WO2023286182A1 - プラズマ処理方法 - Google Patents
プラズマ処理方法 Download PDFInfo
- Publication number
- WO2023286182A1 WO2023286182A1 PCT/JP2021/026386 JP2021026386W WO2023286182A1 WO 2023286182 A1 WO2023286182 A1 WO 2023286182A1 JP 2021026386 W JP2021026386 W JP 2021026386W WO 2023286182 A1 WO2023286182 A1 WO 2023286182A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plasma
- gas
- processing method
- plasma processing
- processing chamber
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 31
- 238000012545 processing Methods 0.000 claims abstract description 59
- 239000007789 gas Substances 0.000 claims abstract description 48
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052786 argon Inorganic materials 0.000 claims abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- NBVXSUQYWXRMNV-UHFFFAOYSA-N monofluoromethane Natural products FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 8
- ZRNSSRODJSSVEJ-UHFFFAOYSA-N 2-methylpentacosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCC(C)C ZRNSSRODJSSVEJ-UHFFFAOYSA-N 0.000 claims description 5
- 229910018503 SF6 Inorganic materials 0.000 claims description 2
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 claims description 2
- 229960000909 sulfur hexafluoride Drugs 0.000 claims description 2
- 238000011109 contamination Methods 0.000 abstract description 8
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 235000012431 wafers Nutrition 0.000 description 36
- 238000005530 etching Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000008021 deposition Effects 0.000 description 6
- 238000001020 plasma etching Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009832 plasma treatment Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 3
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 150000001722 carbon compounds Chemical class 0.000 description 2
- YUCFVHQCAFKDQG-UHFFFAOYSA-N fluoromethane Chemical compound F[CH] YUCFVHQCAFKDQG-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32853—Hygiene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32174—Circuits specially adapted for controlling the RF discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32853—Hygiene
- H01J37/32862—In situ cleaning of vessels and/or internal parts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/334—Etching
Definitions
- the present invention relates to a plasma processing method.
- Patent Document 1 a first step of removing a residual film in a processing chamber by oxygen gas plasma, and a plasma of a fluorocarbon-based gas or a mixed gas containing a fluorocarbon-based gas are used to remove a deposited film on the wall surface of the processing chamber.
- a processing method has been proposed that includes a second step of forming a According to such a processing method, the formed deposited film can prevent the generation of foreign matter by suppressing the deterioration of the components in the processing chamber that occurs during plasma etching. can be prevented.
- Patent Document 1 if the processing method disclosed in Patent Document 1 is executed without placing the wafer on the mounting table, there is a problem that a deposited film is also formed on the mounting table. If a deposited film is formed on the mounting table, the deposited film may adhere to the rear surface of the processed wafer when the wafer is mounted on the mounting table for etching. The deposited film adhering to the processed wafer separates and falls off while being transported together with the processed wafer, becoming foreign matter, and may spread via a transport robot or the like, thereby contaminating the entire transport system.
- the present invention provides a plasma processing method capable of suppressing the diffusion of contamination to the transport system while forming a deposited film on the inner wall surface of the processing chamber.
- one typical plasma processing method is a plasma processing method in which a sample placed on a sample stage is plasma-processed in a processing chamber, a first step of removing deposits in the processing chamber using a plasma; After the first step, a second step of depositing deposits in the processing chamber using a mixed gas of hydrofluorocarbon gas and argon (Ar) gas; After the second step, a third step of selectively removing deposits on the sample table using a mixed gas of oxygen (O 2 ) gas and argon (Ar) gas; After the third step, a fourth step of plasma-treating a predetermined number of the samples.
- a mixed gas of hydrofluorocarbon gas and argon (Ar) gas After the second step, a third step of selectively removing deposits on the sample table using a mixed gas of oxygen (O 2 ) gas and argon (Ar) gas.
- FIG. 1 is a schematic cross-sectional view of a plasma processing apparatus according to an embodiment of the present invention.
- FIG. 2 is a flow chart showing an example of a plasma processing method using the plasma processing apparatus shown in FIG.
- FIG. 3 is a diagram schematically showing the state of plasma processing for forming a deposited film of CHx using a mixed gas composed of methyl fluoride (CH 3 F) and argon (Ar).
- FIG. 4 is a diagram schematically showing the state of plasma processing for removing the deposited film using a mixed gas composed of oxygen (O 2 ) and argon (Ar).
- FIG. 5 is a diagram showing a comparison of the etching rate of the deposited film of the carbon compound when the current value of the solenoid coil is changed with or without the bias in the plasma processing.
- FIG. 1 is a schematic diagram of an Electron Cyclotron Resonance (hereinafter referred to as ECR) type plasma etching apparatus using microwaves and magnetic fields as plasma generating means.
- ECR Electron Cyclotron Resonance
- the ECR type plasma etching apparatus includes a processing chamber 101 that can be evacuated, a mounting table 103 that is housed in the processing chamber 101 and on which a wafer 102 as a sample is mounted, and a quartz crystal that is provided on the upper surface of the processing chamber 101.
- a microwave transmission window 104 made of a material, a waveguide 105 provided above it, a magnetron (microwave generator) 106 that oscillates microwaves, and a first high frequency power supply 112 that supplies high frequency power to the magnetron 106 , solenoid coils 107 , 108 , 109 (magnetic field generators) arranged along the axial direction around the processing chamber 101 , and a gas supply pipe 110 for introducing process gas into the processing chamber 101 .
- the first high-frequency power supply 112 has a function of pulse-modulating the oscillating microwave.
- the wafer 102 is loaded into the processing chamber 101 from the wafer loading port 111 via a transport robot or the like, and then electrostatically applied to the mounting table 103 by an electrostatic adsorption power source (not shown). be adsorbed.
- a process gas is then introduced into the processing chamber 101 from the gas supply pipe 110 .
- the inside of the processing chamber 101 is evacuated by a vacuum pump (not shown) and adjusted to a predetermined pressure (for example, 0.1 Pa to 50 Pa).
- the magnetron 106 oscillates a microwave with a frequency of 2.45 GHz. supplied within.
- the magnetic field generated by the solenoid coils 107 , 108 , 109 interacts with the microwave to excite the process gas and generate plasma 113 in the space above the wafer 102 .
- bias power is applied to the mounting table 103 by a second high-frequency power supply (not shown), and ions in the plasma 113 are vertically accelerated onto the wafer 102 and impinge thereon.
- a second high-frequency power source (not shown) can apply continuous bias power or time-modulated bias power to the mounting table 103 .
- the wafer 102 is anisotropically etched by the action of radicals and ions from the plasma 113 .
- the value of the current supplied to each of the solenoid coils 107, 108 and 109 can be controlled. Therefore, the region where ECR occurs can be changed in the vertical direction by each current value.
- FIG. 2 is a flow chart of a plasma processing method according to an embodiment of the invention.
- a gas containing carbon, hydrogen, and fluorine is referred to as a CHF-based gas.
- step 201 a dummy wafer (dummy sample) carried in via a transfer robot or the like from the wafer loading port 111 is placed on the mounting table 103 so as not to form a deposited film on the mounting table 103 .
- step 202 After placing the dummy wafer, in step 202 (first process), a mixed gas composed of sulfur hexafluoride (SF 6 ), oxygen (O 2 ), and argon (Ar) is supplied from the gas supply pipe 110 . It is supplied into the processing chamber 101 and subjected to plasma processing to remove residual films (deposits) in the processing chamber 101 .
- SF 6 sulfur hexafluoride
- O 2 oxygen
- Ar argon
- SF 6 is supplied at 150 mL/min
- O 2 is supplied at 27 mL/min
- Ar is supplied at 60 mL/min
- the processing chamber pressure is 0.6 Pa
- the microwave power is 1000 W
- the solenoid coil 107 at the top , 108 and 109 were set to 27/26/0 A, respectively, and the processing time was set to 60 sec.
- step 203 a mixed gas composed of methyl fluoride (CH 3 F) and argon (Ar) is supplied from the gas supply pipe 110 into the processing chamber 101 to perform plasma processing.
- a deposition film of CHx is formed on the wall surface.
- FIG. 3 is a schematic diagram showing a state when a deposited film of CHx is formed on the inner wall surface of the processing chamber. Since the plasma processing in step 203 is performed by applying bias power (high frequency power) to the mounting table 103, the deposited film on the dummy wafer is less deposited than the deposited film on the inner wall of the processing chamber due to ion sputtering. In other words, the amount of deposition can be suppressed by performing both deposition and etching on the dummy wafer by the plasma processing in step 203 .
- bias power high frequency power
- CH 3 F is supplied at 100 mL/min
- Ar is supplied at 100 mL/min
- the processing chamber pressure is 0.5 Pa
- the microwave power is 800 W
- the bias power is 50 W
- the solenoid coils 107, 108, 109 It is assumed that the current values to the are 27/26/0 A, respectively, and the processing time is 160 sec.
- methyl fluoride (CH 3 F) gas is used, but other than methyl fluoride (CH 3 F) gas, hydro fluoromethane (CH 2 F 2 ) gas, trifluoromethane (CHF 3 ) gas, etc. may be used. Fluorocarbon gas may also be used.
- step 204 (third step), a mixed gas composed of oxygen (O 2 ) and argon (Ar) is supplied into the processing chamber 101 from the gas supply pipe 110 while high-frequency power is being supplied to the mounting table 103 .
- Plasma processing is performed in step 201 to selectively remove the deposited CHx film formed in step 203 on the dummy wafer placed in step 201 .
- step 205 the dummy wafer mounted on the mounting table 103 is unloaded via a transfer robot or the like. Thereafter, in step 206 (fourth process), a predetermined number of product wafers are plasma-processed. As a result, it is possible to process product wafers while suppressing foreign matter contamination.
- FIG. 4 is a diagram showing the state when removing the deposited CHx film on the dummy wafer.
- O 2 is supplied at 30 mL/min
- Ar is supplied at 150 mL/min
- the processing chamber pressure is 0.5 Pa
- the microwave power is 400 W
- the bias power is 50 W
- the solenoid coils 107, 108, 109 are 27/26/9 A, respectively
- the processing time is 230 sec.
- FIG. 5 shows step 204 when the current value of the solenoid coil is changed when no bias power is applied to the mounting table 103 (no bias) and when bias power is applied (with bias).
- 2 is a diagram showing a comparison of the etching rate of a deposited film of a carbon compound during the treatment of .
- the current values to the solenoid coils 107, 108, and 109 are set to 27/26/9 A in common with no bias and with bias. were changed to 27/26/14 A and 27/27/27 A, respectively, and the etching rate was obtained.
- the etching rate without bias is 92.64 nm/min, while the etching rate with bias is 159.18 nm/min. , it can be seen that the etching progresses more when the bias is applied. Therefore, the deposited film on the wafer can be selectively removed by applying the bias power.
- the etching rate when comparing the etching rates when the current values to the solenoid coils 107, 108, and 109 are changed, when the current values are 27/26/9 A, the etching rate is 159.18 nm/min.
- the etching rate is 164.76 nm/min when the current values are 27/26/14 A, respectively, and the etching rate is 172.39 nm when the current values are 27/27/27 A, respectively. /min, it can be seen that the higher the current value, the higher the etching rate.
- the region where plasma is generated in step 204 approaches the mounting table 103, so that more of the deposited film can be removed. That is, by changing the current value to the solenoid coil 109, the amount of deposition and the amount of etching of the deposited film in step 204 can be arbitrarily adjusted.
- the present embodiment by selectively removing the deposited film formed on the mounting table while maintaining the deposited film formed on the inner wall surface of the processing chamber, the generation of foreign matter is prevented while protecting the components of the processing chamber. can be prevented. As a result, it is possible to prevent the transport system from being contaminated due to the deposited film being formed on the mounting table. In addition, since the dummy wafer can be reused by removing the deposited film on the dummy wafer, the cost of the dummy wafer can be reduced.
- the present invention can be implemented even if the dummy wafer is not mounted on the mounting table (that is, steps 201 and 205 in FIG. 4 are omitted). More specifically, when the dummy wafer is not mounted on the mounting table, the deposited CHx film deposited on the mounting table in step 203 can be selectively removed in step 204 . By balancing the CHx deposition amount and the etching amount on the mounting table according to the plasma processing conditions, the deposition amount can be reduced to zero immediately before the product wafer is mounted on the mounting table.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
プラズマを用いて前記処理室内の堆積物を除去する第一の工程と、
前記第一の工程後、ハイドロフルオロカーボンガスとアルゴン(Ar)ガスの混合ガスを用いて堆積物を前記処理室内に堆積させる第二の工程と、
前記第二の工程後、酸素(O2)ガスとアルゴン(Ar)ガスの混合ガスを用いて前記試料台の堆積物を選択的に除去する第三の工程と、
前記第三の工程後、所定の枚数の前記試料をプラズマ処理する第四の工程とを有することにより達成される。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
最初に、本実施形態のプラズマ処理方法を実施するためのプラズマエッチング装置の一例を、図1を参照しながら説明する。図1は、プラズマ生成手段としてマイクロ波と磁界を利用したElectron Cyclotron Resonance(以下、ECRと称する)型プラズマエッチング装置の概略図である。
次に、図1に示したプラズマエッチング装置を用いたプラズマ処理方法を、図面を参照しながら説明する。図2は、本発明の実施形態にかかるプラズマ処理方法のフローチャートである。
なお、本明細書で、炭素と水素とフッ素を含むガスを、CHF系ガスという。
なお、本発明は、ダミーウエハを載置台上に載置しない場合でも(すなわち図4のステップ201,205がなくても)、実現可能である。より具体的には、ダミーウエハを載置台上に載置しない場合、ステップ203にて載置台に堆積したCHxの堆積膜を、ステップ204にて選択的に除去することができる。プラズマ処理の条件により、載置台上におけるCHxの堆積量とエッチング量を釣り合わせることで、載置台に製品ウエハを載置する直前での堆積量をゼロとすることができる。
102 ウエハ
103 載置台
104 マイクロ波透過窓
105 導波管
106 マグネトロン
107、108、109 ソレノイドコイル
110 ガス供給配管
111 ウエハ搬入口
112 第一の高周波電源
Claims (7)
- 試料台に載置された試料を処理室内にてプラズマ処理するプラズマ処理方法において、
プラズマを用いて前記処理室内の堆積物を除去する第一の工程と、
前記第一の工程後、ハイドロフルオロカーボンガスとアルゴン(Ar)ガスの混合ガスを用いて堆積物を前記処理室内に堆積させる第二の工程と、
前記第二の工程後、酸素(O2)ガスとアルゴン(Ar)ガスの混合ガスを用いて前記試料台の堆積物を選択的に除去する第三の工程と、
前記第三の工程後、所定の枚数の前記試料をプラズマ処理する第四の工程とを有することを特徴とするプラズマ処理方法。 - 請求項1に記載のプラズマ処理方法において、
ダミー用試料が前記第三の工程における前記試料台に載置されていることを特徴とするプラズマ処理方法。 - 請求項2に記載のプラズマ処理方法において、
前記ハイドロフルオロカーボンガスは、フッ化メチル(CH3F)ガスであることを特徴とするプラズマ処理方法。 - 請求項3に記載のプラズマ処理方法において、
高周波電力が前記第二の工程における前記試料台に供給されていることを特徴とするプラズマ処理方法。 - 請求項3に記載のプラズマ処理方法において、
高周波電力が前記第三の工程における前記試料台に供給されていることを特徴とするプラズマ処理方法。 - 請求項4に記載のプラズマ処理方法において、
高周波電力が前記第三の工程における前記試料台に供給されていることを特徴とするプラズマ処理方法。 - 請求項6に記載のプラズマ処理方法において、
前記第一の工程のプラズマは、アルゴン(Ar)ガスと六フッ化硫黄(SF6)ガスと酸素(O2)ガスの混合ガスを用いて生成されることを特徴とするプラズマ処理方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/909,491 US20240194461A1 (en) | 2021-07-14 | 2021-07-14 | Plasma processing method |
JP2022538372A JP7222150B1 (ja) | 2021-07-14 | 2021-07-14 | プラズマ処理方法 |
PCT/JP2021/026386 WO2023286182A1 (ja) | 2021-07-14 | 2021-07-14 | プラズマ処理方法 |
KR1020227029786A KR102722617B1 (ko) | 2021-07-14 | 플라스마 처리 방법 | |
CN202180017677.4A CN116171483A (zh) | 2021-07-14 | 2021-07-14 | 等离子体处理方法 |
TW111125930A TWI797035B (zh) | 2021-07-14 | 2022-07-11 | 電漿處理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/026386 WO2023286182A1 (ja) | 2021-07-14 | 2021-07-14 | プラズマ処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023286182A1 true WO2023286182A1 (ja) | 2023-01-19 |
Family
ID=84920168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/026386 WO2023286182A1 (ja) | 2021-07-14 | 2021-07-14 | プラズマ処理方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240194461A1 (ja) |
JP (1) | JP7222150B1 (ja) |
CN (1) | CN116171483A (ja) |
TW (1) | TWI797035B (ja) |
WO (1) | WO2023286182A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008519431A (ja) * | 2004-10-29 | 2008-06-05 | ラム リサーチ コーポレーション | シリコンまたはシリコンカーバイド電極表面をプラズマエッチング処理中の形態改質から保護する方法 |
JP2016086046A (ja) * | 2014-10-24 | 2016-05-19 | 東京エレクトロン株式会社 | プラズマ処理方法 |
JP2019125686A (ja) * | 2018-01-16 | 2019-07-25 | 東京エレクトロン株式会社 | プラズマ処理装置の部品のクリーニング方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0648858A1 (en) * | 1993-10-15 | 1995-04-19 | Applied Materials, Inc. | Methods of coating plasma etch chambers and apparatus for plasma etching workpieces |
JP2962181B2 (ja) * | 1995-02-01 | 1999-10-12 | ヤマハ株式会社 | ドライエッチング方法及び装置 |
US6872322B1 (en) * | 1997-11-12 | 2005-03-29 | Applied Materials, Inc. | Multiple stage process for cleaning process chambers |
US6014979A (en) * | 1998-06-22 | 2000-01-18 | Applied Materials, Inc. | Localizing cleaning plasma for semiconductor processing |
US6322716B1 (en) * | 1999-08-30 | 2001-11-27 | Cypress Semiconductor Corp. | Method for conditioning a plasma etch chamber |
US6350697B1 (en) * | 1999-12-22 | 2002-02-26 | Lam Research Corporation | Method of cleaning and conditioning plasma reaction chamber |
JP2009188257A (ja) * | 2008-02-07 | 2009-08-20 | Tokyo Electron Ltd | プラズマエッチング方法及びプラズマエッチング装置並びに記憶媒体 |
US9064816B2 (en) * | 2012-11-30 | 2015-06-23 | Applied Materials, Inc. | Dry-etch for selective oxidation removal |
JP6422262B2 (ja) * | 2013-10-24 | 2018-11-14 | 東京エレクトロン株式会社 | プラズマ処理方法及びプラズマ処理装置 |
JP5853087B2 (ja) * | 2014-11-27 | 2016-02-09 | 株式会社日立ハイテクノロジーズ | プラズマ処理方法 |
-
2021
- 2021-07-14 CN CN202180017677.4A patent/CN116171483A/zh active Pending
- 2021-07-14 US US17/909,491 patent/US20240194461A1/en active Pending
- 2021-07-14 JP JP2022538372A patent/JP7222150B1/ja active Active
- 2021-07-14 WO PCT/JP2021/026386 patent/WO2023286182A1/ja active Application Filing
-
2022
- 2022-07-11 TW TW111125930A patent/TWI797035B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008519431A (ja) * | 2004-10-29 | 2008-06-05 | ラム リサーチ コーポレーション | シリコンまたはシリコンカーバイド電極表面をプラズマエッチング処理中の形態改質から保護する方法 |
JP2016086046A (ja) * | 2014-10-24 | 2016-05-19 | 東京エレクトロン株式会社 | プラズマ処理方法 |
JP2019125686A (ja) * | 2018-01-16 | 2019-07-25 | 東京エレクトロン株式会社 | プラズマ処理装置の部品のクリーニング方法 |
Also Published As
Publication number | Publication date |
---|---|
CN116171483A (zh) | 2023-05-26 |
US20240194461A1 (en) | 2024-06-13 |
JP7222150B1 (ja) | 2023-02-14 |
KR20230012458A (ko) | 2023-01-26 |
TWI797035B (zh) | 2023-03-21 |
JPWO2023286182A1 (ja) | 2023-01-19 |
TW202303812A (zh) | 2023-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5454903A (en) | Plasma cleaning of a CVD or etch reactor using helium for plasma stabilization | |
KR102035585B1 (ko) | 플라즈마 처리 방법 | |
JP4000487B2 (ja) | プロセス気体および洗浄気体の別々の注入ポートを有するプラズマ・チャンバ | |
KR102538188B1 (ko) | 플라즈마 처리 장치의 세정 방법 | |
JPH03261138A (ja) | 半導体装置のクリーニング方法およびクリーニング装置 | |
US6259105B1 (en) | System and method for cleaning silicon-coated surfaces in an ion implanter | |
US10991594B2 (en) | Method for area-selective etching of silicon nitride layers for the manufacture of microelectronic workpieces | |
KR20180032153A (ko) | 플라스마 처리 방법 | |
JPWO2020161879A1 (ja) | ドライエッチング方法及びドライエッチング装置 | |
JP7222150B1 (ja) | プラズマ処理方法 | |
KR102722617B1 (ko) | 플라스마 처리 방법 | |
KR102571380B1 (ko) | 피처리체를 처리하는 방법 | |
JP2004214609A (ja) | プラズマ処理装置の処理方法 | |
US20050072444A1 (en) | Method for processing plasma processing apparatus | |
WO2022013938A1 (ja) | プラズマ処理方法 | |
JP2004259819A (ja) | 試料の表面処理装置及び表面処理方法 | |
JP7061140B2 (ja) | プラズマ処理方法及びプラズマ処理装置 | |
JP2004031970A (ja) | 半導体素子の製造方法 | |
JPH0547713A (ja) | プラズマ処理装置 | |
JP6259610B2 (ja) | プラズマ処理装置およびプラズマ処理方法 | |
JPH0375373A (ja) | プラズマ処理装置の清浄化方法 | |
JP2004247388A (ja) | プラズマ処理装置および処理方法 | |
JP2004335523A (ja) | エッチング方法及びrie装置 | |
JP2004014969A (ja) | 半導体表面処理方法 | |
JPH1022272A (ja) | 半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022538372 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 17909491 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21950123 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21950123 Country of ref document: EP Kind code of ref document: A1 |