WO2024004423A1 - 発電素子、磁気センサ、およびエンコーダ - Google Patents

発電素子、磁気センサ、およびエンコーダ Download PDF

Info

Publication number
WO2024004423A1
WO2024004423A1 PCT/JP2023/018572 JP2023018572W WO2024004423A1 WO 2024004423 A1 WO2024004423 A1 WO 2024004423A1 JP 2023018572 W JP2023018572 W JP 2023018572W WO 2024004423 A1 WO2024004423 A1 WO 2024004423A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic body
power generation
soft magnetic
generation element
magnetic
Prior art date
Application number
PCT/JP2023/018572
Other languages
English (en)
French (fr)
Inventor
智行 村西
優紀 田中
慎一 堤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024004423A1 publication Critical patent/WO2024004423A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train

Definitions

  • the present disclosure relates to a power generation element, a magnetic sensor, and an encoder, and particularly relates to a power generation element, a magnetic sensor, and an encoder that utilize the Large Barkhausen effect.
  • Patent Document 1 describes a power generation element that includes a magnetic material that produces a large Barkhausen effect, a power generation coil that is wound around the magnetic material, and a soft magnetic material that is formed to press the magnetic material. is disclosed.
  • the power generating element of Patent Document 1 has a problem in that it is difficult to appropriately apply a magnetic field to the magnetic material due to the gap between the magnetic material and the soft magnetic material.
  • you try to make the soft magnetic material adhere to the magnetic material in order to eliminate the gap between the magnetic material and the soft magnetic material you will need high-precision parts, a separate process, and the power generation element will be damaged.
  • it is difficult to manufacture There is a problem that it is difficult to manufacture.
  • the present disclosure has been made in order to solve such problems, and aims to provide a power generation element, a magnetic sensor, and an encoder that can easily apply a magnetic field to a magnetic material appropriately and are easy to manufacture.
  • a power generation element includes a magnetic material that produces a large Barkhausen effect, a coil wound around the magnetic material, and a winding axis extending outside the coil in a winding axis direction of the coil. the magnetic body and the first soft magnetic body, the magnetic body and the first soft magnetic body; and a filling member filled between.
  • a magnetic sensor includes the above power generation element and a detection element that is driven based on the electric power generated by the power generation element and detects magnetism.
  • An encoder includes a rotating magnet and the above-mentioned power generation element that generates power by a change in a magnetic field caused by the rotation of the magnet.
  • a power generating element a magnetic sensor, and an encoder that are easy to appropriately apply a magnetic field to a magnetic material and are easy to manufacture.
  • FIG. 1A is a diagram showing a motor including an encoder according to the first embodiment.
  • FIG. 1B is a diagram showing a connection between a motor and a load according to the first embodiment.
  • FIG. 2A is a diagram showing a board included in the encoder of the first embodiment.
  • FIG. 2B is a diagram showing a rotary plate included in the encoder of the first embodiment.
  • FIG. 3 is a cross-sectional view of the power generating element taken along line III-III in FIG. 2A.
  • FIG. 4 is a cross-sectional view of the power generating element taken along line IV-IV in FIG. 2A.
  • FIG. 5A is a plan view of a power generation element used for simulations, etc., viewed from the rotation axis direction.
  • FIG. 5A is a plan view of a power generation element used for simulations, etc., viewed from the rotation axis direction.
  • FIG. 5B is a diagram showing a VB-VB cross section of the power generation element shown in FIG. 5A.
  • FIG. 6 is a graph showing magnetic flux density obtained by simulation using the power generation elements shown in FIGS. 5A and 5B.
  • FIG. 7A is a graph showing the power generation amount obtained by measurement using the power generation element of the comparative example.
  • FIG. 7B is a graph showing the power generation amount obtained by measurement using the power generation element of FIG. 5A.
  • FIG. 8A is a graph showing the standard deviation of the power generation amount obtained by measurement using the power generation element of the comparative example.
  • FIG. 8B is a graph showing the standard deviation of power generation amount obtained by measurement using the power generation element of FIG. 5A.
  • FIG. 9 is a sectional view showing a power generation element of an encoder according to the second embodiment.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Note that in each figure, substantially the same configurations are denoted by the same reference numerals, and overlapping explanations will be omitted or simplified.
  • FIG. 1A is a diagram showing a motor 1 including an encoder 20 according to the first embodiment.
  • FIG. 1A is a view seen from the radial direction (direction indicated by arrow X in FIGS. 2A and 2B) centered on the rotation axis A of the rotation shaft 16 of the motor 1.
  • FIG. 1A the case 18 and the magnet 26 are shown in cross section.
  • illustration of the power generation element 34 and the control circuit 30 shown in FIG. 2A is omitted.
  • FIG. 1B is a diagram showing the connection between the motor 1 and the load 300.
  • FIG. 2A is a diagram illustrating substrate 24 of encoder 20 of FIG. 1A.
  • 2B is a diagram showing the rotating plate 22 of the encoder 20 of FIG. 1A.
  • 2A and 2B are views seen from the rotation axis direction (the direction indicated by arrow Y in FIG. 1A), which is the direction in which the rotation axis A of the rotation shaft 16 extends.
  • the motor 1 includes a main body 10, a rotor 12, a stator 14, a rotating shaft 16, a case 18, and an encoder 20.
  • the rotor 12 and stator 14 are housed in the main body 10. Rotor 12 rotates relative to stator 14 .
  • the rotation shaft 16 is fixed to the rotor 12 and rotates around the rotation axis A together with the rotor 12. That is, the rotation axis A is the rotation center of the rotation shaft 16 and the rotor 12.
  • the rotation shaft 16 extends in the direction of the rotation axis A and has a rod shape such as a cylinder.
  • the axial center of the rotation shaft 16 and the rotation axis A are coincident with each other. For example, when electric power is supplied to the motor 1, the rotating shaft 16 rotates about the rotation axis A together with the rotor 12 based on the electric power.
  • the rotation direction of the rotation shaft 16 (the direction indicated by the arrow Z in FIGS. 2A and 2B) coincides with the circumferential direction around the rotation axis A.
  • An encoder 20 is provided at one end of the rotation shaft 16 in the rotation axis direction.
  • a load 300 that is rotationally driven by the rotation of the rotation shaft 16 is attached to the other end of the rotation shaft 16 in the rotation axis direction.
  • the rotating shaft 16 is made of magnetic metal such as iron.
  • the rotating shaft 16 may be made of non-magnetic metal.
  • the load 300 may be any device as long as it is driven by the motor 1, and may be, for example, a wheel used in a moving body such as an automobile or a train, or a blade of an electric fan.
  • the case 18 is attached to the main body 10 so as to cover one end of the rotation shaft 16 in the rotation axis direction and the encoder 20.
  • the case 18 is made of a magnetic metal such as iron.
  • the encoder 20 detects the rotation of the rotating body.
  • the rotating shaft 16 corresponds to the rotating body, and the encoder 20 detects the rotation of the rotating shaft 16.
  • the encoder 20 detects the rotational position of the rotational shaft 16, the rotational direction of the rotational shaft 16, the rotational speed of the rotational shaft 16, and the like.
  • the encoder 20 detects the rotation of the rotating shaft 16 using at least one of an absolute method and an incremental method.
  • encoder 20 is a battery-less encoder.
  • the encoder 20 is provided at one end of the rotation shaft 16 in the rotation axis direction.
  • the encoder 20 includes a rotating plate 22, a substrate 24, a magnet 26, a magnetic sensor 28, and a control circuit 30.
  • the rotary plate 22 has a plate shape whose thickness direction is in the rotation axis direction, and extends in a direction perpendicular to the rotation axis direction.
  • the rotary plate 22 is circular and disc-shaped when viewed from the direction of the rotation axis. Note that, for example, the rotary plate 22 does not have to be disc-shaped, and may be annular or the like.
  • the rotating plate 22 is attached to one end of the rotating shaft 16 in the rotation axis direction.
  • the axial center of the rotary plate 22 and the rotation axis A are coincident with each other.
  • the rotating plate 22 rotates together with the rotating shaft 16.
  • the substrate 24 has a plate shape whose thickness direction is in the rotational axis direction, and extends in a direction perpendicular to the rotational axis direction.
  • the substrate 24 is circular and disc-shaped when viewed from the rotation axis direction.
  • the substrate 24 is disposed at a distance from one end of the rotation shaft 16 and the rotation plate 22 in the direction of the rotation axis, and faces the rotation plate 22.
  • the axial center of the substrate 24 and the rotation axis A are coincident with each other.
  • the substrate 24 is fixed so as not to rotate together with the rotating shaft 16.
  • the magnet 26 rotates.
  • the magnet 26 rotates together with the rotating shaft 16 and the rotating plate 22 when the rotating shaft 16 rotates.
  • the magnet 26 has an annular shape and is arranged along the rotation direction of the rotation shaft 16.
  • the magnet 26 has a plate shape whose thickness direction is along the axis of rotation.
  • the magnet 26 is arranged on the main surface of the rotating plate 22 on the opposite side from the substrate 24.
  • the magnet 26 has a north pole and a south pole arranged in line with the north pole in the rotational direction of the rotating shaft 16. One half of the magnet 26 is magnetized to the north pole, and the other half of the magnet 26 is magnetized to the south pole.
  • the magnet 26 only needs to be configured so that the power generation element 32 and the power generation element 34 can generate power by rotating together with the rotating shaft 16.
  • the magnet 26 is magnetized so that the N pole and the S pole are aligned in the radial direction around the rotation axis A, like the magnet 106 and the magnet 108 shown in FIGS. 5A and 5B, which will be described later. may have been done.
  • the magnetic sensor 28 is a sensor that detects magnetism.
  • the magnetic sensor 28 includes a plurality of power generation elements 32 and 34 and a plurality of detection elements 36 and 38. Note that, for example, the magnetic sensor 28 may have one power generation element instead of a plurality of power generation elements. Further, for example, the magnetic sensor 28 may have one detection element instead of a plurality of detection elements.
  • Each of the plurality of power generating elements 32 and 34 generates power by changes in the magnetic field caused by the rotation of the magnet 26.
  • each of the plurality of power generation elements 32 and 34 generates power by changes in the magnetic field caused by the rotation of the magnet 26 together with the rotating shaft 16.
  • the magnet 26 rotates so that one end of the magnetic body 40 of the power generation element 32 faces the S pole of the magnet 26 and the other end of the magnetic body 40 of the power generation element 32 comes close to the N pole of the magnet 26 to some extent.
  • the magnetization direction of the magnetic body 40 is reversed, and the power generation element 32 generates power.
  • the power generation element 34 the same applies to the power generation element 34.
  • the magnet 26 rotates, and one end of the magnetic body 40 of the power generation element 32 faces the N pole of the magnet 26, and the other end of the magnetic body 40 of the power generation element 32 comes close to the S pole of the magnet 26 to some extent.
  • the power generating element 32 generates power.
  • Each of the plurality of power generating elements 32 and 34 extends in a tangential direction to the rotational direction of the rotating shaft 16. Specifically, each of the plurality of power generating elements 32 and 34 is arranged such that the magnetic body 40 extends in the tangential direction of the rotation direction of the rotating shaft 16. Note that each of the plurality of power generating elements 32 and 34 may be arranged so as to generate power by a change in the magnetic field caused by the rotation of the magnet 26.
  • the plurality of power generation elements 32 and 34 are arranged on the main surface of the substrate 24 facing away from the rotation axis 16 (facing away from the rotating plate 22). Note that the plurality of power generating elements 32 and 34 may be arranged on the main surface of the substrate 24 facing the rotating shaft 16 (facing the rotating plate 22). The plurality of power generating elements 32 and 34 are arranged side by side in the rotational direction of the rotating shaft 16.
  • Each of the plurality of detection elements 36 and 38 is driven based on the electric power generated by the power generation element 32 to detect magnetism.
  • each of the plurality of detection elements 36 and 38 is driven based on the electric power generated by the power generation element 32, and detects the magnetism caused by the magnet 26.
  • each of the plurality of detection elements 36 and 38 is driven based on the electric power generated by the power generation element 34 to detect magnetism.
  • each of the plurality of detection elements 36 and 38 is driven based on the electric power generated by the power generation element 34, and detects the magnetism caused by the magnet 26.
  • the plurality of detection elements 36 and 38 are arranged on the main surface of the substrate 24 facing the rotation axis 16 (facing the rotation plate 22). Note that the plurality of detection elements 36 and 38 may be arranged on the main surface of the substrate 24 facing opposite to the rotation axis 16 (facing opposite to the rotating plate 22). The plurality of detection elements 36 and 38 are arranged side by side in the rotation direction of the rotation shaft 16.
  • the control circuit 30 is arranged on the main surface of the substrate 24 facing the rotating shaft 16 (facing the rotary plate 22), and is electrically connected to the plurality of power generating elements 32, 34, etc. For example, the control circuit 30 determines the rotational position of the rotating shaft 16, etc., depending on which of the plurality of power generating elements 32 and 34 generates power. Further, for example, the control circuit 30 determines the rotational position of the rotating shaft 16, etc. based on the detection results of the plurality of detection elements 36 and 38. Further, for example, the control circuit 30 determines the rotational position of the rotating shaft 16, etc. based on which of the plurality of power generation elements 32, 34 generates power and the detection results of the plurality of detection elements 36, 38. judge. In this way, the encoder 20 detects the rotation of the rotating shaft 16.
  • FIG. 3 is a cross-sectional view of the power generating element 32 taken along the line III-III in FIG. 2A.
  • FIG. 4 is a cross-sectional view of the power generating element 32 taken along line IV-IV in FIG. 2A.
  • the power generation element 32 includes a magnetic body 40, a coil 42, a first soft magnetic body 44, a housing 46, and a filling member 48.
  • the magnetic material 40 is a magnetic material that produces a large Barkhausen effect.
  • the magnetic body is made of a magnetic material.
  • the magnetic body 40 is a composite magnetic wire such as a Wiegand wire.
  • the Wiegand wire is a magnetic body whose magnetization direction is aligned in one of the longitudinal directions when a magnetic field of a predetermined value or more is applied along the longitudinal direction (extending direction) of the Wiegand wire.
  • a coil 42 is wound around the magnetic body 40, and the magnetic body 40 extends in the direction of the winding axis (direction indicated by arrow C in FIG. 3), which is the direction in which the winding axis B of the coil 42 extends. There is. In this embodiment, the axis of the magnetic body 40 coincides with the winding axis B.
  • the magnetic body 40 projects further outward than the coil 42 in the winding axis direction. Specifically, the magnetic body 40 protrudes from the coil 42 in one direction and further protrudes from the coil 42 in the other direction in the winding axis direction.
  • the coil 42 is wound around the magnetic body 40.
  • the coil 42 is wound around the magnetic body 40 so that the coil 42 generates electricity when the large Barkhausen effect occurs due to the magnetic body 40 .
  • the coil 42 is wound around the magnetic body 40 such that the winding axis B of the coil 42 coincides with the direction in which the magnetic body 40 extends.
  • the first soft magnetic body 44 is located outside the coil 42 in the direction of the winding axis B of the coil 42, and is arranged in a radial direction centered on the winding axis B (see arrow D in FIG. 4). ) is located outside the magnetic body 40.
  • the first soft magnetic body 44 is made of a soft magnetic material.
  • the first soft magnetic material 44 is a ferrite bead.
  • the first soft magnetic body 44 is located in one direction relative to the coil 42 in the winding axis direction, and in the one direction, the first soft magnetic body 44 is positioned in the radial direction centered on the winding axis B. It is located outside of. Further, in the present embodiment, the first soft magnetic body 44 is located in the other direction than the coil 42 in the winding axis direction, and in the other direction, the first soft magnetic body 44 is magnetic in the radial direction centering on the winding axis B. It is located outside the body 40. That is, in this embodiment, the power generation element 32 includes two first soft magnetic bodies 44. The two first soft magnetic bodies 44 are provided symmetrically with the coil 42 in between.
  • the first soft magnetic body 44 has an annular shape along the circumferential direction centered on the winding axis B (see arrow E in FIG. 4), and has a cylindrical shape with the winding axis direction as the axial direction. Note that the first soft magnetic body 44 does not need to be cylindrical, and may be, for example, polygonal cylindrical.
  • the inner surface 50 of the first soft magnetic body 44 in the radial direction centered on the winding axis B faces the magnetic body 40 in the radial direction centered on the winding axis B.
  • the inner surface 50 of the first soft magnetic body 44 is parallel to the winding axis direction and has an annular shape along the circumferential direction centered on the winding axis B.
  • the inner surface 50 of the first soft magnetic body 44 is not in contact with the magnetic body 40 .
  • the housing 46 accommodates and supports the magnetic body 40, the coil 42, and the first soft magnetic body 44.
  • the filling member 48 is filled between the magnetic body 40 and the first soft magnetic body 44.
  • the filling member 48 is filled between the magnetic body 40 and the first soft magnetic body 44 in the radial direction centered on the winding axis B.
  • the filling member 48 is filled between the magnetic body 40 and the inner surface 50 of the first soft magnetic body 44 .
  • the filling member 48 is filled so that all the gaps between the magnetic body 40 and the inner surface 50 of the first soft magnetic body 44 are filled with the filling member 48 when viewed from the winding axis direction. has been done.
  • the filling member 48 is not filled between the end of the inner surface 50 of the first soft magnetic body 44 on the coil 42 side and the magnetic body 40, but the filling member 48 is also filled in this space. may have been done.
  • the filling member 48 includes a second soft magnetic material.
  • the filling member 48 includes a powdered second soft magnetic material.
  • the second soft magnetic material is powdered ferrite.
  • the filling member 48 is an adhesive, and the magnetic body 40 is fixed to the first soft magnetic body 44 via the filling member 48.
  • the filling member 48 is an adhesive that changes from a liquid state to a solid state.
  • the magnetic permeability of the second soft magnetic body is greater than the magnetic permeability of the first soft magnetic body 44.
  • the magnetic permeability of the second soft magnetic material and the amount of the second soft magnetic material included in the filling member 48 are determined such that the magnetic permeability of the filling member 48 is greater than the magnetic permeability of the first soft magnetic material 44. Ru.
  • the power generation element 34 has the same configuration as the power generation element 32, a detailed description of the power generation element 34 will be omitted.
  • FIGS. 5A and 5B are diagrams showing the power generation element 100 used for simulations and the like.
  • 5A is a view seen from the rotation axis direction
  • FIG. 5B is a cross-sectional view taken along the line VB-VB in FIG. 5A.
  • the power generation element 100 includes a magnetic body 40, a coil 42, a first soft magnetic body 44, and a filling member 48.
  • the power generation element 100 is mainly different from the power generation element 32 in that the filling member 48 is filled so as to fill all the gaps between the magnetic body 40 and the first soft magnetic body 44 .
  • the diameter of the magnetic body 40 is 0.35 mm
  • the inner diameter of the first soft magnetic body 44 is 0.7 mm.
  • one end of the magnetic body 40 faces the north pole of the magnet 106 and the other end of the magnetic body 40 faces the south pole of the magnet 108,
  • the magnetic body 40 faces the S pole of the magnet 108 and the other end of the magnetic body 40 comes close to the N pole of the magnet 106 to some extent, power is generated.
  • the power generating element 100 is configured such that one end of the magnetic body 40 faces the S pole of the magnet 108 and the other end of the magnetic body 40 faces the N pole of the magnet 106. When one end faces the N pole of the magnet 106 and the other end of the magnetic body 40 comes close to the S pole of the magnet 108 to some extent, power is generated.
  • FIG. 6 is a graph showing the magnetic flux density obtained by simulation using the power generation element 100 shown in FIGS. 5A and 5B.
  • the example shows the simulation results using the power generation element 100
  • the comparative example shows the simulation results using the power generation element 100 without the filling member 48. It shows.
  • the power generation element 100 according to the example has a position approximately 4.5 mm from the center (0 mm) of the magnetic body 40 and a position approximately 4.5 mm from the center (0 mm) of the magnetic body 40, compared to the power generation element according to the comparative example.
  • the magnetic flux density becomes more uniform between the position of 0 mm) and approximately -4.5 mm.
  • the power generating element 100 according to the example has a higher magnetic flux density contributing to power generation by the coil 42 than the power generating element according to the comparative example.
  • FIG. 7A is a graph showing the power generation amount obtained by measurement using the power generation element according to the comparative example.
  • FIG. 7B is a graph showing the power generation amount obtained by measurement using the power generation element 100 according to the example shown in FIGS. 5A and 5B.
  • the horizontal axis indicates the distance between the magnetic body and the magnet shown in FIG. 5B (unit: mm), and the vertical axis indicates the amount of power generation (unit: nJ).
  • the average value (dotted chain line) in the graphs of FIGS. 7A and 7B is the average value of the amount of power generated in 2500 power generation pulses.
  • the minimum value (solid line) in the graphs of FIGS. 7A and 7B is the minimum value of the amount of power generation for 2500 power generation pulses.
  • the power generation element according to the comparative example when the distance between the magnetic body 40 and the magnet 106 (or magnet 108) (the distance between the magnetic body and the magnet, see FIG. 5B) changes, the power generation element according to the comparative example can generate electricity 2500 times.
  • the average and minimum values of pulse power generation vary greatly.
  • the power generation element 100 according to the example has a higher average value and minimum value of the power generation amount of the power generation pulse than the power generation element according to the comparative example. is difficult to change, and a magnetic field can be applied to the magnetic body 40 more appropriately than the power generating element according to the comparative example.
  • FIG. 8A is a graph showing the standard deviation of the power generation amount obtained by measurement using the power generation element according to the comparative example.
  • FIG. 8B is a graph showing the power generation standard deviation obtained by measurement using the power generation element 100 according to the example shown in FIGS. 5A and 5B.
  • the horizontal axis indicates the magnetic body-magnet distance shown in FIG. 5B (unit: mm), and the vertical axis indicates the standard deviation of the power generation amount (unit: nJ).
  • the average value (dotted chain line) in the graphs of FIGS. 8A and 8B is the average value of the standard deviation of the amount of power generation of 2500 power generation pulses.
  • the maximum value (solid line) in the graphs of FIGS. 8A and 8B is the maximum value of the standard deviation of the amount of power generation for 2500 power generation pulses.
  • the power generation element 100 according to the example has a lower average standard deviation of the power generation amount of the power generation pulse than the power generation element according to the comparative example.
  • the maximum value and the standard deviation are difficult to change, and a magnetic field can be applied to the magnetic body 40 more appropriately than the power generation element according to the comparative example.
  • the power generation element 32 includes a magnetic body 40 that produces a large Barkhausen effect, a coil 42 wound around the magnetic body 40, and a coil 42 that extends in the direction of the winding axis B of the coil 42. a first soft magnetic body 44 located outside the magnetic body 40 in the radial direction centering on the winding axis B, and a second soft magnetic body; A filling member 48 is provided between the soft magnetic material 44 and the filling member 48 .
  • the filling member 48 containing the second soft magnetic material is filled between the magnetic material 40 and the first soft magnetic material 44, there is no air gap between the magnetic material 40 and the first soft magnetic material 44. It is possible to suppress the occurrence of this phenomenon, and it is easy to appropriately apply a magnetic field to the magnetic body 40. Furthermore, since it is not necessary to bring the first soft magnetic body 44 into close contact with the magnetic body 40 so that no gap is created between the magnetic body 40 and the first soft magnetic body 44, it is easy to manufacture the power generation element 32. In this way, it is easy to appropriately apply a magnetic field to the magnetic body 40 and it is easy to manufacture the power generation element 32.
  • the filling member 48 is an adhesive, and the magnetic body 40 is fixed to the first soft magnetic body 44 via the filling member 48.
  • the magnetic body 40 can be fixed to the first soft magnetic body 44 via the filling member 48, it is further easier to manufacture the power generation element 32.
  • the magnetic permeability of the second soft magnetic body is larger than the magnetic permeability of the first soft magnetic body 44.
  • the magnetic sensor 28 includes the above-described power generation element 32 and a detection element 36 that is driven based on the electric power generated by the power generation element 32 and detects magnetism.
  • the encoder 20 includes a rotating magnet 26 and the above-described power generation element 32 that generates power by a change in the magnetic field caused by the rotation of the magnet 26.
  • FIG. 9 is a sectional view showing a power generation element 200 of an encoder according to the second embodiment.
  • the encoder according to the second embodiment mainly differs from the encoder 20 in that it includes a power generation element 200 instead of the power generation element 32 and includes a power generation element 200 instead of the power generation element 34.
  • the power generation element 200 differs from the power generation element 32 mainly in that it has a first soft magnetic body 202 that is different from the first soft magnetic body 44.
  • the first soft magnetic body 202 has two magnetic body pieces 204 and 206.
  • the first soft magnetic body 202 presses the magnetic body 40 in the radial direction centered on the winding axis B.
  • the magnetic material piece 204 presses the magnetic material 40 from one side in the radial direction centering on the winding axis B
  • the magnetic material piece 206 presses the magnetic material 40 from the other side in the radial direction. Pressing 40. For example, when a screw or the like is tightened, force is applied to the magnetic piece 204 and the magnetic piece 206 in a direction in which they approach each other, thereby pressing the magnetic body 40.
  • the first soft magnetic body 202 is in contact with the magnetic body 40.
  • the inner surface 208 of the magnetic material piece 204 in the radial direction centering on the winding axis B faces the magnetic material 40 in the radial direction, and extends outward in the radial direction when viewed from the winding axis direction. It's concave.
  • the inner surface 208 of the magnetic piece 204 is recessed in a substantially L-shape. Note that, for example, the inner surface 208 of the magnetic piece 204 may be recessed in an elliptical arc shape or the like. A portion of the inner surface 208 of the magnetic piece 204 is in contact with the magnetic body 40 .
  • the inner surface 210 of the magnetic material piece 206 in the radial direction centering on the winding axis B faces the magnetic material 40 in the radial direction
  • the inner surface 210 of the magnetic material piece 206 faces the magnetic material 40 in the radial direction
  • the outer surface 210 of the magnetic material piece 206 in the radial direction is opposite to the magnetic material 40 in the radial direction. It is concave towards.
  • the inner surface 210 of the magnetic piece 206 is recessed in a substantially L-shape. Note that, for example, the inner surface 210 of the magnetic piece 206 may be recessed in an elliptical arc shape or the like. A portion of the inner surface 210 of the magnetic piece 206 is in contact with the magnetic body 40 .
  • the filling member 48 fills the gap between the inner surface 208 of the magnetic material piece 204 and the magnetic material 40 and between the inner surface 210 of the magnetic material piece 206 and the magnetic material 40 when viewed from the winding axis direction. Filled.
  • the first soft magnetic body 202 presses the magnetic body 40 in the radial direction centered on the winding axis B.
  • the first soft magnetic body 202 is in contact with the magnetic body 40.
  • the filling member 48 is an adhesive and the magnetic body 40 is fixed to the first soft magnetic body 44 via the filling member 48, but the present invention is not limited to this.
  • the filling member 48 may not be made of adhesive, and the magnetic body 40 may be fixed to the housing using another adhesive or the like. The same applies to the first soft magnetic body 202.
  • the magnetic permeability of the second soft magnetic body is larger than the magnetic permeability of the first soft magnetic body 44, but the present invention is not limited to this.
  • the magnetic permeability of the second soft magnetic body may be less than or equal to the magnetic permeability of the first soft magnetic body 44.
  • the power generation element, magnetic sensor, and encoder according to the present disclosure can be used as a power generation element or the like that utilizes the large Barkhausen effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

磁性体に適切に磁界を印加し易くかつ製造し易い発電素子等を提供する。発電素子(32)は、大バルクハウゼン効果を生じる磁性体(40)と、磁性体(40)に巻回されるコイル(42)と、コイル(42)の巻回軸線(B)が延びる巻回軸線方向においてコイル(42)よりも外方に位置し、巻回軸線(B)を中心とする径方向において磁性体(40)の外方に位置する第1軟磁性体(44)と、第2軟磁性体を含み、磁性体(40)と第1軟磁性体(44)との間に充填される充填部材(48)とを備える。

Description

発電素子、磁気センサ、およびエンコーダ
 本開示は、発電素子、磁気センサおよびエンコーダに関し、特に大バルクハウゼン効果を利用した発電素子、磁気センサおよびエンコーダに関する。
 従来、大バルクハウゼン効果を利用した発電素子等が知られている。たとえば、特許文献1には、大バルクハウゼン効果を生じる磁性体と、磁性体に巻回して配置された発電用コイルと、磁性体を押圧するように形成された軟磁性体とを備える発電素子が開示されている。
国際公開第2021/200361号
 しかしながら、特許文献1の発電素子では、磁性体と軟磁性体との間の空隙によって、磁性体に適切に磁界を印加し難いという問題がある。また、磁性体と軟磁性体との間の空隙をなくすために軟磁性体を磁性体に密着させようとすると、高精度な部品が必要になったり、別途工程が必要になり、発電素子を製造し難いという問題がある。
 本開示は、このような問題を解決するためになされたものであり、磁性体に適切に磁界を印加し易くかつ製造し易い発電素子、磁気センサおよびエンコーダを提供することを目的とする。
 本開示の一態様に係る発電素子は、大バルクハウゼン効果を生じる磁性体と、前記磁性体に巻回されるコイルと、前記コイルの巻回軸線が延びる巻回軸線方向において前記コイルよりも外方に位置し、前記巻回軸線を中心とする径方向において前記磁性体の外方に位置する第1軟磁性体と、第2軟磁性体を含み、前記磁性体と前記第1軟磁性体との間に充填される充填部材とを備える。
 本開示の他の一態様に係る磁気センサは、上記の発電素子と、前記発電素子によって発電された電力に基づいて駆動され、磁気を検出する検出素子とを備える。
 本開示の他の一態様に係るエンコーダは、回転する磁石と、前記磁石が回転することによる磁界の変化によって発電する上記の発電素子とを備える。
 本開示によれば、磁性体に適切に磁界を印加し易くかつ製造し易い発電素子、磁気センサおよびエンコーダを提供できる。
図1Aは、第1の実施の形態に係るエンコーダを備えるモータを示す図である。 図1Bは、第1の実施の形態に係るモータと負荷との接続を示す図である。 図2Aは、第1の実施の形態のエンコーダが備える基板を示す図である。 図2Bは、第1の実施の形態のエンコーダが備える回転板を示す図である。 図3は、図2AのIII-III線における発電素子の断面図である。 図4は、図2AのIV-IV線における発電素子の断面図である。 図5Aは、シミュレーション等に用いた発電素子を回転軸線方向からみた平面図である。 図5Bは、図5Aに示す発電素子のVB-VB断面を示す図である。 図6は、図5Aおよび図5Bに示す発電素子を用いたシミュレーションによって得られた磁束密度を示すグラフである。 図7Aは、比較例の発電素子を用いた測定によって得られた発電量を示すグラフである。 図7Bは、図5Aの発電素子を用いた測定によって得られた発電量を示すグラフである。 図8Aは、比較例の発電素子を用いた測定によって得られた発電量標準偏差を示すグラフである。 図8Bは、図5Aの発電素子を用いた測定によって得られた発電量標準偏差を示すグラフである。 図9は、第2の実施の形態に係るエンコーダの発電素子を示す断面図である。
 以下、本開示の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、構成要素、構成要素の配置位置および接続形態、ならびに、工程および工程の順序等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。
 (第1の実施の形態)
 図1Aは、第1の実施の形態に係るエンコーダ20を備えるモータ1を示す図である。図1Aは、モータ1の回転軸16の回転軸線Aを中心とする径方向(図2Aおよび図2Bに矢印Xで示す方向)から見た図である。なお、図1Aでは、ケース18、および磁石26を断面で示している。また、図1Aでは、図2Aに示す発電素子34、および制御回路30の図示を省略している。図1Bは、モータ1と負荷300との接続を示す図である。図2Aは、図1Aのエンコーダ20の基板24を示す図である。また、図2Bは、図1Aのエンコーダ20の回転板22を示す図である。図2Aおよび図2Bは、回転軸16の回転軸線Aが延びる方向である回転軸線方向(図1Aに矢印Yで示す方向)から見た図である。
 図1Aに示すように、モータ1は、本体10と、回転子12と、固定子14と、回転軸16と、ケース18と、エンコーダ20とを備えている。
 回転子12および固定子14は、本体10に収容されている。回転子12は、固定子14に対して回転する。
 回転軸16は、回転子12に固定され、回転子12とともに回転軸線A回りに回転する。つまり、回転軸線Aは、回転軸16および回転子12の回転中心である。回転軸16は、回転軸線Aの方向に延び、円柱状等の棒状である。回転軸16の軸心と回転軸線Aとは、相互に一致している。たとえば、回転軸16は、モータ1に電力が供給されると、当該電力に基づいて、回転子12とともに回転軸線Aを回転中心として回転する。回転軸16の回転方向(図2Aおよび図2Bに矢印Zで示す方向)は、回転軸線Aを中心とする周方向と一致する。回転軸線方向における回転軸16の一端部には、エンコーダ20が設けられている。たとえば、図1Bに示すように、回転軸線方向における回転軸16の他端部には、回転軸16の回転によって回転駆動される負荷300が取り付けられている。たとえば、回転軸16は、鉄等の磁性体金属によって形成されている。なお、たとえば、回転軸16は、非磁性の金属によって形成されていてもよい。なお、負荷300は、モータ1が駆動する装置であれば何でもよく、例えば自動車や列車等の移動体に使用される車輪であってもよいし、扇風機の羽根であってもよい。
 ケース18は、回転軸線方向における回転軸16の一端部、およびエンコーダ20を覆うように、本体10に取り付けられている。たとえば、ケース18は、鉄等の磁性体金属によって形成されている。
 エンコーダ20は、回転体の回転を検出する。本実施の形態では、回転軸16が、当該回転体に相当し、エンコーダ20は、回転軸16の回転を検出する。たとえば、エンコーダ20は、回転軸16の回転位置、回転軸16の回転方向、および回転軸16の回転数等を検出する。たとえば、エンコーダ20は、アブソリュート方式およびインクリメンタル方式の少なくとも一方によって、回転軸16の回転を検出する。本実施の形態では、エンコーダ20は、バッテリレスエンコーダである。上述したように、本実施の形態では、エンコーダ20は、回転軸線方向における回転軸16の一端部に設けられている。図1A、図2Aおよび図2Bに示すように、エンコーダ20は、回転板22と、基板24と、磁石26と、磁気センサ28と、制御回路30とを有している。
 回転板22は、回転軸線方向を厚み方向とする板状であり、回転軸線方向に直交する方向に延びる。回転板22は、回転軸線方向から見たとき円形であり、円板状である。なお、たとえば、回転板22は、円板状でなくてもよく、円環状等であってもよい。回転板22は、回転軸線方向における回転軸16の一端部に取り付けられている。回転板22の軸心と回転軸線Aとは、相互に一致している。回転板22は、回転軸16とともに回転する。
 基板24は、回転軸線方向を厚み方向とする板状であり、回転軸線方向に直交する方向に延びる。基板24は、回転軸線方向から見たとき円形であり、円板状である。基板24は、回転軸線方向において、回転軸16の一端部および回転板22と間隔を空けて配置され、回転板22と対向している。基板24の軸心と回転軸線Aとは、相互に一致している。基板24は、回転軸16とともに回転しないように固定されている。
 磁石26は、回転する。本実施の形態では、磁石26は、回転軸16が回転すると、回転軸16および回転板22とともに回転する。磁石26は、円環状であり、回転軸16の回転方向に沿って配置されている。磁石26は、回転軸線方向を厚み方向とする板状である。磁石26は、回転板22の基板24とは反対側の主面に配置されている。磁石26は、N極と、回転軸16の回転方向において当該N極と並んで配置されているS極とを有している。磁石26の一方側の半分がN極に着磁されており、磁石26の他方側の半分がS極に着磁されている。なお、磁石26は、回転軸16とともに回転することによって、発電素子32および発電素子34を発電させることができるように構成されていればよい。具体的には、たとえば、磁石26は、後述する図5Aおよび図5Bに示す磁石106および磁石108のように、回転軸線Aを中心とする径方向にN極およびS極が並ぶように着磁されていてもよい。
 磁気センサ28は、磁気を検出するセンサである。磁気センサ28は、複数の発電素子32,34と、複数の検出素子36,38とを有している。なお、たとえば、磁気センサ28は、複数ではなく1つの発電素子を有していてもよい。また、たとえば、磁気センサ28は、複数ではなく1つの検出素子を有していてもよい。
 複数の発電素子32,34の各々は、磁石26が回転することによる磁界の変化によって発電する。本実施の形態では、複数の発電素子32,34の各々は、磁石26が回転軸16とともに回転することによる磁界の変化によって発電する。
 たとえば、発電素子32の磁性体40(後述)の一端部が磁石26のN極と対向しかつ発電素子32の磁性体40の他端部が磁石26のS極と対向している状態から、磁石26が回転し、発電素子32の磁性体40の一端部が磁石26のS極と対向しかつ発電素子32の磁性体40の他端部が磁石26のN極とある程度近づいた状態になった場合、磁性体40の磁化方向が反転し、発電素子32は発電する。発電素子34についても同様である。
 また、たとえば、発電素子32の磁性体40の一端部が磁石26のS極と対向しかつ発電素子32の磁性体40の他端部が磁石26のN極と対向している状態から、磁石26が回転し、発電素子32の磁性体40の一端部が磁石26のN極と対向しかつ発電素子32の磁性体40の他端部が磁石26のS極とある程度近づいた状態になった場合、発電素子32は発電する。発電素子34についても同様である。
 複数の発電素子32,34の各々は、回転軸16の回転方向の接線方向に延びる。具体的には、複数の発電素子32,34の各々は、磁性体40が回転軸16の回転方向の接線方向に延びるように配置されている。なお、複数の発電素子32,34の各々は、磁石26が回転することによる磁界の変化によって発電するように配置されていればよい。
 複数の発電素子32,34は、基板24の回転軸16とは反対へ向く(回転板22とは反対へ向く)主面に配置されている。なお、複数の発電素子32,34は、基板24の回転軸16へ向く(回転板22へ向く)主面に配置されていてもよい。複数の発電素子32,34は、回転軸16の回転方向に並んで配置されている。
 複数の発電素子32,34の詳細については後述する。
 複数の検出素子36,38の各々は、発電素子32によって発電された電力に基づいて駆動し、磁気を検出する。本実施の形態では、複数の検出素子36,38の各々は、発電素子32によって発電された電力に基づいて駆動し、磁石26による磁気を検出する。
 また、複数の検出素子36,38の各々は、発電素子34によって発電された電力に基づいて駆動し、磁気を検出する。本実施の形態では、複数の検出素子36,38の各々は、発電素子34によって発電された電力に基づいて駆動し、磁石26による磁気を検出する。
 複数の検出素子36,38は、基板24の回転軸16へ向く(回転板22へ向く)主面に配置されている。なお、複数の検出素子36,38は、基板24の回転軸16とは反対へ向く(回転板22とは反対へ向く)主面に配置されていてもよい。複数の検出素子36,38は、回転軸16の回転方向に並んで配置されている。
 制御回路30は、基板24の回転軸16へ向く(回転板22へ向く)主面に配置されており、複数の発電素子32,34等と電気的に接続されている。たとえば、制御回路30は、複数の発電素子32,34のうちいずれの発電素子が発電したかによって、回転軸16の回転位置等を判定する。また、たとえば、制御回路30は、複数の検出素子36,38の検出結果に基づいて、回転軸16の回転位置等を判定する。また、たとえば、制御回路30は、複数の発電素子32,34のうちいずれの発電素子が発電したか、および複数の検出素子36,38の検出結果に基づいて、回転軸16の回転位置等を判定する。このようにして、エンコーダ20は、回転軸16の回転を検出する。
 図3は、図2AのIII-III線における発電素子32の断面図である。図4は、図2AのIV-IV線における発電素子32の断面図である。
 図3および図4に示すように、発電素子32は、磁性体40と、コイル42と、第1軟磁性体44と、筐体46と、充填部材48とを有している。
 磁性体40は、大バルクハウゼン効果を生じる磁性体である。磁性体は、磁性材料によって形成されている。たとえば、磁性体40は、ウィーガントワイヤ等の複合磁気ワイヤである。ウィーガントワイヤは、所定値以上の磁界がウィーガントワイヤの長手方向(延在方向)に沿って印加されると、磁化方向が長手方向の一方に向かうように揃う磁性体である。
 磁性体40にはコイル42が巻回されており、磁性体40は、コイル42の巻回軸線Bが延びる方向である巻回軸線方向(図3に矢印Cで示す方向)に延在している。本実施の形態では、磁性体40の軸心は、巻回軸線Bと一致している。
 磁性体40は、巻回軸線方向において、コイル42よりも外方に突出している。具体的には、磁性体40は、巻回軸線方向において、コイル42から一方に向けて突出し、さらにコイル42から他方に向けて突出している。
 コイル42は、磁性体40に巻回されている。コイル42は、磁性体40によって大バルクハウゼン効果が生じた場合にコイル42が発電するように、磁性体40に巻回されている。本実施の形態では、コイル42は、コイル42の巻回軸線Bが磁性体40の延在方向と一致するように、磁性体40に巻回されている。磁性体40の延在方向(長手方向)に沿って流れる磁束の向きが変化すると、磁性体40の磁化方向が跳躍的に反転し、コイル42に発電パルスが生じる。このようにして、発電素子32は、発電する。
 第1軟磁性体44は、コイル42の巻回軸線Bが延びる巻回軸線方向においてコイル42よりも外方に位置し、巻回軸線Bを中心とする径方向(図4の矢印Dを参照)において磁性体40の外方に位置している。第1軟磁性体44は、軟磁性材料によって形成されている。たとえば、第1軟磁性体44は、フェライトビーズである。
 本実施の形態では、第1軟磁性体44は、巻回軸線方向においてコイル42よりも一方の向きに位置し、当該一方の向きにおいて、巻回軸線Bを中心とする径方向において磁性体40の外方に位置している。また、本実施の形態では、第1軟磁性体44は、巻回軸線方向においてコイル42よりも他方の向きに位置し、当該他方の向きにおいて、巻回軸線Bを中心とする径方向において磁性体40の外方に位置している。つまり、本実施の形態では、発電素子32は、2つの第1軟磁性体44を有している。2つの第1軟磁性体44は、コイル42を挟んで対称に設けられている。
 第1軟磁性体44は、巻回軸線Bを中心とする周方向(図4の矢印Eを参照)に沿って環状であり、巻回軸線方向を軸方向とする円筒状である。なお、第1軟磁性体44は、円筒状でなくてもよく、たとえば、多角筒状等であってもよい。
 巻回軸線Bを中心とする径方向における第1軟磁性体44の内面50は、巻回軸線Bを中心とする径方向において磁性体40と対向している。本実施の形態では、第1軟磁性体44の内面50は、巻回軸線方向と平行であり、巻回軸線Bを中心とする周方向に沿う環状である。第1軟磁性体44の内面50は、磁性体40と接触していない。
 筐体46は、磁性体40、コイル42、および第1軟磁性体44を収容しており、これらを支持している。
 充填部材48は、磁性体40と第1軟磁性体44との間に充填されている。充填部材48は、巻回軸線Bを中心とする径方向において、磁性体40と第1軟磁性体44との間に充填されている。本実施の形態では、充填部材48は、磁性体40と第1軟磁性体44の内面50との間に充填されている。本実施の形態では、充填部材48は、巻回軸線方向から見たときに磁性体40と第1軟磁性体44の内面50との間の隙間の全てが充填部材48で埋まるように、充填されている。
 本実施の形態では、第1軟磁性体44の内面50のコイル42側の端部と磁性体40との間には充填部材48は充填されていないが、当該間にも充填部材48が充填されていてもよい。
 充填部材48は、第2軟磁性体を含んでいる。たとえば、充填部材48は、粉末状の第2軟磁性体を含んでいる。たとえば、第2軟磁性体は、粉末状のフェライト等である。
 充填部材48は、接着剤であり、磁性体40は、充填部材48を介して第1軟磁性体44に固定されている。たとえば、充填部材48は、液体状から固体状に変化する接着剤である。
 第2軟磁性体の透磁率は、第1軟磁性体44の透磁率よりも大きい。たとえば、充填部材48の透磁率が第1軟磁性体44の透磁率よりも大きくなるように、第2軟磁性体の透磁率および充填部材48に含められる第2軟磁性体の量が決定される。
 発電素子34は発電素子32と同様の構成を有するため、発電素子34の詳細な説明は省略する。
 図5Aおよび図5Bは、シミュレーション等に用いた発電素子100を示す図である。図5Aは、回転軸線方向から見た図であり、図5Bは、図5AにおけるVB-VB線における断面図である。
 図5Aおよび図5Bに示すように、発電素子100は、磁性体40と、コイル42と、第1軟磁性体44と、充填部材48とを有している。発電素子100は、充填部材48が磁性体40と第1軟磁性体44との間の隙間の全てを埋めるように充填されている点において、発電素子32と主に異なっている。
 ここでは、磁性体40の直径は0.35mmであり、第1軟磁性体44の内径は0.7mmである。
 たとえば、発電素子100は、磁性体40の一端部が磁石106のN極と対向しかつ磁性体40の他端部が磁石108のS極と対向している状態から、磁性体40の一端部が磁石108のS極と対向しかつ磁性体40の他端部が磁石106のN極とある程度近づいた状態になった場合に、発電する。
 また、たとえば、発電素子100は、磁性体40の一端部が磁石108のS極と対向しかつ磁性体40の他端部が磁石106のN極と対向している状態から、磁性体40の一端部が磁石106のN極と対向しかつ磁性体40の他端部が磁石108のS極とある程度近づいた状態になった場合に、発電する。
 図6は、図5Aおよび図5Bに示す発電素子100を用いたシミュレーションによって得られた磁束密度を示すグラフである。図6のグラフにおいて、実施例(実線)は、発電素子100を用いたシミュレーション結果を示し、比較例(一点鎖線)は、発電素子100から充填部材48を除いた発電素子を用いたシミュレーション結果を示している。
 図6に示すように、実施例に係る発電素子100は、比較例に係る発電素子と比較して、磁性体40における中心(0mm)から約4.5mmの位置と、磁性体40における中心(0mm)から約-4.5mmの位置との間において、磁束密度がより均一に近くなっている。このように、実施例に係る発電素子100は、比較例に係る発電素子と比較して、コイル42による発電に寄与する磁束密度が高いことがわかった。
 図7Aは、比較例に係る発電素子を用いた測定によって得られた発電量を示すグラフである。図7Bは、図5Aおよび図5Bに示す実施例に係る発電素子100を用いた測定によって得られた発電量を示すグラフである。図7Aおよび図7Bの各々において、横軸は図5Bに示す磁性体―磁石間距離(単位:mm)を示し、縦軸は発電量(単位:nJ)を示す。また、図7Aおよび図7Bのグラフにおける平均値(一点鎖線)は、2500回の発電パルスの発電量の平均値である。また、図7Aおよび図7Bのグラフにおける最小値(実線)は、2500回の発電パルスの発電量の最小値である。
 図7Aに示すように、比較例に係る発電素子では、磁性体40と磁石106(または磁石108)との距離(磁性体-磁石間距離、図5Bを参照)が変わると、2500回の発電パルスの発電量の平均値および最小値が大きく変化している。
 図7Bに示すように、実施例に係る発電素子100では、磁性体40と磁石106(または磁石108)との距離が変わると、2500回の発電パルスの発電量の平均値および最小値が変化しているが、これらの変化量が比較例に係る発電素子よりも小さいことがわかった。
 このように、実施例に係る発電素子100は、磁性体40と磁石106(磁石108)との距離が変わっても、比較例に係る発電素子よりも発電パルスの発電量の平均値および最小値が変化し難く、比較例に係る発電素子よりも磁性体40に適切に磁界を印加できる。
 図8Aは、比較例に係る発電素子を用いた測定によって得られた発電量標準偏差を示すグラフである。図8Bは、図5Aおよび図5Bに示す実施例に係る発電素子100を用いた測定によって得られた発電量標準偏差を示すグラフである。図8Aおよび図8Bの各々において、横軸は図5Bに示す磁性体―磁石間距離(単位:mm)を示し、縦軸は発電量標準偏差(単位:nJ)を示す。また、図8Aおよび図8Bのグラフにおける平均値(一点鎖線)は、2500回の発電パルスの発電量の標準偏差の平均値である。また、図8Aおよび図8Bのグラフにおける最大値(実線)は、2500回の発電パルスの発電量の標準偏差の最大値である。
 図8Aに示すように、比較例に係る発電素子では、磁性体40と磁石106(または磁石108)との距離が変わると、2500回の発電パルスの発電量の標準偏差の平均値および標準偏差の最大値が大きく変化している。
 図8Bに示すように、実施例に係る発電素子100では、磁性体40と磁石106(または磁石108)との距離が変わると、2500回の発電パルスの発電量の標準偏差の平均値および標準偏差の最大値が変化しているが、これらの変化量が比較例に係る発電素子よりも小さいことがわかった。
 このように、実施例に係る発電素子100は、磁性体40と磁石106(または磁石108)との距離が変わっても、比較例に係る発電素子よりも発電パルスの発電量の標準偏差の平均値および標準偏差の最大値が変化し難く、比較例に係る発電素子よりも磁性体40に適切に磁界を印加できる。
 本実施の形態に係る発電素子32は、大バルクハウゼン効果を生じる磁性体40と、磁性体40に巻回されるコイル42と、コイル42の巻回軸線Bが延びる巻回軸線方向においてコイル42よりも外方に位置し、巻回軸線Bを中心とする径方向において磁性体40の外方に位置する第1軟磁性体44と、第2軟磁性体を含み、磁性体40と第1軟磁性体44との間に充填される充填部材48とを備える。
 これによれば、第2軟磁性体を含む充填部材48が磁性体40と第1軟磁性体44との間に充填されるので、磁性体40と第1軟磁性体44との間に空隙が生じることを抑制でき、磁性体40に適切に磁界を印加し易い。また、磁性体40と第1軟磁性体44との間に空隙が生じないように第1軟磁性体44を磁性体40に密着させる必要がないので、発電素子32を製造し易い。このように、磁性体40に適切に磁界を印加し易くかつ発電素子32を製造し易い。
 また、本実施の形態に係る発電素子32において、充填部材48は、接着剤であり、磁性体40は、充填部材48を介して第1軟磁性体44に固定される。
 これによれば、充填部材48を介して磁性体40を第1軟磁性体44に固定できるので、さらに、発電素子32を製造し易い。
 また、本実施の形態に係る発電素子32において、第2軟磁性体の透磁率は、第1軟磁性体44の透磁率よりも大きい。
 これによれば、充填部材48の透磁率が第1軟磁性体44の透磁率よりも小さくなることを抑制できるので、さらに、磁性体40に適切に磁界を印加し易い。
 また、本実施の形態に係る磁気センサ28は、上記の発電素子32と、発電素子32によって発電された電力に基づいて駆動され、磁気を検出する検出素子36とを備える。
 これによれば、上記の発電素子32と同様の作用効果を奏する。
 また、本実施の形態に係るエンコーダ20は、回転する磁石26と、磁石26が回転することによる磁界の変化によって発電する上記の発電素子32とを備える。
 これによれば、上記の発電素子32と同様の作用効果を奏する。
 (第2の実施の形態)
 図9は、第2の実施の形態に係るエンコーダの発電素子200を示す断面図である。
 第2の実施の形態に係るエンコーダは、発電素子32に代えて発電素子200を備え、発電素子34に代えて発電素子200を備えている点において、エンコーダ20と主に異なっている。
 図9に示すように、発電素子200は、第1軟磁性体44とは異なる第1軟磁性体202を有している点において、発電素子32と主に異なっている。第1軟磁性体202は、2つの磁性体片204,206を有している。
 第1軟磁性体202は、巻回軸線Bを中心とする径方向において磁性体40を押圧する。本実施の形態では、磁性体片204は、巻回軸線Bを中心とする径方向における一方側から磁性体40を押圧しており、磁性体片206は、当該径方向における他方側から磁性体40を押圧している。たとえば、磁性体片204および磁性体片206は、ネジ等が締め付けられることによって相互に近づく方向に力が加えられ、これによって磁性体40を押圧する。
 第1軟磁性体202は、磁性体40と接触している。巻回軸線Bを中心とする径方向における磁性体片204の内面208は、当該径方向において磁性体40と対向しており、巻回軸線方向から見たときに当該径方向の外方に向かって凹んでいる。本実施の形態では、磁性体片204の内面208は、略L字状に凹んでいる。なお、たとえば、磁性体片204の内面208は、楕円弧状等に凹んでいてもよい。磁性体片204の内面208の一部は磁性体40と接触している。また、巻回軸線Bを中心とする径方向における磁性体片206の内面210は、当該径方向において磁性体40と対向しており、巻回軸線方向から見たときに当該径方向の外方に向かって凹んでいる。本実施の形態では、磁性体片206の内面210は、略L字状に凹んでいる。なお、たとえば、磁性体片206の内面210は、楕円弧状等に凹んでいてもよい。磁性体片206の内面210の一部は磁性体40と接触している。
 充填部材48は、巻回軸線方向から見たときに磁性体片204の内面208と磁性体40との間および磁性体片206の内面210と磁性体40との間の隙間を埋めるように、充填されている。
 本実施の形態に係る発電素子200において、第1軟磁性体202は、巻回軸線Bを中心とする径方向において磁性体40を押圧する。
 これによれば、磁性体40と第1軟磁性体44との間に空隙が生じることを抑制できるので、さらに、磁性体40に適切に磁界を印加し易い。
 また、本実施の形態に係る発電素子200において、第1軟磁性体202は、磁性体40と接触する。
 これによれば、磁性体40と第1軟磁性体44との間に空隙が生じることを抑制できるので、さらに、磁性体40に適切に磁界を印加し易い。
 (他の実施の形態等)
 以上のように、本出願において開示する技術の例示として、実施の形態について説明した。しかしながら、本開示による技術は、これらに限定されず、本開示の趣旨を逸脱しない限り、適宜、変更、置き換え、付加、省略等を行った実施の形態または変形例にも適用可能である。
 上述した実施の形態では、充填部材48が、接着剤であり、磁性体40が、充填部材48を介して第1軟磁性体44に固定される場合について説明したが、これに限定されない。たとえば、充填部材48は、接着剤でなくてもよく、磁性体40は、他の接着剤等によって筐体に固定されていてもよい。第1軟磁性体202についても同様である。
 上述した実施の形態では、第2軟磁性体の透磁率が、第1軟磁性体44の透磁率よりも大きい場合について説明したが、これに限定されない。たとえば、第2軟磁性体の透磁率は、第1軟磁性体44の透磁率以下であってもよい。第1軟磁性体202についても同様である。
 本開示に係る発電素子、磁気センサ、およびエンコーダは、大バルクハウゼン効果を利用した発電素子等に利用可能である。
 1   モータ
 10   本体
 12   回転子
 14   固定子
 16   回転軸
 18   ケース
 20   エンコーダ
 22   回転板
 24   基板
 26,106,108   磁石
 28   磁気センサ
 30   制御回路
 32,34,100,200   発電素子
 36,38   検出素子
 40   磁性体
 42   コイル
 44,202   第1軟磁性体
 46   筐体
 48   充填部材
 50,208,210   内面
 204,206磁性体片

Claims (7)

  1.  大バルクハウゼン効果を生じる磁性体と、
     前記磁性体に巻回されるコイルと、
     前記コイルの巻回軸線が延びる巻回軸線方向において前記コイルよりも外方に位置し、前記巻回軸線を中心とする径方向において前記磁性体の外方に位置する第1軟磁性体と、
     第2軟磁性体を含み、前記磁性体と前記第1軟磁性体との間に充填される充填部材とを備える、
     発電素子。
  2.  前記充填部材は、接着剤であり、
     前記磁性体は、前記充填部材を介して前記第1軟磁性体に固定される、
     請求項1に記載の発電素子。
  3.  前記第2軟磁性体の透磁率は、前記第1軟磁性体の透磁率よりも大きい、
     請求項1に記載の発電素子。
  4.  前記第1軟磁性体は、前記径方向において前記磁性体を押圧する、
     請求項1に記載の発電素子。
  5.  前記第1軟磁性体は、前記磁性体と接触する、
     請求項1に記載の発電素子。
  6.  請求項1から5のいずれか1項に記載の発電素子と、
     前記発電素子によって発電された電力に基づいて駆動され、磁気を検出する検出素子とを備える、
     磁気センサ。
  7.  回転する磁石と、
     前記磁石が回転することによる磁界の変化によって発電する請求項1から5のいずれか1項に記載の発電素子とを備える、
     エンコーダ。
PCT/JP2023/018572 2022-06-28 2023-05-18 発電素子、磁気センサ、およびエンコーダ WO2024004423A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-103336 2022-06-28
JP2022103336 2022-06-28

Publications (1)

Publication Number Publication Date
WO2024004423A1 true WO2024004423A1 (ja) 2024-01-04

Family

ID=89382595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018572 WO2024004423A1 (ja) 2022-06-28 2023-05-18 発電素子、磁気センサ、およびエンコーダ

Country Status (1)

Country Link
WO (1) WO2024004423A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287573A (en) * 1978-08-07 1981-09-01 Trw, Inc. Method and means for coupling an elongated magnetic device
JP2019134065A (ja) * 2018-01-31 2019-08-08 ヒロセ電機株式会社 ワイヤ巻回方法および磁気センサ
WO2020250439A1 (ja) * 2019-06-14 2020-12-17 三菱電機株式会社 回転数検出器
WO2021200361A1 (ja) * 2020-04-01 2021-10-07 三菱電機株式会社 発電素子、これを用いた磁気センサ、エンコーダおよびモータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287573A (en) * 1978-08-07 1981-09-01 Trw, Inc. Method and means for coupling an elongated magnetic device
JP2019134065A (ja) * 2018-01-31 2019-08-08 ヒロセ電機株式会社 ワイヤ巻回方法および磁気センサ
WO2020250439A1 (ja) * 2019-06-14 2020-12-17 三菱電機株式会社 回転数検出器
WO2021200361A1 (ja) * 2020-04-01 2021-10-07 三菱電機株式会社 発電素子、これを用いた磁気センサ、エンコーダおよびモータ

Similar Documents

Publication Publication Date Title
JP5059772B2 (ja) 最大360°のコースの磁気角度位置センサ
CN100510641C (zh) 磁性编码器设备及致动器
JP4258376B2 (ja) 多回転式エンコーダ
US4835509A (en) Noncontact potentiometer
US6720763B1 (en) Compact rotary magnetic position sensor having a sinusoidally varying output
JP2005513992A (ja) キャンドモータ
JP2005061865A (ja) 可変リラクタンス型レゾルバ
JP2019022393A (ja) モータ
EP1083406A2 (en) Rotary position sensor
WO2024004423A1 (ja) 発電素子、磁気センサ、およびエンコーダ
JP6054011B1 (ja) 磁気センサ及び回転装置
WO2023276488A1 (ja) 回転検出器
US7210360B2 (en) Apparatus for sensing position and/or torque
CN108539931B (zh) 以旋转变压器为传感器的伺服驱动装置
JP4452976B2 (ja) 磁気ゼネバ歯車機構
JP2020016909A (ja) 入力装置
JP2004508792A (ja) トルク・リプル・フリー電気パワー・ステアリング
WO2022244471A1 (ja) 回転電機
JP2008043071A (ja) ステッピングモータとその製造方法
JP2002228486A (ja) 磁気式エンコーダ
JP3758174B2 (ja) 非接触型位置センサ
JP4233920B2 (ja) 回転角度検出装置
US20240243645A1 (en) Axial air gap electric rotary motor
JP7495873B2 (ja) 回転電機
CN118119825B (en) Rotation speed detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830875

Country of ref document: EP

Kind code of ref document: A1