately.
 基板処理装置1は、制御部9を更に備える。制御部9は、例えばコンピュータであり、CPU(Central Processing Unit)等の演算部91と、メモリ等の記憶部92とを備える。記憶部92には、基板処理装置1において実行される各種の処理を制御するプログラムが格納される。制御部9は、記憶部92に記憶されたプログラムを演算部91に実行させることにより、基板処理装置1の動作を制御する。基板処理装置1を構成するユニットごとにユニットの動作を制御するユニット制御部が設けられ、複数のユニット制御部を統括制御するシステム制御部が設けられてもよい。ユニット制御部とシステム制御部とで制御部9が構成されてもよい。 The substrate processing apparatus 1 further includes a control section 9. The control unit 9 is, for example, a computer, and includes a calculation unit 91 such as a CPU (Central Processing Unit), and a storage unit 92 such as a memory. The storage unit 92 stores programs that control various processes executed in the substrate processing apparatus 1. The control unit 9 controls the operation of the substrate processing apparatus 1 by causing the calculation unit 91 to execute a program stored in the storage unit 92. A unit control section that controls the operation of the unit may be provided for each unit constituting the substrate processing apparatus 1, and a system control section may be provided that centrally controls a plurality of unit control sections. The control section 9 may be composed of a unit control section and a system control section.
 次に、図3を参照して、一実施形態に係る基板処理方法について説明する。基板処理方法は、例えば、図3に示すステップS101~S110を含む。ステップS101~S110は、制御部9による制御下で実施される。なお、基板処理方法は、図3に示す全てのステップを含まなくてもよいし、図3に不図示のステップを含んでもよい。 Next, a substrate processing method according to one embodiment will be described with reference to FIG. 3. The substrate processing method includes steps S101 to S110 shown in FIG. 3, for example. Steps S101 to S110 are performed under the control of the control section 9. Note that the substrate processing method may not include all the steps shown in FIG. 3, or may include steps not shown in FIG. 3.
 先ず、第3搬送部37が、カセットCから基板Wを取り出し、トランジション部35に搬送する。続いて、第2搬送部36が、トランジション部35から基板Wを取り出し、待機部57Aに搬送する。基板Wは、互いに反対向きの第1主面と第2主面を有しており、第1主面を上に向けて搬送される。 First, the third transport section 37 takes out the substrate W from the cassette C and transports it to the transition section 35. Subsequently, the second transport section 36 takes out the substrate W from the transition section 35 and transports it to the standby section 57A. The substrate W has a first main surface and a second main surface facing oppositely to each other, and is transported with the first main surface facing upward.
 次に、待機部57Aが、基板Wの中心位置を調節する(ステップS101)。その後、第1搬送部54が、待機部57Aから基板Wを取り出し、第1搬入出位置A3に位置する保持部(例えば保持部52C)に搬送する。基板Wは、第1主面を上に向けて、保持部52Cの上に載せられる。その際、基板Wの中心と、保持部52Cの回転中心線R2とが合わせられる。その後、回転テーブル51が180°回転させられ、保持部52Cが第1搬入出位置A3から第1加工位置A1に移動させられる。 Next, the standby unit 57A adjusts the center position of the substrate W (step S101). Thereafter, the first transport section 54 takes out the substrate W from the standby section 57A and transports it to the holding section (for example, the holding section 52C) located at the first loading/unloading position A3. The substrate W is placed on the holding portion 52C with the first main surface facing upward. At this time, the center of the substrate W and the rotation center line R2 of the holding portion 52C are aligned. Thereafter, the rotary table 51 is rotated 180 degrees, and the holding section 52C is moved from the first carry-in/out position A3 to the first processing position A1.
 次に、工具駆動部53Aが、工具Dを駆動し、基板Wの第1主面を研削する(ステップS102)。その後、回転テーブル51が180°回転させられ、保持部52Cが第1加工位置A1から第1搬入出位置A3に移動させられる。続いて、第1搬送部54が、第1搬入出位置A3に位置する保持部52Cから基板Wを取り出し、反転部58に搬送する。 Next, the tool driving unit 53A drives the tool D to grind the first main surface of the substrate W (step S102). Thereafter, the rotary table 51 is rotated 180 degrees, and the holding part 52C is moved from the first processing position A1 to the first loading/unloading position A3. Subsequently, the first transport section 54 takes out the substrate W from the holding section 52C located at the first loading/unloading position A3, and transports it to the reversing section 58.
 次に、反転部58が、基板Wを反転させる(ステップS103)。基板Wが上下反転され、第1主面が下向きに、第2主面が上向きになる。その後、第2搬送部36が、反転部58から基板Wを取り出し、洗浄部31Aに搬送する。 Next, the reversing unit 58 reverses the substrate W (step S103). The substrate W is turned upside down so that the first main surface faces downward and the second main surface faces upward. Thereafter, the second transport section 36 takes out the substrate W from the reversing section 58 and transports it to the cleaning section 31A.
 次に、洗浄部31Aが、基板Wの第1主面を洗浄する(ステップS104)。洗浄部31Aによって加工屑等のパーティクルを除去できる。洗浄部31Aは、例えば基板Wをスクラブ洗浄する。洗浄部31Aは、基板Wの第1主面だけではなく第2主面をも洗浄してもよい。基板Wの乾燥後、第2搬送部36が洗浄部31Aから基板Wを取り出し、待機部57Bに搬送する。 Next, the cleaning unit 31A cleans the first main surface of the substrate W (step S104). Particles such as processing waste can be removed by the cleaning section 31A. The cleaning unit 31A scrubs and cleans the substrate W, for example. The cleaning unit 31A may clean not only the first main surface of the substrate W but also the second main surface. After drying the substrate W, the second transport section 36 takes out the substrate W from the cleaning section 31A and transports it to the standby section 57B.
 次に、待機部57Bが、基板Wの中心位置を調節する(ステップS105)。その後、第1搬送部54が、待機部57Bから基板Wを取り出し、第2搬入出位置A0に位置する保持部(例えば保持部52D)に搬送する。基板Wは、第2主面を上に向けて、保持部52Dの上に載せられる。その際、基板Wの中心と、保持部52Dの回転中心線R2とが合わせられる。その後、回転テーブル51が180°回転させられ、保持部52Dが第2搬入出位置A0から第2加工位置A2に移動させられる。 Next, the standby unit 57B adjusts the center position of the substrate W (step S105). Thereafter, the first transport section 54 takes out the substrate W from the standby section 57B and transports it to the holding section (for example, the holding section 52D) located at the second loading/unloading position A0. The substrate W is placed on the holding portion 52D with the second main surface facing upward. At this time, the center of the substrate W and the rotation center line R2 of the holding part 52D are aligned. Thereafter, the rotary table 51 is rotated 180 degrees, and the holding part 52D is moved from the second loading/unloading position A0 to the second processing position A2.
 次に、工具駆動部53Bが、工具Dを駆動し、基板Wの第2主面を研削する(ステップS106)。その後、回転テーブル51が180°回転させられ、保持部52Dが第2加工位置A2から第2搬入出位置A0に移動させられる。続いて、第1搬送部54が、第2搬入出位置A0に位置する保持部52Dから基板Wを取り出し、待機部57Cに搬送する。その後、第2搬送部36が、待機部57Cから基板Wを取り出し、洗浄部31Bに搬送する。 Next, the tool driving unit 53B drives the tool D to grind the second main surface of the substrate W (step S106). Thereafter, the rotary table 51 is rotated 180 degrees, and the holding part 52D is moved from the second processing position A2 to the second carry-in/out position A0. Subsequently, the first transport section 54 takes out the substrate W from the holding section 52D located at the second carry-in/out position A0, and transports it to the standby section 57C. Thereafter, the second transport section 36 takes out the substrate W from the standby section 57C and transports it to the cleaning section 31B.
 次に、洗浄部31Bが、基板Wの第2主面を洗浄する(ステップS107)。洗浄部31Bによって加工屑等のパーティクルを除去できる。洗浄部31Bは、例えば基板Wをスクラブ洗浄する。洗浄部31Bは、基板Wの第2主面だけではなく第1主面をも洗浄してもよい。基板Wの乾燥後、第3搬送部37が洗浄部31Bから基板Wを取り出し、エッチング部32Bに搬送する。 Next, the cleaning unit 31B cleans the second main surface of the substrate W (step S107). Particles such as processing waste can be removed by the cleaning section 31B. The cleaning unit 31B scrubs and cleans the substrate W, for example. The cleaning unit 31B may clean not only the second main surface of the substrate W but also the first main surface. After drying the substrate W, the third transport section 37 takes out the substrate W from the cleaning section 31B and transports it to the etching section 32B.
 次に、エッチング部32Bが、基板Wの第2主面をエッチングする(ステップS108)。エッチング部32Bによって第2主面の加工痕を除去できる。基板Wの乾燥後、第3搬送部37が、エッチング部32Bから基板Wを取り出し、反転部34に搬送する。 Next, the etching unit 32B etches the second main surface of the substrate W (step S108). Machining marks on the second main surface can be removed by the etching portion 32B. After drying the substrate W, the third transport section 37 takes out the substrate W from the etching section 32B and transports it to the reversing section 34.
 次に、反転部34が、基板Wを反転させる(ステップS109)。基板Wが上下反転され、第1主面が上向きに、第2主面が下向きになる。その後、第3搬送部37が、反転部34から基板Wを取り出し、エッチング部32Aに搬送する。 Next, the reversing unit 34 reverses the substrate W (step S109). The substrate W is turned upside down so that the first main surface faces upward and the second main surface faces downward. Thereafter, the third transport section 37 takes out the substrate W from the reversing section 34 and transports it to the etching section 32A.
 次に、エッチング部32Aが、基板Wの第1主面をエッチングする(ステップS110)。エッチング部32Aによって第1主面の加工痕を除去できる。基板Wの乾燥後、第3搬送部37が、エッチング部32Aから基板Wを取り出し、カセットCに収納する。その後、今回の処理が終了する。 Next, the etching unit 32A etches the first main surface of the substrate W (step S110). Machining marks on the first main surface can be removed by the etched portion 32A. After drying the substrate W, the third transport section 37 takes out the substrate W from the etching section 32A and stores it in a cassette C. After that, the current process ends.
 図3の説明では、1枚の基板Wに着目して基板処理方法を説明した。基板処理装置1は、スループットを向上すべく、複数の位置で、複数の処理を同時に実施してもよい。例えば、基板処理装置1は、第1加工位置A1及び第2加工位置A2の各々で、基板Wを同時に加工する。その間、基板処理装置1は、第1搬入出位置A3及び第2搬入出位置A0の各々で、例えば基板Wのスプレー洗浄、基板Wの板厚分布の測定、基板Wの搬出、保持部の基板吸着面(上面)の洗浄、及び基板Wの搬入などをこの順番で実施する。 In the explanation of FIG. 3, the substrate processing method was explained focusing on one substrate W. The substrate processing apparatus 1 may simultaneously perform a plurality of processes at a plurality of positions in order to improve throughput. For example, the substrate processing apparatus 1 simultaneously processes the substrate W at each of the first processing position A1 and the second processing position A2. During this time, the substrate processing apparatus 1 performs, for example, spray cleaning of the substrate W, measurement of the thickness distribution of the substrate W, unloading of the substrate W, and cleaning of the substrate W at the first loading/unloading position A3 and the second loading/unloading position A0. Cleaning of the suction surface (upper surface), loading of the substrate W, etc. are performed in this order.
 その後、基板処理装置1は、回転テーブル51を180°回転させる。続いて、基板処理装置1は、第1加工位置A1及び第2加工位置A2の各々で再び基板Wを同時に加工する。その間、基板処理装置1は、第1搬入出位置A3及び第2搬入出位置A0の各々で、再び、基板Wのスプレー洗浄、基板Wの板厚分布の測定、基板Wの搬出、保持部の基板吸着面(上面)の洗浄、及び基板Wの搬入などをこの順番で実施する。 After that, the substrate processing apparatus 1 rotates the rotary table 51 by 180 degrees. Subsequently, the substrate processing apparatus 1 simultaneously processes the substrate W again at each of the first processing position A1 and the second processing position A2. During this time, the substrate processing apparatus 1 again performs spray cleaning of the substrate W, measurement of the thickness distribution of the substrate W, transport of the substrate W, and operation of the holding unit at each of the first loading/unloading position A3 and the second loading/unloading position A0. Cleaning of the substrate suction surface (upper surface), loading of the substrate W, etc. are performed in this order.
 なお、本実施形態の加工部50は基板Wを研削する研削部であるが、本開示の技術はこれには限定されない。加工部50は、保護部材に保護された基板Wを切断する切断部、基板Wを切削する切削部などであってもよい。加工部50が研削部である場合、工具Dとして砥石などが用いられる。加工部50が切断部である場合、工具Dとしてブレードなどが用いられる。加工部50が切削部である場合、工具Dとしてエンドミルなどが用いられる。 Note that although the processing unit 50 of this embodiment is a grinding unit that grinds the substrate W, the technology of the present disclosure is not limited thereto. The processing section 50 may be a cutting section that cuts the substrate W protected by a protection member, a cutting section that cuts the substrate W, or the like. When the processing section 50 is a grinding section, a grindstone or the like is used as the tool D. When the processing section 50 is a cutting section, a blade or the like is used as the tool D. When the processing section 50 is a cutting section, an end mill or the like is used as the tool D.
 次に、図4~図6を参照して、一実施形態に係る基板保持機構60について説明する。基板保持機構60は、加工部50で使用される。基板保持機構60は、図4に示すように、例えば、基板吸着部61と、吸引部62と、供給部63と、を備える。 Next, the substrate holding mechanism 60 according to one embodiment will be described with reference to FIGS. 4 to 6. The substrate holding mechanism 60 is used in the processing section 50. As shown in FIG. 4, the substrate holding mechanism 60 includes, for example, a substrate suction section 61, a suction section 62, and a supply section 63.
 基板吸着部61は、基板Wを吸着する。基板吸着部61は、例えば真空チャックであって、基板Wを真空吸着する多孔質体611と、多孔質体611を保持する保持台612と、を有する。多孔質体611は、基板Wを吸着する吸着面を有する。基板吸着部61は、特に限定されないが、例えば図1などに示す保持部52A~52Dとして用いられる。 The substrate suction unit 61 suctions the substrate W. The substrate suction unit 61 is, for example, a vacuum chuck, and includes a porous body 611 that vacuum suctions the substrate W, and a holding table 612 that holds the porous body 611. The porous body 611 has an adsorption surface that adsorbs the substrate W. The substrate adsorption section 61 is used, for example, as the holding sections 52A to 52D shown in FIG. 1, although it is not particularly limited.
 吸引部62は、基板吸着部61の内部から流体を吸引する。吸引部62は、制御部9による制御下で、流体の吸引とその停止を切り替えるバルブを含む。バルブは、流体の吸引源に接続されている。吸引部62は、吸引源を含まないが、吸引源を含んでもよい。流体の種類が複数である場合、流体の種類毎にバルブが設けられてもよいし、共通のバルブが設けられてもよい。 The suction unit 62 sucks fluid from inside the substrate suction unit 61. The suction unit 62 includes a valve that switches between suctioning and stopping fluid suction under the control of the control unit 9 . The valve is connected to a source of fluid suction. The suction unit 62 does not include a suction source, but may include a suction source. When there are multiple types of fluid, a valve may be provided for each type of fluid, or a common valve may be provided.
 吸引部62は、例えば多孔質体611の内部から気体を吸引する。これにより、多孔質体611の圧力が大気圧よりも低く減圧され、多孔質体611が基板Wを真空吸着する。その後、吸引部62が気体の吸引を停止し、多孔質体611の圧力が大気圧に戻ると、真空吸着力が消失する。 The suction unit 62 sucks gas from inside the porous body 611, for example. As a result, the pressure of the porous body 611 is reduced to lower than atmospheric pressure, and the porous body 611 vacuum-adsorbs the substrate W. Thereafter, when the suction unit 62 stops sucking gas and the pressure of the porous body 611 returns to atmospheric pressure, the vacuum suction force disappears.
 なお、基板吸着部61は、真空チャックには限定されず、例えば静電チャックであってもよい。静電チャックは、図示しない絶縁性基板と電極とを有する。図示しない電荷供給部が電極に電荷を供給することで静電吸着力が発生する。また、図示しない電荷排出部が電極から電荷を排出することで、静電吸着力が消失する。 Note that the substrate suction unit 61 is not limited to a vacuum chuck, and may be, for example, an electrostatic chuck. The electrostatic chuck has an insulating substrate and electrodes (not shown). An electrostatic adsorption force is generated by a charge supply unit (not shown) supplying charges to the electrodes. In addition, the electrostatic adsorption force disappears as a charge discharging section (not shown) discharges the charge from the electrode.
 基板Wの加工時に、基板Wは、基板吸着部61に吸着される。基板Wの加工時には、摩擦抵抗の低減、冷却、加工屑の付着防止などの目的で、水などの加工液が基板Wに供給される。加工液は、基板吸着部61と基板Wの間に浸入する。 When processing the substrate W, the substrate W is sucked by the substrate suction unit 61. When processing the substrate W, a processing liquid such as water is supplied to the substrate W for purposes such as reducing frictional resistance, cooling, and preventing adhesion of processing debris. The processing liquid enters between the substrate suction part 61 and the substrate W.
 供給部63は、基板吸着部61の内部に流体を供給する。供給部63は、制御部9による制御下で、流体の供給とその停止を切り替えるバルブを含む。バルブは、流体の供給源に接続されている。供給部63は、供給源を含まないが、供給源を含んでもよい。流体の種類が複数である場合、流体の種類毎に開閉バルブが設けられてもよいし、共通のバルブが設けられてもよい。 The supply unit 63 supplies fluid to the inside of the substrate suction unit 61. The supply unit 63 includes a valve that switches between supplying and stopping fluid under the control of the control unit 9 . The valve is connected to a source of fluid. The supply unit 63 does not include a supply source, but may include a supply source. When there are multiple types of fluid, an on-off valve may be provided for each type of fluid, or a common valve may be provided.
 供給部63は、基板Wの加工後に、基板Wを取外すべく、基板吸着部61の内部に液体Lを供給し、液体Lの圧力で基板Wを押す(図6(B)および図6(C)参照)。液体Lは、例えば水である。供給部63は、液体Lと気体の混合流体を基板吸着部61の内部に供給してもよく、混合流体の圧力で基板Wを押してもよい。気体は、例えば空気である。 After processing the substrate W, the supply section 63 supplies the liquid L into the substrate adsorption section 61 to remove the substrate W, and presses the substrate W with the pressure of the liquid L (FIGS. 6(B) and 6(C)). )reference). The liquid L is, for example, water. The supply unit 63 may supply a mixed fluid of liquid L and gas into the substrate adsorption unit 61, or may push the substrate W with the pressure of the mixed fluid. The gas is, for example, air.
 供給部63は、例えば多孔質体611の内部に液体Lを供給することで、液体Lの圧力で基板Wを押す。基板吸着部61が静電チャックである場合、静電チャックの吸着面には複数の孔が形成され、その孔に供給部63が液体Lを供給すればよい。いずれしろ、液体Lの圧力で基板Wを押すことができる。 The supply unit 63 pushes the substrate W with the pressure of the liquid L, for example, by supplying the liquid L into the inside of the porous body 611. When the substrate suction unit 61 is an electrostatic chuck, a plurality of holes may be formed in the suction surface of the electrostatic chuck, and the supply unit 63 may supply the liquid L to the holes. In any case, the pressure of the liquid L can push the substrate W.
 基板Wは、液体Lの圧力で基板吸着部61から引き剥がされ、基板吸着部61から第1搬送部54に移し替えられる。液体Lの圧力を利用することは、基板Wを研削する場合に特に有効である。基板Wを研削する場合、工具Dが基板Wを基板吸着部61に押し付ける。その結果、基板Wが基板吸着部61に密着するからである。 The substrate W is peeled off from the substrate suction unit 61 by the pressure of the liquid L and transferred from the substrate suction unit 61 to the first transport unit 54. Utilizing the pressure of the liquid L is particularly effective when grinding the substrate W. When grinding the substrate W, the tool D presses the substrate W against the substrate suction part 61. This is because, as a result, the substrate W comes into close contact with the substrate adsorption section 61.
 吸引部62は、基板吸着部61と基板Wの間に残る液体Lを、基板吸着部61の内部に吸引する(図6(D)および図6(E)参照)。これにより、基板吸着部61から基板Wを取外すべく液体Lの圧力で基板Wを押した後に、基板Wに残存する液体Lの量を低減できる。その後の基板Wの搬送によって液体Lが基板処理装置1の内部に飛散するのを抑制できる。 The suction unit 62 sucks the liquid L remaining between the substrate suction unit 61 and the substrate W into the inside of the substrate suction unit 61 (see FIGS. 6(D) and 6(E)). Thereby, after the substrate W is pushed by the pressure of the liquid L in order to remove the substrate W from the substrate suction part 61, the amount of the liquid L remaining on the substrate W can be reduced. It is possible to suppress the liquid L from scattering inside the substrate processing apparatus 1 due to subsequent transportation of the substrate W.
 基板Wに残存する液体Lの量を低減すべく、吸引部62の代わりにスポンジローラなどを用いることも考えられる。スポンジローラは、基板吸着部61の横などに設けられ、基板Wの搬送経路の途中で基板Wに残存する液体Lを除去する。本実施形態によれば、基板吸着部61の上方で液体Lを基板Wから除去するので、基板Wの搬送経路の途中に専用のスペースを確保しなくて済む。また、本実施形態によれば、スポンジローラを洗浄する手間を省くことができる。 In order to reduce the amount of liquid L remaining on the substrate W, it is also possible to use a sponge roller or the like instead of the suction unit 62. The sponge roller is provided next to the substrate suction unit 61, and removes the liquid L remaining on the substrate W during the transport path of the substrate W. According to this embodiment, since the liquid L is removed from the substrate W above the substrate suction unit 61, there is no need to secure a dedicated space in the middle of the transport path of the substrate W. Furthermore, according to this embodiment, it is possible to save the effort of cleaning the sponge roller.
 次に、図5及び図6を参照して、図3のステップS102の一例について説明する。図3のステップS106は、ステップS102と同様に行われるので、説明を省略する。ステップS102は、図5に示すように、例えば、ステップS201~S209を有する。ステップS201~S209は、制御部9による制御下で実施される。 Next, an example of step S102 in FIG. 3 will be described with reference to FIGS. 5 and 6. Step S106 in FIG. 3 is performed in the same manner as step S102, so the explanation will be omitted. As shown in FIG. 5, step S102 includes steps S201 to S209, for example. Steps S201 to S209 are performed under the control of the control section 9.
 先ず、第1搬送部54が基板Wを加工部50に搬入する(ステップS201)。続いて、加工部50において基板吸着部61が基板Wを吸着する(ステップS202)。その後、第1搬送部54が加工部50から退出する。基板吸着部61が基板Wを吸着した状態で、加工部50が基板Wを加工する(ステップS203)。 First, the first transport section 54 carries the substrate W into the processing section 50 (step S201). Subsequently, the substrate suction section 61 in the processing section 50 suctions the substrate W (step S202). Thereafter, the first conveyance section 54 exits the processing section 50. With the substrate suction unit 61 suctioning the substrate W, the processing unit 50 processes the substrate W (step S203).
 次に、第1搬送部54が加工部50に進入し、図6(A)に示すように基板Wの上に載置される。その後、第1搬送部54が基板吸着部61とは反対側(例えば上側)から基板Wを保持する(ステップS204)。第1搬送部54は、例えば基板Wを吸着する吸着パッド54aを有する。吸着パッド54aは、基板Wの上面中心部を吸着すればよく、基板Wの上面外周部を吸着しなくてもよい。 Next, the first transport section 54 enters the processing section 50 and is placed on the substrate W as shown in FIG. 6(A). After that, the first transport section 54 holds the substrate W from the side opposite to the substrate suction section 61 (for example, from the upper side) (step S204). The first transport section 54 includes a suction pad 54a that suctions the substrate W, for example. The suction pad 54a only needs to suction the center portion of the upper surface of the substrate W, and does not need to suction the outer peripheral portion of the upper surface of the substrate W.
 第1搬送部54が基板Wを吸着する際に基板Wがずれないように、基板吸着部61は基板Wを吸着している。基板吸着部61と第1搬送部54の両方が、基板Wを吸着する。その後、吸引部62が気体の吸引を止め、基板吸着部61が基板Wの吸着を止める。そうして、第1搬送部54のみが基板Wを吸着する。なお、第1搬送部54は、吸着パッド54aの代わりに、メカニカルチャックで基板Wを保持してもよい。 The substrate suction section 61 suctions the substrate W so that the substrate W does not shift when the first transport section 54 suctions the substrate W. Both the substrate suction section 61 and the first transport section 54 suction the substrate W. Thereafter, the suction section 62 stops sucking the gas, and the substrate suction section 61 stops suctioning the substrate W. Then, only the first transport section 54 attracts the substrate W. Note that the first transport section 54 may hold the substrate W with a mechanical chuck instead of the suction pad 54a.
 次に、供給部63が、図6(B)に示すように、基板吸着部61の内部に液体Lを供給し、液体Lの圧力で基板Wを上方に押す(ステップS205)。このとき、第1搬送部54が基板吸着部61とは反対側から基板Wを押さえ、基板Wが吹き飛ぶのを防止する。液体Lは、基板吸着部61と基板Wの間から横に漏れ出る。 Next, as shown in FIG. 6(B), the supply unit 63 supplies the liquid L to the inside of the substrate suction unit 61, and pushes the substrate W upward with the pressure of the liquid L (step S205). At this time, the first transport section 54 presses the substrate W from the side opposite to the substrate suction section 61 to prevent the substrate W from being blown away. The liquid L leaks out laterally from between the substrate suction part 61 and the substrate W.
 次に、制御部9が、基板Wが第1搬送部54に保持されているか否かを判定する(ステップS206)。例えば第1搬送部54が基板Wを真空吸着する場合、その真空吸着力を表す圧力を圧力センサ82が検出する。制御部9は、圧力センサ82の検出値に基づいて判定を行う。基板Wが第1搬送部54に真空吸着されており真空リークが無ければ、圧力が閾値以下になる。 Next, the control unit 9 determines whether the substrate W is held in the first transport unit 54 (step S206). For example, when the first transport unit 54 vacuum-chucks the substrate W, the pressure sensor 82 detects the pressure representing the vacuum suction force. The control unit 9 makes the determination based on the detected value of the pressure sensor 82. If the substrate W is vacuum-adsorbed by the first transfer unit 54 and there is no vacuum leak, the pressure will be below the threshold value.
 なお、ステップS206において基板Wが第1搬送部54に保持されていないと判定された場合、例えばステップS204以降の処理が再度行われる。あるいは、基板Wの処理が中断され、基板処理装置1のメンテナンスが行われてもよい。 Note that if it is determined in step S206 that the substrate W is not held in the first transport unit 54, the processes from step S204 onward are performed again, for example. Alternatively, the processing of the substrate W may be interrupted and maintenance of the substrate processing apparatus 1 may be performed.
 ステップS206において基板Wが第1搬送部54に保持されていると判定された場合、第1搬送部54が、図6(C)に示すように、上昇させられる。その結果、基板Wが基板吸着部61から離隔させられる(ステップS207)。基板吸着部61と基板Wの間に隙間が形成される。隙間の大きさは、基板Wの上昇量に等しい。基板Wの上昇量が大きいほど、隙間の大きさが大きい。 If it is determined in step S206 that the substrate W is held by the first transport section 54, the first transport section 54 is raised as shown in FIG. 6(C). As a result, the substrate W is separated from the substrate adsorption section 61 (step S207). A gap is formed between the substrate adsorption section 61 and the substrate W. The size of the gap is equal to the amount of rise of the substrate W. The larger the amount of rise of the substrate W is, the larger the gap is.
 後述するステップS208までに、基板Wは設定距離D0上昇させられ、基板Wが基板吸着部61から設定距離D0離隔させられる。その状態で、基板Wと基板吸着部61の間は液体Lの膜で充填されている。設定距離D0は、ステップS208における液体Lの吸引時間などを考慮して決定される。設定距離D0が大きいほど、液体Lの残量が多く、液体Lの吸引時間が長くなり、スループットが低下する。但し、設定距離D0が小さ過ぎると、吸引力によって基板Wが基板吸着部61に接触する恐れがある。 By step S208, which will be described later, the substrate W is raised by a set distance D0, and the substrate W is separated from the substrate suction unit 61 by a set distance D0. In this state, the space between the substrate W and the substrate adsorption section 61 is filled with a film of the liquid L. The set distance D0 is determined in consideration of the suction time of the liquid L in step S208 and the like. The larger the set distance D0 is, the larger the remaining amount of liquid L is, the longer the liquid L suction time becomes, and the throughput decreases. However, if the set distance D0 is too small, there is a risk that the substrate W may come into contact with the substrate suction section 61 due to the suction force.
 次に、基板Wが基板吸着部61から設定距離D0離隔させられた状態で、供給部63が液体Lの供給を停止し、図6(D)および図6(E)に示すように吸引部62が液体Lを吸引する(ステップS208)。基板Wは第1搬送部54に保持されているので、液体Lの供給停止または吸引によって基板Wが落下することは無い。 Next, with the substrate W separated from the substrate suction unit 61 by a set distance D0, the supply unit 63 stops supplying the liquid L, and as shown in FIGS. 6(D) and 6(E), the suction unit 62 sucks the liquid L (step S208). Since the substrate W is held by the first transport section 54, the substrate W will not fall due to the supply stop or suction of the liquid L.
 吸引部62は、基板吸着部61と基板Wの間に残る液体Lを、基板吸着部61の内部に吸引する。これにより、基板Wに残存する液体Lの量を低減できる。その後の基板Wの搬送によって液体Lが飛散するのを抑制でき、基板処理装置1の内部を清浄に維持できる。図6(E)に示すように、基板Wには液体Lが僅かに残ってもよい。 The suction unit 62 sucks the liquid L remaining between the substrate suction unit 61 and the substrate W into the inside of the substrate suction unit 61. Thereby, the amount of liquid L remaining on the substrate W can be reduced. Splashing of the liquid L due to subsequent transportation of the substrate W can be suppressed, and the inside of the substrate processing apparatus 1 can be kept clean. As shown in FIG. 6E, a small amount of liquid L may remain on the substrate W.
 図6(D)に示すように、液体Lの膜は、基板Wと基板吸着部61の両方に接しながら、基板Wの径方向外側から径方向内側に引き寄せられる。基板吸着部61の吸着面において、時間の経過とともに液体Lの膜の直径が小さくなる。この間、基板吸着部61と基板Wの間の隙間の大きさは、一定に保たれる。液体Lの膜の直径が徐々に小さくなる現象は、基板吸着部61の吸着面が多孔質体611で形成される場合に生じると考えられる。 As shown in FIG. 6(D), the film of liquid L is drawn from the radially outer side of the substrate W to the radially inner side while contacting both the substrate W and the substrate suction part 61. On the suction surface of the substrate suction section 61, the diameter of the film of the liquid L decreases over time. During this time, the size of the gap between the substrate suction section 61 and the substrate W is kept constant. The phenomenon in which the diameter of the film of the liquid L gradually decreases is thought to occur when the adsorption surface of the substrate adsorption section 61 is formed of the porous body 611.
 最後に、第1搬送部54が、基板Wを保持したまま水平方向に移動して加工部50から退出し、基板Wを加工部50から搬出する(ステップS209)。 Finally, the first transport section 54 moves in the horizontal direction while holding the substrate W, exits the processing section 50, and carries out the substrate W from the processing section 50 (step S209).
 なお、基板処理方法は、図5に示す全てのステップを含まなくてもよいし、図5に不図示のステップを含んでもよい。例えば、基板処理方法は、ステップS207の開始後、ステップS208の開始前に、基板吸着部61と基板Wを洗浄する不図示のステップを有してもよい。このステップを、以下、洗浄ステップと称する。 Note that the substrate processing method may not include all steps shown in FIG. 5, or may include steps not shown in FIG. For example, the substrate processing method may include a step (not shown) of cleaning the substrate suction unit 61 and the substrate W after the start of step S207 and before the start of step S208. This step is hereinafter referred to as the washing step.
 洗浄ステップは、基板吸着部61の内部に液体Lを供給しながら、基板吸着部61を回転させることを含む。基板吸着部61を回転させることで基板吸着部61と基板Wが擦れ合わないように、基板Wが基板吸着部61から離れた後に洗浄ステップが行われる。従って、洗浄ステップは、ステップS207の開始後に行われる。 The cleaning step includes rotating the substrate suction unit 61 while supplying the liquid L to the inside of the substrate suction unit 61. A cleaning step is performed after the substrate W is separated from the substrate suction unit 61 so that the substrate suction unit 61 and the substrate W do not rub against each other by rotating the substrate suction unit 61. Therefore, the cleaning step is performed after the start of step S207.
 洗浄ステップにおいて、液体Lのみが基板吸着部61の内部に供給されてもよいし、液体Lと気体の混合流体が基板吸着部61の内部に供給されてもよい。洗浄ステップにおいて基板吸着部61と基板Wの間に形成される隙間の大きさは、ステップS208において形成される隙間の大きさD0に比べて、大きくてもよいし、小さくてもよいし、同じでもよい。 In the cleaning step, only the liquid L may be supplied to the inside of the substrate suction section 61, or a mixed fluid of liquid L and gas may be supplied to the inside of the substrate suction section 61. The size of the gap formed between the substrate suction unit 61 and the substrate W in the cleaning step may be larger, smaller, or the same as the size D0 of the gap formed in step S208. But that's fine.
 洗浄ステップは、上記の通り、基板吸着部61の内部に液体Lを供給しながら、基板吸着部61を回転させることを含む。液体Lは、基板吸着部61と基板Wの両方に接しながら、遠心力によって基板Wの径方向内側から径方向外側に流れる。これにより、基板吸着部61と基板Wを洗浄することができる。洗浄ステップの後に、ステップS208が行われる。 As described above, the cleaning step includes rotating the substrate suction unit 61 while supplying the liquid L to the inside of the substrate suction unit 61. The liquid L flows from the inside in the radial direction of the substrate W to the outside in the radial direction due to centrifugal force while contacting both the substrate suction part 61 and the substrate W. Thereby, the substrate suction part 61 and the substrate W can be cleaned. After the cleaning step, step S208 is performed.
 なお、ステップS208では、基板吸着部61を回転させてもよいが、基板吸着部61を回転させないことが好ましい。後者の場合、遠心力の発生を防止できる。遠心力が発生しなければ、液体Lは、基板Wと基板吸着部61の両方に接しながら、基板Wの径方向外側から径方向内側に引き寄せられやすい。 Note that in step S208, the substrate suction unit 61 may be rotated, but it is preferable that the substrate suction unit 61 is not rotated. In the latter case, generation of centrifugal force can be prevented. If centrifugal force is not generated, the liquid L is likely to be drawn from the radially outer side to the radially inner side of the substrate W while contacting both the substrate W and the substrate suction part 61.
 次に、図7及び図8を参照して、洗浄部31Bの一例について説明する。なお、洗浄部31Aは、洗浄部31Bと同様に構成されるので、説明を省略する。洗浄部31Bは、例えば、基板Wを保持する基板保持部311と、基板保持部311を回転させる回転機構312と、基板Wの周縁を囲むリングカバー314と、基板Wに接触する摩擦部315と、摩擦部315を移動させる移動部316と、基板Wの下面に洗浄液を供給する下ノズル317と、基板Wの上面に洗浄液を供給する上ノズル318と、を備える。 Next, an example of the cleaning section 31B will be described with reference to FIGS. 7 and 8. Note that the cleaning section 31A is configured in the same manner as the cleaning section 31B, so a description thereof will be omitted. The cleaning section 31B includes, for example, a substrate holding section 311 that holds the substrate W, a rotation mechanism 312 that rotates the substrate holding section 311, a ring cover 314 that surrounds the periphery of the substrate W, and a friction section 315 that contacts the substrate W. , a moving part 316 that moves the friction part 315, a lower nozzle 317 that supplies cleaning liquid to the lower surface of the substrate W, and an upper nozzle 318 that supplies the cleaning liquid to the upper surface of the substrate W.
 基板保持部311は、例えば基板Wを下方から水平に保持する。基板保持部311は、基板Wの第1領域を吸着する。第1領域は、例えば基板Wの下面の中央である。回転機構312は、基板保持部311を回転させることで基板Wを回転させる。 The substrate holding unit 311 holds the substrate W horizontally from below, for example. The substrate holding unit 311 attracts the first region of the substrate W. The first region is, for example, the center of the lower surface of the substrate W. The rotation mechanism 312 rotates the substrate W by rotating the substrate holding part 311.
 リングカバー314は、回転する基板Wから振り切られる洗浄液の飛散を抑制する。リングカバー314の内部には、基板保持部311をY軸方向に挟んで一対(図7及び図8には1つのみ図示)の吸着パッド313が設けられる。一対の吸着パッド313とリングカバー314は、一体化されており、例えば、X軸方向及びZ軸方向に同時に移動可能であって、Y軸方向に移動不能である。 The ring cover 314 suppresses the scattering of the cleaning liquid shaken off from the rotating substrate W. A pair of suction pads 313 (only one is shown in FIGS. 7 and 8) are provided inside the ring cover 314, sandwiching the substrate holding part 311 in the Y-axis direction. The pair of suction pads 313 and the ring cover 314 are integrated, and are movable in the X-axis direction and the Z-axis direction simultaneously, for example, but are immovable in the Y-axis direction.
 摩擦部315は、例えば基板Wの下面に接触し、基板Wの下面を擦る。摩擦部315は、ブラシ、又はスポンジである。摩擦部315は、モータ319によって回転させられながら、移動部316によってY軸方向に移動させられる。 The friction part 315 contacts the lower surface of the substrate W, for example, and rubs the lower surface of the substrate W. The friction part 315 is a brush or a sponge. The friction section 315 is rotated by a motor 319 and moved in the Y-axis direction by a moving section 316 .
 図7に示すように基板保持部311が基板Wの下面の第1領域を吸着しているときには、回転機構312によって基板Wを回転させると共に、移動部316によって摩擦部315をY軸方向に移動させる。これにより、基板Wの下面の第1領域よりも外側の領域をスクラブ洗浄する。 As shown in FIG. 7, when the substrate holding section 311 is adsorbing the first region of the lower surface of the substrate W, the rotation mechanism 312 rotates the substrate W, and the moving section 316 moves the friction section 315 in the Y-axis direction. let As a result, the area outside the first area on the lower surface of the substrate W is scrub-cleaned.
 図8に示すように一対の吸着パッド313が基板Wの下面を吸着しているときには、不図示の駆動部によって一対の吸着パッド313とリングカバー314をX軸方向に移動させると共に、移動部316によって摩擦部315をY軸方向に移動させる。これにより、基板Wの下面の第1領域をスクラブ洗浄する。 As shown in FIG. 8, when the pair of suction pads 313 are suctioning the lower surface of the substrate W, a drive unit (not shown) moves the pair of suction pads 313 and the ring cover 314 in the X-axis direction, and the moving unit 316 The friction portion 315 is moved in the Y-axis direction. As a result, the first region of the lower surface of the substrate W is scrub-cleaned.
 図7及び図8に示すように、基板保持部311と一対の吸着パッド313とが順番に基板Wを保持することで、摩擦部315が基板Wの下面全体をスクラブ洗浄できる。なお、摩擦部315は、本実施形態では基板Wの下方に配置されるが、基板Wの上方に配置されてもよく、基板Wの上面をスクラブ洗浄してもよい。摩擦部315は、基板Wの上下両側に配置されてもよい。 As shown in FIGS. 7 and 8, the substrate holding section 311 and the pair of suction pads 313 sequentially hold the substrate W, so that the friction section 315 can scrub the entire lower surface of the substrate W. Although the friction part 315 is arranged below the substrate W in this embodiment, it may be arranged above the substrate W, and the upper surface of the substrate W may be scrubbed. The friction portions 315 may be arranged on both the upper and lower sides of the substrate W.
 ところで、基板Wは、加工部50で供給された液体で濡れた状態で、加工部50から洗浄部31A、31Bに搬送される。基板Wを液体で濡れた状態で搬送するのは、洗浄前に基板Wが乾燥してしまうと、加工屑が基板Wに強固に固着してしまい、加工屑を洗浄で除去するのが困難になるからである。 Incidentally, the substrate W is transported from the processing section 50 to the cleaning sections 31A and 31B in a wet state with the liquid supplied by the processing section 50. The reason why the substrate W is transported while wet with liquid is that if the substrate W dries before cleaning, processing debris will firmly adhere to the substrate W, making it difficult to remove the processing debris by cleaning. Because it will be.
 基板Wは、加工部50で供給された液体で濡れた状態で、洗浄部31A、31Bに搬入されるので、洗浄部31A、31Bに加工屑で汚れた液体を持ち込む。加工屑で汚れた液体が洗浄部31A、31Bの基板保持部311に付着して基板保持部311を汚してしまう。その後、基板保持部311で保持する基板Wに悪影響を与える。 Since the substrate W is carried into the cleaning parts 31A, 31B in a wet state with the liquid supplied from the processing part 50, the liquid contaminated with processing waste is brought into the cleaning parts 31A, 31B. The liquid contaminated with processing waste adheres to the substrate holding parts 311 of the cleaning parts 31A and 31B, thereby staining the substrate holding parts 311. Thereafter, the substrate W held by the substrate holder 311 is adversely affected.
 そこで、図9に示すように、待機部57Cは、基板Wの第1領域から液体を除去する液体除去部70を有する。待機部57Cは、上記の通り、加工部50で供給された液体で濡れた状態の基板Wを、加工部50から洗浄部31Bに至る基板Wの搬送経路の途中で一時的に待機させるものである。 Therefore, as shown in FIG. 9, the standby section 57C includes a liquid removal section 70 that removes the liquid from the first region of the substrate W. As described above, the standby section 57C temporarily waits the substrate W wet with the liquid supplied in the processing section 50 in the middle of the substrate W transport path from the processing section 50 to the cleaning section 31B. be.
 待機部57Cは、例えば、基板Wの外周を支持する複数本の支持ピン571と、支持ピン571が立てられる水平板572と、を有する。複数本の支持ピン571は、基板Wを水平に支持する。基板Wと水平板572の間には隙間が形成されており、その隙間に液体除去部70の少なくとも一部が配置されている。 The standby section 57C includes, for example, a plurality of support pins 571 that support the outer periphery of the substrate W, and a horizontal plate 572 on which the support pins 571 are erected. The plurality of support pins 571 support the substrate W horizontally. A gap is formed between the substrate W and the horizontal plate 572, and at least a portion of the liquid removal section 70 is disposed in the gap.
 液体除去部70は、基板Wの第1領域を乾燥する。基板Wの第1領域は、洗浄部31Bの基板保持部311が接触する領域である。基板Wの第1領域を乾燥することで、加工屑で汚れた液体が洗浄部31Bの基板保持部311に付着することを抑制でき、基板保持部311が汚れることを抑制できる。よって、洗浄部31Bを清浄に保つことができる。 The liquid removal unit 70 dries the first region of the substrate W. The first region of the substrate W is a region with which the substrate holding section 311 of the cleaning section 31B comes into contact. By drying the first region of the substrate W, it is possible to suppress the liquid contaminated with processing waste from adhering to the substrate holding part 311 of the cleaning part 31B, and it is possible to suppress the substrate holding part 311 from becoming dirty. Therefore, the cleaning section 31B can be kept clean.
 基板Wの第1領域は、例えば、基板Wの下面中央である。基板Wの下面中央は、基板Wの上面だけではなく、基板Wの下面外周と比べても、加工屑がほとんど溜まらない領域であるので、洗浄前に乾燥しても問題ない。なお、基板Wの上面は加工されるので加工屑が溜まりやすく、基板Wの下面外周は基板Wの上面から回り込んだ加工屑が溜まりうる。 The first region of the substrate W is, for example, the center of the bottom surface of the substrate W. Since the center of the lower surface of the substrate W is an area where hardly any processing debris accumulates compared to not only the upper surface of the substrate W but also the outer periphery of the lower surface of the substrate W, there is no problem even if it is dried before cleaning. Note that since the upper surface of the substrate W is processed, processing debris tends to accumulate thereon, and processing debris that has come around from the upper surface of the substrate W can accumulate on the outer periphery of the lower surface of the substrate W.
 液体除去部70は、基板Wの一部のみから液体を除去すればよく、基板Wの全体から液体を除去しなくてもよい。例えば、液体除去部70は、基板Wの下面中央から液体を除去すればよく、基板Wの下面外周から液体を除去しなくてもよい。これにより、洗浄前に加工屑が基板Wに強固に固着するのを抑制でき、加工屑を洗浄で容易に除去できる。 The liquid removal unit 70 only needs to remove the liquid from a part of the substrate W, and does not need to remove the liquid from the entire substrate W. For example, the liquid removal unit 70 only needs to remove the liquid from the center of the lower surface of the substrate W, and does not need to remove the liquid from the outer periphery of the lower surface of the substrate W. Thereby, processing debris can be prevented from firmly adhering to the substrate W before cleaning, and processing debris can be easily removed by cleaning.
 液体除去部70は、例えば、基板Wの第1領域に向けてガスを吐出するガス吐出部71を有する。ガスの吐出方向、及びガスの吐出流量などを調整することで、ガスの基板Wに当たる領域を調整でき、基板Wの液体を除去する領域を調整できる。ガス吐出部71は、ガスを吐出するノズル711を含む。 The liquid removal section 70 includes, for example, a gas discharge section 71 that discharges gas toward the first region of the substrate W. By adjusting the gas discharge direction, gas discharge flow rate, etc., the area where the gas hits the substrate W can be adjusted, and the area of the substrate W from which liquid is removed can be adjusted. The gas discharge section 71 includes a nozzle 711 that discharges gas.
 ノズル711は、例えば鉛直に立てられており、真上に向けてガスを吐出する。吐出するガスは、例えば空気である。吐出するガスは、乾燥したガスであればよく、窒素ガスなどの不活性ガスであってもよい。ノズル711の数は、本実施形態では1つであるが、複数であってもよい。 The nozzle 711 is erected vertically, for example, and discharges gas directly upward. The discharged gas is, for example, air. The gas to be discharged may be any dry gas, and may be an inert gas such as nitrogen gas. Although the number of nozzles 711 is one in this embodiment, it may be plural.
 ノズル711の吐出したガスは、基板Wの下面中央に当たった後、基板Wの下面に沿って放射状に流れ、徐々に減速していき、徐々に大気圧になる。その結果、ノズル711と基板Wとの隙間でベルヌーイ効果が働き、基板Wの下面中央に負圧が生じ、負圧によって基板Wが吸引される。従って、基板Wは安定して支持される。 After the gas discharged from the nozzle 711 hits the center of the lower surface of the substrate W, it flows radially along the lower surface of the substrate W, gradually decelerating, and gradually reaching atmospheric pressure. As a result, the Bernoulli effect operates in the gap between the nozzle 711 and the substrate W, a negative pressure is generated at the center of the lower surface of the substrate W, and the substrate W is sucked by the negative pressure. Therefore, the substrate W is stably supported.
 ガス吐出部71は、ガスを吐出する前に、水などの洗浄液を吐出してもよい。洗浄液とガスは、同じノズル711によって吐出する。基板Wの第1領域を、ガスで乾燥する前に、洗浄液で洗浄できる。よって、加工屑が洗浄部31Bの基板保持部311に付着することをより抑制できる。 The gas discharge section 71 may discharge a cleaning liquid such as water before discharging the gas. The cleaning liquid and gas are discharged through the same nozzle 711. The first region of the substrate W can be cleaned with a cleaning liquid before drying with the gas. Therefore, it is possible to further suppress processing debris from adhering to the substrate holding section 311 of the cleaning section 31B.
 液体除去部70は、ノズル711にガスと洗浄液を供給する供給ライン73を有する。供給ライン73は、共通ライン731と複数の分岐ライン732、733とを有する。共通ライン731は、ノズル711と複数の分岐ライン732、733を接続する。なお、供給ライン73は、ノズル711にガスのみを供給してもよい。 The liquid removal unit 70 has a supply line 73 that supplies gas and cleaning liquid to the nozzle 711. The supply line 73 has a common line 731 and a plurality of branch lines 732 and 733. A common line 731 connects the nozzle 711 and the plurality of branch lines 732 and 733. Note that the supply line 73 may supply only gas to the nozzle 711.
 分岐ライン732は、共通ライン731とガス供給源74を接続する。分岐ライン732の途中には、開閉バルブ75が設けられる。開閉バルブ75が分岐ライン732の流路を開放することで、ノズル711がガスを吐出する。開閉バルブ75が分岐ライン732の流路を閉塞することで、ノズル711がガスの吐出を停止する。 A branch line 732 connects the common line 731 and the gas supply source 74. An on-off valve 75 is provided in the middle of the branch line 732. When the on-off valve 75 opens the flow path of the branch line 732, the nozzle 711 discharges gas. When the on-off valve 75 closes the flow path of the branch line 732, the nozzle 711 stops discharging gas.
 分岐ライン733は、共通ライン731と洗浄液供給源76を接続する。分岐ライン733の途中には、開閉バルブ77が設けられる。開閉バルブ77が分岐ライン733の流路を開放することで、ノズル711が洗浄液を吐出する。開閉バルブ77が分岐ライン733の流路を閉塞することで、ノズル711が洗浄液の吐出を停止する。 A branch line 733 connects the common line 731 and the cleaning liquid supply source 76. An on-off valve 77 is provided in the middle of the branch line 733. When the on-off valve 77 opens the flow path of the branch line 733, the nozzle 711 discharges the cleaning liquid. When the on-off valve 77 closes the flow path of the branch line 733, the nozzle 711 stops discharging the cleaning liquid.
 液体除去部70は、コアンダ効果によってガス吐出部71の周囲のガスをガス吐出部71の吐出するガスの流れに引き込むことで、基板Wに当たる風量を増幅する風量増幅部72を有してもよい。風量増幅部72を用いることで、少ないガスの吐出流量で、基板Wの広い領域を乾燥できる。また、ガスの吐出による基板Wの浮上を抑制できる。 The liquid removal unit 70 may include an air volume amplification unit 72 that amplifies the air volume hitting the substrate W by drawing gas around the gas discharge unit 71 into the flow of gas discharged from the gas discharge unit 71 using the Coanda effect. . By using the air volume amplifying section 72, a wide area of the substrate W can be dried with a small discharge flow rate of gas. Furthermore, floating of the substrate W due to gas discharge can be suppressed.
 風量増幅部72は、例えば、ガス吐出部71の周囲全体を取り囲む環状部721を有する。環状部721によってガス吐出部71の周囲全体からガスを取り込むことができる。環状部721は、好ましくは円環形状を有している。ガス吐出部71を中心に周囲全体から均等にガスを取り込むことができる。なお、環状部721は、角環形状を有してもよい。 The air volume amplification section 72 has, for example, an annular section 721 that surrounds the entire circumference of the gas discharge section 71. The annular portion 721 allows gas to be taken in from the entire periphery of the gas discharge portion 71 . The annular portion 721 preferably has an annular shape. Gas can be evenly taken in from the entire surrounding area around the gas discharge part 71. Note that the annular portion 721 may have a rectangular ring shape.
 ガス吐出部71は、風量増幅部72よりも基板Wに向けて突出していてもよく、例えば風量増幅部72よりも上方に突出していてもよい。具体的には、ガス吐出部71のノズル711は、風量増幅部72の環状部721よりも基板Wに向けて突出していてもよく、例えば環状部721よりも上方に突出していてもよい。 The gas discharge part 71 may protrude more toward the substrate W than the air volume amplification part 72, and may protrude above the air volume amplification part 72, for example. Specifically, the nozzle 711 of the gas discharge section 71 may protrude further toward the substrate W than the annular portion 721 of the air volume amplifying section 72, and may protrude upward than the annular portion 721, for example.
 ノズル711が環状部721よりも基板Wに向けて突出していることで、ノズル711の吐出したガスが環状部721と基板Wの間を通り抜けやすい。それゆえ、基板Wの下面に沿って放射状に広がるガスの流速を増加できる。少ないガスの吐出流量で、基板Wの広い領域を乾燥できる。また、ガスの吐出による基板Wの浮上を抑制できる。 Since the nozzle 711 protrudes more toward the substrate W than the annular portion 721, the gas discharged from the nozzle 711 easily passes between the annular portion 721 and the substrate W. Therefore, the flow rate of the gas that spreads radially along the lower surface of the substrate W can be increased. A wide area of the substrate W can be dried with a small discharge flow rate of gas. Furthermore, floating of the substrate W due to gas discharge can be suppressed.
 風量増幅部72は、環状部721と水平板572との間に、周囲のガスを取り込む取込口722を有する。取込口722の面積は、例えば、環状部721と水平板572の隙間の高さと、環状部721の外周長との積に等しい。 The air volume amplification section 72 has an intake port 722 between the annular section 721 and the horizontal plate 572 to take in the surrounding gas. The area of the intake port 722 is, for example, equal to the product of the height of the gap between the annular portion 721 and the horizontal plate 572 and the outer circumference length of the annular portion 721.
 風量増幅部72は、環状部721の基板Wに対向する面に、基板Wに向けてガスを吹き出す吹出口723を有する。吹出口723の面積は、例えば、環状部721の基板Wに対向する面に形成された開口の面積である。 The air volume amplifying section 72 has an air outlet 723 on the surface of the annular section 721 facing the substrate W that blows out gas toward the substrate W. The area of the air outlet 723 is, for example, the area of an opening formed in the surface of the annular portion 721 that faces the substrate W.
 取込口722の面積は、吹出口723の面積よりも大きくてもよい。これにより、風量増幅部72の周囲から大量のガスを取り込むことができ、基板Wに当たる風量をより増幅できる。 The area of the intake port 722 may be larger than the area of the air outlet 723. Thereby, a large amount of gas can be taken in from around the air volume amplifying section 72, and the amount of air hitting the substrate W can be further amplified.
 環状部721は、吹出口723に、基板Wに向けて(例えば上方に向けて)拡開するテーパー面724を有してもよい。テーパー面724に沿ってガスの流れを円滑に曲げることができ、渦の発生を抑制でき、ガスの停滞を抑制できる。 The annular portion 721 may have a tapered surface 724 at the air outlet 723 that widens toward the substrate W (for example, upward). The gas flow can be smoothly bent along the tapered surface 724, suppressing the generation of vortices and suppressing gas stagnation.
 環状部721は、基板Wに対向する面とは反対向きの面(例えば下面)に、開口725を有する。環状部721は、開口725に、基板Wとは反対側に向けて(例えば下方に向けて)拡開するテーパー面(不図示)を有してもよい。 The annular portion 721 has an opening 725 on a surface opposite to the surface facing the substrate W (for example, the bottom surface). The annular portion 721 may have a tapered surface (not shown) in the opening 725 that widens toward the side opposite to the substrate W (for example, toward the bottom).
 なお、液体除去部70は、本実施形態では加工部50から洗浄部31Bに至る基板Wの搬送経路の途中で一時的に基板Wを待機させる待機部57Cに備えられるが、加工部50から洗浄部31Aに至る基板Wの搬送経路の途中で一時的に基板Wを待機させる待機部(例えば反転部58)に備えられてもよい。なお、上記の通り、反転部58と待機部は別々に設けられてもよい。 Note that in this embodiment, the liquid removing section 70 is provided in a waiting section 57C that temporarily waits the substrate W in the middle of the transport path of the substrate W from the processing section 50 to the cleaning section 31B. It may be provided in a standby section (for example, the reversing section 58) that temporarily waits the substrate W on the transport path of the substrate W to the section 31A. Note that, as described above, the reversing section 58 and the standby section may be provided separately.
 加工部50において吸引部62が基板Wに付着する液体Lを吸引した後、待機部において液体除去部70が基板Wに付着する液体Lを除去する。これにより、基板処理装置1の内部への液体Lの飛散を防止できるだけではなく、洗浄部31A、31Bの基板保持部311が汚れることを防止できる。 After the suction unit 62 sucks the liquid L adhering to the substrate W in the processing unit 50, the liquid removal unit 70 removes the liquid L adhering to the substrate W in the standby unit. This not only prevents the liquid L from scattering into the interior of the substrate processing apparatus 1, but also prevents the substrate holding parts 311 of the cleaning parts 31A and 31B from getting dirty.
 以上、本開示に係る基板保持機構、基板処理装置および基板処理方法の実施形態等について説明したが、本開示は上記実施形態等に限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 Although the embodiments of the substrate holding mechanism, substrate processing apparatus, and substrate processing method according to the present disclosure have been described above, the present disclosure is not limited to the above embodiments. Various changes, modifications, substitutions, additions, deletions, and combinations are possible within the scope of the claims. These naturally fall within the technical scope of the present disclosure.
 本出願は、2022年7月4日に日本国特許庁に出願した特願2022-108009号に基づく優先権を主張するものであり、特願2022-108009号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2022-108009 filed with the Japan Patent Office on July 4, 2022, and the entire content of Japanese Patent Application No. 2022-108009 is incorporated into this application. .
1  基板処理装置
9  制御部
54 第1搬送部
61 基板吸着部
62 吸引部
63 供給部
L  液体
W  基板
1 Substrate processing apparatus 9 Control section 54 First transport section 61 Substrate suction section 62 Suction section 63 Supply section L Liquid W Substrate

Claims (18)

  1.  基板を吸着する基板吸着部と、前記基板吸着部の内部に流体を供給する供給部と、前記基板吸着部の内部から流体を吸引する吸引部と、前記基板を前記基板吸着部とは反対側から保持する第1搬送部と、前記供給部、前記吸引部および前記第1搬送部を制御する制御部と、を備える、基板処理装置であって、
     前記制御部は、前記基板吸着部で吸着した前記基板を前記基板吸着部とは反対側から前記第1搬送部で保持する制御と、前記基板吸着部の内部に液体を供給する制御と、前記第1搬送部を設定距離移動させることで前記基板を前記基板吸着部から設定距離離隔させる制御と、前記基板を前記基板吸着部から設定距離離隔させた状態で、前記基板吸着部と前記基板の間に残る前記液体を前記基板吸着部の内部に吸引する制御と、を行う、基板処理装置。
    a substrate suction unit that suctions the substrate; a supply unit that supplies fluid to the inside of the substrate suction unit; a suction unit that suctions the fluid from inside the substrate suction unit; and a side opposite to the substrate suction unit that holds the substrate. A substrate processing apparatus, comprising: a first transport section that holds the first transport section; and a control section that controls the supply section, the suction section, and the first transport section,
    The control unit is configured to control the substrate suctioned by the substrate suction unit to be held by the first transport unit from the side opposite to the substrate suction unit, and control to supply a liquid into the inside of the substrate suction unit; control to separate the substrate from the substrate adsorption unit by a set distance by moving the first transport unit a predetermined distance; and control to separate the substrate from the substrate adsorption unit by a set distance; A substrate processing apparatus that performs control to suck the liquid remaining between the substrates into the substrate suction section.
  2.  前記基板吸着部は多孔質体を有し、前記多孔質体が前記基板を吸着する吸着面を有し、前記供給部は前記多孔質体の内部に前記液体を供給する、請求項1に記載の基板処理装置。 The substrate adsorption section has a porous body, the porous body has an adsorption surface that adsorbs the substrate, and the supply section supplies the liquid into the inside of the porous body. substrate processing equipment.
  3.  前記制御部は、前記基板を前記基板吸着部から設定距離離隔させた状態で、前記基板と前記基板吸着部の間を前記液体の膜で充填する制御を行う、請求項1又は2に記載の基板処理装置。 3. The control unit controls filling a space between the substrate and the substrate suction unit with the liquid film while keeping the substrate separated from the substrate suction unit by a set distance. Substrate processing equipment.
  4.  前記制御部は、前記基板吸着部の内部に前記液体を供給した後、前記液体を前記基板吸着部の内部に吸引する前に、前記基板が前記第1搬送部に保持されている否かを判定することを行う、請求項1又は2に記載の基板処理装置。 After supplying the liquid to the inside of the substrate suction section, the control section determines whether or not the substrate is held in the first transport section before sucking the liquid into the inside of the substrate suction section. The substrate processing apparatus according to claim 1 or 2, wherein the substrate processing apparatus performs the determination.
  5.  前記基板吸着部と、前記基板吸着部に吸着されている前記基板を加工する工具を駆動する工具駆動部と、を有する加工部と、
     前記加工部で加工された前記基板を洗浄する洗浄部と、
     前記加工部から前記洗浄部に至る前記基板の搬送経路の途中で一時的に前記基板を待機させる待機部と、
    を備え、
     前記洗浄部は、前記基板を保持する基板保持部を有し、
     前記待機部は、前記基板の前記基板保持部に接触する領域から前記液体を除去する液体除去部を有する、請求項1又は2に記載の基板処理装置。
    a processing section having the substrate adsorption section and a tool drive section that drives a tool for processing the substrate adsorbed on the substrate adsorption section;
    a cleaning section that cleans the substrate processed in the processing section;
    a standby section that temporarily waits the substrate in the middle of the transport path of the substrate from the processing section to the cleaning section;
    Equipped with
    The cleaning section includes a substrate holding section that holds the substrate,
    3. The substrate processing apparatus according to claim 1, wherein the standby section includes a liquid removal section that removes the liquid from a region of the substrate that contacts the substrate holding section.
  6.  前記液体除去部は、前記基板の前記基板保持部に接触する領域に向けてガスを吐出するガス吐出部を有する、請求項5に記載の基板処理装置。 The substrate processing apparatus according to claim 5, wherein the liquid removal section includes a gas discharge section that discharges gas toward a region of the substrate that contacts the substrate holding section.
  7.  前記ガス吐出部は、前記ガスを吐出する前に洗浄液を吐出することで、前記基板の前記領域に前記洗浄液を供給する、請求項6に記載の基板処理装置。 The substrate processing apparatus according to claim 6, wherein the gas discharge unit supplies the cleaning liquid to the region of the substrate by discharging the cleaning liquid before discharging the gas.
  8.  前記液体除去部は、コアンダ効果によって前記ガス吐出部の周囲のガスを前記ガス吐出部の吐出するガスの流れに引き込むことで、前記基板に当たる風量を増幅する風量増幅部を有する、請求項6に記載の基板処理装置。 7. The liquid removing section includes an air volume amplifying section that amplifies the amount of air hitting the substrate by drawing gas around the gas discharging section into the flow of gas discharged from the gas discharging section using the Coanda effect. The substrate processing apparatus described.
  9.  前記風量増幅部は、前記ガス吐出部の周囲全体を取り囲む環状部を有する、請求項8に記載に基板処理装置。 9. The substrate processing apparatus according to claim 8, wherein the air volume amplification section has an annular section that entirely surrounds the gas discharge section.
  10.  基板を基板吸着部で吸着することと、
     前記基板を前記基板吸着部とは反対側から第1搬送部で保持することと、
     前記基板吸着部の内部に液体を供給することと、
     前記第1搬送部を設定距離移動させることで前記基板を前記基板吸着部から設定距離離隔させることと、
     前記基板を前記基板吸着部から設定距離離隔させた状態で、前記基板吸着部と前記基板の間に残る前記液体を、前記基板吸着部の内部に吸引することと、
    を有する、基板処理方法。
    Adsorbing the substrate with the substrate adsorption unit,
    holding the substrate with a first transport section from the side opposite to the substrate adsorption section;
    Supplying a liquid to the inside of the substrate adsorption section;
    separating the substrate from the substrate suction unit by a set distance by moving the first transport unit a set distance;
    sucking the liquid remaining between the substrate suction part and the substrate into the inside of the substrate suction part with the substrate separated from the substrate suction part by a set distance;
    A substrate processing method comprising:
  11.  前記基板吸着部は多孔質体を有し、前記多孔質体が前記基板を吸着する吸着面を有し、前記多孔質体の内部に前記液体を供給することを有する、請求項10に記載の基板処理方法。 11. The substrate suction unit includes a porous body, the porous body has a suction surface for sucking the substrate, and the liquid is supplied into the porous body. Substrate processing method.
  12.  前記基板を前記基板吸着部から設定距離離隔させた状態で、前記基板と前記基板吸着部の間を前記液体の膜で充填することを有する、請求項10又は11に記載の基板処理方法。 12. The substrate processing method according to claim 10, further comprising filling a space between the substrate and the substrate suction part with the liquid film while the substrate is separated from the substrate suction part by a set distance.
  13.  前記基板吸着部の内部に前記液体を供給した後、前記液体を前記基板吸着部の内部に吸引する前に、前記基板が前記第1搬送部に保持されているか否かを判定することを有する、請求項10又は11に記載の基板処理方法。 After supplying the liquid into the substrate suction unit and before sucking the liquid into the substrate suction unit, determining whether or not the substrate is held in the first transport unit. , The substrate processing method according to claim 10 or 11.
  14.  前記基板吸着部と前記基板吸着部に吸着されている前記基板を加工する工具を駆動する工具駆動部とを有する加工部によって前記基板を加工することと、前記基板を洗浄部によって洗浄することと、前記加工部から前記洗浄部に至る前記基板の搬送経路の途中の待機部で一時的に前記基板を待機させることと、を有し、
     前記洗浄部において前記基板を基板保持部で保持する前に、前記待機部において前記基板の前記基板保持部に接触する領域から前記液体を除去することを有する、請求項10又は11に記載の基板処理方法。
    Processing the substrate by a processing section having the substrate adsorption section and a tool drive section for driving a tool for processing the substrate adsorbed to the substrate adsorption section; and cleaning the substrate by a cleaning section. , temporarily causing the substrate to stand by in a waiting section in the middle of a transport path of the substrate from the processing section to the cleaning section,
    12. The substrate according to claim 10, further comprising removing the liquid from a region of the substrate in contact with the substrate holding part in the standby part before holding the substrate with a substrate holding part in the cleaning part. Processing method.
  15.  前記待機部において、ガス吐出部が前記基板の前記領域に向けてガスを吐出することを有する、請求項14に記載の基板処理方法。 15. The substrate processing method according to claim 14, wherein in the standby section, a gas discharge section discharges gas toward the region of the substrate.
  16.  前記待機部において、前記ガス吐出部が前記ガスを吐出する前に洗浄液を吐出することで、前記基板の前記領域に前記洗浄液を供給することを有する、請求項15に記載の基板処理方法。 16. The substrate processing method according to claim 15, further comprising supplying the cleaning liquid to the region of the substrate by discharging the cleaning liquid in the standby section before the gas discharge section discharges the gas.
  17.  前記待機部において、前記ガス吐出部の周囲に設けられる風量増幅部が、コアンダ効果によって前記ガス吐出部の周囲のガスを前記ガス吐出部の吐出するガスの流れに引き込むことで、前記基板に当たる風量を増幅することを有する、請求項15に記載の基板処理方法。 In the standby section, an air volume amplification section provided around the gas discharge section draws gas around the gas discharge section into the flow of gas discharged from the gas discharge section by the Coanda effect, thereby increasing the amount of air hitting the substrate. 16. The substrate processing method according to claim 15, comprising amplifying.
  18.  前記風量増幅部は、前記ガス吐出部の周囲全体を取り囲む環状部を有する、請求項17に記載に基板処理方法。 18. The substrate processing method according to claim 17, wherein the air volume amplification section has an annular section surrounding the entire periphery of the gas discharge section.
PCT/JP2023/022971 2022-07-04 2023-06-21 Substrate processing device and substrate processing method WO2024009775A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022108009 2022-07-04
JP2022-108009 2022-07-04

Publications (1)

Publication Number Publication Date
WO2024009775A1 true WO2024009775A1 (en) 2024-01-11

Family

ID=89453336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022971 WO2024009775A1 (en) 2022-07-04 2023-06-21 Substrate processing device and substrate processing method

Country Status (1)

Country Link
WO (1) WO2024009775A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267540A (en) * 1991-02-22 1992-09-24 Shibayama Kikai Kk Method of removing semiconductor wafer in chuck mechanism
JP2009253244A (en) * 2008-04-11 2009-10-29 Disco Abrasive Syst Ltd Method of carrying out wafer
JP2011091246A (en) * 2009-10-23 2011-05-06 Disco Abrasive Syst Ltd Method of removing plate-like workpiece and processing apparatus
JP2015115574A (en) * 2013-12-16 2015-06-22 株式会社東京精密 Wafer conveyance system
JP2016127195A (en) * 2015-01-07 2016-07-11 株式会社ディスコ Wafer grinding method
JP2016221668A (en) * 2015-06-01 2016-12-28 株式会社荏原製作所 Table for holding processing object and processing device having the table
JP2019055436A (en) * 2017-09-20 2019-04-11 株式会社ディスコ Work-piece holder and work-piece desorption method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267540A (en) * 1991-02-22 1992-09-24 Shibayama Kikai Kk Method of removing semiconductor wafer in chuck mechanism
JP2009253244A (en) * 2008-04-11 2009-10-29 Disco Abrasive Syst Ltd Method of carrying out wafer
JP2011091246A (en) * 2009-10-23 2011-05-06 Disco Abrasive Syst Ltd Method of removing plate-like workpiece and processing apparatus
JP2015115574A (en) * 2013-12-16 2015-06-22 株式会社東京精密 Wafer conveyance system
JP2016127195A (en) * 2015-01-07 2016-07-11 株式会社ディスコ Wafer grinding method
JP2016221668A (en) * 2015-06-01 2016-12-28 株式会社荏原製作所 Table for holding processing object and processing device having the table
JP2019055436A (en) * 2017-09-20 2019-04-11 株式会社ディスコ Work-piece holder and work-piece desorption method

Similar Documents

Publication Publication Date Title
TWI616239B (en) Scrubber
JP2008147591A (en) Apparatus and method for manufacturing semiconductor
JP6076063B2 (en) Processing equipment
US20190126430A1 (en) Substrate treatment apparatus
US9466512B2 (en) Substrate cleaning apparatus and substrate processing apparatus
TW202002049A (en) Substrate processing method
JP2016027671A (en) Peeling device, peeling system and peeling method
JPH08148541A (en) Wafer transfer system
US20240082885A1 (en) Substrate cleaning device and method of cleaning substrate
WO2024009775A1 (en) Substrate processing device and substrate processing method
WO2020153219A1 (en) Processing device and processing method
JP2018176366A (en) Cleaning apparatus for peripheral edge of substrate, cleaning method for peripheral edge of substrate and storage medium
JP7071818B2 (en) Board processing system
US20220282918A1 (en) Drying system with integrated substrate alignment stage
JP4963411B2 (en) Manufacturing method of semiconductor device or semiconductor wafer
JP6037685B2 (en) Grinding equipment
JP5149090B2 (en) Processing equipment
JP6625461B2 (en) Polishing equipment
JP3225001U (en) Substrate grinding system
JP2023074695A (en) Processing device and processing method
JP4850666B2 (en) Wafer processing equipment
JP2005101185A (en) Substrate cleaner an dryer
JP2007115795A (en) Method of dry-cleaning rear surface of substrate and apparatus therefor
JP7422558B2 (en) Grinding system and grinding method
KR101049444B1 (en) Vacuum Chucks for Semiconductor Manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835309

Country of ref document: EP

Kind code of ref document: A1