WO2024001297A1 - 气溶胶产生方法、装置、计算机程序产品及存储介质 - Google Patents

气溶胶产生方法、装置、计算机程序产品及存储介质 Download PDF

Info

Publication number
WO2024001297A1
WO2024001297A1 PCT/CN2023/080910 CN2023080910W WO2024001297A1 WO 2024001297 A1 WO2024001297 A1 WO 2024001297A1 CN 2023080910 W CN2023080910 W CN 2023080910W WO 2024001297 A1 WO2024001297 A1 WO 2024001297A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heating element
stage
heating
period
Prior art date
Application number
PCT/CN2023/080910
Other languages
English (en)
French (fr)
Inventor
陈海超
呙于波
陈俊梁
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Publication of WO2024001297A1 publication Critical patent/WO2024001297A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present invention relates to the field of atomization equipment, and in particular, to an aerosol generation method, device, computer program product and storage medium.
  • the temperature control scheme adopted by the existing aerosol generating device is that after the temperature of the aerosol-forming substrate rises to the operating temperature, the temperature is maintained until the end of the period.
  • the disadvantage of this scheme is that the operating temperature is difficult to determine. If the temperature is too high, the taste and aerosol quality will be better during the first puffing period, but the later puffing time will easily lead to an increase in impurities due to over-baking; if the operating temperature is too low, the first puffing period will result in insufficient baking.
  • the aerosol is thin or even non-existent, and the taste is not good.
  • the technical problem to be solved by the present invention is that the operating temperature in the prior art is difficult to determine.
  • the technical solution adopted by the present invention to solve the technical problem is to construct an aerosol generation method, including:
  • the first heating element is heated and controlled so that the temperature of the first heating element rises to the first temperature and then drops to the second temperature; and the second heating element is heated and controlled so that the temperature of the first heating element rises to the first temperature and then drops to the second temperature.
  • the temperature of the second heating element rises to a third temperature, wherein the third temperature is lower than the second temperature;
  • the second heating element is heated and controlled so that the temperature of the second heating element rises from the third temperature to a fourth temperature; and the first heating element is heated and controlled. , so that the temperature of the first heating element drops from the second temperature to a fifth temperature, wherein the fourth temperature is greater than the fifth temperature.
  • the heating control of the first heating element so that the temperature of the first heating element rises to the first temperature and then drops to the second temperature includes:
  • the first heating element is heated and controlled to increase the temperature of the first heating element to a first temperature during the first period of the first stage; during the second period of the first stage, the temperature of the first heating element is increased to a first temperature.
  • the temperature of the first heating element continues to drop from the first temperature to the second temperature, or the temperature of the first heating element first drops to the second temperature and then is maintained at the second temperature, and, The first time period is smaller than the second time period.
  • the heating control of the second heating element to increase the temperature of the second heating element to a third temperature includes:
  • the second heating element is heated and controlled so that the temperature of the second heating element first rises to a third temperature and then is maintained at the third temperature, or the second heating element is heated to a third temperature. The temperature of the second heating element continues to rise to the third temperature.
  • the heating control of the second heating element to increase the temperature of the second heating element from the third temperature to the fourth temperature includes:
  • the second heating element is heated and controlled to increase the temperature of the second heating element from the third temperature to a fourth temperature in the third period of the second stage; In the fourth period, the temperature of the second heating element is maintained at the fourth temperature, or the temperature of the second heating element is raised from the fourth temperature to a sixth temperature, wherein the third period And the fourth time period is two time periods divided by the first dividing method for the second stage, and the third time period is smaller than the fourth time period.
  • performing heating control on the first heating element so that the temperature of the first heating element drops from the second temperature to a fifth temperature includes:
  • the first temperature is between 150°C and 300°C; the second temperature is between 150°C and 300°C.
  • the difference between the second temperature and the first temperature is between 5°C and 100°C.
  • the third temperature is between 50°C and 200°C; the fourth temperature is between 150°C and 300°C.
  • the heating control of the first heating element includes:
  • the first heating element is heated and controlled using electromagnetic heating
  • the heating control of the second heating element includes:
  • the second heating element is heated and controlled using electromagnetic heating.
  • the present invention also constructs an aerosol generating device, including: a first heating element, a second heating element, a first control unit, and a second control unit, wherein,
  • the first control unit is used to perform heating control on the first heating element in the first stage, so that the temperature of the first heating element rises to the first temperature and then drops to the second temperature; and, In the second stage, heating control is performed on the first heating element so that the temperature of the first heating element drops from the second temperature to a fifth temperature;
  • the second control unit is used to perform heating control on the second heating element in the first stage so that the temperature of the second heating element rises to a third temperature; and, in the second stage, heat the second heating element.
  • the two heating elements perform heating control so that the temperature of the second heating element rises from the third temperature to a fourth temperature, wherein the third temperature is lower than the second temperature and the fourth temperature is higher than the second temperature. Describe the fifth temperature.
  • the first control unit is used to perform heating control on the first heating element, so as to increase the temperature of the first heating element to the first temperature in the first period of the first stage; In the second period of the first stage, the temperature of the first heating element is continuously dropped from the first temperature to the second temperature, or the temperature of the first heating element is first dropped to the The second temperature is maintained at the second temperature, and the first time period is shorter than the second time period.
  • the second control unit is used to perform heating control on the second heating element during the second period of the first stage, so that the temperature of the second heating element first rises to the third temperature and then is maintained. At the third temperature, or the temperature of the second heating element is continuously raised to the third temperature.
  • the second control unit is used to perform heating control on the second heating element to increase the temperature of the second heating element from the third temperature in the third period of the second stage. to the fourth temperature; in the fourth period of the second stage, maintaining the temperature of the second heating element at the fourth temperature, or causing the temperature of the second heating element to rise from the fourth temperature to the sixth temperature, wherein the third time period and the fourth time period are two time periods divided by the first dividing method for the second stage, and the third time period is smaller than the fourth time period. .
  • the first control unit is used to perform heating control on the first heating element, so that the temperature of the first heating element drops from the second temperature to The fifth temperature; in the sixth period of the second stage, the temperature of the first heating element is maintained at the fifth temperature, or the temperature of the first heating element is raised from the fifth temperature to the seventh temperature.
  • temperature wherein the fifth time period and the sixth time period are two time periods divided by the second stage in a second dividing manner, and the fifth time period is smaller than the sixth time period, and the The fourth temperature is greater than the seventh temperature.
  • the first temperature is between 150°C and 300°C;
  • the second temperature is between 150°C and 300°C, and the difference between the second temperature and the first temperature is between 5°C and 100°C;
  • the third temperature is between 50°C and 200°C;
  • the fourth temperature is between 150°C and 300°C.
  • the first control unit includes:
  • a first temperature detection module used to detect the temperature of the first heating element in real time to obtain a first temperature detection value
  • a first main control module configured to output a first control signal according to the first temperature detection value and the target temperature of each stage, where the target temperature of the first stage is the first temperature and the second temperature, The target temperature in the second stage is the fifth temperature;
  • the first resonance module is used to generate a corresponding first alternating magnetic field according to the first control signal, and the first heating element is located in the first alternating magnetic field.
  • the first resonant module is a first parallel resonant circuit or a first series resonant circuit.
  • the second control unit includes:
  • a second temperature detection module configured to detect the temperature of the second heating element in real time to obtain a second temperature detection value
  • the second main control module is configured to output a second control signal according to the second temperature detection value and the target temperature of each stage, wherein the target temperature of the first stage is the third temperature, and the target temperature of the second stage is the third temperature. is the fourth temperature;
  • the second resonance module is used to generate a corresponding second alternating magnetic field according to the second control signal, and the second heating element is located in the second alternating magnetic field.
  • the second resonant module is a second parallel resonant circuit or a second series resonant circuit.
  • the present invention also constructs a computer program product, comprising a processor that implements the steps of the aerosol generation method described above when executing the stored computer program.
  • the present invention also constructs a storage medium that stores a computer program that implements the above-described steps of the aerosol generation method when executed by a processor.
  • the temperature of the first heating element is first raised to the first temperature (the highest temperature point of the first stage), so that The aerosol-forming substrate is fully preheated, which is conducive to the generation of aerosol; and then the temperature of the first heating element is dropped from the first temperature to the second temperature, so that the aerosol-forming substrate will not be over-baked at high temperature. This suppresses the generation of miscellaneous gas and burnt smell.
  • the temperature of the second heating element is raised to the third temperature. In this way, the aerosol-forming matrix of the second part can be baked in advance, which is beneficial to the aerosol.
  • the matrix is formed to produce aerosols in the second stage.
  • the temperature of the second heating element is increased to the fourth temperature by controlling the heating of the second heating element.
  • the temperature of the first heating element is decreased to the fourth temperature by controlling the heating of the first heating element. Five temperatures, thereby ensuring the taste and aerosol quality during puffing.
  • Figure 1 is a flow chart of Embodiment 1 of the aerosol generation method of the present invention.
  • Figure 2 is a schematic structural diagram of two heating elements and an aerosol-forming matrix in an aerosol generating device in one embodiment of the present invention
  • Figure 3A is a graph showing the temperature settings of two heating elements in one embodiment of the present invention.
  • Figure 3B is a graph of the temperature distribution of two heating elements in an embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of two heating elements in an aerosol generating device in one embodiment of the present invention.
  • Figure 5 is a graph of the temperature distribution of two heating elements in an embodiment of the present invention.
  • Figure 6 is a graph of the temperature distribution of two heating elements in an embodiment of the present invention.
  • Figure 7 is a logical structure diagram of Embodiment 1 of the aerosol generating device of the present invention.
  • Figure 8 is a circuit structure diagram of the first control unit in the aerosol generating device of the present invention.
  • Figure 1 is a flow chart of Embodiment 1 of the aerosol generation method of the present invention.
  • the aerosol generation device is configured to use at least two heat sources for heating the aerosol-forming substrate (such as a cigarette) during use, that is, It includes at least a first heating element and a second heating element.
  • the aerosol-forming matrix includes a first part and a second part.
  • the first heating element is used to heat the first part
  • the second heating element is used to heat the second part.
  • the aerosol-forming matrix is a complete whole, that is, its first part 31 and second part 32 are not physically separated.
  • the first part 31 and the second part 32 are not physically separated.
  • the first part 31 and the second part 32 may also be two parts independent of each other.
  • the first heating element 21 and the second heating element 22 are respectively cylindrical heating elements, and are respectively sleeved on the first part 31 and the second part 32 of the aerosol forming substrate.
  • the first heating element The body 21 and the second heating body 22 can also be a heating piece, a heating needle, a heating rod, a heating wire or a wire, and are respectively inserted into the first part 31 and the second part 32 of the aerosol-forming substrate.
  • the first heating element 21 and the second heating element 22 can be different sections on a single heating element, or they can be two different heating elements that are physically separated.
  • the aerosol generation method of this embodiment includes the following steps:
  • Step S10 In the first stage, perform heating control on the first heating element so that the temperature of the first heating element rises to the first temperature and then drops to the second temperature; and perform heating control on the second heating element. , so that the temperature of the second heating element rises to a third temperature, wherein the third temperature is smaller than the second temperature;
  • the temperatures of the first heating element and the second heating element start to rise from the initial temperature.
  • the initial temperature can be room temperature, such as 25 degrees, 0 degrees, etc.
  • Step S20 In the second stage, perform heating control on the second heating element so that the temperature of the second heating element rises from the third temperature to a fourth temperature; and, on the first heating element Heating control is performed so that the temperature of the first heating element decreases from the second temperature to a fifth temperature, where the fourth temperature is greater than the fifth temperature.
  • 0 to t1 are the first stage
  • t1 to t2 are the second stage.
  • the temperature of the first heating element is first raised to the first temperature T1 (the highest temperature point of the first stage).
  • the gas can be
  • T1 the highest temperature point of the first stage.
  • the gas can be
  • T1 the highest temperature point of the first stage.
  • the temperature of the first heating element is continuously reduced from the first temperature T1 to the second temperature T2 (T2 ⁇ T1), which allows the aerosol to form the matrix It will not be baked at excessive high temperatures, thus suppressing the generation of gas and burnt smell.
  • the temperature of the second heating element is raised to the third temperature T3 (T3 ⁇ T2).
  • T3 ⁇ T2 the third temperature
  • the aerosol can form a matrix.
  • the second part is baked in advance, which is conducive to the generation of aerosol in the second stage.
  • the temperature of the second heating element rises to the fourth temperature T4 (the highest temperature point of the second stage).
  • the heating control of the body reduces the temperature of the first heating body to the fifth temperature T5 (T5 ⁇ T4), thereby ensuring the taste and aerosol quality during puffing.
  • the first temperature is between 150°C and 300°C (including 150°C and 300°C)
  • the second temperature is between 150°C and 300°C (including 150°C and 300°C)
  • the second temperature and the first temperature are The difference is between 5°C ⁇ 100°C (including 5°C and 100°C).
  • the third temperature is between 50°C and 200°C (including 50°C and 200°C); the fourth temperature is between 150°C and 300°C (including 150°C and 300°C).
  • the first temperature is 300°C
  • the second temperature is 240°C
  • the third temperature is 100°C
  • the fourth temperature is 290°C
  • the fifth temperature is 200°C.
  • the temperature of the first heating element first rises to 300°C (the highest temperature point of the first stage), so that the first part of the aerosol-forming matrix is fully preheated, which is beneficial to the third stage.
  • a part of the aerosol is generated in the first stage, and then drops to 240°C, so that the first part will not be over-baked at high temperature, thus suppressing the generation of miscellaneous gas and burnt smell.
  • the second heating element For the second heating element, its temperature rises to 100°C, thereby preheating the second part of the aerosol-forming substrate to generate aerosol in the second stage. In the second stage, for the second heating element, its temperature rises to 290°C, so that the second part is fully heated, which is conducive to the generation of aerosol; for the first heating element, its temperature drops to 200°C, thereby avoiding the first part
  • the miscellaneous gas or burnt smell caused by excessive high-temperature baking ensures the taste and aerosol quality during smoking.
  • performing heating control on the first heating element in step S10 so that the temperature of the first heating element rises to the first temperature and then drops to the second temperature specifically includes: The first heating element is heated and controlled to increase the temperature of the first heating element to a first temperature during the first period of the first stage; during the second period of the first stage, the temperature of the first heating element is increased to a first temperature. The temperature of the first heating element continues to drop from the first temperature to the second temperature, or the temperature of the first heating element first drops to the second temperature and then is maintained at the second temperature, and, The first time period is smaller than the second time period.
  • 0 to t11 are the first time period of the first stage
  • t11 to t1 are the second time period of the first stage.
  • the first period for example, 10 seconds
  • the second period for example, 2 minutes
  • the temperature of the first heating element can be quickly raised to the first temperature T1 to prevent aerosol formation.
  • the first part of the matrix is quickly preheated, thus avoiding insufficient taste and aerosol concentration due to insufficient baking of the first part at the beginning.
  • the temperature of the first heating element continues to drop from the first temperature T1 to the second temperature T2. This can avoid the generation of miscellaneous gas and burnt smell due to excessive temperature in the first part.
  • 0 to t11 are the first time period of the first stage
  • t11 to t1 are the second time period of the first stage.
  • the first period for example, 10 seconds
  • the second period for example, 2 minutes
  • the temperature of the first heating element can be quickly raised to the first temperature T1 to prevent aerosol formation.
  • the first part of the matrix is quickly preheated, thus avoiding insufficient taste and aerosol concentration due to insufficient baking at the beginning.
  • the temperature of the first heating element first drops to the second temperature T2 in the period t11 to t12, and is maintained at the second temperature T2 in the period t12 to t1. In this way, the first part of the problem can also be avoided. Too high a temperature will produce miscellaneous gas and burnt smell.
  • performing heating control on the second heating element in step S10 so that the temperature of the second heating element rises to a third temperature includes: in the second step of the first stage During the period, the second heating element is heated and controlled so that the temperature of the second heating element first rises to the third temperature and then is maintained at the third temperature, or the temperature of the second heating element continues to rise to the third temperature. Describe the third temperature.
  • the heating control of the second heating element is started only during the process in which the temperature of the first heating element continues to drop from the first temperature T1 to the second temperature T2, that is, in the second period, for example, as As shown in Figure 3A, starting from time t13 of the second period (time t13 is within the second period), the second heating element is heated and controlled so that its temperature first rises to the third temperature T3 and then is maintained at the third temperature T3.
  • the first part of the aerosol-forming matrix can be prevented from generating miscellaneous gas and burnt smell due to excessive temperature (because when the second heating element starts to heat, the heat of the second part of the aerosol-forming matrix will also be conducted to the first part), and also Avoid generating aerosols in the second part too early.
  • the aerosol-generating substances are consumed prematurely, resulting in a too low concentration of aerosols generated in the second part at the end of the puff.
  • the temperature of the second heating element can also be continuously raised to the third temperature.
  • the temperature of the second heating element in Figure 3B begins to rise from the beginning of the first period, this is because the temperature of the second heating element in Figure 3B begins to rise.
  • the temperature rise caused by the heat conduction of the first heating element is passive, and the temperature rise in the second period is the temperature rise caused by the active heating of the second heating element.
  • the first heating element 21 and the second heating element 22 have an integrated tubular structure, and the first heating element 21 and the second heating element 22 are partially connected through a plurality of holes 23 . Spacing, of course, in other embodiments, partial spacing can also be performed by digging grooves.
  • the mutual influence of the temperature fields between the first heating element 21 and the second heating element 22 is small, which facilitates independent control of the temperature of the first heating element 21 or the second heating element 22.
  • the first heating element 21 and the second heating element 22 The relative positions between the heating elements 22 are relatively certain, which facilitates production and installation.
  • performing heating control on the second heating element so that the temperature of the second heating element rises from the third temperature to a fourth temperature includes: The two heating elements perform heating control to increase the temperature of the second heating element from the third temperature to a fourth temperature during the third period of the second stage; during the fourth period of the second stage, The temperature of the second heating element is maintained at the fourth temperature, or the temperature of the second heating element is raised from the fourth temperature to a sixth temperature, wherein the third period and the third Four time periods are two time periods divided according to the first division method for the second stage, and the third time period is smaller than the fourth time period.
  • the second stage (t1 ⁇ t2) can be divided into a third period (t1 ⁇ t21) and a fourth period (t21 ⁇ t2) according to the first division method, and the The third period is smaller than the fourth period.
  • the second heating element in the second stage through heating control, its temperature in the third period can rise from the third temperature T3 to the fourth temperature T4, and its temperature in the fourth period can be maintained at the fourth temperature. T4. Since the third period is shorter than the fourth period, rapid preheating of the second heating element can avoid insufficient taste and aerosol concentration due to insufficient baking of the second part of the aerosol-forming substrate.
  • the second stage (t1 ⁇ t2) is also divided into a third period (t1 ⁇ t21) and a fourth period (t21 ⁇ t2), and the third period is smaller than the fourth period. time period.
  • the second heating element in the second stage by heating it, the temperature can be increased from the third temperature T3 to the fourth temperature T4 in the third period, and the temperature in the fourth period can be increased from the fourth temperature T4 Rise to the sixth temperature T6. Since the third period is shorter than the fourth period, rapid preheating of the second heating element can avoid insufficient taste and aerosol concentration due to insufficient baking of the second part of the aerosol-forming substrate. At the same time, since the second heating element will also heat up in the fourth period, it can also avoid insufficient taste and aerosol concentration caused by insufficient baking in the subsequent heating process.
  • performing heating control on the first heating element so that the temperature of the first heating element drops from the second temperature to a fifth temperature includes: A heating element performs heating control to reduce the temperature of the first heating element from the second temperature to a fifth temperature during the fifth period of the second stage; during the sixth period of the second stage, the temperature of the first heating element is reduced to a fifth temperature.
  • the temperature of the first heating element is maintained at the fifth temperature, or the temperature of the first heating element is raised from the fifth temperature to a seventh temperature, wherein the fifth period and the sixth period are
  • the second stage is divided into two time periods according to the second division method, and the fifth time period is smaller than the sixth time period, and the fourth temperature is greater than the seventh temperature.
  • the process in which the temperature of the first heating element drops from the second temperature to the fifth temperature in the fifth period may be: continuously decreasing at the same decreasing rate, or it may also be: first decreasing slowly at the first decreasing rate, and then decreasing at the second decreasing rate. The rate of descent decreases rapidly.
  • the second stage (t1 ⁇ t2) can be divided into a fifth period (t1 ⁇ t22) and a sixth period (t22 ⁇ t2) according to the second division method, and the The fifth period is smaller than the sixth period.
  • the first heating element in the second stage through heating control, its temperature in the fifth period can drop from the second temperature T2 to the fifth temperature T5, and its temperature in the sixth period can be maintained at the sixth temperature. T6.
  • the second part of the aerosol-forming substrate can be prevented from being baked at an excessively high temperature, resulting in the generation of miscellaneous gas and burnt smell (because when the first heating element is heated, the heat of the first part of the aerosol-forming substrate will also be conducted to the second part).
  • the second stage (t1 ⁇ t2) is also divided into a fifth period (t1 ⁇ t22) and a sixth period (t22 ⁇ t2), and the fifth period is smaller than the sixth period. time period.
  • the first heating element in the second stage by heating it, its temperature can drop from the second temperature T2 to the fifth temperature T5 in the fifth period, and its temperature in the sixth period can drop from the fifth temperature T5 Rising to the sixth temperature T6, this will not only prevent the second part of the aerosol-generating matrix from producing miscellaneous gas and burnt smell due to excessive high-temperature baking, but also because the first heating element will also heat up in the sixth period. Therefore, insufficient taste and aerosol concentration caused by insufficient baking of the second part of the aerosol-generating matrix can be avoided.
  • electromagnetic heating may be used to control the heating of the first heating body; and/or electromagnetic heating may be used to control the heating of the second heating body.
  • the two heating elements can be controlled independently or centrally.
  • electromagnetic heating is used to control the heating of the first heating element, which specifically includes:
  • a first control signal is output according to the first temperature detection value of the first heating element and the target temperature in each stage, wherein the target temperature of the first heating element in the first stage is the first temperature , the second temperature, the target temperature of the second stage is the fifth temperature;
  • a corresponding first alternating magnetic field is generated according to the first control signal, and the first heating element is located in the first alternating magnetic field.
  • electromagnetic heating is used to control the heating of the second heating element, which specifically includes:
  • a second control signal is output according to the second temperature detection value of the second heating element and the target temperature in each stage, wherein the target temperature of the second heating element in the first stage is the third temperature , the target temperature in the second stage is the fourth temperature;
  • a corresponding second alternating magnetic field is generated according to the second control signal, and the second heating element is located in the second alternating magnetic field.
  • thermistors can be respectively provided on the surfaces of the first heating element and the second heating element, and the resistance value of the thermistor can be calculated by detecting the voltage value of each thermistor, thereby obtaining the third Real-time temperature detection signals of the first heating element and the second heating element.
  • two resonant circuits for generating the first alternating magnetic field and the second alternating magnetic field are also provided.
  • the coils of the resonant circuit can generate alternating electromagnetic fields, and the two heating elements are respectively placed in corresponding electromagnetic fields, so that Eddy currents will be induced on the surface to cause the heating element to heat up.
  • the main control module controls the intensity of the oscillation of the resonant circuit according to the detected temperature detection signals of the two parts through a software algorithm.
  • the method by which the first heating element and the second heating element heat the aerosol-forming substrate can also be infrared radiation heating, resistance heating, etc., which are not limited here.
  • FIG 7 is a logical structure diagram of the first embodiment of the aerosol generation device of the present invention.
  • the aerosol generation device 100 of this embodiment includes: a first heating element 21, a second heating element 22, a first control unit 11, and a second control unit. 12.
  • the aerosol-forming matrix includes a first part and a second part.
  • the first heating element 21 is used to heat the first part
  • the second heating element 22 is used to heat the second part.
  • the aerosol-forming matrix is a complete whole, that is, its first part 31 and second part 32 are not physically separated.
  • the first part 31 and the second part 32 are not physically separated.
  • the first part 31 and the second part 32 may also be two parts independent of each other.
  • the first heating element 21 and the second heating element 22 are respectively cylindrical heating elements, and are respectively sleeved on the first part 31 and the second part 32 of the aerosol forming substrate.
  • the first heating element The body 21 and the second heating body 22 can also be a heating piece, a heating needle, a heating rod, a heating wire or a wire, and are respectively inserted into the first part 31 and the second part 32 of the aerosol-forming substrate.
  • the first control unit 11 is used to perform heating control on the first heating element 21 in the first stage, so that the temperature of the first heating element 21 rises to the first temperature, and then drops to the second temperature; and, in the second stage, performs heating control on the first heating element 21 so that the temperature of the first heating element 21 drops from the second temperature to the fifth temperature;
  • the second control unit 12 uses In the first stage, the second heating element 22 is heated and controlled so that the temperature of the second heating element 22 rises to a third temperature; and in the second stage, the second heating element 22 is heated and controlled, So that the temperature of the second heating element 22 rises from the third temperature to the fourth temperature, where the third temperature is lower than the second temperature and the fourth temperature is higher than the fifth temperature.
  • the first control unit 11 is used to perform heating control on the first heating element, so as to increase the temperature of the first heating element to the first temperature in the first period of the first stage; During the second period of the first stage, the temperature of the first heating element is continuously dropped from the first temperature to the second temperature, or the temperature of the first heating element is first dropped to the second temperature. The temperature is maintained at the second temperature, and the first period of time is shorter than the second period of time.
  • the second control unit 12 is used to perform heating control on the second heating element during the second period of the first stage, so that the temperature of the second heating element first rises to the third temperature and then is maintained at the desired temperature. to the third temperature, or to continuously increase the temperature of the second heating element to the third temperature.
  • the second control unit 12 is used to perform heating control on the second heating element, so as to increase the temperature of the second heating element from the third temperature to a third temperature during the third period of the second stage.
  • the first control unit 11 is used to perform heating control on the first heating element, so that the temperature of the first heating element drops from the second temperature to the fifth temperature during the fifth period of the second stage. Temperature; in the sixth period of the second stage, the temperature of the first heating element is maintained at the fifth temperature, or the temperature of the first heating element is raised from the fifth temperature to the seventh temperature, wherein, the fifth time period and the sixth time period are two time periods divided by the second dividing method for the second stage, and the fifth time period is smaller than the sixth time period, and the fourth time period is The temperature is greater than the seventh temperature.
  • the first temperature is between 150°C and 300°C; the second temperature is between 150°C and 300°C, and the difference between the second temperature and the first temperature is between 5°C and 100°C; the third temperature Between 50°C ⁇ 200°C; the fourth temperature is between 150°C ⁇ 300°C.
  • the first control unit 11 includes a first temperature detection module, a first main control module and a first resonance module, wherein the first temperature detection module is used to detect the temperature of the first heating element in real time to obtain the first Temperature detection value; the first main control module is used to output a first control signal according to the first temperature detection value and the target temperature of each stage, wherein the target temperature of the first stage is the first temperature, the third temperature two temperatures, the target temperature of the second stage is the fifth temperature; the first resonance module is used to generate a corresponding first alternating magnetic field according to the first control signal, and the first heating element is located at the first within an alternating magnetic field.
  • the first resonant module is, for example, a first parallel resonant circuit.
  • the second control unit 12 includes a second temperature detection module, a second main control module and a second resonance module, wherein the second temperature detection module is used to detect the temperature of the second heating element in real time to obtain the second Temperature detection value; the second main control module is used to output a second control signal according to the second temperature detection value and the target temperature of each stage, wherein the target temperature of the first stage is the third temperature, and the target temperature of the second stage is the third temperature.
  • the target temperature is the fourth temperature;
  • the second resonance module is used to generate a corresponding second alternating magnetic field according to the second control signal, and the second heating element is located in the second alternating magnetic field.
  • the second resonant module is, for example, a second parallel resonant circuit.
  • the first resonant module can also be a first series resonant circuit
  • the second resonant module can also be a second series resonant circuit
  • Figure 8 is a circuit structure diagram of the first control unit in the aerosol generating device of the present invention.
  • the resistor R2 is connected in series with the thermistor RT1 provided on the surface of the first heating element to form the first temperature detection module.
  • the resistance of the thermistor RT1 can be calculated by measuring the voltage value on the thermistor RT1, thereby obtaining the first temperature detection value of the first heating element, and the detected first temperature detection value is sent to the first main control module.
  • the inductor L1, the capacitor C1 and the MOS tube Q1 form a single-tube parallel resonant circuit.
  • the battery voltage (BAT+) is connected to the single-tube parallel resonant circuit, and the inductor L1 will flow an alternating current.
  • the alternating current Let the inductor L1 generate an alternating electromagnetic field. Since the first heating element is placed in the electromagnetic field, due to the hysteresis effect in the first heating element, the first heating element will generate heat. Furthermore, if the first heating element is made of conductive material, the first heating element will also generate heat on the surface of the first heating element. The induced eddy current is generated on the surface to cause the first heating element to generate heat.
  • the main control module uses a software algorithm to control the intensity of the oscillation of the resonant circuit according to the first temperature detection value, thereby controlling the temperature of the first heating element to change with the set temperature curve.
  • the present invention also constructs a computer program product, including a processor that implements the steps of the aerosol generation method described above when executing the stored computer program.
  • the processor may be a central processing unit (CPU), or other general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), or an application specific integrated circuit (Application Specific Integrated Circuit). Specific Integrated Circuit (ASIC), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general processor can be a microprocessor or any conventional processor.
  • the processor can implement the steps of any aerosol generation method provided by the embodiments of the present invention when executing the computer program, therefore, the steps of any aerosol generation method provided by the embodiments of the present invention can be realized. Please refer to the previous embodiments for details of the beneficial effects, and will not be described again here.
  • the present invention also constructs a storage medium that stores a computer program that implements the above-described steps of the aerosol generation method when executed by a processor.
  • the storage medium may include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), magnetic disk or optical disk and other various computer storage media that can store program codes.
  • the computer program stored in the storage medium can implement the steps of any aerosol generation method provided by the embodiments of the present invention when executed, any aerosol generation method provided by the embodiments of the present invention can be implemented.
  • the beneficial effects that can be achieved by the sol generation method are detailed in the previous embodiments and will not be described again here.

Landscapes

  • Control Of Resistance Heating (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

一种气溶胶产生方法、装置、计算机程序产品及存储介质,该气溶胶产生方法包括:在第一阶段,对第一发热体(21)进行加热控制,以使第一发热体(21)的温度上升至第一温度,再下降至第二温度;以及,对第二发热体(22)进行加热控制,以使第二发热体(22)的温度上升至第三温度;在第二阶段,对第二发热体(22)进行加热控制,以使第二发热体(22)的温度上升至第四温度;以及,对第一发热体(21)进行加热控制,以使第一发热体(21)的温度下降至第五温度。可以让气溶胶形成基质不会过度高温烘烤,从而抑制了杂气和焦味的产生,保证抽吸时间内口感和气溶胶的质量。

Description

气溶胶产生方法、装置、计算机程序产品及存储介质 技术领域
本发明涉及雾化设备领域,尤其涉及一种气溶胶产生方法、装置、计算机程序产品及存储介质。
背景技术
当气溶胶产生装置所产生的气溶胶供人类消费时,加热过程中,加热温度的波动幅度会影响携带尼古丁和(在某些情形中)香料的气溶胶形成物的变化。
现有的气溶胶产生装置所采用的温控方案是气溶胶形成基质的温度上升到操作温度后就维持该温度直到该阶段时间结束,但是,该方案的缺点是操作温度不好确定,如果操作温度过高,则前段抽吸时间内口感和气溶胶质量较好,但是后段抽吸时间容易因为过度烘烤导致杂气增加;如果操作温度过低则前段抽吸时间内因为烘烤不充分而导致气溶胶稀薄甚至没有,而且口感也不佳。
技术问题
本发明要解决的技术问题在于,现有技术存在的操作温度不好确定的缺陷。
解决方案
本发明解决其技术问题所采用的技术方案是:构造一种气溶胶产生方法,包括:
在第一阶段,对第一发热体进行加热控制,以使所述第一发热体的温度上升至第一温度,再下降至第二温度;以及,对第二发热体进行加热控制,以使所述第二发热体的温度上升至第三温度,其中,所述第三温度小于所述第二温度;
在第二阶段,对所述第二发热体进行加热控制,以使所述第二发热体的温度从所述第三温度上升至第四温度;以及,对所述第一发热体进行加热控制,以使所述第一发热体的温度从所述第二温度下降至第五温度,其中,所述第四温度大于所述第五温度。
优选地,所述对第一发热体进行加热控制,以使所述第一发热体的温度上升至第一温度,再下降至第二温度,包括:
对第一发热体进行加热控制,以在所述第一阶段的第一时段,使所述第一发热体的温度上升至第一温度;在所述第一阶段的第二时段,使所述第一发热体的温度从所述第一温度持续下降至第二温度,或使所述第一发热体的温度先下降至所述第二温度,再维持在所述第二温度,而且,所述第一时段小于第二时段。
优选地,所述对第二发热体进行加热控制,以使所述第二发热体的温度上升至第三温度,包括:
在所述第一阶段的第二时段,对第二发热体进行加热控制,以使所述第二发热体的温度先上升至第三温度再维持在所述第三温度,或使所述第二发热体的温度持续上升至所述第三温度。
优选地,所述对所述第二发热体进行加热控制,以使所述第二发热体的温度从所述第三温度上升至第四温度,包括:
对所述第二发热体进行加热控制,以在所述第二阶段的第三时段使所述第二发热体的温度从所述第三温度上升至第四温度;在所述第二阶段的第四时段,使所述第二发热体的温度维持在所述第四温度,或使所述第二发热体的温度从所述第四温度上升至第六温度,其中,所述第三时段及所述第四时段是对所述第二阶段按第一划分方式所划分的两个时段,且所述第三时段小于所述第四段时段。
优选地,对所述第一发热体进行加热控制,以使所述第一发热体的温度从所述第二温度下降至第五温度,包括:
对所述第一发热体进行加热控制,以在第二阶段的第五时段,使所述第一发热体的温度从所述第二温度下降至第五温度;在第二阶段的第六时段,使所述第一发热体的温度维持在所述第五温度,或使所述第一发热体的温度从所述第五温度上升至第七温度,其中,所述第五时段及所述第六时段是对所述第二阶段按第二划分方式所划分的两个时段,且所述第五时段小于所述第六时段,且所述第四温度大于所述第七温度。
优选地,所述第一温度在150℃~300℃之间;所述第二温度在150℃~300℃之间。
优选地,所述第二温度与所述第一温度的差值在5℃~100℃之间。
优选地,所述第三温度在50℃~200℃之间;所述第四温度在150℃~300℃之间。
优选地,所述对第一发热体进行加热控制,包括:
采用电磁加热方式对第一发热体进行加热控制;
和/或,
所述对第二发热体进行加热控制,包括:
采用电磁加热方式对第二发热体进行加热控制。
本发明还构造一种气溶胶产生装置,包括:第一发热体、第二发热体、第一控制单元、第二控制单元,其中,
所述第一控制单元,用于在第一阶段,对所述第一发热体进行加热控制,以使所述第一发热体的温度上升至第一温度,再下降至第二温度;以及,在第二阶段,对所述第一发热体进行加热控制,以使所述第一发热体的温度从所述第二温度下降至第五温度;
所述第二控制单元,用于在第一阶段,对第二发热体进行加热控制,以使所述第二发热体的温度上升至第三温度;以及,在第二阶段,对所述第二发热体进行加热控制,以使所述第二发热体的温度从所述第三温度上升至第四温度,其中,所述第三温度小于所述第二温度,所述第四温度大于所述第五温度。
优选地,所述第一控制单元,用于对所述第一发热体进行加热控制,以在所述第一阶段的第一时段,使所述第一发热体的温度上升至第一温度;在所述第一阶段的第二时段,使所述第一发热体的温度从所述第一温度持续下降至所述第二温度,或使所述第一发热体的温度先下降至所述第二温度,再维持在所述第二温度,而且,所述第一时段小于第二时段。
优选地,所述第二控制单元,用于在所述第一阶段的第二时段,对第二发热体进行加热控制,以使所述第二发热体的温度先上升至第三温度再维持在所述第三温度,或使所述第二发热体的温度持续上升至所述第三温度。
优选地,所述第二控制单元,用于对所述第二发热体进行加热控制,以在所述第二阶段的第三时段使所述第二发热体的温度从所述第三温度上升至第四温度;在所述第二阶段的第四时段,使所述第二发热体的温度维持在所述第四温度,或使所述第二发热体的温度从所述第四温度上升至第六温度,其中,所述第三时段及所述第四时段是对所述第二阶段按第一划分方式所划分的两个时段,且所述第三时段小于所述第四段时段。
优选地,所述第一控制单元,用于对所述第一发热体进行加热控制,以在第二阶段的第五时段,使所述第一发热体的温度从所述第二温度下降至第五温度;在第二阶段的第六时段,使所述第一发热体的温度维持在所述第五温度,或使所述第一发热体的温度从所述第五温度上升至第七温度,其中,所述第五时段及所述第六时段是对所述第二阶段按第二划分方式所划分的两个时段,且所述第五时段小于所述第六时段,且所述第四温度大于所述第七温度。
优选地,所述第一温度在150℃~300℃之间;
所述第二温度在150℃~300℃之间,且所述第二温度与所述第一温度的差值在5℃~100℃之间;
所述第三温度在50℃~200℃之间;
所述第四温度在150℃~300℃之间。
优选地,所述第一控制单元包括:
第一温度检测模块,用于实时检测所述第一发热体的温度,以获取第一温度检测值;
第一主控模块,用于根据所述第一温度检测值及每个阶段的目标温度输出第一控制信号,其中,第一阶段的目标温度为所述第一温度、所述第二温度,第二阶段的目标温度为所述第五温度;
第一谐振模块,用于根据所述第一控制信号产生相应的第一交变磁场,且所述第一发热体位于所述第一交变磁场内。
优选地,所述第一谐振模块为第一并联谐振电路或第一串联谐振电路。
优选地,所述第二控制单元包括:
第二温度检测模块,用于实时检测所述第二发热体的温度,以获取第二温度检测值;
第二主控模块,用于根据所述第二温度检测值及每个阶段的目标温度输出第二控制信号,其中,第一阶段的目标温度为所述第三温度,第二阶段的目标温度为所述第四温度;
第二谐振模块,用于根据所述第二控制信号产生相应的第二交变磁场,且所述第二发热体位于所述第二交变磁场内。
优选地,所述第二谐振模块为第二并联谐振电路或第二串联谐振电路。
本发明还构造一种计算机程序产品,包括处理器,所述处理器在执行所存储的计算机程序时实现以上所述的气溶胶产生方法的步骤。
本发明还构造一种存储介质,存储有计算机程序,所述计算机程序在被处理器执行时实现以上所述的气溶胶产生方法的步骤。
有益效果
实施本发明的技术方案,在第一阶段,通过对第一发热体的加热控制,先使第一发热体的温度升高到第一温度(第一阶段的最高温度点),这样,可以让气溶胶形成基质得到充分的预热,有利于气溶胶的产生;然后再使第一发热体的温度从第一温度下降至第二温度,这样可以让气溶胶形成基质不会过度高温烘烤,从而抑制了杂气和焦味的产生。同时,在第一阶段,通过对第二发热体的加热控制,使第二发热体的温度上升到第三温度,这样,可以让第二部分的气溶胶形成基质提前烘烤,有利于气溶胶形成基质在第二阶段产生气溶胶。在第二阶段,通过对第二发热体的加热控制,使第二发热体的温度上升到第四温度,同时,通过对第一发热体的加热控制,使第一发热体的温度下降至第五温度,从而保证抽吸时间内口感和气溶胶的质量。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明气溶胶产生方法实施例一的流程图;
图2是本发明一个实施例中气溶胶产生装置中两个发热体与气溶胶形成基质的结构示意图;
图3A是本发明一个实施例中两个发热体的温度设置的曲线图;
图3B是本发明一个实施例中两个发热体的温度分布的曲线图;
图4是本发明一个实施例中气溶胶产生装置中两个发热体的结构示意图;
图5是本发明一个实施例中两个发热体的温度分布的曲线图;
图6是本发明一个实施例中两个发热体的温度分布的曲线图;
图7是本发明气溶胶产生装置实施例一的逻辑结构图;
图8是本发明气溶胶产生装置中第一控制单元的电路结构图。
本发明的实施例
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是本发明气溶胶产生方法实施例一的流程图,首先说明的是,气溶胶产生装置设置成在使用中用于加热气溶胶形成基质(例如烟支)的至少两个热源,即,至少包括第一发热体及第二发热体,相应地,气溶胶形成基质包括第一部分和第二部分。而且,第一发热体用于对第一部分进行加热,第二发热体用于对第二部分进行加热。例如,在一个具体实施例中,如图2所示,气溶胶形成基质为一个完整的整体,即,其第一部分31和第二部分32并没有物理分割,当然,在其它实施例中,第一部分31和第二部分32也可为彼此独立的两个部分。第一发热体21及第二发热体22分别为圆筒状发热体,且分别套设在气溶胶形成基质的第一部分31及第二部分32上,当然,在其它实施例中,第一发热体21及第二发热体22也可为发热片、加热针、加热棒、加热线或丝,且分别插设在气溶胶形成基质的第一部分31及第二部分32上。第一发热体21及第二发热体22可以为单个发热体上的不同的区段,也可以是物理上相间隔的不同的两个发热体。
如图1所示,该实施例的气溶胶产生方法包括以下步骤: 
步骤S10.在第一阶段,对第一发热体进行加热控制,以使所述第一发热体的温度上升至第一温度,再下降至第二温度;以及,对第二发热体进行加热控制,以使所述第二发热体的温度上升至第三温度,其中,所述第三温度小于所述第二温度;
在该步骤中,在第一阶段,第一发热体及第二发热体的温度均是从初始温度开始上升的,该初始温度可为室温,例如25度、0度等。
步骤S20.在第二阶段,对所述第二发热体进行加热控制,以使所述第二发热体的温度从所述第三温度上升至第四温度;以及,对所述第一发热体进行加热控制,以使所述第一发热体的温度从所述第二温度下降至第五温度,其中,所述第四温度大于所述第五温度。
在该实施例的技术方案中,结合图3A及图3B,0~t1为第一阶段,t1~t2为第二阶段。在第一阶段(0~t1),通过对第一发热体的加热控制,先使第一发热体的温度升高到第一温度T1(第一阶段的最高温度点),这样,可以让气溶胶形成基质得到充分的预热,有利于气溶胶的产生;然后再使第一发热体的温度从第一温度T1持续下降至第二温度T2(T2<T1),这样可以让气溶胶形成基质不会过度高温烘烤,从而抑制了杂气和焦味的产生。同时,在第一阶段(0~t1),通过对第二发热体的加热控制,使第二发热体的温度上升到第三温度T3(T3<T2),这样,可以让气溶胶形成基质的第二部分提前烘烤,有利于第二部分在第二阶段产生气溶胶。在第二阶段(t1~t2),通过对第二发热体的加热控制,使第二发热体的温度上升到第四温度T4(第二阶段的最高温度点),同时,通过对第一发热体的加热控制,使第一发热体的温度下降至第五温度T5(T5<T4),从而保证抽吸时间内口感和气溶胶的质量。
进一步地,第一温度在150℃~300℃之间(包括150℃及300℃),第二温度在150℃~300℃之间(包括150℃及300℃),第二温度与第一温度的差值在5℃~100℃之间(包括5℃及100℃)。第三温度在50℃~200℃之间(包括50℃及200℃);第四温度在150℃~300℃之间(包括150℃及300℃)。
在一个具体实施例中,如图3A、3B所示,第一温度为300℃,第二温度为240℃,第三温度为100℃,第四温度为290℃,第五温度为200℃。这样,在第一阶段,对于第一发热体,其温度先升高到300℃(第一阶段的最高温度点),从而使气溶胶形成基质的第一部分得到充分的预热,有利于该第一部分在第一阶段气溶胶的产生,然后再下降至240℃,从而使该第一部分不会过度高温烘烤,从而抑制了杂气和焦味的产生。对于第二发热体,其温度上升到100℃,从而为气溶胶形成基质的第二部分在第二阶段产生气溶胶进行预热。在第二阶段,对于第二发热体,其温度上升到290℃,从而该第二部分进行充分加热,利于气溶胶的产生;对于第一发热体,其温度下降至200℃,从而避免第一部分因过度高温烘烤而产生的杂气或焦味,保证抽吸时间内口感和气溶胶的质量。
进一步地,在一个可选实施例中,步骤S10中的对第一发热体进行加热控制,以使所述第一发热体的温度上升至第一温度,再下降至第二温度,具体包括:对第一发热体进行加热控制,以在所述第一阶段的第一时段,使所述第一发热体的温度上升至第一温度;在所述第一阶段的第二时段,使所述第一发热体的温度从所述第一温度持续下降至第二温度,或使所述第一发热体的温度先下降至所述第二温度,再维持在所述第二温度,而且,所述第一时段小于第二时段。
在一个具体实施例中,如图3B所示,0~t11为第一阶段的第一时段,t11~t1为第一阶段的第二时段。在第一阶段的第一时段,由于第一时段(例如10s)小于第二时段(例如2分钟),所以,可使第一发热体的温度快速升到第一温度T1,以对气溶胶形成基质的第一部分进行快速预热,从而避免了第一部分在开始阶段因为烘烤不足而导致的口感和气溶胶浓度不足。在第一阶段的第二时段,第一发热体的温度从第一温度T1持续下降至第二温度T2,这样可避免第一部分因温度过高而产生杂气和焦味。
在另一个具体实施例中,如图3B所示,0~t11为第一阶段的第一时段,t11~t1为第一阶段的第二时段。在第一阶段的第一时段,由于第一时段(例如10s)小于第二时段(例如2分钟),所以,可使第一发热体的温度快速升到第一温度T1,以对气溶胶形成基质的第一部分进行快速预热,从而避免了开始阶段因为烘烤不足而导致的口感和气溶胶浓度不足。在第一阶段的第二时段,第一发热体的温度在 t11~t12段内先下降至第二温度T2,在t12~t1段内维持在第二温度T2,这样,也可避免第一部分因温度过高而产生杂气和焦味。
进一步地,在一个可选实施例中,步骤S10中对第二发热体进行加热控制,以使所述第二发热体的温度上升至第三温度,包括:在所述第一阶段的第二时段,对第二发热体进行加热控制,以使所述第二发热体的温度先上升至第三温度再维持在所述第三温度,或使所述第二发热体的温度持续上升至所述第三温度。
在该实施例中,在第一发热体的温度从第一温度T1持续下降到第二温度T2的过程中,即,在第二时段,才开始对第二发热体进行加热控制,例如,如图3A所示,从第二时段的t13时刻(t13时刻在第二时段内)开始对第二发热体进行加热控制,以使其温度先上升至第三温度T3再维持在第三温度T3,这样,可避免气溶胶形成基质的第一部分因温度过高而产生杂气和焦味(因为第二发热体开始加热时,气溶胶形成基质第二部分的热量也会热传导至第一部分),也避免第二部分产生气溶胶的时间过早,气溶胶产生物质被过早地消耗,而导致在抽吸后期第二部分产生的气溶胶的浓度过低。当然,在其它实施例中,也可使第二发热体的温度持续上升至所述第三温度。
关于图3A及图3B中第二发热体在第一阶段的发热曲线,还需说明的是,虽然图3B中第二发热体的温度从第一时段开始时便开始上升,但这是因为第一发热体的热传导而导致的被动升温,第二时段的升温才是第二发热体主动加热而导致的升温。例如,在图4所示的实施例中,第一发热体21与第二发热体22为一体式管状结构,且第一发热体21与第二发热体22之间通过多个孔23进行部分间隔,当然,在其它实施例中,也可通过挖槽来进行部分间隔。这样,第一发热体21与第二发热体22之间的温度场的相互影响较小,便于单独控制第一发热体21或第二发热体22的温度,同时第一发热体21与第二发热体22之间的相对位置较为确定,便于制作和安装。
进一步地,在一个可选实施例中,对所述第二发热体进行加热控制,以使所述第二发热体的温度从所述第三温度上升至第四温度,包括:对所述第二发热体进行加热控制,以在所述第二阶段的第三时段使所述第二发热体的温度从所述第三温度上升至第四温度;在所述第二阶段的第四时段,使所述第二发热体的温度维持在所述第四温度,或使所述第二发热体的温度从所述第四温度上升至第六温度,其中,所述第三时段及所述第四时段是对所述第二阶段按第一划分方式所划分的两个时段,且所述第三时段小于所述第四段时段。
在一个具体实施例中,如图5所示,可将第二阶段(t1~t2)按第一划分方式划分成第三时段(t1~t21)及第四时段(t21~t2),且第三时段小于第四时段。对于第二阶段的第二发热体,通过对其进行加热控制,可使其在第三时段的温度从第三温度T3上升至第四温度T4,及在第四时段的温度维持在第四温度T4。由于第三时段小于第四时段,所以,第二发热体的快速预热可避免气溶胶形成基质的第二部分因为烘烤不足而导致的口感和气溶胶浓度不足。
在一个具体实施例中,如图6所示,同样将第二阶段(t1~t2)划分成第三时段(t1~t21)及第四时段(t21~t2),且第三时段小于第四时段。对于第二阶段的第二发热体,通过对其进行加热控制,可使其在第三时段的温度从第三温度T3上升至第四温度T4,及在第四时段的温度从第四温度T4上升至第六温度T6。由于第三时段小于第四时段,所以,第二发热体的快速预热可避免气溶胶形成基质的第二部分因为烘烤不足而导致的口感和气溶胶浓度不足。同时,由于第二发热体在第四时段也会升温,所以还可避免后续加热过程中因为烘烤不足而导致的口感和气溶胶浓度不足。
进一步地,在一个可选实施例中,对所述第一发热体进行加热控制,以使所述第一发热体的温度从所述第二温度下降至第五温度,包括:对所述第一发热体进行加热控制,以在第二阶段的第五时段,使所述第一发热体的温度从所述第二温度下降至第五温度;在第二阶段的第六时段,使所述第一发热体的温度维持在所述第五温度,或使所述第一发热体的温度从所述第五温度上升至第七温度,其中,所述第五时段及所述第六时段是对所述第二阶段按第二划分方式所划分的两个时段,且所述第五时段小于所述第六时段,且所述第四温度大于所述第七温度。另外,第一发热体的温度在第五时段从第二温度下降至第五温度的过程可为:按同一下降速率持续下降,还可为:先按第一下降速率缓慢下降,再按第二下降速率快速下降。
在一个具体实施例中,如图5所示,可将第二阶段(t1~t2)按第二划分方式划分成第五时段(t1~t22)及第六时段(t22~t2),且第五时段小于第六时段。对于第二阶段的第一发热体,通过对其进行加热控制,可使其在第五时段的温度从第二温度T2下降至第五温度T5,及在第六时段的温度维持在第六温度T6。这样,可避免气溶胶产生基质的第二部分不会因为过度高温烘烤而导致杂气和焦味的产生(因为第一发热体在加热时,气溶胶形成基质第一部分的热量也会热传导至第二部分)。
在一个具体实施例中,如图6所示,同样将第二阶段(t1~t2)划分成第五时段(t1~t22)及第六时段(t22~t2),且第五时段小于第六时段。对于第二阶段的第一发热体,通过对其进行加热控制,可使其在第五时段的温度从第二温度T2下降至第五温度T5,及在第六时段的温度从第五温度T5上升至第六温度T6,这样既可避免气溶胶产生基质的第二部分不会因为过度高温烘烤而导致杂气和焦味的产生,又由于第一发热体在第六时段也会升温,所以又可避免气溶胶产生基质的第二部分因为烘烤不足而导致的口感和气溶胶浓度不足。
进一步地,在一个可选实施例中,可采用电磁加热方式对第一发热体进行加热控制;和/或,采用电磁加热方式对第二发热体进行加热控制。而且,对两个发热体的控制可采用独立控制方式,也可集中控制方式。 
在一个具体实施例中,采用电磁加热方式对第一发热体进行加热控制,具体包括:
实时检测所述第一发热体的温度,以获取第一温度检测值;
根据所述第一发热体的所述第一温度检测值及在每个阶段的目标温度输出第一控制信号,其中,所述第一发热体在第一阶段的目标温度为所述第一温度、所述第二温度,第二阶段的目标温度为所述第五温度;
根据所述第一控制信号产生相应的第一交变磁场,且所述第一发热体位于所述第一交变磁场内。
相应地,采用电磁加热方式对第二发热体进行加热控制,具体包括:
实时检测所述第二发热体的温度,以获取第二温度检测值;
根据所述第二发热体的所述第二温度检测值及在每个阶段的目标温度输出第二控制信号,其中,所述第二发热体在第一阶段的目标温度为所述第三温度,第二阶段的目标温度为所述第四温度;
根据所述第二控制信号产生相应的第二交变磁场,且所述第二发热体位于所述第二交变磁场内。
在上述实施例中,可在第一发热体及第二发热体的表面上分别设置热敏电阻,并通过检测每个热敏电阻的电压值来计算出热敏电阻的阻值,从而得到第一发热体及第二发热体的实时温度检测信号。另外,还设置两个分别用于产生第一交变磁场及第二交变磁场的谐振电路,该谐振电路的线圈可产生交变的电磁场,且两个发热体分别置于相应的电磁场,从而会在表面产生感应涡电流使发热体发热。而且,由主控模块通过软件算法根据所检测的两个部分的温度检测信号来控制谐振电路的震荡的强度。
当然,第一发热体及第二发热体对气溶胶形成基质加热的方式还可以是红外辐射加热、电阻加热等,在此不作限制。
图7是本发明气溶胶产生装置实施例一的逻辑结构图,该实施例的气溶胶产生装置100包括:第一发热体21、第二发热体22、第一控制单元11、第二控制单元12。另外,气溶胶形成基质包括第一部分和第二部分。而且,第一发热体21用于对第一部分进行加热,第二发热体22用于对第二部分进行加热。例如,在一个具体实施例中,如图2所示,气溶胶形成基质是一个完整的整体,即,其第一部分31和第二部分32并没有物理分割,当然,在其它实施例中,第一部分31和第二部分32也可为彼此独立的两个部分。第一发热体21及第二发热体22分别为圆筒状发热体,且分别套设在气溶胶形成基质的第一部分31及第二部分32上,当然,在其它实施例中,第一发热体21及第二发热体22也可为发热片、加热针、加热棒、加热线或丝,且分别插设在气溶胶形成基质的第一部分31及第二部分32上。
在图7所示的实施例中,第一控制单元11用于在第一阶段,对第一发热体21进行加热控制,以使所述第一发热体21的温度上升至第一温度,再下降至第二温度;以及,在第二阶段,对第一发热体21进行加热控制,以使所述第一发热体21的温度从第二温度下降至第五温度;第二控制单元12用于在第一阶段,对第二发热体22进行加热控制,以使所述第二发热体22的温度上升至第三温度;以及,在第二阶段,对第二发热体22进行加热控制,以使所述第二发热体22的温度从第三温度上升至第四温度,其中,第三温度小于第二温度,第四温度大于第五温度。
进一步地,第一控制单元11用于对所述第一发热体进行加热控制,以在所述第一阶段的第一时段,使所述第一发热体的温度上升至第一温度;在所述第一阶段的第二时段,使所述第一发热体的温度从所述第一温度持续下降至所述第二温度,或使所述第一发热体的温度先下降至所述第二温度,再维持在所述第二温度,而且,所述第一时段小于第二时段。
进一步地,第二控制单元12用于在所述第一阶段的第二时段,对第二发热体进行加热控制,以使所述第二发热体的温度先上升至第三温度再维持在所述第三温度,或使所述第二发热体的温度持续上升至所述第三温度。
进一步地,第二控制单元12用于对所述第二发热体进行加热控制,以在所述第二阶段的第三时段使所述第二发热体的温度从所述第三温度上升至第四温度;在所述第二阶段的第四时段,使所述第二发热体的温度维持在所述第四温度,或使所述第二发热体的温度从所述第四温度上升至第六温度,其中,所述第三时段及所述第四时段是对所述第二阶段按第一划分方式所划分的两个时段,且所述第三时段小于所述第四段时段。
进一步地,第一控制单元11用于对所述第一发热体进行加热控制,以在第二阶段的第五时段,使所述第一发热体的温度从所述第二温度下降至第五温度;在第二阶段的第六时段,使所述第一发热体的温度维持在所述第五温度,或使所述第一发热体的温度从所述第五温度上升至第七温度,其中,所述第五时段及所述第六时段是对所述第二阶段按第二划分方式所划分的两个时段,且所述第五时段小于所述第六时段,且所述第四温度大于所述第七温度。
进一步地,第一温度在150℃~300℃之间;第二温度在150℃~300℃之间,且第二温度与第一温度的差值在5℃~100℃之间;第三温度在50℃~200℃之间;第四温度在150℃~300℃之间。
进一步地,第一控制单元11包括第一温度检测模块、第一主控模块和第一谐振模块,其中,第一温度检测模块用于实时检测所述第一发热体的温度,以获取第一温度检测值;第一主控模块用于根据所述第一温度检测值及每个阶段的目标温度输出第一控制信号,其中,第一阶段的目标温度为所述第一温度、所述第二温度,第二阶段的目标温度为所述第五温度;第一谐振模块用于根据所述第一控制信号产生相应的第一交变磁场,且所述第一发热体位于所述第一交变磁场内。该第一谐振模块例如为第一并联谐振电路。
进一步地,第二控制单元12包括第二温度检测模块、第二主控模块和第二谐振模块,其中,第二温度检测模块用于实时检测所述第二发热体的温度,以获取第二温度检测值;第二主控模块用于根据所述第二温度检测值及每个阶段的目标温度输出第二控制信号,其中,第一阶段的目标温度为所述第三温度,第二阶段的目标温度为所述第四温度;第二谐振模块用于根据所述第二控制信号产生相应的第二交变磁场,且所述第二发热体位于所述第二交变磁场内。该第二谐振模块例如为第二并联谐振电路。
当然,在其它实施例中,第一谐振模块还可为第一串联谐振电路,第二谐振模块还可为第二串联谐振电路。
图8是本发明气溶胶产生装置中第一控制单元的电路结构图, 在该第一控制单元中,电阻R2与设置在第一发热体表面的热敏电阻RT1串联组成第一温度检测模块,通过测量热敏电阻RT1上的电压值可以算出热敏电阻RT1的阻值,从而得到第一发热体的第一温度检测值,所检测的第一温度检测值送入第一主控模块。另外,电感线圈L1、电容C1及MOS管Q1组成单管并联谐振电路,工作时,电池电压(BAT+)接入该单管并联谐振电路,电感线圈L1将流过交变电流,该交变电流让电感线圈L1产生交变的电磁场。第一发热体由于置于该电磁场中,由于在第一发热体内的磁滞效应,第一发热体会发热,进一步地,如果第一发热体采用导电材料制成,还会在第一发热体的表面产生感应涡电流使第一发热体发热。 主控模块通过软件算法,根据第一温度检测值控制谐振电路震荡的强度,从而控制第一发热体的温度随着设定的温度曲线变化。
应理解,第二控制单元的电路结构与图8类似,在此不做赘述。
本发明还构造一种计算机程序产品,包括处理器,该处理器在执行所存储的计算机程序时实现以上所述的气溶胶产生方法的步骤。
应当理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现成可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器,也可以是任何常规的处理器等。
而且,由于处理器在执行计算机程序时可实现本发明实施例所提供的任一种气溶胶产生方法的步骤,因此,可以实现本发明实施例所提供的任一种气溶胶产生方法所能实现的有益效果,详见前面的实施例,在此不再赘述。
本发明还构造一种存储介质,存储有计算机程序,该计算机程序在被处理器执行时实现以上所述的气溶胶产生方法的步骤。
应当理解,该存储介质可以包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的计算机存储介质。而且,由于该存储介质中所存储的计算机程序在被执行时可实现本发明实施例所提供的任一种气溶胶产生方法的步骤,因此,可以实现本发明实施例所提供的任一种气溶胶产生方法所能实现的有益效果,详见前面的实施例,在此不再赘述。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (21)

  1. 一种气溶胶产生方法,其特征在于,包括:
    在第一阶段,对第一发热体进行加热控制,以使所述第一发热体的温度上升至第一温度,再下降至第二温度;以及,对第二发热体进行加热控制,以使所述第二发热体的温度上升至第三温度,其中,所述第三温度小于所述第二温度;
    在第二阶段,对所述第二发热体进行加热控制,以使所述第二发热体的温度从所述第三温度上升至第四温度;以及,对所述第一发热体进行加热控制,以使所述第一发热体的温度从所述第二温度下降至第五温度,其中,所述第四温度大于所述第五温度。
  2. 根据权利要求1所述的气溶胶产生方法,其特征在于,所述对第一发热体进行加热控制,以使所述第一发热体的温度上升至第一温度,再下降至第二温度,包括:
    对第一发热体进行加热控制,以在所述第一阶段的第一时段,使所述第一发热体的温度上升至第一温度;在所述第一阶段的第二时段,使所述第一发热体的温度从所述第一温度持续下降至第二温度,或使所述第一发热体的温度先从所述第一温度下降至所述第二温度,再维持在所述第二温度,而且,所述第一时段小于第二时段。
  3. 根据权利要求2所述的气溶胶产生方法,其特征在于,所述对第二发热体进行加热控制,以使所述第二发热体的温度上升至第三温度,包括:
    在所述第一阶段的第二时段,对第二发热体进行加热控制,以使所述第二发热体的温度先上升至第三温度再维持在所述第三温度,或使所述第二发热体的温度持续上升至所述第三温度。
  4. 根据权利要求1所述的气溶胶产生方法,其特征在于,所述对所述第二发热体进行加热控制,以使所述第二发热体的温度从所述第三温度上升至第四温度,包括:
    对所述第二发热体进行加热控制,以在所述第二阶段的第三时段使所述第二发热体的温度从所述第三温度上升至第四温度;在所述第二阶段的第四时段,使所述第二发热体的温度维持在所述第四温度,或使所述第二发热体的温度从所述第四温度上升至第六温度,其中,所述第三时段及所述第四时段是对所述第二阶段按第一划分方式所划分的两个时段,且所述第三时段小于所述第四段时段。
  5. 根据权利要求1所述的气溶胶产生方法,其特征在于,对所述第一发热体进行加热控制,以使所述第一发热体的温度从所述第二温度下降至第五温度,包括:
    对所述第一发热体进行加热控制,以在第二阶段的第五时段,使所述第一发热体的温度从所述第二温度下降至第五温度;在第二阶段的第六时段,使所述第一发热体的温度维持在所述第五温度,或使所述第一发热体的温度从所述第五温度上升至第七温度,其中,所述第五时段及所述第六时段是对所述第二阶段按第二划分方式所划分的两个时段,且所述第五时段小于所述第六时段,且所述第四温度大于所述第七温度。
  6. 根据权利要求1-5任一项所述的气溶胶产生方法,其特征在于,所述第一温度在150℃~300℃之间;所述第二温度在150℃~300℃之间。
  7. 根据权利要求6所述的气溶胶产生方法,其特征在于,所述第二温度与所述第一温度的差值在5℃~100℃之间。
  8. 根据权利要求1-5任一项所述的气溶胶产生方法,其特征在于,所述第三温度在50℃~200℃之间;所述第四温度在150℃~300℃之间。
  9. 根据权利要求1-5任一项所述的气溶胶产生方法,其特征在于,所述对第一发热体进行加热控制,包括:
    采用电磁加热方式对第一发热体进行加热控制;
    和/或,
    所述对第二发热体进行加热控制,包括:
    采用电磁加热方式对第二发热体进行加热控制。
  10. 一种气溶胶产生装置,其特征在于,包括:第一发热体、第二发热体、第一控制单元、第二控制单元,其中,
    所述第一控制单元,用于在第一阶段,对所述第一发热体进行加热控制,以使所述第一发热体的温度上升至第一温度,再下降至第二温度;以及,在第二阶段,对所述第一发热体进行加热控制,以使所述第一发热体的温度从所述第二温度下降至第五温度;
    所述第二控制单元,用于在第一阶段,对第二发热体进行加热控制,以使所述第二发热体的温度上升至第三温度;以及,在第二阶段,对所述第二发热体进行加热控制,以使所述第二发热体的温度从所述第三温度上升至第四温度,其中,所述第三温度小于所述第二温度,所述第四温度大于所述第五温度。
  11. 根据权利要求10所述的气溶胶产生装置,其特征在于,
    所述第一控制单元,用于对所述第一发热体进行加热控制,以在所述第一阶段的第一时段,使所述第一发热体的温度上升至第一温度;在所述第一阶段的第二时段,使所述第一发热体的温度从所述第一温度持续下降至所述第二温度,或使所述第一发热体的温度先下降至所述第二温度,再维持在所述第二温度,而且,所述第一时段小于第二时段。
  12. 根据权利要求11所述的气溶胶产生装置,其特征在于,
    所述第二控制单元,用于在所述第一阶段的第二时段,对第二发热体进行加热控制,以使所述第二发热体的温度先上升至第三温度再维持在所述第三温度,或使所述第二发热体的温度持续上升至所述第三温度。
  13. 根据权利要求10所述的气溶胶产生装置,其特征在于,
    所述第二控制单元,用于对所述第二发热体进行加热控制,以在所述第二阶段的第三时段使所述第二发热体的温度从所述第三温度上升至第四温度;在所述第二阶段的第四时段,使所述第二发热体的温度维持在所述第四温度,或使所述第二发热体的温度从所述第四温度上升至第六温度,其中,所述第三时段及所述第四时段是对所述第二阶段按第一划分方式所划分的两个时段,且所述第三时段小于所述第四段时段。
  14. 根据权利要求10所述的气溶胶产生装置,其特征在于,
    所述第一控制单元,用于对所述第一发热体进行加热控制,以在第二阶段的第五时段,使所述第一发热体的温度从所述第二温度下降至第五温度;在第二阶段的第六时段,使所述第一发热体的温度维持在所述第五温度,或使所述第一发热体的温度从所述第五温度上升至第七温度,其中,所述第五时段及所述第六时段是对所述第二阶段按第二划分方式所划分的两个时段,且所述第五时段小于所述第六时段,且所述第四温度大于所述第七温度。
  15. 根据权利要求10-14任一项所述的气溶胶产生装置,其特征在于,
    所述第一温度在150℃~300℃之间;
    所述第二温度在150℃~300℃之间,且所述第二温度与所述第一温度的差值在5℃~100℃之间;
    所述第三温度在50℃~200℃之间;
    所述第四温度在150℃~300℃之间。
  16. 根据权利要求10-14任一项所述的气溶胶产生装置,其特征在于,所述第一控制单元包括:
    第一温度检测模块,用于实时检测所述第一发热体的温度,以获取第一温度检测值;
    第一主控模块,用于根据所述第一温度检测值及每个阶段的目标温度输出第一控制信号,其中,第一阶段的目标温度为所述第一温度、所述第二温度,第二阶段的目标温度为所述第五温度;
    第一谐振模块,用于根据所述第一控制信号产生相应的第一交变磁场,且所述第一发热体位于所述第一交变磁场内。
  17. 根据权利要求16所述的气溶胶产生装置,其特征在于,所述第一谐振模块为第一并联谐振电路或第一串联谐振电路。
  18. 根据权利要求10-14任一项所述的气溶胶产生装置,其特征在于,所述第二控制单元包括:
    第二温度检测模块,用于实时检测所述第二发热体的温度,以获取第二温度检测值;
    第二主控模块,用于根据所述第二温度检测值及每个阶段的目标温度输出第二控制信号,其中,第一阶段的目标温度为所述第三温度,第二阶段的目标温度为所述第四温度;
    第二谐振模块,用于根据所述第二控制信号产生相应的第二交变磁场,且所述第二发热体位于所述第二交变磁场内。
  19. 根据权利要求18所述的气溶胶产生装置,其特征在于,所述第二谐振模块为第二并联谐振电路或第二串联谐振电路。
  20. 一种计算机程序产品,包括处理器,其特征在于,所述处理器在执行所存储的计算机程序时实现权利要求1-9任一项所述的气溶胶产生方法的步骤。
  21. 一种存储介质,存储有计算机程序,其特征在于,所述计算机程序在被处理器执行时实现权利要求1-9任一项所述的气溶胶产生方法的步骤。
PCT/CN2023/080910 2022-06-27 2023-03-10 气溶胶产生方法、装置、计算机程序产品及存储介质 WO2024001297A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210736648.X 2022-06-27
CN202210736648.XA CN117322686A (zh) 2022-06-27 2022-06-27 气溶胶产生方法、装置、计算机程序产品及存储介质

Publications (1)

Publication Number Publication Date
WO2024001297A1 true WO2024001297A1 (zh) 2024-01-04

Family

ID=89288947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080910 WO2024001297A1 (zh) 2022-06-27 2023-03-10 气溶胶产生方法、装置、计算机程序产品及存储介质

Country Status (2)

Country Link
CN (1) CN117322686A (zh)
WO (1) WO2024001297A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108783602A (zh) * 2018-06-27 2018-11-13 威滔电子科技(深圳)有限公司 控制气溶胶产生装置产生气溶胶的方法及装置
US20190159517A1 (en) * 2016-07-26 2019-05-30 British American Tobacco (Investments) Limited Method of generating aerosol
CN111513365A (zh) * 2020-04-02 2020-08-11 深圳麦时科技有限公司 加热式气溶胶产生装置及方法
CN113826955A (zh) * 2020-06-24 2021-12-24 深圳麦克韦尔科技有限公司 气溶胶产生装置控制方法、气溶胶产生装置及控制电路
CN215913314U (zh) * 2021-10-20 2022-03-01 深圳麦克韦尔科技有限公司 气溶胶产生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190159517A1 (en) * 2016-07-26 2019-05-30 British American Tobacco (Investments) Limited Method of generating aerosol
CN108783602A (zh) * 2018-06-27 2018-11-13 威滔电子科技(深圳)有限公司 控制气溶胶产生装置产生气溶胶的方法及装置
CN111513365A (zh) * 2020-04-02 2020-08-11 深圳麦时科技有限公司 加热式气溶胶产生装置及方法
CN113826955A (zh) * 2020-06-24 2021-12-24 深圳麦克韦尔科技有限公司 气溶胶产生装置控制方法、气溶胶产生装置及控制电路
CN215913314U (zh) * 2021-10-20 2022-03-01 深圳麦克韦尔科技有限公司 气溶胶产生装置

Also Published As

Publication number Publication date
CN117322686A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
JP6879497B2 (ja) 電子タバコ器具及びその制御方法、発熱モジュール、電子装置及び記憶媒体
JP6930691B2 (ja) エアロゾル生成装置のフィードバック制御機能を具現する方法及びそのエアロゾル生成装置
JP7011717B2 (ja) エアロゾル生成装置及びそれを制御する方法
WO2021093778A1 (zh) 气溶胶产生装置及其控制方法
WO2017041251A1 (zh) 电子烟及其加热雾化控制方法
CN110367593A (zh) 一种温控方法、气雾产生装置及气雾产生系统
JP2022538289A (ja) エアロゾル発生デバイス用の装置
CN108873981A (zh) 电子烟加热温度的控制方法及装置
KR20220008852A (ko) 에어로졸 생성 디바이스용 장치
JP2024029128A (ja) エアロゾル生成材料の特性の特定
WO2024001297A1 (zh) 气溶胶产生方法、装置、计算机程序产品及存储介质
US20220151304A1 (en) Method for controlling heating mode of atomization assembly and related device
CN111990703A (zh) 气溶胶产生装置及方法
CN112353016A (zh) 一种红外辐射加热烟具的智能温控方法
WO2024082852A1 (zh) 控制方法、控制模块及气溶胶生成装置
CN114631647A (zh) 电子烟及其加热方法、存储介质、电子设备
JP6892058B2 (ja) エアロゾル生成装置及びエアロゾル生成装置を掃除する方法
CN112120297A (zh) 电子烟的控制方法
WO2021213465A1 (zh) 气溶胶生成装置及其控制方法
EP4316290A1 (en) Inhalation device, control method, and program
JP7184937B2 (ja) エアロゾル生成デバイス
KR20210030464A (ko) 전기 가열식 흡연 시스템에서 가열 장치의 온도를 제어하는 방법, 및 전기 가열식 흡연 시스템
WO2023088447A1 (zh) 气雾生成装置及控制方法
WO2023051733A1 (zh) 气溶胶生成装置及其控制方法
CN113519917B (zh) 一种自适应调节的加热烟具温度控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829488

Country of ref document: EP

Kind code of ref document: A1