WO2024009514A1 - 位置検出システム、アクチュエータおよび位置検出方法 - Google Patents

位置検出システム、アクチュエータおよび位置検出方法 Download PDF

Info

Publication number
WO2024009514A1
WO2024009514A1 PCT/JP2022/027152 JP2022027152W WO2024009514A1 WO 2024009514 A1 WO2024009514 A1 WO 2024009514A1 JP 2022027152 W JP2022027152 W JP 2022027152W WO 2024009514 A1 WO2024009514 A1 WO 2024009514A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
encoder
absolute
motor
values
Prior art date
Application number
PCT/JP2022/027152
Other languages
English (en)
French (fr)
Inventor
泰地 田口
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/027152 priority Critical patent/WO2024009514A1/ja
Priority to TW112123723A priority patent/TW202407293A/zh
Publication of WO2024009514A1 publication Critical patent/WO2024009514A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains

Definitions

  • the present disclosure relates to a position detection system, an actuator, and a position detection method.
  • the actuator includes a servo motor and a speed reducer that are connected to each other.
  • a primary encoder is connected to the motor shaft of the servo motor, and detects the absolute position within one rotation of the motor shaft and the total number of rotations of the motor shaft.
  • a secondary encoder is connected to the output shaft of the reducer, and detects the absolute position within one rotation of the output shaft and the total number of rotations of the output shaft (for example, Japanese Patent Laid-Open No. 2007-113932 (see official bulletin). Information detected by each encoder is stored in memory.
  • the reduction ratio of the reducer is set to 1/n (n is a non-integer), and the value of the "judgment standard" is calculated from the position of the secondary encoder.
  • a method has been proposed for determining ⁇ 1 rotation of the secondary encoder from the result of determining whether the position of the primary encoder is positive or negative.
  • the device includes a primary encoder that detects a position of a motor shaft of a motor, a secondary encoder that detects a position of an output shaft of a reduction gear coupled to the motor, and a calculation unit.
  • the reduction ratio of the reduction gear is 1/n, where n is a non-integer
  • the calculation unit calculates the speed reduction ratio of the primary encoder within one rotation of the rotor based on the absolute position within one rotation of the secondary encoder.
  • a plurality of position calculation values related to the absolute position are calculated, and the calculation unit calculates the position value based on the position actual value related to the absolute position within one rotation of the rotor detected by the primary encoder and the plurality of position calculation values.
  • a position detection system is provided that calculates the total number of rotations of a secondary encoder.
  • the device includes a primary encoder that detects a position of a motor shaft of a motor, a secondary encoder that detects a position of an output shaft of a reduction gear coupled to the motor, and a calculation determination unit.
  • the calculation determination unit calculates a position calculation value regarding the absolute position within one rotation of the motor shaft based on the absolute position within one rotation of the output shaft detected by the secondary encoder, and the calculation determination unit furthermore, if the absolute value of the deviation between the actual position value and the calculated position value regarding the absolute position within one rotation of the motor shaft detected by the primary encoder is equal to or greater than a predetermined value, A position detection system is provided that determines that there is an abnormality in the position of at least one of an encoder and the secondary encoder.
  • FIG. 1 is a schematic side view of a position detection system according to a first embodiment of the present disclosure
  • FIG. 2 is a first flowchart showing the operation of the position detection system shown in FIG. 1.
  • FIG. 3 is a diagram showing the relationship between the position of the output shaft and the position of the input shaft.
  • FIG. 7 is another diagram showing the relationship between the position of the output shaft and the position of the input shaft. It is a second flowchart showing the operation of the position detection system based on the second embodiment.
  • FIG. 1 is a schematic side view of a position detection system according to a first embodiment of the present disclosure.
  • the position detection system 5 is installed in a machine 3 having a shaft, for example a robot 3.
  • the case where the position detection system 5 is built into the robot 3 will be described below, but the same applies to the case where the position detection system 5 is built into another machine 3 having a shaft, such as a machine tool.
  • the actuator 6 arranged on the link 1 includes a motor 10 coupled to each other, for example a servo motor, and a reducer 20 coupled to a motor shaft 13 of the motor 10.
  • Motor 10 includes a rotor 12 that rotates integrally with a motor shaft 13 and a stator 11 that is arranged to surround rotor 12.
  • the tip of the output shaft 23 of the speed reducer 20 is connected to the link 2. Therefore, the actuator 6 including the motor 10 and the speed reducer 20 controls the positioning of the link 2 by rotating it relative to the link 1 within a predetermined operating range.
  • the motor shaft 13 is, for example, a hollow shaft, and a primary encoder 15 equipped with a rotating disk 15A is attached to the rear end thereof.
  • the primary encoder 15 is, for example, an incremental encoder, and outputs A-phase, B-phase, and Z-phase signals.
  • the output signal is detected by the detection unit 16, and the absolute position ⁇ p within one rotation of the motor shaft 13 and the total number of rotations are detected using a known method.
  • the detected information is stored in a memory 7, for example a volatile memory.
  • the output shaft 23 extends toward the motor 10 through the hollow motor shaft 13, and a secondary encoder 25 equipped with a rotating disk 25A is attached to the rear end of the output shaft 23.
  • the secondary encoder 25 is, for example, an incremental encoder, and outputs A-phase, B-phase, and Z-phase signals.
  • the output signal is detected by the detection unit 26, and the absolute position ⁇ s within one rotation of the output shaft 23 and the total number of rotations i are detected using a known method.
  • the detected information is stored in a memory 7, for example a volatile memory.
  • the information stored in the memory 7 is stored for a certain period of time by a battery 8, such as a button battery or a capacitor.
  • the position detection system 5 shown in FIG. 1 includes a common memory 7 and a common battery 8 for the primary encoder 15 and the secondary encoder 25.
  • the primary encoder 15 and the secondary encoder 25 may each have separate memories and batteries.
  • the information stored in the memory 7 is supplied to the controller 9.
  • the controller 9 may be a control device that controls the machine 3 or an LSI mounted on the encoders 15 and 25.
  • the controller 9 drives and controls the motor 10 based on the supplied information, and performs a positioning operation to position the link 2 at a target position with respect to the link 1.
  • a built-in brake 50 provided on the outer surface of the motor shaft 13 is activated in response to an instruction from the controller 9 to brake the motor shaft 13.
  • the controller 9 also serves to energize the primary encoder 15 and the secondary encoder 25 when the machine 3 is in operation.
  • the controller 9 calculates a plurality of position calculation values regarding the absolute position within one rotation of the motor shaft 13 in the primary encoder 13 based on the absolute position within one rotation of the secondary encoder 25, and also calculates the position values detected by the primary encoder 15. It serves as a calculation unit that calculates the total number of rotations of the secondary encoder 25 based on the actual position value and a plurality of calculated position values regarding the absolute position within one rotation of the motor shaft 13.
  • the controller 9 calculates a position calculation value regarding the absolute position within one rotation of the motor shaft 13 based on the absolute position within one rotation of the output shaft 23 detected by the secondary encoder 25, and If the absolute value of the deviation between the actual position value and the calculated position value regarding the detected absolute position within one revolution of the motor shaft 13 is greater than or equal to a predetermined value, at least one of the primary encoder 15 and the secondary encoder 25 is It serves as a calculation determination unit that determines that there is an abnormality in one position.
  • FIG. 2 is a first flowchart showing the operation of the position detection system shown in FIG. 1. It is assumed that the contents of the program shown in FIG. 2 are stored in a storage section (not shown) in the controller 9 or in the memory 7. It is assumed that the contents shown in FIG. 2 are appropriately implemented when the motor 10 is driven.
  • step S11 the secondary encoder 25 detects the absolute position ⁇ s of the output shaft 23 within one rotation.
  • step S12 the controller 9 uses the detected absolute position ⁇ s to calculate a position calculation value ⁇ p*(i) regarding the absolute position within one rotation of the primary encoder 15 based on the following equation (1).
  • ⁇ p*(i) MOD[ ⁇ ( ⁇ s ⁇ ( ⁇ +1/ ⁇ )+(360/ ⁇ ) ⁇ (i-1)) ⁇ 360] ⁇ 360
  • MOD[] means a function that calculates the remainder of division.
  • FIG. 3 is a diagram showing the relationship between the position of the output shaft and the position of the input shaft.
  • the horizontal axis indicates the position of the output shaft 23 of the reducer 20, and the vertical axis indicates the position of the input shaft.
  • “Input shaft position” means the position of the input shaft input to the secondary encoder 25.
  • the secondary encoder 25 is connected downstream of the primary encoder 15, so the "position of the input shaft” can also be referred to as the position of the rotating disk 15A of the primary encoder 15 or the position of the motor shaft 13.
  • both the horizontal axis and the vertical axis are shown in degrees.
  • FIG. 3 three lines L1, L2, and L3 are shown.
  • the number of these lines L1, L2, L3 is equal to the value of ⁇ mentioned above.
  • a solid line L1 indicates the position of the input shaft when the output shaft 23 makes the first rotation.
  • a broken line L2 indicates the position of the input shaft when the output shaft 23 rotates for the second time.
  • a dashed line L3 indicates the position of the input shaft when the output shaft 23 rotates for the third time.
  • the position detection system 5 in the first embodiment can detect up to the ⁇ -th point of the output shaft 23. Further, the position of the output shaft 23 is different between the first rotation and the second rotation. In the first embodiment, the total number of rotations of the output shaft 23 is obtained using the difference between the position of the first rotation and the position of the second rotation.
  • 3
  • ⁇ p*(i) are values on the vertical axis corresponding to the intersections between the absolute position ⁇ s of the output shaft 23 and the three lines L1, L2, and L3.
  • the absolute values of deviation ⁇ d(1) (
  • ), ⁇ d(2)(
  • ), ⁇ d(3)(
  • ) is indicated by an arrow.
  • step S14 the controller 9 selects the minimum value Min ⁇ d(i) from a plurality of absolute values, ⁇ d(1), ⁇ d(2), and ⁇ d(3) in FIG.
  • ⁇ d(2) ⁇ d(1) ⁇ d(3) so ⁇ d(2) corresponds to the minimum value Min ⁇ d(i).
  • step S15 the controller 9 compares the selected minimum value Min ⁇ d(i) and the first error determination value ⁇ j1. It is assumed that the first error determination value ⁇ j1 is calculated in advance based on the following equation (2).
  • ⁇ j1 360/ ⁇ n ⁇ sa_max ⁇ pa_max ⁇ nois_max
  • ⁇ sa indicates the detection accuracy determined according to the characteristics of the secondary encoder 25
  • ⁇ sa_max is the value when the detection accuracy is the lowest.
  • ⁇ pa indicates the detection accuracy determined according to the characteristics of the primary encoder 15, and ⁇ pa_max is the value when the detection accuracy becomes the lowest.
  • ⁇ nois indicates the width of disturbance of the position detection system 5, and ⁇ nois_max is its maximum value.
  • step S15 If it is determined in step S15 that the minimum value Min ⁇ d(i) is not larger than the first error determination value ⁇ j1, it is determined that there is no problem and the process proceeds to step S19. Then, in step S19, the minimum value Min ⁇ d(i) and the second error determination value ⁇ j2 are compared.
  • step S21 it is determined that there is an abnormality in the position of at least one of the primary encoder 15 and the secondary encoder 25. Then, the controller 9 detects a detection error and stops the operation of the motor 10. Further, at this time, a message to that effect may be displayed on a display section (not shown), for example, on the screen of a teaching control panel.
  • step S19 if it is determined in step S19 that the minimum value Min ⁇ d(i) is smaller than the second error determination value ⁇ j2, the process advances to step S20.
  • step S20 the controller 9 calculates the total number of rotations of the secondary encoder 25 based on the minimum value Min ⁇ d(i).
  • ⁇ d(2) is the minimum value Min ⁇ d(i), so it can be seen that the total number of rotations i is two.
  • the process of obtaining the total number of rotations of the secondary encoder 25 in the first embodiment of the present disclosure does not require an additional battery. Therefore, in the first embodiment of the present disclosure, even if the output shaft 23 rotates twice or more, the position detection system 5 can be used without requiring an additional battery. In other words, even if the encoders 15 and 25 are moved in a situation where the controller 9 does not supply power to the encoders 15 and 25, the position detection system 5 in the first embodiment obtains the total number of rotations of the output shaft 23. Can be done.
  • step S15 if it is determined in step S15 that the minimum value Min ⁇ d(i) is larger than the first error determination value ⁇ j1, the process advances to step S16.
  • FIG. 4 is another diagram similar to FIG. 3 showing the relationship between the position of the output shaft and the position of the input shaft.
  • the case where it is determined that the minimum value Min ⁇ d(i) is larger than the first error determination value ⁇ j1 as in step S15 is a situation such as the example shown in FIG. 4, for example.
  • the minimum value Min ⁇ d(i) should be ⁇ d(1), and it is clearly an error to set ⁇ d(3) as the minimum value Min ⁇ d(i).
  • the controller 9 corrects the position jump of the absolute value of the deviation ⁇ d(i) obtained in step S13. .
  • 360-360(i-1)/ ⁇ -n ⁇ sa- ⁇ pa- ⁇ nois Formula (4)
  • ⁇ d(1), ⁇ d(2), and ⁇ d(3) are corrected as shown in equations (5) to (7) below.
  • ⁇ d(1)
  • 360 ⁇ n ⁇ sa ⁇ pa ⁇ nois
  • step S17 the controller 9 selects the minimum value Min ⁇ d(i) from the plurality of absolute values ⁇ d(i) corrected in this way.
  • the minimum value Min ⁇ d(i) is the corrected absolute value ⁇ d(1).
  • the correct minimum value Min ⁇ d(i) (in FIG. 4, the corrected absolute value ⁇ d(1)) is selected.
  • step S18 the correct minimum value Min ⁇ d(i) after correction is set again to the minimum value Min ⁇ d(i). Then, the process proceeds to step S20, and the total number of rotations of the secondary encoder 25 is calculated in accordance with the new minimum value Min ⁇ d(i) in the same manner as described above.
  • ⁇ d(1) is the minimum value Min ⁇ d(i), so it can be seen that the total number of rotations i is one.
  • FIG. 5 is a second flowchart showing the operation of the position detection system based on the second embodiment. It is assumed that the contents of the program shown in FIG. 5 are stored in a storage section (not shown) in the controller 9 or in the memory 7. It is assumed that the contents shown in FIG. 5 are appropriately implemented when the motor 10 is driven.
  • the reduction ratio n of the reduction gear 20 in the second embodiment is not limited to the one described above. That is, the reduction ratio n in this case may be 1/ ⁇ ( ⁇ is a positive number greater than 1). Further, when an additional reducer (not shown) is arranged between the output shaft 23 and the secondary encoder 25 and the overall reduction ratio of the reducer 20 and the additional reducer is 1/ ⁇ ', the second encoder ( ⁇ ' is a positive number greater than 1).
  • step S33 the controller 9 calculates the absolute value ⁇ pd of the deviation between the detected position value ⁇ s of the primary encoder 15 and the calculated position value ⁇ p* based on the following equation (9).
  • ⁇ pd
  • step S34 the controller 9 determines whether the absolute value ⁇ pd of the deviation is larger than the third error determination value ⁇ j3.
  • the absolute value ⁇ pd of the deviation indicates the deviation in the detection position between the primary encoder 15 and the secondary encoder 25. In an ideal state without backlash of the reducer 20 and various detection errors, the absolute value ⁇ pd of the deviation is zero. Therefore, the third error determination value ⁇ j3 is a value larger than zero predetermined by the operator.
  • step S34 If it is determined in step S34 that the absolute value ⁇ pd of the deviation is larger than the third error determination value ⁇ j3, it is determined that the relative position between the primary encoder 15 and the secondary encoder 25 is not normal (step S35). In this case, the controller 9 determines that there is an abnormality in the set positions of the primary encoder 15 and/or the secondary encoder 25, and stops the operation of the motor 10. At this time, a message to that effect may be displayed on a display unit (not shown), for example, on the screen of a teaching control panel.
  • step S34 if it is determined in step S34 that the absolute value ⁇ pd of the deviation is not larger than the third error determination value ⁇ j3, it is determined that the relative position between the primary encoder 15 and the secondary encoder 25 is normal. (step S36), and the process ends.
  • the process of determining whether there is an abnormality in the relative position between the primary encoder 15 and the secondary encoder 25 in the second embodiment of the present disclosure does not require an additional battery. Therefore, in the second embodiment, an abnormality in the position of the primary encoder 15 and/or the secondary encoder 25 can be easily detected without requiring an additional battery.
  • the computer program for executing the processing of the controller 9 as the calculation unit and the calculation determination unit is provided in a form recorded on a computer-readable recording medium such as a semiconductor memory, a magnetic recording medium, or an optical recording medium. Good too.
  • a primary encoder that detects the position of a motor shaft of a motor
  • a secondary encoder that detects a position of an output shaft of a reduction gear coupled to the motor
  • a calculation unit calculates the rotation of the motor shaft in the primary encoder based on the absolute position within one rotation of the secondary encoder.
  • a position detection system that calculates the total number of rotations of the secondary encoder.
  • the calculation unit calculates the total number of rotations of the secondary encoder based on the absolute value of the deviation between the actual position value and the plurality of calculated position values. calculate.
  • the minimum value of the absolute values of the deviation between the actual position value and the plurality of calculated position values is a predetermined first error determination value.
  • the calculation unit calculates the minimum value after correcting the plurality of position calculation values.
  • the minimum value of the absolute values of the deviation between the actual position value and the plurality of calculated position values is the first value. If the error determination value is not smaller than a predetermined second error determination value that is smaller than the error determination value, the calculation unit calculates the total number of rotations of the secondary encoder.
  • a motor a reduction gear coupled to the motor, a primary encoder that detects a position of a motor shaft of the motor, a secondary encoder that detects a position of an output shaft of the reduction gear; a calculation unit, the reduction ratio of the reduction gear is 1/n, where n is a non-integer, and the calculation unit is configured to calculate the reduction ratio of the reduction gear in the primary encoder based on the absolute position within one rotation of the secondary encoder.
  • a plurality of position calculation values regarding the absolute position within one revolution of the motor shaft are calculated, and the calculation unit calculates the position actual value regarding the absolute position within one revolution of the motor shaft detected by the primary encoder and the plurality of positions.
  • An actuator is provided that calculates the total number of rotations of the secondary encoder based on the calculated value.
  • the calculation unit calculates the total number of rotations of the secondary encoder based on the absolute value of the deviation between the actual position value and the plurality of calculated position values. calculate.
  • the minimum value of the absolute values of the deviation between the actual position value and the plurality of calculated position values is a predetermined first error determination value. If it is larger than , the calculation unit calculates the minimum value after correcting the plurality of position calculation values.
  • the minimum value of the absolute values of the deviation between the actual position value and the plurality of calculated position values is the first value. If the error determination value is not smaller than a predetermined second error determination value that is smaller than the error determination value, the calculation unit calculates the total number of rotations of the secondary encoder.
  • a position detection method for a position detection system comprising a primary encoder that detects the position of a motor shaft of a motor, and a secondary encoder that detects the position of an output shaft of a reducer coupled to the motor.
  • the reduction ratio of the speed reducer is 1/n, where n is a non-integer, and the speed reduction ratio is related to the absolute position within one revolution of the motor shaft in the primary encoder based on the absolute position within one revolution of the secondary encoder. calculating a plurality of position calculation values, and determining the total number of rotations of the secondary encoder based on the position actual value regarding the absolute position within one revolution of the motor shaft detected by the primary encoder and the plurality of position calculation values; A position detection method is provided. According to a tenth aspect, in the ninth aspect, the total number of rotations of the secondary encoder is calculated based on the absolute value of the deviation between the actual position value and the plurality of calculated position values.
  • the minimum value of the absolute values of the deviation between the actual position value and the plurality of calculated position values is a predetermined first error determination value. If it is larger than , the calculation unit calculates the minimum value after correcting the plurality of position calculation values.
  • the minimum value of the absolute values of the deviation between the actual position value and the plurality of calculated position values is the first value. The total number of rotations of the secondary encoder is calculated when the error determination value is smaller than the error determination value but not smaller than a predetermined second error determination value.
  • the system includes a primary encoder that detects a position of a motor shaft of a motor, a secondary encoder that detects a position of an output shaft of a reducer coupled to the motor, and a calculation determination section,
  • the calculation determination unit calculates a position calculation value regarding the absolute position within one revolution of the motor shaft based on the absolute position within one revolution of the output shaft detected by the secondary encoder, and the calculation determination unit: Furthermore, if the absolute value of the deviation between the actual position value regarding the absolute position within one revolution of the motor shaft detected by the primary encoder and the calculated position value is greater than or equal to a predetermined value, the primary encoder and A position detection system is provided that determines that there is an abnormality in the position of at least one of the secondary encoders.
  • a motor a reduction gear coupled to the motor, a primary encoder that detects the position of a motor shaft of the motor, a secondary encoder that detects the position of an output shaft of the reduction gear; a calculation determination unit, the calculation determination unit calculates a position calculation value regarding the absolute position within one rotation of the motor shaft based on the absolute position within one rotation of the output shaft detected by the secondary encoder. and the calculation determination unit further determines that the absolute value of the deviation between the actual position value and the calculated position value regarding the absolute position within one rotation of the motor shaft detected by the primary encoder is equal to or greater than a predetermined value.
  • a position detection system includes a primary encoder that detects a position of a motor shaft of a motor, and a secondary encoder that detects a position of an output shaft of a reducer coupled to the motor.
  • a position calculation value regarding the absolute position within one revolution of the motor shaft is calculated based on the absolute position within one revolution of the output shaft detected by the secondary encoder; If the absolute value of the deviation between the actual position value and the calculated position value regarding the absolute position within one rotation of the motor shaft is greater than or equal to a predetermined value, the position of at least one of the primary encoder and the secondary encoder A position detection method is provided for determining that there is an abnormality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

位置検出システム(5)は、モータ軸の位置を検出するプライマリエンコーダ(15)と、減速機の出力軸の位置を検出するセカンダリエンコーダ(25)と、算出部(9)とを含む。前記減速機の減速比は1/nであり、nは非整数である。前記算出部は、前記セカンダリエンコーダの一回転内位置に基づいて前記モータ軸の一回転内位置に関する複数の位置算出値を算出し、前記ロータの一回転内位置に関する位置実際値と前記複数の位置算出値とに基づいて、前記セカンダリエンコーダの総回転回数を算出する。

Description

位置検出システム、アクチュエータおよび位置検出方法
 本開示は、位置検出システム、アクチュエータおよび位置検出方法に関する。
 アクチュエータは、互いに連結されたサーボモータおよび減速機を含んでいる。サーボモータのモータ軸には、プライマリエンコーダが連結されていて、モータ軸の一回転内のアブソリュート位置と、モータ軸の総回転回数とを検出している。同様に、減速機の出力軸には、セカンダリエンコーダが連結されていて、出力軸の一回転内のアブソリュート位置と、出力軸の総回転回数とを検出している(例えば特開2007-113932号公報参照)。各エンコーダにより検出された情報はメモリに保存される。
 さらに、特開2006-300596号公報には、減速機の減速比を1/nとし(nは非整数)とし、セカンダリエンコーダの位置から「判定基準」の値を算出し、判定基準の値とプライマリエンコーダの位置の正負の判別結果から、セカンダリエンコーダの±1回転を判定する方法が提案されている。
特開2007-113932号公報 特開2006-300596号公報
 しかしながら、特開2006-300596号公報の方法では、出力軸が2回転以上するときにはバッテリレスのアブソリュートエンコーダとすることができない。
 よって、出力軸が2回転以上する場合であっても、追加のバッテリを必要とすることなしに、使用することのできる位置検出システムが望まれている。
 本開示の1番目の態様によれば、モータのモータ軸の位置を検出するプライマリエンコーダと、前記モータに結合された減速機の出力軸の位置を検出するセカンダリエンコーダと、算出部とを具備し、前記減速機の減速比は1/nであり、nは非整数であり、前記算出部は、前記セカンダリエンコーダの一回転内のアブソリュート位置に基づいて前記プライマリエンコーダにおける前記ロータの一回転内のアブソリュート位置に関する複数の位置算出値を算出し、前記算出部は、前記プライマリエンコーダにより検出された前記ロータの一回転内のアブソリュート位置に関する位置実際値と前記複数の位置算出値とに基づいて、前記セカンダリエンコーダの総回転回数を算出する、位置検出システムが提供される。
 本開示の他の態様によれば、モータのモータ軸の位置を検出するプライマリエンコーダと、前記モータに結合される減速機の出力軸の位置を検出するセカンダリエンコーダと、算出判定部とを具備し、該算出判定部は、前記セカンダリエンコーダにより検出された前記出力軸の一回転内のアブソリュート位置に基づいて、前記モータ軸の一回転内のアブソリュート位置に関する位置算出値を算出し、前記算出判定部は、さらに、前記プライマリエンコーダにより検出された前記モータ軸の一回転内のアブソリュート位置に関する位置実際値と前記位置算出値との間の偏差の絶対値が所定値以上である場合には、前記プライマリエンコーダおよび前記セカンダリエンコーダのうちの少なくとも一方の位置に異常があると判定する、位置検出システムが提供される。
 本開示の目的、特徴及び利点は、添付図面に関連した以下の実施形態の説明により一層明らかになろう。
本開示の第一の実施形態に基づく位置検出システムの略側面図である。 図1に示される位置検出システムの動作を示す第一のフローチャートである。 出力軸の位置と入力軸の位置との間の関係を示す図である。 出力軸の位置と入力軸の位置との間の関係を示す他の図である。 第二の実施形態に基づく位置検出システムの動作を示す第二のフローチャートである。
 以下、添付図面を参照して本開示の実施の形態を説明する。全図面に渡り、対応する構成要素には共通の参照符号を付す。
 図1は本開示の第一の実施形態に基づく位置検出システムの略側面図である。位置検出システム5は、軸部を有する機械3、例えばロボット3に組み込まれている。以下、位置検出システム5がロボット3に組み込まれている場合について説明するが、位置検出システム5が軸部を有する他の機械3、例えば工作機械に組み込まれている場合についても同様である。
 図1においては、リンク1に配置されたアクチュエータ6は、互いに連結されたモータ10、例えばサーボモータおよび、モータ10のモータ軸13に結合された減速機20を含んでいる。モータ10は、モータ軸13と一体的に回転するロータ12と、ロータ12を取り囲むように配置されるステータ11とを含む。減速機20の出力軸23の先端は、リンク2に連結されている。従って、モータ10および減速機20からなるアクチュエータ6は、リンク2をリンク1に対して所定の動作範囲内で相対的に回転させて位置決め制御する。減速機20の減速比nは正の非整数、例えばn=α+1/βであるものとする(α、βは1より大きい正数)。
 モータ軸13は例えば中空軸であり、その後端部には、回転ディスク15Aを備えたプライマリエンコーダ15が取付けられている。プライマリエンコーダ15は、例えばインクリメンタルエンコーダであり、A相、B相およびZ相信号を出力する。出力された信号は検出部16により検出され、公知の手法で、モータ軸13の一回転内のアブソリュート位置θpおよび総回転回数を検出する。検出された情報はメモリ7、例えば揮発性メモリに保存される。
 出力軸23は中空のモータ軸13を通ってモータ10側に延びており、出力軸23の後端部には、回転ディスク25Aを備えたセカンダリエンコーダ25が取付けられている。セカンダリエンコーダ25は、例えばインクリメンタルエンコーダであり、A相、B相およびZ相信号を出力する。出力された信号は検出部26により検出され、公知の手法で、出力軸23の一回転内のアブソリュート位置θsおよび総回転回数iを検出する。検出された情報はメモリ7、例えば揮発性メモリに保存される。
 メモリ7に保存された情報はバッテリ8、例えばボタン電池またはキャパシタにより一定期間保存されるようになっている。図1に示される位置検出システム5は、プライマリエンコーダ15およびセカンダリエンコーダ25について共通のメモリ7および共通のバッテリ8を含んでいる。しかしながら、プライマリエンコーダ15およびセカンダリエンコーダ25がそれぞれ別個のメモリおよびバッテリを有する構成であってもよい。
 メモリ7に保存された情報は、コントローラ9に供給される。コントローラ9は機械3を制御する制御装置、またはエンコーダ15、25に搭載されるLSIであってもよい。コントローラ9は、供給された情報に基づいて、モータ10を駆動制御し、リンク2をリンク1に対して目標位置に位置決めする位置決め動作を行う。さらに、モータ軸13の外面側に備えられた内蔵ブレーキ50は、コントローラ9の指示に応じて起動し、モータ軸13を制動する。さらに、コントローラ9は、機械3の動作時には、プライマリエンコーダ15およびセカンダリエンコーダ25に通電する役目も果たしている。
 また、コントローラ9は、セカンダリエンコーダ25の一回転内のアブソリュート位置に基づいてプライマリエンコーダ13におけるモータ軸13の一回転内のアブソリュート位置に関する複数の位置算出値を算出すると共に、プライマリエンコーダ15により検出されたモータ軸13の一回転内のアブソリュート位置に関する位置実際値と複数の位置算出値とに基づいて、セカンダリエンコーダ25の総回転回数を算出する算出部としての役目を果たす。
 さらに、コントローラ9は、セカンダリエンコーダ25により検出された出力軸23の一回転内のアブソリュート位置に基づいて、モータ軸13の一回転内のアブソリュート位置に関する位置算出値を算出すると共に、プライマリエンコーダ15により検出されたモータ軸13の一回転内のアブソリュート位置に関する位置実際値と位置算出値との間の偏差の絶対値が所定値以上である場合には、プライマリエンコーダ15およびセカンダリエンコーダ25のうちの少なくとも一方の位置に異常があると判定する算出判定部としての役目を果たす。
 図2は図1に示される位置検出システムの動作を示す第一のフローチャートである。図2に示されるプログラムの内容は、コントローラ9内の記憶部(図示しない)またはメモリ7内に記憶されているものとする。図2に示される内容は、モータ10の駆動時に適宜実施されるものとする。
 はじめに、ステップS11において、セカンダリエンコーダ25が、出力軸23の1回転内のアブソリュート位置θsを検出する。次いで、ステップS12においては、コントローラ9が、検出されたアブソリュート位置θsを用いて、下記の式(1)に基づいて、プライマリエンコーダ15の1回転内のアブソリュート位置に関する位置算出値θp*(i)を算出する(iはβ以下の正数)。
  θp*(i)=MOD[{(θs×(α+1/β)+(360/β)×(i-1))}÷360]×360                    式(1)
 なお、「MOD[]」は、割り算の余りを算出する関数を意味する。
 ここで、図3は、出力軸の位置と入力軸の位置との間の関係を示す図である。図3においては、横軸は減速機20の出力軸23の位置を示しており、縦軸は入力軸の位置を示している。「入力軸の位置」は、セカンダリエンコーダ25に対して入力する入力軸の位置を意味する。本願明細書においてセカンダリエンコーダ25はプライマリエンコーダ15の下流に連結されているので、「入力軸の位置」は、プライマリエンコーダ15の回転ディスク15Aの位置またはモータ軸13の位置とも言い換えることができる。なお、図3においては、横軸および縦軸の両方は度数法で示すものとする。また、前述したように減速機20の減速比nは、n=α+1/βであり(α、βは1より大きい正数)、図3に示される例においては、α=2、β=3であるものとする。
 図3においては、三つの線L1、L2、L3が示されている。これら線L1、L2、L3の数は前述したβの値に等しい。実線L1は出力軸23が1回転目のときの入力軸の位置を示す。破線L2は出力軸23が2回転目のときの入力軸の位置を示す。一点鎖線L3は出力軸23が3回転目のときの入力軸の位置を示す。
 図3から分かるように、第一の実施形態における位置検出システム5は、出力軸23のβ回点目まで検出することができる。また、出力軸23の位置は、その1回転目と2回転目とで異なる。第一の実施形態においては、1回転目の位置と2回転目の位置との間の差を利用して出力軸23の総回転回数を取得するものである。
 図3に示される例においてはβ=3であるので、図3の縦軸には、θp*(1)、θp*(2)、θp*(3)が示されている。これらθp*(i)は、出力軸23のアブソリュート位置θsと、三つの線L1、L2、L3との間の交点に対応する縦軸の値である。
 ステップS13においては、コントローラ9は、プライマリエンコーダ15が検出したモータ軸13の1回転内のアブソリュート位置に関する位置検出値θpを取得する。そして、コントローラ9は、位置検出値θpと複数の位置算出値θp*(i)との間の複数の偏差の絶対値θd(i)(=|θp-θp*(i)|)を算出する。図3においては、偏差の絶対値θd(1)(=|θp-θp*(1)|)、θd(2)(=|θp-θp*(2)|)、θd(3)(=|θp-θp*(3)|)が矢印で示されている。
 次いで、ステップS14においては、コントローラ9は、複数の絶対値、図3においてはθd(1)、θd(2)、θd(3)から、最小値Minθd(i)を選択する。図3に示される例においては、θd(2)<θd(1)<θd(3)であるので、θd(2)が最小値Minθd(i)に相当する。
 そして、ステップS15においては、コントローラ9は、選択した最小値Minθd(i)と第一エラー判定値θj1とを比較する。第一エラー判定値θj1は、下記の式(2)に基づいて、事前に算出されるものとする。
  θj1=360/β-n・θsa_max-θpa_max-θnois_max                                   式(2)
 ここで、θsaは、セカンダリエンコーダ25の特性に応じて定まる検出精度を示しており、θsa_maxは検出精度が最も低くなるときの値である。θpaは、プライマリエンコーダ15の特性に応じて定まる検出精度を示しており、θpa_maxは検出精度が最も低くなるときの値である。さらに、θnoisは、位置検出システム5の外乱の幅を示しており、θnois_maxはその最大値である。
 ステップS15において、最小値Minθd(i)が第一エラー判定値θj1より大きくないと判定された場合には、問題なしと判断されて、ステップS19に進む。そして、ステップS19においては、最小値Minθd(i)と第二エラー判定値θj2とを比較する。第二エラー判定値θj2は、下記の式(3)に基づいて、事前に算出するものとする。
  θj2≧θj1-360=n・θsa_max+θpa_max+θnois_max                                 式(3)
 式(3)から分かるように、第二エラー判定値θj2は第一エラー判定値θj1よりも小さい。
 そして、最小値Minθd(i)が第二エラー判定値θj2より小さくないと判定された場合には、ステップS21に進む。ステップS21においては、プライマリエンコーダ15およびセカンダリエンコーダ25のうちの少なくとも一方の位置に異常があると判定される。そして、コントローラ9は検出ミスとして、モータ10の動作を停止させる。また、このとき、図示しない表示部、例えば教示制御盤の画面にその旨を表示してもよい。
 これに対し、ステップS19において、最小値Minθd(i)が第二エラー判定値θj2より小さいと判定された場合には、ステップS20に進む。ステップS20においては、コントローラ9は、最小値Minθd(i)に基づいて、セカンダリエンコーダ25の総回転回数を算出する。図3に示される例においては、θd(2)が、最小値Minθd(i)であるので、総回転回数iは2回であることが分かる。
 このように、本開示の第一の実施形態におけるセカンダリエンコーダ25の総回転回数を取得するプロセスは、追加のバッテリを必要としない。従って、本開示の第一の実施形態においては、出力軸23が2回転以上する場合であっても、追加のバッテリを必要とすることなしに、位置検出システム5を使用することができる。言い換えれば、コントローラ9がエンコーダ15、25に電力を供給しない状況でエンコーダ15、25が動かされたとしても、第一の実施形態における位置検出システム5は出力軸23の総回転回数を取得することができる。
 ところで、ステップS15において、最小値Minθd(i)が第一エラー判定値θj1より大きいと判定された場合には、ステップS16に進む。図4は、図3と同様な、出力軸の位置と入力軸の位置との間の関係を示す他の図である。ステップS15のように最小値Minθd(i)が第一エラー判定値θj1より大きいと判定される場合とは、例えば図4に示される例のような状況である。
 図4においては、出力軸23の1回転内のアブソリュート位置θsが、図3とは、異なる位置に在る。図4に示される例にける偏差の絶対値θd(1)(=|θp-θp*(1)|)、θd(2)(=|θp-θp*(2)|)、θd(3)(=|θp-θp*(3)|)を比較すると、θd(3)<θd(2)<θd(1)である。
 図4においては、最小値Minθd(i)は、θd(1)であるべきであり、θd(3)を最小値Minθd(i)として設定するのは明らかに誤りである。しかしながら、プライマリエンコーダ15に関するモータ軸13の位置が0°近傍(360°近傍)にあるので、上記のような判定を行うことが困難である。このため、プライマリエンコーダ15に関するモータ軸13の位置が0°近傍にある場合を想定し、ステップS16においては、コントローラ9は、ステップS13で取得した偏差θd(i)の絶対値を位置飛び補正する。
 位置飛び補正に使用される式(4)は下記の通りである。
  θd(i)=|θp-θp*(i)|=360-360(i-1)/β-nθsa-θpa-θnois                       式(4)
 これにより、θd(1)、θd(2)、θd(3)は下記の式(5)~(7)のように補正される。
  θd(1)=|θp-θp*(1)|=360-nθsa-θpa-θnois
                                 式(5)
  θd(2)=|θp-θp*(2)|=240-nθsa-θpa-θnois
                                 式(6)
  θd(3)=|θp-θp*(3)|=120-nθsa-θpa-θnois
                                 式(7)
 なお、式(4)~(7)において、θsaおよびθpaは0.01度程度、θnoisは数度程度である。
 そして、ステップS17において、コントローラ9は、このようにして補正された複数の絶対値θd(i)から、最小値Minθd(i)を選択する。図4に示される例においては、最小値Minθd(i)は、補正後の絶対値θd(1)である。このような位置飛び補正により、正しい最小値Minθd(i)(図4においては補正後の絶対値θd(1))が選択される。
 その後、ステップS18において、補正後の正しい最小値Minθd(i)を最小値Minθd(i)に改めて設定する。そして、ステップS20に進み、新たな最小値Minθd(i)に従って、前述したのと同様に、セカンダリエンコーダ25の総回転回数を算出する。図4に示される例においては、θd(1)が、最小値Minθd(i)であるので、総回転回数iは1回であることが分かる。
 このような構成であるので、プライマリエンコーダ15に関するモータ軸13の位置が0°近傍にある場合であっても、セカンダリエンコーダ25の総回転回数を正確に求めることができる。
 ところで、図5は第二の実施形態に基づく位置検出システムの動作を示す第二のフローチャートである。図5に示されるプログラムの内容は、コントローラ9内の記憶部(図示しない)またはメモリ7内に記憶されているものとする。図5に示される内容は、モータ10の駆動時に適宜実施されるものとする。
 第二の実施形態における減速機20の減速比nは、前述したものに限られない。つまり、この場合の減速比nは、1/αであってもよい(αは1より大きい正数)。また、出力軸23とセカンダリエンコーダ25との間に追加減速機(図示しない)が配置されていて、減速機20と追加減速機との全体の減速比が1/α’である場合も第二の実施形態に含まれる(α’は1より大きい正数)。
 はじめに、ステップS31において、前述したのと同様に、セカンダリエンコーダ25が出力軸23の1回転内のアブソリュート位置に関する位置検出値θsを検出する。そして、ステップS32においては、図3を参照して説明したのと同様にして、算出判定部としてのコントローラ9が、検出されたアブソリュート位置の位置検出値θsを用いて、下記の式(8)に基づいて、プライマリエンコーダ15の1回転内のアブソリュート位置に関する位置算出値θp*を算出する。
  θp*=MOD[{(θs×α×β))}÷360]×360    式(8)
 次いで、ステップS33において、コントローラ9は、下記の式(9)に基づいて、プライマリエンコーダ15の位置検出値θsと位置算出値θp*との間の偏差の絶対値θpdを算出する。
  θpd=|θp*-θp|                    式(9)
 その後、ステップS34において、コントローラ9は、偏差の絶対値θpdが第三エラー判定値θj3より大きいか否かを判定する。ここで、偏差の絶対値θpdはプライマリエンコーダ15およびセカンダリエンコーダ25の間の検出位置のズレを示している。減速機20のバックラッシおよび各種の検出誤差等の無い理想的な状態においては、偏差の絶対値θpdは0となる。従って、第三エラー判定値θj3は操作者が予め定めたゼロより大きい値である。
 ステップS34において、偏差の絶対値θpdが第三エラー判定値θj3より大きいと判定された場合には、プライマリエンコーダ15とセカンダリエンコーダ25との間の相対位置が正常でないと判断する(ステップS35)。この場合には、プライマリエンコーダ15および/またはセカンダリエンコーダ25の設定位置に異常があるものとして、コントローラ9はモータ10の動作を停止させる。このとき、図示しない表示部、例えば教示制御盤の画面にその旨を表示してもよい。
 これに対し、ステップS34において、偏差の絶対値θpdが第三エラー判定値θj3より大きくないと判定された場合には、プライマリエンコーダ15とセカンダリエンコーダ25との間の相対位置が正常であると判断して(ステップS36)、処理を終了する。
 このように、本開示の第二の実施形態におけるプライマリエンコーダ15とセカンダリエンコーダ25との間の相対位置における異常の有無を判定するプロセスは、追加のバッテリを必要としない。従って、第二の実施形態においては、プライマリエンコーダ15および/またはセカンダリエンコーダ25の位置の異常を、追加のバッテリを必要とすることなしに簡単に検出することができる。
 なお、算出部および算出判定部としてのコントローラ9の処理を実行するためのコンピュータプログラムは、半導体メモリ、磁気記録媒体または光記録媒体といった、コンピュータ読取可能な記録媒体に記録された形で提供されてもよい。
 本開示の態様
 1番目の態様によれば、モータのモータ軸の位置を検出するプライマリエンコーダと、前記モータに結合された減速機の出力軸の位置を検出するセカンダリエンコーダと、算出部とを具備し、前記減速機の減速比は1/nであり、nは非整数であり、前記算出部は、前記セカンダリエンコーダの一回転内のアブソリュート位置に基づいて前記プライマリエンコーダにおける前記モータ軸の一回転内のアブソリュート位置に関する複数の位置算出値を算出し、前記算出部は、前記プライマリエンコーダにより検出された前記モータ軸の一回転内のアブソリュート位置に関する位置実際値と前記複数の位置算出値とに基づいて、前記セカンダリエンコーダの総回転回数を算出する、位置検出システムが提供される。
 2番目の態様によれば、1番目の態様において、前記算出部は、前記位置実際値と前記複数の位置算出値との間の偏差の絶対値に基づいて、前記セカンダリエンコーダの総回転回数を算出する。
 3番目の態様によれば、1番目または2番目の態様において、前記位置実際値と前記複数の位置算出値との間の偏差の前記絶対値のうちの最小値が所定の第一エラー判定値よりも大きい場合には、 前記算出部は、前記複数の位置算出値を補正した後で、前記最小値を算出する。
 4番目の態様によれば、1番目から3番目のいずれかの態様において、前記位置実際値と前記複数の位置算出値との間の偏差の前記絶対値のうちの最小値が、前記第一エラー判定値よりも小さい所定の第二エラー判定値よりも小さくない場合に、前記算出部は、前記セカンダリエンコーダの総回転回数を算出するようにした。
 5番目の態様によれば、モータと、該モータに結合された減速機と、前記モータのモータ軸の位置を検出するプライマリエンコーダと、前記減速機の出力軸の位置を検出するセカンダリエンコーダと、算出部とを具備し、前記減速機の減速比は1/nであり、nは非整数であり、前記算出部は、前記セカンダリエンコーダの一回転内のアブソリュート位置に基づいて前記プライマリエンコーダにおける前記モータ軸の一回転内のアブソリュート位置に関する複数の位置算出値を算出し、前記算出部は、前記プライマリエンコーダにより検出された前記モータ軸の一回転内のアブソリュート位置に関する位置実際値と前記複数の位置算出値とに基づいて、前記セカンダリエンコーダの総回転回数を算出する、アクチュエータが提供される。
 6番目の態様によれば、5番目の態様において、前記算出部は、前記位置実際値と前記複数の位置算出値との間の偏差の絶対値に基づいて、前記セカンダリエンコーダの総回転回数を算出する。
 7番目の態様によれば、5番目または6番目の態様において、前記位置実際値と前記複数の位置算出値との間の偏差の前記絶対値のうちの最小値が所定の第一エラー判定値よりも大きい場合には、 前記算出部は、前記複数の位置算出値を補正した後で、前記最小値を算出する。
 8番目の態様によれば、5番目から7番目のいずれかの態様において、前記位置実際値と前記複数の位置算出値との間の偏差の前記絶対値のうちの最小値が、前記第一エラー判定値よりも小さい所定の第二エラー判定値よりも小さくない場合に、前記算出部は、前記セカンダリエンコーダの総回転回数を算出するようにした。
 9番目の態様によれば、モータのモータ軸の位置を検出するプライマリエンコーダと、前記モータに結合される減速機の出力軸の位置を検出するセカンダリエンコーダとを具備する位置検出システムの位置検出方法において、前記減速機の減速比は1/nであり、nは非整数であり、前記セカンダリエンコーダの一回転内のアブソリュート位置に基づいて前記プライマリエンコーダにおける前記モータ軸の一回転内のアブソリュート位置に関する複数の位置算出値を算出し、前記プライマリエンコーダにより検出された前記モータ軸の一回転内のアブソリュート位置に関する位置実際値と前記複数の位置算出値とに基づいて、前記セカンダリエンコーダの総回転回数を算出する、位置検出方法が提供される。
 10番目の態様によれば、9番目の態様において、前記位置実際値と前記複数の位置算出値との間の偏差の絶対値に基づいて、前記セカンダリエンコーダの総回転回数を算出する。
 11番目の態様によれば、9番目または10番目の態様において、前記位置実際値と前記複数の位置算出値との間の偏差の前記絶対値のうちの最小値が所定の第一エラー判定値よりも大きい場合には、 前記算出部は、前記複数の位置算出値を補正した後で、前記最小値を算出する。
 12番目の態様によれば、9番目から11番目のいずれかの態様において、前記位置実際値と前記複数の位置算出値との間の偏差の前記絶対値のうちの最小値が、前記第一エラー判定値よりも小さい、所定の第二エラー判定値よりも小さくない場合に、前記セカンダリエンコーダの総回転回数を算出するようにした。
 13番目の態様によれば、モータのモータ軸の位置を検出するプライマリエンコーダと、前記モータに結合される減速機の出力軸の位置を検出するセカンダリエンコーダと、算出判定部とを具備し、該算出判定部は、前記セカンダリエンコーダにより検出された前記出力軸の一回転内のアブソリュート位置に基づいて、前記モータ軸の一回転内のアブソリュート位置に関する位置算出値を算出し、前記算出判定部は、さらに、前記プライマリエンコーダにより検出された前記モータ軸の一回転内のアブソリュート位置に関する位置実際値と前記位置算出値との間の偏差の絶対値が所定値以上である場合には、前記プライマリエンコーダおよび前記セカンダリエンコーダのうちの少なくとも一方の位置に異常があると判定する、位置検出システムが提供される。
 14番目の態様によれば、モータと、該モータに結合された減速機と、前記モータのモータ軸の位置を検出するプライマリエンコーダと、前記減速機の出力軸の位置を検出するセカンダリエンコーダと、算出判定部とを具備し、該算出判定部は、前記セカンダリエンコーダにより検出された前記出力軸の一回転内のアブソリュート位置に基づいて、前記モータ軸の一回転内のアブソリュート位置に関する位置算出値を算出し、前記算出判定部は、さらに、前記プライマリエンコーダにより検出された前記モータ軸の一回転内のアブソリュート位置に関する位置実際値と前記位置算出値との間の偏差の絶対値が所定値以上である場合には、前記プライマリエンコーダおよび前記セカンダリエンコーダのうちの少なくとも一方の位置に異常があると判定する、アクチュエータが提供される。
 15番目の態様によれば、モータのモータ軸の位置を検出するプライマリエンコーダと、前記モータに結合される減速機の出力軸の位置を検出するセカンダリエンコーダと、を具備する位置検出システムの位置検出方法において、前記セカンダリエンコーダにより検出された前記出力軸の一回転内のアブソリュート位置に基づいて、前記モータ軸の一回転内のアブソリュート位置に関する位置算出値を算出し、前記プライマリエンコーダにより検出された前記モータ軸の一回転内のアブソリュート位置に関する位置実際値と前記位置算出値との間の偏差の絶対値が所定値以上である場合には、前記プライマリエンコーダおよび前記セカンダリエンコーダのうちの少なくとも一方の位置に異常があると判定する、位置検出方法が提供される。
 本開示の実施形態について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、発明の要旨を逸脱しない範囲で、または請求の範囲に記載された内容とその均等物から導き出される本開示の思想および趣旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除などが可能である。例えば、上述した実施形態において、各動作の順序や各処理の順序は、一例として示したものであり、これらに限定されるものではない。また、上述した実施形態の説明に数値又は数式が用いられている場合も同様である。さらに、前述した実施形態の幾つかを適宜組み合わせることは本開示の範囲に含まれる。
  1、2   リンク
  3   機械(ロボット)
  5   位置検出システム
  6   アクチュエータ
  7   メモリ
  8   バッテリ
  9   コントローラ(算出部、算出判定部)
 10   モータ
 11   ステータ
 12   ロータ
 13   モータ軸
 15   プライマリエンコーダ
 16   検出部
 20   減速機
 23   出力軸
 25   セカンダリエンコーダ
 26   検出部
 50   内蔵ブレーキ
 θj1   第一エラー判定値
 θj2   第二エラー判定値
 θj3   第三エラー判定値

Claims (15)

  1.  モータのモータ軸の位置を検出するプライマリエンコーダと、
     前記モータに結合された減速機の出力軸の位置を検出するセカンダリエンコーダと、
     算出部とを具備し、
     前記減速機の減速比は1/nであり、nは非整数であり、
     前記算出部は、前記セカンダリエンコーダの一回転内のアブソリュート位置に基づいて前記プライマリエンコーダにおける前記モータ軸の一回転内のアブソリュート位置に関する複数の位置算出値を算出し、
     前記算出部は、前記プライマリエンコーダにより検出された前記モータ軸の一回転内のアブソリュート位置に関する位置実際値と前記複数の位置算出値とに基づいて、前記セカンダリエンコーダの総回転回数を算出する、位置検出システム。
  2.  前記算出部は、前記位置実際値と前記複数の位置算出値との間の偏差の絶対値に基づいて、前記セカンダリエンコーダの総回転回数を算出する、請求項1に記載の位置検出システム。
  3.  前記位置実際値と前記複数の位置算出値との間の偏差の前記絶対値のうちの最小値が所定の第一エラー判定値よりも大きい場合には、 前記算出部は、前記複数の位置算出値を補正した後で、前記最小値を算出する、請求項1または2に記載の位置検出システム。
  4.  前記位置実際値と前記複数の位置算出値との間の偏差の前記絶対値のうちの最小値が、前記第一エラー判定値よりも小さい所定の第二エラー判定値よりも小さくない場合に、前記算出部は、前記セカンダリエンコーダの総回転回数を算出するようにした 、請求項1から3のいずれか一項に記載の位置検出システム。
  5.  モータと、
     該モータに結合された減速機と、
     前記モータのモータ軸の位置を検出するプライマリエンコーダと、
     前記減速機の出力軸の位置を検出するセカンダリエンコーダと、
     算出部とを具備し、
     前記減速機の減速比は1/nであり、nは非整数であり、
     前記算出部は、前記セカンダリエンコーダの一回転内のアブソリュート位置に基づいて前記プライマリエンコーダにおける前記モータ軸の一回転内のアブソリュート位置に関する複数の位置算出値を算出し、
     前記算出部は、前記プライマリエンコーダにより検出された前記モータ軸の一回転内のアブソリュート位置に関する位置実際値と前記複数の位置算出値とに基づいて、前記セカンダリエンコーダの総回転回数を算出する、アクチュエータ。
  6.  前記算出部は、前記位置実際値と前記複数の位置算出値との間の偏差の絶対値に基づいて、前記セカンダリエンコーダの総回転回数を算出する、請求項5に記載のアクチュエータ。
  7.  前記位置実際値と前記複数の位置算出値との間の偏差の前記絶対値のうちの最小値が所定の第一エラー判定値よりも大きい場合には、 前記算出部は、前記複数の位置算出値を補正した後で、前記最小値を算出する、請求項5または6に記載のアクチュエータ。
  8.  前記位置実際値と前記複数の位置算出値との間の偏差の前記絶対値のうちの最小値が、前記第一エラー判定値よりも小さい所定の第二エラー判定値よりも小さくない場合に、前記算出部は、前記セカンダリエンコーダの総回転回数を算出するようにした 、請求項5から7のいずれか一項に記載のアクチュエータ。
  9.  モータのモータ軸の位置を検出するプライマリエンコーダと、
     前記モータに結合される減速機の出力軸の位置を検出するセカンダリエンコーダとを具備する位置検出システムの位置検出方法において、
     前記減速機の減速比は1/nであり、nは非整数であり、
     前記セカンダリエンコーダの一回転内のアブソリュート位置に基づいて前記プライマリエンコーダにおける前記モータ軸の一回転内のアブソリュート位置に関する複数の位置算出値を算出し、
     前記プライマリエンコーダにより検出された前記モータ軸の一回転内のアブソリュート位置に関する位置実際値と前記複数の位置算出値とに基づいて、前記セカンダリエンコーダの総回転回数を算出する、位置検出方法。
  10.  前記位置実際値と前記複数の位置算出値との間の偏差の絶対値に基づいて、前記セカンダリエンコーダの総回転回数を算出する、請求項9に記載の位置検出方法。
  11.  前記位置実際値と前記複数の位置算出値との間の偏差の前記絶対値のうちの最小値が所定の第一エラー判定値よりも大きい場合には、 前記算出部は、前記複数の位置算出値を補正した後で、前記最小値を算出する、請求項9または10に記載の位置検出方法。
  12.  前記位置実際値と前記複数の位置算出値との間の偏差の前記絶対値のうちの最小値が、前記第一エラー判定値よりも小さい、所定の第二エラー判定値よりも小さくない場合に、前記セカンダリエンコーダの総回転回数を算出するようにした 、請求項9から11のいずれか一項に記載の位置検出方法。
  13.  モータのモータ軸の位置を検出するプライマリエンコーダと、
     前記モータに結合される減速機の出力軸の位置を検出するセカンダリエンコーダと、
     算出判定部とを具備し、
     該算出判定部は、前記セカンダリエンコーダにより検出された前記出力軸の一回転内のアブソリュート位置に基づいて、前記モータ軸の一回転内のアブソリュート位置に関する位置算出値を算出し、
     前記算出判定部は、さらに、前記プライマリエンコーダにより検出された前記モータ軸の一回転内のアブソリュート位置に関する位置実際値と前記位置算出値との間の偏差の絶対値が所定値以上である場合には、前記プライマリエンコーダおよび前記セカンダリエンコーダのうちの少なくとも一方の位置に異常があると判定する、位置検出システム。
  14.  モータと、
     該モータに結合された減速機と、
     前記モータのモータ軸の位置を検出するプライマリエンコーダと、
     前記減速機の出力軸の位置を検出するセカンダリエンコーダと、
     算出判定部とを具備し、
     該算出判定部は、前記セカンダリエンコーダにより検出された前記出力軸の一回転内のアブソリュート位置に基づいて、前記モータ軸の一回転内のアブソリュート位置に関する位置算出値を算出し、
     前記算出判定部は、さらに、前記プライマリエンコーダにより検出された前記モータ軸の一回転内のアブソリュート位置に関する位置実際値と前記位置算出値との間の偏差の絶対値が所定値以上である場合には、前記プライマリエンコーダおよび前記セカンダリエンコーダのうちの少なくとも一方の位置に異常があると判定する、アクチュエータ。
  15.  モータのモータ軸の位置を検出するプライマリエンコーダと、
     前記モータに結合される減速機の出力軸の位置を検出するセカンダリエンコーダと、を具備する位置検出システムの位置検出方法において、
     前記セカンダリエンコーダにより検出された前記出力軸の一回転内のアブソリュート位置に基づいて、前記モータ軸の一回転内のアブソリュート位置に関する位置算出値を算出し、
     前記プライマリエンコーダにより検出された前記モータ軸の一回転内のアブソリュート位置に関する位置実際値と前記位置算出値との間の偏差の絶対値が所定値以上である場合には、前記プライマリエンコーダおよび前記セカンダリエンコーダのうちの少なくとも一方の位置に異常があると判定する、位置検出方法。
PCT/JP2022/027152 2022-07-08 2022-07-08 位置検出システム、アクチュエータおよび位置検出方法 WO2024009514A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/027152 WO2024009514A1 (ja) 2022-07-08 2022-07-08 位置検出システム、アクチュエータおよび位置検出方法
TW112123723A TW202407293A (zh) 2022-07-08 2023-06-26 位置檢測系統、致動器及位置檢測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/027152 WO2024009514A1 (ja) 2022-07-08 2022-07-08 位置検出システム、アクチュエータおよび位置検出方法

Publications (1)

Publication Number Publication Date
WO2024009514A1 true WO2024009514A1 (ja) 2024-01-11

Family

ID=89453146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027152 WO2024009514A1 (ja) 2022-07-08 2022-07-08 位置検出システム、アクチュエータおよび位置検出方法

Country Status (2)

Country Link
TW (1) TW202407293A (ja)
WO (1) WO2024009514A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010461A (ja) * 2005-06-30 2007-01-18 Yaskawa Electric Corp 回転数検出装置および絶対値エンコーダ付きモータ並びに回転駆動装置
JP2008039737A (ja) * 2006-08-10 2008-02-21 Yaskawa Electric Corp 多回転量算出方法、バッテリーレス多回転式絶対値エンコーダ装置およびこれを用いた減速機付アクチュエータ
US20150211892A1 (en) * 2012-09-21 2015-07-30 Eaton Corporation Pseudo-absolute position sensing algorithm

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010461A (ja) * 2005-06-30 2007-01-18 Yaskawa Electric Corp 回転数検出装置および絶対値エンコーダ付きモータ並びに回転駆動装置
JP2008039737A (ja) * 2006-08-10 2008-02-21 Yaskawa Electric Corp 多回転量算出方法、バッテリーレス多回転式絶対値エンコーダ装置およびこれを用いた減速機付アクチュエータ
US20150211892A1 (en) * 2012-09-21 2015-07-30 Eaton Corporation Pseudo-absolute position sensing algorithm

Also Published As

Publication number Publication date
TW202407293A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
JP6486517B2 (ja) 回転駆動方法
GB2287322A (en) Position detecting apparatus and position compensating method therefor
US8662799B2 (en) Tapping machine
US20110202308A1 (en) Encoder system, signal processing method, and transmission signal generation and output device
JP5980965B2 (ja) 複数の回転角検出器により回転角を更新するロボット制御装置
JP5657633B2 (ja) 移動体が反転するときの位置誤差を補正するサーボ制御装置
US6664752B2 (en) Method and apparatus for correcting actuator positioning error
JP4940411B2 (ja) アナログ角度センサ精度補正プログラム、補正方法、記録媒体およびサーボドライバ
US8560260B2 (en) Rotation angle positioning device
JP4419692B2 (ja) 角度検出装置
JP4229823B2 (ja) 歯車破損検出装置および歯車破損検出方法
WO2024009514A1 (ja) 位置検出システム、アクチュエータおよび位置検出方法
JP5803173B2 (ja) ロボット制御装置およびキャリブレーション方法
CN113661375A (zh) 角度检测装置
JP2001336951A (ja) 回転位置検出装置及び方法
WO2021153613A1 (ja) アブソリュートエンコーダ、アブソリュートエンコーダの角度誤差情報出力プログラム、アブソリュートエンコーダの角度誤差情報出力方法
JP2012117884A (ja) エンコーダ誤差補正装置
JP2014117778A (ja) ナットランナー
JP4409115B2 (ja) 位置制御装置および位置制御方法
JP4121875B2 (ja) アブソリュート位置検出装置
JPH0549165B2 (ja)
JP6719684B1 (ja) 数値制御装置
WO2021124603A1 (ja) モータ制御装置、モータ制御方法
WO2024009516A1 (ja) 位置検出システム、アクチュエータおよび位置検出方法
US20230205165A1 (en) Servo motor and encoder calibration method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950308

Country of ref document: EP

Kind code of ref document: A1