WO2023286288A1 - ダイヤモンド被覆工具の先鋭化方法、プラズマ表面処理装置、およびダイヤモンド被覆工具 - Google Patents

ダイヤモンド被覆工具の先鋭化方法、プラズマ表面処理装置、およびダイヤモンド被覆工具 Download PDF

Info

Publication number
WO2023286288A1
WO2023286288A1 PCT/JP2021/039123 JP2021039123W WO2023286288A1 WO 2023286288 A1 WO2023286288 A1 WO 2023286288A1 JP 2021039123 W JP2021039123 W JP 2021039123W WO 2023286288 A1 WO2023286288 A1 WO 2023286288A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
sharpening
plasma
less
reaction gas
Prior art date
Application number
PCT/JP2021/039123
Other languages
English (en)
French (fr)
Inventor
アレクセイ レミュノフ
将哉 根波
Original Assignee
新明和工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新明和工業株式会社 filed Critical 新明和工業株式会社
Publication of WO2023286288A1 publication Critical patent/WO2023286288A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00

Definitions

  • the present invention relates to a method for sharpening a diamond-coated tool, a plasma surface treatment apparatus for executing the method for sharpening a diamond-coated tool, and a diamond-coated tool.
  • Patent Literature 1 discloses a method of manufacturing a cutting tool having a plurality of cutting edges by grinding a workpiece obtained by diamond-coating a cemented carbide tool base material with a pulse laser. According to Patent Document 1, such a method is supposed to enable the production of sharp cutting edge tips at low cost.
  • a method for sharpening a diamond-coated tool according to the present invention is a method for sharpening the cutting edge of a cutting tool having at least a diamond coating formed on the cutting edge, wherein plasma of a reactive gas is generated in a chamber containing the cutting tool. and applying a bias voltage to the cutting tool that attracts the plasma.
  • the reaction gas contains argon gas and oxygen gas.
  • the volume % of the argon gas in the reaction gas is 95% or more and 99% or less, and the volume % of the oxygen gas in the reaction gas is 1% or more and 5% or less.
  • the reaction gas may contain argon gas and dry air.
  • the volume % of the argon gas in the reaction gas may be 75% or more and 95% or less, and the volume % of the dry air in the reaction gas may be 5% or more and 25% or less.
  • Diamond is eroded more quickly by plasma generated from oxygen in the reactant gas. This promotes sharpening of the diamond-coated tool. Since dry air also contains oxygen, a similar effect can be obtained.
  • the plasma may be generated by energizing the filament, generating magnetic flux in the coil, applying voltage to the cathode electrode, and discharging the reaction gas.
  • the current applied to the filament is 100A or more and 130A or less.
  • the voltage applied to the cathode electrode is preferably 30 V or more and 50 V or less.
  • the pressure of the reaction gas within the chamber may be 0.1 Pa or more and 2 Pa or less.
  • the absolute value of the bias voltage may be 100V or more and 600V or less.
  • the diamond coating has a thickness of 3 ⁇ m or more and 20 ⁇ m or less.
  • the thicker the diamond coating the duller the edge of the cutting tool. Therefore, it takes time to sharpen the cutting edge.
  • the thickness of the diamond coating is thin, sharpening tends to cause portions where the diamond coating is removed. As a result, the base material of the cutting tool is likely to be exposed. Therefore, the thickness of the diamond coating is preferably 3 ⁇ m or more and 20 ⁇ m or less.
  • the method for sharpening a diamond-coated tool includes holding a plurality of the cutting tools and rotating them around a predetermined revolution axis, while rotating the plurality of cutting tools around the rotation axis. It may further comprise rotating.
  • the average distance to the plasma source over the processing time can be made uniform among the multiple cutting tools.
  • the average distance from the plasma source over the processing time can be made uniform among the circumferential positions of each cutting tool.
  • the degree of sharpening of the cutting edge can be made uniform between the plurality of cutting tools and between the positions of the cutting tools in the circumferential direction.
  • a plasma surface treatment apparatus comprises a chamber capable of accommodating the cutting tool, a gas inlet for supplying a reaction gas into the chamber, a plasma generator for generating plasma of the reaction gas, and the cutting tool.
  • a bias power supply that applies a bias voltage, and a controller that controls at least the plasma generator and the bias power supply to perform any one of the sharpening methods described above may be provided. According to the plasma surface treatment apparatus, it is possible to easily sharpen the cutting edges of diamond-coated tools of various shapes.
  • the diamond-coated tool according to the present invention may be manufactured by a method including any one of the sharpening methods described above.
  • Such a diamond-coated tool has both good durability and sharpness. Therefore, cutting of the workpiece can be efficiently advanced, and the frequency of tool replacement or maintenance is low.
  • FIG. 4 is a schematic diagram of a cutting edge of a diamond-coated ball end mill; It is a schematic diagram showing an example of a structure of a plasma surface treatment apparatus.
  • 2 is an electron micrograph of the tip of end mill A before plasma treatment, magnified 500 times.
  • 3 is an electron micrograph of the tip of end mill A before plasma treatment, magnified 3000 times.
  • 4 is an electron micrograph of the tip of the end mill A of Example 1 magnified 500 times.
  • 2 is an electron micrograph of the tip of the end mill A of Example 1 magnified 3000 times.
  • 4 is an electron micrograph of the tip of the end mill A of Comparative Example 1 magnified 500 times. It is an electron micrograph in which the tip of the end mill B before plasma treatment is magnified 500 times.
  • 3 is an electron micrograph of the tip of end mill B before plasma treatment, magnified 3000 times.
  • 4 is an electron micrograph of the tip of the end mill B of Example 2, magnified 500 times.
  • 4 is an electron micrograph of the tip of the end mill B of Example 2, magnified 3000 times.
  • 4 is an electron micrograph of the tip of the end mill B of Comparative Example 2 magnified 500 times.
  • It is an electron micrograph of the tip of the end mill C before plasma treatment, magnified 250 times.
  • 3 is an electron micrograph of the tip of the end mill C of Example 3, magnified 250 times.
  • 10 is an electron micrograph of the tip of the end mill C of Comparative Example 3 magnified 250 times.
  • the cutting tool used in this embodiment is a diamond-coated metal cutting tool.
  • the type of cutting tool used as the base material is not particularly limited.
  • the cutting tools may be, for example, end mills, drills, indexable inserts, and the like.
  • the material of the base material of the cutting tool may be, for example, high-speed steel, cemented carbide, or the like.
  • the material of the base material of the cutting tool is also not particularly limited. Cemented carbide ball end mills with tip radii of 0.2 mm, 0.5 mm and 1 mm were used in Examples and Comparative Examples described later.
  • the hot filament CVD method was used for the diamond coating on the ball end mill.
  • the method of forming the diamond coating is not particularly limited as long as a diamond coating having a suitable thickness can be formed.
  • the thickness of the diamond coating is preferably between 3 ⁇ m and 20 ⁇ m. More preferably, the thickness of the diamond coating is between 8 ⁇ m and 20 ⁇ m.
  • the method of forming the diamond coating may be, for example, a microwave plasma CVD method or the like.
  • Fig. 1 is a schematic diagram of the cutting edge of a diamond-coated ball end mill.
  • a cutting edge 2 of a ball end mill 1 which is a base material, has a rake face 3 and a flank face 4, and a sharp cutting edge 5 is formed.
  • the diamond coating 6 is formed on the cutting edge 2 of the ball end mill 1, the cutting edge 5 is dulled as shown in FIG.
  • the blade edge 5 thus dulled can be sharpened like the outline 7 of the blade portion 2 after the sharpening treatment. Since diamond is very hard, forming a diamond coating improves the durability of the cutting tool. However, by forming a diamond coating, the cutting edge of the cutting tool becomes rounded and the sharpness of the cutting tool deteriorates. Therefore, it is effective to sharpen the cutting edge of the cutting tool after forming the diamond coating.
  • FIG. 2 is a schematic diagram showing an example of the configuration of the plasma surface treatment apparatus 10. As shown in FIG. In this embodiment, for example, such a plasma surface treatment apparatus 10 sharpens the cutting edge of a diamond-coated tool (represented by reference numeral 1A).
  • a plasma surface treatment apparatus 10 shown in FIG. 2 is a plasma surface treatment apparatus using an arc discharge hot filament method. As shown in FIG. 2, the plasma surface treatment apparatus 10 includes a chamber 11, a vacuum pump 12, a filament 13, a filament power supply 14, a hollow cathode electrode 15, an arc discharge power supply 16, a coil 17, and a gas inlet. It has a port 18 , a rotary table 19 and a bias power supply 20 .
  • a plurality of holders 21 each holding one diamond-coated tool 1A are provided on the rotary table 19 .
  • the chamber 11 is a closed furnace body. Inside the chamber 11, a diamond-coated tool 1A is accommodated. The chamber 11 is configured to be highly airtight so that the inside can be decompressed by the vacuum pump 12 .
  • a filament power supply 14 is connected to the filament 13 .
  • the filament 13 generates heat when energized by the filament power source 14 .
  • the hollow cathode electrode 15 is an annular cathode.
  • a negative electrode of an arc discharge power supply 16 is connected to the hollow cathode electrode 15 .
  • magnetic flux is generated by the coil 17 and a voltage is applied to the hollow cathode electrode 15 to generate a glow discharge of the reaction gas and generate plasma of the reaction gas.
  • a reaction gas is supplied into the chamber 11 from the gas inlet 18 and turned into plasma inside the annular hollow cathode electrode 15 .
  • the current applied to the filament 13 is 100 A or more and 130 A or less. More preferably, the current applied to the filament 13 is 100A or more and 120A or less.
  • the voltage applied to the hollow cathode electrode 15 is preferably 30 V or more and 50 V or less.
  • the filament 13 , hollow cathode electrode 15 , and coil 17 are provided within the chamber 11 between the gas inlet 18 and the rotary table 19 .
  • a bias power supply 20 applies a bias voltage to the rotary table 19 that attracts the plasma. Thereby, a bias voltage is applied to the diamond-coated tool 1A through the rotary table 19 and the holder 21.
  • the bias voltage here is a negative voltage.
  • the absolute value of the bias voltage is preferably 100V or more and 600V or less.
  • the bias voltage is represented by an absolute value, and the sign is omitted (the same applies to Table 1).
  • the bias voltage is more preferably 200 V or more and 500 V or less, and even more preferably 200 V or more and 400 V or less.
  • the reaction gas here includes argon gas and oxygen gas.
  • the volume percentage of argon gas in the reaction gas is preferably 95% or more and 99% or less, and the volume percentage of oxygen gas in the reaction gas is preferably 1% or more and 5% or less.
  • the main gas of the reaction gas is argon gas.
  • Oxygen gas is an additive gas that is added in small amounts.
  • the reaction gas may consist of argon gas and oxygen gas, or may be added with a small amount of other gas.
  • a preferable pressure of the reaction gas in the chamber 11 is 0.1 Pa or more and 2 Pa or less. More preferably, the pressure of the reaction gas inside the chamber 11 is 0.2 Pa or more and 0.5 Pa or less.
  • Diamonds erode more quickly due to the reaction with the plasma generated from the oxygen in the reaction gas.
  • the sharpening of the diamond-coated tool 1A is promoted by containing oxygen in the reaction gas.
  • the amount of oxygen in the reaction gas is preferably small, specifically, 1% by volume or more and 5% by volume or less.
  • the primary gas is preferably a noble gas, but is not limited to argon. However, since argon is readily available and inexpensive, it is suitable as a main reaction gas.
  • the reaction gas may contain argon gas and dry air.
  • the volume percentage of argon gas in the reaction gas is preferably 75% or more and 95% or less, and the volume percentage of dry air in the reaction gas is preferably 5% or more and 25% or less.
  • About 20% of dry air consists of oxygen. Therefore, oxygen gas can be substituted by dry air in an amount about five times that of oxygen gas.
  • the reaction gas may be composed of argon gas and dry air, or may be added with a small amount of other gas.
  • the rotary table 19 is configured to rotate around a predetermined rotation axis (hereinafter also referred to as the revolution axis 19a).
  • the revolution axis 19a a predetermined rotation axis
  • the plurality of diamond-coated tools 1A on the rotary table 19 also rotate around the revolution axis 19a.
  • each diamond-coated tool 1A periodically approaches or moves away from the plasma generation source (filament 13, hollow cathode electrode 15, coil 17).
  • the average distance to the plasma generation source can be made uniform throughout the processing time among the plurality of diamond-coated tools 1A.
  • a plurality of holders 21 on the rotary table 19 rotate the diamond-coated tools 1A held thereon around predetermined rotation axes (hereinafter also referred to as rotation axes 21a).
  • rotation axes 21a predetermined rotation axes
  • the rotary table 19 and the plurality of holders 21 thereby make the degree of sharpening of the cutting edge uniform between the plurality of diamond-coated tools 1A and between the positions in the circumferential direction of each diamond-coated tool 1A.
  • the holder 21 is configured to cover a part of the diamond-coated tool 1A other than the cutting edge when the diamond-coated tool 1A is attached. A portion of the diamond-coated tool 1A covered by the holder 21 is not exposed to the plasma of the reaction gas. This suppresses changes in the thickness and shape of the diamond-coated tool 1A at locations unrelated to the sharpness of the diamond-coated tool 1A.
  • the cutting edge of the diamond-coated tool 1A is sharpened by the following procedure.
  • sharpening the cutting edge of the diamond-coated tool 1A first, the diamond-coated tool 1A is mounted on the holder 21 .
  • the chamber 11 is sealed and the pressure inside the chamber 11 is reduced by the vacuum pump 12 .
  • the inside of the chamber 11 is brought into a substantially vacuum state.
  • a reaction gas is then introduced into the chamber 11 .
  • the amount of reactant gas introduced is measured by measuring the pressure inside the chamber 11 .
  • the reaction gas is turned into plasma within the chamber 11 by the filament 13, the hollow cathode electrode 15, the coil 17, and the like. A plasma of the reaction gas is thereby generated.
  • the bias power supply 20 applies a bias voltage that attracts ions in the plasma to the diamond-coated tool 1A.
  • ions in the plasma are attracted to the diamond-coated tool 1A and collide with the diamond-coated tool 1A.
  • the rotary table 19 is rotated around the revolution axis 19a, and each diamond-coated tool 1A is rotated around the rotation axis 21a of the holder 21. As shown in FIG. The diamond-coated tool 1A thereby rotates around the rotation axis 21a while rotating around the revolution axis 19a.
  • Process conditions common to all examples and comparative examples are as follows.
  • Equipment used Plasma processing equipment PIN410 manufactured by Shin Maywa Industries, Ltd. Pressure in chamber before introduction of reaction gas: 0.003 Pa
  • Components of reaction gas argon gas 95% by volume, dry air 5% by volume
  • Reaction gas pressure 0.3 Pa
  • Filament current 100A
  • Hollow cathode electrode applied voltage 40V
  • Bias voltage 200V
  • Rotational speed around the revolution axis 2 rpm
  • Rotation speed around rotation axis 10.5 rpm
  • Table 1 shows process conditions, including conditions that differ depending on the example or comparative example.
  • Example 1 A ball end mill made of cemented carbide with a tip radius of 0.5 mm was coated with coarse-grained diamond (average particle diameter of 2 ⁇ m or more) to a thickness of 10 ⁇ m (hereinafter referred to as end mill A).
  • the plasma treatment conditions are as described above.
  • the treatment time was 4 hours.
  • FIG. 3A is an electron micrograph of the tip of the end mill A before plasma treatment, magnified 500 times. As shown in FIG. 3A, the cutting edge of end mill A is rounded by forming a diamond coating.
  • FIG. 3B is an electron micrograph of the tip of the end mill A before plasma treatment, magnified 3000 times. As shown in FIG. 3B, when enlarged, it can be seen that coarse diamond crystals are deposited on the surface of the end mill A.
  • FIG. 3C is an electron micrograph of the tip of the end mill A of Example 1 magnified 500 times.
  • 3D is an electron micrograph of the tip of the end mill A of Example 1, magnified 3000 times.
  • the cutting edge of the end mill A plasma-treated under the conditions of Example 1 is sharper than before the plasma treatment.
  • the cutting edge of end mill A is thinner and sharper than before plasma treatment.
  • the surface of the cutting edge of the end mill A, which was plasma-treated under the conditions of Example 1 was smoothed by grinding the edges of the diamond crystals. Measurements showed that the plasma treatment reduced the thickness of the diamond coating on the cutting edge at a rate of about 0.8 ⁇ m/h.
  • FIG. 3E is an electron micrograph of the tip of the end mill A of Comparative Example 1 magnified 500 times. As shown in FIG. 3E, when the treatment time was 2 hours, the cutting edge was less sharpened than in Example 1.
  • the diamond coating was removed from the sample subjected to the plasma treatment for 6 hours, and the base material of the cemented carbide was exposed. spot was found.
  • Example 2 A ball end mill made of cemented carbide with a tip radius of 0.2 mm was coated with fine diamond particles (average particle diameter of 500 nm or less) to a thickness of 10 ⁇ m (hereinafter referred to as end mill B).
  • the plasma treatment conditions are as described above.
  • the treatment time was 4 hours.
  • FIG. 4A is an electron micrograph of the tip of the end mill B before plasma treatment, magnified 500 times. As shown in FIG. 4A, the cutting edge of end mill B is rounded by forming a diamond coating.
  • FIG. 4B is an electron micrograph of the tip of the end mill A before plasma treatment, magnified 3000 times. As shown in FIG. 4B, the diamond crystals deposited on the surface of the end mill B are finer than those of the end mill A.
  • FIG. 4C is an electron micrograph of the tip of the end mill B of Example 2 magnified 500 times.
  • FIG. 4D is an electron micrograph of the tip of the end mill B of Example 2 magnified 3000 times.
  • the edge of the end mill B plasma-treated under the conditions of Example 2 is sharper than before the plasma treatment.
  • the cutting edge of end mill A is sharper than before plasma treatment.
  • FIG. 4E is an electron micrograph of the tip of the end mill B of Comparative Example 2 magnified 500 times. As shown in FIG. 4E, when the treatment time was 2 hours, the cutting edge was less sharpened than in Example 2. In the end mill B, it was also found that the diamond coating was removed and the base material of the cemented carbide was exposed in the sample subjected to the plasma treatment for 6 hours.
  • Example 3 A ball end mill made of cemented carbide with a tip radius of 1.0 mm was coated with fine diamond particles (average particle diameter of 500 nm or less) to a thickness of 18 ⁇ m (hereinafter referred to as end mill C).
  • the plasma treatment conditions are as described above.
  • the treatment time was 8 hours.
  • FIG. 5A is an electron micrograph of the tip of the end mill C before plasma treatment, magnified 250 times. As shown in FIG. 5A, the cutting edge of end mill C is rounded by forming a diamond coating.
  • FIG. 5B is an electron micrograph of the tip of the end mill C of Example 3, magnified 250 times. As shown in FIG. 5B, the cutting edge of the end mill C plasma-treated under the conditions of Example 3 is sharper than before the plasma treatment.
  • FIG. 5C is an electron micrograph of the tip of the end mill C of Comparative Example 3 magnified 250 times. As shown in FIG. 5C, when the treatment time was 4 hours, the cutting edge was less sharpened than in Example 3. In the end mill C, it was found that the diamond coating was removed and the base material of the cemented carbide was exposed in the sample after the plasma treatment for 10 hours.
  • the method for sharpening a diamond-coated tool according to the above-described embodiment is a method for sharpening the cutting edge of a cutting tool having at least a diamond coating formed on the cutting edge, wherein plasma of a reaction gas is generated in a chamber containing the cutting tool. and applying a bias voltage to the cutting tool that attracts the plasma.
  • the cutting edges of the diamond-coated tools were sharpened in all the examples and comparative examples. This is because the ions in the reactive gas plasma collide intensively with the cutting edge of the cutting tool.
  • the reaction gas preferably contains argon gas and oxygen gas, or contains argon gas and dry air.
  • the volume percentage of argon gas in the reaction gas is preferably 95% or more and 99% or less, and the volume percentage of oxygen gas in the reaction gas is preferably 1% or more and 5% or less.
  • the volume percentage of argon gas in the reaction gas is preferably 75% or more and 95% or less, and the volume percentage of dry air in the reaction gas is preferably 5% or more and 25% or less.
  • the current applied to the filament is preferably 100 A or more and 130 A or less. Moreover, it is preferable that the voltage applied to the hollow cathode electrode is 30 V or more and 50 V or less. If the current flowing through the filament is too low, arc discharge is unlikely to occur. If the current flowing through the filament is too high, it shortens the life of the filament. Therefore, the current value within the range described above is preferable. Also, if the voltage applied to the hollow cathode electrode is too low, plasma will be difficult to generate. If the voltage applied to the hollow cathode electrode is too high, the discharge becomes unstable. Therefore, voltages in the ranges described above are preferred. Compared to other methods, the arc discharge hot filament type plasma surface treatment apparatus has the advantage of being relatively inexpensive in equipment costs including incidental equipment and running costs, and being able to be equipped with a large-capacity chamber. be.
  • the pressure of the reaction gas is preferably 0.1 Pa or more and 2 Pa or less. If the pressure of the reactive gas is too low, the sharpening speed of the cutting edge is slow because the amount of plasma is small. If the pressure of the reaction gas is too high, the amount of the reaction gas that does not contribute to the sharpening of the cutting edge increases, increasing the consumption of the reaction gas. Therefore, the reaction gas pressure within the range described above is preferable.
  • the bias voltage is preferably 100V or more and 600V or less. If the bias voltage is too low, it is difficult for ions in the plasma to collide with the cutting edge, which makes it difficult to sharpen the cutting edge. If the bias voltage is too high, the cutting tool will heat up. Also, sparks are more likely to occur. Therefore, the bias voltage in the range described above is preferable.
  • the thickness of the diamond coating is preferably 3 ⁇ m or more and 20 ⁇ m or less. The thicker the diamond coating, the duller the edge of the cutting tool. Therefore, it takes time to sharpen the cutting edge. On the other hand, when the thickness of the diamond coating is thin, sharpening tends to expose the base material of the cutting tool. Therefore, the thickness of the diamond coating is preferably within the above range.
  • the sharpening treatment time is preferable depending on the thickness of the diamond coating.
  • the sharpening treatment time is preferably 2 hours or more and less than 6 hours (for example, 5 hours or less).
  • the sharpening treatment time is preferably 6 hours or more and less than 10 hours (for example, 9 hours or less). Since the plasma treatment reduces the thickness of the diamond coating on the cutting edge at a rate of about 0.8 ⁇ m/h, the treatment time during which the base material of the cutting tool is not exposed can be calculated according to the thickness of the diamond coating. can.
  • the average grain size of the diamond coating suitable sharpening results were obtained for both coarse grain diamond (average grain size 2 ⁇ m or more) and fine grain diamond (average grain size 500 nm or less). Since favorable results were obtained regardless of the particle size of the diamond coating, it is considered that the average particle size of the diamond coating is preferably 100 nm or more and 5 ⁇ m or less.
  • the process conditions for sharpening the cutting edge of the diamond-coated tool described above are merely a preferred example, and are not limited to these. Also, the type and material of the cutting tool, which is the base material, and the form of the diamond coating, such as its thickness, the grain size of the diamond crystals, and the method of forming the coating, are not particularly limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明に係るダイヤモンド被覆工具の先鋭化方法は、少なくとも刃先にダイヤモンド被覆が形成された切削工具1Aの刃先を先鋭化する方法であって、切削工具1Aが収容されたチャンバ11内で反応ガスのプラズマを生成することと、プラズマを引き付けるバイアス電圧を切削工具1Aに印加することと、を含む。

Description

ダイヤモンド被覆工具の先鋭化方法、プラズマ表面処理装置、およびダイヤモンド被覆工具
 本発明は、ダイヤモンド被覆工具の先鋭化方法、ダイヤモンド被覆工具の先鋭化方法を実行するプラズマ表面処理装置、および、ダイヤモンド被覆工具に関する。
 切削工具にダイヤモンド被覆を形成する技術、および、ダイヤモンド被覆が形成された切削工具の刃先を先鋭化する技術が従来から知られている。ダイヤモンド被覆により、切削工具の耐久性は向上する。一方で、切削工具にダイヤモンド被覆を形成すると、切削工具の刃先が鈍化する。そのため、ダイヤモンド被覆が形成された切削工具の刃先の先鋭化が行われることがある。例えば特許文献1には、超硬合金の工具母材をダイヤモンドコーティングした被加工部材をパルスレーザーで研削して、複数の切れ刃が並ぶ切削工具を製造する方法が開示されている。特許文献1によれば、かかる方法により、鋭利な切れ刃先端を低コストで生産できる、とされている。
国際公開第2020/174528号
 特許文献1に記載された先鋭化方法では、切削工具が複雑な形状を有する場合、先鋭化したい刃先の全てにレーザーを照射して研削することは難しい。
 本発明はかかる点に鑑みてなされたものであり、その目的は、様々な形状のダイヤモンド被覆工具に対して容易に刃先を先鋭化できる方法を提供することである。また、そのような方法でダイヤモンド被覆工具の先鋭化を行うプラズマ表面処理装置、および、そのような方法を含む方法で製造されたダイヤモンド被覆工具を提供することである。
 本発明に係るダイヤモンド被覆工具の先鋭化方法は、少なくとも刃先にダイヤモンド被覆が形成された切削工具の前記刃先を先鋭化する方法であって、前記切削工具が収容されたチャンバ内で反応ガスのプラズマを生成することと、前記プラズマを引き付けるバイアス電圧を前記切削工具に印加することと、を含む。
 プラズマ雰囲気で被加工物にバイアス電圧を印加すると、被加工物の先端部に集中的にプラズマ中のイオンが衝突し、先端部の表面が削られることが知られている。ここでは、反応ガスのプラズマ中のイオンが、ダイヤモンド被覆工具の刃先に集中的に衝突する。これにより、ダイヤモンド被覆工具の刃先が先鋭化される。そのため、上記方法によれば、複雑な形状を含む種々の形状のダイヤモンド被覆工具の刃先を容易に先鋭化することができる。
 本発明の好ましい一態様によれば、前記反応ガスは、アルゴンガスと酸素ガスとを含む。前記反応ガス中の前記アルゴンガスの体積%は、95%以上99%以下であり、前記反応ガス中の前記酸素ガスの体積%は、1%以上5%以下である。本発明の他の好ましい一態様によれば、前記反応ガスは、アルゴンガスとドライエアとを含んでいてもよい。前記反応ガス中の前記アルゴンガスの体積%は、75%以上95%以下であってもよく、前記反応ガス中の前記ドライエアの体積%は、5%以上25%以下であってもよい。ダイヤモンドは、反応ガス中の酸素から生成されたプラズマにより、より迅速に侵食される。これによって、ダイヤモンド被覆工具の先鋭化が促進される。ドライエアにも酸素が含まれるため、同様の効果を奏する。
 本発明の好ましい一態様によれば、前記プラズマは、フィラメントに通電するとともに、コイルに磁束を発生させ、カソード電極に電圧を印加して、前記反応ガスを放電させることによって生成されてもよい。好ましくは、前記フィラメントに流す電流は、100A以上130A以下である。前記カソード電極に印加する電圧は、好ましくは、30V以上50V以下である。
 本発明の好ましい一態様によれば、前記チャンバ内における前記反応ガスの圧力は、0.1Pa以上2Pa以下であってもよい。本発明の好ましい一態様によれば、前記バイアス電圧の絶対値は、100V以上600V以下であってもよい。
 本発明の好ましい一態様によれば、ダイヤモンド被覆の厚さは、3μm以上20μm以下である。ダイヤモンド被覆の厚さが厚いほど、切削工具の刃先は鈍化する。そのため、刃先の先鋭化に時間を要する。一方、ダイヤモンド被覆の厚さが薄いと、先鋭化によってダイヤモンド被覆が除去される箇所が生じやすくなる。その結果、切削工具の母材が露出しやすくなる。そのため、ダイヤモンド被覆の厚さは、3μm以上20μm以下が好ましい。
 本発明のうちの好ましい一態様によれば、ダイヤモンド被覆工具の先鋭化方法は、前記切削工具を複数保持して所定の公転軸周りに回転させながら、前記複数の切削工具をそれぞれ自転軸周りに回転させることをさらに含んでいてもよい。複数の切削工具を公転軸周りに回転させることにより、処理時間を通してのプラズマ発生源との平均距離を、複数の切削工具の間で均一化できる。さらに、各切削工具を自転軸周りに回転させることにより、処理時間を通してのプラズマ発生源との平均距離を、各切削工具の周方向の位置の間で均一化できる。これにより、複数の切削工具の間、および、各切削工具の周方向の位置の間で、刃先先鋭化の程度を均一化することができる。
 本発明に係るプラズマ表面処理装置は、前記切削工具を収容可能なチャンバと、反応ガスを前記チャンバ内に供給するガス導入口と、反応ガスのプラズマを生成するプラズマ発生装置と、前記切削工具にバイアス電圧を印加するバイアス電源と、少なくとも前記プラズマ発生装置および前記バイアス電源を制御して、上記した先鋭化方法のいずれか一つを実行させる制御装置と、を備えていてもよい。上記プラズマ表面処理装置によれば、様々な形状のダイヤモンド被覆工具に対して容易に刃先を先鋭化できる。
 本発明に係るダイヤモンド被覆工具は、上記した先鋭化方法のいずれか一つを含む方法によって製造されてもよい。かかるダイヤモンド被覆工具は、耐久性と切れ味とがともに良好である。そのため、被切削物の切削を効率良く進めることができるとともに、工具の交換またはメンテナンスの頻度が低い。
 本発明に係るダイヤモンド被覆工具の先鋭化方法によれば、様々な形状のダイヤモンド被覆工具に対して容易に刃先を先鋭化できる。
ダイヤモンド被覆ボールエンドミルの刃先の模式図である。 プラズマ表面処理装置の構成の一例を表す模式図である。 プラズマ処理前のエンドミルAの先端を500倍に拡大した電子顕微鏡写真である。 プラズマ処理前のエンドミルAの先端を3000倍に拡大した電子顕微鏡写真である。 実施例1のエンドミルAの先端を500倍に拡大した電子顕微鏡写真である。 実施例1のエンドミルAの先端を3000倍に拡大した電子顕微鏡写真である。 比較例1のエンドミルAの先端を500倍に拡大した電子顕微鏡写真である。 プラズマ処理前のエンドミルBの先端を500倍に拡大した電子顕微鏡写真である。 プラズマ処理前のエンドミルBの先端を3000倍に拡大した電子顕微鏡写真である。 実施例2のエンドミルBの先端を500倍に拡大した電子顕微鏡写真である。 実施例2のエンドミルBの先端を3000倍に拡大した電子顕微鏡写真である。 比較例2のエンドミルBの先端を500倍に拡大した電子顕微鏡写真である。 プラズマ処理前のエンドミルCの先端を250倍に拡大した電子顕微鏡写真である。 実施例3のエンドミルCの先端を250倍に拡大した電子顕微鏡写真である。 比較例3のエンドミルCの先端を250倍に拡大した電子顕微鏡写真である。
 以下では、本発明のいくつかの実施の形態について、図面を参照しながら説明する。
 [ダイヤモンド被覆工具]
 まず、本実施形態に係る方法で刃先を先鋭化する切削工具について説明する。本実施形態で使用する切削工具は、ダイヤモンドコーティングした金属製の切削工具である。母材となる切削工具の種類は、特に限定されない。切削工具は、例えば、エンドミル、ドリル、スローアウェイチップ等であってもよい。切削工具の母材の材料は、例えば、ハイスピード鋼、超硬合金等であってもよい。切削工具の母材の材料も特に限定されない。後述する実施例および比較例では、先端半径が0.2mm、0.5mm、および1mmの超硬合金のボールエンドミルを使用した。
 ボールエンドミルへのダイヤモンドコーティングには、ホットフィラメントCVD法を使用した。ただし、好適な厚さのダイヤモンド被覆を形成できる限りにおいて、ダイヤモンド被覆の形成方法は特に限定されない。ダイヤモンド被覆の厚さは、3μm以上20μm以下であることが好ましい。より好適には、ダイヤモンド被覆の厚さは、8μm以上20μm以下であることが好ましい。ダイヤモンド被覆の形成方法は、例えば、マイクロ波プラズマCVD法等であってもよい。
 図1は、ダイヤモンド被覆ボールエンドミルの刃先の模式図である。図1に示すように、母材であるボールエンドミル1の刃部2は、すくい面3と逃げ面4とを有し、鋭利な刃先5が形成されている。ボールエンドミル1の刃部2にダイヤモンド被覆6を形成すると、図1に示すように、刃先5は鈍化する。ダイヤモンド被覆6の厚さが厚くなるほど、刃先5は鈍化する。本実施形態に係る方法によれば、このように鈍化した刃先5を、先鋭化処理後の刃部2の外形線7のように鋭利な刃先とすることができる。ダイヤモンドは非常に硬いため、ダイヤモンド被覆を形成することにより、切削工具の耐久性は向上する。しかし、ダイヤモンド被覆を形成することにより、切削工具の刃先は丸くなり、切削工具の切れ味は悪くなる。そのため、ダイヤモンド被覆形成後の切削工具の刃先を先鋭化する処理は有効である。
 [プラズマ表面処理装置]
 図2は、プラズマ表面処理装置10の構成の一例を表す模式図である。本実施形態では、例えば、かかるプラズマ表面処理装置10によって、ダイヤモンド被覆工具(符号1Aで表す)の刃先を先鋭化する。図2に示すプラズマ表面処理装置10は、アーク放電ホットフィラメント法によるプラズマ表面処理装置である。図2に示すように、プラズマ表面処理装置10は、チャンバ11と、真空ポンプ12と、フィラメント13と、フィラメント電源14と、ホローカソード電極15と、アーク放電電源16と、コイル17と、ガス導入口18と、回転テーブル19と、バイアス電源20と、を備えている。回転テーブル19上には、それぞれ1つのダイヤモンド被覆工具1Aを保持する複数のホルダ21が設けられている。
 チャンバ11は、密閉型の炉体である。チャンバ11の内部には、ダイヤモンド被覆工具1Aが収容される。チャンバ11は、真空ポンプ12により内部が減圧できるよう、高気密に構成されている。フィラメント13には、フィラメント電源14が接続されている。フィラメント13は、フィラメント電源14によって通電されることにより発熱する。ホローカソード電極15は、環状の陰極である。ホローカソード電極15には、アーク放電電源16の負極が接続されている。プラズマ表面処理装置10においては、コイル17で磁束を発生させ、ホローカソード電極15に電圧を印加することにより、反応ガスのグロー放電を発生させ、反応ガスのプラズマを生成する。反応ガスは、ガス導入口18からチャンバ11内に供給され、環状のホローカソード電極15の内側でプラズマ化される。フィラメント13に流す電流は、100A以上130A以下であることが好ましい。フィラメント13に流す電流は、さらに好適には、100A以上120A以下が好ましい。ホローカソード電極15に印加する電圧は、30V以上50V以下であることが好ましい。フィラメント13、ホローカソード電極15、およびコイル17は、チャンバ11内において、ガス導入口18と回転テーブル19との間に設けられている。
 プラズマ生成により、チャンバ11内は、反応ガスのプラズマ雰囲気となる。これにより、チャンバ11内に収容されているダイヤモンド被覆工具1Aの周囲がプラズマ雰囲気となる。バイアス電源20は、プラズマを引き付けるバイアス電圧を回転テーブル19に印加する。これにより、回転テーブル19およびホルダ21を介して、ダイヤモンド被覆工具1Aにバイアス電圧が印加される。バイアス電圧は、ここでは、マイナスの電圧である。バイアス電圧の絶対値は、好ましくは、100V以上600V以下である。以下、バイアス電圧は絶対値で表し、符号は省略する(表1でも同様)。バイアス電圧は、より好適には、200V以上500V以下であることが好ましく、さらに好適には、200V以上400V以下であることが好ましい。ダイヤモンド被覆工具1Aにバイアス電圧が印加されることにより、反応ガスのプラズマ中のイオンは、ダイヤモンド被覆工具1Aに衝突する。
 反応ガスは、ここでは、アルゴンガスと酸素ガスとを含んでいる。反応ガス中のアルゴンガスの体積%は、95%以上99%以下であることが好ましく、反応ガス中の酸素ガスの体積%は、1%以上5%以下であることが好ましい。反応ガスの主要ガスは、アルゴンガスである。酸素ガスは、少量添加される添加ガスである。反応ガスは、アルゴンガスと酸素ガスとによって構成されていてもよく、他の少量のガスが添加されていてもよい。チャンバ11内における反応ガスの好ましい圧力は、0.1Pa以上2Pa以下である。チャンバ11内における反応ガスの圧力は、さらに好適には、0.2Pa以上0.5Pa以下である。
 ダイヤモンドは、反応ガス中の酸素から生成されたプラズマとの反応により、より迅速に侵食される。ダイヤモンド被覆工具1Aの先鋭化は、反応ガスに酸素が含まれることにより促進される。ただし、過剰な酸素は放電を不安定にするため、反応ガス中の酸素は少量、詳しくは、1体積%以上5体積%以下であることが好ましい。主要ガスは、希ガスが好ましいが、アルゴンに限定されるわけではない。ただし、アルゴンは入手性に優れ、価格も安いため、反応ガスの主要ガスとして好適である。
 反応ガスは、アルゴンガスとドライエアとを含んでいてもよい。この場合、反応ガス中のアルゴンガスの体積%は75%以上95%以下が好ましく、反応ガス中のドライエアの体積%は5%以上25%以下であることが好ましい。ドライエアは、その約20%が酸素からなっている。そのため、酸素ガスの約5倍の量のドライエアによって酸素ガスを代用可能である。この場合も、反応ガスは、アルゴンガスとドライエアとによって構成されていてもよく、他の少量のガスが添加されていてもよい。
 回転テーブル19は、所定の回転軸(以下、公転軸19aとも呼ぶ)周りに回転するように構成されている。回転テーブル19が公転軸19a周りに回転すると、回転テーブル19上の複数のダイヤモンド被覆工具1Aも公転軸19a周りに回転する。これにより、各ダイヤモンド被覆工具1Aは、周期的にプラズマ発生源(フィラメント13、ホローカソード電極15、コイル17)に近づいたり遠ざかったりする。これにより、複数のダイヤモンド被覆工具1Aの間で、処理時間を通してのプラズマ発生源との平均距離を均一化できる。回転テーブル19上の複数のホルダ21は、それぞれ、保持したダイヤモンド被覆工具1Aを所定の回転軸(以下、自転軸21aとも呼ぶ)周りに回転させる。これにより、各ダイヤモンド被覆工具1Aの周方向に関して、処理時間を通してのプラズマ発生源との平均距離を均一化できる。回転テーブル19および複数のホルダ21は、これにより、複数のダイヤモンド被覆工具1Aの間、および、各ダイヤモンド被覆工具1Aの周方向の位置の間で、刃先先鋭化の程度を均一化している。
 ホルダ21は、ダイヤモンド被覆工具1Aが装着されたとき、ダイヤモンド被覆工具1Aの刃先以外の箇所の一部を覆うように構成されている。ダイヤモンド被覆工具1Aのうちホルダ21に覆われた場所は、反応ガスのプラズマが当たらない。これにより、ダイヤモンド被覆工具1Aの切れ味とは関係のない箇所でダイヤモンド被覆工具1Aの厚さや形状が変化することが抑制されている。
 [先鋭化のプロセス]
 ダイヤモンド被覆工具1Aの刃先の先鋭化は、以下のような手順で行われる。ダイヤモンド被覆工具1Aの刃先の先鋭化では、まず、ダイヤモンド被覆工具1Aをホルダ21に装着する。次にチャンバ11を密閉し、真空ポンプ12によりチャンバ11内を減圧する。これにより、チャンバ11内をほぼ真空状態とする。次に反応ガスをチャンバ11内に導入する。反応ガスの導入量は、チャンバ11内の圧力を測定することによって測定される。反応ガスは、フィラメント13、ホローカソード電極15、コイル17等によって、チャンバ11内でプラズマ化される。これにより、反応ガスのプラズマが生成される。
 プラズマの生成と同時に、バイアス電源20により、プラズマ中のイオンを引き付けるバイアス電圧がダイヤモンド被覆工具1Aに印加される。これにより、プラズマ中のイオンがダイヤモンド被覆工具1Aに引き付けられ、ダイヤモンド被覆工具1Aに衝突する。また、回転テーブル19が公転軸19a周りに回転され、各ダイヤモンド被覆工具1Aがホルダ21の自転軸21a周りに回転される。ダイヤモンド被覆工具1Aは、これにより、公転軸19a周りに回転しながら、それぞれ自転軸21a周りに回転する。
 プラズマ雰囲気で被加工物にバイアス電圧を印加すると、被加工物の先端部に集中的にプラズマ中のイオンが衝突し、先端部の表面が削られることが知られている。ここでは、プラズマ中のイオンが、ダイヤモンド被覆工具1Aの刃先に集中的に衝突する。これにより、ダイヤモンド被覆工具1Aの刃先が先鋭化される。また、このような方法では、被加工物の中でプラズマ発生源に近い箇所が遠い箇所よりもより速くプラズマによって削られる。これは、プラズマ発生源に近い場所の方が遠い場所よりもプラズマ密度が高いためである。本実施形態では、複数のダイヤモンド被覆工具1Aを公転軸19a周りに回転させ、かつ、それぞれの自転軸21a周りに回転させることにより、ダイヤモンド被覆工具1Aの先鋭化度合いの場所によるばらつきを抑制している。
 以下では、いくつかの実施例および比較例の先鋭化の結果を説明する。全ての実施例よび比較例に共通のプロセス条件は、以下の通りである。
  使用機器:新明和工業(株)製プラズマ処理装置PIN410
  反応ガス導入前のチャンバ内の圧力:0.003Pa
  反応ガスの成分:アルゴンガス 95体積%、ドライエア 5体積%
  反応ガスの圧力:0.3Pa
  フィラメント電流:100A
  ホローカソード電極印加電圧:40V
  バイアス電圧:200V
  公転軸周りの回転速度:2rpm
  自転軸周りの回転速度:10.5rpm
 表1に、実施例または比較例によって異なる条件も含めたプロセス条件を示す。
Figure JPOXMLDOC01-appb-T000001
 [実施例1]
 先端の半径が0.5mmの超硬合金のボールエンドミルに粗粒のダイヤモンド(平均粒径2μm以上)を10μmの厚さで被覆した工具(以下、エンドミルA)を使用した。プラズマ処理の条件は、上記した通りである。処理時間は、4時間とした。
 図3Aは、プラズマ処理前のエンドミルAの先端を500倍に拡大した電子顕微鏡写真である。図3Aに示すように、エンドミルAの刃先は、ダイヤモンド被覆を形成することにより丸くなっている。図3Bは、プラズマ処理前のエンドミルAの先端を3000倍に拡大した電子顕微鏡写真である。図3Bに示すように、より拡大すると、エンドミルAの表面には、粗いダイヤモンドの結晶が析出しているのが分かる。
 図3Cは、実施例1のエンドミルAの先端を500倍に拡大した電子顕微鏡写真である。図3Dは、実施例1のエンドミルAの先端を3000倍に拡大した電子顕微鏡写真である。図3Cに示すように、実施例1の条件でプラズマ処理したエンドミルAの刃先は、プラズマ処理前よりも先鋭化している。図3Dに示すように、より拡大すると、エンドミルAの刃先は、プラズマ処理前よりも薄くなるとともに、尖っている。また、実施例1の条件でプラズマ処理したエンドミルAの刃先の表面は、ダイヤモンド結晶のエッジが削られ、滑らかになっている。測定によれば、プラズマ処理により、刃先のダイヤモンド被覆は、約0.8μm/hの速度で厚さが減少していた。
 [比較例1]
 エンドミルAを使用し、処理時間の他は実施例1と同じ条件で処理を行った。処理時間は、2時間とした。図3Eは、比較例1のエンドミルAの先端を500倍に拡大した電子顕微鏡写真である。図3Eに示すように、処理時間が2時間の場合には、実施例1よりも刃先が先鋭化していない。なお、実施例1および比較例1のプラズマ処理条件およびダイヤモンド被覆工具(エンドミルA)では、6時間プラズマ処理を行ったサンプルに、ダイヤモンド被覆が除去されて超硬合金の母材が露出している箇所が発見された。
 [実施例2]
 先端の半径が0.2mmの超硬合金のボールエンドミルに微粒のダイヤモンド(平均粒径500nm以下)を10μmの厚さで被覆した工具(以下、エンドミルB)を使用した。プラズマ処理の条件は、上記した通りである。処理時間は、4時間とした。
 図4Aは、プラズマ処理前のエンドミルBの先端を500倍に拡大した電子顕微鏡写真である。図4Aに示すように、エンドミルBの刃先は、ダイヤモンド被覆を形成することにより丸くなっている。図4Bは、プラズマ処理前のエンドミルAの先端を3000倍に拡大した電子顕微鏡写真である。図4Bに示すように、エンドミルBの表面に析出したダイヤモンドの結晶は、エンドミルAよりも細かい。
 図4Cは、実施例2のエンドミルBの先端を500倍に拡大した電子顕微鏡写真である。図4Dは、実施例2のエンドミルBの先端を3000倍に拡大した電子顕微鏡写真である。図4Cに示すように、実施例2の条件でプラズマ処理したエンドミルBの刃先は、プラズマ処理前よりも先鋭化している。図4Dに示すように、より拡大すると、エンドミルAの刃先は、プラズマ処理前よりも尖っている。
 [比較例2]
 エンドミルBを使用し、処理時間の他は実施例2と同じ条件で処理を行った。処理時間は、2時間とした。図4Eは、比較例2のエンドミルBの先端を500倍に拡大した電子顕微鏡写真である。図4Eに示すように、処理時間が2時間の場合には、実施例2よりも刃先が先鋭化していない。なお、エンドミルBでも、6時間プラズマ処理を行ったサンプルに、ダイヤモンド被覆が除去されて超硬合金の母材が露出している箇所が発見された。
 [実施例3]
 先端の半径が1.0mmの超硬合金のボールエンドミルに微粒のダイヤモンド(平均粒径500nm以下)を18μmの厚さで被覆した工具(以下、エンドミルC)を使用した。プラズマ処理の条件は、上記した通りである。処理時間は、8時間とした。
 図5Aは、プラズマ処理前のエンドミルCの先端を250倍に拡大した電子顕微鏡写真である。図5Aに示すように、エンドミルCの刃先は、ダイヤモンド被覆を形成することにより丸くなっている。図5Bは、実施例3のエンドミルCの先端を250倍に拡大した電子顕微鏡写真である。図5Bに示すように、実施例3の条件でプラズマ処理したエンドミルCの刃先は、プラズマ処理前よりも先鋭化している。
 [比較例3]
 エンドミルCを使用し、処理時間の他は実施例3と同じ条件で処理を行った。処理時間は、4時間とした。図5Cは、比較例3のエンドミルCの先端を250倍に拡大した電子顕微鏡写真である。図5Cに示すように、処理時間が4時間の場合には、実施例3よりも刃先が先鋭化していない。なお、エンドミルCでは、10時間プラズマ処理を行ったサンプルに、ダイヤモンド被覆が除去されて超硬合金の母材が露出している箇所が発見された。
 [実施形態の作用効果]
 以下では、上記した実施形態に係る方法によって奏される作用効果について説明する。上記実施例に係るダイヤモンド被覆工具の先鋭化方法は、少なくとも刃先にダイヤモンド被覆が形成された切削工具の刃先を先鋭化する方法であって、切削工具が収容されたチャンバ内で反応ガスのプラズマを生成することと、プラズマを引き付けるバイアス電圧を切削工具に印加することと、を含む。上記実施例および比較例の結果によれば、ダイヤモンド被覆工具の刃先は、いずれの実施例および比較例の場合も、先鋭化されていた。これは、反応ガスのプラズマ中のイオンが切削工具の刃先に集中的に衝突するためである。切削工具の公転軸および自転軸周りの回転は極めてゆっくりであるため、この運動は、先鋭化そのものには寄与していない。このことから、上記方法によれば、切削工具やプラズマ発生源を移動させたり向きを変えたりしなくても、複雑な形状を含む種々の形状の切削工具の刃先を容易に先鋭化できることが分かる。
 ただし、より均一に切削工具の刃先を先鋭化するためには、切削工具を所定の公転軸周りに回転させるとともに、それぞれを自転軸周りに回転させることが好ましい。かかる方法によれば、チャンバ内の場所による先鋭化のばらつきが抑えられるため、複数の切削工具を同時に先鋭化することもできる。
 反応ガスは、アルゴンガスと酸素ガスとを含むか、または、アルゴンガスとドライエアとを含むことが好ましい。前者の場合、反応ガス中のアルゴンガスの体積%は95%以上99%以下、反応ガス中の酸素ガスの体積%は1%以上5%以下であることが好ましい。後者の場合、反応ガス中のアルゴンガスの体積%は75%以上95%以下、反応ガス中のドライエアの体積%は5%以上25%以下が好ましい。反応ガスに酸素が含まれることにより、反応ガス中の酸素から生成されたプラズマによってダイヤモンドが迅速に侵食され、ダイヤモンド被覆工具の先鋭化が促進される。ただし、酸素濃度が高すぎると、放電が不安定となる。また、チャンバ内が酸化する。そのため、酸素ガスまたはドライエアの反応ガス中の体積%は、上記した範囲が好ましい。
 アーク放電ホットフィラメント方式のプラズマ表面処理装置を使用する場合、フィラメントに流す電流は、100A以上130A以下が好ましい。また、ホローカソード電極に印加する電圧は、30V以上50V以下であることが好ましい。フィラメントに流す電流は、低すぎるとアーク放電が起こりにくい。フィラメントに流す電流は、高すぎるとフィラメントの寿命を短くする。そのため、上記した範囲の電流値が好ましい。また、ホローカソード電極に印加する電圧は、低すぎるとプラズマが発生しにくい。ホローカソード電極に印加する電圧は、高すぎると放電が不安定になる。そのため、上記した範囲の電圧が好ましい。アーク放電ホットフィラメント方式のプラズマ表面処理装置は、他の方式と比較して、付帯設備を含む装置コストおよびランニングコストが比較的安価であり、かつ、内容量の大きなチャンバを備えることができる利点がある。
 反応ガスの圧力は、0.1Pa以上2Pa以下が好ましい。反応ガスの圧力が低すぎるとプラズマの量が少ないため、刃先の先鋭化の速度が遅い。反応ガスの圧力が高すぎると、刃先の先鋭化に寄与しない反応ガスが多くなり、反応ガスの消費量が増加する。そのため、上記した範囲の反応ガス圧が好ましい。
 バイアス電圧は、100V以上600V以下が好ましい。バイアス電圧が低すぎると、プラズマ中のイオンの刃先への衝突が起こりにくいため、刃先が先鋭化しにくい。バイアス電圧が高すぎると、切削工具が発熱してしまう。また、スパークが発生しやすくなる。そのため、上記した範囲のバイアス電圧が好ましい。
 ダイヤモンド被覆の厚さは、3μm以上20μm以下が好ましい。ダイヤモンド被覆の厚さが厚いほど、切削工具の刃先は鈍化する。そのため、刃先の先鋭化に時間を要する。一方、ダイヤモンド被覆の厚さが薄いと、先鋭化によって切削工具の母材が露出しやすくなる。そのため、ダイヤモンド被覆の厚さは、上記範囲が好ましい。
 先鋭化処理の時間は、ダイヤモンド被覆の厚さに応じて好ましい時間が分かった。実施例および比較例の結果によれば、ダイヤモンド被覆の膜厚が10μmの場合には、先鋭化処理の時間は、2時間以上6時間未満(例えば、5時間以下)が好ましい。ダイヤモンド被覆の膜厚が18μmの場合には、先鋭化処理の時間は、6時間以上10時間未満(例えば、9時間以下)が好ましい。プラズマ処理により、刃先のダイヤモンド被覆の厚さが約0.8μm/hの速度で減少することから、切削工具の母材が露出しない処理時間を、ダイヤモンド被覆の厚さに応じて算出することができる。
 ダイヤモンド被覆の平均粒径については、粗粒のダイヤモンド(平均粒径2μm以上)でも、微粒のダイヤモンド(平均粒径500nm以下)でも好適な先鋭化結果を得た。ダイヤモンド被覆の粒径に関わらず好適な結果が得られたことから、ダイヤモンド被覆の平均粒径は、100nm以上5μm以下が好ましいと考えられる。
 [他の実施形態]
 以上、好適な一実施形態について説明した。しかし、上記実施形態は一例に過ぎず、他にも様々な実施形態が可能である。例えば、上記したプラズマ表面処理装置の構成は好適な一例に過ぎず、これに限定されない。例えば上記した実施形態では、アーク放電ホットフィラメント方式のプラズマ表面処理装置によって反応ガスのプラズマを発生させたが、プラズマ処理装置がプラズマを発生させる方式は限定されない。
 上記したダイヤモンド被覆工具の刃先の先鋭化処理のプロセス条件は、好適な一例に過ぎず、これには限定されない。また、母材である切削工具の種類、材料や、ダイヤモンド被覆の態様、例えば、その厚さ、ダイヤモンド結晶の粒径、被覆形成方法などは特に限定されない。
1A  ダイヤモンド被覆工具
10  プラズマ表面処理装置
11  チャンバ
12  真空ポンプ
13  フィラメント
15  ホローカソード電極(カソード電極)
18  ガス導入口
19  回転テーブル
19a 公転軸
20  バイアス電源
21  ホルダ
21a 自転軸

Claims (10)

  1.  少なくとも刃先にダイヤモンド被覆が形成された切削工具の前記刃先を先鋭化する方法であって、
     前記切削工具が収容されたチャンバ内で反応ガスのプラズマを生成することと、
     前記プラズマを引き付けるバイアス電圧を前記切削工具に印加することと、を含む、
    ダイヤモンド被覆工具の先鋭化方法。
  2.  前記反応ガスは、アルゴンガスと酸素ガスとを含み、
     前記反応ガス中の前記アルゴンガスの体積%は、95%以上99%以下であり、
     前記反応ガス中の前記酸素ガスの体積%は、1%以上5%以下である、
    請求項1に記載のダイヤモンド被覆工具の先鋭化方法。
  3.  前記反応ガスは、アルゴンガスとドライエアとを含み、
     前記反応ガス中の前記アルゴンガスの体積%は、75%以上95%以下であり、
     前記反応ガス中の前記ドライエアの体積%は、5%以上25%以下である、
    請求項1に記載のダイヤモンド被覆工具の先鋭化方法。
  4.  前記プラズマは、フィラメントに通電するとともに、コイルに磁束を発生させ、カソード電極に電圧を印加して、前記反応ガスを放電させることによって生成され、
     前記フィラメントに流す電流は、100A以上130A以下であり、
     前記カソード電極に印加する電圧は、30V以上50V以下である、
    請求項1~3のいずれか一つに記載のダイヤモンド被覆工具の先鋭化方法。
  5.  前記チャンバ内における前記反応ガスの圧力は、0.1Pa以上2Pa以下である、
    請求項1~4のいずれか一つに記載のダイヤモンド被覆工具の先鋭化方法。
  6.  前記バイアス電圧の絶対値は、100V以上600V以下である、
    請求項1~5のいずれか一つに記載のダイヤモンド被覆工具の先鋭化方法。
  7.  前記ダイヤモンド被覆の厚さは、3μm以上20μm以下である、
    請求項1~6のいずれか一つに記載のダイヤモンド被覆工具の先鋭化方法。
  8.  複数の前記切削工具を所定の公転軸周りに回転させながら、前記複数の切削工具をそれぞれ自転軸周りに回転させることをさらに含む、
    請求項1~7のいずれか一つに記載のダイヤモンド被覆工具の先鋭化方法。
  9.  前記切削工具を収容可能なチャンバと、
     反応ガスを前記チャンバ内に供給するガス導入口と、
     反応ガスのプラズマを生成するプラズマ発生装置と、
     前記切削工具にバイアス電圧を印加するバイアス電源と、
     少なくとも前記プラズマ発生装置および前記バイアス電源を制御して、請求項1~8のいずれか一つに記載の先鋭化方法を実行させる制御装置と、を備えた、
    プラズマ表面処理装置。
  10.  請求項1~8のいずれか一つに記載の先鋭化方法を含む方法によって製造されたダイヤモンド被覆工具。
PCT/JP2021/039123 2021-07-14 2021-10-22 ダイヤモンド被覆工具の先鋭化方法、プラズマ表面処理装置、およびダイヤモンド被覆工具 WO2023286288A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-116226 2021-07-14
JP2021116226 2021-07-14

Publications (1)

Publication Number Publication Date
WO2023286288A1 true WO2023286288A1 (ja) 2023-01-19

Family

ID=84918955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039123 WO2023286288A1 (ja) 2021-07-14 2021-10-22 ダイヤモンド被覆工具の先鋭化方法、プラズマ表面処理装置、およびダイヤモンド被覆工具

Country Status (1)

Country Link
WO (1) WO2023286288A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121364A (ja) * 1991-04-23 1993-05-18 Balzers Ag 真空室内で表面から材料を浸食する方法
JPH0817801A (ja) * 1994-06-29 1996-01-19 Kobe Steel Ltd ダイヤモンド薄膜のecrプラズマエッチング方法
JP2007307673A (ja) * 2006-05-19 2007-11-29 Osg Corp ダイヤモンド被覆切削部材、およびその製造方法
JP2016069678A (ja) * 2014-09-29 2016-05-09 テルモ株式会社 医療用針の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05121364A (ja) * 1991-04-23 1993-05-18 Balzers Ag 真空室内で表面から材料を浸食する方法
JPH0817801A (ja) * 1994-06-29 1996-01-19 Kobe Steel Ltd ダイヤモンド薄膜のecrプラズマエッチング方法
JP2007307673A (ja) * 2006-05-19 2007-11-29 Osg Corp ダイヤモンド被覆切削部材、およびその製造方法
JP2016069678A (ja) * 2014-09-29 2016-05-09 テルモ株式会社 医療用針の製造方法

Similar Documents

Publication Publication Date Title
JP2007307673A (ja) ダイヤモンド被覆切削部材、およびその製造方法
JP3563203B2 (ja) 放電加工による表面処理方法及びその装置
JP5597327B2 (ja) ダイヤモンド被覆工具およびその製造方法
JP4930974B2 (ja) ソーワイヤ、ソーワイヤの製造方法、半導体インゴットの切断方法及びワイヤソー
JP5924094B2 (ja) 刃物、その製造方法およびそれを製造するためのプラズマ装置
US8556681B2 (en) Ultra smooth face sputter targets and methods of producing same
JP2014012310A (ja) 切れ刃エッジの加工方法及びその加工方法で加工された切れ刃エッジを有する器具
JP5339984B2 (ja) 切削工具
US6517688B2 (en) Method of smoothing diamond coating, and method of manufacturing diamond-coated body
WO2023286288A1 (ja) ダイヤモンド被覆工具の先鋭化方法、プラズマ表面処理装置、およびダイヤモンド被覆工具
EP2267181B1 (en) Target exchange type plasma generator
JPH09103940A (ja) 電解インプロセスドレッシング研削砥石および電解インプロセスドレッシング研削方法および電解インプロセスドレッシング研削装置
CA2299638C (en) Plasma discharge truing apparatus and fine-machining methods using the apparatus
Srivastava Review of dressing and truing operations for grinding wheels
JPH10175165A (ja) メタルボンド砥石を用いたセンタレス研削方法及びその装置
JPH07205006A (ja) レンズ研削方法
JP5499253B2 (ja) 超砥粒ホイールおよび超砥粒ホイールの放電ツルーイング方法またはツルーイング・ドレッシング方法
JP2010005744A (ja) 硬質炭素膜被覆工具
JP7113456B2 (ja) 研削装置及び研削方法
JP7309177B2 (ja) ツルーイング方法及びツルーイング装置
KR20160109688A (ko) 금속결합제 연삭숫돌의 방전트루잉 시스템
JP2002160108A (ja) 精密加工用切削工具およびその製造方法
RU2824444C1 (ru) Способ изготовления режущего инструмента с износостойким коррозионно-устойчивым покрытием
KR101942189B1 (ko) 선형 이온 소스를 이용한 ta-C 코팅의 박리 장치 및 방법
RU2806253C2 (ru) Способ полирования поверхности поликристаллического алмазного покрытия деталей

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21950224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP