WO2024000776A1 - 一种用于上下料的定位装置及光刻设备 - Google Patents

一种用于上下料的定位装置及光刻设备 Download PDF

Info

Publication number
WO2024000776A1
WO2024000776A1 PCT/CN2022/115008 CN2022115008W WO2024000776A1 WO 2024000776 A1 WO2024000776 A1 WO 2024000776A1 CN 2022115008 W CN2022115008 W CN 2022115008W WO 2024000776 A1 WO2024000776 A1 WO 2024000776A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
loading
unloading
positioning device
positioning structure
Prior art date
Application number
PCT/CN2022/115008
Other languages
English (en)
French (fr)
Inventor
宿文龙
张利
周二虎
马永述
Original Assignee
北京华卓精科科技股份有限公司
北京优微精密测控技术研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210757532.4A external-priority patent/CN117361111A/zh
Priority claimed from CN202221690378.5U external-priority patent/CN217946821U/zh
Application filed by 北京华卓精科科技股份有限公司, 北京优微精密测控技术研究有限公司 filed Critical 北京华卓精科科技股份有限公司
Publication of WO2024000776A1 publication Critical patent/WO2024000776A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/22Devices influencing the relative position or the attitude of articles during transit by conveyors
    • B65G47/24Devices influencing the relative position or the attitude of articles during transit by conveyors orientating the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials

Definitions

  • the present application relates to the field of photolithography technology, and specifically, to a positioning device for loading and unloading materials and photolithography equipment.
  • the transfer of silicon wafers is usually completed by a clamping robot.
  • the clamping robot first absorbs the silicon wafer, and then transfers the adsorbed silicon wafer to the wafer stage, thereby achieving the transfer of silicon wafers.
  • Purpose The above series of actions need to be completed accurately in a short period of time with a high degree of repeatability.
  • the accuracy requirements for photolithography equipment continue to increase.
  • the requirements for silicon wafer handover and positioning are also getting higher and higher.
  • the first purpose of this application is to provide a positioning device for loading and unloading materials to solve the current technical problem of low positioning accuracy during the handover process of silicon wafers.
  • the positioning device for loading and unloading includes a base, a first positioning structure and a second positioning structure.
  • the base includes a base body and a frame body arranged around the base body.
  • the frame body is connected with the base body.
  • the base body is partially fixedly connected, and the frame body has elastic deformation freedom along the X direction and Y direction relative to the base body;
  • the first positioning structure is fixedly provided on the frame body, and the first positioning structure
  • the structure is configured to positioningly cooperate with the loading and unloading robot;
  • the second positioning structure is fixedly arranged on the first positioning structure, the second positioning structure is configured to positioningly cooperate with the film-bearing platform, and the film-bearing platform is configured To carry materials;
  • the second positioning structure has a degree of freedom of elastic deformation along the Z direction relative to the base body.
  • the first positioning structure includes an interface plate, one of the interface plate and the loading and unloading manipulator is provided with a recessed portion, and the other of the interface plate and the loading and unloading manipulator is A protruding part is provided, and the protruding part can be positioned and matched with the recessed part.
  • the recessed portion includes a V-shaped groove opened in the interface plate
  • the protruding portion includes a protruding column fixedly provided on the loading and unloading manipulator, and the protruding column has a structure configured to connect with the V-shaped groove. Fitting cylindrical surface.
  • the interface plate is also provided with a positioning plane, and the positioning plane and the V-shaped groove are dispersedly arranged along the same edge of the interface plate.
  • the loading and unloading manipulator is also provided with a positioning cylindrical surface. The cylindrical surface is configured to match the positioning plane linearly.
  • a bump is fixedly provided on the edge of the interface plate, and the side of the bump facing the loading and unloading robot forms the positioning plane.
  • the first positioning structure further includes a support frame, the support frame is fixedly provided on the frame, and the interface board is fixedly provided on the support frame.
  • the interface board is a long board
  • the support frame has a plurality of sets of triangular support structures opposite and spaced apart along the length direction of the interface board, and the bottom edge of each triangular support structure is fixedly provided on the Frame, the interface board is fixedly arranged at the top corner of each triangular support structure.
  • the second positioning structure includes a flexible hinge, the flexible hinge has a first cantilever, a notch rotating shaft and a second cantilever arranged in sequence, wherein the first cantilever is fixedly connected to the first positioning structure, so The second cantilever faces the film receiving platform.
  • the number of flexible hinges is multiple.
  • the flexible hinge is a double-slit flexible hinge.
  • the frame is in a rectangular shape, and four sides of the rectangle are provided with flexible cuts.
  • the axis of the flexible cuts extends along the Z direction.
  • Each of the flexible cuts is configured so that the frame has a shape along the X direction. Degrees of freedom for elastic deformation in the Y and Y directions.
  • the positioning device used for positioning in the silicon wafer handover process will be explained as an example.
  • the positioning device is arranged between the loading and unloading manipulator and the wafer-bearing table, so that the base body of the base remains fixed, and the first positioning structure faces the loading and unloading manipulator, so that The second positioning structure faces the film supporting platform.
  • the loading and unloading manipulator When the loading and unloading manipulator moves to the position of the positioning device, it will position and cooperate with the first positioning structure. During this process, if the loading and unloading manipulator deviates from the theoretical positioning point, then the frame will deform along the X and Y directions. displacement, so that the first positioning structure and the loading and unloading manipulator can perform adaptive positioning cooperation. After that, during the elastic reset process of the frame, the first positioning structure is used to correct the position of the loading and unloading manipulator, thereby realizing the loading and unloading manipulator. precise positioning; when the film-bearing table moves to the position of the positioning device, it will contact the second positioning structure.
  • the film-carrying table will move in a direction away from the loading and unloading manipulator.
  • the second positioning structure The positioning structure drives the first positioning structure and the frame to move, pushing back the loading and unloading manipulator, and the second positioning structure performs Z-direction motion compensation during the above process, thereby realizing the movement of the film-bearing table in the X and Y directions relative to the loading and unloading manipulator. and Z-direction positioning, thereby achieving the purpose of precise positioning during the silicon wafer handover process.
  • the wafer receiving table and the loading and unloading manipulator return to their original positions, the frame and the second positioning structure also return to their original positions, and drive the first positioning structure to also return to their original positions for the next step.
  • One-time handover positioning ensures positioning consistency.
  • the positioning device has flexible deformation ability in the overall structure, so that adaptive positioning can be performed between the positioning device and the loading and unloading manipulator, and between the positioning device and the film receiving table.
  • the positioning device By arranging a first positioning structure to position and cooperate with the loading and unloading manipulator, and a second positioning structure to position and cooperate with the film-bearing table, the positioning device also has sufficient positioning rigidity. Therefore, the positioning device can indirectly realize the positioning of the film.
  • the precise positioning of the table relative to the loading and unloading manipulator ensures the stability and accuracy of positioning during each handover of silicon wafers.
  • the second purpose of this application is to provide a photolithography equipment to solve the current technical problem of low positioning accuracy during the handover of silicon wafers.
  • the lithography equipment provided by this application includes a loading and unloading manipulator, a wafer-bearing stage and the above-mentioned positioning device.
  • the positioning device is located between the loading and unloading manipulator and the wafer-bearing stage.
  • the first positioning structure of the positioning device faces In the loading and unloading manipulator, the second positioning structure of the positioning device faces the film-bearing stage, and the positioning device is fixedly installed on the frame of the lithography equipment through a base body.
  • the lithography equipment By arranging the above-mentioned positioning device in the lithography equipment, the lithography equipment accordingly has all the advantages of the above-mentioned positioning device, which will not be described again here.
  • Figure 1 is a schematic structural diagram of the positioning device provided by the embodiment of the present application when it cooperates with the loading and unloading manipulator and the film receiving table at the same time;
  • Figure 2 is a schematic side view of the positioning device provided by the embodiment of the present application when it cooperates with the loading and unloading manipulator and the film receiving table at the same time;
  • Figure 3 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • Figure 4 is a partial structural schematic diagram of the positioning device provided by the embodiment of the present application.
  • Figure 5 is a schematic bottom view of the loading and unloading manipulator used in conjunction with the positioning device provided by the embodiment of the present application;
  • Figure 6 is a schematic structural diagram of the positioning device provided by the embodiment of the present application when it cooperates with the film receiving table;
  • Figure 7 is a schematic top view of the positioning device provided by the embodiment of the present application when it cooperates with the film receiving table;
  • Figure 8 is a schematic side view of a first form of flexible hinge of the positioning device provided by the embodiment of the present application.
  • Figure 9 is a schematic side view of a second form of flexible hinge of the positioning device provided by the embodiment of the present application.
  • Figure 10 is a schematic side view of a third form of flexible hinge of the positioning device provided by the embodiment of the present application.
  • Figure 11 is a schematic structural diagram of the base of the positioning device provided by the embodiment of the present application.
  • Figure 12 is a schematic top view of the base of the positioning device provided by the embodiment of the present application.
  • 010-Loading and unloading manipulator 011-Protruding column; 012-Positioning cylindrical surface; 020-Carrying table; 021-Positioning column; 030-Positioning device;
  • 210-interface plate 211-V-shaped groove; 212-bump; 2121-positioning plane; 220-support frame; 221-fixed frame body; 222-cross beam; 223-support plate body;
  • Figure 1 is a schematic structural diagram of the positioning device 030 provided by this embodiment, working together with the loading and unloading manipulator 010 and the film receiving table 020.
  • Figure 2 shows the positioning device 030 provided by this embodiment working together with the loading and unloading manipulator 010 and the film holding table 020.
  • a schematic side view of the positioning device 030 provided in this embodiment is shown in FIG. 3 .
  • this embodiment provides a positioning device 030 for loading and unloading materials, including a base 100, a first positioning structure 200 and a second positioning structure 300.
  • the base 100 includes a base The body 110 and the frame 120 arranged around the base 110.
  • the frame 120 is partially fixedly connected to the base 110.
  • the frame 120 has elastic deformation freedom in the X direction and the Y direction relative to the base 110; the first positioning structure 200 is fixedly installed on the frame 120, and the first positioning structure 200 is configured to position and cooperate with the loading and unloading robot 010; the second positioning structure 300 is fixedly installed on the first positioning structure 200, and the second positioning structure 300 is configured to cooperate with the film receiving table.
  • the second positioning structure 300 has a degree of freedom of elastic deformation along the Z direction relative to the base body 110 .
  • the material may be silicon wafers, and the loading and unloading robot 010 is used to implement loading and unloading operations of silicon wafers.
  • the positioning device 030 is arranged between the loading and unloading robot 010 and the wafer receiving table 020 to keep the base 110 of the base 100 fixed and the first positioning structure 200 Towards the loading and unloading robot 010, make the second positioning structure 300 face the film receiving table 020.
  • the loading and unloading manipulator 010 When the loading and unloading manipulator 010 moves to the position of the positioning device 030, it will position and cooperate with the first positioning structure 200. During this process, if the loading and unloading manipulator 010 deviates from the theoretical positioning point, then the frame 120 will generate a motion along the X direction. and Y-direction deformation displacement, so that the first positioning structure 200 and the loading and unloading manipulator 010 can perform adaptive positioning cooperation. After that, during the elastic reset process of the frame 120, the first positioning structure 200 is used to adjust the loading and unloading manipulator 010.
  • the position is corrected to achieve precise positioning of the loading and unloading manipulator 010; when the film-bearing table 020 moves to the position of the positioning device 030, it will contact the second positioning structure 300.
  • the film-carrying table 020 will Move in the direction away from the loading and unloading manipulator 010.
  • the second positioning structure 300 drives the first positioning structure 200 and the frame 120 to move, pushing back the loading and unloading manipulator 010.
  • the second positioning structure 300 moves in the above process.
  • Z-direction motion compensation is performed to realize the positioning of the wafer-bearing table 020 in the X-direction, Y-direction and Z-direction relative to the loading and unloading robot 010, thereby achieving the purpose of precise positioning during the silicon wafer handover process.
  • the wafer receiving table 020 and the loading and unloading robot 010 return to their original positions, the frame 120 and the second positioning structure 300 also return to their original positions, and drive the first positioning structure 200 to also return to their original positions. position for the next handover positioning, ensuring the consistency of positioning.
  • the positioning device 030 has flexible deformation ability in the overall structure, so that adaptive positioning can be performed between the positioning device 030 and the loading and unloading manipulator 010, and between the positioning device 030 and the film receiving table 020.
  • the positioning device 030 also makes the positioning device 030 have sufficient positioning rigidity by arranging the first positioning structure 200 to position and cooperate with the loading and unloading manipulator 010, and the second positioning structure 300 to position and cooperate with the film receiving table 020. Therefore, the positioning device 030 can indirectly realize the precise positioning of the wafer receiving table 020 relative to the loading and unloading robot 010, thereby ensuring the stability and accuracy of positioning during each handover process of silicon wafers.
  • the base 110 when the positioning device 030 is in use, the base 110 can be fixedly connected to the rack in the lithography equipment.
  • the loading and unloading manipulator 010 can be connected to the silicon wafer through vacuum adsorption, which can be obtained by those skilled in the art based on the existing technology. This embodiment does not improve this, so it will not be discussed again. Repeat.
  • Figure 4 is a partial structural diagram of the positioning device 030 provided in this embodiment. Please continue to refer to Figure 3, combined with Figure 4.
  • the first positioning structure 200 includes an interface board 210. Specifically, the interface board 210 is provided with a recessed portion;
  • Figure 5 is a diagram for use with the behavioral device provided in this embodiment.
  • the recessed portion includes a V-shaped groove 211 opened in the interface plate 210
  • the protruding portion includes a protruding column 011 fixedly provided on the loading and unloading manipulator 010.
  • the protruding column 011 It has a cylindrical surface configured to mate with the V-shaped groove 211 .
  • This form of positioning the loading and unloading manipulator 010 by matching the matching V-shaped groove 211 with the cylindrical surface of the protruding column 011 is not only reliable in positioning, but also has a simple structure and is easy to process and manufacture.
  • the recessed portion can also be configured as a U-shaped groove, and at the same time, the protruding portion can be configured as a spherical surface, and the positioning of the loading and unloading manipulator 010 can be achieved by using the cooperation between the spherical surface and the U-shaped groove.
  • the recessed part can also be set as a toothed groove, and at the same time, the protruding part can be set as a convex tooth, and the positioning of the loading and unloading robot 010 can be achieved by using the cooperation between the convex teeth and the toothed groove.
  • the interface board 210 is also provided with a positioning plane 2121.
  • the positioning plane 2121 and the V-shaped groove 211 are dispersedly arranged along the same edge of the interface board 210.
  • the loading and unloading robot 010 is also provided with a positioning plane 2121.
  • the positioning cylindrical surface 012 is configured to match the positioning plane 2121 in line.
  • the cylindrical surface formed on the protruding column 011 will contact and cooperate with the V-shaped groove 211.
  • the positioning cylindrical surface 012 provided on the loading and unloading manipulator 010 will also It cooperates with the positioning plane 2121 of the interface board 210 to realize the positioning of the loading and unloading manipulator 010 .
  • This positioning method can, on the one hand, increase the matching points between the interface board 210 and the loading and unloading manipulator 010, thereby improving positioning reliability. On the other hand, it can also prevent over-positioning.
  • the loading and unloading manipulator 010 is fixedly provided with two semi-cylinders spaced apart. Among them, one semi-cylinder is used to form a convex column 011. At this time, the cylindrical surface of the semi-cylinder That is, it is the cylindrical surface configured to position and cooperate with the V-shaped groove 211; the surface of the other semi-cylinder is used to form the positioning cylindrical surface 012.
  • a bump 212 is fixedly provided on the edge of the interface board 210 , and a side of the bump 212 facing the loading and unloading robot 010 forms a positioning plane 2121 .
  • This arrangement of using the side of the bump 212 facing the loading and unloading manipulator 010 to form the positioning plane 2121 can not only cooperate with the positioning cylindrical surface 012, but also reduce the processing area of the interface plate 210, so that only the side of the bump 212 is By processing the surface with sufficient flatness, it can achieve the purpose of positioning and matching with the positioning cylindrical surface 012, effectively reducing the processing cost.
  • the bumps 212 are formed by partially protruding outward from the edge of the interface board 210 . Such arrangement can ensure the reliability of the connection between the bump 212 and the main body of the interface board 210, and reduce the risk of breakage at the connection between the bump 212 and the main body of the interface board 210 during long-term use of the positioning device 030.
  • the first positioning structure 200 may also include a support frame 220 , wherein the support frame 220 is fixedly provided on the frame 120 , and the interface board 210 is fixedly provided on the support frame 220 .
  • the interface board 210 By disposing the support frame 220 between the interface board 210 and the frame 120, on the one hand, the interface board 210 has a sufficient installation height to achieve accurate docking with the loading and unloading manipulator 010. On the other hand, it also ensures that the interface board 210 installation stability.
  • the interface board 210 is a long board, and the support frame 220 has two sets of triangular support structures that are opposite and spaced along the length direction of the interface board 210, wherein each The bottom edge of the triangular support structure is fixedly provided on the frame 120, and the interface board 210 is fixedly provided on the top corner of each triangular support structure.
  • the interface board 210 can be effectively supported, the connection reliability between the interface board 210 and the frame 120 is improved, and the positioning device 030 is effectively prevented from being damaged due to the interface during long-term use.
  • the interface plate 210 is loosened due to the repeated force exerted by the plate 210 and the loading and unloading manipulator 010 many times, so that the first positioning structure 200 and the loading and unloading manipulator 010 have sufficient cooperation stiffness.
  • the length direction of the interface board 210 is along the X direction.
  • the triangular support structures can also be in three groups, four groups, etc., as long as the interface board 210 can be stably supported by the number of triangular support structures.
  • the support frame 220 includes a fixed frame body 221, a cross beam 222 and a support plate body 223.
  • the fixed frame body 221 is provided with two groups, and the two groups of fixed frame bodies 221 are arranged along the interface.
  • the length directions of the plates 210 are opposite and arranged at intervals, that is, two sets of fixed frame bodies 221 are arranged at intervals along the
  • the two free ends of the bending member and the support plate body 223 are fixedly connected to the fixed frame body 221 .
  • FIG. 6 is a schematic structural diagram of the positioning device 030 provided in this embodiment when it cooperates with the film receiving table 020 .
  • FIG. 7 is a top view of the positioning device 030 provided in this embodiment when it cooperates with the film supporting table 020 .
  • the second positioning structure 300 includes a flexible hinge 310.
  • the flexible hinge 310 has a first cantilever 311, a notch rotating shaft 312 and a second cantilever 313 arranged in sequence, wherein, The first cantilever 311 is fixedly connected to the first positioning structure 200 , and the second cantilever 313 faces the film receiving platform 020 .
  • the film-bearing table 020 moves to the position of the positioning device 030, it will contact the second cantilever 313 of the flexible hinge 310, causing the second cantilever 313 of the flexible hinge 310 to receive force; under the action of this force, the second cantilever 313 Rotate around the incision axis 312, that is, rotate around the X direction, thereby realizing motion compensation of the film supporting table 020 along the Z direction, so as to achieve accurate positioning between the film supporting table 020 and the loading and unloading manipulator 010.
  • This arrangement of the second positioning structure 300 utilizes the characteristic of the flexible hinge 310 to compensate for movement in the height direction, so that the film-bearing table 020 can be positioned along the Z direction.
  • the structure is simple and the installation is convenient.
  • the positioning column 021 is fixedly provided on the film receiving table 020 .
  • the positioning column 021 is used by the film receiving table 020 to position and cooperate with the second cantilever 313 of the flexible hinge 310 .
  • the positioning post 021 may be a semi-cylinder, and the curved surface of the semi-cylinder is configured to position and cooperate with the flexible hinge 310 .
  • Figure 8 is a schematic side view of the first form of the flexible hinge 310 of the positioning device 030 provided by this embodiment.
  • Figure 9 is a schematic side view of the second form of the flexible hinge 310 of the positioning device 030 provided by this embodiment.
  • FIG. 10 is a schematic side view of the third form of flexible hinge 310 of the positioning device 030 provided in this embodiment.
  • the flexible hinge 310 is a double-cut flexible hinge, in which the cuts can be arc cuts (see Figure 8), elliptical cuts (see Figure 9) or flat grooves. incision (see Figure 10).
  • the flexible hinge 310 may also be a single spring leaf flexible hinge, a single notch flexible hinge, a composite spring leaf flexible hinge, or a composite notch flexible hinge.
  • the number of flexible hinges 310 is multiple. Specifically, multiple flexible hinges 310 are arranged at intervals along the X direction. Such an arrangement can increase the point distribution area of the second positioning structure 300 for cooperating with the film-supporting platform 020, so that the force of the film-supporting platform 020 is balanced and the deflection of the film-supporting platform 020 around the Z direction can be prevented.
  • Figure 11 is a schematic structural diagram of the base 100 of the positioning device 030 provided in this embodiment
  • Figure 12 is a schematic top view of the base 100 of the positioning device 030 provided in this embodiment.
  • the frame 120 is in the shape of a rectangle.
  • flexible cuts 121 are provided on the four sides of the rectangle, where the axis of the flexible cuts 121 extends along the Z direction, and each flexible cutout 121 is configured so that the frame 120 has elastic deformation freedom along the X direction and the Y direction.
  • the frame 120 fixedly connected to the interface plate 210 can be deformed along the X and Y directions, thereby realizing the loading and unloading manipulator. 010 positioning.
  • the "flexible cuts 121" provided on the frame 120 refer to: corresponding cuts are opened on the inner and outer peripheral surfaces of the frame 120, and each set of cuts forms a flexible cut 121. . That is to say, each side of the frame 120 can be viewed as a flexible hinge 310 individually.
  • the flexible cutout 121 can also be in the form of a single-sided cutout only provided on the inner or outer peripheral surface of the frame 120 , as long as this arrangement can realize the movement of the frame 120 along the X and Y directions. It suffices to be deformed, and this embodiment does not limit the specific form of the flexible cutout 121 .
  • the working principle of the positioning device 030 is as follows.
  • the protruding column 011 provided on the loading and unloading manipulator 010 will cooperate with the V-shaped groove 211 provided on the interface plate 210 and the positioning cylindrical surface 012 provided on the loading and unloading manipulator 010. It will match the line surface of the bump 212 of the interface board 210.
  • the frame 120 will produce deformation displacements along the X and Y directions, so that the bump 011 Adaptable positioning cooperation is performed between the V-shaped groove 211 and between the positioning cylindrical surface 012 and the bump 212; then, during the elastic reset process of the frame 120, the position of the loading and unloading manipulator 010 will be corrected, thereby achieving Position the loading and unloading manipulator 010 along the X direction and along the Y direction; when the film-bearing platform 020 moves to the position of the positioning device 030, it will contact the second cantilever 313 of the flexible hinge 310.
  • the film-bearing platform 020 The platform 020 will move away from the loading and unloading manipulator 010.
  • the first cantilever 311 of the flexible hinge 310 drives the interface board 210 and the frame 120 to move, pushing back the loading and unloading manipulator 010, and, on the film receiving table 020
  • the first cantilever 311 of the flexible hinge 310 is forced to rotate around the X direction at the notch rotating axis 312, and performs motion compensation along the Z direction, thereby realizing the relative position of the film bearing platform 020.
  • the loading and unloading robot 010 is positioned in the X, Y and Z directions to achieve precise positioning during the silicon wafer handover process.
  • the wafer receiving table 020 and the loading and unloading manipulator 010 return to their original positions, the frame 120 and the flexible hinge 310 also return to their original positions, and drive the interface board 210 to also return to their original positions, so that the interface board 210 can be returned to the original position.
  • the silicon wafer is positioned for the next handover to ensure the consistency of positioning.
  • this embodiment also provides a photolithography equipment, including a loading and unloading robot 010, a wafer receiving table 020 and the above-mentioned positioning device 030.
  • the positioning device 030 is located between the loading and unloading manipulator 010 and the wafer supporting table 020.
  • the first positioning structure 200 of the device 030 faces the loading and unloading robot 010
  • the second positioning structure 300 of the positioning device 030 faces the wafer receiving stage 020
  • the positioning device 030 is fixed to the frame of the lithography equipment through the base 110.
  • the lithography equipment has all the advantages of the above-mentioned positioning device 030 , which will not be described again one by one.
  • the positioning device and photolithography equipment for loading and unloading provided by this application, on the one hand, enable adaptive positioning between the positioning device and the loading and unloading manipulator, and between the positioning device and the film receiving table. On the other hand, It also makes the positioning device have sufficient positioning rigidity. Therefore, the positioning device can indirectly realize the precise positioning of the wafer-bearing table relative to the loading and unloading robot, thereby ensuring the stability and accuracy of positioning during each handover of silicon wafers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种用于上下料的定位装置(030)及光刻设备,涉及光刻技术领域,为解决目前硅片交接过程中,定位精度较低的问题而设计。用于上下料的定位装置(030)包括基座(100)、第一定位结构(200)和第二定位结构(300),基座(100)包括座体(110)和环绕座体(110)设置的框体(120),框体(120)与座体(110)局部固定连接,框体(120)具有相对于座体(110)的沿X向和Y向的弹性变形自由度;第一定位结构(200)固定设置于框体(120),第一定位结构(200)被配置为与上下料机械手(010)定位配合;第二定位结构(300)固定设置于第一定位结构(200),第二定位结构(300)被配置为与承片台(020)定位配合,承片台(020)被配置为承载物料;第二定位结构(300)具有相对于座体(110)的沿Z向的弹性变形自由度。用于上下料的定位装置(030)提高了硅片交接过程中的定位精度。

Description

一种用于上下料的定位装置及光刻设备
相关申请的交叉引用
本申请要求于2022年6月30日提交中国专利局的申请号为202210757532.4、名称为“一种用于上下料的定位装置及光刻设备”的中国专利申请以及于2022年6月30日提交中国专利局的申请号为202221690378.5、名称为“一种用于上下料的定位装置及光刻设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光刻技术领域,具体而言,涉及一种用于上下料的定位装置及光刻设备。
背景技术
光刻设备中,硅片的交接通常由夹持机械手完成,该过程中,夹持机械手首先对硅片进行吸附,然后,将吸附到的硅片传递至承片台,从而达到硅片的交接目的。上述这一系列的动作都需要在较短的时间内准确完成,具有高度的重复一致性。随着半导体的生产工艺进展对光刻设备的精度要求不断提高,相应地,对硅片交接定位的要求也越来越高。
然而,目前硅片交接过程中,定位精度较低,无法满足硅片的高精度交接定位需求。申请内容
本申请的第一个目的在于提供一种用于上下料的定位装置,以解决目前硅片交接过程中,定位精度较低的技术问题。
本申请提供的用于上下料的定位装置,包括基座、第一定位结构和第二定位结构,所述基座包括座体和环绕所述座体设置的框体,所述框体与所述座体局部固定连接,所述框体具有相对于所述座体的沿X向和Y向的弹性变形自由度;所述第一定位结构固定设置于所述框体,所述第一定位结构被配置为与上下料机械手定位配合;所述第二定位结构固定设置于所述第一定位结构,所述第二定位结构被配置为与承片台定位配合,所述承片台被配置为承载物料;所述第二定位结构具有相对于所述座体的沿Z向的弹性变形自由度。
进一步地,所述第一定位结构包括接口板,所述接口板和所述上下料机械手两者中的一者设置凹陷部,所述接口板和所述上下料机械手两者中的另一者设置凸出部,所述凸出部能够与所述凹陷部定位配合。
进一步地,所述凹陷部包括开设于所述接口板的V形槽,所述凸出部包括固定设置于所述上下料机械手的凸柱,所述凸柱具有配置成与所述V形槽配合的圆柱面。
进一步地,所述接口板还设置有定位平面,所述定位平面与所述V形槽沿所述接口板的同一边缘分散排布,所述上下料机械手还设置有定位圆柱面,所述定位圆柱面配置成与所述定位平面线面配合。
进一步地,所述接口板的边缘固定设置有凸块,所述凸块的朝向所述上下料机械手的 一面形成所述定位平面。
进一步地,所述第一定位结构还包括支撑架,所述支撑架固定设置于所述框体,所述接口板固定设置于所述支撑架。
进一步地,所述接口板为长条板,所述支撑架具有多组沿所述接口板的长度方向相对且间隔设置的三角形支撑结构,各所述三角形支撑结构的底边固定设置于所述框体,所述接口板固定设置于各所述三角形支撑结构的顶角。
进一步地,所述第二定位结构包括柔性铰链,所述柔性铰链具有依次设置的第一悬臂、切口转轴和第二悬臂,其中,所述第一悬臂与所述第一定位结构固定连接,所述第二悬臂朝向所述承片台。
进一步地,所述柔性铰链的数量为多个。
进一步地,所述柔性铰链为双切口柔性铰链。
进一步地,所述框体呈矩形,所述矩形的四个边均设置有柔性切口,所述柔性切口的轴线沿Z向延伸,各所述柔性切口被配置为使所述框体具有沿X向和Y向的弹性变形自由度。
本申请用于上下料的定位装置带来的有益效果是:
通过设置主要由基座、第一定位结构和第二定位结构组成的定位装置,以该定位装置用于硅片交接过程中的定位为例进行说明。当需要对硅片的交接过程进行定位时,将该定位装置设置在上下料机械手与承片台之间,使基座的座体保持固定不动,使第一定位结构朝向上下料机械手,使第二定位结构朝向承片台。
当上下料机械手运动至定位装置的位置处时,将与第一定位结构定位配合,在此过程中,如果上下料机械手偏离理论定位点,那么,框体将产生沿X向和Y向的变形位移,以使第一定位结构与上下料机械手进行适应性的定位配合,之后,在框体弹性复位的过程中,利用第一定位结构对上下料机械手的位置进行纠偏,从而实现对上下料机械手的精确定位;当承片台运动至定位装置的位置处时,将与第二定位结构接触,根据牛顿第三定律,承片台将向远离上下料机械手的方向运动,与此同时,第二定位结构带动第一定位结构及框体进行移动,回推上下料机械手,并且,第二定位结构在上述过程中进行Z向运动补偿,从而实现承片台相对于上下料机械手在X向、Y向和Z向的定位,进而达到硅片交接过程中精确定位的目的。当完成硅片的交接后,承片台和上下料机械手回撤至原位后,框体和第二定位结构也回复至原位,并带动第一定位结构也回复至原位,以便进行下一次的交接定位,保证了定位的一致性。
由此可见,一方面,该定位装置在整体结构上具有柔性变形能力,使得定位装置与上下料机械手之间、定位装置与承片台之间,均能够进行自适应的定位,另一方面,该定位 装置通过设置第一定位结构与上下料机械手定位配合,以及设置第二定位结构与承片台定位配合,还使得定位装置具有足够的定位刚性,因此,该定位装置能够间接地实现承片台相对于上下料机械手的精确定位,从而保证了硅片每次交接过程中定位的稳定性和准确性。
本申请的第二个目的在于提供一种光刻设备,以解决目前硅片交接过程中,定位精度较低的技术问题。
本申请提供的光刻设备,包括上下料机械手、承片台和上述定位装置,所述定位装置位于所述上下料机械手与所述承片台之间,所述定位装置的第一定位结构朝向所述上下料机械手,所述定位装置的第二定位结构朝向所述承片台,且所述定位装置通过座体固定设置于光刻设备的机架。
本申请光刻设备带来的有益效果是:
通过在光刻设备中设置上述定位装置,相应地,该光刻设备具有上述定位装置的所有优势,在此不再一一赘述。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的定位装置与上下料机械手及承片台同时配合时的结构示意图;
图2为本申请实施例提供的定位装置与上下料机械手及承片台同时配合时的侧视示意图;
图3为本申请实施例提供的定位装置的结构示意图;
图4为本申请实施例提供的定位装置的局部结构示意图;
图5为与本申请实施例提供的定位装置配合使用的上下料机械手的仰视示意图;
图6为本申请实施例提供的定位装置与承片台配合时的结构示意图;
图7为本申请实施例提供的定位装置与承片台配合时的俯视示意图;
图8为本申请实施例提供的定位装置的第一种形式的柔性铰链的侧视示意图;
图9为本申请实施例提供的定位装置的第二种形式的柔性铰链的侧视示意图;
图10为本申请实施例提供的定位装置的第三种形式的柔性铰链的侧视示意图;
图11为本申请实施例提供的定位装置的基座的结构示意图;
图12为本申请实施例提供的定位装置的基座的俯视示意图。
附图标记说明:
010-上下料机械手;011-凸柱;012-定位圆柱面;020-承片台;021-定位柱;030-定位装置;
100-基座;200-第一定位结构;300-第二定位结构;
110-座体;120-框体;121-柔性切口;
210-接口板;211-V形槽;212-凸块;2121-定位平面;220-支撑架;221-固定架体;222-横梁;223-支撑板体;
310-柔性铰链;311-第一悬臂;312-切口转轴;313-第二悬臂。
具体实施方式
为使本申请的上述目的、特征和优点能够更为明显易懂,下面结合附图对本申请的具体实施例做详细的说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
图1为本实施例提供的定位装置030与上下料机械手010及承片台020同时配合时的结构示意图,图2为本实施例提供的定位装置030与上下料机械手010及承片台020同时配合时的侧视示意图,图3为本实施例提供的定位装置030的结构示意图。如图1至图3所示,本实施例提供了一种用于上下料的定位装置030,包括基座100、第一定位结构200和第二定位结构300,具体地,基座100包括座体110和环绕座体110设置的框体120,框体120与座体110局部固定连接,框体120具有相对于座体110的沿X向和Y向的弹性变形自由度;第一定位结构200固定设置于框体120,第一定位结构200被配置为与上下料机械手010定位配合;第二定位结构300固定设置于第一定位结构200,第二定位结构300被配置为与承片台020定位配合,承片台020被配置为承载物料;第二定位结构300具有相对于座体110的沿Z向的弹性变形自由度。本实施例中,物料可以为硅片,上下料机械手010用于实现硅片的上料操作和下料操作。
当需要对硅片的交接过程进行定位时,将该定位装置030设置在上下料机械手010与承片台020之间,使基座100的座体110保持固定不动,使第一定位结构200朝向上下料机械手010,使第二定位结构300朝向承片台020。
当上下料机械手010运动至定位装置030的位置处时,将与第一定位结构200定位配合,在此过程中,如果上下料机械手010偏离理论定位点,那么,框体120将产生沿X向和Y向的变形位移,以使第一定位结构200与上下料机械手010进行适应性的定位配合,之后,在框体120弹性复位的过程中,利用第一定位结构200对上下料机械手010的位置进行纠偏,从而实现对上下料机械手010的精确定位;当承片台020运动至定位装置030的位置处时,将与第二定位结构300接触,根据牛顿第三定律,承片台020将向远离上下料机械手010的方向运动,与此同时,第二定位结构300带动第一定位结构200及框体120 进行移动,回推上下料机械手010,并且,第二定位结构300在上述过程中进行Z向运动补偿,从而实现承片台020相对于上下料机械手010在X向、Y向和Z向的定位,进而达到硅片交接过程中精确定位的目的。当完成硅片的交接后,承片台020和上下料机械手010回撤至原位后,框体120和第二定位结构300也回复至原位,并带动第一定位结构200也回复至原位,以便进行下一次的交接定位,保证了定位的一致性。
由此可见,一方面,该定位装置030在整体结构上具有柔性变形能力,使得定位装置030与上下料机械手010之间、定位装置030与承片台020之间,均能够进行自适应的定位,另一方面,该定位装置030通过设置第一定位结构200与上下料机械手010定位配合,以及设置第二定位结构300与承片台020定位配合,还使得定位装置030具有足够的定位刚性,因此,该定位装置030能够间接地实现承片台020相对于上下料机械手010的精确定位,从而保证了硅片每次交接过程中定位的稳定性和准确性。
需要说明的是,本实施例中,定位装置030在使用时,可以将座体110与光刻设备中的机架固定连接。
还需要说明的是,上下料机械手010可以通过真空吸附的方式实现与硅片的连接,该为本领域技术人员可以根据现有技术获得的,本实施例并未对此进行改进,故不再赘述。
图4为本实施例提供的定位装置030的局部结构示意图。请继续参照图3,并结合图4,本实施例中,第一定位结构200包括接口板210,具体地,接口板210设置有凹陷部;图5为本实施例提供的行为装置配合使用的上下料机械手010的仰视示意图。如图5所示,上下料机械手010设置有凸出部,凸出部能够与凹陷部定位配合。
当上下料机械手010运动至定位装置030的位置处时,将利用其凸出部与接口板210的凹陷部配合,以此实现对上下料机械手010的定位。这种定位配合的方式,结构简单,定位可靠。
请继续参照图3和图4,本实施例中,具体地,凹陷部包括开设于接口板210的V形槽211,凸出部包括固定设置于上下料机械手010的凸柱011,凸柱011具有配置成与V形槽211配合的圆柱面。
这种利用相配合的V形槽211与凸柱011的圆柱面相配合实现对上下料机械手010定位的形式,不仅定位可靠,而且,结构简单,易于加工制造。
在其他实施例中,也可以将凹陷部设置为U形槽的结构,同时,将凸出部设置为球面,利用球面与U形槽的配合实现对上下料机械手010的定位。此外,还可以将凹陷部设置为齿形槽,同时,将凸出部设置为凸齿,利用凸齿与齿形槽的配合实现对上下料机械手010的定位。
请继续参照图3和图4,本实施例中,接口板210还设置有定位平面2121,定位平面 2121与V形槽211沿接口板210的同一边缘分散排布,上下料机械手010还设置有定位圆柱面012,定位圆柱面012配置成与定位平面2121线面配合。
当上下料机械手010朝靠近承片台020的方向运动时,形成于凸柱011的圆柱面将与V形槽211接触配合,与此同时,设置于上下料机械手010的定位圆柱面012还将与接口板210的定位平面2121线面配合,从而实现对上下料机械手010的定位。
这种定位方式,一方面,能够增加接口板210与上下料机械手010的配合点位,从而提高定位可靠性,另一方面,还能够防止过定位现象的发生。
具体地,请继续参照图5,本实施例中,上下料机械手010固定设置有两个相间隔的半圆柱,其中,一个半圆柱用于形成凸柱011,此时,该半圆柱的圆柱面即为配置成与V形槽211定位配合的圆柱面;另一个半圆柱的表面用于形成定位圆柱面012。
请继续参照图3和图4,本实施例中,接口板210的边缘固定设置有凸块212,其中,凸块212的朝向上下料机械手010的一面形成定位平面2121。
这种利用凸块212朝向上下料机械手010的一面形成定位平面2121的设置形式,在实现与定位圆柱面012配合的同时,还能够减少对接口板210加工的区域,使得仅在凸块212的表面加工出足够的平面度,即可达到与定位圆柱面012定位配合的目的,有效降低了加工成本。
具体地,本实施例中,凸块212由接口板210的边缘局部向外凸出形成。如此设置,能够保证凸块212与接口板210主体连接的可靠性,降低定位装置030长期使用过程中凸块212与接口板210主体连接处断裂的风险。
请继续参照图3和图4,本实施例中,第一定位结构200还可以包括支撑架220,其中,支撑架220固定设置于框体120,接口板210固定设置于支撑架220。
通过在接口板210与框体120之间设置支撑架220,一方面,使得接口板210具有足够的安装高度,以实现与上下料机械手010的准确对接,另一方面,还保证了接口板210的安装稳定性。
请继续参照图3和图4,本实施例中,具体地,接口板210为长条板,支撑架220具有两组沿接口板210的长度方向相对且间隔设置的三角形支撑结构,其中,各三角形支撑结构的底边固定设置于框体120,接口板210固定设置于各三角形支撑结构的顶角。
通过在支撑架220中设置三角形支撑结构,能够实现对接口板210的有效支撑,提高了接口板210与框体120之间的连接可靠性,有效防止了定位装置030长期使用过程中,因接口板210多次与上下料机械手010配合反复受力而导致的接口板210松脱的情形,使得第一定位结构200与上下料机械手010之间具有足够的配合刚度。
本实施例中,接口板210的长度方向沿X向。
在其他实施例中,三角形支撑结构还可以为三组、四组等,其只要通过三角形支撑结构的该种数量形式,能够实现对接口板210的稳定支撑即可。
请继续参照图4,具体地,本实施例中,支撑架220包括固定架体221、横梁222和支撑板体223,其中,固定架体221设置有两组,两组固定架体221沿接口板210的长度方向相对且间隔排布,即:两组固定架体221沿X向间隔排布;横梁222连接在两组固定架体221之间;支撑板体223大致呈底边开口的三角形折弯件,支撑板体223的两个自由端固定连接于固定架体221。
图6为本实施例提供的定位装置030与承片台020配合时的结构示意图,图7为本实施例提供的定位装置030与承片台020配合时的俯视示意图。如图6和图7所示,本实施例中,第二定位结构300包括柔性铰链310,具体地,柔性铰链310具有依次设置的第一悬臂311、切口转轴312和第二悬臂313,其中,第一悬臂311与第一定位结构200固定连接,第二悬臂313朝向承片台020。
当承片台020运动至定位装置030的位置处时,将与柔性铰链310的第二悬臂313接触,使得柔性铰链310的第二悬臂313受力;第二悬臂313在该力的作用下,将绕切口转轴312转动,即:绕X向转动,从而实现对承片台020沿Z向的运动补偿,以便承片台020与上下料机械手010之间的精确定位。
这种第二定位结构300的设置形式,利用柔性铰链310具有在高度方向补偿运动的特征,便可实现对承片台020沿Z向的定位,结构简单,设置方便。
请继续参照图6和图7,本实施例中,承片台020固定设置有定位柱021,承片台020利用定位柱021与柔性铰链310的第二悬臂313定位配合。其中,定位柱021可以为半圆柱,半圆柱的曲面配置成与柔性铰链310定位配合。
图8为本实施例提供的定位装置030的第一种形式的柔性铰链310的侧视示意图,图9为本实施例提供的定位装置030的第二种形式的柔性铰链310的侧视示意图,图10为本实施例提供的定位装置030的第三种形式的柔性铰链310的侧视示意图。如图8至图10所示,具体地,本实施例中,柔性铰链310为双切口柔性铰链,其中,切口可以为圆弧切口(参见图8)、椭圆切口(参见图9)或者平槽切口(参见图10)。
在其他实施例中,柔性铰链310还可以是单弹簧片柔性铰链、单切口柔性铰链、复合弹簧片柔性铰链或者复合切口柔性铰链。
请继续参照图6和图7,本实施例中,柔性铰链310的数量为多个。具体地,多个柔性铰链310沿X向间隔排布。如此设置,能够增加第二定位结构300中用于与承片台020相配合的点位分布区域,使得承片台020受力均衡,防止承片台020绕Z向偏转。
图11为本实施例提供的定位装置030的基座100的结构示意图,图12为本实施例提 供的定位装置030的基座100的俯视示意图。如图11和图12所示,本实施例中,框体120呈矩形,具体地,矩形的四个边均设置有柔性切口121,其中,柔性切口121的轴线沿Z向延伸,各柔性切口121被配置为使框体120具有沿X向和Y向的弹性变形自由度。
通过上述设置,使得在接口板210受到与上下料机械手010配合产生的作用力时,能够使得与接口板210固定连接的框体120发生沿X向和Y向的变形,从而实现对上下料机械手010的定位。
需要说明的是,本实施例中,设置于框体120的“柔性切口121”指的是:在框体120的内周面和外周面开设相对应的切口,每组切口形成一个柔性切口121。也就是说,框体120的每个边都能单独看成是一个柔性铰链310。当然,在其他实施例中,柔性切口121也可以为仅在框体120的内周面或者外周面设置单侧切口的形式,其只要能够通过该设置实现框体120沿X向和Y向的变形即可,本实施例并不对柔性切口121的具体形式进行限定。
该定位装置030的工作原理如下。
当上下料机械手010运动至定位装置030的位置处时,设置于上下料机械手010的凸柱011将与设置于接口板210的V形槽211配合,设置于上下料机械手010的定位圆柱面012将与接口板210的凸块212线面配合,在此过程中,如果上下料机械手010偏离理论定位点,那么,框体120将产生沿X向和Y向的变形位移,以使凸柱011与V形槽211之间、定位圆柱面012与凸块212之间进行适应性的定位配合;之后,在框体120弹性复位的过程中,将对上下料机械手010的位置进行纠偏,从而实现对上下料机械手010沿X向和沿Y向的定位;当承片台020运动至定位装置030的位置处时,将与柔性铰链310的第二悬臂313接触,根据牛顿第三定律,承片台020将向远离上下料机械手010的方向运动,与此同时,柔性铰链310的第一悬臂311带动接口板210及框体120进行移动,回推上下料机械手010,并且,在承片台020与柔性铰链310接触配合的过程中,柔性铰链310的第一悬臂311受力,将在切口转轴312处产生绕X向的转动,进行沿Z向的运动补偿,从而实现承片台020相对于上下料机械手010在X向、Y向和Z向的定位,进而达到硅片交接过程中精确定位的目的。
当完成硅片的交接后,承片台020和上下料机械手010回撤至原位后,框体120和柔性铰链310也回复至原位,并带动接口板210也回复至原位,以便对硅片进行下一次的交接定位,保证了定位的一致性。
此外,本实施例还提供了一种光刻设备,包括上下料机械手010、承片台020和上述定位装置030,具体地,定位装置030位于上下料机械手010与承片台020之间,定位装置030的第一定位结构200朝向上下料机械手010,定位装置030的第二定位结构300朝向承片台020,且定位装置030通过座体110固定设置于光刻设备的机架。
通过在光刻设备中设置上述定位装置030,相应地,该光刻设备具有上述定位装置030的所有优势,在此不再一一赘述。
虽然本申请披露如上,但本申请并非限定于此。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各种更动与修改,因此本申请的保护范围应当以权利要求所限定的范围为准。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
上述实施例中,诸如“上”、“下”、“侧”等方位的描述,均基于附图所示。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
工业实用性
本申请提供的用于上下料的定位装置及光刻设备,一方面,使得定位装置与上下料机械手之间、定位装置与承片台之间,均能够进行自适应的定位,另一方面,还使得定位装置具有足够的定位刚性。因此,该定位装置能够间接地实现承片台相对于上下料机械手的精确定位,从而保证了硅片每次交接过程中定位的稳定性和准确性。

Claims (12)

  1. 一种用于上下料的定位装置,其特征在于,包括:
    基座(100),所述基座(100)包括座体(110)和环绕所述座体(110)设置的框体(120),所述框体(120)与所述座体(110)局部固定连接,所述框体(120)具有相对于所述座体(110)的沿X向和Y向的弹性变形自由度;
    第一定位结构(200),所述第一定位结构(200)固定设置于所述框体(120),所述第一定位结构(200)被配置为与上下料机械手(010)定位配合;以及
    第二定位结构(300),所述第二定位结构(300)固定设置于所述第一定位结构(200),所述第二定位结构(300)被配置为与承片台(020)定位配合,所述承片台(020)被配置为承载物料;所述第二定位结构(300)具有相对于所述座体(110)的沿Z向的弹性变形自由度。
  2. 根据权利要求1所述的用于上下料的定位装置,其特征在于,所述第一定位结构(200)包括接口板(210),所述接口板(210)和所述上下料机械手(010)两者中的一者设置凹陷部,所述接口板(210)和所述上下料机械手(010)两者中的另一者设置凸出部,所述凸出部能够与所述凹陷部定位配合。
  3. 根据权利要求2所述的用于上下料的定位装置,其特征在于,所述凹陷部包括开设于所述接口板(210)的V形槽(211),所述凸出部包括固定设置于所述上下料机械手(010)的凸柱(011),所述凸柱(011)具有配置成与所述V形槽(211)配合的圆柱面。
  4. 根据权利要求3所述的用于上下料的定位装置,其特征在于,所述接口板(210)还设置有定位平面(2121),所述定位平面(2121)与所述V形槽(211)沿所述接口板(210)的同一边缘分散排布,所述上下料机械手(010)还设置有定位圆柱面(012),所述定位圆柱面(012)配置成与所述定位平面(2121)线面配合。
  5. 根据权利要求4所述的用于上下料的定位装置,其特征在于,所述接口板(210)的边缘固定设置有凸块(212),所述凸块(212)的朝向所述上下料机械手(010)的一面形成所述定位平面(2121)。
  6. 根据权利要求2-5任一项所述的用于上下料的定位装置,其特征在于,所述第一定位结构(200)还包括支撑架(220),所述支撑架(220)固定设置于所述框体(120),所述接口板(210)固定设置于所述支撑架(220)。
  7. 根据权利要求6所述的用于上下料的定位装置,其特征在于,所述接口板(210)为长条板,所述支撑架(220)具有多组沿所述接口板(210)的长度方向相对且间隔设置的三角形支撑结构,各所述三角形支撑结构的底边固定设置于所述框体(120), 所述接口板(210)固定设置于各所述三角形支撑结构的顶角。
  8. 根据权利要求1-7任一项所述的用于上下料的定位装置,其特征在于,所述第二定位结构(300)包括柔性铰链(310),所述柔性铰链(310)具有依次设置的第一悬臂(311)、切口转轴(312)和第二悬臂(313),其中,所述第一悬臂(311)与所述第一定位结构(200)固定连接,所述第二悬臂(313)朝向所述承片台(020)。
  9. 根据权利要求8所述的用于上下料的定位装置,其特征在于,所述柔性铰链(310)的数量为多个。
  10. 根据权利要求8所述的用于上下料的定位装置,其特征在于,所述柔性铰链(310)为双切口柔性铰链。
  11. 根据权利要求1-10任一项所述的用于上下料的定位装置,其特征在于,所述框体(120)呈矩形,所述矩形的四个边均设置有柔性切口(121),所述柔性切口(121)的轴线沿Z向延伸,各所述柔性切口(121)被配置为使所述框体(120)具有沿X向和Y向的弹性变形自由度。
  12. 一种光刻设备,其特征在于,包括上下料机械手(010)、承片台(020)和权利要求1-11任一项所述的定位装置,所述定位装置位于所述上下料机械手(010)与所述承片台(020)之间,所述定位装置的第一定位结构(200)朝向所述上下料机械手(010),所述定位装置的第二定位结构(300)朝向所述承片台(020),且所述定位装置通过座体(110)固定设置于光刻设备的机架。
PCT/CN2022/115008 2022-06-30 2022-08-26 一种用于上下料的定位装置及光刻设备 WO2024000776A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210757532.4A CN117361111A (zh) 2022-06-30 2022-06-30 一种用于上下料的定位装置及光刻设备
CN202221690378.5 2022-06-30
CN202210757532.4 2022-06-30
CN202221690378.5U CN217946821U (zh) 2022-06-30 2022-06-30 一种用于上下料的定位装置及光刻设备

Publications (1)

Publication Number Publication Date
WO2024000776A1 true WO2024000776A1 (zh) 2024-01-04

Family

ID=89383693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115008 WO2024000776A1 (zh) 2022-06-30 2022-08-26 一种用于上下料的定位装置及光刻设备

Country Status (1)

Country Link
WO (1) WO2024000776A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122284A (ja) * 2002-10-01 2004-04-22 Koshien Kinzoku Kk 超精密移動台装置
CN102540779A (zh) * 2010-12-31 2012-07-04 上海微电子装备有限公司 用于光刻机中的掩模版固定装置及掩模版固定方法
CN102681349A (zh) * 2011-03-15 2012-09-19 上海微电子装备有限公司 工件台
CN103216711A (zh) * 2013-03-28 2013-07-24 河北工业大学 一种柔性微定位平台
CN106082114A (zh) * 2016-08-24 2016-11-09 广东工业大学 一种柔性大行程微纳加工设备
CN106737597A (zh) * 2017-01-12 2017-05-31 广东工业大学 一种xyz三自由度精密定位装置
CN208945568U (zh) * 2018-11-06 2019-06-07 中国工程物理研究院激光聚变研究中心 大口径光学元件自动化装配系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004122284A (ja) * 2002-10-01 2004-04-22 Koshien Kinzoku Kk 超精密移動台装置
CN102540779A (zh) * 2010-12-31 2012-07-04 上海微电子装备有限公司 用于光刻机中的掩模版固定装置及掩模版固定方法
CN102681349A (zh) * 2011-03-15 2012-09-19 上海微电子装备有限公司 工件台
CN103216711A (zh) * 2013-03-28 2013-07-24 河北工业大学 一种柔性微定位平台
CN106082114A (zh) * 2016-08-24 2016-11-09 广东工业大学 一种柔性大行程微纳加工设备
CN106737597A (zh) * 2017-01-12 2017-05-31 广东工业大学 一种xyz三自由度精密定位装置
CN208945568U (zh) * 2018-11-06 2019-06-07 中国工程物理研究院激光聚变研究中心 大口径光学元件自动化装配系统

Similar Documents

Publication Publication Date Title
US11164842B2 (en) Bonding apparatus and bonding system
JP6245308B2 (ja) 基板搬送方法、デバイス製造方法、基板搬送装置および露光装置
WO2024000776A1 (zh) 一种用于上下料的定位装置及光刻设备
JP6742551B2 (ja) 基板処理装置
JP3349572B2 (ja) 薄板固定装置
JP2773783B2 (ja) 回転並進ステージ装置
US5130747A (en) Carrier apparatus
CN117361111A (zh) 一种用于上下料的定位装置及光刻设备
JPWO2011049133A1 (ja) 基板支持装置、基板支持部材、基板搬送装置、露光装置、及びデバイス製造方法
JP5140010B2 (ja) 基板ホルダー
JP2018026415A (ja) 接合装置および接合システム
JP2922408B2 (ja) 基板固定方法及び基板固定構造
JPH04324658A (ja) 真空吸着式ウエハ保持装置
JPH08167553A (ja) 被処理材の固定装置
JP2578007B2 (ja) 基板貼合装置
JP3708984B2 (ja) 被処理材の固定装置
JPH01246036A (ja) 微動ステージ装置
JPH11135412A (ja) 投影露光装置及びレチクル保持方法
WO2023032721A1 (ja) 基板保持装置、及び導電膜付き基板の製造方法
JP2002296295A (ja) 接触子組立体の接触子保持構造
JP3068908B2 (ja) 試料搬送装置
JP3425249B2 (ja) 試料ホルダの固定装置
TWM615722U (zh) 半導體製程用的晶圓機械手臂裝置
JP2013093605A (ja) 基板貼り合わせ装置および基板貼り合わせ方法
JP3633441B2 (ja) ステージ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948867

Country of ref document: EP

Kind code of ref document: A1