WO2023286344A1 - 光源装置、誘電体バリア放電ランプの点灯回路、誘電体バリア放電ランプの点灯方法 - Google Patents

光源装置、誘電体バリア放電ランプの点灯回路、誘電体バリア放電ランプの点灯方法 Download PDF

Info

Publication number
WO2023286344A1
WO2023286344A1 PCT/JP2022/010544 JP2022010544W WO2023286344A1 WO 2023286344 A1 WO2023286344 A1 WO 2023286344A1 JP 2022010544 W JP2022010544 W JP 2022010544W WO 2023286344 A1 WO2023286344 A1 WO 2023286344A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
switching element
discharge lamp
dielectric barrier
barrier discharge
Prior art date
Application number
PCT/JP2022/010544
Other languages
English (en)
French (fr)
Inventor
貴紀 鮫島
孝治 小田
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to CN202280041884.8A priority Critical patent/CN117480864A/zh
Priority to US18/577,556 priority patent/US20240244724A1/en
Priority to KR1020237044090A priority patent/KR20240013161A/ko
Priority to EP22841694.7A priority patent/EP4373213A1/en
Publication of WO2023286344A1 publication Critical patent/WO2023286344A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2828Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using control circuits for the switching elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/24Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a light source device, and more particularly to a light source device equipped with a dielectric barrier discharge lamp.
  • the present invention also relates to a lighting circuit and a lighting method for a dielectric barrier discharge lamp.
  • JP-A-10-223384 Japanese Patent Application Laid-Open No. 2020-92968
  • a known excimer lamp that emits light in this wavelength range is an excimer lamp in which a rare gas and a halogen gas are sealed in an arc tube as a light emission gas.
  • Such an excimer lamp includes, for example, an excimer lamp in which krypton (Kr) and chlorine (Cl) are enclosed in an arc tube and whose main peak wavelength is around 222 nm, and krypton (Kr) and bromine (Br) in the arc tube.
  • An enclosed excimer lamp with a main peak wavelength of around 207 nm, and an excimer lamp with a main peak wavelength of around 193 nm in which argon (Ar) and fluorine (F) are enclosed in the arc tube are known.
  • a dielectric barrier discharge lamp may require application of a voltage higher than the voltage applied during steady-state operation at the time of start-up in order to generate an initial discharge and start the lighting operation. For this reason, many light source devices equipped with dielectric barrier discharge lamps are sometimes provided with a control or mechanism for switching the voltage value applied to the dielectric barrier discharge lamp between startup and steady operation.
  • a light source device equipped with an excimer lamp that emits ultraviolet light with a wavelength of 190 nm to 240 nm has extremely low effects on humans and animals, so it is frequently used in medical facilities, schools, government offices, etc. where people gather. It is expected to be used in various situations such as facilities, vehicles such as automobiles, trains, buses, airplanes and ships. Therefore, there is a strong demand for such a light source device to reduce power consumption, reduce the overall size of the device, and achieve high reliability.
  • an object of the present invention is to provide a light source device that achieves power saving and improved reliability without increasing the size of the entire device.
  • Another object of the present invention is to provide a dielectric barrier discharge lamp lighting circuit and lighting method for realizing power saving and reliability improvement without increasing the size of the entire device.
  • the light source device of the present invention is a transformer having a primary winding and a secondary winding; switching between supplying and stopping the current to the primary winding of the transformer, or changing the direction of the current flowing through the primary winding to generate an electromotive force in the secondary winding of the transformer.
  • a lighting circuit configured to a dielectric barrier discharge lamp connected to the secondary winding of the transformer;
  • a control unit that performs ON/OFF control of the switching element, The control unit a startup mode in which a predetermined voltage is applied to the dielectric barrier discharge lamp by repeating ON/OFF control of the switching element at a predetermined frequency at startup; a first control for applying the predetermined voltage to the dielectric barrier discharge lamp by repeating ON/OFF control of the switching element at the predetermined frequency after starting the dielectric barrier discharge lamp; and a steady operation mode in which a second control for maintaining the switching element in the OFF state is alternately performed over a period longer than the cycle of the ON/OFF control of the element.
  • ON/OFF control of the switching element is executed to generate the electromotive force necessary for the initial discharge to occur in the dielectric barrier discharge lamp connected to the secondary winding of the transformer.
  • the magnitude of the electromotive force generated in the secondary winding of the transformer depends on the type and size of the dielectric barrier discharge lamp. is set in advance by adjusting the time for maintaining the ON state of .
  • the switching elements are ON/OFF controlled in the same way as in the startup mode in order to reduce power consumption per unit time and reduce the load on the dielectric barrier discharge lamp and the lighting circuit.
  • the control and the second control for maintaining the switching element in the OFF state are alternately executed.
  • the same first control for ON/OFF control of the switching element is performed in the startup mode and the steady operation mode, but whether or not control (second control) for maintaining the switching element in the OFF state is included. different in that.
  • the frequency of repeating the ON/OFF control of the switching element and the voltage applied to the dielectric barrier discharge lamp are substantially the same.
  • the term "substantially the same” is used here to mean that even if there is a minute error caused by noise generated in the control unit or variations in the elements constituting the device, it is included within the same range.
  • the light source device may be configured so that the start-up mode is temporarily executed while the steady-state operation mode is being executed in order to prevent interruption after start-up. Further, the light source device may be configured so that the starting mode is continued for a predetermined time even after the lighting of the dielectric barrier discharge lamp is confirmed so that the lighting state is more reliably stabilized. I do not care.
  • the light source device of the present invention has a unit time supplied to the dielectric barrier discharge lamp during the lighting operation, compared to the case where the starting mode is continuously executed even after lighting of the dielectric barrier discharge lamp. Power consumption is suppressed because the amount of power per unit is reduced.
  • the second control is executed to reduce the voltage application compared to the starting mode. , the load on the dielectric barrier discharge lamp and the lighting circuit is reduced.
  • the steady operation mode in which the first control and the second control are repeated is realized by switching the control signal input to the switching element.
  • it can be realized by switching by digital signal processing instead of switching of analog circuit configuration such as changing the output voltage.
  • the control unit is composed of a programmable device, MCU, etc.
  • the light source device with the above configuration can be realized by rewriting the program that defines the pattern of the control signal without changing the circuit configuration.
  • the light source device having the above configuration may be realized by combining a control signal for ON/OFF-controlling the switching element at a predetermined cycle and a masking signal output from the control section separately from the control signal for the switching element. Even if there is, it can be realized if at least one logic gate element (for example, an AND gate element for obtaining the logical product of the control signal and the masking signal) is provided.
  • the light source device having the above configuration does not require a complicated mechanism or circuit, it can be realized without increasing the overall size of the device as compared with conventional devices. By reducing the number of points, the size of the entire device can be reduced. In addition, since it can be realized only by digital signal processing, there is no need to worry about variations in output values or characteristic fluctuations due to deterioration over time, and there is less concern about reliability.
  • the light source device may be configured to periodically execute the first control and the second control in the steady operation mode.
  • the light source device can be compared with the case where the execution time of the first control and the second control is arbitrarily changed in the steady operation mode, in the area or article irradiated with ultraviolet light. , it becomes easier to manage the progress of the inactivation process.
  • control can be configured to simply repeat the first control and the second control at a predetermined cycle, a complicated control that changes the cycle according to the deactivation treatment situation and the usage environment is configured. It is easier to implement than if
  • the light source device may be configured to execute the steady operation mode such that the number of times the ON/OFF control of the switching element is repeated in the first control differs before and after each of the second controls. I do not care.
  • the transformer When the transformer is periodically supplied with current, periodic magnetostriction is generated, causing minute vibrations corresponding to the frequency of the current. If the frequency of the vibration is within the human audible band (approximately 20 Hz to 20 kHz), an abnormal sound phenomenon called "ringing" may occur. In the present invention, in particular, there is a possibility that the frequency for switching between the first control and the second control in the steady operation mode is set to a frequency within the human audible band, which is one of the factors that cause noise. obtain.
  • the operation of switching between the first control and the second control in the steady operation mode is not performed at a specific frequency, and the intensity of vibration generated in the transformer due to magnetostriction is dispersed over a plurality of frequency components. Therefore, noise is suppressed.
  • the method of preventing the operation of switching between the first control and the second control in the steady operation mode from operating at a specific frequency is to make the execution time of the second control different before and after each first control. It may be a method or the like.
  • the light source device determines that the total of the execution time of the first control and the execution time of the second control immediately after is four times or more the period corresponding to the predetermined frequency, and the execution time of the second control is preferably 100 ms or less.
  • the execution time of the second control is preferably four times or more the cycle of ON/OFF control of the switching element in the first control so that heat generation in the dielectric barrier discharge lamp is sufficiently suppressed. More preferably, it is twice or more.
  • the plasma in the arc tube of the dielectric barrier discharge lamp may be extinguished or attenuated, and the dielectric barrier discharge lamp may go out.
  • the frequency of repeating the ON/OFF control of the switching element and the voltage applied to the dielectric barrier discharge lamp are the same as those in the startup mode. Therefore, a voltage necessary to generate an initial discharge is applied to the dielectric barrier discharge lamp. In other words, even if the dielectric barrier discharge lamp is extinguished because the second control is too long, there is a possibility that it can be relighted when the control section starts the next first control.
  • the first control in the steady operation mode is a control in which a pulse voltage is applied a necessary and sufficient number of times to maintain the lighting state of the dielectric barrier discharge lamp from the viewpoint of reducing power consumption and load.
  • the execution time of the second control in the steady operation mode is preferably 100 ms or less, more preferably 80 ms or less, and more preferably 10 ms. The following are particularly preferred.
  • the light source device may be a flyback type circuit.
  • the lighting circuit may be a push-pull circuit.
  • the lighting circuit may be a full-bridge type circuit.
  • the lighting circuit of each of the above methods includes a DC power supply, a transformer having a primary winding and a secondary winding to which the dielectric barrier discharge lamp is connected, and at least one switching element.
  • the flyback type lighting circuit switches between ON and OFF states of a switching element to switch between supply and stop of current supply from the DC power supply to the primary winding of the transformer, thereby switching the secondary winding of the transformer.
  • a lighting circuit configured to generate an electromotive force in a line.
  • the flyback type lighting circuit basically requires only one switching element such as an FET, it has the economic advantage of being able to be constructed at a lower cost than other types of lighting circuits.
  • the full-bridge type lighting circuit the four switching elements are alternately switched to the ON state, and the transformer is alternately driven according to the switching operation, so the power efficiency is higher than that of the flyback type lighting circuit. It has the advantage of being expensive.
  • the full-bridge type lighting circuit has more switching elements than the push-pull type lighting circuit. Therefore, there is an advantage that the power conversion efficiency is higher than that of the push-pull lighting circuit.
  • the switching element may comprise a parasitic diode.
  • the simplest configuration when the lighting circuit is a flyback circuit is a configuration in which a DC power supply, a primary winding of a transformer, and one switching element are connected in series (see FIG. 3).
  • the circuit of this configuration switches the supply and stop of the current flowing into the primary winding of the transformer (hereinafter sometimes referred to as "primary current") by ON/OFF control of the switching element, thereby switching the secondary current. Generate an electromotive force in the winding.
  • the switching element In the flyback type lighting circuit, after the switching element is turned off, when the current flowing through the secondary winding of the transformer (hereinafter sometimes referred to as "secondary current") stops, the primary of the transformer A voltage opposite in polarity to that of the DC power supply is induced in the side windings.
  • secondary current the current flowing through the secondary winding of the transformer
  • the primary winding of the transformer, and the switching element are connected in series becomes an open circuit because the switching element is in the OFF state, the switching A high voltage will be applied between the input and output terminals of the element, and in the worst case, the switching element will be damaged.
  • the above light source device in which the lighting circuit is a flyback circuit,
  • the control unit in the first control, a first step of transitioning the switching element from an ON state to an OFF state; After the first step, a second step of transitioning the switching element from the OFF state to the ON state after a predetermined OFF holding time elapses from the point in time when the regenerative current flowing through the primary winding reaches a zero value.
  • Dielectric barrier discharge lamps have an applied voltage suitable for lighting, but in a flyback type lighting circuit, it is practically difficult to change the applied voltage for the purpose of adjusting the illuminance.
  • the reason for this is simply that when the flyback type lighting circuit changes the frequency (switching frequency) at which it switches between the ON state and the OFF state, the voltage applied to the dielectric barrier discharge lamp also changes accordingly.
  • the flyback type lighting circuit adjusts the timing of switching between the ON state and the OFF state in order to adjust the illuminance, and adjusts the ratio of the time during which the switching element is maintained in the ON state and the time during which the switching element is maintained in the OFF state. need to be adjusted properly.
  • the amount of increase in the primary side current of the transformer depends on the time from when the second step is executed, when it starts increasing from the zero value, to when the switching element transitions to the OFF state again. Therefore, according to the above configuration, the execution timing of the second step in which the switching element transitions from the OFF state to the ON state is later than the time point when the regenerative current reaches the zero value.
  • the ratio between the time during which the switching element is maintained in the ON state and the time during which the switching element is maintained in the OFF state is adjusted.
  • the ratio of the time during which the switching element is maintained in the ON state and the time during which the switching element is maintained in the OFF state is adjusted, so that the lighting illuminance of the dielectric barrier discharge lamp is adjusted to a desired value.
  • This effect is particularly noticeable when the dielectric barrier discharge lamp is an excimer lamp that emits ultraviolet light.
  • the excimer lamp when the luminous gas contains KrCl, the excimer lamp emits ultraviolet light having a main peak wavelength of around 222 nm. Further, for example, when KrBr is contained in the luminous gas, the excimer lamp emits ultraviolet light having a main peak wavelength of around 207 nm.
  • Ultraviolet light with a main peak wavelength in the range of 190 nm to 240 nm is absorbed by the stratum corneum of the skin even when irradiated to the human body, unlike ultraviolet light containing a component with a wavelength of 254 nm from a low-pressure mercury lamp. Since it does not progress to (the basal layer side), there is a low risk that it will be absorbed into cells and DNA will be destroyed. Therefore, the excimer lamp can be used for inactivating bacteria and viruses in spaces where humans may exist.
  • the illuminance of the excimer lamp it is preferable to reduce the illuminance of the emitted ultraviolet light and operate the excimer lamp. According to the above configuration, if the illuminance of the excimer lamp can be turned on at a low intensity, the risk of infection can be further reduced by continuously irradiating for a longer period of time without affecting the human body.
  • inactivation here refers to a comprehensive concept of killing bacteria and viruses or losing their infectivity and toxicity
  • bacteria refers to microorganisms such as bacteria and fungi (mold).
  • the control unit in the first control, a first step of transitioning the switching element from an ON state to an OFF state; After the first step, a second step of transitioning the switching element from the OFF state to the ON state before or at the same time that the regenerative current flowing through the primary winding reaches a zero value. It does not matter if it is configured as follows.
  • the switching control reduces the load applied to the switching element when switching between the ON state and the OFF state, thereby contributing to the extension of the life of the switching element.
  • ZVS zero voltage switching
  • the lighting circuit of the present invention includes: A lighting circuit for lighting a dielectric barrier discharge lamp, comprising: a DC power supply; a transformer having a primary winding and a secondary winding connected to the dielectric barrier discharge lamp; It is connected in series to the DC power supply and the primary winding of the transformer, and is switched between an ON state and an OFF state to supply and stop current from the DC power supply to the primary winding of the transformer.
  • a control unit that performs ON/OFF control of the switching element, The control unit a startup mode in which a predetermined voltage is applied to the dielectric barrier discharge lamp by repeating ON/OFF control of the switching element at a predetermined frequency at startup; a first control for applying the predetermined voltage to the dielectric barrier discharge lamp by repeating ON/OFF control of the switching element at the predetermined frequency after starting the dielectric barrier discharge lamp; and a steady operation mode in which a second control for maintaining the switching element in the OFF state is alternately performed over a period longer than the cycle of ON/OFF control of the element.
  • a method for lighting a dielectric barrier discharge lamp of the present invention comprises: A method for lighting a dielectric barrier discharge lamp using a lighting circuit, comprising: The lighting circuit is a DC power supply; a transformer having a primary winding and a secondary winding connected to the dielectric barrier discharge lamp; and at least one switching element, Switching between the ON state and the OFF state of the switching element switches between supplying and stopping the supply of current from the DC power supply to the primary winding of the transformer, or the current supplied to the primary winding.
  • power saving and reliability improvement are realized without increasing the size of the entire device. Further, according to the lighting circuit and the lighting method of the present invention, power saving and reliability improvement can be realized without increasing the size of the light source device as a whole.
  • FIG. 2 is a perspective view schematically showing an example of the appearance of the light source device, and is a drawing with some elements removed from FIG. 1 ;
  • 1 is a circuit diagram showing a configuration example of a flyback type lighting circuit for a dielectric barrier discharge lamp;
  • FIG. 4 is a timing chart schematically showing temporal changes in a control signal G(t) and a secondary side voltage V2 in a flyback lighting circuit;
  • FIG. 4 schematically shows temporal changes in control signal G(t), primary current I1, secondary voltage V2, and secondary current I2 when the control unit performs ON/OFF control of the switching element;
  • FIG. It is a timing chart.
  • FIG. 1 is a circuit diagram showing a configuration example of a push-pull type lighting circuit for a dielectric barrier discharge lamp
  • FIG. 4 is a timing chart schematically showing temporal changes in a control signal G(t) and a secondary side voltage V2 in a push-pull lighting circuit.
  • 1 is a circuit diagram showing a configuration example of a full-bridge type lighting circuit for a dielectric barrier discharge lamp
  • FIG. 4 is a timing chart schematically showing temporal changes in a control signal G(t) and a secondary side voltage V2 in a flyback lighting circuit; Schematic time changes of the control signal G(t), the primary side current I1, the secondary side voltage V2, and the secondary side current I2 when the control unit is executing ON/OFF control of the switching element 22. It is a timing chart showing.
  • FIGS. 1 and 2 are perspective views schematically showing the appearance of the light source device 1.
  • FIG. 1 and 2 are only examples, and the structure of the light source device 1 according to the present invention is arbitrary.
  • the light source device 1 includes a lighting circuit 2 , a lid portion 5 having a light extraction surface 7 formed on one surface thereof, and a main body casing portion 6 .
  • the light source device 1 includes a dielectric barrier discharge lamp 10 comprising a plurality of arc tubes 13 and electrodes (11, 12) for applying voltage to each arc tube 13.
  • Electrodes (11, 12) are connected to power supply lines (3, 4) via connecting portions (11a, 12a), respectively.
  • the power lines ( 3 , 4 ) are connected to the lighting circuit 2 .
  • the luminous tube 13 is made of a dielectric such as quartz glass, and is filled with a predetermined luminous gas.
  • a high frequency voltage of, for example, about 1 kHz to 5 MHz is applied to the electrodes (11, 12)
  • the voltage is applied to the luminous gas via the arc tube 13.
  • FIG. At this time, a discharge plasma is generated in the discharge space in which the luminous gas is enclosed, and the atoms of the luminous gas are excited into an excimer state, and excimer luminescence occurs when these atoms transition to the ground state.
  • Light emitted from the dielectric barrier discharge lamp 10 by this excimer emission is emitted from the light extraction surface 7 to the outside of the light source device 1 as light Ry1.
  • the wavelength of the light Ry1 emitted from the light source device 1 is determined depending on the substance of the luminous gas enclosed in the arc tube 13. For example, when KrCl is included as the luminescence gas, the light Ry1 emitted from the light source device 1 exhibits a spectrum with a main peak wavelength near 222 nm. When the luminous gas contains KrBr, the light Ry1 exhibits a spectrum with a main peak wavelength near 207 nm. When the luminescence gas contains ArF, the light Ry1 exhibits a spectrum with a main peak wavelength near 193 nm.
  • any gas species may be enclosed in the arc tube 13 of the dielectric barrier discharge lamp 10, and may be appropriately selected according to the desired wavelength of the light Ry1. Further, in the light source device 1, the tube wall of the arc tube 13 and the light extraction surface 7 may be coated with a phosphor for the purpose of converting the wavelength to the longer wavelength side.
  • the tube wall of the light emitting tube 13 and the light extraction surface 7 are configured with a filter that transmits ultraviolet light in a wavelength band that has little effect on the human body and does not transmit ultraviolet light in a wavelength band that has a large effect on the human body.
  • the filter may employ, for example, a dielectric multilayer filter or the like configured to transmit ultraviolet light with a wavelength of 190 nm to 240 nm and not transmit ultraviolet light with a wavelength of 240 nm or more.
  • FIG. 3 is a circuit diagram showing a configuration example of a flyback type lighting circuit 2a for a dielectric barrier discharge lamp.
  • the flyback type lighting circuit 2a is one of the lighting circuits 2 for lighting the dielectric barrier discharge lamp 10, which includes a DC power source 21, one switching element 22, and a transformer 30. It is an example.
  • the transformer 30 has a primary winding L1 and a secondary winding L2. Of the terminals provided in the primary winding L1 of the transformer 30, the first terminal a1 is connected to the positive terminal of the DC power supply 21, and the second terminal a2 is connected to the negative terminal of the DC power supply 21 via the switching element 22. It is
  • the switching element 22 of the present embodiment is composed of a field effect transistor (FET), and a parasitic diode 23 having an anode connected to the negative terminal of the DC power supply 21 and a cathode connected to the primary winding L1 of the transformer 30 is formed. It is In this embodiment, the parasitic diode 23 functions as a regenerative circuit.
  • the switching element 22 may be an element other than a field effect transistor (FET).
  • the switching element 22 may be an IGBT, a relay element, or the like that does not include the parasitic diode 23, and a diode element alone may be connected in parallel with the switching element 22 to form a regenerative circuit.
  • the DC power supply 21 may be composed of, for example, an AC/DC converter that AC/DC converts a commercial power supply (not shown).
  • the smoothing capacitor 25 included in the lighting circuit 2a is provided to smooth the voltage waveform.
  • the DC power supply 21 may be configured by a battery.
  • the lighting circuit 2 a of this embodiment includes a control section 24 for performing ON/OFF control of the switching element 22 .
  • the control unit 24 may be any device as long as it can output a control signal G(t) of a desired pattern.
  • a control unit such as a CPU or MPU can be employed. The details of control performed by the control unit 24 will be described below with reference to timing charts.
  • FIG. 4 is a timing chart schematically showing temporal changes in the control signal G(t) and the secondary voltage V2 of the flyback lighting circuit 2a.
  • the timing chart shown in FIG. 4 shows changes in the control signal G(t) and the secondary side voltage V2 from the time the dielectric barrier discharge lamp 10 is started.
  • the High level hereinafter referred to as "H level” corresponds to ON control of the switching element 22
  • the Low level hereinafter referred to as "L level”
  • the graphs showing variations in voltage and current shown in the drawings referred to in the following description are similar to the graph of the secondary voltage V2 in FIG. Not shown, an example of an ideal waveform is schematically represented. Further, it depends on the dielectric barrier discharge lamp 10 whether the secondary voltage V2 is configured to swing to the + side or to the - side with respect to a predetermined reference voltage (0 V in this embodiment). It may be arbitrarily set according to the specifications, the configuration of the lighting circuit 2, and the like.
  • control section 24 switches to the startup mode X1 for lighting the dielectric barrier discharge lamp 10 .
  • startup mode X1 As shown in FIG. 4, control is continuously performed to repeat ON/OFF control of the switching element 22 at a predetermined frequency.
  • the startup mode X1 is executed until the discharge plasma is generated in the arc tube 13 of the dielectric barrier discharge lamp 10 and the light emission state of the dielectric barrier discharge lamp 10 stabilizes.
  • the control unit 24 executes the startup mode X1, and maintains the lighting state of the dielectric barrier discharge lamp 10 after the light emission state of the dielectric barrier discharge lamp 10 has stabilized, that is, after the dielectric barrier discharge lamp 10 has started.
  • the mode is switched to the normal operation mode X2 for
  • the switching element 22 is maintained in the OFF state by the first control C1 in which the ON/OFF control of the switching element 22 is repeated at a predetermined frequency to apply a predetermined voltage.
  • the lighting state of the dielectric barrier discharge lamp 10 is maintained by alternately repeating the second control C2. Note that the frequency for repeating the ON/OFF control of the switching element 22 in the first control C1 and the predetermined voltage applied to the dielectric barrier discharge lamp 10 correspond to the ON/OFF control of the switching element 22 in the starting mode X1.
  • the frequency is substantially the same as the predetermined voltage applied to the dielectric barrier discharge lamp 10 .
  • the output of the basic control signal S1 is fixed at L level only during the period during which the second control C2 is executed with respect to the basic control signal S1 that switches H/L levels at a predetermined frequency.
  • the switching element 22 is controlled by the control signal G(t) masked so as to (in FIG. 4, the masked portion is partially shown with a broken line). Therefore, as shown in FIG. 4, the first control C1 differs only in the execution time between the starting mode X1 and the steady-state operation mode X2, and the electrodes of the dielectric barrier discharge lamp 10 shown in FIG. Between (11, 12), the secondary side voltage V2 having the same pattern is applied in both cases.
  • the masking process referred to here is, for example, a process in which the control signal G(t) is periodically fixed at L level for a predetermined period by program processing, or a process in which the basic control signal S1 and the first control C1 are executed.
  • This is a process of inputting a masking signal, which is H level in the section where the second control C2 is executed and is L level in the section where the second control C2 is executed, to the AND gate element to take the AND.
  • the period P1 of the basic control signal S1 for repeating the ON/OFF control of the switching element 22 is 17 ⁇ s
  • the execution time of the starting mode X1 is 10 s
  • the execution time of the first control C1 of the steady operation mode X2 is is set to 170 ⁇ s
  • the execution time of the second control C2 in the steady operation mode X2 is set to 200 ⁇ s. That is, the execution time of the second control C2 in the steady operation mode X2 is 12 times the period P1 of the basic control signal S1
  • the period T1 for repeating the first control C1 and the second control C2 in the steady operation mode X2. is 22 times the period P1 of the fundamental signal frequency.
  • the cycle T1 for repeating the first control C1 and the second control C2 in the steady operation mode X2 is four times or more the cycle P1 of the basic control signal S1 so that heat generation in the dielectric barrier discharge lamp 10 is suppressed. It is preferably 8 times or more, more preferably 8 times or more.
  • the total execution time of the first control C1 and the immediately preceding second control C2 is the basic control It is preferably four times or more the period P1 of the signal S1, and more preferably eight times or more.
  • the first control C1 in the steady-state operation mode X2 applies the same voltage to the dielectric barrier discharge lamp 10 in the same cycle as in the startup mode X1. It may be possible to relight the lamp 10 . However, there is a possibility that the time for which the voltage application is continued is insufficient, and the lighting state cannot be maintained because the light emission state is not stabilized until the transition to the next second control C2 is performed.
  • the execution time of the second control C2 in the steady operation mode X2 is preferably 100 ms or less, more preferably 80 ms or less. preferable. Furthermore, in order to further increase the stability of the lighting state, the execution time of the second control C2 in the steady operation mode X2 is preferably 10 ms or less, more preferably 1 ms or less.
  • the intensity of light emitted from the dielectric barrier discharge lamp 10 is adjusted by the ratio between the execution time of the first control C1 and the execution time of the second control C2 per unit time. Specifically, in the period T1 in the steady operation mode X2, when the ratio of the execution time of the first control C1 increases, the intensity of the light emitted from the dielectric barrier discharge lamp 10 increases. The intensity of the light emitted from the dielectric barrier discharge lamp 10 decreases as the proportion of the execution time of the control C2 increases.
  • the light intensity near the arc tube 13 of the dielectric barrier discharge lamp 10 in the startup mode X1 is 100%, the execution time of the first control C1 is 1 ms, the second control C1
  • the light intensity near the arc tube 13 of the dielectric barrier discharge lamp 10 in the steady operation mode X2 in which the execution time of the control C2 is adjusted to 100 ⁇ s is approximately 91%.
  • the light intensity near the arc tube 13 of the dielectric barrier discharge lamp 10 in the steady operation mode X2 in which the execution time of the first control C1 is adjusted to 1 ms and the execution time of the second control C2 is adjusted to 1 ms is about 50%. becomes.
  • the light source device 1 adjusts the execution time of the first control C1 and the execution time of the second control C2 in the period T1 in the steady operation mode X2, thereby obtaining a desired intensity according to the place of use and the purpose of use. It can be configured to emit light. Note that the execution time of the first control C1 and the execution time of the second control C2 in the steady operation mode X2 may be adjusted in advance and fixed, and can be changed according to the purpose of use and the operating time zone. , or may be configured to always vary.
  • a method of varying the execution time of the first control C1 in the steady operation mode X2 may be adopted.
  • the execution time of the second control C2 is fixed at 1 ms
  • the execution time of the first control C1 is set to 1 ms and 0.5 ms alternately, at predetermined times, or at predetermined times. It does not matter if the mode is switched by .
  • control unit 24 may be configured to temporarily switch to the startup mode X1 while the steady operation mode X2 is being executed, for example, for the purpose of preventing interruption. Further, the control unit 24 is configured to continue the starting mode X1 for a predetermined time even after the dielectric barrier discharge lamp 10 is confirmed to be lit so that the lighting state is more reliably stabilized. I don't mind.
  • the ON time and OFF time of the basic control signal S1 are adjusted so that the magnitude of the peak voltage of the secondary voltage V2 is 5 to 6 kV.
  • the peak voltage of the secondary voltage V2 is appropriately adjusted according to the shape and size of the dielectric barrier discharge lamp 10 and the luminous gas enclosed in the arc tube 13. FIG.
  • FIG. 5 shows the time of the control signal G(t), the primary side current I1, the secondary side voltage V2, and the secondary side current I2 when the control unit 24 is executing ON/OFF control of the switching element 22. It is a timing chart which shows a change typically.
  • the magnitude of the secondary voltage V2 generated in the secondary winding L2 of the transformer 30 depends on the amount of change in the primary current I1 at time t2.
  • the amount of change in the primary-side current I1 at time t2 depends on the time (time T H ) during which the control signal G(t) is maintained at the H level. Therefore, the time T H of the control signal G(t) in this embodiment is a voltage value necessary for the secondary voltage V2 to generate an initial discharge in the arc tube 13 of the dielectric barrier discharge lamp 10. It is set at a similar time.
  • a secondary current I2 flows through the secondary winding L2 of the transformer 30 as the secondary voltage V2 is applied. Since this secondary current I2 flows while releasing the energy accumulated in the transformer 30, it approaches a zero value with the lapse of time (time t2 to ta).
  • the arc tube 13 is made of a dielectric material, and a pair of electrodes (11, 12) are provided so as to sandwich the arc tube 13. Therefore, electric charge is stored equivalently. It can be regarded as a capacitor element. In other words, the discharge of the energy stored in the transformer 30 gradually accumulates electric charges in the dielectric barrier discharge lamp 10 this time.
  • the secondary winding L2 of the transformer 30 serves as a voltage source, and the secondary current I2 continues to flow while charging the dielectric barrier discharge lamp 10. continue.
  • the primary voltage V1 is induced in the primary winding L1 of the transformer 30 .
  • This induced voltage has a polarity opposite to that of the DC power supply 21, but as described above, the switching element 22 is provided with the parasitic diode 23.
  • a reverse primary current I1 flows through the line L1.
  • This primary side current I1 may be referred to as "regenerative current”. The generation of such a regenerative current is peculiar to the load constituted by the dielectric barrier discharge lamp 10 .
  • the primary-side current I1 gradually approaches zero value, but when the switching element 22 turns ON again at time t3, the value of the primary-side current I1 continues to increase in the same manner as from time t1 to t2. After that, the same control is repeated.
  • the switching element 22 is controlled to transition from the OFF state to the ON state at the same time when the primary side current I1 reaches the zero value (time t3). That is, zero voltage switching is implemented.
  • the control for transitioning the switching element 22 from the OFF state to the ON state is the primary side current It may be done before I1 reaches the zero value.
  • the control for transitioning the switching element 22 from the ON state to the OFF state corresponds to the "first step", and the switching element 22 is changed from the OFF state to the ON state.
  • Control for transition (for example, control at times t1, t3, t5, and t7 shown in FIG. 5) corresponds to the "second step".
  • the light source device 1 having the above configuration does not require switching of the analog circuit configuration such as changing the output voltage, and can be realized by switching by digital signal processing. Therefore, since a complicated mechanism or circuit is not required, the overall size of the device is not increased as compared with the conventional device, and in some cases, the number of members can be reduced and the size of the device as a whole can be reduced.
  • the light source device 1 having the above configuration can be realized only by digital signal processing, there is no need to worry about analog characteristics such as variations in output values or characteristic fluctuations due to deterioration over time, and there is no reliability problem. unlikely to occur.
  • FIG. 6 is a circuit diagram showing a configuration example of a push-pull type lighting circuit 2b for a dielectric barrier discharge lamp.
  • the push-pull type lighting circuit 2b includes a DC power supply 21, two switching elements (22a and 22b), and a transformer 30. 1 is an embodiment of circuit 2; On the primary side of the transformer 30, a circuit in which the winding L1a and the switching element 22a are connected in series and a circuit in which the winding L1b and the switching element 22b are connected in series are connected in parallel to the DC power supply 21. ing.
  • the primary winding L1 of the transformer 30 is composed of the winding L1a and the winding L1b.
  • the transformer 30 in this configuration has a configuration in which the primary winding L1 is divided into two windings (L1a and L1b), but it is composed of one primary winding L1. It doesn't matter if it is.
  • FIG. 7 is a timing chart schematically showing temporal changes in the control signal G1(t), the control signal G2(t), and the secondary voltage V2 of the push-pull lighting circuit 2b.
  • the control unit 24 In the push-pull lighting circuit 2b, in the first control C1 of the starting mode X1 and the steady operation mode X2, the control unit 24 outputs a control signal G1(t) to the switching element 22a and a control signal G1(t) to the switching element 22b.
  • a control signal G2(t) is output to control the respective switching elements (22a, 22b) to alternately switch to the ON state.
  • FIGS. 6 and 7. the operation of the first control C1 in the start mode X1 or the steady operation mode X2 in the push-pull lighting circuit 2b will be described with reference to FIGS. 6 and 7.
  • the control unit 24 included in the push-pull lighting circuit 2b switches the control signal G1(t) from the L level to the H level to perform switching.
  • the element 22a is switched to the ON state (time t1).
  • the current I1a starts to flow from the DC power supply 21 to the winding L1a side.
  • the current I1a begins to flow through the winding L1a, so that a secondary voltage V2 as shown in FIG. 7 is generated across the secondary winding L2 of the transformer 30.
  • the control unit 24 switches the control signal G1(t) from H level to L level, switches the switching element 22a to the OFF state (time t2), and then switches the control signal G2(t) from L level to It switches to H level and switches the switching element 22b to ON state (time t3).
  • the switching element 22b By switching the switching element 22b to the ON state, the current I1b starts to flow from the DC power supply 21 to the winding L1b side. Then, the current I1b starts to flow through the winding L1b, so that the secondary voltage V2 shown in FIG. 7 is generated in the secondary winding L2 of the transformer 30 .
  • the current I1b generated in the primary winding L1 of the transformer 30 by the operation at time t3 flows in the opposite direction to the current I1a generated in the primary winding L1 by the operation at time t1. Therefore, as shown in FIG. 7, the secondary voltage V2 generated in the secondary winding L2 of the transformer 30 by the operation at time t3 has a polarity different from that of the secondary voltage V2 generated by the operation at time t1. Reverse.
  • control unit 24 After that, the control unit 24 outputs the control signal G2(t) for switching the switching element 22b to the OFF state (time t4). Thereafter, the same control is repeated until switching to the steady operation mode X2 or switching to the second control C2.
  • control for switching the switching element 22b to the ON state (time t3) is preferably executed with a slight delay from the control for switching the switching element 22a to the OFF state (time t2).
  • the reason for this is to avoid short-circuiting between the positive terminal and the negative terminal of the DC power supply 21 when the two switching elements (22a, 22b) are in the ON state at the same time.
  • FIG. 8 is a circuit diagram showing a configuration example of a full-bridge type lighting circuit 2c for a dielectric barrier discharge lamp.
  • the full-bridge type lighting circuit 2c lights a dielectric barrier discharge lamp 10 comprising a DC power supply 21, four switching elements (22a, 22b, 22c, 22d), and a transformer 30. It is an embodiment of the lighting circuit 2 for lighting.
  • a circuit in which two switching elements (22a, 22b) are connected in series and a circuit in which two switching elements (22c, 22d) are connected in series are connected to the DC power supply 21. It is a circuit configuration connected in parallel.
  • a primary winding L1 of the transformer 30 is connected to a first node n1 between the switching elements (22a, 22b) and a second node n2 between the switching elements (22c, 22d).
  • the control section 24 is divided into four for convenience of illustration, but the control section 24 may be only one like the lighting circuits (2a, 2b) of other methods.
  • the full-bridge type lighting circuit 2c has a different circuit configuration from the push-pull type lighting circuit 2b, and the magnitude of the secondary voltage V2 generated in the secondary winding L2 of the transformer 30 is also different.
  • the direction of the current (I1a, I1b) flowing through the primary winding L1 is controlled by ON/OFF control of the paired switching elements (22a, 22b, 22c, 22d) by G1(t), G2(t)). is changed to alternately generate electromotive forces of opposite polarities in the secondary voltage V2. Therefore, the timing chart of the control signals (G1(t), G2(t)) and the secondary voltage V2 shown in FIG. 8 is as shown in FIG.
  • the controller 24 of the full-bridge lighting circuit 2c switches the control signal G1(t) from the L level to the H level when the first control C1 of the starting mode X1 or the steady operation mode X2 is started, and the switching element (22a, 22c) are switched to the ON state (time t1).
  • the switching elements (22a, 22c) By switching the switching elements (22a, 22c) to the ON state, the current I1a starts to flow from the DC power supply 21 to the switching element 22a, the primary winding L1, and the switching element 22c. Then, the secondary voltage V2 is generated by the current I1a starting to flow through the primary winding L1.
  • the control unit 24 switches the control signal G1(t) from the H level to the L level, switches the switching elements (22a, 22c) to the OFF state (time t2), and then switches the control signal G2(t) to the OFF state. is switched from the L level to the H level to switch the switching elements (22b, 22d) to the ON state (time t3).
  • the switching elements (22b, 22d) By switching the switching elements (22b, 22d) to the ON state, the current I1b starts to flow from the DC power supply 21 to the switching element 22d, the primary winding L1, and the switching element 22b. Then, the current I1b starts to flow through the primary winding L1, thereby generating the secondary voltage V2.
  • the current I1b generated in the primary winding L1 of the transformer 30 by the operation at time t3 flows in the opposite direction to the current I1a generated in the primary winding L1 by the operation at time t1. Therefore, as shown in FIG. 7, the secondary voltage V2 generated in the secondary winding L2 of the transformer 30 by the operation at time t3 has a polarity different from that of the secondary voltage V2 generated by the operation at time t1. Reverse.
  • control unit 24 switches the control signal G2(t) from H level to L level in order to switch the switching elements (22b, 22d) to the OFF state (time t4). Thereafter, the same control is repeated until switching to the steady operation mode X2 or switching to the second control C2.
  • control (time t3) for switching the switching elements (22b, 22d) to the ON state is executed slightly behind the control (time t2) for switching the switching elements (22a, 22c) to the OFF state. is preferred.
  • the reason for this is the same as in the push-pull type lighting circuit 2b. This is to avoid doing so.
  • the lighting circuit 2 adopts a method other than the above-described lighting circuits (2a, 2b, 2c) such as a half-bridge method, for example. I don't mind.
  • FIG. 9 is a timing chart schematically showing temporal changes of the control signal G(t) and the secondary voltage V2 in the flyback type lighting circuit 2a (see FIG. 3), which is different from FIG. is.
  • the control unit 24 of the present embodiment performs control such that the number of times the ON/OFF control of the switching element 22 is repeated differs before and after executing the second control C2.
  • the ON/OFF control of the switching element 22 is repeated three times, and the next first control C1 is the switching element 22 ON/OFF control is repeated twice.
  • the ON/OFF control of the switching element 22 is repeated in the first control C1 such that three times ⁇ two times ⁇ three times ⁇ two times ⁇ . . .
  • the number of times the ON/OFF control of the switching element 22 is repeated in the first control C1 may be configured to randomly change instead of periodically repeating some patterns.
  • FIG. 10 shows the control signal G(t), the primary side current I1, the secondary side voltage V2, and the secondary side current when the control unit 24 is executing ON/OFF control of the switching element 22.
  • FIG. 6 is a timing chart different from FIG. 5 schematically showing the time change of I2.
  • the flyback type lighting circuit 2a As shown in FIG. 10, the flyback type lighting circuit 2a (see FIG. 3) of the present embodiment intentionally provides an OFF holding time Ts, so that the switching element 22 is switched from the OFF state to the ON state at the timing of transition. delaying
  • the control unit 24 outputs the control signal G(t). It changes from the L level to the H level, causing the switching element 22 to transition from the OFF state to the ON state.
  • the frequency with which the high voltage (secondary voltage V2) is applied to the dielectric barrier discharge lamp 10 within a unit time is reduced, so the illuminance of the light Ry1 is reduced.
  • the OFF holding time Ts it is possible to adjust the illuminance of the light Ry1. That is, the illuminance of the light Ry1 can be adjusted by varying the OFF holding time Ts in a short lighting cycle of microseconds (1000 ⁇ s or less).
  • the switching element 22 is connected between the negative terminal of the DC power supply 21 and the primary winding L1 of the transformer 30, but the polarity is reversed. I don't mind. That is, the switching element 22 may be connected between the positive terminal of the DC power supply 21 and the primary winding L1 of the transformer 30 .
  • the switching element 22 is composed of a MOSFET, whether it is an n-channel type or a p-channel type is appropriately selected according to the polarity of the connected DC power supply 21 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

装置全体を大型化させることなく、省電力化と信頼性の向上とが実現された光源装置、装置全体を大型化させることなく、省電力化と信頼性の向上とを実現するための誘電体バリア放電ランプの点灯回路及び点灯方法を提供する。 直流電源と、トランスと、スイッチング素子とを含み、スイッチング素子のON状態とOFF状態とが切り替わることによって、トランスの二次側巻線に起電力を発生させる点灯回路と、トランスの二次側巻線に接続される誘電体バリア放電ランプと、スイッチング素子のON/OFF制御を行う制御部とを備え、制御部は、始動時に、所定の周波数でスイッチング素子のON/OFF制御を繰り返す始動時モードと、誘電体バリア放電ランプの始動後、所定の周波数でスイッチング素子のON/OFF制御を繰り返す第一制御と、スイッチング素子をOFF状態で維持する第二制御とを交互に行う定常動作時モードとを実行する。

Description

光源装置、誘電体バリア放電ランプの点灯回路、誘電体バリア放電ランプの点灯方法
 本発明は、光源装置に関し、特に誘電体バリア放電ランプを備えた光源装置に関する。また、本発明は、誘電体バリア放電ランプの点灯回路及び点灯方法に関する。
 従来、誘電体バリア放電ランプの点灯に関しては、フライバック方式の点灯回路による第一制御技術が知られている(例えば、特許文献1参照)。また、誘電体バリア放電ランプの点灯回路は、フライバック方式の他にも、プッシュプル方式やフルブリッジ方式等の点灯回路が知られている。
特開平10-223384号公報 特開2020-92968号公報
 近年、菌やウイルス等(以下、「菌等」と略記する場合がある。)の不活化に、紫外光を利用する技術の開発が進められている。本出願人も、誘電体バリア放電ランプの一種であるエキシマランプを用いて、菌等の不活化を行う技術を開発している(例えば、上記特許文献2参照)。
 また、最近では、コロナウイルス感染症の流行等により、エキシマランプを用いた不活化処理技術として、菌等の不活化処理が可能であると共に、人や動物に対する影響が極めて低い、波長が190nm~240nmの紫外光を利用した菌等の不活化処理が注目されている。
 当該波長範囲の光を出射するエキシマランプは、発光管内に発光ガスとして希ガスとハロゲンガスとが封入されたエキシマランプが知られている。このようなエキシマランプとしては、例えば、発光管内にクリプトン(Kr)と塩素(Cl)が封入された、主たるピーク波長が222nm近傍のエキシマランプ、発光管内にクリプトン(Kr)と臭素(Br)が封入された、主たるピーク波長が207nm近傍のエキシマランプ、発光管内にアルゴン(Ar)とフッ素(F)が封入された、主たるピーク波長が波長193nm近傍のエキシマランプ等が知られている。
 誘電体バリア放電ランプは、初期放電を発生させて点灯動作を開始させるために、始動時において、定常動作時に印加される電圧よりも高い電圧の印加を要する場合がある。このため、誘電体バリア放電ランプを搭載する光源装置の多くは、始動時と定常動作時とで、誘電体バリア放電ランプに印加する電圧値を切り替える制御や機構が設けられている場合がある。
 特に、上述したような、電子親和力が高いハロゲンガスが発光ガスに含まれるエキシマランプは、ハロゲンガスが発光ガスに含まれないエキシマランプに比べて発光管内での初期放電が発生しにくい。このため、ハロゲンガスが発光ガスに含まれるエキシマランプを備える光源装置は、初期放電をより確実に発生させるべく、始動時に定常動作時よりも高い電圧を印加できる構成がより多く採用されている。
 しかしながら、誘電体バリア放電ランプに印加する電圧の値を切り替える制御は、単なるON/OFF制御だけで実現することが難しく、点灯回路の方式によっては、アナログ回路による出力電圧制御や、電圧レベルを変換するためのDC/DCコンバータが必要となる。このため、電圧を切り替える機構を備える光源装置は、出力電圧や過渡特性等について所望の特性が得られるように、高度な回路設計技術が要求される。
 また、アナログ回路は、経時的な劣化等によって、出力する電圧等が変動してしまう可能性があるため、信頼性における課題が生じやすく、高い信頼性を確保しようとすると、複雑な補正回路等を搭載しなければならなくなる。つまり、誘電体バリア放電ランプに印加する電圧を切り替える機構を搭載することは、光源装置全体の大型化や製造コストの増大や、更には信頼性における課題の要因となっていた。
 上述したように、波長が190nm~240nmの紫外光を出射するエキシマランプが搭載された光源装置は、人や動物への影響が極めて低いため、医療施設、学校、役所等、頻繁に人が集まる施設や、自動車、電車、バス、飛行機、船等の乗物など、多様な場面で活用されることが期待されている。このため、このような光源装置は、省電力化と共に、装置全体をより小型化することや、高い信頼性が強く求められている。
 本発明は、上記課題に鑑み、装置全体を大型化させることなく、省電力化と信頼性の向上とが実現された光源装置を提供することを目的とする。また、本発明は、装置全体を大型化させることなく、省電力化と信頼性の向上とを実現するための誘電体バリア放電ランプの点灯回路及び点灯方法を提供することを目的とする。
 本発明の光源装置は、
 直流電源と、一次側巻線と二次側巻線とを有するトランスと、少なくとも一つのスイッチング素子とを含み、前記スイッチング素子のON状態とOFF状態とが切り替わることによって、前記直流電源から前記トランスの前記一次側巻線への電流の供給と停止とを切り替えて、又は前記一次側巻線を流れる電流の方向を変化させて、前記トランスの前記二次側巻線に起電力を発生させるように構成された点灯回路と、
 前記トランスの前記二次側巻線に接続される誘電体バリア放電ランプと、
 前記スイッチング素子のON/OFF制御を行う制御部とを備え、
 前記制御部は、
  始動時に、所定の周波数で前記スイッチング素子のON/OFF制御を繰り返すことで前記誘電体バリア放電ランプに対して所定の電圧を印加する始動時モードと、
  前記誘電体バリア放電ランプの始動後、前記所定の周波数で前記スイッチング素子のON/OFF制御を繰り返すことで前記誘電体バリア放電ランプに対して前記所定の電圧を印加する第一制御と、前記スイッチング素子のON/OFF制御の周期よりも長い期間にわたって、前記スイッチング素子をOFF状態で維持する第二制御とを交互に行う定常動作時モードとを実行することを特徴とする。
 始動時モードは、スイッチング素子のON/OFF制御を実行し、トランスの二次側巻線に接続された誘電体バリア放電ランプで初期放電が発生するために必要な起電力を発生させる。なお、トランスの二次側巻線に発生させる起電力の大きさは、誘電体バリア放電ランプの種類や大きさ等に応じて、直流電源の出力電圧、トランスの各巻線の巻き数、スイッチング素子のON状態を維持する時間等を調整することで予め設定される。
 定常動作時モードは、単位時間あたりの消費電力の抑制と、誘電体バリア放電ランプや点灯回路への負荷を軽減するために、始動時モードと同じようにスイッチング素子をON/OFF制御する第一制御と、スイッチング素子をOFF状態で維持する第二制御とを交互に実行する。
 つまり、始動時モードと定常動作時モードとは、スイッチング素子をON/OFF制御する同じ第一制御が行われるが、スイッチング素子をOFF状態で維持する制御(第二制御)が含まれるか否かという点で異なる。そして、始動時モードと、定常動作時モードの第一制御とは、スイッチング素子のON/OFF制御を繰り返す周波数と、誘電体バリア放電ランプに印加される電圧が略同一となる。なお、ここでの「略同一」は、制御部で発生するノイズや、装置を構成する素子のバラつきによって発生する微小な誤差程度が存在していても同一の範囲に含む意味で用いられる。
 なお、上記光源装置は、始動後において、立ち切れ防止等のために、定常動作時モードが実行されている途中で一時的に始動時モードが実行されるように構成されていても構わない。また、上記光源装置は、点灯状態がより確実に安定するように、誘電体バリア放電ランプの点灯が確認された後も、所定の時間にわたって始動時モードが継続されるように構成されていても構わない。
 本発明の光源装置は、上記構成により、誘電体バリア放電ランプの点灯後も始動時モードが継続して実行される場合と比較して、点灯動作時に誘電体バリア放電ランプに供給される単位時間あたりの電力量が少なくなるため、消費電力が抑制される。また、始動後に誘電体バリア放電ランプの発光管内で初期放電の発生に要する程の高い電圧印加を継続することにはなるが、第二制御が実行されることで始動時モードに比べて電圧印加の頻度が低減されるため、誘電体バリア放電ランプや点灯回路への負荷が軽減される。
 また、第一制御と第二制御とを繰り返す定常動作時モードは、スイッチング素子に入力される制御信号を切り替えることで実現される。つまり、出力電圧を変更するようなアナログ回路構成の切り替えではなく、デジタル信号処理による切り替えで実現することができる。
 さらに、制御部がプログラマブルデバイスやMCU等で構成されている場合、上記構成の光源装置は、回路構成の変更等を要することなく、制御信号のパターンを規定したプログラムを書き換えることで実現できる。また、上記構成の光源装置が、所定の周期でスイッチング素子をON/OFF制御する制御信号と、スイッチング素子の制御信号とは別に制御部から出力されるマスク用信号との組み合わせで実現する場合であっても、論理ゲート素子(例えば、制御信号とマスク用信号との論理積をとるためのANDゲート素子)が少なくとも一つあれば実現できる。
 つまり、上記構成の光源装置は、複雑な機構や回路を必要としないため、従来の装置と比べて装置全体が大型化することがなく実現可能であり、点灯回路の構成等によっては、部材の点数を削減して、装置全体を小型化することができる。また、デジタル信号処理のみで実現可能なため、出力値のバラつきや、経時的な劣化による特性変動を気にする必要がなくなり、信頼性に対する懸念が少なくなる。
 上記光源装置は、
 前記制御部が、前記定常動作時モードにおいて、前記第一制御と前記第二制御とを周期的に実行するように構成されていても構わない。
 定常動作時モードにおいて、特定の周期で第一制御と第二制御が繰り返されると、誘電体バリア放電ランプから出射された光が照射されている領域や物品に対する積算照射量が、当該周期ごとにおいてほぼ一定となる。したがって、光源装置は、上記構成とすることで、定常動作時モードにおいて第一制御と第二制御の実行時間が任意に変更される場合と比べて、紫外光が照射されている領域や物品における、不活化処理の進行具合を管理しやすくなる。
 また、上記制御は、単純に所定の周期で第一制御と第二制御を繰り返すように構成すればよいため、不活化処理状況や使用環境に応じて周期を変化させるような複雑な制御を構成する場合に比べて、簡単に実現することができる。
 上記光源装置は、
 前記制御部が、前記第一制御において前記スイッチング素子のON/OFF制御を繰り返す回数が、それぞれの前記第二制御の前後で異なるように前記定常動作時モードを実行するように構成されていても構わない。
 トランスは、周期的な電流の供給が行われると、周期的な磁歪が発生することより、電流の周波数に対応した微小な振動が生じる。そして、当該振動の周波数が、人の可聴帯域(約20Hz~20kHz)の範囲内であった場合、「音鳴り」と称される異音現象を生じる場合がある。本発明では、特に、定常動作時モードにおける第一制御と第二制御とを切り替える動作の周波数が人の可聴帯域内の周波数に設定される可能性があり、音鳴りを発生させる一つの要因となり得る。
 そこで、上記構成とすることで、定常動作時モードにおける第一制御と第二制御とを切り替える動作が特定の周波数での動作ではなくなり、磁歪によってトランスに生じる振動の強度が複数の周波数成分に分散されるため、音鳴りが抑制される。なお、定常動作時モードにおける第一制御と第二制御とを切り替える動作が特定の周波数での動作とならないようにする方法は、それぞれの第一制御の前後で第二制御の実行時間を異ならせる方法等であってもよい。
 上記光源装置は、
 前記制御部が、前記第一制御の実行時間と直後の前記第二制御の実行時間との合計が、前記所定の周波数に対応する周期の4倍以上で、かつ、前記第二制御の実行時間が、100ms以下となるように前記定常動作時モードを実行するように構成されていることが好ましい。
 第二制御の実行時間が短すぎると、誘電体バリア放電ランプの形状やサイズによっては過剰な電力供給により発熱が問題となる場合がある。そこで、第二制御の実行時間は、誘電体バリア放電ランプでの発熱が十分抑制されるように、第一制御においてスイッチング素子をON/OFF制御する周期の4倍以上であることが好ましく、8倍以上であることがより好ましい。
 また、第二制御の実行時間が長すぎると、誘電体バリア放電ランプの発光管内のプラズマが消滅又は減衰してしまい、誘電体バリア放電ランプが消灯してしまう可能性がある。なお、本発明の光源装置に関しては、定常動作時モードにおける第一制御は、スイッチング素子のON/OFF制御を繰り返す周波数と、誘電体バリア放電ランプに印加される電圧が始動時モードと同じであるため、誘電体バリア放電ランプに初期放電を発生させるために必要な電圧が印加される。つまり、誘電体バリア放電ランプは、第二制御が長すぎて消灯してしまった場合であっても、制御部が次の第一制御を開始した時に、再点灯できる可能性がある。
 また、定常動作時モードの第一制御は、消費電力や負荷の軽減等の観点から、誘電体バリア放電ランプの点灯状態を維持するために必要十分な回数だけパルス状の電圧印加が行われる制御であってもよい。しかしながら、消灯してしまった誘電体バリア放電ランプは、定常動作時モードの第一制御で初期放電は発生するものの、次の第二制御に移行するまでに発光状態が安定せず点灯状態を維持できない可能性がある。したがって、誘電体バリア放電ランプの点灯状態を安定的に維持させるために、定常動作時モードの第二制御の実行時間は、100ms以下であることが好ましく、80ms以下であることがより好ましく、10ms以下であることが特に好ましい。
 上記光源装置は、
 前記点灯回路が、フライバック方式の回路であっても構わない。
 また、上記光源装置は、
 前記点灯回路が、プッシュプル方式の回路であっても構わない。
 また、上記光源装置は、
 前記点灯回路が、フルブリッジ方式の回路であっても構わない。
 上記の各方式の点灯回路は、直流電源と、一次側巻線と誘電体バリア放電ランプが接続される二次側巻線とを有するトランスと、少なくとも一つのスイッチング素子とを含む。
 フライバック方式の点灯回路は、スイッチング素子のON状態とOFF状態とが切り替えられることによって、直流電源からトランスの一次側巻線への電流の供給と停止とを切り替えて、トランスの二次側巻線に起電力を発生させるように構成された点灯回路である。
 フライバック方式の点灯回路は、基本的にFET等のスイッチング素子を1個しか必要としないため、他の方式の点灯回路に対して、低コストで構成できるという経済的利点がある。
 プッシュプル方式とフルブリッジ方式の点灯回路は、スイッチング素子のON状態とOFF状態とが切り替えられることによって、トランスの一次側巻線を流れる電流の方向を変化させて、トランスの二次側巻線に起電力を発生させるように構成された点灯回路である。それぞれの詳しい回路構成と動作は、「発明を実施するための形態」の項目において後述される。
 プッシュプル方式の点灯回路は、二つのスイッチング素子が交互にON状態に切り替わり、当該切り替わり動作に応じてトランスが交互に駆動されて動作するため、フライバック方式の点灯回路と比べて、電力効率が高いという利点がある。
 フルブリッジ方式の点灯回路は、四つのスイッチング素子が交互にON状態に切り替わり、当該切り替わり動作に応じてトランスが交互に駆動されて動作するため、フライバック方式の点灯回路と比べて、電力効率が高いという利点がある。また、フルブリッジ方式の点灯回路は、プッシュプル方式の点灯回路よりもスイッチング素子の数が多くなってしまうが、トランスの一次側巻線の両端子間に直流電源の電圧が正負交互に印加されるため、プッシュプル方式の点灯回路よりもさらに電力変換効率が高いという利点がある。
 点灯回路がフライバック方式の回路である上記光源装置において、
 前記スイッチング素子は、寄生ダイオードを備えていても構わない。
 点灯回路がフライバック方式の回路である場合の最も単純な構成は、直流電源と、トランスの一次側巻線と、一つのスイッチング素子が直列に接続された構成である(図3参照)。当該構成の回路は、スイッチング素子のON/OFF制御によって、トランスの一次側巻線に流し込まれる電流(以下、「一次側電流」という場合がある。)の供給と停止を切り替えることで二次側巻線に起電力を発生させる。
 フライバック方式の点灯回路は、スイッチング素子がOFF状態となった後、トランスの二次側巻線に流れる電流(以下、「二次側電流」という場合がある。)が停止すると、トランスの一次側巻線に直流電源とは極性が逆の電圧が誘起される。この誘起電圧が生じた時に、直流電源と、トランスの一次側巻線と、スイッチング素子とが直列に接続された回路が、スイッチング素子がOFF状態であることによって開回路となっていた場合、スイッチング素子の入出力端子間に高い電圧が印加されることになり、最悪の場合、スイッチング素子が破損してしまう。
 そこで、上記構成とすることで、トランスの一次側巻線に誘起された電圧が、直流電源が印加する電圧より大きくなった時に、直流電源の負極側から正極側へと電流が流れる経路が形成される。この時、スイッチング素子の入出力端子間に印加される電圧は、寄生ダイオードの順方向電圧と同じ電圧となるため、スイッチング素子の破損が抑制される。なお、当該寄生ダイオードを介して、トランスの一次側巻線に流れる電流は、「回生電流」と称される場合がある。
 点灯回路がフライバック方式の回路である上記光源装置は、
 前記制御部が、前記第一制御において、
 前記スイッチング素子をON状態からOFF状態に遷移させる第一ステップと、
 前記第一ステップの後、前記一次側巻線を流れる回生電流がゼロ値に達した時点から、所定のOFF保持時間の経過後に、前記スイッチング素子をOFF状態からON状態に遷移させる第二ステップとを実行するように構成されていても構わない。
 誘電体バリア放電ランプには点灯に適した印加電圧が存在するが、フライバック方式の点灯回路は、照度調整の目的で印加電圧を変更することは現実的に困難という事情が存在する。この理由は、単純にフライバック方式の点灯回路が、ON状態とOFF状態とを切り替える周波数(切替周波数)を変更すると、誘電体バリア放電ランプに印加される電圧も連動して変化してしまうという特徴による。つまり、フライバック方式の点灯回路は、照度を調整するために、ON状態とOFF状態とを切り替えるタイミングを調整し、スイッチング素子のON状態を維持する時間とOFF状態を維持する時間との比を適切に調整する必要がある。
 トランスの一次側電流の上昇量は、この第二ステップが実行された後、ゼロ値から上昇を開始し、再びスイッチング素子がOFF状態に遷移する迄の時間に依存する。そこで、上記構成によれば、スイッチング素子がOFF状態からON状態に遷移する第二ステップの実行タイミングが、回生電流がゼロ値に達する時点よりも後になる。そして、所定のOFF保持時間を調整することで、スイッチング素子をON状態で維持する時間とOFF状態で維持する時間の比が調整される。
 このように、スイッチング素子のON状態を維持する時間とOFF状態を維持する時間の比が調整されるため、誘電体バリア放電ランプの点灯照度が所望の値となるように調整される。
 なお、この効果は、特に誘電体バリア放電ランプが紫外光を発するエキシマランプである場合に、顕著に現れる。
 例えば、発光ガスにKrClが含まれる場合には、エキシマランプから主たるピーク
波長が222nm近傍の紫外光が出射される。また、例えば、発光ガスにKrBrが含まれる場合には、エキシマランプからは主たるピーク波長が207nm近傍の紫外光が出射される。主たるピーク波長が190nm~240nmの範囲内の紫外光は、低圧水銀ランプからの波長254nmの成分を含む紫外線とは異なり、人体に照射されても、皮膚の角質層で吸収され、それよりも内側(基底層側)には進行しないため、細胞に吸収されてDNAが破壊されるというリスクが低い。このため、人間が存在する可能性のある空間内の菌やウイルスの不活化の用途に、前記エキシマランプを利用することができる。
 ただし、低圧水銀ランプから出射される紫外光に比べると人体に対する影響が極めて低いとはいえ、利用者によっては、長時間にわたって高い照度で前記エキシマランプからの紫外光が人体に照射され続ける状況は回避したい場合が考えられる。また、本願出願時においては、人体に照射される紫外線の積算照射量は、ACGIH(American Conference of Governmental Industrial Hygienists:アメリカ合衆国産業衛生専門官会議)で定められている規制値以内にすることが推奨されている。
 これらの紫外光を出射するエキシマランプを実際に設置する方法としては、例えば、天井に設置する方法が考えられる。この際、比較的高い天井にエキシマランプを設置する場合は、人体との距離は十分に確保されて紫外光の積算照射量は少なくなるが、比較的低い天井にエキシマランプを設置する場合は、人体との距離が近くなり、積算照射量が多くなる。もし、照度が高いままに、人体との距離が近い環境でエキシマランプを運用しようとすれば、所定の積算照射量となるように点灯と消灯とをそれに応じた比率で繰り返すことになる(例:10秒点灯、300秒消灯)。このような方法では、300秒にわたる消灯時間帯に殺菌や不活化が行われず、その間の感染のリスクが残存してしまう。
 そこで、このような場合は、出射される紫外光の照度を減じてエキシマランプを運用するのが好ましい。上記構成によれば、エキシマランプの照度を低く点灯できれば、人体に影響なく、より長い時間連続して照射することで、より一層感染のリスクを低減することが可能である。
 なお、ここでの「不活化」とは、菌やウイルスを死滅させる又は感染力や毒性を失わせることを包括する概念を指し、「菌」とは細菌や真菌(カビ)等の微生物を指す。
 また、点灯回路がフライバック方式の回路である上記光源装置は、
 前記制御部が、前記第一制御において、
 前記スイッチング素子をON状態からOFF状態に遷移させる第一ステップと、
 前記第一ステップの後、前記一次側巻線を流れる回生電流がゼロ値に達する前、又はゼロ値に達すると同時に、前記スイッチング素子をOFF状態からON状態に遷移させる第二ステップとを実行するように構成されていても構わない。
 上記構成とすることで、スイッチング素子がOFF状態からON状態に遷移した瞬間は、回生電流がほぼゼロ値となる。このため、スイッチング素子がOFF状態からON状態に切り替わった時に、スイッチング素子に突然大きな電流が流れ込むことがない。つまり、上記切替制御は、ON状態とOFF状態とが切り替わる時にスイッチング素子に加わる負荷が軽減されるため、スイッチング素子の長寿命化に寄与する。
 なお、このようにスイッチング素子の両端の電圧がほぼゼロ値であるタイミングで、ON状態とOFF状態とを遷移させる方法は、「ゼロ電圧スイッチング(ZVS)」と称される場合がある。
 本発明の点灯回路は、
 誘電体バリア放電ランプを点灯させるための点灯回路であって、
 直流電源と、
 一次側巻線と前記誘電体バリア放電ランプに接続される二次側巻線とを有するトランスと、
 前記直流電源と前記トランスの前記一次側巻線とに直列に接続され、ON状態とOFF状態とが切り替わることによって、前記直流電源から前記トランスの前記一次側巻線への電流の供給と停止とを切り替える、又は前記一次側巻線を流れる電流の方向を変化させる、少なくとも一つのスイッチング素子と、
 前記スイッチング素子のON/OFF制御を行う制御部とを備え、
 前記制御部は、
  始動時に、所定の周波数で前記スイッチング素子のON/OFF制御を繰り返すことで前記誘電体バリア放電ランプに対して所定の電圧を印加する始動時モードと、
  前記誘電体バリア放電ランプの始動後、前記所定の周波数で前記スイッチング素子のON/OFF制御を繰り返すことで前記誘電体バリア放電ランプに対して前記所定の電圧を印加する第一制御と、前記スイッチング素子のON/OFF制御の周期よりも長い期間にわたって、前記スイッチング素子をOFF状態で維持する第二制御とを交互に行う定常動作時モードとを実行することを特徴とする。
 本発明の誘電体バリア放電ランプの点灯方法は、
 点灯回路を用いた誘電体バリア放電ランプの点灯方法であって、
 前記点灯回路は、
  直流電源と、
  一次側巻線と前記誘電体バリア放電ランプに接続された二次側巻線とを有するトランスと、
  少なくとも一つのスイッチング素子とを備え、
  前記スイッチング素子のON状態とOFF状態とが切り替わることによって、前記直流電源から前記トランスの前記一次側巻線への電流の供給と停止とを切り替えて、又は前記一次側巻線に供給される電流の方向の変化を生じさせて、前記トランスの前記二次側巻線に起電力を発生させるように構成されており、
 始動時に、所定の周波数で前記スイッチング素子のON/OFF切替を繰り返すことで前記誘電体バリア放電ランプに対して所定の電圧を印加する第一ステップと、
 前記第一ステップの実行後、前記誘電体バリア放電ランプの点灯状態を維持するために、前記第一ステップと同様に、所定の周波数で前記スイッチング素子のON/OFF切替を繰り返すことと、前記第一ステップにおける前記スイッチング素子のON/OFF切替の周期よりも長い期間にわたって、前記スイッチング素子をOFF状態で維持することとを交互に行う第二ステップとを含むことを特徴とする。
 本発明の光源装置によれば、装置全体を大型化させることなく、省電力化と信頼性の向上とが実現される。また、本発明の点灯回路及び点灯方法によれば、光源装置全体を大型化させることなく、省電力化と信頼性の向上を実現することができる。
光源装置の外観の一例を模式的に示す斜視図である。 光源装置の外観の一例を模式的に示す斜視図であり、図1から一部の要素を除去した図面である。 誘電体バリア放電ランプ用の、フライバック方式の点灯回路の一構成例を示す回路図である。 フライバック方式の点灯回路の、制御信号G(t)、及び二次側電圧V2の時間変化を模式的に示すタイミングチャートである。 制御部がスイッチング素子のON/OFF制御を実行している時の、制御信号G(t)、一次側電流I1、二次側電圧V2、及び二次側電流I2の時間変化を模式的に示すタイミングチャートである。 誘電体バリア放電ランプ用の、プッシュプル方式の点灯回路の一構成例を示す回路図である。 プッシュプル方式の点灯回路の、制御信号G(t)、及び二次側電圧V2の時間変化を模式的に示すタイミングチャートである。 誘電体バリア放電ランプ用の、フルブリッジ方式の点灯回路の一構成例を示す回路図である。 フライバック方式の点灯回路の、制御信号G(t)、及び二次側電圧V2の時間変化を模式的に示すタイミングチャートである。 制御部がスイッチング素子22のON/OFF制御を実行している時の、制御信号G(t)、一次側電流I1、二次側電圧V2、及び二次側電流I2の時間変化を模式的に示すタイミングチャートである。
 以下、本発明の光源装置、誘電体バリア放電ランプの点灯回路、及び誘電体バリア放電ランプの点灯方法について、図面を参照して説明する。なお、光源装置に関する以下の各図面は、いずれも模式的に図示されたものであり、図面上の寸法比や個数は、実際の寸法比や個数と必ずしも一致していない。
 [構成]
 (光源装置1)
 図1及び図2は、光源装置1の外観を模式的に示す斜視図である。ただし、図1及び図2に図示される構造は、あくまで一例であり、本発明に係る光源装置1の構造は、任意である。
 図1及び図2は、それぞれ光源装置1の外観の一例を模式的に示す斜視図であり、図2では、説明のために、図1から一部の要素が除去されている。光源装置1は、図1に示すように、点灯回路2と、一方の面に光取り出し面7が形成された蓋部5と、本体ケーシング部と6を備える。図2に示す例では、光源装置1は、複数の発光管13と、各発光管13に対して電圧を印加するための電極(11,12)からなる、誘電体バリア放電ランプ10を備える。電極(11,12)は、それぞれ接続部(11a,12a)を介して電源線(3,4)に接続される。そして、電源線(3,4)は、点灯回路2に接続されている。
 発光管13は、石英ガラス等の誘電体で構成されており、内部には所定の発光ガスが封入されている。電極(11,12)に対して、例えば1kHz~5MHz程度の高周波電圧が印加されると、発光管13を介して発光ガスに対して当該電圧が印加される。このとき、発光ガスが封入されている放電空間内で放電プラズマが生じ、発光ガスの原子が励起されてエキシマ状態となり、この原子が基底状態に移行する際にエキシマ発光を生じる。このエキシマ発光によって誘電体バリア放電ランプ10から出射された光が、光取り出し面7から光Ry1として光源装置1の外側へと出射される。
 光源装置1から出射される光Ry1の波長は、発光管13内に封入される発光ガスの物質に依存して決定される。例えば、発光ガスとしてKrClを含む場合、光源装置1から出射される光Ry1は、主たるピーク波長が222nm近傍のスペクトルを示す。発光ガスにKrBrが含まれる場合には、光Ry1は、主たるピーク波長が207nm近傍のスペクトルを示す。発光ガスにArFが含まれる場合には、光Ry1は、主たるピーク波長が193nm近傍のスペクトルを示す。
 ただし、本発明において、誘電体バリア放電ランプ10の発光管13内に封入されるガス種は任意であり、得たい光Ry1の波長に応じて適宜選択されるものとして構わない。また、光源装置1は、波長を長波長側に変換する目的で、発光管13の管壁や光取り出し面7に、蛍光体が塗布されているものとしても構わない。
 また、発光管13の管壁や光取り出し面7は、人体に対する影響が小さい波長帯の紫外光を透過し、人体に対する影響が大きい波長帯の紫外光を透過しないようなフィルタが構成されていても構わない。当該フィルタは、例えば、波長が190nm~240nmの紫外光を透過させ、波長が240nm以上の紫外光を透過させないように構成された、誘電体多層膜フィルタ等を採用し得る。
 (フライバック方式の点灯回路2a)
 図3は、誘電体バリア放電ランプ用の、フライバック方式の点灯回路2aの一構成例を示す回路図である。フライバック方式の点灯回路2aは、図3に示すように、直流電源21と、一つのスイッチング素子22と、トランス30とを備える、誘電体バリア放電ランプ10を点灯させるための点灯回路2の一実施例である。
 トランス30は、一次側巻線L1と二次側巻線L2を備える。トランス30の一次側巻線L1が備える端子のうち、第一端子a1は直流電源21の正極側端子に接続され、第二端子a2はスイッチング素子22を介して直流電源21の負極側端子に接続されている。
 本実施形態のスイッチング素子22は、電界効果トランジスタ(FET)で構成されており、アノードが直流電源21の負極側端子、カソードがトランス30の一次側巻線L1に接続された寄生ダイオード23が形成されている。本実施形態では、この寄生ダイオード23が回生回路として機能する。なお、スイッチング素子22は、電界効果トランジスタ(FET)以外の素子が採用されても構わない。また、スイッチング素子22は、寄生ダイオード23を備えないIGBTやリレー素子等を採用し、ダイオード素子単体をスイッチング素子22と並列に接続することで回生回路を構成しても構わない。
 直流電源21は、例えば、不図示の商用電源をAC/DC変換するAC/DCコンバータによって構成されるものとしても構わない。点灯回路2aが備える平滑コンデンサ25は、電圧波形を平滑化するために設けられている。また、直流電源21は、電池で構成されても構わない。
 本実施形態の点灯回路2aは、スイッチング素子22に対するON/OFF制御を行うための制御部24を備える。制御部24は、所望のパターンの制御信号G(t)を出力できるものであればよく、例えば、制御ユニットであるCPUやMPU等を採用し得る。以下、制御部24が行う制御内容について、タイミングチャートも併せて参照しながら説明する。
 図4は、フライバック方式の点灯回路2aの、制御信号G(t)、及び二次側電圧V2の時間変化を模式的に示すタイミングチャートである。図4に示すタイミングチャートは、誘電体バリア放電ランプ10の始動時からの制御信号G(t)と二次側電圧V2の変動を示している。また、図4の制御信号G(t)のグラフは、Highレベル(以下、「Hレベル」という。)がスイッチング素子22のON制御に対応し、Lowレベル(以下、「Lレベル」という。)がスイッチング素子22のOFF制御に対応している。また、図4において示される二次側電圧V2のグラフは、図3に示す誘電体バリア放電ランプ10の電極12に接続された第二電極端子b2の電位を基準としたときの、電極11に接続された第一電極端子b1との電位差を示している。
 以下の説明において参照される図面に図示された電圧や電流の変動を示すグラフは、図4の二次側電圧V2のグラフと同様に、本発明の主たる動作の説明にほとんど影響しないオフセット等は表されておらず、理想的な波形の一例が模式的に表されている。また、二次側電圧V2が所定の基準電圧(本実施形態では0V)に対して+側に振れるように構成するか、-側に振れるように構成するかは、誘電体バリア放電ランプ10の仕様や点灯回路2の構成等に応じて適宜任意に設定して構わない。
 制御部24は、光源装置1に電源が投入されて動作が開始すると、誘電体バリア放電ランプ10点灯させるための始動時モードX1に切り替わる。
 始動時モードX1は、図4に示すように、所定の周波数でスイッチング素子22のON/OFF制御を繰り返す制御を継続的に実行する。始動時モードX1は、誘電体バリア放電ランプ10の発光管13内で放電プラズマを発生させて、誘電体バリア放電ランプ10の発光状態が安定するまで実行される。
 制御部24は、始動時モードX1を実行し、誘電体バリア放電ランプ10の発光状態が安定した後、すなわち、誘電体バリア放電ランプ10の始動後、誘電体バリア放電ランプ10の点灯状態を維持するための定常動作時モードX2に切り替わる。
 定常動作時モードX2は、図4に示すように、所定の周波数でスイッチング素子22のON/OFF制御を繰り返して所定の電圧を印加する第一制御C1と、スイッチング素子22をOFF状態で維持する第二制御C2とを交互に繰り返して、誘電体バリア放電ランプ10の点灯状態を維持させる。なお、第一制御C1のスイッチング素子22のON/OFF制御を繰り返す周波数と、誘電体バリア放電ランプ10に印加する所定の電圧とは、始動時モードX1におけるスイッチング素子22のON/OFF制御を繰り返す周波数と、誘電体バリア放電ランプ10に印加する所定の電圧と略同一となっている。
 本実施形態における定常動作時モードX2は、所定の周波数でH/Lレベルを切り替える基本制御信号S1に対して、第二制御C2を実行する期間だけ、基本制御信号S1の出力をLレベルに固定するようにマスク処理された制御信号G(t)(図4において、マスク処理部分が一部破線で図示されている。)によってスイッチング素子22が制御される。このため、図4に示すように、第一制御C1は、始動時モードX1と定常動作時モードX2において、実行時間が異なるだけであって、図3に示す、誘電体バリア放電ランプ10の電極(11,12)間には、いずれにおいても同じパターンの二次側電圧V2が印加される。
 ここでいうマスク処理は、例えば、プログラム上の処理により、周期的に所定の期間にわたって制御信号G(t)をLレベルに固定する処理や、当該基本制御信号S1と、第一制御C1が実行される区間はHレベル、第二制御C2が実行される区間はLレベルとなるマスク用信号とを、ANDゲート素子に入力して論理積を取るような処理である。
 本実施形態では、スイッチング素子22のON/OFF制御を繰り返すための基本制御信号S1の周期P1が17μs、始動時モードX1の実行時間が10s、定常動作時モードX2の第一制御C1の実行時間が170μs、定常動作時モードX2の第二制御C2に実行時間が200μsに設定されている。つまり、定常動作時モードX2の第二制御C2の実行時間は、基本制御信号S1の周期P1の12倍であり、定常動作時モードX2の第一制御C1と第二制御C2とを繰り返す周期T1が、基本信号周波数の周期P1の22倍となっている。
 定常動作時モードX2の第一制御C1と第二制御C2とを繰り返す周期T1は、誘電体バリア放電ランプ10での発熱が抑制されるように、基本制御信号S1の周期P1の4倍以上であることが好ましく、8倍以上であることがより好ましい。なお、定常動作時モードX2において、第一制御C1と第二制御C2とが非周期的に繰り返される場合は、第一制御C1と直前の第二制御C2との実行時間の合計が、基本制御信号S1の周期P1の4倍以上であることが好ましく、8倍以上であることがより好ましい。
 また、第二制御C2の実行時間が長すぎると、誘電体バリア放電ランプ10の発光管13内のプラズマが消滅又は減衰してしまい、誘電体バリア放電ランプ10が消灯してしまう可能性がある。なお、上述したように、定常動作時モードX2の第一制御C1は、誘電体バリア放電ランプ10に対して始動時モードX1と同じ周期で、同じ電圧を印加するため、消灯した誘電体バリア放電ランプ10を再点灯させることができる可能性がある。しかしながら、電圧印加を継続する時間が不十分で、次の第二制御C2に移行するまでに発光状態が安定せず点灯状態を維持できない可能性がある。したがって、誘電体バリア放電ランプ10の点灯状態を安定的に維持させるために、定常動作時モードX2の第二制御C2の実行時間は、100ms以下であることが好ましく、80ms以下であることがより好ましい。更には、点灯状態の安定性をより高めるため、定常動作時モードX2の第二制御C2の実行時間は、10ms以下であることが好ましく、1ms以下であることがより好ましい。
 ここで、誘電体バリア放電ランプ10から出射される光の強度に関して説明する。誘電体バリア放電ランプ10から出射される光の強度は、単位時間あたりの第一制御C1の実行時間と第二制御C2の実行時間の割合によって調整される。具体的には、定常動作時モードX2における周期T1において、第一制御C1の実行時間の割合が大きくなると、誘電体バリア放電ランプ10から出射される光の強度は高くなり、逆に、第二制御C2の実行時間の割合が大きくなると、誘電体バリア放電ランプ10から出射される光の強度は低くなる。
 以下は、参考としての単なる一例であるが、始動時モードX1における誘電体バリア放電ランプ10の発光管13付近の光強度を100%とした時に、第一制御C1の実行時間が1ms、第二制御C2の実行時間が100μsに調整された定常動作時モードX2における誘電体バリア放電ランプ10の発光管13付近の光強度は、約91%となる。また、第一制御C1の実行時間が1ms、第二制御C2の実行時間が1msに調整された定常動作時モードX2における誘電体バリア放電ランプ10の発光管13付近の光強度は、約50%となる。
 したがって、光源装置1は、定常動作時モードX2における周期T1における、第一制御C1の実行時間と第二制御C2の実行時間を調整することで、使用場所や使用用途に応じて所望の強度の光を出射するように構成することができる。なお、定常動作時モードX2における第一制御C1の実行時間と第二制御C2の実行時間は、予め調整されて固定されていてもよく、使用用途や動作する時間帯に応じて可変できるように、又は常に変動するように構成されていても構わない。
 また、誘電体バリア放電ランプ10から出射される光の強度を調整する方法としては、定常動作時モードX2における、第一制御C1に実行時間を変動させる方法が採用されてもよい。具体的な例としては、第二制御C2の実行時間は1msに固定し、第一制御C1の実行時間を、1msと0.5msとを、交互に、所定の回数ごとに、又は所定の時間で切り替えるモードとしても構わない。
 さらに、制御部24は、例えば、立ち切れ防止等を目的として、定常動作時モードX2が実行されている途中で、一時的に始動時モードX1に切り替わるように構成されていても構わない。また、制御部24は、点灯状態がより確実に安定するように、誘電体バリア放電ランプ10の点灯が確認された後も、所定の時間にわたって始動時モードX1が継続されるように構成されていても構わない。
 また、本実施形態では、二次側電圧V2のピーク電圧の大きさが5~6kVとなるように、基本制御信号S1のON時間とOFF時間が調整されている。二次側電圧V2のピーク電圧は、誘電体バリア放電ランプ10の形状やサイズ、発光管13内に封入される発光ガスに応じて適宜調整される。
 次に、始動時モードX1及び定常動作時モードX2の第一制御C1の動作の詳細について、図3の点灯回路2aの構成とタイミングチャートを参照しながら説明する。図5は、制御部24がスイッチング素子22のON/OFF制御を実行している時の、制御信号G(t)、一次側電流I1、二次側電圧V2、及び二次側電流I2の時間変化を模式的に示すタイミングチャートである。
 図5に示すように、時刻t1で制御信号G(t)がLレベルからHレベルに切り替わると、スイッチング素子22がOFF状態からON状態に遷移し、トランス30の一次側電流I1が時間の経過と共に上昇する。
 その後、時刻t2で制御信号G(t)がHレベルからLレベルに変化すると、スイッチング素子22がON状態からOFF状態に遷移する。このとき、トランス30の二次側巻線L2には逆起電力が発生し、パルス状の二次側電圧V2が生じる。この二次側電圧V2が、一対の電極(11,12)を介して誘電体バリア放電ランプ10の発光管13内に印加されると、誘電体バリア放電ランプ10から光Ry1が出射される。
 なお、トランス30の二次側巻線L2に発生する二次側電圧V2の大きさは、時刻t2における一次側電流I1の変化量に依存する。そして、時刻t2における一次側電流I1の変化量は、制御信号G(t)のHレベルを維持する時間(時間TH)に依存する。このため、本実施形態の制御信号G(t)の時間THは、二次側電圧V2が誘電体バリア放電ランプ10の発光管13内において初期放電を発生させるために必要な電圧値となるような時間に設定されている。
 二次側電圧V2の印加に伴いトランス30の二次側巻線L2には二次側電流I2が流れる。この二次側電流I2は、トランス30に蓄積されたエネルギーを放出しながら流れるため、時間の経過と共にゼロ値に近づく(時刻t2~ta)。
 この時、誘電体バリア放電ランプ10は、発光管13が誘電体で構成されており、発光管13を挟むように一対の電極(11,12)を備えているところ、等価的に電荷を蓄えるキャパシタ素子と見做すことができる。つまり、トランス30に蓄積されたエネルギーの放出によって、今度は徐々に誘電体バリア放電ランプ10に電荷が蓄積される。
 二次側電流I2によって、トランス30に蓄積されたエネルギーの放出が完了すると、誘電体バリア放電ランプ10に蓄積された電荷が放電される。この放電により、トランス30の二次側巻線L2には、先ほどとは逆向きの電流(二次側電流I2)が流れ、二次側電圧V2はゼロ値に近づくように変化する(時刻ta~tb)。
 誘電体バリア放電ランプ10の放電が完了した後も、トランス30の二次側巻線L2が電圧源となって、誘電体バリア放電ランプ10への充電を行いながら引き続き二次側電流I2を流し続ける。やがて、二次側電流I2の流れがなくなると、トランス30の一次側巻線L1に一次側電圧V1が誘起される。
 この誘起電圧は、直流電源21とは逆極性の電圧であるが、上述したように、スイッチング素子22には、寄生ダイオード23が設けられているため、この寄生ダイオード23を介して、一次側巻線L1には逆向きの一次側電流I1が流れる。この一次側電流I1は、「回生電流」と称される場合がある。このような回生電流が生じるのは、誘電体バリア放電ランプ10によって構成される負荷特有の事情である。
 一次側電流I1は、徐々にゼロ値に近づくが、時刻t3においてスイッチング素子22が再びON状態になると、引き続き、時刻t1~t2と同様に、一次側電流I1の値が増加していく。以降は、同様の制御が繰り返し行われる。
 本実施形態では、一次側電流I1がゼロ値に達すると同時に、スイッチング素子22をOFF状態からON状態に遷移させる制御を行う(時刻t3)。すなわち、ゼロ電圧スイッチングが実施される。なお、制御信号G(t)の伝送遅延や、スイッチング素子22がON状態からOFF状態に切り替わるまでの時間を考慮して、スイッチング素子22をOFF状態からON状態に遷移させる制御は、一次側電流I1がゼロ値に達する前に行われても構わない。
 スイッチング素子22をON状態からOFF状態に遷移させる制御(例えば、図5に示す、時刻t2,t4,t6における制御)が「第一ステップ」に対応し、スイッチング素子22をOFF状態からON状態に遷移させる制御(例えば、図5に示す、時刻t1,t3,t5,t7における制御)が「第二ステップ」に対応する。
 上記構成の光源装置1は、出力電圧を変更するようなアナログ回路構成の切り替えを要せず、デジタル信号処理による切り替えで実現することができる。したがって、複雑な機構や回路を必要としないため、従来の装置と比べて装置全体が大型化することがなく、場合によっては、部材の点数を削減することができ、装置全体を小型化できる。
 また、上記構成の光源装置1は、デジタル信号処理のみで実現可能なため、出力値のバラつきや、経時的な劣化による特性変動等のアナログ特性を気にする必要がなく、信頼性の問題が生じにくい。
 以下、フライバック方式以外の点灯回路2の構成例と、主にそれぞれの点灯回路2による始動時モードX1及び定常動作時モードX2の第一制御C1の動作について説明する。
 (プッシュプル方式の点灯回路2b)
 図6は、誘電体バリア放電ランプ用の、プッシュプル方式の点灯回路2bの一構成例を示す回路図である。プッシュプル方式の点灯回路2bは、図6に示すように、直流電源21と、二つのスイッチング素子(22a,22b)と、トランス30とを備える、誘電体バリア放電ランプ10を点灯させるための点灯回路2の一実施例である。トランス30の一次側は、巻線L1aとスイッチング素子22aが直列に接続された回路と、巻線L1bとスイッチング素子22bが直列に接続された回路とが、直流電源21に対して並列に接続されている。
 本実施形態のトランス30は、巻線L1aと巻線L1bとによって、トランス30の一次側巻線L1が構成されている。なお、本構成におけるトランス30は、説明の便宜のために、一次側巻線L1が二つの巻線(L1a,L1b)に分かれた構成となっているが、一つの一次側巻線L1で構成されていても構わない。
 図7は、プッシュプル方式の点灯回路2bの、制御信号G1(t)、制御信号G2(t)、及び二次側電圧V2の時間変化を模式的に示すタイミングチャートである。プッシュプル方式の点灯回路2bは、始動時モードX1及び定常動作時モードX2の第一制御C1において、制御部24が、スイッチング素子22aに対して制御信号G1(t)、スイッチング素子22bに対して制御信号G2(t)を出力して、それぞれのスイッチング素子(22a,22b)を交互にON状態に切り替えるように制御する。以下、図6と図7を参照しながら、プッシュプル方式の点灯回路2bにおける、始動時モードX1又は定常動作時モードX2の第一制御C1の動作について説明する。
 プッシュプル方式の点灯回路2bが備える制御部24は、始動時モードX1又は定常動作時モードX2の第一制御C1を開始すると、制御信号G1(t)をLレベルからHレベルに切り替えて、スイッチング素子22aをON状態に切り替える(時刻t1)。スイッチング素子22aがON状態に切り替わることで、直流電源21から巻線L1a側に電流I1aが流れ始める。そして、巻線L1aに電流I1aが流れ始めることで、トランス30の二次側巻線L2に、図7に示すような二次側電圧V2が発生する。
 次に、制御部24は、制御信号G1(t)をHレベルからLレベルに切り替えて、スイッチング素子22aをOFF状態に切り替え(時刻t2)、その後に、制御信号G2(t)をLレベルからHレベルに切り替えて、スイッチング素子22bをON状態に切り替える(時刻t3)。スイッチング素子22bがON状態に切り替わることで、直流電源21から巻線L1b側に電流I1bが流れ始める。そして、電流I1bが巻線L1bを流れ始めることで、トランス30の二次側巻線L2に、図7に示すような二次側電圧V2が発生する。
 時刻t3における動作でトランス30の一次側巻線L1に発生する電流I1bは、時刻t1における動作で一次側巻線L1に発生する電流I1aとは流れる方向が逆である。このため、時刻t3における動作でトランス30の二次側巻線L2に発生する二次側電圧V2は、図7に示すように、時刻t1における動作で発生する二次側電圧V2とは極性が逆になる。
 その後、制御部24が、スイッチング素子22bをOFF状態に切り替える制御信号G2(t)を出力する(時刻t4)。以降は、定常動作時モードX2に切り替わるまで、又は第二制御C2に切り替わるまで同様の制御が繰り返し行われる。
 なお、スイッチング素子22bをON状態に切り替える制御(時刻t3)は、スイッチング素子22aをOFF状態に切り替える制御(時刻t2)に対して、僅かに遅れて実行されることが好ましい。この理由は、二つのスイッチング素子(22a,22b)が同時にON状態となる期間が発生し、直流電源21の正極側端子と負極側端子がショートしてしまうことを回避するためである。
 (フルブリッジ方式の点灯回路2c)
 図8は、誘電体バリア放電ランプ用の、フルブリッジ方式の点灯回路2cの一構成例を示す回路図である。フルブリッジ方式の点灯回路2cは、図8に示すように、直流電源21と、四つのスイッチング素子(22a,22b,22c,22d)と、トランス30とを備える、誘電体バリア放電ランプ10を点灯させるための点灯回路2の一実施例である。トランス30の一次側は、二つのスイッチング素子(22a,22b)が直列に接続された回路と、二つのスイッチング素子(22c,22d)が直列に接続された回路とが、直流電源21に対して並列に接続された回路構成である。トランス30の一次側巻線L1は、スイッチング素子(22a,22b)の間の第一ノードn1と、スイッチング素子(22c,22d)の間の第二ノードn2に接続されている。図8では、図示の都合上、制御部24が四つに分割されているが、他の方式の点灯回路(2a,2b)と同様に制御部24が一つだけであっても構わない。
 フルブリッジ方式の点灯回路2cは、プッシュプル方式の点灯回路2bと回路構成が異なり、トランス30の二次側巻線L2に発生する二次側電圧V2の大きさも異なるが、二つの制御信号(G1(t),G2(t))によって、対となるスイッチング素子(22a,22b,22c,22d)をON/OFF制御することで、一次側巻線L1に流れる電流(I1a,I1b)の方向を変化させて、二次側電圧V2に極性が逆の起電力を交互に生じさせるという点は同じである。このため、図8に示す制御信号(G1(t),G2(t))と二次側電圧V2のタイミングチャートは、二次側電圧V2のスケールが異なること等を無視すれば、図7に示すプッシュプル方式の点灯回路2bのタイミングチャートとほぼ同じである。以下、図7と図8を参照しながら、フルブリッジ方式の点灯回路2cにおける、始動時モードX1又は定常動作時モードX2の第一制御C1の動作について説明する。
 フルブリッジ方式の点灯回路2cの制御部24は、始動時モードX1又は定常動作時モードX2の第一制御C1を開始すると、制御信号G1(t)をLレベルからHレベルに切り替えて、スイッチング素子(22a,22c)をON状態に切り替える(時刻t1)。スイッチング素子(22a,22c)がON状態に切り替わることで、直流電源21からスイッチング素子22a、一次側巻線L1、スイッチング素子22cの経路に電流I1aが流れ始める。そして、一次側巻線L1に電流I1aが流れ始めることで、二次側電圧V2が発生する。
 次に、制御部24は、制御信号G1(t)をHレベルからLレベルに切り替えて、スイッチング素子(22a,22c)をOFF状態に切り替え(時刻t2)、その後に、制御信号G2(t)をLレベルからHレベルに切り替えて、スイッチング素子(22b,22d)をON状態に切り替える(時刻t3)。スイッチング素子(22b,22d)がON状態に切り替わることで、直流電源21からスイッチング素子22d、一次側巻線L1、スイッチング素子22bの経路に電流I1bが流れ始める。そして、一次側巻線L1に電流I1bが流れ始めることで、二次側電圧V2が発生する。
 時刻t3における動作でトランス30の一次側巻線L1に発生する電流I1bは、時刻t1における動作で一次側巻線L1に発生する電流I1aとは流れる方向が逆である。このため、時刻t3における動作でトランス30の二次側巻線L2に発生する二次側電圧V2は、図7に示すように、時刻t1における動作で発生する二次側電圧V2とは極性が逆になる。
 その後、制御部24は、スイッチング素子(22b,22d)をOFF状態に切り替えるために、制御信号G2(t)をHレベルからLレベルに切り替える(時刻t4)。以降は、定常動作時モードX2に切り替わるまで、又は第二制御C2に切り替わるまで同様の制御が繰り返し行われる。
 なお、スイッチング素子(22b,22d)をON状態に切り替える制御(時刻t3)は、スイッチング素子(22a,22c)をOFF状態に切り替える制御(時刻t2)に対して、僅かに遅れて実行されることが好ましい。この理由は、プッシュプル方式の点灯回路2bと同様で、スイッチング素子(22a,22b,22c,22d)が同時にON状態となる期間が発生し、直流電源21の正極側端子と負極側端子がショートしてしまうことを回避するためである。
 以上、三つの方式の点灯回路(2a,2b,2c)について説明したが、点灯回路2は、例えば、ハーフブリッジ方式等の上述した点灯回路(2a,2b,2c)以外の方式を採用しても構わない。
 [別実施形態]
 以下に、本発明に係る光源装置1又は点灯回路2の別実施形態を説明する。
 〈1〉 図9は、フライバック方式の点灯回路2a(図3参照)における、図4とは異なる、制御信号G(t)、及び二次側電圧V2の時間変化を模式的に示すタイミングチャートである。本実施形態の制御部24は、定常動作時モードX2の第一制御C1において、スイッチング素子22のON/OFF制御を繰り返す回数が、第二制御C2を実行する前後で異なるように制御する。例えば、図9に示すように、定常動作時モードX2に切り替わって最初の第一制御C1は、スイッチング素子22のON/OFF制御が三回繰り返され、次の第一制御C1は、スイッチング素子22のON/OFF制御が二回繰り返される。本実施形態では、その後、第一制御C1においてスイッチング素子22のON/OFF制御を繰り返す回数が、三回→二回→三回→二回→…となるように実行される。なお、第一制御C1においてスイッチング素子22のON/OFF制御を繰り返す回数は、いくつかのパターンが周期的に繰り返されるのではなく、ランダムに変化するように構成されていても構わない。
 上述したように、トランスは、周期的な電流の供給が行われると、周期的な磁歪が発生することより、電流の周波数に対応した微小な振動が生じる。そして、当該振動の周波数が、人の可聴帯域(約20Hz~20kHz)の範囲内であった場合、音鳴りを生じる場合がある。
 そこで、上記のように、定常動作時モードX2におけるそれぞれの第二制御C2の前後において、第一制御C1でスイッチング素子22のON/OFF制御を繰り返す回数を変化させることで、第一制御C1と第二制御C2とを切り替える動作が特定の周波数での動作ではなくなる。したがって、第一制御C1と第二制御C2の切り替え動作に由来する磁歪によってトランスに生じる振動の強度が、複数の周波数成分に分散されるため、音鳴りが抑制される。
 〈2〉 図10は、制御部24がスイッチング素子22のON/OFF制御を実行している時の、制御信号G(t)、一次側電流I1、二次側電圧V2、及び二次側電流I2の時間変化を模式的に示す、図5とは別のタイミングチャートである。本実施形態のフライバック方式の点灯回路2a(図3参照)は、図10に示すように、意図的にOFF保持時間Tsを設けることで、スイッチング素子22をOFF状態からON状態に遷移させるタイミングを遅らせている。
 より詳細には、図10に示すように、回生動作中の一次側電流I1(回生電流)がゼロ値に達する時刻t2aよりも後の時刻t3において、制御部24は制御信号G(t)をLレベルからHレベルに変化させ、スイッチング素子22をOFF状態からON状態に遷移させている。
 これにより、単位時間内に、誘電体バリア放電ランプ10に対して高電圧(二次側電圧V2)が印加される頻度が低下するため、光Ry1の照度が低下する。そして、このOFF保持時間Tsが適宜調整されることで、光Ry1の照度を調整することが可能となる。つまり、マイクロ秒単位(1000μ秒以下)の短い点灯周期におけるOFF保持時間Tsが可変されることで、光Ry1の照度を調整することが可能となる。
 これは、誘電体バリア放電ランプ10から放射される光Ry1の光量を、秒単位のON/OFF制御に依存することなく調整できることにもなる。また、この方法によれば、スイッチング素子22のON/OFFの切替周波数が低下するため、スイッチング素子22における電力損失の問題も緩和される。
 〈3〉 上述した実施形態では、直流電源21の負極側端子と、トランス30の一次側巻線L1との間にスイッチング素子22が接続されている場合について説明したが、この極性は反転されていても構わない。すなわち、直流電源21の正極側端子と、トランス30の一次側巻線L1との間にスイッチング素子22が接続されていても構わない。ここで、スイッチング素子22がMOSFETで構成される場合、nチャネル型とするかpチャネル型とするかは、接続される直流電源21の極性に応じて適宜選択される。
    1    :  光源装置
    2,2a,2b,2c   :  点灯回路
    3,4    :電源線
    5    :  蓋部
    6    :  本体ケーシング部
    7    :  光取り出し面
   10    :  誘電体バリア放電ランプ
   11,12    :  電極
   11a,12a  :  接続部
   13    :  発光管
   21    :  直流電源
   22,22a,22b,22c,22d   :  スイッチング素子
   23    :  寄生ダイオード
   24    :  制御部
   25    :  平滑コンデンサ
   30    :  トランス
    C1   :  第一制御
    C2   :  第二制御
    G,G1,G2   :  制御信号
    I1,I1a,I1b   :  一次側電流
    I2   :  二次側電流
    L1   :  一次側巻線
    L1a,L1b  :  巻線
    L2   :  二次側巻線
   Ry1   :  光
    S1   :  基本制御信号
   Ts    :  OFF保持時間
    V1   :  一次側電圧
    V2   :  二次側電圧
    X1   :  始動時モード
    X2   :  定常動作時モード
    a1   :  第一端子
    a2   :  第二端子
    b1   :  第一電極端子
    b2   :  第二電極端子
    n1   :  第一ノード
    n2   :  第二ノード
 

Claims (12)

  1.  直流電源と、一次側巻線と二次側巻線とを有するトランスと、少なくとも一つのスイッチング素子とを含み、前記スイッチング素子のON状態とOFF状態とが切り替わることによって、前記直流電源から前記トランスの前記一次側巻線への電流の供給と停止とを切り替えて、又は前記一次側巻線を流れる電流の方向を変化させて、前記トランスの前記二次側巻線に起電力を発生させるように構成された点灯回路と、
     前記トランスの前記二次側巻線に接続される誘電体バリア放電ランプと、
     前記スイッチング素子のON/OFF制御を行う制御部とを備え、
     前記制御部は、
      始動時に、所定の周波数で前記スイッチング素子のON/OFF制御を繰り返すことで前記誘電体バリア放電ランプに対して所定の電圧を印加する始動時モードと、
      前記誘電体バリア放電ランプの始動後、前記所定の周波数で前記スイッチング素子のON/OFF制御を繰り返すことで前記誘電体バリア放電ランプに対して前記所定の電圧を印加する第一制御と、前記スイッチング素子のON/OFF制御の周期よりも長い期間にわたって、前記スイッチング素子をOFF状態で維持する第二制御とを交互に行う定常動作時モードとを実行することを特徴とする光源装置。
  2.  前記制御部が、前記定常動作時モードにおいて、前記第一制御と前記第二制御とを周期的に実行することを特徴とする請求項1に記載の光源装置。
  3.  前記制御部が、前記第一制御において前記スイッチング素子のON/OFF制御を繰り返す回数が、それぞれの前記第二制御の前後で異なるように前記定常動作時モードを実行することを特徴とする請求項1に記載の光源装置。
  4.  前記制御部が、前記第一制御の実行時間と直後の前記第二制御の実行時間との合計が、前記所定の周波数に対応する周期の4倍以上で、かつ、前記第二制御の実行時間が、100ms以下となるように前記定常動作時モードを実行することを特徴とする請求項1~3のいずれか一項に記載の光源装置。
  5.  前記点灯回路が、フライバック方式の回路であることを特徴とする請求項1~3のいずれか一項に記載の光源装置。
  6.  前記点灯回路が、プッシュプル方式の回路であることを特徴とする請求項1~3のいずれか一項に記載の光源装置。
  7.  前記点灯回路が、フルブリッジ方式の回路であることを特徴とする請求項1~3のいずれか一項に記載の光源装置。
  8.  前記スイッチング素子は、寄生ダイオードを備えていることを特徴とする請求項5に記載の光源装置。
  9.  前記制御部が、前記第一制御において、
     前記スイッチング素子をON状態からOFF状態に遷移させる第一ステップと、
     前記第一ステップの後、前記一次側巻線を流れる回生電流がゼロ値に達した時点から、所定のOFF保持時間の経過後に、前記スイッチング素子をOFF状態からON状態に遷移させる第二ステップとを実行することを特徴とする請求項8に記載の光源装置。
  10.  前記制御部が、前記第一制御において、
     前記スイッチング素子をON状態からOFF状態に遷移させる第一ステップと、
     前記第一ステップの後、前記一次側巻線を流れる回生電流がゼロ値に達する前、又はゼロ値に達すると同時に、前記スイッチング素子をOFF状態からON状態に遷移させる第二ステップとを実行することを特徴とする請求項8に記載の光源装置。
  11.  誘電体バリア放電ランプを点灯させるための点灯回路であって、
     直流電源と、
     一次側巻線と前記誘電体バリア放電ランプに接続される二次側巻線とを有するトランスと、
     前記直流電源と前記トランスの前記一次側巻線とに直列に接続され、ON状態とOFF状態とが切り替わることによって、前記直流電源から前記トランスの前記一次側巻線への電流の供給と停止とを切り替える、又は前記一次側巻線を流れる電流の方向を変化させる、少なくとも一つのスイッチング素子と、
     前記スイッチング素子のON/OFF制御を行う制御部とを備え、
     前記制御部は、
      始動時に、所定の周波数で前記スイッチング素子のON/OFF制御を繰り返すことで前記誘電体バリア放電ランプに対して所定の電圧を印加する始動時モードと、
      前記誘電体バリア放電ランプの始動後、前記所定の周波数で前記スイッチング素子のON/OFF制御を繰り返すことで前記誘電体バリア放電ランプに対して前記所定の電圧を印加する第一制御と、前記スイッチング素子のON/OFF制御の周期よりも長い期間にわたって、前記スイッチング素子をOFF状態で維持する第二制御とを交互に行う定常動作時モードとを実行することを特徴とする誘電体バリア放電ランプの点灯回路。
  12.  点灯回路を用いた誘電体バリア放電ランプの点灯方法であって、
     前記点灯回路は、
      直流電源と、
      一次側巻線と前記誘電体バリア放電ランプに接続された二次側巻線とを有するトランスと、
      少なくとも一つのスイッチング素子とを備え、
      前記スイッチング素子のON状態とOFF状態とが切り替わることによって、前記直流電源から前記トランスの前記一次側巻線への電流の供給と停止とを切り替えて、又は前記一次側巻線に供給される電流の方向の変化を生じさせて、前記トランスの前記二次側巻線に起電力を発生させるように構成されており、
     始動時に、所定の周波数で前記スイッチング素子のON/OFF切替を繰り返すことで前記誘電体バリア放電ランプに対して所定の電圧を印加する第一ステップと、
     前記第一ステップの実行後、前記誘電体バリア放電ランプの点灯状態を維持するために、前記第一ステップと同様に、所定の周波数で前記スイッチング素子のON/OFF切替を繰り返すことと、前記第一ステップにおける前記スイッチング素子のON/OFF切替の周期よりも長い期間にわたって、前記スイッチング素子をOFF状態で維持することとを交互に行う第二ステップとを含むことを特徴とする誘電体バリア放電ランプの点灯方法。
     
PCT/JP2022/010544 2021-07-12 2022-03-10 光源装置、誘電体バリア放電ランプの点灯回路、誘電体バリア放電ランプの点灯方法 WO2023286344A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280041884.8A CN117480864A (zh) 2021-07-12 2022-03-10 光源装置、电介质阻挡放电灯的点亮电路、电介质阻挡放电灯的点亮方法
US18/577,556 US20240244724A1 (en) 2021-07-12 2022-03-10 Light source device, dielectric barrier discharge lamp lighting circuit, and dielectric barrier discharge lamp lighting method
KR1020237044090A KR20240013161A (ko) 2021-07-12 2022-03-10 광원 장치, 유전체 배리어 방전 램프의 점등 회로, 유전체 배리어 방전 램프의 점등 방법
EP22841694.7A EP4373213A1 (en) 2021-07-12 2022-03-10 Light source device, dielectric barrier discharge lamp lighting circuit, and dielectric barrier discharge lamp lighting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-114799 2021-07-12
JP2021114799A JP2023011144A (ja) 2021-07-12 2021-07-12 光源装置、誘電体バリア放電ランプの点灯回路、誘電体バリア放電ランプの点灯方法

Publications (1)

Publication Number Publication Date
WO2023286344A1 true WO2023286344A1 (ja) 2023-01-19

Family

ID=84919199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010544 WO2023286344A1 (ja) 2021-07-12 2022-03-10 光源装置、誘電体バリア放電ランプの点灯回路、誘電体バリア放電ランプの点灯方法

Country Status (6)

Country Link
US (1) US20240244724A1 (ja)
EP (1) EP4373213A1 (ja)
JP (1) JP2023011144A (ja)
KR (1) KR20240013161A (ja)
CN (1) CN117480864A (ja)
WO (1) WO2023286344A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223384A (ja) 1997-02-05 1998-08-21 Ushio Inc 放電ランプ点灯装置
JP2002051548A (ja) * 2000-07-31 2002-02-15 Matsushita Electric Works Ltd 電源装置および放電灯点灯装置
JP2002216988A (ja) * 2001-01-12 2002-08-02 Matsushita Electric Works Ltd 放電灯点灯装置
JP2002367792A (ja) * 2001-06-04 2002-12-20 Harison Toshiba Lighting Corp 放電ランプ点灯装置および機器
JP2011029002A (ja) * 2009-07-24 2011-02-10 Panasonic Electric Works Co Ltd 高圧放電灯点灯装置及びこれを用いた照明器具、照明システム
JP2020092968A (ja) 2018-12-14 2020-06-18 ウシオ電機株式会社 紫外線照射装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH688319A5 (fr) 1994-06-03 1997-07-31 Marcham Trading & Investment L Procédé pour la préparation du céfixime trihydraté.
US11212860B2 (en) 2017-11-29 2021-12-28 Qualcomm Incorporated Determining beam candidates for transmitting beam failure recovery signal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223384A (ja) 1997-02-05 1998-08-21 Ushio Inc 放電ランプ点灯装置
JP2002051548A (ja) * 2000-07-31 2002-02-15 Matsushita Electric Works Ltd 電源装置および放電灯点灯装置
JP2002216988A (ja) * 2001-01-12 2002-08-02 Matsushita Electric Works Ltd 放電灯点灯装置
JP2002367792A (ja) * 2001-06-04 2002-12-20 Harison Toshiba Lighting Corp 放電ランプ点灯装置および機器
JP2011029002A (ja) * 2009-07-24 2011-02-10 Panasonic Electric Works Co Ltd 高圧放電灯点灯装置及びこれを用いた照明器具、照明システム
JP2020092968A (ja) 2018-12-14 2020-06-18 ウシオ電機株式会社 紫外線照射装置

Also Published As

Publication number Publication date
KR20240013161A (ko) 2024-01-30
EP4373213A1 (en) 2024-05-22
JP2023011144A (ja) 2023-01-24
US20240244724A1 (en) 2024-07-18
CN117480864A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
JP4720828B2 (ja) 無電極放電ランプ用調光自在電子安定器及び照明器具
US6445137B1 (en) Dielectric barrier discharge lamp apparatus
JP2009520318A (ja) 減光安定器および方法
JPH1097898A (ja) 誘電体バリア放電装置
US6570347B2 (en) Gas-discharge lamp having brightness control
JP4853638B2 (ja) 高圧放電灯点灯装置
JP5024544B2 (ja) 高圧放電灯点灯装置及び光源装置
WO2023286344A1 (ja) 光源装置、誘電体バリア放電ランプの点灯回路、誘電体バリア放電ランプの点灯方法
JP2010198860A (ja) 放電灯点灯回路
JP2008226490A (ja) 高輝度放電灯点灯回路
WO2022102318A1 (ja) 光源装置、誘電体バリア放電ランプの点灯回路、誘電体バリア放電ランプの点灯方法
JP2007273439A (ja) 高圧放電灯点灯装置及び始動方法
KR20010047855A (ko) 전원 출력 제어 장치 및 그를 이용한 펄스형 레이저 전원장치
JP2002352971A (ja) 放電灯点灯装置
JP2023069106A (ja) 光源装置、エキシマランプの点灯回路、エキシマランプの点灯方法
EP1164820A1 (en) Dielectric barrier discharge lamp apparatus
JP7397417B2 (ja) 光源装置、および殺菌脱臭装置
JP2010135276A (ja) 放電灯点灯回路
JP2002352990A (ja) 放電灯点灯装置
JP2011502334A5 (ja)
JP2003133092A (ja) 放電灯点灯装置
US20130020954A1 (en) Discharge lamp system and controlling method of the same
JP3291853B2 (ja) 放電灯点灯装置
WO2004110110A1 (ja) 放電ランプ点灯装置
JP2004192869A (ja) 放電灯点灯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841694

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280041884.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237044090

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237044090

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18577556

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022841694

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022841694

Country of ref document: EP

Effective date: 20240212