WO2024000879A1 - 一种均苯四甲酸二酐精制的方法 - Google Patents

一种均苯四甲酸二酐精制的方法 Download PDF

Info

Publication number
WO2024000879A1
WO2024000879A1 PCT/CN2022/122123 CN2022122123W WO2024000879A1 WO 2024000879 A1 WO2024000879 A1 WO 2024000879A1 CN 2022122123 W CN2022122123 W CN 2022122123W WO 2024000879 A1 WO2024000879 A1 WO 2024000879A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyromellitic dianhydride
refining
mixed solvent
acetonitrile
anhydride
Prior art date
Application number
PCT/CN2022/122123
Other languages
English (en)
French (fr)
Inventor
曹翠琼
曹丹
李江华
庄建
李峻
高俊
唐莹
王福
曹正国
Original Assignee
江苏正丹化学工业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏正丹化学工业股份有限公司 filed Critical 江苏正丹化学工业股份有限公司
Publication of WO2024000879A1 publication Critical patent/WO2024000879A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to a method for refining pyromellitic dianhydride. Specifically, crude pyromellitic dianhydride is obtained through an oxidation-crystallization method to obtain refined pyromellitic dianhydride, which belongs to the technical field of chemical industry.
  • homoanhydride Pyromellitic dianhydride, referred to as homoanhydride, the English abbreviation is PMDA.
  • Homoanhydride is an important organic chemical raw material. Homoanhydrides are important raw materials used in the production of polyimide resins and films, matting agents, plasticizers, epoxy resin curing agents, polyester resin cross-linking agents, phenolic resin stabilizers, etc.
  • Polyimide is a new material that is resistant to high temperatures, low temperatures, radiation, impact, and has excellent electrical and mechanical properties. It has important uses in the aerospace and electromechanical industries that cannot be replaced by other engineering plastics. As the market usage of polyimide continues to expand, the demand for homoanhydride, as the main raw material for its synthesis, is also increasing day by day.
  • Air oxidation method includes batching, oxidation, crystallization centrifugation, dehydration to anhydride, refining, acetic acid recovery and other processes.
  • the former is the production process used by most manufacturers, and the latter is in the research and development test stage.
  • Chinese patent CN1970560A provides a method for purifying pyromellitic acid to produce pyromellitic acid dianhydride.
  • the crude pyromellitic acid is first partially converted into pyromellitic anhydride, and then the resulting mixture is heated in the presence of acetic anhydride to completely anhydride the pyromellitic acid.
  • the pyromellitic dianhydride obtained by this method not only contains almost no pyromellitic acid monoanhydride and other monoanhydrides derived from impurities and is less discolored, but also has the advantage of not causing clogging during transportation, storage and use.
  • Chinese patent CN101580509A reports a method for producing electronic grade pyromellitic dianhydride from crude dianhydride.
  • the steps include: washing the crude anhydride; dehydration and decolorization; recrystallization; and drying.
  • One of the advantages. The process flow is short.
  • the refining process is carried out in a closed device, it is not harmful to the environment; thirdly, since the separated crystallization mother liquor is recycled, it can not only improve the recovery of pyromellitic dianhydride efficiency, saving the amount of dehydrating agent and decolorizing agent to reflect economy, and can save energy consumption; fourth, the purity of the obtained pyromellitic dianhydride can reach more than 99%; fifth, the phenylene obtained by the method Tetracarboxylic dianhydride can meet the purity grade requirements for the synthesis of electronic-grade PI membranes.
  • the pyromellitic acid (PMA) mixture produced by the liquid-phase air oxidation of pyromellitic toluene is crystallized, centrifuged, and dehydrated into anhydride to obtain crude anhydride.
  • the impurities include phthalic anhydride (PA), Para/isophthalic acid (PTA/IPA), trimellitic anhydride (TMA), 5-methyltrimellitic acid, pyromellitic acid monoanhydride (PMMA), etc.
  • the solvents used in the homoanhydride solvent recrystallization method include: water, acetic acid, acetic anhydride, acetone, butanone, pentanone, cyclohexanone, ethyl acetate, dimethyl sulfoxide, dimethyl Formamide, dimethylacetamide, dioxane-acetic anhydride, benzene-tetrahydrofuran, ether-acetone, ethyl acetate-petroleum ether, etc.
  • the purity of crude anhydride currently on the market is 92-98%; the purity of refined anhydride is about 99.5%, and the yield is about 80%.
  • the existing gas phase capture method, sublimation method or recrystallization method for purification has the problems of low quality, low yield and uneven particle size.
  • the object of the present invention is to provide a method for refining pyromellitic dianhydride.
  • the obtained pyromellitic dianhydride has low impurity content, can effectively eliminate the gray and yellow color of the pyromellitic dianhydride, improve product quality, and at the same time have low purification energy consumption. .
  • a method for refining pyromellitic dianhydride including the following steps:
  • acetone and acetonitrile are used as a mixed solvent in a weight ratio of (2-4):1.
  • the mixed solvent has a higher saturated solubility for pyromellitic dianhydride at 60-70°C, which is greater than that of a single solvent.
  • the solubility in acetone is very small, and the solubility of pyromellitic dianhydride is very small at the crystallization temperature.
  • the crystallization temperature is basically normal temperature, and the crystallization operation is convenient.
  • the boiling point of acetone is 56°C and the boiling point of acetonitrile is 81°C, the boiling points of the two are quite different. At 60-70°C, the two will not azeotrope.
  • acetone Only acetone evaporates and refluxes. The boiling reflux of acetone can produce enough The driving force allows pyromellitic dianhydride to dissolve quickly. At the same time, a reflux temperature lower than the boiling point of acetonitrile can be achieved, reducing refining energy consumption.
  • a small amount of di-acid or tri-anhydride impurities in crude anhydride have a certain solubility.
  • the impurities mainly include toluic acid, toluic acid, terephthalic acid, isophthalic acid and trimellitic anhydride. , after it is dissolved in the mixed solvent, the subsequent oxidation reaction can proceed smoothly.
  • the methyl carboxylic acid impurities can be oxidized into the corresponding aromatic acid, and other aromatic diacids and trianhydrides are easily soluble in in acetone and acetonitrile, so that during crystallization, it will not precipitate out and enter the pyromellitic dianhydride, making the pure pyromellitic dianhydride white instead of gray or yellow, so that it will not affect its subsequent application.
  • the acetone and acetonitrile and their dosage ratio selected in the present invention are optimal solutions that take into account factors such as reflux dissolution, room temperature crystallization, impurity removal, and purification energy consumption.
  • the obtained pyromellitic dianhydride has low impurity content, which can effectively eliminate the gray and yellow color of the homoanhydride and improve product quality. At the same time, the purification energy consumption is low; the finished refined anhydride has good purity, high melting point, high yield, and uniform particle size.
  • the reflux temperature is 65°C
  • the weight ratio of acetone to acetonitrile in the mixed solvent is preferably 3:1
  • the weight ratio of crude anhydride to the mixed solvent is preferably 1:8.
  • the content of ozone in the air is 2-4vt%
  • the continuous introduction time is 20-40min
  • the ventilation volume per hour is 60-80 times the volume of the mixed solvent.
  • the ozone content in the air is 3vt%
  • the continuous introduction time is 30 minutes
  • the hourly ventilation volume is 70 times the volume of the mixed solvent.
  • atmospheric pressure distillation is used to remove 1/3-4/5 times the weight of the mixed solvent. It is preferred to distill away 2/3 times the weight of the mixed solvent.
  • the crystallization temperature is 15-25°C
  • the stirring rate is 30-300r/min
  • the cooling rate is 0.35-1°C/min.
  • the preferred crystallization temperature is 20°C
  • the stirring rate is 135r/min
  • the cooling rate is 0.7°C.
  • step (6) a vacuum filter dryer is used for drying, the vacuum degree is 0.08-0.09MPa, and the drying temperature is 75-85°C.
  • the invention provides a method for refining pyromellitic dianhydride, which specifically adopts an oxidation-crystallization method.
  • solubility is closer to 16g/100g solvent; at 20°C, the solubility of pyromellitic dianhydride in the mixed solvent is 8.0g/100g solvent, which is lower than its solubility in acetone. Therefore, it is more conducive to crystallization.
  • part of the solvent has been distilled. Due to the low boiling point of acetone, acetone is mainly distilled. As the acetone decreases, the content proportion of acetonitrile increases, and the content of pyromellitic tetracycline increases.
  • the solubility of formic dianhydride in the distilled mixed solvent will be less than 8.0g/100g solvent, and closer to its solubility in acetonitrile 2.0g/100g solvent; it can be seen that using acetone/acetonitrile mixed solvent can achieve lower
  • the reflux dissolution temperature enables crystallization at room temperature, with high yield and low energy consumption for purification.
  • Analytical testing Purity uses high-performance liquid chromatography (HPLC) with reference to GB/T 26792-2019; melting point uses an automatic melting point instrument; particle size uses a dry particle size analyzer.
  • HPLC high-performance liquid chromatography
  • the purity of the raw materials is high, and the purity and yield of the finished product are high. Therefore, the purity of the crude anhydride is preferably ⁇ 92%, and 98% is even better.
  • a mixed solvent of acetone and acetonitrile in a weight ratio of 2:1 was used, and the other solvents were the same as in Example 1.
  • a mixed solvent of acetone and acetonitrile in a weight ratio of 4:1 was used, and the other solvents were the same as in Example 1.
  • Example 1 A mixed solvent of acetone and acetonitrile at a weight ratio of 1:1 was used, and the rest was the same as in Example 1.
  • a mixed solvent of acetone and acetonitrile in a weight ratio of 5:1 was used, and the other solvents were the same as in Example 1.
  • Example 1 A mixed solvent of acetone and acetic acid in a weight ratio of 2:1 was used, and the rest was the same as in Example 1.
  • Example 1 A mixed solvent of acetone and acetic anhydride in a weight ratio of 2:1 was used, and the rest was the same as in Example 1.
  • the mixed solvent is preferably acetone and acetonitrile, and the weight ratio of acetone and acetonitrile is 2-4:1, preferably 3:1.
  • the results in the table show that the more mixed solvents, the lower the yield.
  • the weight ratio of crude anhydride to mixed solvents is 1:4-12. Preferably it is 1:8.
  • Air containing 4vt% ozone was used instead, and the other conditions were the same as in Example 1.
  • Air containing 6vt% ozone was used instead, and the other conditions were the same as in Example 1.
  • Air containing 1vt% ozone was used instead, and the others were the same as in Example 1.
  • the results on the table show that when ozone is introduced at different concentrations, the purity and melting point are increased. Too much ozone will lead to peroxidation and the purity and yield will be reduced.
  • the ozone concentration is 2-4%, preferably 3%.
  • Example 1 2/3 99.99 288.1-288.7 95.33 150.54
  • Example 6-1 1/3 99.97 287.0-288.4 90.17 140.90
  • Example 6-2 1/2 99.98 287.1-288.7 93.25 163.68
  • Example 6-3 4/5 99.95 288.1-288.7 95.33 174.32
  • Comparative Example 6-a 0 99.99 288.0-288.6 55.46 120.75
  • the cooling rate is 0.35°C/min, and the others are the same as in Example 1.
  • the cooling rate is 0.7°C/min, and the others are the same as in Example 1.
  • the cooling rate is 1.05°C/min, and the others are the same as in Example 1.
  • the cooling rate is 0.3°C/min, and the others are the same as in Example 1.
  • Example 1 1.00 99.99 130.54
  • Example 7-1 0.35 99.98 149.32
  • Example 7-2 0.70 99.99 134.61
  • Comparative Example 7-a 1.05 99.97 82.43 Comparative Example 7-b 0.30 99.98 171.28
  • the cooling rate is controlled at 0.35-1.0°C/min.
  • Example 8-1 100 99.99 130.54
  • Example 8-1 30 99.98 150.28
  • Example 8-2 60 99.97 143.46
  • Example 8-3 200 99.96 121.95
  • Example 8-4 300 99.98 103.87 Comparative Example 8-a 20 99.96 180.19 Comparative Example 8-b 310 99.97 90.65
  • the stirring rate is 30-300r/min.
  • the purity of the finished refined anhydride obtained through the oxidation-crystallization method is ⁇ 99.9%, the melting point is ⁇ 287°C, the yield is ⁇ 90%, and the particle size distribution is D90 100-150um.
  • the reflux temperature can be selected to be 60-70°C; during oxidation, the content of ozone in the air is 2-4vt%, and the continuous introduction time is 20-40min.
  • the hourly ventilation volume is 60-80 times the volume of the mixed solvent; during distillation, 1/3-4/5 times the weight of the mixed solvent is removed by distillation under normal pressure, the crystallization temperature is 15-25°C, the vacuum degree is 0.08-0.09MPa, and dried Temperature 75-85°C.
  • the smooth implementation of the present invention can be ensured and the beneficial effects described in the present invention can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

本发明公开了化工生产领域内的一种均苯四甲酸二酐精制的方法,其步骤包括溶解、过滤、氧化、蒸馏、结晶、过滤-干燥而获得目标产物,其溶解时,采用丙酮和乙腈以重量比为(2-4):1配成混合溶剂,粗酐与混合溶剂重量比1:(4-12);氧化时向滤液中通入含臭氧的空气进行氧化;本发明可以实现低于乙腈的沸点的回流温度,使得精制能耗降低。臭氧的通入,可将甲基羧酸类杂质氧化成对应的芳香酸,其他芳香二酸及三酸酐易溶于丙酮与乙腈中,从而在结晶时,不会析出而进入均苯四甲酸二酐,使得均苯四甲酸二酐纯品成白色,所获均苯四甲酸二酐杂质含量少,提升产品品质,同时提纯能耗低;精酐成品具有纯度好、熔点高、收率高、粒度均匀的特点。

Description

一种均苯四甲酸二酐精制的方法 技术领域
本发明涉及一种均苯四甲酸二酐精制的方法,具体是粗均苯四甲酸二酐通过氧化-结晶法得到精均苯四甲酸二酐,属于化工技术领域。
背景技术
均苯四甲酸二酐,简称均酐,英文缩写是PMDA。均酐是一种重要的有机化工原料。均酐是用于生产聚酰亚胺树脂和薄膜、消光剂、增塑剂、环氧树脂固化剂、聚酯树脂交联剂、酚醛树脂稳定剂等的重要原料。聚酰亚胺是一种耐高温、抗低温、耐辐射、抗冲击且具有优异电性能和机械性能的新材料,在航空航天和机电工业中具有其它工程塑料不可替代的重要用途。随着聚酰亚胺市场用量的不断扩大,均酐作为合成其的主要原料,其需求也与日俱增。
近年来国内外对均酐单体的越来越多地应用于高性能、高科技材料产品的制备,对均酐产品的纯度和使用要求越来越高,因此研究提高产品纯度和应用性能,建立适当工艺技术的工业化非常急迫和必要。
目前均酐的合成路线分两条,第一条是均四甲苯气相空气氧化法,包括气化、氧化、捕集、水解脱色、过滤、精制等工艺;第二条是均四甲苯液相空气氧化法,包含配料、氧化、结晶离心、脱水成酐、精制、醋酸回收等工艺。前者为大部分厂家采用的生产工艺,后者正处于研发试验阶段中。
沈阳化工1993(1),31-32张威等,在文献中报道了均苯四甲酸二酐的精制方法,目前有三类,(1)生成气捕集法,包含直接捕集和分级捕集;(2)溶剂法,分为洗涤法、结晶法和络合分离法;(3)升华法,包括低压升华法和热气流携带法。
涂料工业2006,36(11):4丁志平等人报道,由于制取均苯四甲酸二酐的均四甲苯气相催化氧化过程是一个复杂的多相催化过程,它由一系列反应组成。在钒钛氧化物催化剂的反应过程中,均四甲苯的氧化是一个放热反应,催化剂床层TiO在高温条件下会产生某些强酸点,而导致均四甲苯发生一系列的脱甲基或歧化反应,生成邻二甲苯、偏三甲苯、均三甲苯等,分别氧化为邻苯二甲酸酐、偏苯三甲酸酐和均苯三甲酸等。从而导致均苯阴甲酸二酐的收率低。同时,设备流程及其操作过程复杂,三废污染严重,运行费用高,且难以制得符合应用性能要求的产品。根据它们中各组分在同一温度下蒸汽压的差异,控制适宜捕集温度条件及选择特殊结构的设备,就能直接从气相氧化生成气体产物中选择性地使均酐凝华结晶出来,达到精制的目的。
中国专利CN1970560A提供了一种均苯四甲酸提纯生产均苯四甲酸二酐的方法。在不存在乙酸酐的条件下,先加热粗均苯四甲酸部分转化为均苯四甲酸酐,然后在乙酸酐的存在下加热得到混合物使均苯四甲酸完全酐化。该方法得到的均苯四甲酸二酐不但其中几乎不含均苯四甲酸单酐及其他源自杂质的单酐且更少变色,而且具有运输储存和使用期间不会引起堵塞等优点。
中国专利CN101580509A报道了一种一种由二捕粗酐生产电子级均苯四甲酸二酐的方法。包括的步骤:洗涤二捕粗酐;脱水脱色;重结晶;干燥。优点之一。工艺流程简短。而可以节约能源;之二,由于精制过程是在封闭的装置中进行的,因此对环境无损;之三,由于分离出的结晶母液循环回用,因此不仅可以提高均苯四甲酸二酐的收率,节约脱水剂和脱色剂的用量而藉以体现经济性,而且可以节约能耗;之四,得到的均苯四甲酸二酐的纯度可达99%以上;之五,方法所得到的均苯四甲酸二酐能达到用于合成电子级PI膜的纯度等级要求。
哈尔滨理工大学学报2009,14(4):4吴莎等人报道了均四甲苯气相空气氧化生产的气相产物,除含有主产物均酐外,还含有副产物顺酐、邻苯二甲酸酐及一些中间酸类,如4,5-二甲基二酸(4,5-DMPA),5-甲基偏苯三酸(5-MTA)、2,5-二甲基三酸(2,5-DMPA),4,6-二甲基三酸(4,6-DMPA)等。
根据液相空气氧化工艺研究,均四甲苯液相空气氧化产生的均苯四甲酸(PMA)混合物经过结晶、离心、脱水成酐后得到粗酐,其中杂质包括邻苯二甲酸酐(PA)、对/间苯二甲酸(PTA/IPA)、偏苯三酸酐(TMA)、5-甲基偏苯三酸、均苯四甲酸单酐(PMMA)等。
根据专利和文献中的报道,均酐溶剂重结晶法的溶剂包含有:水、醋酸、醋酸酐、丙酮、丁酮、戊酮、环己酮、乙酸乙酯、二甲基亚砜、二甲基甲酰胺、二甲基乙酰胺、二噁烷-醋酐、苯-四氢呋喃、乙醚-丙酮、乙酸乙酯-石油醚等。比如其中王玉珊等人总结了溶剂法精制:一次溶剂络合重结晶、二次溶剂热改造晶型、混合溶剂重结晶法;还论述了用二噁烷-醋酸酐混合溶剂作为重结晶的溶剂。使用含50%(重量比)以下醋酸酐的混合溶剂效果好,精制收率80%左右,粗酐纯度由95%提高到99.4%。
其不足之处在于:目前市场上粗酐纯度92-98%;精酐纯度99.5%左右,收率80%左右。现有气相捕集法、升华法或重结晶法提纯存在质量不高,收率低,粒径参差不齐的问题。
发明内容
本发明的目的是提供一种均苯四甲酸二酐精制的方法,所获均苯四甲酸二酐杂质含量少,可以有效消除均酐颜色发灰发黄,提升产品品质,同时提纯能耗低。
本发明的目的是这样实现的:一种均苯四甲酸二酐精制的方法,包括如下步骤:
(1)溶解:将丙酮和乙腈在溶解釜中混合搅拌均匀,然后将含均苯四甲酸二酐的粗酐加入溶解釜中,继续升温加热回流至粗酐溶解,回流温度为60-70℃;其中,粗酐原料中含均苯四甲酸二酐纯度为92-98%,丙酮与乙腈以重量比为(2-4):1配成混合溶剂,粗酐与混合溶剂重量比1:(4-12);
(2)过滤:在热态下过滤除去不溶杂质;
(3)氧化:滤液中通入含臭氧的空气进行氧化;
(4)蒸馏:常压蒸馏去除一部分溶剂;
(5)结晶:剩余母液冷却降温结晶,同时控制搅拌速率,至晶体析出;
(6)过滤-干燥:结晶物料经过滤干燥机得到合格精酐成品。
本发明中,丙酮与乙腈以重量比为(2-4):1配成混合溶剂,该混合溶剂对均苯四甲酸二酐在的60-70℃时的饱和溶解度较高,大于其在单一的丙酮中的溶解度,而结晶温度下,均苯四甲酸二酐的溶解度又很小,结晶温度基本为常温,结晶操作便利。同时,由于丙酮的沸点是56℃,乙腈的沸点是81℃,两者沸点相差较大,在60-70℃时,两者不会共沸,仅丙酮蒸发回流,丙酮沸腾回流可以产生足够的推动力,使得均苯四甲酸二酐可以快速溶解。同时,可以实现低于乙腈的沸点的回流温度,使得精制能耗降低。在60-70℃时,粗酐中少量二酸或三酸酐类杂质均具有一定的溶解度,杂质主要包括甲基苯二酸和甲基苯三酸、对苯二甲酸、间苯二甲酸及偏苯三酸酐,其在混合溶剂中溶解后,使得后续的氧化反应能够顺利进行,通过臭氧的通入,可将其中甲基羧酸类杂质氧化成对应的芳香酸,其他芳香二酸及三酸酐易溶于丙酮与乙腈中,从而在结晶时,不会析出而进入均苯四甲酸二酐,使得均苯四甲酸二酐纯品成白色,而不是发灰或发黄,使其不会影响其后续的应用。本发明选择的丙酮与乙腈及其用量比例,是兼顾了回流溶解、常温结晶、杂质去除以及提纯能耗等方面的因素作出的优选方案。所获均苯四甲酸二酐杂质含量少,可以有效消除均酐颜色发灰发黄,提升产品品质,同时提纯能耗低;精酐成品具有纯度好、熔点高、收率高、粒度均匀的特点。
作为本发明的进一步改进在于,步骤(1)中,回流温度为65℃,混合溶剂中丙酮与乙腈的重量比优选为3:1;粗酐与混合溶剂重量比优选为1:8。
作为本发明的进一步改进在于,步骤(3)中,所述空气中臭氧的含量为2-4vt%,持续通入时间为20-40min,每小时通气量为混合溶剂体积的60-80倍。优选所述空气中臭氧的含量为3vt%,持续通入时间为30min,每小时通气量为混合溶剂体积的70倍。
作为本发明的进一步改进在于,采用常压蒸馏去除1/3-4/5倍重量的混合溶剂。优选 蒸馏去除2/3倍重量的混合溶剂。
作为本发明的进一步改进在于,步骤(5)中,结晶温度为15-25℃,搅拌速率30-300r/min,降温速率0.35-1℃/min。优选结晶温度为20℃,搅拌速率为135r/min,降温速率为0.7℃。
作为本发明的进一步改进在于,步骤(6)中,采用真空过滤干燥机进行干燥,真空度为0.08-0.09MPa,干燥温度75-85℃。
具体实施方式
实施例1:
首先将3份丙酮和1份乙腈(按重量比3:1比例)配成的混合溶剂加入反应容器,开启搅拌;接着加入0.5份98%粗酐(粗酐与混合溶剂按重量比1:8)至反应容器中,继续升温加热回流至粗酐基本溶解,回流温度为65℃;然后热过滤除去不溶杂质;
在65℃下,向滤液中通入含3.5vt%臭氧的空气进行氧化,保持30min,空气的通入量为溶剂体积的60-80倍/小时;然后蒸馏出1/2重量的溶剂;接着剩余母液冷却至20℃,降温速率1℃/min,同时控制搅拌速率135r/min,至晶体析出;然后结晶物料经真空过滤干燥机,真空度维持在0.08-0.09MPa,温度75-85℃,时间60min,得到精酐成品,外观为白色粉状晶体。
本发明提供了一种均苯四甲酸二酐精制的方法,具体是采用氧化-结晶法。通过研究发现,其一,粗均苯四甲酸二酐(简称粗酐)中的微量甲基羧酸类杂质可以通过臭氧氧化转变为对应的芳香酸,并且达到消除均酐颜色发灰发黄的目的;其二,少量二酸或三酸酐类杂质(对苯二甲酸0.6-2.5wt%、间苯二甲酸0.5-1.9wt%;偏苯三酸酐0.9-3.6wt%)与均酐在丙酮和乙腈中溶解度(见下表1)不同。
表1 酸/酐在丙酮和乙腈中的溶解度(g/100g)对照表
Figure PCTCN2022122123-appb-000001
从表中归纳出酸/酐在不同溶剂和温度下溶解度规律:均酐>偏酐>间苯二甲酸>对苯二甲酸;常温条件下丙酮>(丙酮/乙腈混合溶剂)>乙腈,高温条件下丙酮<(丙酮/乙腈混合溶剂)<乙腈。这些物性进而导致降温过程结晶的差异。在56℃时,均苯四甲酸二酐在丙酮/乙腈混合溶剂中的溶解度为14.9g/溶剂100g,而在65℃时,由于丙酮已经沸腾,其溶剂中丙酮含量降低,乙腈的含量增加,其溶解度更加趋近于16g/溶剂100g;在20℃时,均苯四甲酸二酐在混合溶剂中的溶解度为8.0g/溶剂100g,低于其在丙酮中的溶解度。因此,更加有利于结晶析出,此外,混合溶剂在结晶时,已经有部分溶剂被蒸馏,由于丙酮沸点低,被蒸馏的主要是丙酮,随着丙酮的减少,乙腈的含量比例增加,均苯四甲酸二酐在蒸馏后的混合溶剂中的溶解度会小于8.0g/溶剂100g,而更加趋近于其在乙腈中的溶解度2.0g/溶剂100g;可见采用丙酮/乙腈混合溶剂,可以实现较低的回流溶解温度,能够在常温下结晶,收率较高,提纯能耗低。
实施例2-1:
改用92%粗酐,其他同实施例1。
实施例2-2:
改用95%粗酐,其他同实施例1。
对比例2-a
改用91%粗酐,浅黄色粉状晶体,其他同实施例1。
分析测试:纯度采用高效液相色谱法(HPLC)参考GB/T 26792-2019;熔点采用自动熔点仪;粒径采用干法粒度仪。
表2 粗酐纯度对精酐质量和收率影响对照表
Figure PCTCN2022122123-appb-000002
根据表中对照结果,原料纯度高,成品纯度和收率都高,因此,粗酐纯度为≥92%为好,98%更好。
实施例3-1:
采用丙酮和乙腈按重量比2:1比例配成的混合溶剂,其他同实施例1。
实施例3-2:
采用丙酮和乙腈按重量比4:1比例配成的混合溶剂,其他同实施例1。
对比例3-a:
采用丙酮和乙腈按重量比1:1比例配成的混合溶剂,其他同实施例1。
对比例3-b:
采用丙酮和乙腈按重量比5:1比例配成的混合溶剂,其他同实施例1。
对比例3-c:
采用丙酮和醋酸按重量比2:1比例配成的混合溶剂,其他同实施例1。
对比例3-d:
采用丙酮和醋酸酐按重量比2:1比例配成的混合溶剂,其他同实施例1。
对比例3-e:
采用4份丙酮溶剂,其他同实施例1。
对比例3-f:
采用4份乙腈溶剂,其他同实施例1。
表3 溶剂重量配比、种类对精酐质量和收率影响对照表
Figure PCTCN2022122123-appb-000003
因此,混合溶剂优选丙酮和乙腈,丙酮和乙腈按重量比2-4:1比例,优选为3:1。
实施例4-1:
改为粗酐与丙酮乙腈混合溶剂重量比1:4,其他同实施例1。
实施例4-2:
改为粗酐与丙酮乙腈混合溶剂重量比1:5,其他同实施例1。
实施例4-3:
改为粗酐与丙酮乙腈混合溶剂重量比1:6,其他同实施例1。
实施例4-4:
改为粗酐与丙酮乙腈混合溶剂重量比1:10,其他同实施例1。
实施例4-5:
改为粗酐与丙酮乙腈混合溶剂重量比1:12,其他同实施例1。
对比例4-a:
改为粗酐与丙酮乙腈混合溶剂重量比1:3,其他同实施例1。
对比例4-b:
改为粗酐与丙酮乙腈混合溶剂重量比1:2,其他同实施例1。
对比例4-c:
改为粗酐与丙酮乙腈混合溶剂重量比1:1,其他同实施例1。
对比例4-d:
改为粗酐与丙酮乙腈混合溶剂重量比1:13,其他同实施例1。
对比例4-e:
改为粗酐与丙酮乙腈混合溶剂重量比1:15,其他同实施例1。
对比例4-f:
改为粗酐与丙酮乙腈混合溶剂重量比1:17,其他同实施例1。
表4 粗酐与混合溶剂重量比例对精酐质量和收率影响对照表
Figure PCTCN2022122123-appb-000004
表中的结果表明,混合溶剂越多收率越低,粗酐与混合溶剂重量比1:4-12为好。优选为1:8。
实施例5-1:
改用含2vt%臭氧的空气,其他同实施例1。
实施例5-2:
改用含4vt%臭氧的空气,其他同实施例1。
对比例5-a:
改用含5vt%臭氧的空气,其他同实施例1。
对比例5-b:
改用含6vt%臭氧的空气,其他同实施例1。
对比例5-c:
改用含1vt%臭氧的空气,其他同实施例1。
对比例5-d:
去掉步骤“滤液中通入含3.5vt%臭氧的空气氧化”,其他同实施例1。
表5 臭氧浓度对精酐质量和收率影响对照表
序号 臭氧浓度vt% 纯度wt% 熔点℃ 收率%
实施例1 3 99.99 288.1-288.7 95.33
实施例5-1 2 99.94 287.8-288.4 94.12
实施例5-2 4 99.96 287.5-288.2 95.06
对比例5-a 5 99.90 287.0-287.8 91.06
对比例5-b 6 99.87 286.1-287.6 88.14
对比例5-c 1 99.91 287.2-287.9 93.12
对比例5-d 0 99.81 288.0-288.6 89.27
表上结果显示,通入不同浓度的臭氧,纯度和熔点都有所提高,太多了会导致过氧化,纯度和收率反而降低。臭氧浓度2-4%为好,优选为3%。
实施例6-1:
改为蒸馏出1/3重量的溶剂,其他同实施例1。
实施例6-2:
改为蒸馏出1/2重量的溶剂,其他同实施例1。
实施例6-3:
改为蒸馏出4/5重量的溶剂,其他同实施例1。
对比例6-a:
去掉步骤“蒸馏出1/2重量的溶剂”,其他同实施例1。
对比例6-b:
改为“蒸馏出5/6重量的溶剂”,得到青黄色粉状晶体,其他同实施例1。
表6 溶剂蒸馏量对精酐质量和收率影响对照表
序号 蒸馏量占比 纯度wt% 熔点℃ 收率% 粒径D90um
实施例1 2/3 99.99 288.1-288.7 95.33 150.54
实施例6-1 1/3 99.97 287.0-288.4 90.17 140.90
实施例6-2 1/2 99.98 287.1-288.7 93.25 163.68
实施例6-3 4/5 99.95 288.1-288.7 95.33 174.32
对比例6-a 0 99.99 288.0-288.6 55.46 120.75
对比例6-b 5/6 99.88 286.0-287.9 95.01 178.65
因此,蒸馏的溶剂越多收率越高,纯度和熔点有所降低,但是不蒸发收率太低,粒径太大;然而蒸馏太多会影响成品颜色。蒸馏出1/3-4/5倍重量的混合溶剂为好,优选为蒸馏2/3。
实施例7-1:
降温速率0.35℃/min,其他同实施例1。
实施例7-2:
降温速率0.7℃/min,其他同实施例1。
对比例7-a:
降温速率1.05℃/min,其他同实施例1。
对比例7-b:
降温速率0.3℃/min,其他同实施例1。
表7 降温速率对精酐质量和收率影响对照表
序号 降温速率℃/min 纯度wt% 粒径D90um
实施例1 1.00 99.99 130.54
实施例7-1 0.35 99.98 149.32
实施例7-2 0.70 99.99 134.61
对比例7-a 1.05 99.97 82.43
对比例7-b 0.30 99.98 171.28
依据上面结果,降温速率越慢,晶体粒径越大,质量影响不大,结晶时间太长影响结晶效率。因此,降温速率控制0.35-1.0℃/min。
实施例8-1:
改为搅拌速率60r/min,其他同实施例1。
实施例8-2:
改为搅拌速率100r/min,其他同实施例1。
实施例8-3:
改为搅拌速率200r/min,其他同实施例1。
实施例8-4:
改为搅拌速率300r/min,其他同实施例1。
对比例8-a:
改为搅拌速率20r/min,其他同实施例1。
对比例8-b:
改为搅拌速率310r/min,其他同实施例1。
表8 搅拌速率对精酐质量和收率影响对照表
序号 搅拌速率r/min 纯度wt% 粒径D90um
实施例1 100 99.99 130.54
实施例8-1 30 99.98 150.28
实施例8-2 60 99.97 143.46
实施例8-3 200 99.96 121.95
实施例8-4 300 99.98 103.87
对比例8-a 20 99.96 180.19
对比例8-b 310 99.97 90.65
依据表中结果,搅拌速率越快,平均粒径越小,纯度变化不明显。因此,搅拌速率30-300r/min为好。
综上所述,经过氧化-结晶法得到的精酐成品纯度≥99.9%,熔点≥287℃,收率≥90%,粒径分布D90 100-150um。
本发明并不局限于上述实施例,在溶解时,回流温度可选择为60-70℃;其中,氧化时,空气中臭氧的含量为2-4vt%,持续通入时间为20-40min,每小时通气量为混合溶剂体积的60-80倍;蒸馏时,常压蒸馏去除1/3-4/5倍重量的混合溶剂,结晶温度为15-25℃,真空度为0.08-0.09MPa,干燥温度75-85℃。在该参数范围内,均可保证本发明的顺利实施并能取得本发明所述的有益效果。
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术 人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。

Claims (9)

  1. 一种均苯四甲酸二酐精制的方法,其特征在于包括如下步骤:
    (1)溶解:将丙酮和乙腈在溶解釜中混合搅拌均匀,然后将含均苯四甲酸二酐的粗酐加入溶解釜中,继续升温加热回流至粗酐溶解,回流温度为60-70℃;其中,粗酐原料中含均苯四甲酸二酐纯度为92-98%,丙酮与乙腈以重量比为(2-4):1配成混合溶剂,粗酐与混合溶剂重量比1:(4-12);
    (2)过滤:在热态下过滤除去不溶杂质;
    (3)氧化:滤液中通入含臭氧的空气进行氧化;
    (4)蒸馏:蒸馏去除一部分溶剂;
    (5)结晶:剩余母液冷却降温结晶,同时控制搅拌速率,至晶体析出;
    (6)过滤-干燥:结晶物料经过滤干燥机得到合格精酐成品。
  2. 根据权利要求1所述的一种均苯四甲酸二酐精制的方法,其特征在于:步骤(1)中,回流温度为65℃,混合溶剂中丙酮与乙腈的重量比为3:1;粗酐与混合溶剂重量比为1:8。
  3. 根据权利要求1所述的一种均苯四甲酸二酐精制的方法,其特征在于:步骤(3)中,所述空气中臭氧的含量为2-4vt%,持续通入时间为20-40min,每小时通气量为混合溶剂体积的60-80倍。
  4. 根据权利要求3所述的一种均苯四甲酸二酐精制的方法,其特征在于:所述空气中臭氧的含量为3vt%,持续通入时间为30min,每小时通气量为混合溶剂体积的70倍。
  5. 根据权利要求1所述的一种均苯四甲酸二酐精制的方法,其特征在于:步骤(4)中,采用常压蒸馏去除1/3-4/5倍重量的混合溶剂。
  6. 根据权利要求5所述的一种均苯四甲酸二酐精制的方法,其特征在于:蒸馏去除2/3倍重量的混合溶剂。
  7. 根据权利要求1所述的一种均苯四甲酸二酐精制的方法,其特征在于:步骤(5)中,结晶温度为15-25℃,搅拌速率30-300r/min,降温速率0.35-1℃/min。
  8. 根据权利要求7所述的一种均苯四甲酸二酐精制的方法,其特征在于:步骤(5)中,结晶温度为20℃,搅拌速率为135r/min,降温速率为0.7℃。
  9. 根据权利要求1所述的一种均苯四甲酸二酐精制的方法,其特征在于:步骤(6)中,采用真空过滤干燥机进行干燥,真空度为0.08-0.09MPa,干燥温度75-85℃。
PCT/CN2022/122123 2022-06-30 2022-09-28 一种均苯四甲酸二酐精制的方法 WO2024000879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210756691.2 2022-06-30
CN202210756691.2A CN114853775B (zh) 2022-06-30 2022-06-30 一种均苯四甲酸二酐精制的方法

Publications (1)

Publication Number Publication Date
WO2024000879A1 true WO2024000879A1 (zh) 2024-01-04

Family

ID=82625939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122123 WO2024000879A1 (zh) 2022-06-30 2022-09-28 一种均苯四甲酸二酐精制的方法

Country Status (2)

Country Link
CN (1) CN114853775B (zh)
WO (1) WO2024000879A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113583016A (zh) * 2021-09-01 2021-11-02 潍坊弘润新材料有限公司 一种粗均苯四甲酸二酐提高纯度的方法及其装置和应用
CN114853775B (zh) * 2022-06-30 2023-05-30 江苏正丹化学工业股份有限公司 一种均苯四甲酸二酐精制的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1066148A (en) * 1965-03-24 1967-04-19 Gelsenberg Benzin Ag Purification of pyromellitic dianhydride
GB1280562A (en) * 1969-06-13 1972-07-05 Veba Chemie Ag Process for the purification of pyromellitic acid dianhydride
SU268408A1 (ru) * 1968-08-19 1976-01-25 Способ очистки пиромеллитового диангидрида
JPH0578367A (ja) * 1991-09-18 1993-03-30 Nippon Steel Chem Co Ltd 高純度無水ピロメリツト酸の製造方法
JPH05331103A (ja) * 1992-05-27 1993-12-14 Kawasaki Steel Corp 無水ピロメリット酸の精製方法
CN102898435A (zh) * 2012-10-19 2013-01-30 东营市中捷化工有限公司 超低金属离子含量的均苯四甲酸二酐的制备方法
CN114853775A (zh) * 2022-06-30 2022-08-05 江苏正丹化学工业股份有限公司 一种均苯四甲酸二酐精制的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48437U (zh) * 1971-05-29 1973-01-06

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1066148A (en) * 1965-03-24 1967-04-19 Gelsenberg Benzin Ag Purification of pyromellitic dianhydride
SU268408A1 (ru) * 1968-08-19 1976-01-25 Способ очистки пиромеллитового диангидрида
GB1280562A (en) * 1969-06-13 1972-07-05 Veba Chemie Ag Process for the purification of pyromellitic acid dianhydride
JPH0578367A (ja) * 1991-09-18 1993-03-30 Nippon Steel Chem Co Ltd 高純度無水ピロメリツト酸の製造方法
JPH05331103A (ja) * 1992-05-27 1993-12-14 Kawasaki Steel Corp 無水ピロメリット酸の精製方法
CN102898435A (zh) * 2012-10-19 2013-01-30 东营市中捷化工有限公司 超低金属离子含量的均苯四甲酸二酐的制备方法
CN114853775A (zh) * 2022-06-30 2022-08-05 江苏正丹化学工业股份有限公司 一种均苯四甲酸二酐精制的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QI LI: "Development Overview of Pyromellitic Dianhydride Abroad (Part 2)", JIANGSU CHEMICAL INDUSTRY, vol. 3, 1 October 1979 (1979-10-01), pages 70 - 74, XP093122638 *
YUSHAN WANG, ZHAO ZHIQUAN; LIN JUNYONG: "Separation and Refining of Pyromellitic Dianhydride", 均勇 PETROCHEMICAL TECHNOLOGY, vol. 11, no. 7, 30 July 1982 (1982-07-30), pages 505 - 510, XP093122636 *

Also Published As

Publication number Publication date
CN114853775A (zh) 2022-08-05
CN114853775B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2024000879A1 (zh) 一种均苯四甲酸二酐精制的方法
JPS6019286B2 (ja) フアイバ−グレ−ドのテレフタル酸の製法
CN110105191A (zh) 一种以β-甲基萘为原料制备高纯度萘二甲酸的方法
US5145971A (en) Process for the preparation of oxydiphthalic acid and purified oxydiphthalic anhydride from crude oxydiphthalic anhydride
WO2018180854A1 (ja) 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法
KR0137646B1 (ko) 조악한 디메틸 나프탈렌 디카복실레이트의 정제방법
CN109053474B (zh) 一种柔性二胺单体及其制备方法和在制备聚酰亚胺中的应用
CN102070442B (zh) 一种高纯度萘二甲酸的生产方法
KR20070012238A (ko) 고순도 피로멜리트산 2 무수물의 제조 방법
CN111362806B (zh) 一种3-硝基-2-甲基苯甲酸与3-硝基邻苯二甲酸的联产方法
CN114369099B (zh) 一种液相氧化制备均苯四甲酸二酐的方法
CN115850061A (zh) 一种联苯醚四甲酸的精制方法
CN112920036B (zh) 一种改进的1,4-二羟基蒽醌的精制工艺
US6579990B2 (en) Process for producing refined pyromellitic acid and refined pyromellitic anhydride
JPH0273077A (ja) 高純度5,5’―[2,2,2―トリフルオロ―1―(トリフルオロメチル)―エチリデン]ビス―1,3―イソベンゾフランジオンの製造方法
JPH07118200A (ja) ナフタレンジカルボン酸の製造方法
CN118146235A (zh) 一种低纯度均酐物料的提纯工艺及应用
JP4626031B2 (ja) 高純度ピロメリット酸および高純度無水ピロメリット酸の製造方法
CN1241919C (zh) 芳香羧酸酐类化合物的提纯方法及工艺
CN100506778C (zh) 芳香羧酸酐类产品的结晶造粒和纯化方法
CN112538012A (zh) 一种2,6-萘二甲酸或2,6-萘二甲酸二甲酯的提纯方法
RU2000133325A (ru) Способ получения очищенной терефталевой и изофталевой кислоты из смешанных ксиленов
TW201823193A (zh) 經純化的對苯二甲酸(pta)排氣孔乾燥器蒸氣流出物處理技術
JPH08134056A (ja) 高純度ビフェニルテトラカルボン酸二無水物およびその製造法
RU2047595C1 (ru) Способ получения изомеров фталевых кислот с высокой степенью чистоты

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948967

Country of ref document: EP

Kind code of ref document: A1