WO2023284599A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023284599A1
WO2023284599A1 PCT/CN2022/104050 CN2022104050W WO2023284599A1 WO 2023284599 A1 WO2023284599 A1 WO 2023284599A1 CN 2022104050 W CN2022104050 W CN 2022104050W WO 2023284599 A1 WO2023284599 A1 WO 2023284599A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
signal
integer
bit block
time unit
Prior art date
Application number
PCT/CN2022/104050
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110803860.9A external-priority patent/CN115701165A/zh
Priority claimed from CN202110889885.5A external-priority patent/CN115915175A/zh
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023284599A1 publication Critical patent/WO2023284599A1/zh
Priority to US18/412,631 priority Critical patent/US20240155598A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, in particular to a design scheme and a device under semi-persistent scheduling in wireless communication.
  • the present application discloses a solution. It should be noted that although the above description uses the XR communication scenario as an example, the present application is also applicable to other non-XR communication scenarios, and achieves similar technical effects in the XR communication scenario. In addition, adopting a unified solution for different scenarios (including but not limited to XR communication scenarios) can also help reduce hardware complexity and cost. Meanwhile, although the above description uses SPS as an example, the present application is also applicable to other non-SPS communication scenarios, and achieves similar technical effects in the SPS scenario. In the case of no conflict, the embodiments and features in any node of the present application can be applied to any other node, and vice versa. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
  • the present application discloses a design method and device for control channel and data channel transmission in an SPS scenario. It should be noted that, if there is no conflict, the embodiments in the user equipment of the present application and the features in the embodiments can be applied to the base station, and vice versa. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily. Furthermore, although the original intention of this application is for the cellular network, this application can also be used for the Internet of Things and the Internet of Vehicles. Furthermore, although the original intention of the present application is aimed at the SPS scenario, the present application can also be used in non-SPS scenarios.
  • the original intention of this application is for multi-antenna communication
  • this application can also be used for single-antenna communication.
  • the original intention of this application is for the terminal and base station scenarios
  • this application is also applicable to terminals and terminals, terminals and relays, non-terrestrial networks (NTN, Non-Terrestrial Networks), and between relays and base stations
  • NTN Non-Terrestrial Networks
  • Similar technical effects are achieved in the terminal and base station scenarios.
  • adopting a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • the embodiments in the first node device of the present application and the features in the embodiments can be applied to the second node device, and vice versa.
  • TS Technical Specification
  • the present application discloses a method in a first node for wireless communication, including:
  • first signaling is used to indicate SPS configuration
  • second signaling is used to provide a downlink assignment (Downlink Assignment) of the SPS configuration
  • the first time unit is occupied by the Yth downlink arrangement after the one downlink arrangement is configured; the first signal is obtained after the first bit block undergoes at least channel coding and modulation; the first The number of bits included in a bit block is related to the Y.
  • a technical feature of the above-mentioned method is that in a traditional SPS, the terminals are configured in each downlink arrangement of an SPS, that is, occupied by data transmitted in each PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel).
  • the frequency domain resources and MCS are the same to reflect the periodic characteristics; the scheme proposed in this application, the frequency domain resources or MCS occupied by each downlink arrangement in an SPS configuration and The position of the downlink arrangement in the entire SPS transmission is related, and thus reflects the flexibility of transmission in an SPS configuration.
  • another technical feature of the above method is: on the basis of ensuring that the existing SPS period is used, by adjusting the number of bits actually transmitted on different downlink arrangements in one SPS configuration period, and then achieving the requirement of 16.67ms Transmission cycle characteristics to respond to XR demands.
  • the second signaling is used to indicate SPS activation; the second signaling is used to determine the frequency domain resource occupied by the first signal.
  • neither the coding rate adopted by the channel coding of the first bit block nor the modulation order used by the modulation of the first bit block has anything to do with the Y;
  • the number of REs occupied by the first signal is related to the Y.
  • another technical feature of the above method is: on the basis of ensuring that the existing SPS cycle is used, only the number of REs (Resource Elements, resource units) actually occupied by different downlink arrangements in one SPS configuration cycle is adjusted , does not change the MCS, and then realizes the characteristics of meeting the transmission cycle of 16.67ms to meet the needs of XR.
  • REs Resource Elements, resource units
  • At least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block is the same as The Y is relevant.
  • another technical feature of the above method is: on the basis of ensuring that the existing SPS cycle is used, only the MCS actually used in different downlink arrangements in one SPS configuration cycle is adjusted, and the number of occupied REs is not changed. Furthermore, the characteristics of meeting the transmission period of 16.67ms are realized to meet the needs of XR.
  • the first signaling is used to determine a first MCS table
  • the second signaling is used to indicate the target MCS index from the first MCS table
  • the target MCS The index and the Y are jointly used to determine at least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block.
  • the first signaling is used to indicate a first SPS configuration index
  • the period of the SPS configuration corresponding to the first SPS configuration index is used to determine the first time unit set and the second time A unit set
  • both the first time unit set and the second time unit set include a positive integer number of time units greater than 1
  • the first time unit set includes the first time unit or the second time unit
  • the collection includes said first unit of time.
  • a technical feature of the above method is that: the PDSCH transmitted in the time units in the first time unit set adopts a TBS (Transport Block Size, transport block size), and in the second time unit set The PDSCH transmitted in the time unit adopts another TBS; and then realizes a transmission that cannot be realized in an existing SPS configuration cycle in the transmission of the entire SPS configuration covering the first time unit set and the second time unit set rate.
  • TBS Transport Block Size, transport block size
  • the first signaling is used to determine at least one of the first set of time units or the second set of time units.
  • the first signal is for the first service type
  • the period of the first service type is equal to M1 milliseconds
  • the M1 is a real number greater than 1
  • the coding rate used for encoding and the modulation order used for the modulation of the first bit block are the first MCS index or the second MCS index
  • the value of M1 is used to determine the first MCS index and the difference between the second MCS index.
  • a technical feature of the above-mentioned method is that different service requirements in the XR scenario are further established to be associated with multiple MCSs used in one SPS configuration, so as to further increase the flexibility and adaptability of the SPS.
  • the present application discloses a method in a second node for wireless communication, including:
  • first signaling being used to indicate SPS configuration
  • second signaling being used to provide a downlink arrangement of the SPS configuration
  • the first time unit is occupied by the Yth downlink arrangement after the one downlink arrangement is configured; the first signal is obtained after the first bit block undergoes at least channel coding and modulation; the first The number of bits included in a bit block is related to the Y.
  • the second signaling is used to indicate SPS activation; the second signaling is used to determine the frequency domain resource occupied by the first signal.
  • neither the coding rate adopted by the channel coding of the first bit block nor the modulation order used by the modulation of the first bit block has anything to do with the Y;
  • the number of REs occupied by the first signal is related to the Y.
  • At least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block is the same as The Y is relevant.
  • the first signaling is used to determine a first MCS table
  • the second signaling is used to indicate the target MCS index from the first MCS table
  • the target MCS The index and the Y are jointly used to determine at least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block.
  • the first signaling is used to indicate a first SPS configuration index
  • the period of the SPS configuration corresponding to the first SPS configuration index is used to determine the first time unit set and the second time A unit set
  • both the first time unit set and the second time unit set include a positive integer number of time units greater than 1
  • the first time unit set includes the first time unit or the second time unit
  • the collection includes said first unit of time.
  • the first signaling is used to determine at least one of the first set of time units or the second set of time units.
  • the first signal is for the first service type
  • the period of the first service type is equal to M1 milliseconds
  • the M1 is a real number greater than 1
  • the coding rate used for encoding and the modulation order used for the modulation of the first bit block are the first MCS index or the second MCS index
  • the value of M1 is used to determine the first MCS index and the difference between the second MCS index.
  • This application discloses a first node for wireless communication, including:
  • the first receiver receives first signaling and second signaling, the first signaling is used to indicate the SPS configuration, and the second signaling is used to provide a downlink arrangement of the SPS configuration;
  • a second receiver receiving the first signal in the first time unit
  • the first time unit is occupied by the Yth downlink arrangement after the one downlink arrangement is configured; the first signal is obtained after the first bit block undergoes at least channel coding and modulation; the first The number of bits included in a bit block is related to the Y.
  • the present application discloses a second node for wireless communication, including:
  • the first transmitter sends first signaling and second signaling, the first signaling is used to indicate the SPS configuration, and the second signaling is used to provide a downlink arrangement of the SPS configuration;
  • a second transmitter sending a first signal in a first time unit
  • the first time unit is occupied by the Yth downlink arrangement after the one downlink arrangement is configured; the first signal is obtained after the first bit block undergoes at least channel coding and modulation; the first The number of bits included in a bit block is related to the Y.
  • this application has the following advantages:
  • the terminal is arranged in each downlink configuration of an SPS, that is, the frequency domain resources occupied by the data transmitted in each PDSCH are the same as the MCS, so as to reflect the periodic characteristics; the scheme proposed in this application, The frequency domain resource or MCS occupied by each downlink arrangement in an SPS configuration is related to the position of the downlink arrangement in the entire SPS transmission, thereby reflecting the flexibility of transmission in an SPS configuration;
  • the present application discloses a method in a first node for wireless communication, including:
  • the first time unit is occupied by a given uplink grant, and the given uplink grant is the Yth uplink grant after the configuration grant indicated by the first signaling is configured;
  • the first signal The first bit block is obtained after at least channel coding and modulation; the number of bits included in the first bit block is related to the Y;
  • the first signaling is RRC (Radio Resource Control, radio resource control) Signaling, the first signaling is used to indicate the number of HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) processes granted by the configuration;
  • the Y is a positive integer.
  • a technical feature of the above method is that: in traditional uplink-free dynamic grant (Dynamic Grant) transmission, the terminal grants each uplink grant in a configuration grant, that is, each PUSCH (Physical Uplink Shared Channel, physical uplink shared channel The frequency domain resources occupied by the data transmitted in ) and the MCS (Modulation and Coding Scheme, modulation and coding scheme) are all the same to reflect the periodic characteristics; the scheme proposed in this application, each uplink grant in a configuration grant The frequency domain resource or MCS occupied by the corresponding data channel is related to the position of the uplink grant in the transmission of the entire configuration grant, thereby reflecting the flexibility of transmission in a configuration grant.
  • Dynamic Grant Downlink-free dynamic grant
  • another technical feature of the above method is: on the basis of ensuring that the existing configuration grant cycle is used, by adjusting the number of bits actually transmitted in different uplink grants in a configuration grant configuration cycle, and then achieving the satisfaction of The characteristics of the transmission cycle of 16.67ms to meet the needs of XR.
  • the CRC included in the second signaling is scrambled by a first RNTI (Radio Network Temporary Identifier, wireless network temporary identifier); the second signaling is used to indicate the CRC indicated by the first signaling
  • the configuration grant is activated; the second signaling is physical layer signaling; the first RNTI is an RNTI other than C-RNTI (Cell Radio Network Temporary Identifier, cell radio network temporary identifier).
  • neither the coding rate adopted by the channel coding of the first bit block nor the modulation order used by the modulation of the first bit block has anything to do with the Y;
  • the number of REs (Resource Elements, resource units) occupied by the first signal is related to the Y.
  • a technical feature of the above method is: on the basis of ensuring that the existing configuration grant cycle is used, only adjust the number of REs actually occupied by different uplink grants in the configuration cycle of a configuration grant, without changing the MCS, and then Realize the characteristics of meeting the transmission cycle of 16.67ms to meet the needs of XR.
  • At least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block is the same as The Y is relevant.
  • a technical feature of the above method is: on the basis of ensuring that the existing configuration grant cycle is used, only the MCS actually used in different uplink grants in the configuration cycle of a configuration grant is adjusted, and the occupied REs are not changed. Number, and then realize the characteristics of meeting the transmission cycle of 16.67ms, in order to meet the needs of XR.
  • the first signaling is used to determine a first MCS table and the second signaling is used to indicate a target MCS index from the first MCS table, or the first signaling
  • the command is used to indicate the target MCS index; the target MCS index and the Y are jointly used to determine the coding rate adopted by the channel coding of the first bit block and the channel coding rate of the first bit block. At least one of the two modulation orders used for the modulation.
  • the first signaling is used to indicate a first configuration grant configuration index
  • the configuration grant cycle corresponding to the first configuration grant configuration index is used to determine the first time unit set and the second Two time unit sets; the first time unit set and the second time unit set both include a positive integer number of time units greater than 1; the first time unit set includes the first time unit or the second time unit
  • the set of time units includes the first time unit.
  • a technical feature of the above method is that: the PUSCH transmitted in the time units in the first time unit set adopts a TBS (Transport Block Size, transport block size), and in the second time unit set The PDSCH transmitted in the time unit adopts another TBS; thereby realizing that the configured period of an existing configuration grant cannot be realized in the transmission of the first time unit set and the second time unit set covered by the entire configuration grant The achieved transfer rate.
  • TBS Transport Block Size, transport block size
  • the first signaling is used to determine at least one of the first set of time units or the second set of time units.
  • the first signal is for the first service type
  • the period of the first service type is equal to M1 milliseconds
  • the M1 is a real number greater than 1
  • the coding rate used for encoding and the modulation order used for the modulation of the first bit block are the first MCS index or the second MCS index
  • the value of M1 is used to determine the first MCS index and the difference between the second MCS index.
  • a technical feature of the above method is that different service requirements in the XR scenario are further associated with multiple MCSs used in a configuration grant, so as to further increase the flexibility and adaptability of dynamic grant-free transmission.
  • the present application discloses a method in a second node for wireless communication, including:
  • the first time unit is occupied by a given uplink grant, and the given uplink grant is the Yth uplink grant after the configuration grant indicated by the first signaling is configured; the first signal It is obtained after the first bit block undergoes at least channel coding and modulation; the number of bits included in the first bit block is related to the Y; the first signaling is RRC signaling, and the first signaling Used to indicate the number of HARQ processes granted by the configuration; the Y is a positive integer.
  • the CRC included in the second signaling is scrambled by the first RNTI; the second signaling is used to indicate that the configuration grant indicated by the first signaling is activated; the second signaling
  • the signaling is physical layer signaling; the first RNTI is an RNTI other than the C-RNTI.
  • neither the coding rate adopted by the channel coding of the first bit block nor the modulation order used by the modulation of the first bit block has anything to do with the Y;
  • the number of REs occupied by the first signal is related to the Y.
  • At least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block is the same as The Y is relevant.
  • the first signaling is used to determine a first MCS table and the second signaling is used to indicate a target MCS index from the first MCS table, or the first signaling
  • the command is used to indicate the target MCS index; the target MCS index and the Y are jointly used to determine the coding rate adopted by the channel coding of the first bit block and the channel coding rate of the first bit block. At least one of the two modulation orders used for the modulation.
  • the first signaling is used to indicate a first configuration grant configuration index
  • the configuration grant cycle corresponding to the first configuration grant configuration index is used to determine the first time unit set and the second Two time unit sets; the first time unit set and the second time unit set both include a positive integer number of time units greater than 1; the first time unit set includes the first time unit or the second time unit
  • the set of time units includes the first time unit.
  • the first signaling is used to determine at least one of the first set of time units or the second set of time units.
  • the first signal is for the first service type
  • the period of the first service type is equal to M1 milliseconds
  • the M1 is a real number greater than 1
  • the coding rate used for encoding and the modulation order used for the modulation of the first bit block are the first MCS index or the second MCS index
  • the value of M1 is used to determine the first MCS index and the difference between the second MCS index.
  • This application discloses a first node for wireless communication, including:
  • the first receiver receives first signaling, where the first signaling is used to indicate configuration grant configuration
  • a first transmitter sending a first signal in a first time unit
  • the first time unit is occupied by a given uplink grant, and the given uplink grant is the Yth uplink grant after the configuration grant indicated by the first signaling is configured; the first signal It is obtained after the first bit block undergoes at least channel coding and modulation; the number of bits included in the first bit block is related to the Y; the first signaling is RRC signaling, and the first signaling Used to indicate the number of HARQ processes granted by the configuration; the Y is a positive integer.
  • the present application discloses a second node for wireless communication, including:
  • a second transmitter sending first signaling, where the first signaling is used to indicate configuration grant configuration
  • a second receiver receiving the first signal in the first time unit
  • the first time unit is occupied by a given uplink grant, and the given uplink grant is the Yth uplink grant after the configuration grant indicated by the first signaling is configured; the first signal It is obtained after the first bit block undergoes at least channel coding and modulation; the number of bits included in the first bit block is related to the Y; the first signaling is RRC signaling, and the first signaling Used to indicate the number of HARQ processes granted by the configuration; the Y is a positive integer.
  • this application has the following advantages:
  • the terminal transmits data corresponding to each uplink grant of a configuration grant, that is, the frequency domain resources and MCS occupied by the data transmitted in each PUSCH are the same to reflect periodic characteristics;
  • the frequency domain resource or MCS occupied by each uplink grant in a configuration grant is related to the position of the uplink grant in the transmission of the entire configuration grant, thereby reflecting the flexibility of transmission in a configuration grant configuration;
  • the above method of adjusting the number of transmitted bits can be based on adjusting the MCS, or adjusting the number of REs actually occupied;
  • FIG. 1A shows a processing flowchart of a first node according to an embodiment of the present application
  • FIG. 1B shows a processing flowchart of a first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5A shows a flowchart of the first signaling according to an embodiment of the present application
  • Figure 5B shows a flowchart of the first signaling according to one embodiment of the present application
  • Figure 6A shows a schematic diagram of the first time unit according to one embodiment of the present application
  • Fig. 6B shows a schematic diagram of a first time unit according to an embodiment of the present application
  • FIG. 7A shows a schematic diagram of a downlink arrangement according to an embodiment of the present application.
  • Fig. 7B shows a schematic diagram of a first time unit according to another embodiment of the present application.
  • FIG. 8A shows a schematic diagram of a downlink arrangement according to another embodiment of the present application.
  • Fig. 8B shows a schematic diagram of an uplink grant according to an embodiment of the present application.
  • FIG. 9A shows a schematic diagram of a first time unit set and a second time unit set according to an embodiment of the present application.
  • Fig. 9B shows a schematic diagram of an uplink grant according to another embodiment of the present application.
  • FIG. 10A shows a schematic diagram of a first time unit set and a second time unit set according to another embodiment of the present application
  • FIG. 10B shows a schematic diagram of a first time unit set and a second time unit set according to an embodiment of the present application
  • FIG. 11A shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 11B shows a schematic diagram of a first time unit set and a second time unit set according to another embodiment of the present application
  • FIG. 12A shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application
  • FIG. 12B shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 13 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1A illustrates a processing flowchart of a first node, as shown in FIG. 1A .
  • each box represents a step.
  • the first node in this application receives first signaling and second signaling in step 101A, the first signaling is used to indicate SPS configuration, and the second signaling is used to A downlink arrangement of said SPS configuration is provided; a first signal is received in a first time unit in step 102A.
  • the first time unit is occupied by the Yth downlink arrangement after the one downlink arrangement is configured; the first signal is obtained after at least channel coding and modulation of the first bit block; The number of bits included in the first bit block is related to the Y.
  • the SPS configuration is an SPS Configuration.
  • the SPS configuration corresponds to one SPS-ConfigIndex.
  • the SPS-ConfigIndex corresponding to the SPS configuration is a non-negative integer.
  • the first signaling is used to indicate an SPS-ConfigIndex.
  • the first signaling is used to indicate CS-RNTI (Configured Scheduling Radio Network Temporary Identifier, configured scheduling radio network temporary identifier).
  • CS-RNTI Configured Scheduling Radio Network Temporary Identifier, configured scheduling radio network temporary identifier
  • the first signaling is used to indicate nrofHARQ-Processes.
  • the first signaling is used to indicate harq-ProcID-Offset.
  • the first signaling is used to indicate a configured period (periodicity) of the downlink arrangement for the SPS.
  • the first signaling is RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first signaling is the SPS-Config IE in TS (Technical Specification, technical specification) 38.331.
  • the downlink assignment is a Downlink Assignment.
  • the second signaling is a DCI (Downlink control information, downlink control information).
  • DCI Downlink control information, downlink control information
  • the physical layer channel occupied by the second signaling includes a PDCCH (Physical Downlink Control Channel, physical downlink control channel).
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • the CRC (Cyclic Redundancy Check, cyclic redundancy check) included in the second signaling is scrambled by CS-RNTI.
  • the second signaling is used for activation of the SPS configuration (Activation).
  • the first node validates (Validate) that the SPS transmission targeted by the SPS configuration is activated according to the reception of the second signaling.
  • the first time unit is a time slot (Slot).
  • the first time unit occupies a positive integer number greater than 1 of continuous OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • one time unit in this application is a time slot.
  • one time unit in this application occupies a positive integer number greater than 1 and consecutive OFDM symbols.
  • the DCI format (Format) adopted by the second signaling is one of 1_0, 1_1 or 1_2.
  • the first signal is a wireless signal.
  • the first signal is a baseband signal.
  • the first signal is generated by a TB (Transport Block, transmission block).
  • TB Transport Block, transmission block
  • the first signal is generated by a CB (Code Block, code block).
  • CB Code Block, code block
  • the first signal is generated by a CBG (Code Block Group, code block group).
  • CBG Code Block Group, code block group
  • the first bit block is generated by one TB.
  • the first bit block is generated by one CB.
  • the first bit block is generated by a CBG.
  • the physical layer channel occupied by the first signal includes a PDSCH.
  • the transmission channel occupied by the first signal includes a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the first signaling is used to determine a first time unit pool, and the first time unit pool includes K1 time units, where K1 is a positive integer greater than 1, and the first time unit is a time unit in the first time unit pool.
  • any time unit in the K1 time units is a time slot.
  • any one of the K1 time units occupies a positive integer number of consecutive OFDM symbols greater than 1.
  • the second signaling is used to determine a target time unit set, the target time unit set includes K2 time units, and any time unit in the K2 time units belongs to the The first time unit pool, the target time unit is one of the K2 time units.
  • the second signaling is used to determine the earliest time unit in the time domain among the K2 time units.
  • the first time unit is the Yth time unit among the K2 time units.
  • the first time unit is the (Y-1)th time unit among the K2 time units.
  • the time unit in which the second signaling is located is the first time unit in the K2 time units.
  • the Y is a positive integer.
  • the Y is a non-negative integer.
  • the first signal is that the first bit block undergoes at least CRC attachment (attachment), code block segmentation (Code Block Segmentation), code block CRC attachment (Per-CB CRC Attachment), channel coding (encoding) ), obtained after Rate Matching and Concatenation.
  • CRC attachment attachment
  • code block segmentation Code Block Segmentation
  • code block CRC attachment Per-CB CRC Attachment
  • channel coding encoding
  • the first signal is obtained after the first bit block undergoes at least CRC (Cyclic Redundancy Check, cyclic redundancy check) attachment, channel coding and rate matching.
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • the first signal is obtained after the first bit block undergoes at least scrambling, modulation operation (Modulation) and resource block mapping (Resource Mapping).
  • the first signal is obtained after the first bit block undergoes scrambling, the modulation operation, layer mapping (Layer Mapping), antenna port mapping (Antenna Port Mapping) and resource block mapping.
  • the first signal is obtained after the first bit block undergoes CRC addition, code block division, code block CRC addition, channel coding, rate matching and code block concatenation.
  • the first signal is obtained after CRC addition, channel coding and rate matching are performed on the first bit block.
  • the first signal is obtained after the first bit block undergoes scrambling, the modulation operation and resource block mapping.
  • the first signal is obtained after the first bit block undergoes scrambling, the modulation operation, layer mapping, antenna port mapping, and resource block mapping.
  • the first signal is obtained after the first bit block undergoes CRC addition, code block division, code block CRC addition, channel coding, rate matching, and code block concatenation in sequence.
  • the first signal is obtained after the first bit block undergoes channel coding, scrambling, modulation operation, layer mapping, antenna port mapping and resource block mapping in sequence.
  • the resource block mapping includes mapping to REs other than allocated REs in the physical resource block.
  • the resource block mapping includes mapping to a virtual resource block (Virtual Resource Block), and mapping from a virtual resource block to a physical resource block.
  • Virtual Resource Block Virtual Resource Block
  • the channel coding is based on LDPC (Low Density Parity Check, Low Density Parity Check) code.
  • LDPC Low Density Parity Check, Low Density Parity Check
  • the channel coding is based on Turbo codes.
  • the channel coding is based on polar codes.
  • the HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request
  • Process Number field included in the second signaling is set to all "0".
  • the Redundancy Version field included in the second signaling is set to all "0".
  • Embodiment 1B illustrates a processing flowchart of a first node, as shown in FIG. 1B .
  • each box represents a step.
  • the first node in this application receives the first signaling in step 101B, and the first signaling is used to indicate configuration grant configuration; in step 102B, the first node sends the first Signal.
  • the first time unit is occupied by a given uplink grant, and the given uplink grant is the Yth uplink grant after the configuration grant indicated by the first signaling is configured;
  • the The first signal is obtained after the first bit block undergoes at least channel coding and modulation; the number of bits included in the first bit block is related to the Y;
  • the first signaling is RRC signaling, and the first A signaling is used to indicate the number of HARQ processes granted by the configuration;
  • the Y is a positive integer.
  • the first signaling is RRC signaling.
  • the name of the first signaling includes ConfiguredGrant.
  • the name of the first signaling includes Config.
  • the first signaling is transmitted through a ConfiguredGrantConfig IE (Information Elements, information element) in TS 38.331.
  • ConfiguredGrantConfig IE Information Elements, information element
  • the physical layer channel occupied by the first signaling includes a PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • the configuration grant is a Configured Grant.
  • the configuration grant indicated by the first signaling is a Type 1 (Type 1) configuration grant.
  • the configuration grant indicated by the first signaling is a Type 2 (Type 2) configuration grant.
  • the first signaling is used to indicate a period (Periodicity) of the configuration grant.
  • the first signaling is used to determine the sending power value of the first signal.
  • the first signaling is used to indicate a first coefficient
  • the first coefficient is used to determine the transmit power value of the first signal
  • the first coefficient corresponds to p0-PUSCH-Alpha in TS 38.331.
  • the first signaling is used to indicate a path loss reference index
  • the path loss reference index is used to determine the transmit power value of the first signal
  • the pathloss reference index corresponds to the pathlossReferenceIndex in TS 38.331.
  • the first signaling is used to determine the first time unit.
  • the first time unit is a time slot.
  • the first time unit occupies at least one symbol (symbol) in the time domain.
  • the first time unit occupies multiple consecutive symbols in the time domain.
  • the time unit in this application is a time slot.
  • the time unit in this application occupies at least one symbol (symbol) in the time domain.
  • the time unit in this application occupies multiple consecutive symbols in the time domain.
  • the symbols in this application are OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbols.
  • the symbols described in this application are SC-FDMA (Single-Carrier Frequency Division Multiple Access, single-carrier frequency division multiple access) symbols.
  • the symbols described in this application are FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbols.
  • the symbols described in this application are OFDM symbols including CP (Cyclic Prefix, cyclic prefix).
  • the symbols described in this application are DFT-s-OFDM (Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing, discrete Fourier transform extended Orthogonal Frequency Division Multiplexing) symbols including CP.
  • DFT-s-OFDM Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing, discrete Fourier transform extended Orthogonal Frequency Division Multiplexing
  • the first signal is a wireless signal.
  • the first signal is a baseband signal.
  • the first signal is generated by a TB (Transport Block, transmission block).
  • TB Transport Block, transmission block
  • the first signal is generated by a CB (Code Block, code block).
  • CB Code Block, code block
  • the first signal is generated by a CBG (Code Block Group, code block group).
  • CBG Code Block Group, code block group
  • the first bit block is generated by one TB.
  • the first bit block is generated by one CB.
  • the first bit block is generated by a CBG.
  • the physical layer channel occupied by the first signal includes a PUSCH.
  • the transmission channel occupied by the first signal includes a UL-SCH (Uplink Shared Channel, uplink shared channel).
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • the first signaling is used to determine a first time unit pool, and the first time unit pool includes K1 time units, where K1 is a positive integer greater than 1, and the first time unit is a time unit in the first time unit pool.
  • any time unit in the K1 time units is a time slot.
  • any one of the K1 time units occupies a positive integer number of consecutive symbols greater than 1.
  • the first time unit is the Yth time unit among the K1 time units.
  • the first time unit is the (Y-1)th time unit among the K1 time units.
  • the first time unit is the first time unit among the K1 time units.
  • the Y is a positive integer.
  • the Y is a non-negative integer.
  • the first signal is that the first bit block undergoes at least CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) additional (attachment), code block segmentation (Code Block Segmentation), code block CRC attachment ( Per-CB CRC Attachment), channel encoding (encoding), rate matching (Rate Matching) and code block concatenation (Concatenation).
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • additional attachment
  • code block segmentation Code Block Segmentation
  • code block CRC attachment Per-CB CRC Attachment
  • channel encoding encoding
  • rate matching Rate Matching
  • Concatenation code block concatenation
  • the first signal is obtained after the first bit block undergoes at least CRC (Cyclic Redundancy Check, cyclic redundancy check) attachment, channel coding and rate matching.
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • the first signal is obtained after the first bit block undergoes at least scrambling, modulation operation (Modulation) and resource block mapping (Resource Mapping).
  • the first signal is obtained after the first bit block undergoes scrambling, the modulation operation, layer mapping (Layer Mapping), antenna port mapping (Antenna Port Mapping) and resource block mapping.
  • the first signal is obtained after the first bit block undergoes CRC addition, code block division, code block CRC addition, channel coding, rate matching and code block concatenation.
  • the first signal is obtained after CRC addition, channel coding and rate matching are performed on the first bit block.
  • the first signal is obtained after the first bit block undergoes scrambling, the modulation operation and resource block mapping.
  • the first signal is obtained after the first bit block undergoes scrambling, the modulation operation, layer mapping, antenna port mapping, and resource block mapping.
  • the first signal is obtained after the first bit block undergoes CRC addition, code block division, code block CRC addition, channel coding, rate matching, and code block concatenation in sequence.
  • the first signal is obtained after the first bit block undergoes channel coding, scrambling, modulation operation, layer mapping, antenna port mapping and resource block mapping in sequence.
  • the resource block mapping includes mapping to allocated REs in the physical resource block.
  • the resource block mapping includes mapping to REs other than allocated REs in the physical resource block.
  • the resource block mapping includes mapping to a virtual resource block (Virtual Resource Block), and mapping from a virtual resource block to a physical resource block.
  • Virtual Resource Block Virtual Resource Block
  • the channel coding is based on LDPC (Low Density Parity Check, Low Density Parity Check) code.
  • LDPC Low Density Parity Check, Low Density Parity Check
  • the channel coding is based on Turbo codes.
  • the channel coding is based on polar codes.
  • the first signaling is used to indicate the nrofHARQ-Processes field (Field) in TS 38.331.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2 .
  • FIG. 2 illustrates a diagram of a network architecture 200 of a 5G NR, LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • EPS Evolved Packet System, Evolved Packet System
  • EPS 200 may include a UE (User Equipment, user equipment) 201, NR-RAN (next generation radio access network) 202, EPC (Evolved Packet Core, evolved packet core)/5G-CN (5G-Core Network, 5G core Network) 210, HSS (Home Subscriber Server, Home Subscriber Server) 220 and Internet service 230.
  • the EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit-switched services or other cellular networks.
  • NR-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP or some other suitable terminology.
  • the gNB203 provides an access point to the EPC/5G-CN 210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, Mobility Management Entity)/AMF (Authentication Management Field, Authentication Management Field)/UPF (User Plane Function, User Plane Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, service gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213.
  • MME/AMF/UPF 211 is a control node that handles signaling between UE 201 and EPC/5G-CN 210. In general, MME/AMF/UPF 211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE 201 corresponds to the first node in this application.
  • the UE 201 supports the SPS service.
  • the UE 201 can support simultaneous activation of multiple SPS configurations.
  • the UE 201 supports XR services.
  • the XR in this application includes AR (Augmented Reality).
  • the XR in this application includes VR (Virtual Reality).
  • the gNB203 corresponds to the first node in this application.
  • the gNB203 supports the SPS service.
  • the gNB203 can simultaneously support multiple SPS configurations to be activated simultaneously.
  • the gNB203 supports XR services.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second The radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X): layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • a layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for a link between the first communication node device and the second communication node device through the PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and the PDCP sublayer 304 also provides handoff support for the first communication node device to the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the connection between the second communication node device and the first communication node device Inter- RRC signaling to configure the lower layer.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and another layer terminating at the connection.
  • Application layer at one end eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the PDCP 304 of the second communication node device is used to generate the schedule of the first communication node device.
  • the PDCP354 of the second communication node device is used to generate the schedule of the first communication node device.
  • the first signaling is generated by the MAC302 or the MAC352.
  • the first signaling is generated in the RRC306.
  • the second signaling is generated by the PHY301 or the PHY351.
  • the second signaling is generated by the MAC302 or the MAC352.
  • the first signal is generated by the PHY301 or the PHY351.
  • the first signal is generated by the MAC302 or the MAC352.
  • the first signal is generated by the RRC306.
  • the first node is a terminal.
  • the second node is a terminal.
  • the second node is a TRP (Transmitter Receiver Point, sending and receiving point).
  • TRP Transmitter Receiver Point, sending and receiving point
  • the second node is a cell (Cell).
  • the second node is an eNB.
  • the second node is a base station.
  • the second node is used to manage multiple TRPs.
  • the second node is a node for managing multiple cells.
  • the second node is a node for managing multiple carriers.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • Second communications device 410 includes controller/processor 475 , memory 476 , receive processor 470 , transmit processor 416 , multi-antenna receive processor 472 , multi-antenna transmit processor 471 , transmitter/receiver 418 and antenna 420 .
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels. Multiplexing, and allocation of radio resources to said first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said second communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • controller/processor 475 In transmission from said first communication device 450 to said second communication device 410, controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the said at least one processor, said first communication device 450 device at least: firstly receive first signaling and second signaling, said first signaling is used to indicate SPS configuration, said second signaling is used A downlink arrangement for providing the SPS configuration; subsequently receiving a first signal in a first time unit; the first time unit is occupied by the Yth downlink arrangement after the one downlink arrangement is configured; the The first signal is obtained after the first bit block undergoes at least channel coding and modulation; the number of bits included in the first bit block is related to the Y.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: first receiving First signaling and second signaling, the first signaling is used to indicate the SPS configuration, the second signaling is used to provide a downlink arrangement of the SPS configuration; subsequently received in the first time unit The first signal; the first time unit is occupied by the Yth downlink arrangement after the one downlink arrangement is configured; the first signal is obtained after at least channel coding and modulation of the first bit block; the The number of bits included in the first bit block is related to the Y.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the at least one of the processors described above.
  • the second communication device 410 means at least: first sending first signaling and second signaling, the first signaling is used to indicate the SPS configuration, and the second signaling is used to provide the SPS configuration A downlink arrangement; then a first signal is sent in a first time unit; the first time unit is occupied by the Yth downlink arrangement after the one downlink arrangement is configured; the first signal is the first bit
  • the block is obtained after at least channel coding and modulation; the number of bits included in the first bit block is related to the Y.
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: first Sending first signaling and second signaling, the first signaling is used to indicate the SPS configuration, and the second signaling is used to provide a downlink arrangement of the SPS configuration; then in the first time unit Sending a first signal; the first time unit is occupied by the Yth downlink arrangement after the one downlink arrangement is configured; the first signal is obtained after at least channel coding and modulation of the first bit block; The number of bits included in the first bit block is related to the Y.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a terminal.
  • the second communication device 410 is a base station.
  • the second communications device 410 is a UE.
  • the second communication device 410 is a network device.
  • the second communication device 410 is a serving cell.
  • the second communication device 410 is a TRP.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive First signaling and second signaling, the first signaling is used to indicate SPS configuration, the second signaling is used to provide a downlink arrangement of the SPS configuration; the antenna 420, the transmitting At least the first four of the multi-antenna transmission processor 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475 are used to send the first signaling and the second signaling, and the first A signaling is used to indicate the SPS configuration, and the second signaling is used to provide a downlink arrangement of the SPS configuration.
  • the first four of the antenna 452, the receiver 454, the multi-antenna receive processor 458, the receive processor 456, and the controller/processor 459 are used to The first signal is received in the first time unit; the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, at least the first four in the controller/processor 475 Either is used to send the first signal in the first time unit.
  • Embodiment 5A illustrates a flow chart of the first signaling, as shown in FIG. 5A .
  • the first node U1A communicates with the second node N2A through a wireless link. It is particularly noted that the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the first signaling and the second signaling are received in step S10A; the first signal is received in a first time unit in step S11A.
  • the first signaling and the second signaling are sent in step S20A; and the first signal is sent in the first time unit in step S21A.
  • the first signaling is used to indicate the SPS configuration
  • the second signaling is used to provide a downlink arrangement of the SPS configuration
  • the first time unit is set in the one downlink arrangement Occupied by the Y-th downlink arrangement after configuration
  • the first signal is obtained after at least channel coding and modulation of the first bit block
  • the number of bits included in the first bit block is related to the Y.
  • the time domain resources occupied by the first signaling and the time domain resources occupied by the second signaling belong to the same time slot.
  • the time domain resource occupied by the first signaling and the time domain resource occupied by the second signaling belong to two different time slots respectively.
  • the time domain resource occupied by the second signaling and the time domain resource occupied by the first signal belong to the same time slot.
  • the time domain resource occupied by the second signaling and the time domain resource occupied by the first signal respectively belong to two different time slots.
  • the second signaling is used to indicate SPS activation; the second signaling is used to determine frequency domain resources occupied by the first signal.
  • the Frequency Domain Assignment field included in the second signaling is used to indicate the frequency domain resource occupied by the first signal.
  • the Frequency Domain Assignment field included in the second signaling is used to indicate the frequency domain position of the RB (Resource Block, resource block) occupied by the first signal.
  • the Frequency Domain Assignment field included in the second signaling is used to determine the frequency domain resource occupied by the first signal.
  • the Frequency Domain Assignment field included in the second signaling is used to determine the frequency domain position of the RB occupied by the first signal.
  • the Frequency Domain Assignment field included in the second signaling is used to indicate a first RB set, where the first RB set includes a positive integer number of RBs greater than 1, and the first The frequency domain resources occupied by a signal include at least the first RB set in the first RB set or the second RB set, the second RB set includes a positive integer number of RBs greater than 1, and the first RB The frequency domain location of the set is used to determine the frequency domain location of the second set of RBs.
  • whether the frequency domain resource occupied by the first signal includes the second RB set is related to the value of Y.
  • the frequency domain resource occupied by the first signal includes the second RB set; if the Y is equal to an even number, the frequency domain resource occupied by the first signal The resource does not include the second set of RBs.
  • the frequency domain resource occupied by the first signal includes the second RB set; if the Y is equal to an odd number, the frequency domain resource occupied by the first signal The resource does not include the second set of RBs.
  • the frequency domain resource occupied by the first signal when the Y is less than the first threshold, the frequency domain resource occupied by the first signal includes the second RB set; when the Y is not less than the first threshold, the first The frequency domain resource occupied by a signal does not include the second RB set; the first threshold is fixed or the first threshold is configured through RRC or MAC signaling; the first threshold is greater than 1 positive integer.
  • the frequency domain resource occupied by the first signal when the Y is greater than the second threshold, the frequency domain resource occupied by the first signal includes the second RB set; when the Y is not greater than the second threshold, the first The frequency domain resource occupied by a signal does not include the second RB set; the second threshold is fixed or the second threshold is configured through RRC or MAC signaling; the second threshold is greater than 1 positive integer.
  • the number of RBs included in the second RB set is fixed, or the number of RBs included in the second RB set is configured through higher layer signaling.
  • the number of RBs included in the second RB set has nothing to do with the second signaling.
  • the number of RBs included in the second RB set is related to the service type of the first node.
  • neither the coding rate used by the channel coding of the first bit block nor the modulation order used by the modulation of the first bit block has anything to do with the Y;
  • the number of REs occupied by a signal is related to the Y.
  • the number of bits included in the first bit block is TBS.
  • the number of REs occupied by the first signal is related to the number of RBs occupied by the first signal
  • the number of RBs occupied by the first signal is related to the number of RBs occupied by the first signal. related to Y.
  • the number of REs occupied by the first signal when the Y is an odd number, the number of REs occupied by the first signal is equal to X1; when the Y is an even number, the number of REs occupied by the first signal is The quantity is equal to X2; both the X1 and the X2 are positive integers greater than 1, and the X1 and the X2 are not equal.
  • the number of REs occupied by the first signal is equal to X1; when the Y is greater than the third threshold, the first signal The number of occupied REs is equal to X2; both X1 and X2 are positive integers greater than 1, and X1 and X2 are not equal; the third threshold is fixed or the third threshold is passed configured by RRC or MAC signaling; the third threshold is a positive integer greater than 1.
  • the number of REs occupied by the first signal is equal to X1; when the Y is not greater than the fourth threshold, the first signal The number of occupied REs is equal to X2; both X1 and X2 are positive integers greater than 1, and X1 and X2 are not equal; the fourth threshold is fixed or the fourth threshold is passed configured by RRC or MAC signaling; the fourth threshold is a positive integer greater than 1.
  • the second signaling is used to determine the value of X1, and the value of X2 is related to the value of X1.
  • the second signaling is used to determine the value of X2, and the value of X1 is related to the value of X2.
  • the difference between X1 and X2 is equal to X3; the value of X3 is configured through RRC signaling or MAC signaling, or the value of X3 is fixed.
  • the second signaling is used to indicate that the coding rate adopted by the channel coding of the first bit block is different from the coding rate adopted by the modulation of the first bit block At least one of the modulation orders employed.
  • the second signaling is used to indicate that the coding rate adopted by the channel coding of the first bit block is different from the coding rate adopted by the modulation of the first bit block The modulation order to use.
  • At least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block is the same as the Y related.
  • the frequency domain resources occupied by the first signal are not related to the Y.
  • the number of RBs and RB positions occupied by the first signal are not related to the Y.
  • the second signaling is used to indicate the frequency domain resource occupied by the first signal.
  • the number of REs occupied by the first signal is independent of the Y.
  • the coding rate adopted by the channel coding of the first bit block is different from the coding rate adopted by the modulation of the first bit block
  • the modulation order adopted adopts the encoding rate corresponding to the first MCS index (Index) and the modulation order (Order) corresponding to the first MCS index; when the Y is equal to an even number, all the bits passed by the first bit block
  • the encoding rate adopted by the channel encoding and the modulation order adopted by the modulation of the first bit block adopt the encoding rate corresponding to the second MCS index and the modulation order corresponding to the second MCS index;
  • the first MCS index is related to the second MCS index, and the second signaling is used to indicate the first MCS index or the second MCS index.
  • the coding rate adopted by the channel coding of the first bit block is different from that of the channel coding of the first bit block
  • the modulation order used for the modulation adopts the encoding rate corresponding to the first MCS index and the modulation order corresponding to the first MCS index
  • the first bit block passes through the The coding rate used for channel coding and the modulation order used for the modulation of the first bit block adopt the coding rate corresponding to the second MCS index and the modulation order corresponding to the second MCS index
  • the first MCS index is related to the second MCS index, and the second signaling is used to indicate the first MCS index or the second MCS index
  • the fifth threshold is fixed or the fifth threshold
  • the five thresholds are configured through RRC or MAC signaling; the fifth threshold is a positive integer greater than 1.
  • the coding rate adopted by the channel coding of the first bit block is different from the coding rate of the channel coding of the first bit block
  • the modulation order used for modulation adopts the coding rate corresponding to the first MCS index and the modulation order corresponding to the first MCS index
  • the first bit block passes through the The coding rate used for channel coding and the modulation order used for the modulation of the first bit block adopt the coding rate corresponding to the second MCS index and the modulation order corresponding to the second MCS index
  • the first MCS index is related to the second MCS index, and the second signaling is used to indicate the first MCS index or the second MCS index
  • the sixth threshold is fixed or the sixth threshold
  • the six thresholds are configured through RRC or MAC signaling; the sixth threshold is a positive integer greater than 1.
  • the second signaling indicates the former of the first MCS index and the second MCS index.
  • the second signaling indicates the latter of the first MCS index and the second MCS index.
  • the second signaling does not indicate the first MCS index and the second MCS index at the same time.
  • the difference between the first MCS index and the second MCS index is equal to X4; the value of X4 is configured through RRC signaling or MAC signaling, or the value of X4 Value is fixed.
  • the first signaling is used to determine the first MCS table
  • the second signaling is used to indicate the target MCS index from the first MCS table
  • the target MCS index is jointly used to determine at least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block .
  • the target MCS index is the first MCS index.
  • the target MCS index is the second MCS index.
  • the first signaling is used to indicate a first SPS configuration index
  • the period of the SPS configuration corresponding to the first SPS configuration index is used to determine the first time unit set and the second time unit set ;
  • Both the first time unit set and the second time unit set include a positive integer number of time units greater than 1; the first time unit set includes the first time unit or the second time unit set includes The first time unit.
  • the first time unit corresponding to the value of Y belongs to the first time unit set, and the frequency domain resource occupied by the first signal includes the first RB set and the second RB set; the first time unit corresponding to the value of Y belongs to the second time unit set, and the frequency domain resource occupied by the first signal includes the first RB set And the second RB set is not included.
  • the first time unit corresponding to the value of Y belongs to the first time unit set, and the number of REs occupied by the first signal is equal to X1; the Y The first time unit corresponding to the value of belongs to the second time unit set, and the number of REs occupied by the first signal is equal to X2; both X1 and X2 are positive integers greater than 1, so Said X1 is not equal to said X2.
  • the first time unit corresponding to the value of Y belongs to the first time unit set, and the channel coding adopted by the first bit block is The encoding rate and the modulation order adopted by the modulation of the first bit block adopt the encoding rate corresponding to the first MCS index and the modulation order corresponding to the first MCS index; the value of Y corresponds to The first time unit belongs to the second time unit set, and the coding rate adopted by the channel coding of the first bit block is the same as the coding rate adopted by the modulation of the first bit block.
  • the modulation order adopts the coding rate corresponding to the second MCS index and the modulation order corresponding to the second MCS index; the first MCS index is different from the second MCS index, and the second signaling indicates that the first An MCS index or the second MCS index.
  • the first signaling is used to determine at least one of the first set of time units or the second set of time units.
  • the first signaling is used to indicate the first set of time units.
  • the first signaling is used to indicate the second set of time units.
  • the first signaling is used to indicate the first set of time units and the second set of time units.
  • the first signaling is used to indicate the first set of time units from the first time unit pool.
  • the first signaling is used to indicate the second time unit set from the first time unit pool.
  • the first signaling is used to indicate the first set of time units and the second set of time units from the first time unit pool.
  • the first signal is for the first service type, and the period of the first service type is equal to M1 milliseconds, where M1 is a real number greater than 1, and the channel coding performed by the first bit block is The coding rate adopted and the modulation order adopted by the modulation of the first bit block are the first MCS index or the second MCS index; the value of M1 is used to determine the first MCS index and the The difference of the second MCS index.
  • the first signal is for the first service type
  • the period of the first service type is equal to M1 milliseconds
  • the M1 is a real number greater than 1
  • the number of RBs occupied by the first signal is equal to the first integer or a second integer
  • the first integer is not equal to the second integer
  • both the first integer and the second integer are positive integers
  • the value of M1 is used to determine the first integer and the second integer Ratio of the second integer.
  • the first signal is for the first service type
  • the period of the first service type is equal to M1 milliseconds
  • the M1 is a real number greater than 1
  • the number of REs occupied by the first signal is equal to the third integer or a fourth integer
  • the third integer is not equal to the fourth integer
  • both the third integer and the fourth integer are positive integers greater than 1
  • the value of the M1 is used to determine the The ratio of the three integers to the fourth integer.
  • the first signal is for the first service type
  • the period of the first service type is equal to M1 milliseconds
  • the M1 is a real number greater than 1
  • the value of the M1 is used to determine the first A ratio of the number of time units included in the time unit set to the number of time units included in the second time unit set.
  • Embodiment 5B illustrates a flow chart of the first signaling, as shown in FIG. 5B .
  • the first node U1B communicates with the second node N2B through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the steps in the box labeled F0 in the figure are optional.
  • the first signaling is received in step S10B; the second signaling is received in step S11B; and the first signal is sent in the first time unit in step S12B.
  • the first signaling is sent in step S20B; the second signaling is sent in step S21B; and the first signal is received in the first time unit in step S22B.
  • the first signaling is used to indicate configuration grant configuration; the first time unit is occupied by a given uplink grant, and the given uplink grant is the The Y-th uplink grant after the configuration grant is configured; the first signal is obtained after at least channel coding and modulation of the first bit block; the number of bits included in the first bit block is related to the Y;
  • the first signaling is RRC signaling, and the first signaling is used to indicate the number of HARQ processes granted by the configuration; the Y is a positive integer; when the second signaling is transmitted, the The CRC included in the second signaling is scrambled by the first RNTI, the second signaling is used to indicate that the configuration grant indicated by the first signaling is activated, and the second signaling is a physical layer Signaling, the first RNTI is an RNTI other than the C-RNTI.
  • the meaning of the above phrase that the configuration grant indicated by the first signaling is configured includes: the configuration grant is configured by the RRC signaling carrying the first signaling, and the configuration grant is Type 1 configuration grant.
  • the meaning of the above phrase that the configuration grant indicated by the first signaling is configured includes: the configuration grant is configured by the RRC signaling carrying the first signaling, and the configuration grant is configured Dynamic signaling is activated, and the configuration grant is a type 2 (Type 2) configuration grant.
  • the second signaling is transmitted earlier than the first signal.
  • the first signaling is used to determine frequency domain resources occupied by the first signal.
  • the FrequencyDomainAllocation field included in the first signaling is used to indicate the frequency domain resource occupied by the first signal.
  • the FrequencyDomainAllocation field included in the first signaling is used to indicate the frequency domain position of the RB (Resource Block, resource block) occupied by the first signal.
  • the FrequencyDomainAllocation field included in the first signaling is used to indicate a third RB set, the third RB set includes a positive integer number of RBs greater than 1, and the first signal
  • the occupied frequency domain resource includes at least the third RB set in the third RB set or the fourth RB set, the fourth RB set includes a positive integer number of RBs greater than 1, and the third RB set
  • the frequency domain location is used to determine the frequency domain location of the fourth RB set.
  • whether the frequency domain resource occupied by the first signal includes the fourth RB set is related to the value of Y.
  • the Y is equal to an odd number, and the frequency domain resource occupied by the first signal includes the fourth RB set; the Y is equal to an even number, and the frequency domain resource occupied by the first signal Resources do not include the fourth set of RBs.
  • the Y is equal to an even number, and the frequency domain resource occupied by the first signal includes the fourth RB set; the Y is equal to an odd number, and the frequency domain resource occupied by the first signal Resources do not include the fourth set of RBs.
  • the frequency domain resource occupied by the first signal when the Y is less than the first threshold, the frequency domain resource occupied by the first signal includes the fourth RB set; when the Y is not less than the first threshold, the first The frequency domain resource occupied by a signal does not include the fourth RB set; the first threshold is fixed or the first threshold is configured through RRC or MAC signaling; the first threshold is greater than 1 positive integer.
  • the frequency domain resource occupied by the first signal when the Y is greater than the second threshold, the frequency domain resource occupied by the first signal includes the fourth RB set; when the Y is not greater than the second threshold, the first The frequency domain resource occupied by a signal does not include the fourth RB set; the second threshold is fixed or the second threshold is configured through RRC or MAC signaling; the second threshold is greater than 1 positive integer.
  • the number of RBs included in the fourth RB set is fixed, or the number of RBs included in the fourth RB set is configured through higher layer signaling.
  • the number of RBs included in the fourth RB set has nothing to do with the first signaling.
  • the number of RBs included in the fourth RB set is related to the service type of the first node U1.
  • the physical layer channel occupied by the second signaling includes a PDCCH (Physical Downlink Control Channel, physical downlink control channel).
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • the second signaling is a DCI (Downlink control information, downlink control information).
  • DCI Downlink control information, downlink control information
  • the second signaling is an uplink grant.
  • the DCI format adopted by the second signaling is DCI format 0_1 or DCI format 0_2.
  • the second signaling is used to trigger the transmission of the first uplink grant in the time domain of the configuration grant indicated by the first signaling.
  • the second signaling is used to trigger the transmission of the PUSCH corresponding to the first uplink grant in the time domain of the configuration grant indicated by the first signaling.
  • the configuration grant indicated by the first signaling is type 2 (Type 2) configuration grant.
  • the configuration information includes at least one of the following:
  • the first RNTI is CS-RNTI (Configured Scheduling Radio Network Temporary Identifier, configured scheduling radio network temporary identifier).
  • the first RNTI is configured through RRC signaling.
  • the first signaling is used to determine a first time unit pool, and the first time unit pool includes K1 time units, where K1 is a positive integer greater than 1, and the first time unit is a time unit in the first time unit pool.
  • any time unit in the K1 time units is a time slot.
  • any one of the K1 time units occupies a positive integer number of consecutive symbols greater than 1.
  • the second signaling is used to determine a first time unit set, the first time unit set includes K2 time units, and any time unit in the K2 time units Belonging to the first time unit pool, the first time unit is one of the K2 time units.
  • the second signaling is used to determine the earliest time unit in the time domain among the K2 time units.
  • the first time unit is the Yth time unit among the K2 time units.
  • the first time unit is the (Y-1)th time unit among the K2 time units.
  • the time unit in which the second signaling is located is the first time unit in the K2 time units.
  • the second signaling is used to determine frequency domain resources occupied by the first signal.
  • the Frequency Domain Assignment field included in the second signaling is used to indicate the frequency domain resource occupied by the first signal.
  • the Frequency Domain Resource Assignment field included in the second signaling is used to indicate the frequency domain position of the RB (Resource Block, resource block) occupied by the first signal.
  • the Frequency Domain Resource Assignment field included in the second signaling is used to indicate the first RB set, the first RB set includes a positive integer number of RBs greater than 1, and the The frequency domain resources occupied by the first signal include at least the first RB set in the first RB set or the second RB set, the second RB set includes a positive integer number of RBs greater than 1, and the first The frequency domain location of the RB set is used to determine the frequency domain location of the second RB set.
  • whether the frequency domain resource occupied by the first signal includes the second RB set is related to the value of Y.
  • the frequency domain resource occupied by the first signal includes the second RB set; if the Y is equal to an even number, the frequency domain resource occupied by the first signal The resource does not include the second set of RBs.
  • the frequency domain resource occupied by the first signal includes the second RB set; if the Y is equal to an odd number, the frequency domain resource occupied by the first signal The resource does not include the second set of RBs.
  • the frequency domain resource occupied by the first signal when the Y is less than the first threshold, the frequency domain resource occupied by the first signal includes the second RB set; when the Y is not less than the first threshold, the first The frequency domain resource occupied by a signal does not include the second RB set; the first threshold is fixed or the first threshold is configured through RRC or MAC signaling; the first threshold is greater than 1 positive integer.
  • the frequency domain resource occupied by the first signal when the Y is greater than the second threshold, the frequency domain resource occupied by the first signal includes the second RB set; when the Y is not greater than the second threshold, the first The frequency domain resource occupied by a signal does not include the second RB set; the second threshold is fixed or the second threshold is configured through RRC or MAC signaling; the second threshold is greater than 1 positive integer.
  • the number of RBs included in the second RB set is fixed, or the number of RBs included in the second RB set is configured through higher layer signaling.
  • the number of RBs included in the second RB set has nothing to do with the second signaling.
  • the number of RBs included in the second RB set is related to the service type of the first node U1.
  • neither the coding rate used by the channel coding of the first bit block nor the modulation order used by the modulation of the first bit block has anything to do with the Y;
  • the number of REs occupied by a signal is related to the Y.
  • the number of bits included in the first bit block is TBS.
  • the number of REs occupied by the first signal is related to the number of RBs occupied by the first signal, and the number of RBs occupied by the first signal is related to the Y.
  • the number of REs occupied by the first signal when Y is an odd number, the number of REs occupied by the first signal is equal to X1; when Y is an even number, the number of REs occupied by the first signal is equal to X2; Both the X1 and the X2 are positive integers greater than 1, and the X1 and the X2 are not equal.
  • the number of REs occupied by the first signal is equal to X1; when the Y is greater than the third threshold, the number of REs occupied by the first signal
  • the quantity is equal to X2; both the X1 and the X2 are positive integers greater than 1, and the X1 and the X2 are not equal;
  • the third threshold is fixed or the third threshold is obtained through RRC or MAC signaling configured; the third threshold is a positive integer greater than 1.
  • the number of REs occupied by the first signal is equal to X1; when the Y is not greater than the fourth threshold, the number of REs occupied by the first signal is The quantity is equal to X2; both the X1 and the X2 are positive integers greater than 1, and the X1 and the X2 are not equal; the fourth threshold is fixed or the fourth threshold is obtained through RRC or MAC signaling configured; the fourth threshold is a positive integer greater than 1.
  • the second signaling is used to determine the value of X1
  • the value of X2 is related to the value of X1.
  • the second signaling is used to determine the value of X2, And the value of X1 is related to the value of X2.
  • the first signaling is used to determine the value of X1
  • the value of X2 is related to the value of X1.
  • the first signaling is used to determine the value of X2, And the value of X1 is related to the value of X2.
  • the difference between X1 and X2 is equal to X3; the value of X3 is configured through RRC signaling or MAC signaling, or the value of X3 is fixed.
  • the second signaling is used to indicate that the first bit block undergoes the channel coding At least one of the adopted coding rate and the modulation order adopted by the modulation of the first bit block.
  • the second signaling is used to indicate that the first bit block undergoes the channel coding The adopted coding rate and the modulation order adopted by the modulation of the first bit block.
  • the first signaling is used to indicate that the first bit block undergoes the channel coding At least one of the adopted coding rate and the modulation order adopted by the modulation of the first bit block.
  • the first signaling is used to indicate that the first bit block undergoes the channel coding The adopted coding rate and the modulation order adopted by the modulation of the first bit block.
  • At least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block is the same as the Y related.
  • the frequency domain resource occupied by the first signal has nothing to do with the Y.
  • the number of RBs and RB positions occupied by the first signal are not related to the Y.
  • the first signaling is used to indicate the frequency domain resource occupied by the first signal.
  • the second signaling is used to indicate the frequency domain resource occupied by the first signal.
  • the number of REs occupied by the first signal has nothing to do with the Y.
  • the coding rate adopted by the channel coding of the first bit block is different from the modulation rate adopted by the modulation of the first bit block
  • the order adopts the encoding rate corresponding to the first MCS index (Index) and the modulation order (Order) corresponding to the first MCS index
  • the encoding rate and the modulation order adopted by the modulation of the first bit block adopt the encoding rate corresponding to the second MCS index and the modulation order corresponding to the second MCS index
  • the first MCS The index is related to the second MCS index
  • the second signaling is used to indicate the first MCS index or the second MCS index.
  • the coding rate adopted by the channel coding of the first bit block is different from the coding rate adopted by the modulation of the first bit block.
  • the modulation order adopts the coding rate corresponding to the first MCS index and the modulation order corresponding to the first MCS index; when the Y is greater than the fifth threshold, the channel coding adopted by the first bit block.
  • the encoding rate and the modulation order adopted by the modulation of the first bit block adopt the encoding rate corresponding to the second MCS index and the modulation order corresponding to the second MCS index; the first MCS index Related to the second MCS index, the second signaling is used to indicate the first MCS index or the second MCS index;
  • the fifth threshold is fixed or the fifth threshold is passed through RRC or configured by MAC signaling; the fifth threshold is a positive integer greater than 1.
  • the coding rate adopted by the channel coding of the first bit block is different from the coding rate adopted by the modulation of the first bit block
  • the modulation order adopts the encoding rate corresponding to the first MCS index and the modulation order corresponding to the first MCS index
  • the channel encoding adopted by the first bit block is The encoding rate and the modulation order adopted by the modulation of the first bit block adopt the encoding rate corresponding to the second MCS index and the modulation order corresponding to the second MCS index
  • the first MCS index Related to the second MCS index the second signaling is used to indicate the first MCS index or the second MCS index
  • the sixth threshold is fixed or the sixth threshold is passed through RRC or configured by MAC signaling
  • the sixth threshold is a positive integer greater than 1.
  • the second signaling indicates the first MCS index and the The former in the second MCS index.
  • the second signaling indicates the first MCS index and the The latter in the second MCS index.
  • the second signaling when the configuration grant indicated by the first signaling is a type 2 configuration grant, the second signaling does not indicate the first MCS index and The second MCS index.
  • the first signaling when the configuration grant indicated by the first signaling is a type 1 configuration grant, the first signaling indicates the first MCS index and the The former in the second MCS index.
  • the first signaling when the configuration grant indicated by the first signaling is a type 1 configuration grant, the first signaling indicates the first MCS index and the The latter in the second MCS index.
  • the first signaling when the configuration grant indicated by the first signaling is a Type 1 configuration grant, the first signaling does not indicate the first MCS index and The second MCS index.
  • the difference between the first MCS index and the second MCS index is equal to X4; the value of X4 is configured through RRC signaling or MAC signaling, or the value of X4 Value is fixed.
  • the first signaling is used to determine the first MCS table and the second signaling is used to indicate the target MCS index from the first MCS table, or the first signaling is used to It is used to indicate the target MCS index; the target MCS index and the Y are jointly used to determine the coding rate adopted by the channel coding of the first bit block and the modulation of the first bit block At least one of the two modulation orders employed.
  • the first signaling is used to indicate the target MCS index.
  • the target MCS index is the first MCS index.
  • the target MCS index is the second MCS index.
  • the first signaling is used to determine the first MCS table and the The second signaling is used to indicate the target MCS index from the first MCS table.
  • the target MCS index is the first MCS index.
  • the target MCS index is the second MCS index.
  • the first signaling is used to indicate the first configuration grant configuration index
  • the configuration grant period corresponding to the first configuration grant configuration index is used to determine the first time unit set and the second time unit set A unit set; both the first time unit set and the second time unit set include a positive integer number of time units greater than 1; the first time unit set includes the first time unit or the second time unit
  • the collection includes said first unit of time.
  • the configuration grant corresponding to the first configuration grant configuration index is the configuration grant indicated by the first signaling.
  • the first configuration grant configuration index is ConfiguredGrantConfigIndex in TS 38.331.
  • the first time unit corresponding to the value of Y belongs to the first time unit set, and the frequency domain resource occupied by the first signal includes the first RB set and the second RB set; the first time unit corresponding to the value of Y belongs to the second time unit set, and the frequency domain resource occupied by the first signal includes the first RB set And the second RB set is not included.
  • the first time unit corresponding to the value of Y belongs to the first time unit set, and the number of REs occupied by the first signal is equal to X1;
  • the Y The first time unit corresponding to the value of belongs to the second time unit set, and the number of REs occupied by the first signal is equal to X2; both X1 and X2 are positive integers greater than 1, so Said X1 is not equal to said X2.
  • the first time unit corresponding to the value of Y belongs to the first time unit set, and the channel coding adopted by the first bit block is The encoding rate and the modulation order adopted by the modulation of the first bit block adopt the encoding rate corresponding to the first MCS index and the modulation order (Order) corresponding to the first MCS index; the value of Y
  • the corresponding first time unit belongs to the second time unit set, and the coding rate adopted by the channel coding of the first bit block is different from that of the modulation rate of the first bit block.
  • the modulation order used adopts the coding rate corresponding to the second MCS index and the modulation order corresponding to the second MCS index; the first MCS index is different from the second MCS index, and the second signaling indicates The first MCS index or the second MCS index.
  • the second signaling is used to indicate the earliest time in the time domain among all the time units included in the first set of time units and the second set of time units unit.
  • the first signaling is used to determine at least one of the first set of time units or the second set of time units.
  • the first signaling is used to indicate the first set of time units.
  • the first signaling is used to indicate the second set of time units.
  • the first signaling is used to indicate the first set of time units and the second set of time units.
  • the first signaling is used to indicate the first set of time units from the first time unit pool.
  • the first signaling is used to indicate the second time unit set from the first time unit pool.
  • the first signaling is used to indicate the first set of time units and the second set of time units from the first time unit pool.
  • the second signaling is used to indicate the first set of time units.
  • the second signaling is used to indicate the second set of time units.
  • the second signaling is used to indicate the first set of time units and the second set of time units.
  • the second signaling is used to indicate the first set of time units from the first time unit pool.
  • the second signaling is used to indicate the second time unit set from the first time unit pool.
  • the second signaling is used to indicate the first set of time units and the second set of time units from the first time unit pool.
  • the first signal is for the first service type, and the period of the first service type is equal to M1 milliseconds, where M1 is a real number greater than 1, and the channel coding performed by the first bit block is The coding rate adopted and the modulation order adopted by the modulation of the first bit block are the first MCS index or the second MCS index; the value of M1 is used to determine the first MCS index and the The difference of the second MCS index.
  • the number of RBs occupied by the first signal is equal to the first integer or the second integer; the first integer is not equal to the second integer; the first integer and the The second integers are all positive integers; the value of M1 is used to determine the ratio of the first integer to the second integer.
  • the number of REs occupied by the first signal is equal to a third integer or a fourth integer; the third integer is not equal to the fourth integer; the third integer and the The fourth integers are all positive integers greater than 1; the value of M1 is used to determine the ratio of the third integer to the fourth integer.
  • the value of M1 is used to determine the ratio of the number of time units included in the first set of time units to the number of time units included in the second set of time units .
  • Embodiment 6A illustrates a schematic diagram of the first time unit, as shown in FIG. 6A .
  • the first signaling indicates the SPS configuration in the second time unit, and the second signaling activates the SPS configuration in the third time unit; the first node in this application is shown in FIG.
  • the transmission of the downlink arrangement corresponding to the SPS configuration is received in the time unit in the first time unit pool shown in ; the first time unit is the Yth time unit in the first time unit pool.
  • the third time unit is a time unit in the first time unit pool.
  • the first node receives the transmission of the downlink arrangement corresponding to the SPS configuration in the third time unit.
  • the first node receives the transmission of the first downlink arrangement corresponding to the SPS configuration in the third time unit.
  • Embodiment 6B illustrates a schematic diagram of the first time unit, as shown in FIG. 6B .
  • the first signaling indicates the configuration information of the configuration grant in the second time unit, and the time units in the first time unit pool shown in the figure are the ones indicated by the first signaling.
  • the time unit occupied by the periodic uplink transmission of the configuration grant; the first time unit is the Yth time unit in the first time unit pool.
  • the configuration grant indicated by the first signaling listed in Embodiment 6B does not need to be activated through the second signaling in this application.
  • Embodiment 7A illustrates a schematic diagram of downlink arrangement, as shown in Fig. 7A.
  • the second signaling is used to activate an SPS configuration
  • the first node has received P downlink configurations before the SPS configuration is released
  • the P downlink configurations correspond to P PDSCH
  • the P is a positive integer greater than the Y
  • the Yth downlink arrangement is the Yth downlink arrangement among the P downlink arrangements.
  • the P downlink arrangements are divided into a first downlink arrangement group and a second downlink arrangement group, and the first downlink arrangement group is numbered (2*i- 1), the second downlink arrangement group is composed of downlink arrangements whose sequence number is (2*i) among the P downlink arrangements; i is the smallest positive integer greater than 0 and not less than 0.5*P.
  • the first signal adopts the first MCS
  • the Yth downlink arrangement belongs to the second downlink arrangement group
  • the The first signal adopts a second MCS
  • the first MCS is different from the second MCS.
  • the number of REs occupied by the first signal is equal to X1; when the Y-th downlink arrangement belongs to the second downlink arrangement group , the number of REs occupied by the first signal is equal to X2; the X1 and the X2 are different, and both the X1 and the X2 are positive integers greater than 1.
  • the number of RBs occupied by the first signal is equal to a first integer
  • the number of RBs occupied by the first signal is equal to a second integer
  • the first integer is different from the second integer
  • both the first integer and the second integer are positive integers.
  • Embodiment 7B illustrates another schematic diagram of the first time unit, as shown in FIG. 7B .
  • the first signaling indicates the configuration information granted by the configuration at the second time unit
  • the third time unit shown in the figure is that the second signaling activates the configuration information indicated by the first signaling
  • the time unit occupied by the first uplink grant belonging to the configuration grant after the configuration grant; the first signaling and the second signaling are jointly used to determine the first time unit pool, and the third
  • the time unit is the first time unit in the first time unit pool, and the first time unit is the Yth time unit in the first time unit pool.
  • the second signaling is used to determine the time domain position of the third time unit
  • the first signaling is used to determine whether any two in the first time unit pool are in the time domain The distance between adjacent time units.
  • the period of the configuration grant indicated by the first signaling is used to determine whether any two time units in the first time unit pool are between adjacent time units in the time domain distance.
  • the configuration grant indicated by the first signaling listed in Embodiment 7B needs to be activated through the second signaling in this application.
  • the second signaling is transmitted in the third time unit.
  • the time domain resource occupied by the second signaling is earlier than the third time unit.
  • the second signaling is used to indicate the third time unit.
  • Embodiment 8A illustrates a schematic diagram of downlink arrangement, as shown in FIG. 8A .
  • the second signaling is used to activate an SPS configuration
  • the first node has received Q downlink configurations before the SPS configuration is released
  • the Q downlink configurations correspond to Q PDSCH
  • the Q is a positive even number greater than the Y
  • the Yth downlink arrangement is the Yth downlink arrangement among the Q downlink arrangements.
  • the Q downlink arrangements are divided into a first downlink arrangement group and a second downlink arrangement group, and the first downlink arrangement group consists of the first 0.5*Q downlink arrangements in the Q downlink arrangements
  • the second downlink arrangement group consists of the last 0.5*Q downlink arrangements among the Q downlink arrangements.
  • the first signal adopts the first MCS
  • the Yth downlink arrangement belongs to the second downlink arrangement group
  • the The first signal adopts a second MCS
  • the first MCS is different from the second MCS.
  • the number of REs occupied by the first signal is equal to X1; when the Y-th downlink arrangement belongs to the second downlink arrangement group , the number of REs occupied by the first signal is equal to X2; the X1 and the X2 are different, and both the X1 and the X2 are positive integers greater than 1.
  • the number of RBs occupied by the first signal is equal to a first integer
  • the number of RBs occupied by the first signal is equal to a second integer
  • the first integer is different from the second integer
  • both the first integer and the second integer are positive integers.
  • Embodiment 8B illustrates a schematic diagram of an uplink grant, as shown in FIG. 8B .
  • the first signaling is used to configure a configuration grant
  • the first node has received P uplink grants before the configuration grant is released
  • the P uplink grants correspond to P PUSCH
  • the P is a positive integer greater than the Y
  • the Yth uplink grant is the Yth uplink grant among the P uplink grants.
  • the P uplink grants are divided into a first uplink grant group and a second uplink grant group, and the first uplink grant group is numbered (2*i-1) in the P uplink grants
  • the second uplink grant group consists of uplink grants with sequence number (2*i) among the P uplink grants; i is the smallest positive integer greater than 0 and not less than 0.5*P.
  • the first signal adopts the first MCS
  • the first A signal adopts a second MCS
  • the first MCS is different from the second MCS
  • the number of REs occupied by the first signal is equal to X1; when the Yth uplink grant belongs to the second uplink grant group, The number of REs occupied by the first signal is equal to X2; the X1 and the X2 are different, and both the X1 and the X2 are positive integers greater than 1.
  • the number of RBs occupied by the first signal is equal to the first integer
  • the number of RBs occupied by the first signal is equal to a second integer
  • the first integer is different from the second integer, and both the first integer and the second integer are positive integers.
  • Embodiment 9A illustrates a schematic diagram of a first time unit set and a second time unit set, as shown in FIG. 9A .
  • the second signaling is used to activate an SPS configuration
  • the first node has received P downlink configurations before the SPS configuration is released
  • the P downlink configurations correspond to P PDSCHs
  • the P PDSCHs are transmitted in P time units respectively
  • the P is a positive integer greater than the Y
  • the Yth downlink arrangement is the Yth one of the P time units unit of time.
  • the P time units are divided into a first time unit set and a second time unit set, and the first time unit set is numbered (2*i-1) in the P time units
  • the second set of time units is composed of time units with sequence number (2*i) among the P time units; i is the smallest positive integer greater than 0 and not less than 0.5*P.
  • the first signal adopts the first MCS
  • the first A signal adopts a second MCS
  • the first MCS is different from the second MCS.
  • the number of REs occupied by the first signal is equal to X1; when the Yth time unit belongs to the second time unit set, The number of REs occupied by the first signal is equal to X2; the X1 and the X2 are different, and both the X1 and the X2 are positive integers greater than 1.
  • the number of RBs occupied by the first signal is equal to the first integer
  • the number of RBs occupied by the first signal is equal to a second integer
  • the first integer is different from the second integer
  • both the first integer and the second integer are positive integers.
  • Embodiment 9B illustrates a schematic diagram of uplink grant, as shown in Fig. 9B.
  • the first signaling is used to configure a configuration grant
  • the first node has received Q uplink grants before the configuration grant is released
  • the Q uplink grants correspond to Q PUSCH
  • the Q is a positive integer greater than the Y
  • the Yth uplink grant is the Yth uplink grant among the Q uplink grants.
  • the Q uplink grants are divided into a first uplink grant group and a second uplink grant group, and the first uplink grant group consists of the first 0.5*Q uplink grants among the Q uplink grants , the second uplink grant group consists of the last 0.5*Q uplink grants among the Q uplink grants.
  • the first signal adopts the first MCS
  • the first A signal adopts a second MCS
  • the first MCS is different from the second MCS
  • the number of REs occupied by the first signal is equal to X1; when the Yth uplink grant belongs to the second uplink grant group, The number of REs occupied by the first signal is equal to X2; the X1 and the X2 are different, and both the X1 and the X2 are positive integers greater than 1.
  • the number of RBs occupied by the first signal is equal to the first integer
  • the number of RBs occupied by the first signal is equal to a second integer
  • the first integer is different from the second integer, and both the first integer and the second integer are positive integers.
  • Embodiment 10A illustrates a schematic diagram of a first time unit set and a second time unit set, as shown in FIG. 10A .
  • the second signaling is used to activate an SPS configuration
  • the first node has received Q downlink configurations before the SPS configuration is released
  • the Q downlink configurations correspond to Q PDSCHs
  • the Q PDSCHs are transmitted in Q time units respectively
  • the Q is a positive integer greater than the Y
  • the Yth downlink arrangement is the Yth time unit in the Q time units unit of time.
  • the Q time units are divided into a first time unit set and a second time unit set, and the first time unit set is composed of the first 0.5*Q time units in the Q time units , the second set of time units consists of the last 0.5*Q time units of the Q time units.
  • the first signal adopts the first MCS
  • the first A signal adopts a second MCS
  • the first MCS is different from the second MCS.
  • the number of REs occupied by the first signal is equal to X1; when the Yth time unit belongs to the second time unit set, The number of REs occupied by the first signal is equal to X2; the X1 and the X2 are different, and both the X1 and the X2 are positive integers greater than 1.
  • the number of RBs occupied by the first signal is equal to the first integer
  • the number of RBs occupied by the first signal is equal to a second integer
  • the first integer is different from the second integer
  • both the first integer and the second integer are positive integers.
  • Embodiment 10B illustrates a schematic diagram of a first time unit set and a second time unit set, as shown in FIG. 10B .
  • the first signaling is used to configure a configuration grant
  • the first node has received P uplink grants before the configuration grant is released
  • the P uplink grants correspond to P PUSCHs
  • the P PUSCHs are respectively transmitted in P time units
  • the P is a positive integer greater than the Y
  • the Yth uplink grant is the Yth in the P time units unit of time.
  • the P time units are divided into a first time unit set and a second time unit set, and the first time unit set is numbered (2*i-1) in the P time units
  • the second set of time units is composed of time units with sequence number (2*i) among the P time units; i is the smallest positive integer greater than 0 and not less than 0.5*P.
  • the first signal adopts the first MCS
  • the first A signal adopts a second MCS
  • the first MCS is different from the second MCS.
  • the number of REs occupied by the first signal is equal to X1; when the Yth time unit belongs to the second time unit set, The number of REs occupied by the first signal is equal to X2; the X1 and the X2 are different, and both the X1 and the X2 are positive integers greater than 1.
  • the number of RBs occupied by the first signal is equal to the first integer
  • the number of RBs occupied by the first signal is equal to a second integer
  • the first integer is different from the second integer
  • both the first integer and the second integer are positive integers.
  • Embodiment 11A illustrates a structural block diagram of a first node, as shown in FIG. 11A .
  • a first node 1100A includes a first receiver 1101A and a second receiver 1102A.
  • the first receiver 1101A receives first signaling and second signaling, the first signaling is used to indicate the SPS configuration, and the second signaling is used to provide a downlink arrangement of the SPS configuration;
  • the second receiver 1102A receives the first signal in the first time unit
  • the first time unit is occupied by the Yth downlink arrangement after the one downlink arrangement is configured; the first signal is obtained after at least channel coding and modulation of the first bit block; The number of bits included in the first bit block is related to the Y.
  • the second signaling is used to indicate SPS activation; the second signaling is used to determine frequency domain resources occupied by the first signal.
  • neither the coding rate used by the channel coding of the first bit block nor the modulation order used by the modulation of the first bit block has anything to do with the Y;
  • the number of REs occupied by a signal is related to the Y.
  • At least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block is the same as the Y related.
  • the first signaling is used to determine the first MCS table
  • the second signaling is used to indicate the target MCS index from the first MCS table
  • the target MCS index is jointly used to determine at least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block .
  • the first signaling is used to indicate a first SPS configuration index
  • the period of the SPS configuration corresponding to the first SPS configuration index is used to determine the first time unit set and the second time unit set ;
  • Both the first time unit set and the second time unit set include a positive integer number of time units greater than 1; the first time unit set includes the first time unit or the second time unit set includes The first time unit.
  • the first signaling is used to determine at least one of the first set of time units or the second set of time units.
  • the first signal is for the first service type, and the period of the first service type is equal to M1 milliseconds, where M1 is a real number greater than 1, and the channel coding performed by the first bit block is The coding rate adopted and the modulation order adopted by the modulation of the first bit block are the first MCS index or the second MCS index; the value of M1 is used to determine the first MCS index and the The difference of the second MCS index.
  • the first receiver 1101A includes at least the first four of the antenna 452 , receiver 454 , multi-antenna receiving processor 458 , receiving processor 456 , and controller/processor 459 in Embodiment 4.
  • the second receiver 1102A includes at least the first four of the antenna 452 , receiver 454 , multi-antenna receiving processor 458 , receiving processor 456 , and controller/processor 459 in Embodiment 4.
  • the first signaling is RRC signaling
  • the second signaling is PDCCH
  • the first signal is PDSCH
  • the second signaling is used to activate an SPS configuration
  • the first A signal is obtained after the first bit block undergoes at least channel coding and modulation
  • the first signal is the PDSCH corresponding to the Y-th downlink arrangement after the SPS configuration is activated
  • the first signal is the first bit The block is obtained after at least channel coding and modulation
  • the TBS included in the first bit block is related to the Y.
  • Embodiment 11B illustrates a schematic diagram of a first time unit set and a second time unit set, as shown in FIG. 11B .
  • the first signaling is used to configure a configuration grant
  • the first node has received Q uplink grants before the configuration grant is released
  • the Q uplink grants correspond to Q PUSCH
  • the Q PDSCHs are transmitted in Q time units respectively
  • the Q is a positive integer greater than the Y
  • the Yth uplink grant is the Yth in the Q time units unit of time.
  • the Q time units are divided into a first time unit set and a second time unit set, and the first time unit set is composed of the first 0.5*Q time units in the Q time units , the second set of time units consists of the last 0.5*Q time units of the Q time units.
  • the first signal adopts the first MCS
  • the first A signal adopts a second MCS
  • the first MCS is different from the second MCS.
  • the number of REs occupied by the first signal is equal to X1; when the Yth time unit belongs to the second time unit set, The number of REs occupied by the first signal is equal to X2; the X1 and the X2 are different, and both the X1 and the X2 are positive integers greater than 1.
  • the number of RBs occupied by the first signal is equal to the first integer
  • the number of RBs occupied by the first signal is equal to a second integer
  • the first integer is different from the second integer
  • both the first integer and the second integer are positive integers.
  • Embodiment 12A illustrates a structural block diagram of a second node, as shown in Fig. 12A.
  • a second node 1200A includes a first transmitter 1201A and a second transmitter 1202A.
  • the first transmitter 1201A sends first signaling and second signaling, the first signaling is used to indicate the SPS configuration, and the second signaling is used to provide a downlink arrangement of the SPS configuration;
  • the second transmitter 1202A sending the first signal in the first time unit
  • the first time unit is occupied by the Yth downlink arrangement after the one downlink arrangement is configured; the first signal is obtained after at least channel coding and modulation of the first bit block; The number of bits included in the first bit block is related to the Y.
  • the second signaling is used to indicate SPS activation; the second signaling is used to determine frequency domain resources occupied by the first signal.
  • neither the coding rate used by the channel coding of the first bit block nor the modulation order used by the modulation of the first bit block has anything to do with the Y;
  • the number of REs occupied by a signal is related to the Y.
  • At least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block is the same as the Y related.
  • the first signaling is used to determine the first MCS table
  • the second signaling is used to indicate the target MCS index from the first MCS table
  • the target MCS index is jointly used to determine at least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block .
  • the first signaling is used to indicate a first SPS configuration index
  • the period of the SPS configuration corresponding to the first SPS configuration index is used to determine the first time unit set and the second time unit set ;
  • Both the first time unit set and the second time unit set include a positive integer number of time units greater than 1; the first time unit set includes the first time unit or the second time unit set includes The first time unit.
  • the first signaling is used to determine at least one of the first set of time units or the second set of time units.
  • the first signal is for the first service type, and the period of the first service type is equal to M1 milliseconds, where M1 is a real number greater than 1, and the channel coding performed by the first bit block is The coding rate adopted and the modulation order adopted by the modulation of the first bit block are the first MCS index or the second MCS index; the value of M1 is used to determine the first MCS index and the The difference of the second MCS index.
  • the first transmitter 1201A includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 414, and the controller/processor 475 in Embodiment 4.
  • the second transmitter 1202A includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 414, and the controller/processor 475 in Embodiment 4.
  • the first signaling is RRC signaling
  • the second signaling is PDCCH
  • the first signal is PDSCH
  • the second signaling is used to activate an SPS configuration
  • the first A signal is obtained after the first bit block undergoes at least channel coding and modulation
  • the first signal is the PDSCH corresponding to the Y-th downlink arrangement after the SPS configuration is activated
  • the first signal is the first bit The block is obtained after at least channel coding and modulation
  • the TBS included in the first bit block is related to the Y.
  • Embodiment 12B illustrates a structural block diagram of a first node, as shown in FIG. 12B .
  • a first node 1200B includes a first receiver 1201B and a first transmitter 1202B.
  • the first receiver 1201B receives first signaling, where the first signaling is used to indicate configuration grant configuration;
  • the first transmitter 1202B sends a first signal in a first time unit
  • the first time unit is occupied by a given uplink grant, and the given uplink grant is the Yth uplink grant after the configuration grant indicated by the first signaling is configured;
  • the The first signal is obtained after the first bit block undergoes at least channel coding and modulation; the number of bits included in the first bit block is related to the Y;
  • the first signaling is RRC signaling, and the first A signaling is used to indicate the number of HARQ processes granted by the configuration;
  • the Y is a positive integer.
  • the first receiver 1201 receives the second signaling; the CRC included in the second signaling is scrambled by the first RNTI; the second signaling is used to indicate that the first signaling The configuration grant indicated by the command is activated; the second signaling is physical layer signaling; and the first RNTI is an RNTI other than the C-RNTI.
  • neither the coding rate used by the channel coding of the first bit block nor the modulation order used by the modulation of the first bit block has anything to do with the Y;
  • the number of REs occupied by a signal is related to the Y.
  • At least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block is the same as the Y related.
  • the first signaling is used to determine the first MCS table and the second signaling is used to indicate the target MCS index from the first MCS table, or the first signaling is used to It is used to indicate the target MCS index; the target MCS index and the Y are jointly used to determine the coding rate adopted by the channel coding of the first bit block and the modulation of the first bit block At least one of the two modulation orders employed.
  • the first signaling is used to indicate the first configuration grant configuration index
  • the configuration grant period corresponding to the first configuration grant configuration index is used to determine the first time unit set and the second time unit set A unit set; both the first time unit set and the second time unit set include a positive integer number of time units greater than 1; the first time unit set includes the first time unit or the second time unit
  • the collection includes said first unit of time.
  • the first signaling is used to determine at least one of the first set of time units or the second set of time units.
  • the first signal is for the first service type, and the period of the first service type is equal to M1 milliseconds, where M1 is a real number greater than 1, and the channel coding performed by the first bit block is The coding rate adopted and the modulation order adopted by the modulation of the first bit block are the first MCS index or the second MCS index; the value of M1 is used to determine the first MCS index and the The difference of the second MCS index.
  • the first receiver 1201B includes at least the first four of the antenna 452 , receiver 454 , multi-antenna receiving processor 458 , receiving processor 456 , and controller/processor 459 in Embodiment 4.
  • the first transmitter 1202B includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, and the controller/processor 459 in Embodiment 4.
  • the first signaling is RRC signaling
  • the first signal is PUSCH
  • the first signaling is used to indicate the configuration information of the configuration grant
  • the first signal is the first
  • the bit block is obtained after at least channel coding and modulation; the number of bits included in the first bit block is related to the Y; the first signaling is RRC signaling, and the first signaling is used for Indicates the number of HARQ processes granted by the configuration; the Y is a positive integer.
  • the first signaling is RRC signaling
  • the first signal is PUSCH
  • the first signaling is used to indicate the configuration information of the configuration grant
  • the first signal is the first The bit block is obtained after at least channel coding and modulation
  • the number of REs occupied by the first signal is related to the Y
  • the first signaling is RRC signaling
  • the first signaling is used to indicate The number of HARQ processes granted by the configuration
  • the Y is a positive integer.
  • the first signaling is RRC signaling
  • the first signal is PUSCH
  • the first signaling is used to indicate the configuration information of the configuration grant
  • the first signal is the first The bit block is obtained after at least channel coding and modulation
  • the number of RBs occupied by the first signal is related to the Y
  • the first signaling is RRC signaling, and the first signaling is used to indicate The number of HARQ processes granted by the configuration
  • the Y is a positive integer.
  • the first signaling is RRC signaling
  • the first signal is PUSCH
  • the first signaling is used to indicate the configuration information of the configuration grant
  • the first signal is the first The bit block is obtained after at least channel coding and modulation
  • the MCS adopted by the first signal is related to the Y
  • the first signaling is RRC signaling
  • the first signaling is used to indicate the Configure the number of granted HARQ processes
  • the Y is a positive integer.
  • the first signaling is RRC signaling
  • the second signaling is PDCCH
  • the first signal is PUSCH
  • the first signaling is used to indicate the configuration information granted by the configuration
  • the second signaling is used to activate the first signaling is used to indicate the configuration grant
  • the first signal is obtained after the first bit block undergoes at least channel coding and modulation;
  • the first The number of bits included in the bit block is related to the Y;
  • the first signaling is RRC signaling, and the first signaling is used to indicate the number of HARQ processes granted by the configuration;
  • the Y is a positive integer .
  • the first signaling is RRC signaling
  • the second signaling is PDCCH
  • the first signal is PUSCH
  • the first signaling is used to indicate the configuration information granted by the configuration
  • the second signaling is used to activate the first signaling is used to indicate the configuration grant
  • the first signal is obtained after the first bit block undergoes at least channel coding and modulation;
  • the first The number of REs occupied by the signal is related to the Y;
  • the first signaling is RRC signaling, and the first signaling is used to indicate the number of HARQ processes granted by the configuration;
  • the Y is a positive integer.
  • the first signaling is RRC signaling
  • the second signaling is PDCCH
  • the first signal is PUSCH
  • the first signaling is used to indicate the configuration information granted by the configuration
  • the second signaling is used to activate the first signaling is used to indicate the configuration grant
  • the first signal is obtained after the first bit block undergoes at least channel coding and modulation;
  • the first The number of RBs occupied by the signal is related to the Y;
  • the first signaling is RRC signaling, and the first signaling is used to indicate the number of HARQ processes granted by the configuration;
  • the Y is a positive integer.
  • the first signaling is RRC signaling
  • the second signaling is PDCCH
  • the first signal is PUSCH
  • the first signaling is used to indicate the configuration information granted by the configuration
  • the second signaling is used to activate the first signaling is used to indicate the configuration grant
  • the first signal is obtained after the first bit block undergoes at least channel coding and modulation;
  • the first The MCS adopted by the signal is related to the Y;
  • the first signaling is RRC signaling, and the first signaling is used to indicate the number of HARQ processes granted by the configuration;
  • the Y is a positive integer.
  • Embodiment 13 illustrates a structural block diagram of a second node, as shown in FIG. 13 .
  • the second node 1300 includes a second transmitter 1301 and a second receiver 1302 .
  • the second transmitter 1301 sends first signaling, where the first signaling is used to indicate configuration grant configuration;
  • the second receiver 1302 receives the first signal in the first time unit
  • the first time unit is occupied by a given uplink grant, and the given uplink grant is the Yth uplink grant after the configuration grant indicated by the first signaling is configured; the The first signal is obtained after the first bit block undergoes at least channel coding and modulation; the number of bits included in the first bit block is related to the Y; the first signaling is RRC signaling, and the first A signaling is used to indicate the number of HARQ processes granted by the configuration; the Y is a positive integer.
  • the second transmitter 1301 sends the second signaling; the CRC included in the second signaling is scrambled by the first RNTI; the second signaling is used to indicate that the first signaling The configuration grant indicated by the command is activated; the second signaling is physical layer signaling; and the first RNTI is an RNTI other than the C-RNTI.
  • neither the coding rate used by the channel coding of the first bit block nor the modulation order used by the modulation of the first bit block has anything to do with the Y;
  • the number of REs occupied by a signal is related to the Y.
  • At least one of the coding rate used for the channel coding of the first bit block and the modulation order used for the modulation of the first bit block is the same as the Y related.
  • the first signaling is used to determine the first MCS table and the second signaling is used to indicate the target MCS index from the first MCS table, or the first signaling is used to It is used to indicate the target MCS index; the target MCS index and the Y are jointly used to determine the coding rate adopted by the channel coding of the first bit block and the modulation of the first bit block At least one of the two modulation orders employed.
  • the first signaling is used to indicate the first configuration grant configuration index
  • the configuration grant period corresponding to the first configuration grant configuration index is used to determine the first time unit set and the second time unit set A unit set; both the first time unit set and the second time unit set include a positive integer number of time units greater than 1; the first time unit set includes the first time unit or the second time unit
  • the collection includes said first unit of time.
  • the first signaling is used to determine at least one of the first set of time units or the second set of time units.
  • the first signal is for the first service type, and the period of the first service type is equal to M1 milliseconds, where M1 is a real number greater than 1, and the channel coding performed by the first bit block is The coding rate adopted and the modulation order adopted by the modulation of the first bit block are the first MCS index or the second MCS index; the value of M1 is used to determine the first MCS index and the The difference of the second MCS index.
  • the first transmitter 1301B includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 414, and the controller/processor 475 in Embodiment 4.
  • the second receiver 1302B includes at least the first four of the antenna 420 , the receiver 418 , the multi-antenna receiving processor 472 , the receiving processor 470 , and the controller/processor 475 in Embodiment 4.
  • the first signaling is RRC signaling
  • the first signal is PUSCH
  • the first signaling is used to indicate the configuration information of the configuration grant
  • the first signal is the first
  • the bit block is obtained after at least channel coding and modulation; the number of bits included in the first bit block is related to the Y; the first signaling is RRC signaling, and the first signaling is used for Indicates the number of HARQ processes granted by the configuration; the Y is a positive integer.
  • the first signaling is RRC signaling
  • the second signaling is PDCCH
  • the first signal is PUSCH
  • the first signaling is used to indicate the configuration information granted by the configuration
  • the second signaling is used to activate the first signaling is used to indicate the configuration grant
  • the first signal is obtained after the first bit block undergoes at least channel coding and modulation;
  • the first The number of bits included in the bit block is related to the Y;
  • the first signaling is RRC signaling, and the first signaling is used to indicate the number of HARQ processes granted by the configuration;
  • the Y is a positive integer .
  • the first node in this application includes but is not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, vehicles, vehicles, RSUs, aircrafts, airplanes, wireless Man-machine, remote control aircraft and other wireless communication equipment.
  • the second node in this application includes but not limited to macrocell base station, microcell base station, small cell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, aerial base station , RSU, unmanned aerial vehicles, test equipment, such as transceiver devices or signaling testers that simulate some functions of base stations, and other wireless communication equipment.

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。节点首先接收第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;随后在第一时间单元中接收第一信号;所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。本申请改进现有SPS的配置和传输的方法和装置,从而根据下行布置在整个SPS传输中的位置去调整传输块大小,进而适应不同的通信业务对于周期以及数据到达速率的不同的需求,以优化系统性能。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的半静态调度下的设计方案和装置。
背景技术
AI(artificial intelligence,人工智能)等新技术在通信领域中应用吸引了越来越多的关注,在RAN1#103e中,XR课题开始在3GPP中被讨论,以针对未来人工智能所带来的不同的应用场景和应用需求。在RAN1#105e次会议上,XR领域所特有的周期性,例如1/60秒,即近似16.67ms(毫秒)的周期需求被讨论。目前传统的SPS(Semi-Persistent Scheduling,半静态调度)业务,所采用的周期往往都是基于现有的3GPP的帧结构周期设计的,例如10ms、20ms、32ms、40ms等不同的周期配置,上述周期配置无法与XR的需求兼容。进而,上述问题,需要在后续的讨论中被解决。
发明内容
针对上述问题,一个比较简单的解决方案就是,专门为XR设计特有周期的SPS配置,例如16.67ms作为周期的SPS配置。然而,此种方式会导致为XR设计的SPS无法和其它传统的SPS在时域中复用,进而造成资源的碎片化,影响系统的整体调度性能。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用XR的通信场景作为例子,本申请也适用于其他非XR通信场景,并取得类似在XR通信场景中的技术效果。此外,不同场景(包括但不限于XR通信场景)采用统一解决方案还有助于降低硬件复杂度和成本。与此同时,虽然上述描述采用SPS作为例子,本申请也适用于其他非SPS通信场景,并取得类似在SPS场景中的技术效果。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到其他任一节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
针对上述问题,本申请公开了一种用于SPS场景下控制信道及数据信道传输的设计方法和装置。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对蜂窝网,但本申请也能被用于物联网以及车联网。进一步的,虽然本申请的初衷是针对SPS场景,但本申请也能被用于非SPS场景。进一步的,虽然本申请的初衷是针对多天线通信,但本申请也能被用于单天线通信。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于终端与终端,终端与中继,非地面网络(NTN,Non-Terrestrial Networks),以及中继与基站之间的通信场景,取得类似的终端与基站场景中的技术效果。此外,不同场景(包括但不限于终端与基站的通信场景)采用统一的解决方案还有助于降低硬件复杂度和成本。
进一步的,在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS(Technical Specification)36系列、TS38系列、TS37系列中的定义。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置(Downlink Assignment);
在第一时间单元中接收第一信号;
其中,所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
作为一个实施例,上述方法的一个技术特征在于:传统的SPS中,终端在一个SPS配置的各个下行布置,即各个PDSCH(Physical Downlink Shared Channel,物理下行共享信道)中所传输的数据 所占用的频域资源和MCS(Modulation and Coding Scheme,调制和编码方案)都是一样的,以体现周期特性;本申请中提出的方案,一个SPS配置中的各个下行布置所占用的频域资源或MCS与下行布置在整个SPS传输中的位置有关,进而在一个SPS配置中体现了传输的灵活性。
作为一个实施例,上述方法的另一个技术特征在于:在保证沿用现有的SPS的周期的基础上,通过调整一个SPS配置周期中不同下行布置上实际传输的比特数,进而实现满足16.67ms的传输周期的特点,以应对XR的需求。
根据本申请的一个方面,所述第二信令被用于指示SPS激活;所述第二信令被用于确定所述第一信号所占用的频域资源。
根据本申请的一个方面,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数都与所述Y无关;所述第一信号所占用的RE的数量与所述Y有关。
作为一个实施例,上述方法的另一个技术特征在于:在保证沿用现有的SPS的周期的基础上,只调整一个SPS配置周期中不同下行布置上实际占用的RE(Resource Elements,资源单元)数,不改变MCS,进而实现满足16.67ms的传输周期的特点,以应对XR的需求。
根据本申请的一个方面,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一与所述Y有关。
作为一个实施例,上述方法的另一个技术特征在于:在保证沿用现有的SPS的周期的基础上,只调整一个SPS配置周期中不同下行布置上实际采用的MCS,不改变占用的RE数,进而实现满足16.67ms的传输周期的特点,以应对XR的需求。
根据本申请的一个方面,所述第一信令被用于确定第一MCS表格,所述第二信令被用于从所述第一MCS表格中指示所述目标MCS索引,所述目标MCS索引和所述Y被共同用于确定所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一
根据本申请的一个方面,所述第一信令被用于指示第一SPS配置索引,所述第一SPS配置索引所对应的SPS配置的周期被用于确定第一时间单元集合和第二时间单元集合;所述第一时间单元集合和所述第二时间单元集合都包括大于1的正整数个时间单元;所述第一时间单元集合包括所述第一时间单元或者所述第二时间单元集合包括所述第一时间单元。
作为一个实施例,上述方法的一个技术特征在于:所述第一时间单元集合中的时间单元中传输的PDSCH采用一种TBS(Transport Block Size,传输块尺寸),所述第二时间单元集合中的时间单元中传输的PDSCH采用另一种TBS;进而实现在整个SPS配置的涵盖所述第一时间单元集合和所述第二时间单元集合的传输中实现一个现有SPS配置周期无法实现的传输速率。
根据本申请的一个方面,所述第一信令被用于确定所述第一时间单元集合或所述第二时间单元集合中的至少之一。
根据本申请的一个方面,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数是第一MCS索引或第二MCS索引;所述M1的值被用于确定所述第一MCS索引和所述第二MCS索引的差值。
作为一个实施例,上述方法的一个技术特征在于:进一步的将XR场景中不同的业务需求和一个SPS配置中采用的多个MCS建立联系,以进一步增加SPS的灵活性和适应性。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
发送第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;
在第一时间单元中发送第一信号;
其中,所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
根据本申请的一个方面,所述第二信令被用于指示SPS激活;所述第二信令被用于确定所述第一信号所占用的频域资源。
根据本申请的一个方面,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数都与所述Y无关;所述第一信号所占用的RE的数量与所述Y有关。
根据本申请的一个方面,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一与所述Y有关。
根据本申请的一个方面,所述第一信令被用于确定第一MCS表格,所述第二信令被用于从所述第一MCS表格中指示所述目标MCS索引,所述目标MCS索引和所述Y被共同用于确定所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一。
根据本申请的一个方面,所述第一信令被用于指示第一SPS配置索引,所述第一SPS配置索引所对应的SPS配置的周期被用于确定第一时间单元集合和第二时间单元集合;所述第一时间单元集合和所述第二时间单元集合都包括大于1的正整数个时间单元;所述第一时间单元集合包括所述第一时间单元或者所述第二时间单元集合包括所述第一时间单元。
根据本申请的一个方面,所述第一信令被用于确定所述第一时间单元集合或所述第二时间单元集合中的至少之一。
根据本申请的一个方面,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数是第一MCS索引或第二MCS索引;所述M1的值被用于确定所述第一MCS索引和所述第二MCS索引的差值。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,接收第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;
第二接收机,在第一时间单元中接收第一信号;
其中,所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
本申请公开了一种用于无线通信的第二节点,包括:
第一发射机,发送第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;
第二发射机,在第一时间单元中发送第一信号;
其中,所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.传统的SPS中,终端在一个SPS配置的各个下行布置,即各个PDSCH中所传输的数据所占用的频域资源和MCS都是一样的,以体现周期特性;本申请中提出的方案,一个SPS配置中的各个下行布置所占用的频域资源或MCS与下行布置在整个SPS传输中的位置有关,进而在一个SPS配置中体现了传输的灵活性;
-.在保证沿用现有的SPS的周期的基础上,通过调整一个SPS配置周期中不同下行布置上实际传输的比特数,进而实现满足16.67ms的传输周期的特点,以应对XR的需求;上述调整传输的比特数的方式可以基于调整MCS,或者调整实际占用的RE数;
-.进一步的将XR场景中不同的业务需求和一个SPS配置中采用的多个MCS或多种RE数量建立联系,以进一步增加SPS的灵活性和适应性。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一信令,所述第一信令被用于指示配置授予配置;
在第一时间单元中发送第一信号;
其中,所述第一时间单元被给定上行授权占用,所述给定上行授权是所述第一信令所指示的所述配置授予被配置之后的第Y次上行授权;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关;所述第一信令是RRC(Radio Resouce Control,无线资源控制)信令,所述第一信令被用于指示所述配置授予的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程的数量;所述Y是正整数。
作为一个实施例,上述方法的一个技术特征在于:传统的上行免动态授予(Dynamic Grant)的传输中,终端在一个配置授予的各个上行授予,即各个PUSCH(Physical Uplink Shared Channel,物理上行共享信道)中所传输的数据所占用的频域资源和MCS(Modulation and Coding Scheme,调制和编码方案)都是一样的,以体现周期特性;本申请中提出的方案,一个配置授予中的各个上行授予所对应的数据信道所占用的频域资源或MCS与上行授予在整个配置授予传输中的位置有关,进而在一个配置授予中体现了传输的灵活性。
作为一个实施例,上述方法的另一个技术特征在于:在保证沿用现有的配置授予的周期的基础上,通过调整一个配置授予配置的周期中不同上行授予中实际传输的比特数,进而实现满足16.67ms的传输周期的特点,以应对XR的需求。
根据本申请的一个方面,包括:
接收第二信令;
其中,所述第二信令所包括的CRC通过第一RNTI(Radio Network Temporary Identifier,无线网络临时标识)加扰;所述第二信令被用于指示所述第一信令所指示的所述配置授予被激活;所述第二信令是物理层信令;所述第一RNTI是C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识)之外的RNTI。
根据本申请的一个方面,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数都与所述Y无关;所述第一信号所占用的RE(Resource Elements,资源单元)的数量与所述Y有关。
作为一个实施例,上述方法的一个技术特征在于:在保证沿用现有的配置授予的周期的基础上,只调整一个配置授予的配置周期中不同上行授予实际占用的RE数,不改变MCS,进而实现满足16.67ms的传输周期的特点,以应对XR的需求。
根据本申请的一个方面,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一与所述Y有关。
作为一个实施例,上述方法的一个技术特征在于:在保证沿用现有的配置授予的周期的基础上,只调整一个配置授予的配置周期中不同上行授予中实际采用的MCS,不改变占用的RE数,进而实现满足16.67ms的传输周期的特点,以应对XR的需求。
根据本申请的一个方面,所述第一信令被用于确定第一MCS表格且所述第二信令被用于从所述第一MCS表格中指示目标MCS索引,或者所述第一信令被用于指示目标MCS索引;所述目标MCS索引和所述Y被共同用于确定所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一。
根据本申请的一个方面,所述第一信令被用于指示第一配置授予配置索引,所述第一配置授予配置索引所对应的配置授予的周期被用于确定第一时间单元集合和第二时间单元集合;所述第一时间单元集合和所述第二时间单元集合都包括大于1的正整数个时间单元;所述第一时间单元集合包括所述第一时间单元或者所述第二时间单元集合包括所述第一时间单元。
作为一个实施例,上述方法的一个技术特征在于:所述第一时间单元集合中的时间单元中传输的PUSCH采用一种TBS(Transport Block Size,传输块尺寸),所述第二时间单元集合中的时间单元中传输的PDSCH采用另一种TBS;进而实现在整个配置授予所涵盖的所述第一时间单元集合和所述第二时间单元集合的传输中实现一个现有配置授予所配置周期无法实现的传输速率。
根据本申请的一个方面,所述第一信令被用于确定所述第一时间单元集合或所述第二时间单元集合中的至少之一。
根据本申请的一个方面,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数是第一MCS索引或第二MCS索引;所述M1的值被用于确定所述第一MCS索引和所述第二MCS索引的差值。
作为一个实施例,上述方法的一个技术特征在于:进一步的将XR场景中不同的业务需求和一个配置授予中采用的多个MCS建立联系,以进一步增加免动态授予传输的灵活性和适应性。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
发送第一信令,所述第一信令被用于指示配置授予配置;
在第一时间单元中接收第一信号;
其中,所述第一时间单元被给定上行授权占用,所述给定上行授权是所述第一信令所指示的所述配置授予被配置之后的第Y次上行授权;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
根据本申请的一个方面,包括:
发送第二信令;
其中,所述第二信令所包括的CRC通过第一RNTI加扰;所述第二信令被用于指示所述第一信令所指示的所述配置授予被激活;所述第二信令是物理层信令;所述第一RNTI是C-RNTI之外的RNTI。
根据本申请的一个方面,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数都与所述Y无关;所述第一信号所占用的RE的数量与所述Y有关。
根据本申请的一个方面,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一与所述Y有关。
根据本申请的一个方面,所述第一信令被用于确定第一MCS表格且所述第二信令被用于从所述第一MCS表格中指示目标MCS索引,或者所述第一信令被用于指示目标MCS索引;所述目标MCS索引和所述Y被共同用于确定所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一。
根据本申请的一个方面,所述第一信令被用于指示第一配置授予配置索引,所述第一配置授予配置索引所对应的配置授予的周期被用于确定第一时间单元集合和第二时间单元集合;所述第一时间单元集合和所述第二时间单元集合都包括大于1的正整数个时间单元;所述第一时间单元集合包括所述第一时间单元或者所述第二时间单元集合包括所述第一时间单元。
根据本申请的一个方面,所述第一信令被用于确定所述第一时间单元集合或所述第二时间单元集合中的至少之一。
根据本申请的一个方面,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数是第一MCS索引或第二MCS索引;所述M1的值被用于确定所述第一MCS索引和所述第二MCS索引的差值。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,接收第一信令,所述第一信令被用于指示配置授予配置;
第一发射机,在第一时间单元中发送第一信号;
其中,所述第一时间单元被给定上行授权占用,所述给定上行授权是所述第一信令所指示的所述配置授予被配置之后的第Y次上行授权;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
本申请公开了一种用于无线通信的第二节点,包括:
第二发射机,发送第一信令,所述第一信令被用于指示配置授予配置;
第二接收机,在第一时间单元中接收第一信号;
其中,所述第一时间单元被给定上行授权占用,所述给定上行授权是所述第一信令所指示的所述配置授予被配置之后的第Y次上行授权;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.传统的配置授予中,终端在一个配置授予的各个上行授予所对应的数据传输中,即各个PUSCH中所传输的数据所占用的频域资源和MCS都是一样的,以体现周期特性;本申请中提出的方案,一个配置授予中的各个上行授予所占用的频域资源或MCS与上行授予在整个配置授予传输中的位置有关,进而在一个配置授予配置中体现了传输的灵活性;
-.在保证沿用现有的配置授予的周期的基础上,通过调整一个配置授予的配置周期中不同上行授予中实际传输的比特数,进而实现满足16.67ms的传输周期的特点,以应对XR的需求;上述调整传输的比特数的方式可以基于调整MCS,或者调整实际占用的RE数;
-.进一步的将XR场景中不同的业务需求和一个配置授予中采用的多个MCS或多种RE数量建立联系,以进一步增加配置授予的灵活性和适应性。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1A示出了根据本申请的一个实施例的第一节点的处理流程图;
图1B示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5A示出了根据本申请的一个实施例的第一信令的流程图;
图5B示出了根据本申请的一个实施例的第一信令的流程图;图6A示出了根据本申请的一个实施例的第一时间单元的示意图;
图6B示出了根据本申请的一个实施例的第一时间单元的示意图;
图7A示出了根据本申请的一个实施例的下行布置的示意图;
图7B示出了根据本申请的另一个实施例的第一时间单元的示意图;
图8A示出了根据本申请的另一个实施例的下行布置的示意图;
图8B示出了根据本申请的一个实施例的上行授予的示意图;
图9A示出了根据本申请的一个实施例的第一时间单元集合和第二时间单元集合的示意图;
图9B示出了根据本申请的另一个实施例的上行授予的示意图;
图10A示出了根据本申请的另一个实施例的第一时间单元集合和第二时间单元集合的示意图;
图10B示出了根据本申请的一个实施例的第一时间单元集合和第二时间单元集合的示意图;
图11A示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图11B示出了根据本申请的另一个实施例的第一时间单元集合和第二时间单元集合的示意图;
图12A示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图;
图12B示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1A
实施例1A示例了一个第一节点的处理流程图,如附图1A所示。在附图1A所示的100A中,每个方框代表一个步骤。在实施例1A中,本申请中的第一节点在步骤101A中接收第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;在步骤102A中在第一时间单元中接收第一信号。
实施例1A中,所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
作为一个实施例,所述SPS配置是一个SPS Configuration。
作为一个实施例,所述SPS配置对应一个SPS-ConfigIndex。
作为一个实施例,所述SPS配置对应的SPS-ConfigIndex是个非负整数。
作为一个实施例,所述第一信令被用于指示一个SPS-ConfigIndex。
作为一个实施例,所述第一信令被用于指示CS-RNTI(Configured Scheduling Radio Network Temporary Identifier,配置调度无线网络临时标识)。
作为一个实施例,所述第一信令被用于指示nrofHARQ-Processes。
作为一个实施例,所述第一信令被用于指示harq-ProcID-Offset。
作为一个实施例,所述第一信令被用于指示配置的用于SPS的所述下行布置的周期(periodicity)。
作为一个实施例,所述第一信令是RRC(Radio Resouce Control,无线资源控制)信令。
作为一个实施例,所述第一信令是TS(Technical Specification,技术规范)38.331中的SPS-Config IE。
作为一个实施例,所述下行布置是一个Downlink Assignment。
作为一个实施例,所述第二信令是一个DCI(Downlink control information,下行控制信息)。
作为一个实施例,所述第二信令所占用的物理层信道包括PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为一个实施例,所述第二信令所包括的CRC(Cyclic Redundancy Check,循环冗余校验)通过CS-RNTI加扰。
作为一个实施例,所述第二信令被用于所述SPS配置的激活(Activation)。
作为一个实施例,所述第一节点根据所述第二信令的接收验证(Validate)所述SPS配置针对的SPS传输被激活。
作为一个实施例,所述第一时间单元是一个时隙(Slot)。
作为一个实施例,所述第一时间单元占用大于1的正整数个连续的OFDM(Orthogonal Frequency Division Multiplexing,正交频分多路复用技术)符号。
作为一个实施例,本申请中的一个所述时间单元是一个时隙。
作为一个实施例,本申请中的一个所述时间单元占用大于1的正整数个连续的OFDM符号。
作为一个实施例,所述第二信令所采用的DCI格式(Format)是1_0,1_1或1_2中的之一。
作为一个实施例,所述第一信号是无线信号。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,所述第一信号由一个TB(Transport Block,传输块)生成。
作为一个实施例,所述第一信号由一个CB(Code Block,码块)生成。
作为一个实施例,所述第一信号由一个CBG(Code Block Group,码块组)生成。
作为一个实施例,所述第一比特块由一个TB生成。
作为一个实施例,所述第一比特块由一个CB生成。
作为一个实施例,所述第一比特块由一个CBG生成。
作为一个实施例,所述第一信号所占用的物理层信道包括PDSCH。
作为一个实施例,所述第一信号所占用的传输信道包括DL-SCH(Downlink Shared Channel,下行共享信道)。
作为一个实施例,所述第一信令被用于确定第一时间单元池,所述第一时间单元池包括K1个时间单元,所述K1是大于1的正整数,所述第一时间单元是所述第一时间单元池中的一个时间单元。
作为该实施例的一个子实施例,所述K1个时间单元的中任一时间单元是一个时隙。
作为该实施例的一个子实施例,所述K1个时间单元的中任一时间单元占用大于1的正整数个连续的OFDM符号。
作为该实施例的一个子实施例,所述第二信令被用于确定目标时间单元集合,所述目标时间单元集合包括K2个时间单元,所述K2个时间单元中的任意时间单元属于所述第一时间单元池,所述目标时间单元是所述K2个时间单元中的一个时间单元。
作为该子实施例的一个附属实施例,所述第二信令被用于确定所述K2个时间单元中位于时域最早的一个时间单元。
作为该子实施例的一个附属实施例,所述第一时间单元是所述K2个时间单元中的第Y个时间单元。
作为该子实施例的一个附属实施例,所述第一时间单元是所述K2个时间单元中的第(Y-1)个时间单元。
作为该子实施例的一个附属实施例,所述第二信令所位于的时间单元是所述K2个时间单元中的第一个时间单元。
作为一个实施例,所述Y是一个正整数。
作为一个实施例,所述Y是一个非负整数。
作为一个实施例,所述第一信号是所述第一比特块经过至少CRC附加(attachment),码块分割(Code Block Segmentation),码块CRC附加(Per-CB CRC Attachment),信道编码(encoding),速率匹配(Rate Matching)和码块级联(Concatenation)之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过至少CRC(Cyclic Redundancy Check,循环冗余校验)附加(attachment),信道编码和速率匹配之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过至少扰码(Scrambling),所述调制操作(Modulation)和资源块映射(Resource Mapping)之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过扰码,所述调制操作,层映射(Layer Mapping),天线端口映射(Antenna Port Mapping)和资源块映射之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过CRC附加,码块分割,码块CRC附加,信道编码,速率匹配和码块级联之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过CRC附加,信道编码和速率匹配之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过扰码,所述调制操作和资源块映射之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过扰码,所述调制操作,层映射,天线端口映射和资源块映射之后得到的。
作为一个实施例,所述第一信号是所述第一比特块依次经过CRC附加,码块分割,码块CRC附加,信道编码,速率匹配、码块级联之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过channel coding后,再依次经过扰码,调制操作,层映射,天线端口映射和资源块映射之后得到的。
作为一个实施例,所述资源块映射包括映射到物理资源块中的被分配RE之外的RE中。
作为一个实施例,所述资源块映射包括映射到虚拟资源块(Virtual Resource Block),从虚拟资源块映射到物理资源块。
作为一个实施例,所述信道编码基于LDPC(Low Density Parity Check,低密度奇偶校验)码。
作为一个实施例,所述信道编码基于Turbo码。
作为一个实施例,所述信道编码基于极化码。
作为一个实施例,所述第二信令所包括的HARQ(Hybrid Automatic Repeat reQuest,混合自动 重传请求)Process Number域被设置为全“0”。
作为一个实施例,所述第二信令所包括的Redundancy Version域被设置为全“0”。
实施例1B
实施例1B示例了一个第一节点的处理流程图,如附图1B所示。在附图1B所示的100B中,每个方框代表一个步骤。在实施例1B中,本申请中的第一节点在步骤101B中接收第一信令,所述第一信令被用于指示配置授予配置;在步骤102B中在第一时间单元中发送第一信号。
实施例1B中,所述第一时间单元被给定上行授权占用,所述给定上行授权是所述第一信令所指示的所述配置授予被配置之后的第Y次上行授权;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
作为一个实施例,所述第一信令是RRC信令。
作为一个实施例,所述第一信令的名字中包括ConfiguredGrant。
作为一个实施例,所述第一信令的名字中包括Config。
作为一个实施例,所述第一信令通过TS 38.331中的ConfiguredGrantConfig IE(Information Elements,信息单元)传输。
作为一个实施例,所述第一信令所占用的物理层信道包括PDSCH(Physical Downlink Shared Channel,物理下行共享信道)。
作为一个实施例,所述配置授予是一个Configured Grant。
作为一个实施例,被所述第一信令指示的配置授予是类型1(Type 1)的配置授予。
作为一个实施例,被所述第一信令指示的配置授予是类型2(Type 2)的配置授予。
作为一个实施例,所述第一信令被用于指示所述配置授予的周期(Periodicity)。
作为一个实施例,所述第一信令被用于确定所述第一信号的发送功率值。
作为该实施例的一个子实施例,所述第一信令被用于指示第一系数,所述第一系数被用于确定所述第一信号的所述发送功率值。
作为该子实施例的一个附属实施例,所述第一系数对应TS 38.331中的p0-PUSCH-Alpha。
作为该实施例的一个子实施例,所述第一信令被用于指示路损参考索引,所述路损参考索引被用于确定所述第一信号的所述发送功率值。
作为该子实施例的一个附属实施例,所述路损参考索引对应TS 38.331中的pathlossReferenceIndex。
作为一个实施例,所述第一信令被用于确定所述第一时间单元。
作为一个实施例,所述第一时间单元是一个时隙。
作为一个实施例,所述第一时间单元在时域占用至少一个符号(symbol)。
作为一个实施例,所述第一时间单元在时域占用多个连续的符号。
作为一个实施例,本申请中的所述时间单元是一个时隙。
作为一个实施例,本申请中的所述时间单元在时域占用至少一个符号(symbol)。
作为一个实施例,本申请中的所述时间单元在时域占用多个连续的符号。
作为一个实施例,本申请中的所述符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分多路复用技术)符号。
作为一个实施例,本申请中所述符号是SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波频分复用接入)符号。
作为一个实施例,本申请中所述符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中所述符号是包含CP(Cyclic Prefix,循环前缀)的OFDM符号。
作为一个实施例,本申请中所述符号是包含CP的DFT-s-OFDM(Discrete Fourier Transform Spreading Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展的正交频分复用)符号。
作为一个实施例,所述第一信号是无线信号。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,所述第一信号由一个TB(Transport Block,传输块)生成。
作为一个实施例,所述第一信号由一个CB(Code Block,码块)生成。
作为一个实施例,所述第一信号由一个CBG(Code Block Group,码块组)生成。
作为一个实施例,所述第一比特块由一个TB生成。
作为一个实施例,所述第一比特块由一个CB生成。
作为一个实施例,所述第一比特块由一个CBG生成。
作为一个实施例,所述第一信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述第一信号所占用的传输信道包括UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述第一信令被用于确定第一时间单元池,所述第一时间单元池包括K1个时间单元,所述K1是大于1的正整数,所述第一时间单元是所述第一时间单元池中的一个时间单元。
作为该实施例的一个子实施例,所述K1个时间单元的中任一时间单元是一个时隙。
作为该实施例的一个子实施例,所述K1个时间单元的中任一时间单元占用大于1的正整数个连续的符号。
作为该子实施例的一个附属实施例,所述第一时间单元是所述K1个时间单元中的第Y个时间单元。
作为该子实施例的一个附属实施例,所述第一时间单元是所述K1个时间单元中的第(Y-1)个时间单元。
作为该子实施例的一个附属实施例,所述第一时间单元是所述K1个时间单元中的第一个时间单元。
作为一个实施例,所述Y是一个正整数。
作为一个实施例,所述Y是一个非负整数。
作为一个实施例,所述第一信号是所述第一比特块经过至少CRC(Cyclic Redundancy Check,循环冗余校验)附加(attachment),码块分割(Code Block Segmentation),码块CRC附加(Per-CB CRC Attachment),信道编码(encoding),速率匹配(Rate Matching)和码块级联(Concatenation)之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过至少CRC(Cyclic Redundancy Check,循环冗余校验)附加(attachment),信道编码和速率匹配之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过至少扰码(Scrambling),所述调制操作(Modulation)和资源块映射(Resource Mapping)之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过扰码,所述调制操作,层映射(Layer Mapping),天线端口映射(Antenna Port Mapping)和资源块映射之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过CRC附加,码块分割,码块CRC附加,信道编码,速率匹配和码块级联之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过CRC附加,信道编码和速率匹配之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过扰码,所述调制操作和资源块映射之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过扰码,所述调制操作,层映射,天线端口映射和资源块映射之后得到的。
作为一个实施例,所述第一信号是所述第一比特块依次经过CRC附加,码块分割,码块CRC附加,信道编码,速率匹配、码块级联之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过channel coding后,再依次经过扰码,调制操作,层映射,天线端口映射和资源块映射之后得到的。
作为一个实施例,所述资源块映射包括映射到物理资源块中的被分配的RE中。
作为一个实施例,所述资源块映射包括映射到物理资源块中的被分配RE之外的RE中。
作为一个实施例,所述资源块映射包括映射到虚拟资源块(Virtual Resource Block),从虚拟资源块映射到物理资源块。
作为一个实施例,所述信道编码基于LDPC(Low Density Parity Check,低密度奇偶校验)码。
作为一个实施例,所述信道编码基于Turbo码。
作为一个实施例,所述信道编码基于极化码。
作为一个实施例,所述第一信令被用于指示TS 38.331中的nrofHARQ-Processes域(Field)。 实施例 2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个UE(User Equipment,用户设备)201,NR-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NR-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S 1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201支持SPS业务。
作为一个实施例,所述UE201能够同时支持多个SPS配置被同时激活。
作为一个实施例,所述UE201支持XR业务。
作为一个实施例,本申请中的所述XR包括AR(现实增强)。
作为一个实施例,本申请中的所述XR包括VR(现实虚拟)。
作为一个实施例,所述gNB203对应本申请中的所述第一节点。
作为一个实施例,所述gNB203支持SPS业务。
作为一个实施例,所述gNB203能够同时支持多个SPS配置被同时激活。
作为一个实施例,所述gNB203支持XR业务。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3 所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,PDCP子层304还提供第一通信节点设备对第二通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resouce Control,无线资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信令生成于所述RRC306。
作为一个实施例,所述第二信令生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第二信令生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信号生成于所述RRC306。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第二节点是一个终端。
作为一个实施例,所述第二节点是一个TRP(Transmitter Receiver Point,发送接收点)。
作为一个实施例,所述第二节点是一个小区(Cell)。
作为一个实施例,所述第二节点是一个eNB。
作为一个实施例,所述第二节点是一个基站。
作为一个实施例,所述第二节点被用于管理多个TRP。
作为一个实施例,所述第二节点是用于管理多个小区的节点。
作为一个实施例,所述第二节点是用于管理多个载波的节点。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器 456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存 储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;随后在第一时间单元中接收第一信号;所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;随后在第一时间单元中接收第一信号;所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先发送第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;随后在第一时间单元中发送第一信号;所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先发送第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;随后在第一时间单元中发送第一信号;所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个终端。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述第二通信设备410是一个网络设备。
作为一个实施例,所述第二通信设备410是一个服务小区。
作为一个实施例,所述第二通信设备410是一个TRP。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于在第一时间单元中接收第一信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于在第一时间单元中发送第一信号。
实施例5A
实施例5A示例了一个第一信令的流程图,如附图5A所示。在附图5A中,第一节点U1A与第二节点N2A之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第一节点U1A,在步骤S10A中接收第一信令和第二信令;在步骤S11A中在第一时间单元中接收第一信号。
对于 第二节点N2A,在步骤S20A中发送第一信令和第二信令;在步骤S21A中在第一时间单元中发送第一信号。
实施例5A中,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
作为一个实施例,所述第一信令所占用的时域资源和所述第二信令所占用的时域资源属于同一个时隙。
作为一个实施例,所述第一信令所占用的时域资源和所述第二信令所占用的时域资源分别属于两个不同的时隙。
作为一个实施例,所述第二信令所占用的时域资源和所述第一信号所占用的时域资源属于同一个时隙。
作为一个实施例,所述第二信令所占用的时域资源和所述第一信号所占用的时域资源分别属于两个不同的时隙。
作为一个实施例,所述第二信令被用于指示SPS激活;所述第二信令被用于确定所述第一信号所占用的频域资源。
作为该实施例的一个子实施例,所述第二信令所包括的Frequency Domain Assignment域被用于指示所述第一信号所占用的频域资源。
作为该实施例的一个子实施例,所述第二信令所包括的Frequency Domain Assignment域被用于指示所述第一信号所占用的RB(Resource Block,资源块)的频域位置。
作为该实施例的一个子实施例,所述第二信令所包括的Frequency Domain Assignment域被用于确定所述第一信号所占用的频域资源。
作为该实施例的一个子实施例,所述第二信令所包括的Frequency Domain Assignment域被用于确定所述第一信号所占用的RB的频域位置。
作为该实施例的一个子实施例,所述第二信令所包括的Frequency Domain Assignment域被用于指示第一RB集合,所述第一RB集合包括大于1的正整数个RB,所述第一信号所占用的频域资源包括所述第一RB集合或第二RB集合中的至少所述第一RB集合,所述第二RB集合包括大于1的正整数个RB,所述第一RB集合的频域位置被用于确定所述第二RB集合的频域位置。
作为该子实施例的一个附属实施例,所述第一信号所占用的频域资源是否包括所述第二RB集合与所述Y的值有关。
作为该附属实施例的一个范例;所述Y等于奇数,所述第一信号所占用的频域资源包括所述第二RB集合;所述Y等于偶数,所述第一信号所占用的频域资源不包括所述第二RB集合。
作为该附属实施例的一个范例;所述Y等于偶数,所述第一信号所占用的频域资源包括所述第二RB集合;所述Y等于奇数,所述第一信号所占用的频域资源不包括所述第二RB集合。
作为该附属实施例的一个范例;所述Y小于第一阈值时,所述第一信号所占用的频域资源包括所述第二RB集合;所述Y不小于第一阈值时,所述第一信号所占用的频域资源不包括所述第二RB集合;所述第一阈值是固定的或者所述第一阈值是通过RRC或MAC信令配置的;所述第一阈值是大于1的正整数。
作为该附属实施例的一个范例;所述Y大于第二阈值时,所述第一信号所占用的频域资源包括所述第二RB集合;所述Y不大于第二阈值时,所述第一信号所占用的频域资源不包括所述第二RB集合;所述第二阈值是固定的或者所述第二阈值是通过RRC或MAC信令配置的;所述第二阈值是大于1的正整数。
作为该子实施例的一个附属实施例,所述第二RB集合所包括的RB数是固定的,或者所述第二 RB集合所包括的RB数是通过更高层信令配置的。
作为该子实施例的一个附属实施例,所述第二RB集合所包括的RB数与所述第二信令无关。
作为该子实施例的一个附属实施例,所述第二RB集合所包括的RB数与所述第一节点的业务类型有关。
作为一个实施例,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数都与所述Y无关;所述第一信号所占用的RE的数量与所述Y有关。
作为该实施例的一个子实施例,所述第一比特块所包括的比特数是TBS。
作为该实施例的一个子实施例,所述第一信号所占用的RE的数量与所述第一信号所占用的RB的数量有关,所述第一信号所占用的所述RB的数量与所述Y有关。
作为该实施例的一个子实施例,当所述Y等于奇数时,所述第一信号所占用的RE的数量等于X1;当所述Y等于偶数时,所述第一信号所占用的RE的数量等于X2;所述X1和所述X2都是大于1的正整数,所述X1与所述X2不相等。
作为该实施例的一个子实施例,当所述Y不大于第三阈值时,所述第一信号所占用的RE的数量等于X1;当所述Y大于第三阈值时,所述第一信号所占用的RE的数量等于X2;所述X1和所述X2都是大于1的正整数,所述X1与所述X2不相等;所述第三阈值是固定的或者所述第三阈值是通过RRC或MAC信令配置的;所述第三阈值是大于1的正整数。
作为该实施例的一个子实施例,当所述Y大于第四阈值时,所述第一信号所占用的RE的数量等于X1;当所述Y不大于第四阈值时,所述第一信号所占用的RE的数量等于X2;所述X1和所述X2都是大于1的正整数,所述X1与所述X2不相等;所述第四阈值是固定的或者所述第四阈值是通过RRC或MAC信令配置的;所述第四阈值是大于1的正整数。
作为上述三个子实施例的一个附属实施例,所述第二信令被用于确定所述X1的值,且所述X2的值与所述X1的值有关。
作为上述三个子实施例的一个附属实施例,所述第二信令被用于确定所述X2的值,且所述X1的值与所述X2的值有关。
作为上述三个子实施例的一个附属实施例,所述X1与所述X2的差等于X3;所述X3的值通过RRC信令或MAC信令配置,或者所述X3的值是固定的。
作为该实施例的一个子实施例,所述第二信令被用于指示所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数中的至少之一。
作为该实施例的一个子实施例,所述第二信令被用于指示所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数。
作为一个实施例,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一与所述Y有关。
作为该实施例的一个子实施例,所述第一信号所占用的频域资源与所述Y无关。
作为该实施例的一个子实施例,所述第一信号所占用的RB数量和RB位置与所述Y无关。
作为该实施例的一个子实施例,所述第二信令被用于指示所述第一信号所占用的频域资源。
作为该实施例的一个子实施例,所述第一信号所占用的RE的数量与所述Y无关。
作为该实施例的一个子实施例,当所述Y等于奇数时,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第一MCS索引(Index)对应的编码速率和第一MCS索引对应的调制阶数(Order);当所述Y等于偶数时,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第二MCS索引对应的编码速率和第二MCS索引对应的调制阶数;所述第一MCS索引和所述第二MCS索引有关,所述第二信令被用于指示所述第一MCS索引或所述第二MCS索引。
作为该实施例的一个子实施例,当所述Y不大于第五阈值时,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第一MCS索引对应的编码速率和第一MCS索引对应的调制阶数;当所述Y大于第五阈值时,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数 采用第二MCS索引对应的编码速率和第二MCS索引对应的调制阶数;所述第一MCS索引和所述第二MCS索引有关,所述第二信令被用于指示所述第一MCS索引或所述第二MCS索引;所述第五阈值是固定的或者所述第五阈值是通过RRC或MAC信令配置的;所述第五阈值是大于1的正整数。
作为该实施例的一个子实施例,当所述Y大于第六阈值时,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第一MCS索引对应的编码速率和第一MCS索引对应的调制阶数;当所述Y不大于第六阈值时,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第二MCS索引对应的编码速率和第二MCS索引对应的调制阶数;所述第一MCS索引和所述第二MCS索引有关,所述第二信令被用于指示所述第一MCS索引或所述第二MCS索引;所述第六阈值是固定的或者所述第六阈值是通过RRC或MAC信令配置的;所述第六阈值是大于1的正整数。
作为上述三个子实施例的一个附属实施例,所述第二信令指示所述第一MCS索引和所述第二MCS索引中的前者。
作为上述三个子实施例的一个附属实施例,所述第二信令指示所述第一MCS索引和所述第二MCS索引中的后者。
作为上述三个子实施例的一个附属实施例,所述第二信令不同时指示所述第一MCS索引和所述第二MCS索引。
作为上述三个实施例的一个子实施例,所述第一MCS索引与所述第二MCS索引的差等于X4;所述X4的值通过RRC信令或MAC信令配置,或者所述X4的值是固定的。
作为一个实施例,所述第一信令被用于确定第一MCS表格,所述第二信令被用于从所述第一MCS表格中指示所述目标MCS索引,所述目标MCS索引和所述Y被共同用于确定所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一。
作为该实施例的一个子实施例,当所述第二信令指示所述第一MCS索引时,所述目标MCS索引是所述第一MCS索引。
作为该实施例的一个子实施例,当所述第二信令指示所述第二MCS索引时,所述目标MCS索引是所述第二MCS索引。
作为一个实施例,所述第一信令被用于指示第一SPS配置索引,所述第一SPS配置索引所对应的SPS配置的周期被用于确定第一时间单元集合和第二时间单元集合;所述第一时间单元集合和所述第二时间单元集合都包括大于1的正整数个时间单元;所述第一时间单元集合包括所述第一时间单元或者所述第二时间单元集合包括所述第一时间单元。
作为该实施例的一个子实施例,所述Y的值所对应的所述第一时间单元属于所述第一时间单元集合,所述第一信号所占用的频域资源包括所述第一RB集合和所述第二RB集合;所述Y的值所对应的所述第一时间单元属于所述第二时间单元集合,所述第一信号所占用的频域资源包括所述第一RB集合且不包括所述第二RB集合。
作为该实施例的一个子实施例,所述Y的值所对应的所述第一时间单元属于所述第一时间单元集合,所述第一信号所占用的RE的数量等于X1;所述Y的值所对应的所述第一时间单元属于所述第二时间单元集合,所述第一信号所占用的RE的数量等于X2;所述X1和所述X2都是大于1的正整数,所述X1与所述X2不相等。
作为该实施例的一个子实施例,所述Y的值所对应的所述第一时间单元属于所述第一时间单元集合,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第一MCS索引对应的编码速率和第一MCS索引对应的调制阶数;所述Y的值所对应的所述第一时间单元属于所述第二时间单元集合,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第二MCS索引对应的编码速率和第二MCS索引对应的调制阶数;所述第一MCS索引和所述第二MCS索引不同,且所述第二信令指示所述第一MCS索引或所述第二MCS索引。
作为一个实施例,所述第一信令被用于确定所述第一时间单元集合或所述第二时间单元集合中的 至少之一。
作为该实施例的一个子实施例,所述第一信令被用于指示所述第一时间单元集合。
作为该实施例的一个子实施例,所述第一信令被用于指示所述第二时间单元集合。
作为该实施例的一个子实施例,所述第一信令被用于指示所述第一时间单元集合和所述第二时间单元集合。
作为该实施例的一个子实施例,所述第一信令被用于从所述第一时间单元池中指示所述第一时间单元集合。
作为该实施例的一个子实施例,所述第一信令被用于从所述第一时间单元池中指示所述第二时间单元集合。
作为该实施例的一个子实施例,所述第一信令被用于从所述第一时间单元池中指示所述第一时间单元集合和所述第二时间单元集合。
作为一个实施例,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数是第一MCS索引或第二MCS索引;所述M1的值被用于确定所述第一MCS索引和所述第二MCS索引的差值。
作为一个实施例,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一信号所占用的RB数等于第一整数或第二整数;所述第一整数不等于所述第二整数;所述第一整数和所述第二整数都是正整数;所述M1的值被用于确定所述第一整数与所述第二整数的比值。
作为一个实施例,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一信号所占用的RE数等于第三整数或第四整数;所述第三整数不等于所述第四整数;所述第三整数和所述第四整数都是大于1的正整数;所述M1的值被用于确定所述第三整数与所述第四整数的比值。
作为一个实施例,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述M1的值被用于确定所述第一时间单元集合所包括的时间单元的数量与所述第二时间单元集合所包括的时间单元的数量的比值。
实施例5B
实施例5B示例了一个第一信令的流程图,如附图5B所示。在附图5B中,第一节点U1B与第二节点N2B之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。图中标注为F0的方框中的步骤是可选的。
对于 第一节点U1B,在步骤S10B中接收第一信令;在步骤S11B中接收第二信令;在步骤S12B中在第一时间单元中发送第一信号。
对于 第二节点N2B,在步骤S20B中发送第一信令;在步骤S21B中发送第二信令;在步骤S22B中在第一时间单元中接收第一信号。
实施例5B中,所述第一信令被用于指示配置授予配置;所述第一时间单元被给定上行授权占用,所述给定上行授权是所述第一信令所指示的所述配置授予被配置之后的第Y次上行授权;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数;当所述第二信令被传输时,所述第二信令所包括的CRC通过第一RNTI加扰,所述第二信令被用于指示所述第一信令所指示的所述配置授予被激活,所述第二信令是物理层信令,所述第一RNTI是C-RNTI之外的RNTI。
作为一个实施例,上述短语所述第一信令所指示的所述配置授予被配置的意思包括:所述配置授予被承载所述第一信令的RRC信令配置,且所述配置授予是类型1(Type 1)的配置授予。
作为一个实施例,上述短语所述第一信令所指示的所述配置授予被配置的意思包括:所述配置授予被承载所述第一信令的RRC信令配置,且所述配置授予被动态信令激活,所述配置授予是类型2(Type 2)的配置授予。
作为一个实施例,所述第二信令早于所述第一信号被传输。
作为一个实施例,所述第一信令被用于确定所述第一信号所占用的频域资源。
作为该实施例的一个子实施例,所述第一信令所包括的FrequencyDomainAllocation域被用于指示所述第一信号所占用的频域资源。
作为该实施例的一个子实施例,所述第一信令所包括的FrequencyDomainAllocation域被用于指示所述第一信号所占用的RB(Resource Block,资源块)的频域位置。
作为该实施例的一个子实施例,所述第一信令所包括的FrequencyDomainAllocation域被用于指示第三RB集合,所述第三RB集合包括大于1的正整数个RB,所述第一信号所占用的频域资源包括所述第三RB集合或第四RB集合中的至少所述第三RB集合,所述第四RB集合包括大于1的正整数个RB,所述第三RB集合的频域位置被用于确定所述第四RB集合的频域位置。
作为该子实施例的一个附属实施例,所述第一信号所占用的频域资源是否包括所述第四RB集合与所述Y的值有关。
作为该附属实施例的一个范例;所述Y等于奇数,所述第一信号所占用的频域资源包括所述第四RB集合;所述Y等于偶数,所述第一信号所占用的频域资源不包括所述第四RB集合。
作为该附属实施例的一个范例;所述Y等于偶数,所述第一信号所占用的频域资源包括所述第四RB集合;所述Y等于奇数,所述第一信号所占用的频域资源不包括所述第四RB集合。
作为该附属实施例的一个范例;所述Y小于第一阈值时,所述第一信号所占用的频域资源包括所述第四RB集合;所述Y不小于第一阈值时,所述第一信号所占用的频域资源不包括所述第四RB集合;所述第一阈值是固定的或者所述第一阈值是通过RRC或MAC信令配置的;所述第一阈值是大于1的正整数。
作为该附属实施例的一个范例;所述Y大于第二阈值时,所述第一信号所占用的频域资源包括所述第四RB集合;所述Y不大于第二阈值时,所述第一信号所占用的频域资源不包括所述第四RB集合;所述第二阈值是固定的或者所述第二阈值是通过RRC或MAC信令配置的;所述第二阈值是大于1的正整数。
作为该子实施例的一个附属实施例,所述第四RB集合所包括的RB数是固定的,或者所述第四RB集合所包括的RB数是通过更高层信令配置的。
作为该子实施例的一个附属实施例,所述第四RB集合所包括的RB数与所述第一信令无关。
作为该子实施例的一个附属实施例,所述第四RB集合所包括的RB数与所述第一节点U1的业务类型有关。
作为一个实施例,所述第二信令所占用的物理层信道包括PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为一个实施例,所述第二信令是一个DCI(Downlink control information,下行控制信息)。
作为一个实施例,所述第二信令是一个上行授权。
作为一个实施例,所述第二信令所采用的DCI格式是DCI格式0_1或DCI格式0_2。
作为一个实施例,所述第二信令被用于触发所述第一信令所指示的所述配置授予在时域的第一个上行授予的传输。
作为一个实施例,所述第二信令被用于触发所述第一信令所指示的所述配置授予在时域的第一个上行授予所对对应的PUSCH的传输。
作为一个实施例,当所述第二信令被用于指示所述第一信令所指示的所述配置授予被激活时,所述第一信令所指示的所述配置授予是类型2(Type 2)的配置授予。
作为一个实施例,当所述第二信令被用于指示所述第一信令所指示的所述配置授予被激活时,所述第二信令被用于指示所述第一信号的配置信息,所述配置信息包括以下至少之一:
-所占用的频域资源;
-所占用的时域资源;
-所采用的MCS;
-所占用的HARQ进程号。
作为一个实施例,所述第一RNTI是CS-RNTI(Configured Scheduling Radio Network Temporary Identifier,配置调度无线网络临时标识)。
作为一个实施例,所述第一RNTI通过RRC信令配置。
作为一个实施例,所述第一信令被用于确定第一时间单元池,所述第一时间单元池包括K1个时间单元,所述K1是大于1的正整数,所述第一时间单元是所述第一时间单元池中的一个时间单元。
作为该实施例的一个子实施例,所述K1个时间单元的中任一时间单元是一个时隙。
作为该实施例的一个子实施例,所述K1个时间单元的中任一时间单元占用大于1的正整数个连续的符号。
作为该实施例的一个子实施例,所述第二信令被用于确定第一时间单元集合,所述第一时间单元集合包括K2个时间单元,所述K2个时间单元中的任意时间单元属于所述第一时间单元池,所述第一时间单元是所述K2个时间单元中的一个时间单元。
作为该子实施例的一个附属实施例,所述第二信令被用于确定所述K2个时间单元中位于时域最早的一个时间单元。
作为该子实施例的一个附属实施例,所述第一时间单元是所述K2个时间单元中的第Y个时间单元。
作为该子实施例的一个附属实施例,所述第一时间单元是所述K2个时间单元中的第(Y-1)个时间单元。
作为该子实施例的一个附属实施例,所述第二信令所位于的时间单元是所述K2个时间单元中的第一个时间单元。
作为一个实施例,所述第二信令被用于确定所述第一信号所占用的频域资源。
作为该实施例的一个子实施例,所述第二信令所包括的Frequency Domain Assignment域被用于指示所述第一信号所占用的频域资源。
作为该实施例的一个子实施例,所述第二信令所包括的Frequency Domain Resource Assignment域被用于指示所述第一信号所占用的RB(Resource Block,资源块)的频域位置。
作为该实施例的一个子实施例,所述第二信令所包括的Frequency Domain Resource Assignment域被用于指示第一RB集合,所述第一RB集合包括大于1的正整数个RB,所述第一信号所占用的频域资源包括所述第一RB集合或第二RB集合中的至少所述第一RB集合,所述第二RB集合包括大于1的正整数个RB,所述第一RB集合的频域位置被用于确定所述第二RB集合的频域位置。
作为该子实施例的一个附属实施例,所述第一信号所占用的频域资源是否包括所述第二RB集合与所述Y的值有关。
作为该附属实施例的一个范例;所述Y等于奇数,所述第一信号所占用的频域资源包括所述第二RB集合;所述Y等于偶数,所述第一信号所占用的频域资源不包括所述第二RB集合。
作为该附属实施例的一个范例;所述Y等于偶数,所述第一信号所占用的频域资源包括所述第二RB集合;所述Y等于奇数,所述第一信号所占用的频域资源不包括所述第二RB集合。
作为该附属实施例的一个范例;所述Y小于第一阈值时,所述第一信号所占用的频域资源包括所述第二RB集合;所述Y不小于第一阈值时,所述第一信号所占用的频域资源不包括所述第二RB集合;所述第一阈值是固定的或者所述第一阈值是通过RRC或MAC信令配置的;所述第一阈值是大于1的正整数。
作为该附属实施例的一个范例;所述Y大于第二阈值时,所述第一信号所占用的频域资源包括所述第二RB集合;所述Y不大于第二阈值时,所述第一信号所占用的频域资源不包括所述第二RB集合;所述第二阈值是固定的或者所述第二阈值是通过RRC或MAC信令配置的;所述第二阈值是大于1的正整数。
作为该子实施例的一个附属实施例,所述第二RB集合所包括的RB数是固定的,或者所述第二RB集合所包括的RB数是通过更高层信令配置的。
作为该子实施例的一个附属实施例,所述第二RB集合所包括的RB数与所述第二信令无关。
作为该子实施例的一个附属实施例,所述第二RB集合所包括的RB数与所述第一节点U1的业务 类型有关。
作为一个实施例,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数都与所述Y无关;所述第一信号所占用的RE的数量与所述Y有关。
作为一个实施例,所述第一比特块所包括的比特数是TBS。
作为一个实施例,所述第一信号所占用的RE的数量与所述第一信号所占用的RB的数量有关,所述第一信号所占用的所述RB的数量与所述Y有关。
作为一个实施例,当所述Y等于奇数时,所述第一信号所占用的RE的数量等于X1;当所述Y等于偶数时,所述第一信号所占用的RE的数量等于X2;所述X1和所述X2都是大于1的正整数,所述X1与所述X2不相等。
作为一个实施例,当所述Y不大于第三阈值时,所述第一信号所占用的RE的数量等于X1;当所述Y大于第三阈值时,所述第一信号所占用的RE的数量等于X2;所述X1和所述X2都是大于1的正整数,所述X1与所述X2不相等;所述第三阈值是固定的或者所述第三阈值是通过RRC或MAC信令配置的;所述第三阈值是大于1的正整数。
作为一个实施例,当所述Y大于第四阈值时,所述第一信号所占用的RE的数量等于X1;当所述Y不大于第四阈值时,所述第一信号所占用的RE的数量等于X2;所述X1和所述X2都是大于1的正整数,所述X1与所述X2不相等;所述第四阈值是固定的或者所述第四阈值是通过RRC或MAC信令配置的;所述第四阈值是大于1的正整数。
作为上述三个实施例的一个子实施例,当所述第一信令所指示的所述配置授予是类型2的配置授予时,所述第二信令被用于确定所述X1的值,且所述X2的值与所述X1的值有关。
作为上述三个实施例的一个子实施例,当所述第一信令所指示的所述配置授予是类型2的配置授予时,所述第二信令被用于确定所述X2的值,且所述X1的值与所述X2的值有关。
作为上述三个实施例的一个子实施例,当所述第一信令所指示的所述配置授予是类型1的配置授予时,所述第一信令被用于确定所述X1的值,且所述X2的值与所述X1的值有关。
作为上述三个实施例的一个子实施例,当所述第一信令所指示的所述配置授予是类型1的配置授予时,所述第一信令被用于确定所述X2的值,且所述X1的值与所述X2的值有关。
作为上述三个实施例的一个子实施例,所述X1与所述X2的差等于X3;所述X3的值通过RRC信令或MAC信令配置,或者所述X3的值是固定的。
作为一个实施例,当所述第一信令所指示的所述配置授予是类型2的配置授予时,所述第二信令被用于指示所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数中的至少之一。
作为一个实施例,当所述第一信令所指示的所述配置授予是类型2的配置授予时,所述第二信令被用于指示所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数。
作为一个实施例,当所述第一信令所指示的所述配置授予是类型1的配置授予时,所述第一信令被用于指示所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数中的至少之一。
作为一个实施例,当所述第一信令所指示的所述配置授予是类型1的配置授予时,所述第一信令被用于指示所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数。
作为一个实施例,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一与所述Y有关。
作为一个实施例,所述第一信号所占用的频域资源与所述Y无关。
作为一个实施例,所述第一信号所占用的RB数量和RB位置与所述Y无关。
作为一个实施例,当所述第一信令所指示的所述配置授予是类型1的配置授予时,所述第一信令被用于指示所述第一信号所占用的频域资源。
作为一个实施例,当所述第一信令所指示的所述配置授予是类型2的配置授予时,所述第二信令被 用于指示所述第一信号所占用的频域资源。
作为一个实施例,所述第一信号所占用的RE的数量与所述Y无关。
作为一个实施例,当所述Y等于奇数时,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第一MCS索引(Index)对应的编码速率和第一MCS索引对应的调制阶数(Order);当所述Y等于偶数时,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第二MCS索引对应的编码速率和第二MCS索引对应的调制阶数;所述第一MCS索引和所述第二MCS索引有关,所述第二信令被用于指示所述第一MCS索引或所述第二MCS索引。
作为一个实施例,当所述Y不大于第五阈值时,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第一MCS索引对应的编码速率和第一MCS索引对应的调制阶数;当所述Y大于第五阈值时,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第二MCS索引对应的编码速率和第二MCS索引对应的调制阶数;所述第一MCS索引和所述第二MCS索引有关,所述第二信令被用于指示所述第一MCS索引或所述第二MCS索引;所述第五阈值是固定的或者所述第五阈值是通过RRC或MAC信令配置的;所述第五阈值是大于1的正整数。
作为一个实施例,当所述Y大于第六阈值时,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第一MCS索引对应的编码速率和第一MCS索引对应的调制阶数;当所述Y不大于第六阈值时,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第二MCS索引对应的编码速率和第二MCS索引对应的调制阶数;所述第一MCS索引和所述第二MCS索引有关,所述第二信令被用于指示所述第一MCS索引或所述第二MCS索引;所述第六阈值是固定的或者所述第六阈值是通过RRC或MAC信令配置的;所述第六阈值是大于1的正整数。
作为上述三个实施例的一个子实施例,当所述第一信令所指示的所述配置授予是类型2的配置授予时,所述第二信令指示所述第一MCS索引和所述第二MCS索引中的前者。
作为上述三个实施例的一个子实施例,当所述第一信令所指示的所述配置授予是类型2的配置授予时,所述第二信令指示所述第一MCS索引和所述第二MCS索引中的后者。
作为上述三个实施例的一个子实施例,当所述第一信令所指示的所述配置授予是类型2的配置授予时,所述第二信令不同时指示所述第一MCS索引和所述第二MCS索引。
作为上述三个实施例的一个子实施例,当所述第一信令所指示的所述配置授予是类型1的配置授予时,所述第一信令指示所述第一MCS索引和所述第二MCS索引中的前者。
作为上述三个实施例的一个子实施例,当所述第一信令所指示的所述配置授予是类型1的配置授予时,所述第一信令指示所述第一MCS索引和所述第二MCS索引中的后者。
作为上述三个实施例的一个子实施例,当所述第一信令所指示的所述配置授予是类型1的配置授予时,所述第一信令不同时指示所述第一MCS索引和所述第二MCS索引。
作为上述三个实施例的一个子实施例,所述第一MCS索引与所述第二MCS索引的差等于X4;所述X4的值通过RRC信令或MAC信令配置,或者所述X4的值是固定的。
作为一个实施例,所述第一信令被用于确定第一MCS表格且所述第二信令被用于从所述第一MCS表格中指示目标MCS索引,或者所述第一信令被用于指示目标MCS索引;所述目标MCS索引和所述Y被共同用于确定所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一。
作为该实施例的一个子实施例,当所述第一信令所指示的所述配置授予是类型1的配置授予时,所述第一信令被用于指示所述目标MCS索引。
作为该子实施例的一个附属实施例,当所述第一信令指示所述第一MCS索引时,所述目标MCS索引是所述第一MCS索引。
作为该子实施例的一个附属实施例,当所述第一信令指示所述第二MCS索引时,所述目标MCS索引是所述第二MCS索引。
作为该实施例的一个子实施例,当所述第一信令所指示的所述配置授予是类型2的配置授予时,所述第一信令被用于确定所述第一MCS表格且所述第二信令被用于从所述第一MCS表格中指示所述目标MCS索引。
作为该子实施例的一个附属实施例,当所述第二信令指示所述第一MCS索引时,所述目标MCS索引是所述第一MCS索引。
作为该子实施例的一个子附属实施例,当所述第二信令指示所述第二MCS索引时,所述目标MCS索引是所述第二MCS索引。
作为一个实施例,所述第一信令被用于指示第一配置授予配置索引,所述第一配置授予配置索引所对应的配置授予的周期被用于确定第一时间单元集合和第二时间单元集合;所述第一时间单元集合和所述第二时间单元集合都包括大于1的正整数个时间单元;所述第一时间单元集合包括所述第一时间单元或者所述第二时间单元集合包括所述第一时间单元。
作为该实施例的一个子实施例,所述第一配置授予配置索引所对应的所述配置授予是被所述第一信令指示的所述配置授予。
作为该实施例的一个子实施例,所述第一配置授予配置索引是TS 38.331中的ConfiguredGrantConfigIndex。
作为该实施例的一个子实施例;所述Y的值所对应的所述第一时间单元属于所述第一时间单元集合,所述第一信号所占用的频域资源包括所述第一RB集合和所述第二RB集合;所述Y的值所对应的所述第一时间单元属于所述第二时间单元集合,所述第一信号所占用的频域资源包括所述第一RB集合且不包括所述第二RB集合。
作为该实施例的一个子实施例;所述Y的值所对应的所述第一时间单元属于所述第一时间单元集合,所述第一信号所占用的RE的数量等于X1;所述Y的值所对应的所述第一时间单元属于所述第二时间单元集合,所述第一信号所占用的RE的数量等于X2;所述X1和所述X2都是大于1的正整数,所述X1与所述X2不相等。
作为该实施例的一个子实施例;所述Y的值所对应的所述第一时间单元属于所述第一时间单元集合,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第一MCS索引对应的编码速率和第一MCS索引对应的调制阶数(Order);所述Y的值所对应的所述第一时间单元属于所述第二时间单元集合,所述第一比特块经过的所述信道编码所采用的所述编码速率与所述第一比特块经过的所述调制所采用的所述调制阶数采用第二MCS索引对应的编码速率和第二MCS索引对应的调制阶数;所述第一MCS索引和所述第二MCS索引不同,且所述第二信令指示所述第一MCS索引或所述第二MCS索引。
作为该实施例的一个子实施例,所述第二信令被用于指示所述第一时间单元集合和所述第二时间单元集合所包括的所有时间单元中位于时域的最早的一个时间单元。
作为一个实施例,所述第一信令被用于确定所述第一时间单元集合或所述第二时间单元集合中的至少之一。
作为该实施例的一个子实施例,所述第一信令被用于指示所述第一时间单元集合。
作为该实施例的一个子实施例,所述第一信令被用于指示所述第二时间单元集合。
作为该实施例的一个子实施例,所述第一信令被用于指示所述第一时间单元集合和所述第二时间单元集合。
作为该实施例的一个子实施例,所述第一信令被用于从所述第一时间单元池中指示所述第一时间单元集合。
作为该实施例的一个子实施例,所述第一信令被用于从所述第一时间单元池中指示所述第二时间单元集合。
作为该实施例的一个子实施例,所述第一信令被用于从所述第一时间单元池中指示所述第一时间单元集合和所述第二时间单元集合。
作为该实施例的一个子实施例,所述第二信令被用于指示所述第一时间单元集合。
作为该实施例的一个子实施例,所述第二信令被用于指示所述第二时间单元集合。
作为该实施例的一个子实施例,所述第二信令被用于指示所述第一时间单元集合和所述第二时间单元集合。
作为该实施例的一个子实施例,所述第二信令被用于从所述第一时间单元池中指示所述第一时间单元集合。
作为该实施例的一个子实施例,所述第二信令被用于从所述第一时间单元池中指示所述第二时间单元集合。
作为该实施例的一个子实施例,所述第二信令被用于从所述第一时间单元池中指示所述第一时间单元集合和所述第二时间单元集合。
作为一个实施例,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数是第一MCS索引或第二MCS索引;所述M1的值被用于确定所述第一MCS索引和所述第二MCS索引的差值。
作为该实施例的一个子实施例,所述第一信号所占用的RB数等于第一整数或第二整数;所述第一整数不等于所述第二整数;所述第一整数和所述第二整数都是正整数;所述M1的值被用于确定所述第一整数与所述第二整数的比值。
作为该实施例的一个子实施例,所述第一信号所占用的RE数等于第三整数或第四整数;所述第三整数不等于所述第四整数;所述第三整数和所述第四整数都是大于1的正整数;所述M1的值被用于确定所述第三整数与所述第四整数的比值。
作为该实施例的一个子实施例,所述M1的值被用于确定所述第一时间单元集合所包括的时间单元的数量与所述第二时间单元集合所包括的时间单元的数量的比值。
实施例6A
实施例6A示例了第一时间单元的示意图,如附图6A所示。在附图6A中,所述第一信令在第二时间单元指示SPS配置,所述第二信令在第三时间单元中激活所述SPS配置;本申请中的所述第一节点在图中所示的第一时间单元池中的时间单元中接收所述SPS配置所对应的下行布置的传输;所述第一时间单元是所述第一时间单元池中的第Y个时间单元。
作为一个实施例,所述第三时间单元是所述第一时间单元池中的一个时间单元。
作为一个实施例,所述第一节点在所述第三时间单元中接收所述SPS配置所对应的下行布置的传输。
作为一个实施例,所述第一节点在所述第三时间单元中接收所述SPS配置所对应的第一次下行布置的传输。
实施例6B
实施例6B示例了第一时间单元的示意图,如附图6B所示。在附图6B中,所述第一信令在第二时间单元指示配置授予的配置信息,图中的所示的第一时间单元池中的时间单元是符合所述第一信令指示的所述配置授予的周期的上行传输所占用的时间单元;所述第一时间单元是所述第一时间单元池中的第Y个时间单元。
作为一个实施例,实施例6B中所列举的所述第一信令所指示的所述配置授予不需要通过本申请中的所述第二信令激活。
实施例7A
实施例7A示例了下行布置的示意图,如附图7A所示。在附图7A中,所述第二信令被用于激活一个SPS配置,所述第一节点在所述SPS配置被释放之前接收了P个下行布置,所述P个下行布置分别对应了P个PDSCH,所述P是大于所述Y的正整数,所述第Y次下行布置是所述P个下行布置中的第Y个下行布置。如图所示,所述P个下行布置被分为第一下行布置组和第二下行布置组,所述第一下行布置组由所述P个下行布置中序号为(2*i-1)的下行布置组成,所述第二下行布置组由所述P个下行布置中的序号为(2*i)的下行布置组成;i是大于0且不小于0.5*P的最小正整数。
作为一个实施例,当第Y次下行布置属于所述第一下行布置组时,所述第一信号采用第一MCS; 当第Y次下行布置属于所述第二下行布置组时,所述第一信号采用第二MCS;所述第一MCS和所述第二MCS不同。
作为一个实施例,当第Y次下行布置属于所述第一下行布置组时,所述第一信号所占用的RE数等于X1;当第Y次下行布置属于所述第二下行布置组时,所述第一信号所占用的RE数等于X2;所述X1和所述X2不同,所述X1和所述X2都是大于1的正整数。
作为一个实施例,当第Y次下行布置属于所述第一下行布置组时,所述第一信号所占用的RB数等于第一整数;当第Y次下行布置属于所述第二下行布置组时,所述第一信号所占用的RB数等于第二整数;所述第一整数和所述第二整数不同,所述第一整数和所述第二整数都是正整数。
实施例7B
实施例7B示例了另一个第一时间单元的示意图,如附图7B所示。在附图7B中,所述第一信令在第二时间单元指示配置授予的配置信息,图中所示的第三时间单元是所述第二信令激活所述第一信令所指示的所述配置授予后第一个属于所述配置授予的上行授予所占用的时间单元;所述第一信令和所述第二信令被共同用于确定第一时间单元池,所述第三时间单元是所述第一时间单元池中的第一个时间单元,所述第一时间单元是所述第一时间单元池中的第Y个时间单元。
作为一个实施例,所述第二信令被用于确定所述第三时间单元的时域位置,所述第一信令被用于确定所述第一时间单元池中任意两个在时域相邻的时间单元之间的距离。
作为该实施例的一个子实施例,所述第一信令所指示的所述配置授予的周期被用于确定所述第一时间单元池中任意两个在时域相邻的时间单元之间的距离。
作为一个实施例,实施例7B中所列举的所述第一信令所指示的所述配置授予需要通过本申请中的所述第二信令激活。
作为一个实施例,所述第二信令在所述第三时间单元中传输。
作为一个实施例,所述第二信令所占用的时域资源早于所述第三时间单元。
作为一个实施例,所述第二信令被用于指示所述第三时间单元。
实施例8A
实施例8A示例了下行布置的示意图,如附图8A所示。在附图8A中,所述第二信令被用于激活一个SPS配置,所述第一节点在所述SPS配置被释放之前接收了Q个下行布置,所述Q个下行布置分别对应了Q个PDSCH,所述Q是大于所述Y的正偶数,所述第Y次下行布置是所述Q个下行布置中的第Y个下行布置。如图所示,所述Q个下行布置被分为第一下行布置组和第二下行布置组,所述第一下行布置组由所述Q个下行布置中的前0.5*Q次下行布置组成,所述第二下行布置组由所述Q个下行布置中的后0.5*Q次下行布置组成。
作为一个实施例,当第Y次下行布置属于所述第一下行布置组时,所述第一信号采用第一MCS;当第Y次下行布置属于所述第二下行布置组时,所述第一信号采用第二MCS;所述第一MCS和所述第二MCS不同。
作为一个实施例,当第Y次下行布置属于所述第一下行布置组时,所述第一信号所占用的RE数等于X1;当第Y次下行布置属于所述第二下行布置组时,所述第一信号所占用的RE数等于X2;所述X1和所述X2不同,所述X1和所述X2都是大于1的正整数。
作为一个实施例,当第Y次下行布置属于所述第一下行布置组时,所述第一信号所占用的RB数等于第一整数;当第Y次下行布置属于所述第二下行布置组时,所述第一信号所占用的RB数等于第二整数;所述第一整数和所述第二整数不同,所述第一整数和所述第二整数都是正整数。
实施例8B
实施例8B示例了上行授予的示意图,如附图8B所示。在附图8B中,所述第一信令被用于配置一个配置授予,所述第一节点在所述配置授予被释放之前接收了P个上行授予,所述P个上行授予分别对应了P个PUSCH,所述P是大于所述Y的正整数,所述第Y次上行授予是所述P个上行授予中的第Y个上行授予。如图所示,所述P个上行授予被分为第一上行授予组和第二上行授予组,所述 第一上行授予组由所述P个上行授予中序号为(2*i-1)的上行授予组成,所述第二上行授予组由所述P个上行授予中的序号为(2*i)的上行授予组成;i是大于0且不小于0.5*P的最小正整数。
作为一个实施例,当第Y次下行布置属于所述第一上行授予组时,所述第一信号采用第一MCS;当第Y次下行布置属于所述第二上行授予组时,所述第一信号采用第二MCS;所述第一MCS和所述第二MCS不同。
作为一个实施例,当第Y次上行授予属于所述第一上行授予组时,所述第一信号所占用的RE数等于X1;当第Y次上行授予属于所述第二上行授予组时,所述第一信号所占用的RE数等于X2;所述X1和所述X2不同,所述X1和所述X2都是大于1的正整数。
作为一个实施例,当第Y次上行授予属于所述第一上行授予组时,所述第一信号所占用的RB数等于第一整数;当第Y次上行授予属于所述第二上行授予组时,所述第一信号所占用的RB数等于第二整数;所述第一整数和所述第二整数不同,所述第一整数和所述第二整数都是正整数。
实施例9A
实施例9A示例了第一时间单元集合和第二时间单元集合的示意图,如附图9A所示。在附图9A中,所述第二信令被用于激活一个SPS配置,所述第一节点在所述SPS配置被释放之前接收了P个下行布置,所述P个下行布置分别对应了P个PDSCH,且所述P个PDSCH分别在P个时间单元中被传输,所述P是大于所述Y的正整数,所述第Y次下行布置是所述P个时间单元中的第Y个时间单元。如图所示,所述P个时间单元被分为第一时间单元集合和第二时间单元集合,所述第一时间单元集合由所述P个时间单元中序号为(2*i-1)的时间单元组成,所述第二时间单元集合由所述P个时间单元中序号为(2*i)的时间单元组成;i是大于0且不小于0.5*P的最小正整数。
作为一个实施例,当第Y个时间单元属于所述第一时间单元集合时,所述第一信号采用第一MCS;当第Y个时间单元属于所述第二时间单元集合时,所述第一信号采用第二MCS;所述第一MCS和所述第二MCS不同。
作为一个实施例,当第Y个时间单元属于所述第一时间单元集合时,所述第一信号所占用的RE数等于X1;当第Y个时间单元属于所述第二时间单元集合时,所述第一信号所占用的RE数等于X2;所述X1和所述X2不同,所述X1和所述X2都是大于1的正整数。
作为一个实施例,当第Y个时间单元属于所述第一时间单元集合时,所述第一信号所占用的RB数等于第一整数;当第Y个时间单元属于所述第二时间单元集合时,所述第一信号所占用的RB数等于第二整数;所述第一整数和所述第二整数不同,所述第一整数和所述第二整数都是正整数。
实施例9B
实施例9B示例了上行授予的示意图,如附图9B所示。在附图9B中,所述第一信令被用于配置一个配置授予,所述第一节点在所述配置授予被释放之前接收了Q个上行授予,所述Q个上行授予分别对应了Q个PUSCH,所述Q是大于所述Y的正整数,所述第Y次上行授予是所述Q个上行授予中的第Y个上行授予。如图所示,所述Q个上行授予被分为第一上行授予组和第二上行授予组,所述第一上行授予组由所述Q个上行授予中的前0.5*Q次上行授予组成,所述第二上行授予组由所述Q个上行授予中的后0.5*Q次上行授予组成。
作为一个实施例,当第Y次上行授予属于所述第一上行授予组时,所述第一信号采用第一MCS;当第Y次上行授予属于所述第二上行授予组时,所述第一信号采用第二MCS;所述第一MCS和所述第二MCS不同。
作为一个实施例,当第Y次上行授予属于所述第一上行授予组时,所述第一信号所占用的RE数等于X1;当第Y次上行授予属于所述第二上行授予组时,所述第一信号所占用的RE数等于X2;所述X1和所述X2不同,所述X1和所述X2都是大于1的正整数。
作为一个实施例,当第Y次上行授予属于所述第一上行授予组时,所述第一信号所占用的RB数等于第一整数;当第Y次上行授予属于所述第二上行授予组时,所述第一信号所占用的RB数等于第二整数;所述第一整数和所述第二整数不同,所述第一整数和所述第二整数都是正整数。
实施例10A
实施例10A示例了第一时间单元集合和第二时间单元集合的示意图,如附图10A所示。在附图 10A中,所述第二信令被用于激活一个SPS配置,所述第一节点在所述SPS配置被释放之前接收了Q个下行布置,所述Q个下行布置分别对应了Q个PDSCH,且所述Q个PDSCH分别在Q个时间单元中被传输,所述Q是大于所述Y的正整数,所述第Y次下行布置是所述Q个时间单元中的第Y个时间单元。如图所示,所述Q个时间单元被分为第一时间单元集合和第二时间单元集合,所述第一时间单元集合由所述Q个时间单元中的前0.5*Q个时间单元组成,所述第二时间单元集合由所述Q个时间单元中的后0.5*Q个时间单元组成。
作为一个实施例,当第Y个时间单元属于所述第一时间单元集合时,所述第一信号采用第一MCS;当第Y个时间单元属于所述第二时间单元集合时,所述第一信号采用第二MCS;所述第一MCS和所述第二MCS不同。
作为一个实施例,当第Y个时间单元属于所述第一时间单元集合时,所述第一信号所占用的RE数等于X1;当第Y个时间单元属于所述第二时间单元集合时,所述第一信号所占用的RE数等于X2;所述X1和所述X2不同,所述X1和所述X2都是大于1的正整数。
作为一个实施例,当第Y个时间单元属于所述第一时间单元集合时,所述第一信号所占用的RB数等于第一整数;当第Y个时间单元属于所述第二时间单元集合时,所述第一信号所占用的RB数等于第二整数;所述第一整数和所述第二整数不同,所述第一整数和所述第二整数都是正整数。
实施例10B
实施例10B示例了第一时间单元集合和第二时间单元集合的示意图,如附图10B所示。在附图10B中,所述第一信令被用于配置一个配置授予,所述第一节点在所述配置授予被释放之前接收了P个上行授予,所述P个上行授予分别对应了P个PUSCH,且所述P个PUSCH分别在P个时间单元中被传输,所述P是大于所述Y的正整数,所述第Y次上行授予是所述P个时间单元中的第Y个时间单元。如图所示,所述P个时间单元被分为第一时间单元集合和第二时间单元集合,所述第一时间单元集合由所述P个时间单元中序号为(2*i-1)的时间单元组成,所述第二时间单元集合由所述P个时间单元中序号为(2*i)的时间单元组成;i是大于0且不小于0.5*P的最小正整数。
作为一个实施例,当第Y个时间单元属于所述第一时间单元集合时,所述第一信号采用第一MCS;当第Y个时间单元属于所述第二时间单元集合时,所述第一信号采用第二MCS;所述第一MCS和所述第二MCS不同。
作为一个实施例,当第Y个时间单元属于所述第一时间单元集合时,所述第一信号所占用的RE数等于X1;当第Y个时间单元属于所述第二时间单元集合时,所述第一信号所占用的RE数等于X2;所述X1和所述X2不同,所述X1和所述X2都是大于1的正整数。
作为一个实施例,当第Y个时间单元属于所述第一时间单元集合时,所述第一信号所占用的RB数等于第一整数;当第Y个时间单元属于所述第二时间单元集合时,所述第一信号所占用的RB数等于第二整数;所述第一整数和所述第二整数不同,所述第一整数和所述第二整数都是正整数。
实施例11A
实施例11A示例了一个第一节点中的结构框图,如附图11A所示。附图11A中,第一节点1100A包括第一接收机1101A和第二接收机1102A。
第一接收机1101A,接收第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;
第二接收机1102A,在第一时间单元中接收第一信号;
实施例11A中,所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
作为一个实施例,所述第二信令被用于指示SPS激活;所述第二信令被用于确定所述第一信号所占用的频域资源。
作为一个实施例,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数都与所述Y无关;所述第一信号所占用的RE的数量与所述Y有关。
作为一个实施例,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经 过的所述调制所采用的调制阶数二者中的至少之一与所述Y有关。
作为一个实施例,所述第一信令被用于确定第一MCS表格,所述第二信令被用于从所述第一MCS表格中指示所述目标MCS索引,所述目标MCS索引和所述Y被共同用于确定所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一。
作为一个实施例,所述第一信令被用于指示第一SPS配置索引,所述第一SPS配置索引所对应的SPS配置的周期被用于确定第一时间单元集合和第二时间单元集合;所述第一时间单元集合和所述第二时间单元集合都包括大于1的正整数个时间单元;所述第一时间单元集合包括所述第一时间单元或者所述第二时间单元集合包括所述第一时间单元。
作为一个实施例,所述第一信令被用于确定所述第一时间单元集合或所述第二时间单元集合中的至少之一。
作为一个实施例,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数是第一MCS索引或第二MCS索引;所述M1的值被用于确定所述第一MCS索引和所述第二MCS索引的差值。
作为一个实施例,所述第一接收机1101A包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第二接收机1102A包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一信令是RRC信令,所述第二信令是PDCCH,所述第一信号是PDSCH,所述第二信令被用于激活一个SPS配置,所述第一信号是第一比特块经过至少信道编码和调制以后得到的,所述第一信号是所述SPS配置被激活后的第Y次下行布置所对应的PDSCH;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的TBS与所述Y有关。
实施例11B
实施例11B示例了第一时间单元集合和第二时间单元集合的示意图,如附图11B所示。在附图11B中,所述第一信令被用于配置一个配置授予,所述第一节点在所述配置授予被释放之前接收了Q个上行授予,所述Q个上行授予分别对应了Q个PUSCH,且所述Q个PDSCH分别在Q个时间单元中被传输,所述Q是大于所述Y的正整数,所述第Y次上行授予是所述Q个时间单元中的第Y个时间单元。如图所示,所述Q个时间单元被分为第一时间单元集合和第二时间单元集合,所述第一时间单元集合由所述Q个时间单元中的前0.5*Q个时间单元组成,所述第二时间单元集合由所述Q个时间单元中的后0.5*Q个时间单元组成。
作为一个实施例,当第Y个时间单元属于所述第一时间单元集合时,所述第一信号采用第一MCS;当第Y个时间单元属于所述第二时间单元集合时,所述第一信号采用第二MCS;所述第一MCS和所述第二MCS不同。
作为一个实施例,当第Y个时间单元属于所述第一时间单元集合时,所述第一信号所占用的RE数等于X1;当第Y个时间单元属于所述第二时间单元集合时,所述第一信号所占用的RE数等于X2;所述X1和所述X2不同,所述X1和所述X2都是大于1的正整数。
作为一个实施例,当第Y个时间单元属于所述第一时间单元集合时,所述第一信号所占用的RB数等于第一整数;当第Y个时间单元属于所述第二时间单元集合时,所述第一信号所占用的RB数等于第二整数;所述第一整数和所述第二整数不同,所述第一整数和所述第二整数都是正整数。
实施例12A
实施例12A示例了一个第二节点中的结构框图,如附图12A所示。附图12A中,第二节点1200A包括第一发射机1201A和第二发射机1202A。
第一发射机1201A,发送第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;
第二发射机1202A,在第一时间单元中发送第一信号;
实施例12A中,所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
作为一个实施例,所述第二信令被用于指示SPS激活;所述第二信令被用于确定所述第一信号所占用的频域资源。
作为一个实施例,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数都与所述Y无关;所述第一信号所占用的RE的数量与所述Y有关。
作为一个实施例,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一与所述Y有关。
作为一个实施例,所述第一信令被用于确定第一MCS表格,所述第二信令被用于从所述第一MCS表格中指示所述目标MCS索引,所述目标MCS索引和所述Y被共同用于确定所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一。
作为一个实施例,所述第一信令被用于指示第一SPS配置索引,所述第一SPS配置索引所对应的SPS配置的周期被用于确定第一时间单元集合和第二时间单元集合;所述第一时间单元集合和所述第二时间单元集合都包括大于1的正整数个时间单元;所述第一时间单元集合包括所述第一时间单元或者所述第二时间单元集合包括所述第一时间单元。
作为一个实施例,所述第一信令被用于确定所述第一时间单元集合或所述第二时间单元集合中的至少之一。
作为一个实施例,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数是第一MCS索引或第二MCS索引;所述M1的值被用于确定所述第一MCS索引和所述第二MCS索引的差值。
作为一个实施例,所述第一发射机1201A包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器414、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二发射机1202A包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器414、控制器/处理器475中的至少前4者。
作为一个实施例,所述第一信令是RRC信令,所述第二信令是PDCCH,所述第一信号是PDSCH,所述第二信令被用于激活一个SPS配置,所述第一信号是第一比特块经过至少信道编码和调制以后得到的,所述第一信号是所述SPS配置被激活后的第Y次下行布置所对应的PDSCH;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的TBS与所述Y有关。
实施例12B
实施例12B示例了一个第一节点中的结构框图,如附图12B所示。附图12B中,第一节点1200B包括第一接收机1201B和第一发射机1202B。
第一接收机1201B,接收第一信令,所述第一信令被用于指示配置授予配置;
第一发射机1202B,在第一时间单元中发送第一信号;
实施例12B中,所述第一时间单元被给定上行授权占用,所述给定上行授权是所述第一信令所指示的所述配置授予被配置之后的第Y次上行授权;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
作为一个实施例,所述第一接收机1201接收第二信令;所述第二信令所包括的CRC通过第一RNTI加扰;所述第二信令被用于指示所述第一信令所指示的所述配置授予被激活;所述第二信令是物理层信令;所述第一RNTI是C-RNTI之外的RNTI。
作为一个实施例,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数都与所述Y无关;所述第一信号所占用的RE的数量与所述Y有关。
作为一个实施例,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一与所述Y有关。
作为一个实施例,所述第一信令被用于确定第一MCS表格且所述第二信令被用于从所述第一MCS表格中指示目标MCS索引,或者所述第一信令被用于指示目标MCS索引;所述目标MCS索引和所述Y被共同用于确定所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一。
作为一个实施例,所述第一信令被用于指示第一配置授予配置索引,所述第一配置授予配置索引所对应的配置授予的周期被用于确定第一时间单元集合和第二时间单元集合;所述第一时间单元集合和所述第二时间单元集合都包括大于1的正整数个时间单元;所述第一时间单元集合包括所述第一时间单元或者所述第二时间单元集合包括所述第一时间单元。
作为一个实施例,所述第一信令被用于确定所述第一时间单元集合或所述第二时间单元集合中的至少之一。
作为一个实施例,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数是第一MCS索引或第二MCS索引;所述M1的值被用于确定所述第一MCS索引和所述第二MCS索引的差值。
作为一个实施例,所述第一接收机1201B包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一发射机1202B包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一信令是RRC信令,所述第一信号是PUSCH,所述第一信令被用于指示所述配置授予的配置信息;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
作为一个实施例,所述第一信令是RRC信令,所述第一信号是PUSCH,所述第一信令被用于指示所述配置授予的配置信息;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一信号所占用的RE的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
作为一个实施例,所述第一信令是RRC信令,所述第一信号是PUSCH,所述第一信令被用于指示所述配置授予的配置信息;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一信号所占用的RB的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
作为一个实施例,所述第一信令是RRC信令,所述第一信号是PUSCH,所述第一信令被用于指示所述配置授予的配置信息;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一信号所采用的MCS与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
作为一个实施例,所述第一信令是RRC信令,所述第二信令是PDCCH,所述第一信号是PUSCH,所述第一信令被用于指示所述配置授予的配置信息;所述第二信令被用于激活所述第一信令被用于指示所述配置授予,所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
作为一个实施例,所述第一信令是RRC信令,所述第二信令是PDCCH,所述第一信号是PUSCH,所述第一信令被用于指示所述配置授予的配置信息;所述第二信令被用于激活所述第一信令被用于指示所述配置授予,所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一信号所占用的RE的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
作为一个实施例,所述第一信令是RRC信令,所述第二信令是PDCCH,所述第一信号是PUSCH,所述第一信令被用于指示所述配置授予的配置信息;所述第二信令被用于激活所述第一信令被用于指示所述配置授予,所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一信号所占用的RB的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
作为一个实施例,所述第一信令是RRC信令,所述第二信令是PDCCH,所述第一信号是PUSCH,所述第一信令被用于指示所述配置授予的配置信息;所述第二信令被用于激活所述第一信令被用于指示所述配置授予,所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一信号所采用的MCS与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
实施例13
实施例13示例了一个第二节点中的结构框图,如附图13所示。附图13中,第二节点1300包括第二发射机1301和第二接收机1302。
第二发射机1301,发送第一信令,所述第一信令被用于指示配置授予配置;
第二接收机1302,在第一时间单元中接收第一信号;
实施例13中,所述第一时间单元被给定上行授权占用,所述给定上行授权是所述第一信令所指示的所述配置授予被配置之后的第Y次上行授权;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
作为一个实施例,所述第二发射机1301发送第二信令;所述第二信令所包括的CRC通过第一RNTI加扰;所述第二信令被用于指示所述第一信令所指示的所述配置授予被激活;所述第二信令是物理层信令;所述第一RNTI是C-RNTI之外的RNTI。
作为一个实施例,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数都与所述Y无关;所述第一信号所占用的RE的数量与所述Y有关。
作为一个实施例,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一与所述Y有关。
作为一个实施例,所述第一信令被用于确定第一MCS表格且所述第二信令被用于从所述第一MCS表格中指示目标MCS索引,或者所述第一信令被用于指示目标MCS索引;所述目标MCS索引和所述Y被共同用于确定所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一。
作为一个实施例,所述第一信令被用于指示第一配置授予配置索引,所述第一配置授予配置索引所对应的配置授予的周期被用于确定第一时间单元集合和第二时间单元集合;所述第一时间单元集合和所述第二时间单元集合都包括大于1的正整数个时间单元;所述第一时间单元集合包括所述第一时间单元或者所述第二时间单元集合包括所述第一时间单元。
作为一个实施例,所述第一信令被用于确定所述第一时间单元集合或所述第二时间单元集合中的至少之一。
作为一个实施例,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数是第一MCS索引或第二MCS索引;所述M1的值被用于确定所述第一MCS索引和所述第二MCS索引的差值。
作为一个实施例,所述第一发射机1301B包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器414、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二接收机1302B包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
作为一个实施例,所述第一信令是RRC信令,所述第一信号是PUSCH,所述第一信令被用于指示所述配置授予的配置信息;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特 块所包括的比特的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
作为一个实施例,所述第一信令是RRC信令,所述第二信令是PDCCH,所述第一信号是PUSCH,所述第一信令被用于指示所述配置授予的配置信息;所述第二信令被用于激活所述第一信令被用于指示所述配置授予,所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关;所述第一信令是RRC信令,所述第一信令被用于指示所述配置授予的HARQ进程的数量;所述Y是正整数。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU,无人机,测试设备、例如模拟基站部分功能的收发装置或信令测试仪,等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (48)

  1. 一种用于无线通信中的第一节点,其特征在于包括:
    第一接收机,接收第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;
    第二接收机,在第一时间单元中接收第一信号;
    其中,所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第二信令被用于指示SPS激活;所述第二信令被用于确定所述第一信号所占用的频域资源。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数都与所述Y无关;所述第一信号所占用的RE的数量与所述Y有关。
  4. 根据权利要求1或2所述的第一节点,其特征在于,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一与所述Y有关。
  5. 根据权利要求4所述的第一节点,其特征在于,所述第一信令被用于确定第一MCS表格,所述第二信令被用于从所述第一MCS表格中指示所述目标MCS索引,所述目标MCS索引和所述Y被共同用于确定所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一。
  6. 根据权利要求5所述的第一节点,其特征在于,所述第一信令被用于指示第一SPS配置索引,所述第一SPS配置索引所对应的SPS配置的周期被用于确定第一时间单元集合和第二时间单元集合;所述第一时间单元集合和所述第二时间单元集合都包括大于1的正整数个时间单元;所述第一时间单元集合包括所述第一时间单元或者所述第二时间单元集合包括所述第一时间单元。
  7. 根据权利要求6所述的第一节点,其特征在于,所述第一信令被用于确定所述第一时间单元集合或所述第二时间单元集合中的至少之一。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数是第一MCS索引或第二MCS索引;所述M1的值被用于确定所述第一MCS索引和所述第二MCS索引的差值。
  9. 根据权利要求1至8中任一权利要求所述的第一节点,其特征在于,所述第二信令所包括的Frequency Domain Assignment域被用于确定所述第一信号所占用的RB的频域位置;所述第二信令所包括的Frequency Domain Assignment域被用于指示第一RB集合,所述第一RB集合包括大于1的正整数个RB,所述第一信号所占用的频域资源包括所述第一RB集合或第二RB集合中的至少所述第一RB集合,所述第二RB集合包括大于1的正整数个RB,所述第一RB集合的频域位置被用于确定所述第二RB集合的频域位置;所述第一信号所占用的频域资源是否包括所述第二RB集合与所述Y的值有关。
  10. 根据权利要求1至9中任一权利要求所述的第一节点,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一信号所占用的RB数等于第一整数或第二整数;所述第一整数不等于所述第二整数;所述第一整数和所述第二整数都是正整数;所述M1的值被用于确定所述第一整数与所述第二整数的比值。
  11. 根据权利要求1至9中任一权利要求所述的第一节点,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一信号所占用的RE数等于第三整数或第四整数;所述第三整数不等于所述第四整数;所述第三整数和所述第四整数都是大于1的正整数;所述M1的值被用于确定所述第三整数与所述第四整数的比值。
  12. 根据权利要求6至9中任一权利要求所述的第一节点,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述M1的值被用于确定所述第一时间单元集合所包括的时间单元的数量与所述第二时间单元集合所包括的时间单元的数 量的比值。
  13. 一种用于无线通信中的第二节点,其特征在于包括:
    第一发射机,发送第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;
    第二发射机,在第一时间单元中发送第一信号;
    其中,所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
  14. 根据权利要求13所述的第二节点,其特征在于,所述第二信令被用于指示SPS激活;所述第二信令被用于确定所述第一信号所占用的频域资源。
  15. 根据权利要求13或14所述的第二节点,其特征在于,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数都与所述Y无关;所述第一信号所占用的RE的数量与所述Y有关。
  16. 根据权利要求13或14所述的第二节点,其特征在于,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一与所述Y有关。
  17. 根据权利要求16所述的第二节点,其特征在于,所述第一信令被用于确定第一MCS表格,所述第二信令被用于从所述第一MCS表格中指示所述目标MCS索引,所述目标MCS索引和所述Y被共同用于确定所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一。
  18. 根据权利要求17所述的第二节点,其特征在于,所述第一信令被用于指示第一SPS配置索引,所述第一SPS配置索引所对应的SPS配置的周期被用于确定第一时间单元集合和第二时间单元集合;所述第一时间单元集合和所述第二时间单元集合都包括大于1的正整数个时间单元;所述第一时间单元集合包括所述第一时间单元或者所述第二时间单元集合包括所述第一时间单元。
  19. 根据权利要求16所述的第二节点,其特征在于,所述第一信令被用于确定所述第一时间单元集合或所述第二时间单元集合中的至少之一。
  20. 根据权利要求13至19中任一权利要求所述的第二节点,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数是第一MCS索引或第二MCS索引;所述M1的值被用于确定所述第一MCS索引和所述第二MCS索引的差值。
  21. 根据权利要求13至20中任一权利要求所述的第二节点,其特征在于,所述第二信令所包括的Frequency Domain Assignment域被用于确定所述第一信号所占用的RB的频域位置;所述第二信令所包括的Frequency Domain Assignment域被用于指示第一RB集合,所述第一RB集合包括大于1的正整数个RB,所述第一信号所占用的频域资源包括所述第一RB集合或第二RB集合中的至少所述第一RB集合,所述第二RB集合包括大于1的正整数个RB,所述第一RB集合的频域位置被用于确定所述第二RB集合的频域位置;所述第一信号所占用的频域资源是否包括所述第二RB集合与所述Y的值有关。
  22. 根据权利要求13至21中任一权利要求所述的第二节点,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一信号所占用的RB数等于第一整数或第二整数;所述第一整数不等于所述第二整数;所述第一整数和所述第二整数都是正整数;所述M1的值被用于确定所述第一整数与所述第二整数的比值。
  23. 根据权利要求13至21中任一权利要求所述的第二节点,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一信号所占用的RE数等于第三整数或第四整数;所述第三整数不等于所述第四整数;所述第三整数和所述第四整数都是大于1的正整数;所述M1的值被用于确定所述第三整数与所述第四整数的比值。
  24. 根据权利要求18至21中任一权利要求所述的第二节点,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述M1的值被用于 确定所述第一时间单元集合所包括的时间单元的数量与所述第二时间单元集合所包括的时间单元的数量的比值。
  25. 一种用于无线通信中的第一节点中的方法,其特征在于包括:
    接收第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;
    在第一时间单元中接收第一信号;
    其中,所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
  26. 根据权利要求25所述的第一节点中的方法,其特征在于,所述第二信令被用于指示SPS激活;所述第二信令被用于确定所述第一信号所占用的频域资源。
  27. 根据权利要求25或26所述的第一节点中的方法,其特征在于,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数都与所述Y无关;所述第一信号所占用的RE的数量与所述Y有关。
  28. 根据权利要求25或26所述的第一节点中的方法,其特征在于,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一与所述Y有关。
  29. 根据权利要求28所述的第一节点中的方法,其特征在于,所述第一信令被用于确定第一MCS表格,所述第二信令被用于从所述第一MCS表格中指示所述目标MCS索引,所述目标MCS索引和所述Y被共同用于确定所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一。
  30. 根据权利要求29所述的第一节点中的方法,其特征在于,所述第一信令被用于指示第一SPS配置索引,所述第一SPS配置索引所对应的SPS配置的周期被用于确定第一时间单元集合和第二时间单元集合;所述第一时间单元集合和所述第二时间单元集合都包括大于1的正整数个时间单元;所述第一时间单元集合包括所述第一时间单元或者所述第二时间单元集合包括所述第一时间单元。
  31. 根据权利要求30所述的第一节点中的方法,其特征在于,所述第一信令被用于确定所述第一时间单元集合或所述第二时间单元集合中的至少之一。
  32. 根据权利要求25至31中任一权利要求所述的第一节点中的方法,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数是第一MCS索引或第二MCS索引;所述M1的值被用于确定所述第一MCS索引和所述第二MCS索引的差值。
  33. 根据权利要求25至32中任一权利要求所述的第一节点中的方法,其特征在于,所述第二信令所包括的Frequency Domain Assignment域被用于确定所述第一信号所占用的RB的频域位置;所述第二信令所包括的Frequency Domain Assignment域被用于指示第一RB集合,所述第一RB集合包括大于1的正整数个RB,所述第一信号所占用的频域资源包括所述第一RB集合或第二RB集合中的至少所述第一RB集合,所述第二RB集合包括大于1的正整数个RB,所述第一RB集合的频域位置被用于确定所述第二RB集合的频域位置;所述第一信号所占用的频域资源是否包括所述第二RB集合与所述Y的值有关。
  34. 根据权利要求25至33中任一权利要求所述的第一节点中的方法,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一信号所占用的RB数等于第一整数或第二整数;所述第一整数不等于所述第二整数;所述第一整数和所述第二整数都是正整数;所述M1的值被用于确定所述第一整数与所述第二整数的比值。
  35. 根据权利要求25至33中任一权利要求所述的第一节点中的方法,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一信号所占用的RE数等于第三整数或第四整数;所述第三整数不等于所述第四整数;所述第三整数和所述第四整数都是大于1的正整数;所述M1的值被用于确定所述第三整数与所述第四整数的比值。
  36. 根据权利要求30至33中任一权利要求所述的第一节点中的方法,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述M1的值被用于确定所述第一时间单元集合所包括的时间单元的数量与所述第二时间单元集合所包括的时间单元的数量的比值。
  37. 一种用于无线通信中的第二节点中的方法,其特征在于包括:
    发送第一信令和第二信令,所述第一信令被用于指示SPS配置,所述第二信令被用于提供所述SPS配置的一个下行布置;
    在第一时间单元中发送第一信号;
    其中,所述第一时间单元被在所述一个下行布置被配置之后的第Y次下行布置所占用;所述第一信号是第一比特块经过至少信道编码和调制以后得到的;所述第一比特块所包括的比特的数量与所述Y有关。
  38. 根据权利要求37所述的第二节点中的方法,其特征在于,所述第二信令被用于指示SPS激活;所述第二信令被用于确定所述第一信号所占用的频域资源。
  39. 根据权利要求37或38所述的第二节点中的方法,其特征在于,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数都与所述Y无关;所述第一信号所占用的RE的数量与所述Y有关。
  40. 根据权利要求37或38所述的第二节点中的方法,其特征在于,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一与所述Y有关。
  41. 根据权利要求40所述的第二节点中的方法,其特征在于,所述第一信令被用于确定第一MCS表格,所述第二信令被用于从所述第一MCS表格中指示所述目标MCS索引,所述目标MCS索引和所述Y被共同用于确定所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数二者中的至少之一。
  42. 根据权利要求41所述的第二节点中的方法,其特征在于,所述第一信令被用于指示第一SPS配置索引,所述第一SPS配置索引所对应的SPS配置的周期被用于确定第一时间单元集合和第二时间单元集合;所述第一时间单元集合和所述第二时间单元集合都包括大于1的正整数个时间单元;所述第一时间单元集合包括所述第一时间单元或者所述第二时间单元集合包括所述第一时间单元。
  43. 根据权利要求40所述的第二节点中的方法,其特征在于,所述第一信令被用于确定所述第一时间单元集合或所述第二时间单元集合中的至少之一。
  44. 根据权利要求37至43中任一权利要求所述的第二节点中的方法,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一比特块经过的所述信道编码所采用的编码速率与所述第一比特块经过的所述调制所采用的调制阶数是第一MCS索引或第二MCS索引;所述M1的值被用于确定所述第一MCS索引和所述第二MCS索引的差值。
  45. 根据权利要求37至44中任一权利要求所述的第二节点中的方法,其特征在于,所述第二信令所包括的Frequency Domain Assignment域被用于确定所述第一信号所占用的RB的频域位置;所述第二信令所包括的Frequency Domain Assignment域被用于指示第一RB集合,所述第一RB集合包括大于1的正整数个RB,所述第一信号所占用的频域资源包括所述第一RB集合或第二RB集合中的至少所述第一RB集合,所述第二RB集合包括大于1的正整数个RB,所述第一RB集合的频域位置被用于确定所述第二RB集合的频域位置;所述第一信号所占用的频域资源是否包括所述第二RB集合与所述Y的值有关。
  46. 根据权利要求37至45中任一权利要求所述的第二节点中的方法,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一信号所占用的RB数等于第一整数或第二整数;所述第一整数不等于所述第二整数;所述第一整数和所述第二整数都是正整数;所述M1的值被用于确定所述第一整数与所述第二整数的比值。
  47. 根据权利要求37至45中任一权利要求所述的第二节点中的方法,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述第一 信号所占用的RE数等于第三整数或第四整数;所述第三整数不等于所述第四整数;所述第三整数和所述第四整数都是大于1的正整数;所述M1的值被用于确定所述第三整数与所述第四整数的比值。
  48. 根据权利要求42至45中任一权利要求所述的第二节点中的方法,其特征在于,所述第一信号针对第一业务类型,所述第一业务类型的周期等于M1毫秒,所述M1是大于1的实数,所述M1的值被用于确定所述第一时间单元集合所包括的时间单元的数量与所述第二时间单元集合所包括的时间单元的数量的比值。
PCT/CN2022/104050 2021-07-16 2022-07-06 一种被用于无线通信的节点中的方法和装置 WO2023284599A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/412,631 US20240155598A1 (en) 2021-07-16 2024-01-15 Method and device in nodes used for wireless communication

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110803860.9 2021-07-16
CN202110803860.9A CN115701165A (zh) 2021-07-16 2021-07-16 一种被用于无线通信的节点中的方法和装置
CN202110889885.5 2021-08-04
CN202110889885.5A CN115915175A (zh) 2021-08-04 2021-08-04 一种被用于无线通信的节点中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/412,631 Continuation US20240155598A1 (en) 2021-07-16 2024-01-15 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2023284599A1 true WO2023284599A1 (zh) 2023-01-19

Family

ID=84919070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104050 WO2023284599A1 (zh) 2021-07-16 2022-07-06 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
US (1) US20240155598A1 (zh)
WO (1) WO2023284599A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109525377A (zh) * 2017-09-18 2019-03-26 上海朗帛通信技术有限公司 一种被用于窄带通信的用户设备、基站中的方法和装置
WO2020172764A1 (en) * 2019-02-25 2020-09-03 Qualcomm Incorporated Group activation and deactivation for semi-persistent scheduling
WO2020223195A1 (en) * 2019-05-01 2020-11-05 Babaei Alireza Multiple sps and configured grant configurations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109525377A (zh) * 2017-09-18 2019-03-26 上海朗帛通信技术有限公司 一种被用于窄带通信的用户设备、基站中的方法和装置
WO2020172764A1 (en) * 2019-02-25 2020-09-03 Qualcomm Incorporated Group activation and deactivation for semi-persistent scheduling
WO2020223195A1 (en) * 2019-05-01 2020-11-05 Babaei Alireza Multiple sps and configured grant configurations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Challenges and potential enhancements of XR", 3GPP DRAFT; R1-2104398, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 11 May 2021 (2021-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052006148 *

Also Published As

Publication number Publication date
US20240155598A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
WO2020020005A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2019228410A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2020125402A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022188749A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023284599A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN117394957A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020029862A1 (zh) 一种被用于无线通信节点中的方法和装置
CN115396822B (zh) 一种被用于无线通信的节点中的方法和装置
CN115209355B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023011281A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023151468A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023083155A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023134592A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024051624A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023005781A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115190434B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023151671A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024061231A1 (zh) 用于无线通信的方法和装置
WO2021088617A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023045794A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE