WO2020172764A1 - Group activation and deactivation for semi-persistent scheduling - Google Patents

Group activation and deactivation for semi-persistent scheduling Download PDF

Info

Publication number
WO2020172764A1
WO2020172764A1 PCT/CN2019/076038 CN2019076038W WO2020172764A1 WO 2020172764 A1 WO2020172764 A1 WO 2020172764A1 CN 2019076038 W CN2019076038 W CN 2019076038W WO 2020172764 A1 WO2020172764 A1 WO 2020172764A1
Authority
WO
WIPO (PCT)
Prior art keywords
sps
ues
group
activation state
control signaling
Prior art date
Application number
PCT/CN2019/076038
Other languages
French (fr)
Inventor
Chao Wei
Qiaoyu Li
Alberto Rico Alvarino
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/076038 priority Critical patent/WO2020172764A1/en
Publication of WO2020172764A1 publication Critical patent/WO2020172764A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users

Definitions

  • the following relates generally to wireless communications, and more specifically to group activation and deactivation for semi-persistent scheduling (SPS) .
  • SPS semi-persistent scheduling
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • increasing user density at a base station may enable better coverage for users in the coverage area of the base station.
  • increasing user density may be associated with correspondingly increasing a number of PDCCHs transmitted by the base station, which may be limited by a PDCCH capacity.
  • a base station may configure a UE with SPS resources, which may enable a UE to receive multiple PDSCHs or transmit multiple PUSCHs with a single PDCCH.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support group activation and deactivation for semi-persistent scheduling (SPS) .
  • SPS semi-persistent scheduling
  • the described techniques provide for enabling activation and deactivation of SPS resources for multiple user equipments (UEs) in a manner that increases user density without increasing physical downlink control channel (PDCCH) consumption or losing an ability to perform dynamic scheduling.
  • UEs user equipments
  • a base station may transmit a single PDCCH or physical downlink shared channel (PDSCH) to activate or deactivate SPS resources for multiple UEs.
  • PDSCH physical downlink shared channel
  • a base station configuring a UE with SPS resources may activate or deactivate the SPS resources by transmitting semi-static control signaling (e.g., via a radio resource control (RRC) message) or a UE-specific physical downlink control channel (PDCCH) to the UE.
  • semi-static control signaling e.g., via a radio resource control (RRC) message
  • PDCCH UE-specific physical downlink control channel
  • Activating or deactivating the SPS resources via UE-specific PDCCHs may involve sending a UE-specific PDCCH for each UE whose SPS resources are to be activated or deactivated.
  • Sending a single PDCCH for each UE may involve transmitting multiple PDCCHs and may increase the number of PDCCHs sent by the base station.
  • Activating and deactivating the SPS resources via semi-static control signaling may limit the number of PDCCHs sent by the base station, but may suffer from resource underutilization and may not enable reuse of the
  • the base station may transmit semi-static control signaling (e.g., radio resource control (RRC) messages) indicating a group of UEs. For example, the base station may allocate an identifier (e.g., a radio network temporary identifier (RNTI) ) to the group of UEs and indicate the identifier to the group of UEs.
  • RRC radio resource control
  • the base station may transmit dynamic control signaling that indicates SPS activation state information for one or more UEs of the indicated group of UEs.
  • Such SPS activation state information may include an indication for the UE to activate one or more of a set of SPS configurations, to abstain from activating any of the set of SPS configurations, or to deactivate an SPS configuration that is currently active for the UE.
  • the set of SPS configurations may be indicated by the semi-static control signaling.
  • one or more SPS configurations may be indicated by dynamic control signaling.
  • the dynamic control signaling may include a GC-PDCCH that indicates the SPS activation state information for each UE of the indicated group of UEs.
  • a UE-specific PDCCH may be used to activate SPS configurations for a UE of the group of UEs and the GC-PDCCH may be used to deactivate SPS configurations for some or all UEs of the group of UEs.
  • the GC-PDCCH may indicate resources for receiving a group-common physical downlink shared channel (GC- PDSCH) that includes the SPS activation state information.
  • a GC-PDSCH may be used to activate SPS configurations for UEs of the group of UEs and UE-specific PDCCHs or a GC-PDCCH may be used to deactivate SPS configurations for the UEs.
  • a method of wireless communications at a UE may include receiving first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs, receiving, based on the identifier corresponding to the group of UEs, second control signaling that indicates semi-persistent scheduling (SPS) activation state information associated with the group of UEs, and determining an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
  • SPS semi-persistent scheduling
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs, receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates semi-persistent scheduling (SPS) activation state information associated with the group of UEs, and determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
  • SPS semi-persistent scheduling
  • the apparatus may include means for receiving first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs, receiving, based on the identifier corresponding to the group of UEs, second control signaling that indicates semi-persistent scheduling (SPS) activation state information associated with the group of UEs, and determining an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
  • SPS semi-persistent scheduling
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs, receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates semi-persistent scheduling (SPS) activation state information associated with the group of UEs, and determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
  • SPS semi-persistent scheduling
  • receiving the second control signaling may include operations, features, means, or instructions for receiving a downlink control channel transmission that indicates the SPS activation state information.
  • the first control signaling further indicates a set of SPS configurations for the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for selecting an SPS configuration among the set of SPS configurations for the UE based on the SPS activation state information, and activating the SPS resources based on the selected SPS configuration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving third control signaling that indicates updated SPS activation state information associated with the group of UEs after receiving the second control signaling, activating a second SPS configuration among the set of SPS configurations associated with second SPS resources for the UE based on the updated SPS activation state information, and deactivating the SPS configuration based on the updated SPS activation state information.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving third control signaling that indicates updated SPS activation state information associated with the group of UEs after receiving the second control signaling, activating a second SPS configuration among the set of SPS configurations associated with second SPS resources for the UE based on the updated SPS activation state information, and maintaining the SPS configuration after receiving the updated SPS activation state information.
  • the SPS configuration may be selected from a mapping table according to an SPS configuration index in the second control signaling associated with the UE.
  • each SPS configuration of the set of SPS configurations includes modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  • MCS modulation and coding scheme
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for deactivating the SPS resources based on the downlink control channel transmission, the SPS resources being previously activated based on a previous downlink control channel transmission received based on a second identifier corresponding to the UE.
  • receiving the second control signaling may include operations, features, means, or instructions for receiving a downlink shared channel transmission that indicates the SPS activation state information.
  • the SPS activation state information indicates an SPS configuration for the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for activating the SPS resources based on the indicated SPS configuration.
  • the SPS configuration includes modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  • MCS modulation and coding scheme
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining slot information for the SPS resources based on a scheduling delay and a slot associated with the downlink shared channel transmission.
  • the SPS configuration further includes an indication of whether the SPS resources may be uplink SPS resources or downlink SPS resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for activating the SPS resources based on receiving the downlink shared channel transmission, receiving a downlink control channel transmission that indicates a second activation state for the SPS resources of the UE, and deactivating the SPS resources based on receiving the second activation state.
  • the receiving the downlink control channel transmission may be based on a second identifier of the UE.
  • the receiving the downlink control channel transmission may be based on the identifier corresponding to the group of UEs.
  • the first control signaling includes radio resource control signaling.
  • the second control signaling includes downlink control information.
  • a method of wireless communications may include transmitting, to a group of user equipments (UEs) , first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs, determining semi-persistent scheduling (SPS) activation state information associated with at least one UE of the group of UEs, and transmitting, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
  • UEs user equipments
  • SPS semi-persistent scheduling
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, to a group of user equipments (UEs) , first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs, determine semi-persistent scheduling (SPS) activation state information associated with at least one UE of the group of UEs, and transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
  • UEs user equipments
  • SPS semi-persistent scheduling
  • the apparatus may include means for transmitting, to a group of user equipments (UEs) , first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs, determining semi-persistent scheduling (SPS) activation state information associated with at least one UE of the group of UEs, and transmitting, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
  • UEs user equipments
  • SPS semi-persistent scheduling
  • a non-transitory computer-readable medium storing code for wireless communications is described.
  • the code may include instructions executable by a processor to transmit, to a group of user equipments (UEs) , first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs, determine semi-persistent scheduling (SPS) activation state information associated with at least one UE of the group of UEs, and transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
  • UEs user equipments
  • SPS semi-persistent scheduling
  • transmitting the second control signaling may include operations, features, means, or instructions for transmitting a downlink control channel transmission based on the identifier and that indicates the SPS activation state information.
  • the first control signaling further indicates a set of SPS configurations for the at least one UE of the group of UEs.
  • each SPS configuration of the set of SPS configurations includes modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  • MCS modulation and coding scheme
  • the SPS activation state information includes an indication for the at least one UE of the group of UEs to deactivate SPS resources that were previously activated based on a previously transmitted downlink control channel transmission.
  • transmitting the second control signaling may include operations, features, means, or instructions for transmitting a downlink shared channel transmission that indicates the SPS activation state information.
  • the SPS activation state information indicates an SPS configuration for the at least one UE of the group of UEs.
  • the SPS configuration includes modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  • MCS modulation and coding scheme
  • the SPS configuration includes an indication of whether SPS resources of the at least one UE of the group of UEs may be uplink SPS resources or downlink SPS resources.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining slot information for SPS resources of the at least one UE of the group of UEs based on a scheduling delay and a slot associated with the downlink shared channel transmission.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a downlink control channel transmission that includes a second indication for the at least one UE to deactivate the SPS resources.
  • the downlink control channel transmission may be based on a second identifier corresponding to the at least one UE of the group of UEs.
  • the downlink control channel transmission may be based on the identifier corresponding to the group of UEs.
  • the first control signaling includes radio resource control signaling.
  • the second control signaling includes downlink control information.
  • FIG. 1 illustrates an example of a wireless communications system that supports group activation and deactivation for semi-persistent scheduling (SPS) in accordance with aspects of the present disclosure.
  • SPS semi-persistent scheduling
  • FIG. 2 illustrates an example of a wireless communications system that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a activation bit field set that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a SPS resource activation procedure that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a hybrid SPS resource activation and deactivation procedure that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • FIG. 6 illustrates an example of a SPS resource activation procedure that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • FIG. 7 illustrates an example of a hybrid SPS resource activation and deactivation procedure that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • FIG. 8 illustrates an example of a process flow that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • FIGs. 9 and 10 show block diagrams of devices that support group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • FIG. 11 shows a block diagram of a communications manager that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • FIG. 12 shows a diagram of a system including a device that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • FIGs. 13 and 14 show block diagrams of devices that support group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • FIG. 15 shows a block diagram of a communications manager that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • FIG. 16 shows a diagram of a system including a device that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • FIGs. 17 through 22 show flowcharts illustrating methods that support group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • a base station may indicate one or more semi-persistent scheduling (SPS) resource configurations to a user equipment (UE) and may selectively activate or deactivate the SPS configurations.
  • the base station may selectively activate or deactivate the SPS configurations by transmitting an indication to the UE via semi-static control signaling or a UE-specific physical downlink control channel (PDCCH) .
  • the UE may receive a physical downlink shared channel (PDSCH) or may transmit a physical uplink shared channel (PUSCH) according to SPS resources defined by an SPS period of the SPS configuration and time and frequency resources signaled by the semi-static control signaling or the UE-specific PDCCH.
  • the UE may continue to receive PDSCHs or transmit PUSCHs according to the SPS period until the UE receives semi-static control signaling or a UE-specific PDCCH providing an indication to deactivate the SPS configuration.
  • a base station may transmit fewer PDCCHs for a single UE, which may increase user density without increasing PDCCH capacity.
  • a base station may configure a UE with SPS resources, which may enable the UE to receive multiple PDSCHs or to transmit multiple PUSCHs after receiving a single PDCCH.
  • the base station may activate or deactivate SPS resources for UEs by transmitting UE-specific PDCCHs to each UE to be activated or deactivated.
  • a base station may attempt to activate or deactivate SPS resources for UEs via semi-static control signaling (e.g., radio resource control (RRC) messages) .
  • the base station may forego transmitting a PDCCH.
  • RRC radio resource control
  • the base station may increase user density but may lack the ability to perform dynamic scheduling for re-use of configured SPS resources that are not needed. As such, resources configured for SPS transmission may not be reused until the UE receives additional semi-static control signaling, leading to poor resource utilization.
  • the base station may provide semi-static control signaling (e.g., an RRC message) that indicates a group of UEs and dynamic control signaling that indicates SPS activation state information for the group of UEs.
  • the SPS activation state information may include an indication of an activation state for one or more UEs of the group of UEs.
  • the activation state may indicate whether a UE is to activate an SPS configuration or whether the UE is to deactivate or abstain from activating SPS configurations.
  • the dynamic control signaling may include a group-common PDCCH (GC-PDCCH) that indicates the SPS activation state information.
  • a UE-specific PDCCH may be used to activate an SPS configuration for a UE of the group of UEs and the GC-PDCCH may be used to deactivate SPS configurations for some or all UEs of the group of UEs.
  • the dynamic control signaling may include a GC-PDCCH that indicates resources for receiving a group-common PDSCH (GC-PDSCH) that indicates the SPS activation state information.
  • the base station may transmit GC-PDSCH to activate SPS configurations for one or more UEs and UE-specific PDCCHs or a GC-PDCCH may be used to deactivate SPS configurations for the one or more UEs.
  • aspects of the disclosure are initially described in the context of a wireless communications system. Aspects of the disclosure are additionally described in the context of an additional wireless communications system, an activation bit field set, SPS resource activation procedures, hybrid SPS resource activation and deactivation procedures, and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to group activation and deactivation for SPS.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-Advanced Pro
  • NR New Radio
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • ultra-reliable e.g., mission critical
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas.
  • Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology.
  • Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) .
  • the UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
  • Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
  • the geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell.
  • each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
  • the term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices.
  • MTC machine-type communication
  • NB-IoT narrowband Internet-of-Things
  • eMBB enhanced mobile broadband
  • the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
  • UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client.
  • a UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC massive machine type communications
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
  • critical functions e.g., mission critical functions
  • a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) .
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications.
  • D2D communications are carried out between UEs 115 without the involvement of a base
  • Base stations 105 may communicate with the core network 130 and with one another.
  • base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) .
  • Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) .
  • the MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC.
  • User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Stream
  • At least some of the network devices may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) .
  • Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) .
  • TRP transmission/reception point
  • various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
  • Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band.
  • SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
  • ISM bands 5 GHz industrial, scientific, and medical bands
  • Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • EHF extremely high frequency
  • wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz ISM band.
  • wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data.
  • LBT listen-before-talk
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these.
  • Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas.
  • MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams.
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • MU-MIMO multiple-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • some signals e.g. synchronization signals, reference signals, beam selection signals, or other control signals
  • Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality.
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions.
  • a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
  • the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack.
  • PDCP Packet Data Convergence Protocol
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency.
  • HARQ hybrid automatic repeat request
  • the RRC protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data.
  • transport channels may be mapped to physical channels.
  • UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) .
  • a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023.
  • SFN system frame number
  • Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms.
  • a subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods.
  • a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) .
  • TTI transmission time interval
  • a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols.
  • a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling.
  • Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example.
  • some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
  • carrier refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125.
  • a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology.
  • Each physical layer channel may carry user data, control information, or other signaling.
  • a carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • E-UTRA absolute radio frequency channel number
  • Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • the organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data.
  • a carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier.
  • acquisition signaling e.g., synchronization signals or system information, etc.
  • control signaling that coordinates operation for the carrier.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) .
  • each served UE 115 may be configured for operating over portions or all of the carrier bandwidth.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) .
  • the more resource elements that a UE 115 receives and the higher the order of the modulation scheme the higher the data rate may be for the UE 115.
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
  • a spatial resource e.g., spatial layers
  • Devices of the wireless communications system 100 may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
  • Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both FDD and TDD component carriers.
  • wireless communications system 100 may utilize enhanced component carriers (eCCs) .
  • eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration.
  • an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) .
  • An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) .
  • An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
  • an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers.
  • a shorter symbol duration may be associated with increased spacing between adjacent subcarriers.
  • a device such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) .
  • a TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
  • Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others.
  • the flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums.
  • NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
  • a base station 105 may configure SPS at a communicating UE 115, which may reduce control signaling overhead. For instance, the base station 105 may provide RRC signaling to the UE 115 which indicates a resource allocation interval over which SPS resources are periodically assigned. Additionally, the configuration and reconfiguration of transmissions over the SPS resources may be determined based on a PDCCH sent from the base station 105.
  • the PDCCH may signal time and frequency domain resource allocation along with other transmission parameters (e.g., modulation and coding scheme (MCS) , a number of repetitions, precoding information, power control commands) for subsequent periodic transmissions.
  • MCS modulation and coding scheme
  • increasing user density at a base station 105 involves increasing a number of PDCCHs transmitted by the base station.
  • SPS may mitigate the number of PDCCHs that the base station 105 transmits, as a UE 115 may receive multiple PDSCHs or transmit multiple PUSCHs based on a single PDCCH when using SPS resources, which may enable a greater user density without increasing PDCCH capacity.
  • the base station 105 may use RRC signaling instead of transmitting L1 signaling, such as a PDCCH, to indicate the time and frequency domain resource allocation for SPS transmissions.
  • L1 signaling such as a PDCCH
  • Using RRC signaling may further limit the number of PDCCHs that the base station 105 transmits, but may suffer from poor resource utilization, as the base station 105 may therefore lack an ability to perform dynamic re-scheduling for the SPS resources when they are being underutilized.
  • a base station 105 may transmit semi-static control signaling (e.g., a RRC message) indicating a group of UEs 115.
  • the base station 105 may signal an identifier (e.g., RNTI) for the group of UEs.
  • the base station 105 may also transmit dynamic control signaling that indicates SPS activation state information for one or more UEs 115 of the indicated group of UEs 115.
  • Such SPS activation state information may include an indication for the UE 115 to activate one or more of a set of SPS configurations, to abstain from activating any of the set of SPS configurations, or to deactivate an SPS configuration from the set of SPS configurations that is currently active for the UE 115.
  • the set of SPS configurations may be indicated by the semi-static control signaling.
  • one or more SPS configurations may be indicated by dynamic control signaling (e.g., a GC-PDSCH.
  • the dynamic control signaling may include a GC-PDCCH that indicates the SPS activation state information for each UE 115 of the indicated group of UEs 115.
  • a UE-specific PDCCH may be used to activate SPS configurations for a UE 115 of the group of UEs 115 and the GC-PDCCH may be used to deactivate SPS configurations for some or all UEs 115 of the group of UEs 115.
  • the GC-PDCCH may indicate resources for receiving a GC-PDSCH that includes the SPS activation state information and SPS configuration information, in some cases.
  • a GC-PDSCH may be used to activate SPS configurations for one or more UEs 115 and UE-specific PDCCHs or a GC-PDCCH may be used to deactivate SPS configurations for the one or more UEs 115.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • wireless communications system 200 may include a base station 105-a, which may be an example of a base station 105 as described with reference to FIG. 1, and UEs 115-a, 115-b, and 115-c, which may be examples of UEs 115 as described with reference to FIG. 1.
  • Base station 105-a may communicate with UEs 115-a, 115-b, and 115-c through communication link 205. For instance, base station 105-a may transmit semi-static control signaling 210 (e.g., RRC signaling) indicating that UEs 115-a, 115-b, and 115-c are in a group of UEs 115. The base station 105-a may transmit dynamic control signaling 215 indicating, via SPS activation state information included in the dynamic control signaling 215 whether each of UEs 115-a, 115-b, and 115-c are to activate SPS configurations and, if so, which SPS configurations each UE 115 is to activate.
  • semi-static control signaling 210 e.g., RRC signaling
  • the base station 105-a may transmit dynamic control signaling 215 indicating, via SPS activation state information included in the dynamic control signaling 215 whether each of UEs 115-a, 115-b, and 115-
  • UE 115-a may receive the dynamic control signaling 215 and determine to activate a SPS configuration including UE1 SPS PDSCH 220 based on the SPS activation state information.
  • UE 115-b may receive the dynamic control signaling 215 and may activate an SPS configuration including UE2 SPS PDSCH 225 based on the SPS activation state information.
  • UE 115-c may receive the dynamic control signaling 215 and determine that UE 115-c is to deactivate all SPS configurations or is to abstain from activating any SPS resources based on the SPS activation state information.
  • Semi-static control signaling 210 may indicate that UEs 115-a, 115-b, and 115-c are in a set (or group) of UEs 115 by configuring UE grouping information at each of UEs 115-a, 115-b, and 115-c.
  • semi-static control signaling 210 may include an index in the group of UEs 115 for each of UEs 115-a, 115-b, and 115-c.
  • the semi-static control signaling 210 may indicate a radio network temporary identifier (RNTI) , such as a group RNTI (G-RNTI) , for the group of UEs 115, which may be included in the dynamic control signaling 215 (e.g., used for scrambling the dynamic control signaling 215) for group action and/or deactivation.
  • RNTI radio network temporary identifier
  • G-RNTI group RNTI
  • the RNTI may be distinct from a cell RNTI (C-RNTI) , which may also be included in dynamic control signaling 215 and may also be distinct from an SPS C-RNTI (SPS-C-RNTI) used for receiving UE-specific SPS activation/deactivation.
  • C-RNTI cell RNTI
  • SPS-C-RNTI SPS C-RNTI
  • semi-static control signaling 210 may indicate SPS configurations for UEs 115-a, 115-b, and 115-c.
  • Each resource configuration may, for instance, include information related to resource assignment (e.g., which time and frequency resources define the SPS resources) , an SPS periodicity, an SPS offset (e.g., an offset from a start of the SPS period) , MCS, a number of repetitions (e.g., a number of times for SPS resources to repeat once a corresponding SPS configuration is activated) , precoding information, power control commands or other transmission parameters.
  • one or more SPS configurations for UE 115-a, 115-b, and 115-c may be indicated by the dynamic control signaling 215.
  • the dynamic control signaling 215 may provide group activation or deactivation over a PDCCH, where L1 control may activate or deactivate semi-persistent grant configurations by semi-static control signaling.
  • the dynamic control signaling may include a GC-PDCCH that indicates SPS activation state information.
  • GC-PDCCH may include a set of bit fields indicating activation states for each of UEs 115-a, 115-b, and 115-c, as is illustrated by FIG. 3.
  • Each bit field may include N (e.g., 2) bits which map to a preconfigured SPS resource grant via a predefined codepoint mapping table, where the preconfigured SPS resource grant may include SPS configuration information.
  • UE 115-a may deactivate all SPS configurations or may abstain from activating any SPS configurations. If the bit field corresponding to UE 115-a has 2 bits and indicates a value ‘01’ , UE 115-a may activate a first SPS configuration (e.g., a first SPS grant configuration) . If the bit field corresponding to UE 115-a has 2 bits and indicates a value ‘10’ , UE 115-a may activate a second SPS configuration (e.g., a second SPS grant configuration) .
  • a first SPS configuration e.g., a first SPS grant configuration
  • UE 115-a may activate a second SPS configuration (e.g., a second SPS grant configuration) .
  • UE 115-a may activate a third SPS configuration (e.g., a third SPS grant configuration) .
  • UE1 SPS PDSCH 320 and UE2 SPS PDSCH 325 may be associated with SPS configurations that map to “01” , “10” , or “11” in bit fields corresponding to UE 115-a and 115-b, respectively.
  • the bit field associated with UE 115-c in the present example may contain ‘00’ . It should be noted that more or fewer bits may be used without deviating from the scope of the present disclosure.
  • a UE 115 that receives a GC-PDCCH may already have activated SPS resources associated with an initial SPS configuration (e.g., the UE may have received a previous GC-PDCCH that indicated a first SPS configuration based on the corresponding bit field having a value of ‘01’ ) . If the bit field corresponding to the UE 115 indicates another SPS configuration (e.g., if the corresponding bit field has a value of ‘11’ or ‘10’ ) , the UE 115 may deactivate the initial SPS configuration and its corresponding resources and activate the other SPS configuration and its corresponding resources. Alternatively, the UE 115 may activate the other SPS configuration and its corresponding resources while maintaining the initial SPS configuration (e.g., the UE 115 may receive PDSCHs or transmit PUSCHs according to both SPS configurations) .
  • base station 105-a may transmit a UE-specific PDCCH for SPS activation and may transmit a GC-PDCCH for deactivation (e.g., base station 105-a may use a combination of UE-specific and group-common PDCCH activation or deactivation of SPS resources) .
  • the GC-PDCCH may include a bitmap corresponding to each SPS configuration each UE 115 of the group of UEs 115 are configured with, where the bitmap may indicate which SPS configurations each UE 115 is to deactivate.
  • each UE 115 of the group of UEs 115 may be configured with three SPS configurations (e.g., the first SPS configuration, the second SPS configuration, and the third SPS configuration as described herein)
  • the UE may receive bitmaps including three bits for each UE 115 of the group of UEs 115.
  • Each bit may indicate whether the UE is to maintain or deactivate a corresponding SPS configuration (e.g., the first bit may indicate whether the UE is to maintain or deactivate the first SPS configuration, the second bit may indicate whether the UE is to maintain or deactivate the second SPS configuration, and the third bit may indicate whether the UE is to maintain or deactivate the third SPS configuration) .
  • the dynamic control signaling 215 may provide group activation or deactivation over PDSCH for UEs 115 of the group of UEs.
  • a GC-PDCCH may dynamically schedule a GC-PDSCH that indicates the SPS activation state information.
  • GC-PDCCHs that include resources for GC-PDSCHs indicating SPS activation state information may not include bit fields indicating activation states as described herein.
  • the GC-PDSCH may dynamically indicate SPS configurations to UEs 115-a, 115-b, and 115-c instead of semi-static signaling.
  • the GC-PDSCH may carry SPS activation or deactivation downlink control information (DCIs) for a subset of UEs 115 in the group of UEs 115. For instance, if the subset of UEs 115 includes UEs 115-a, 115-b, and 115-c, GC-PDCCH may indicate a corresponding GC-PDSCH, which may indicate SPS activation or deactivation DCIs for UEs 115-a, 115-b, and 115-c.
  • the SPS activation or deactivation DCIs may have the same structure as DCIs included in UE-specific PDCCHs for activation or deactivation of SPS configurations.
  • the activation or deactivation DCIs may include a 1-bit indicator for uplink and downlink differentiation, which the UE 115 receiving the DCI may use to determine whether SPS configurations are to be used to receive PDSCHs (e.g., if the 1-bit indicator indicates downlink) or to transmit PUSCHs (e.g., if the 1-bit indicator indicates uplink) .
  • a 1-bit indicator for uplink and downlink differentiation
  • the UE 115 receiving the DCI may use to determine whether SPS configurations are to be used to receive PDSCHs (e.g., if the 1-bit indicator indicates downlink) or to transmit PUSCHs (e.g., if the 1-bit indicator indicates uplink) .
  • mixed uplink and downlink SPS activation or deactivation may be supported.
  • the SPS activation or deactivation DCIs may be carried in one or more MAC control elements (MAC-CEs) within the GC-PDSCH.
  • MAC-CEs MAC control elements
  • base station 105-a may transmit the GC-PDSCH for activation of SPS configurations and may transmit UE-specific PDCCHs or GC-PDCCHs (e.g., GC-PDCCHs unassociated with a GC-PDSCH) for deactivation of SPS configurations.
  • UE-specific PDCCHs or GC-PDCCHs e.g., GC-PDCCHs unassociated with a GC-PDSCH
  • the GC-PDCCHs that base station 105-a transmits for deactivation of SPS resources may contain a set of bit fields as described herein.
  • Using the GC-PDSCHs and the UE-specific or group-common PDCCHs in such a manner may enable a quicker release of SPS resources, as the decoding time of a PDCCH may be smaller than that of a PDSCH and HARQ-ACK information for SPS PDSCH release may be reported earlier to base station 105-a.
  • the methods described herein may enable increased user density without increasing PDCCH capacity by limiting the number of PDCCHs sent by base station 105-a when activating or deactivating SPS configurations. For instance, a base station 105 may transmit a single GC-PDCCH to activate or deactivate SPS configurations for multiple UEs 115 instead of transmitting multiple PDCCHs to activate or deactivate SPS configurations for multiple UEs. Additionally, the methods described herein may enable a UE to reuse resources configured for SPS transmission for dynamic scheduling.
  • FIG. 3 illustrates an example of an activation bit field set 300 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • activation bit field set 300 may be implemented by aspects of wireless communications systems 100 and 200.
  • activation bit field set 300 may be a set of bit fields within a GC-PDCCH as described with reference to FIG. 2.
  • Activation bit field set 300 may include a set of bit fields 305 that correspond to activation states for a group of UEs 115. For instance, “UE 1” may correspond to an activation state for a first UE 115 of a group of UEs 115 and “UE N” may correspond to activation state for an Nth UE 115 of the group of UEs 115.
  • a UE 115 receiving the activation bit field set 300 (e.g., via a GC-PDCCH) may determine which bit field 305 corresponds to the UE 115 based on an index. The index may be indicated to the UE 115 via semi-static control signaling (e.g., an RRC message) .
  • Each activation bit field 305 may have N bits representing 2 N -1 SPS configurations. The remaining bit may represent a state where all SPS configurations are deactivated or a UE 115 is to abstain from activating any SPS configurations.
  • an activation bit field 305 may have 2 bits and 3 corresponding SPS configurations. If the activation bit field 305 contains ‘01’ , a UE 115 may use a first SPS configuration. If the activation bit field 305 contains ‘10’ , a UE 115 may use a second SPS configuration. If the activation bit field 305 contains ‘11’ , a UE 115 may use a third SPS configuration.
  • the UE 115 may deactivate the corresponding SPS configuration. Otherwise, the UE 115 may abstain from activating an SPS configuration.
  • activation bit field set 300 may include a cyclic redundancy check (CRC) 310 that is scrambled by a group RNTI (G-RNTI) .
  • CRC cyclic redundancy check
  • G-RNTI group RNTI
  • the G-RNTI may be indicated to the UE 115 via semi-static control signaling (e.g., an RRC message) .
  • FIG. 4 illustrates an example of an SPS resource activation procedure 400 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • SPS resource activation procedure 400 may be implemented by aspects of wireless communications systems 100 and 200.
  • SPS resource activation procedure 400 may be implemented by a base station 105 and one or more UEs 115 as described with reference to FIGs. 1 and 2.
  • SPS resource activation procedure 400 may occur over time resources subdivided into one or more slots 405.
  • Each of RRC message 410, GC-PDCCH 415, UE1 SPS PDSCH 420 and UE2 SPS PDSCH 425 may span time resources (e.g., depicted as width) and frequency resources (e.g., depicted as height) . While resources for receiving PDSCH are discussed in the present example, it should be noted that the resources may instead be used for transmitting PUSCHs without deviating from the scope of the present disclosure.
  • a base station 105 may transmit an RRC message 410 to a UE 115.
  • the RRC message 410 may indicate that multiple UEs 115 (e.g., UE1, UE2, UE3) make up a group of UEs 115 and may include an RNTI (e.g., a G-RNTI) associated with the group of UEs 115. Additionally, RRC message 410 may include an index associated with a UE 115 of the group of UEs 115.
  • RRC message 410 may configure one or more SPS configurations for a UE 115, which may then be selected based on SPS activation state information.
  • the base station 105 may transmit multiple RRC messages to configure each UE 115 with the group information and individual sets of SPS configurations.
  • the base station may transmit a GC-PDCCH 415 that contains SPS activation state information that receiving UEs 115 may use to determine whether to activate or deactivate SPS resources.
  • a first UE 115 of the group of UEs 115 i.e., UE1
  • a second UE 115 of the group of UEs 115 may receive the GC-PDCCH 415 based on the RNTI and may determine that UE2 is to activate an SPS configuration including UE2 SPS PSDCH resources 425.
  • a third UE 115 of the group of UEs 115 i.e., UE3 may receive the GC-PDCCH 415 based on the RNTI and may determine that UE3 is to deactivate or abstain from activating an SPS configuration.
  • the SPS activation state information may be conveyed through an activation bit field set (e.g., an activation bit field set 300 as described with reference to FIG. 3) .
  • UE1 may begin to receive PDSCHs according to a UE1 slot offset 430 and an SPS period 440, which may be configured by semi-static signaling, such as the RRC message 410. For instance, UE1 may receive a PDSCH at UE1 SPS PSDCH resource 420-b, which may occur a time equal to the SPS period 440 after receiving a PDSCH at UE1 SPS PDSCH resource 420-a.
  • UE2 may begin to receive PDSCHs at UE2 SPS PSDCH resource 425 according to a UE2 slot offset 435 and an SPS period 440, which may be configured by semi-static signaling, such as the RRC message 410. For instance, UE2 may receive a PDSCH at UE2 SPS PSDCH resource 425-b, which may occur a time equal to the SPS period 440 after receiving a PDSCH at UE2 SPS PDSCH resource 425-a.
  • FIG. 5 illustrates an example of a hybrid SPS resource activation and deactivation procedure 500 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • hybrid SPS resource activation and deactivation procedure 500 may be implemented by aspects of wireless communications systems 100 and 200.
  • hybrid SPS resource activation and deactivation procedure 500 may be implemented by a base station 105 and one or more UEs 115 as described with reference to FIGs. 1 and 2.
  • Hybrid SPS resource activation and deactivation procedure 500 may occur over time resources subdivided into one or more slots 505.
  • Each of UE1-PDCCH 510, GC-PDCCH 515, UE1 SPS PDCCH 520 and UE2 SPS PDCCH may span time resources (e.g., depicted as width) and frequency resources (e.g., depicted as height) . While resources for receiving PDSCH are discussed in the present example, it should be noted that the resources may instead be used for transmitting PUSCHs without deviating from the scope of the present disclosure.
  • some UEs 115 may have activated SPS configurations and may receive PDSCHs according to an SPS period 530 while other UEs 115 may have SPS configurations that are not currently activated.
  • a first UE 115 i.e., UE1
  • a second UE 115 i.e., UE2
  • may have a currently activated SPS configuration e.g., an SPS configuration corresponding to UE2 SPS PDSCH resource 525-a may be activated
  • the SPS configuration including UE2 SPS PDSCH resources 525 may have been activated by a UE-specific PDCCH directed to UE2.
  • UE1 may receive a UE-specific PDCCH (e.g., UE1-PDCCH 510) which may activate an SPS configuration corresponding to UE1 SPS PDSCH resources 520.
  • UE1 may begin receiving PDSCHs over UE1 SPS PSDCH resources 520 (e.g., over UE1 SPS PSDCH resource 520-b) .
  • UE2 may continue to receive PDSCHs over UE2 SPS PDSCH resources 525 (e.g., over UE2 SPS PSDCH resource 525-b) .
  • UE1 and UE2 may receive a GC-PDCCH 515 that contains one or more bitmaps corresponding to each SPS configuration that UE1 and UE2 may potentially maintain.
  • the GC-PDCCH 515 may have a first bitmap for UE1 and a second bitmap for UE2.
  • the SPS configuration corresponding to UE1 SPS PDSCH resources 520 may be one of a set of SPS configurations for UE1, and the first bitmap may contain bits corresponding to each SPS configuration in the set of UE1 SPS configurations.
  • a bitmap may indicate which SPS configurations to deactivate and which SPS configurations to maintain or keep activated.
  • the first bitmap may contain a bit indicating that UE1 is to deactivate the SPS configuration corresponding to UE1 SPS PDSCH resources 520 and the second bitmap may contain a bit indicating that UE2 is to deactivate the SPs configuration corresponding to UE2 SPS PSDCH resources 525.
  • UE1 may deactivate the SPS configuration corresponding to UE1 SPS PSDCH resources 520 and may not receive a PDSCH at UE1 SPS PSDCH resource 520-c.
  • UE2 may deactivate the SPS configuration corresponding to UE2 SPS PSDCH resources 525 and may not receive a PDSCH at UE2 SPS PDSCH resource 525-c.
  • UE1 and UE2 may receive the GC-PDCCH 515 based on an RNTI associated with UE1, UE2, and UE3 (e.g., a G-RNTI indicated via an RRC message) .
  • FIG. 6 illustrates an example of an SPS resource activation procedure 600 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • SPS resource activation procedure 600 may be implemented by aspects of wireless communications systems 100 and 200.
  • SPS resource activation procedure 600 may be implemented by a base station 105 and one or more UEs 115 as described with reference to FIGs. 1 and 2.
  • SPS resource activation procedure 600 may occur over time resources subdivided into one or more slots 605.
  • Each of RRC message 610, GC-PDCCH 615, GC-PDSCH 620, UE1 SPS PDSCH 625, UE2 SPS PDSCH 630, and UE3 SPS PSDCH 635 may span time resources (e.g., depicted as width) and frequency resources (e.g., depicted as height) . While resources for receiving PDSCH are discussed in the present example, it should be noted that the resources may instead be used for transmitting PUSCHs without deviating from the scope of the present disclosure.
  • a base station 105 may transmit an RRC message 610 to a UE 115.
  • the RRC message 610 may indicate that multiple UEs 115 (e.g., UE1, UE2, UE3) make up a group of UEs 115 and may include an identifier (e.g., a G-RNTI) associated with the group of UEs 115. Additionally, RRC message 610 may include an index associated with the UE 115 of the group of UEs 115.
  • the base station 105 may transmit additional RRC messages 610 to other UEs 115 to convey the identifier and corresponding indices for the other UEs of the group.
  • the base station 105 may transmit a GC-PDCCH 615 that dynamically schedules a GC-PDSCH 620 that may include information about SPS configurations for a subset of UEs 115 (e.g., UE1, UE2, and UE3) in the group of UEs 115.
  • the base station 105 may transmit the GC-PDSCH 620 which may indicate SPS activation state information for the subset of UEs 115.
  • the GC-PDSCH 620 may indicate the SPS activation state information via DCIs for one or more of the UEs 115 in the subset of UEs 115.
  • the GC-PDSCH may include a first DCI for a first UE (i.e., UE1) , a second DCI for a second UE (i.e., UE2) , and a third DCI for a third UE (i.e., UE3) .
  • UE1 may receive the GC-PDSCH 620 (e.g., via decoding the GC-PDCCH 615 using the RNTI indicated via the RRC message 610 to determine the resource allocation for GC-PDSCH 620) and may determine, based on the first DCI, to activate an SPS configuration corresponding to UE1 SPS PDSCH resources 625.
  • UE2 may receive the GC-PDSCH 620 using the RNTI and may determine, based on the second DCI, to activate an SPS configuration corresponding to UE2 SPS PDSCH resources 630.
  • UE3 may receive the GC-PDSCH 620 using the RNTI and may determine, based on the third DCI, to activate an SPS configuration corresponding to UE3 SPS PDSCH resources 635.
  • the SPS resources e.g., first SPS resources
  • SPS resources may be determined according to a scheduling delay from the slot 605 in which GC-PDSCH 620 is transmitted.
  • SPS resources may also be determined based on an offset included in the DCI.
  • UE1 may receive a PDSCH at UE1 SPS PSDCH resource 625-a
  • UE2 may receive a PDSCH at UE2 SPS PDSCH resource 630-a
  • UE3 may receive a PDSCH at UE3 SPS PDSCH resource 635-a.
  • UE1, UE2, and UE3 may continue to receive PDSCHs according to an SPS period 645 (e.g., UE1 SPS PDSCH resource 625-b, UE2 SPS PDSCH resource 630-b, and UE3 SPS PDSCH resource 635-b may occur upon an elapsing of SPS period 645) .
  • SPS period 645 e.g., UE1 SPS PDSCH resource 625-b, UE2 SPS PDSCH resource 630-b, and UE3 SPS PDSCH resource 635-b may occur upon an elapsing of SPS period 645) .
  • FIG. 7 illustrates an example of a hybrid SPS resource activation and deactivation procedure 700 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • hybrid SPS resource activation and deactivation procedure 700 may be implemented by aspects of wireless communications systems 100 and 200.
  • hybrid SPS resource activation and deactivation procedure 700 may be implemented by a base station 105 and one or more UEs 115 as described with reference to FIGs. 1 and 2.
  • Hybrid SPS resource activation and deactivation procedure 700 may occur over time resources subdivided into one or more slots 705.
  • Each of GC-PDCCH 710, GC-PDSCH 715, UE1 SPS PDSCH 720, UE2 SPS PSDCH 725, UE3 SPS PDSCH 730, and UE1-PDCCH 735 may span time resources (e.g., depicted as width) and frequency resources (e.g., depicted as height) . While resources for receiving PDSCH are discussed in the present example, it should be noted that the resources may instead be used for receiving PUSCHs without deviating from the scope of the present disclosure.
  • a base station 105 may transmit a GC-PDCCH 710-a and a GC-PDSCH 715 and may activate SPS configurations for a first UE (i.e., UE1) , a second UE (i.e., UE2) , and a third UE (i.e., UE3) in a similar manner as described with regards to GC-PDCCH 615 and GC-PDSCH 620 in FIG. 6.
  • UE1 SPS PDSCH resources 720 e.g., UE1 SPS PSDCH resource 720-a
  • UE2 may receive PDSCHs at UE2 SPS PDSCH resources 725 (e.g., UE2 SPS PSDCH resource 725-a)
  • UE3 may receive PDSCHs at UE3 SPS PSDCH resources 730 (e.g., UE3 SPS PDSCH resource 730-a) after a scheduling
  • the base station 105 may transmit a UE-specific PDCCH to a UE 115.
  • the base station 105 may transmit UE1-PDCCH 735, which may be a UE-specific PDCCH for UE1, to UE1.
  • UE1 may deactivate an SPS configuration corresponding to UE1 SPS PDSCH resources 720 and may abstain from receiving PDSCHs (e.g., UE1 may not receive a PDSCH at UE1 SPS PDSCH resource 720-b) .
  • UE2 may continue to receive PDSCHs at UE2 SPS PDSCH resources 725 (e.g., UE2 SPS PDSCH resource 725-b) and UE3 may continue to receive PDSCHs at UE3 SPS PDSCH resources 730 (e.g., UE2 SPS PSDCH resource 730-b) .
  • UE2 SPS PDSCH resources 725 e.g., UE2 SPS PDSCH resource 725-b
  • UE3 may continue to receive PDSCHs at UE3 SPS PDSCH resources 730 (e.g., UE2 SPS PSDCH resource 730-b) .
  • the base station 105 may transmit a GC-PDCCH 710-b (e.g., a GC-PDCCH 710 unassociated with a GC-PDSCH 715) to the group of UEs 115.
  • GC-PDCCH 710-b may include SPS activation state information in the form of an activation bit field set (e.g., an activation bit field set 300 as described with reference to FIG. 3) or one or more bitmaps corresponding to each SPS configuration that UE1, UE2, and UE3 may potentially maintain.
  • the GC-PDCCH 710-b may have a first bitmap for UE1, a second bitmap for UE2, and a third bitmap for UE3.
  • the SPS configuration corresponding to UE1 SPS PDSCH resources 720 may be one of a set of SPS configurations for UE1, and the first bitmap may contain bits corresponding to each SPS configuration in the set of UE1 SPS configurations.
  • a bitmap may indicate which SPS configurations to deactivate and which SPS configurations to maintain or keep activated.
  • the first bitmap may contain a bit indicating that UE1 is to deactivate the SPS configuration corresponding to UE1 SPS PDSCH resources 720; the second bitmap may contain a bit indicating that UE2 is to deactivate the SPS configuration corresponding to UE2 SPS PDSCH resources 725; and the third bitmap may contain a bit indicating that UE3 is to deactivate the SPS configuration corresponding to UE3 SPS PDSCH resources 730.
  • UE1 may deactivate the SPS configuration corresponding to UE1 SPS PSDCH resources 720 and may not receive a PDSCH at UE1 SPS PSDCH resource 720-b.
  • UE2 may deactivate the SPS configuration corresponding to the UE2 SPS PSDCH resources 725 and may not receive a PDSCH at UE2 SPS PDSCH resource 725-c.
  • UE3 may deactivate the SPs configuration corresponding to UE3 SPS PSDCH resources 730 and may not receive a PDSCH at UE3 SPS PDSCH resource 730-c.
  • FIG. 8 illustrates an example of a process flow 800 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • process flow 800 may be implemented by aspects of wireless communications system 100.
  • process flow 800 may include base station 105-b and UE 115-d, which may be examples of a base station 105 and a UE 115 as described with reference to FIG. 1.
  • base station 105-b may transmit first control signaling (e.g., an RRC message) that indicates an identifier corresponding to a group of UEs 115 including UE 115-d and an identifier of UE 115-d within the group of UEs 115 (e.g., an index associated with UE 115-d) .
  • first control signaling e.g., an RRC message
  • UE 115-d may receive the first control signaling.
  • base station 105-b may determine SPS activation state information associated with UE 115-d.
  • base station 105-b may transmit second control signaling that indicates SPS activation state information associated with the group of UEs.
  • UE 115-d may receive the second control signaling.
  • the second control signaling may include a downlink control channel transmission, such as a GC-PDCCH, that indicates the SPS activation information.
  • the second control signaling may include a downlink shared channel transmission, such as a GC-PDSCH, that indicates the SPS activation state information.
  • UE 115-d may determine an activation state for SPS resources of UE 115-d based on the SPS activation state information and the identifier of UE 115-d.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a UE 115 as described herein.
  • the device 905 may include a receiver 910, a communications manager 915, and a transmitter 920.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group activation and deactivation for SPS, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communications manager 915 may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs, receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs, and determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
  • the communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
  • the communications manager 915 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 915 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 915, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 915, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 920 may transmit signals generated by other components of the device 905.
  • the transmitter 920 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 920 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a device 905, or a UE 115 as described herein.
  • the device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1035.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group activation and deactivation for SPS, etc. ) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 1010 may utilize a single antenna or a set of antennas.
  • the communications manager 1015 may be an example of aspects of the communications manager 915 as described herein.
  • the communications manager 1015 may include a first control signaling receiver 1020, a second control signaling receiver 1025, and an activation state determiner 1030.
  • the communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
  • the first control signaling receiver 1020 may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs.
  • the second control signaling receiver 1025 may receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs.
  • the activation state determiner 1030 may determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
  • the transmitter 1035 may transmit signals generated by other components of the device 1005.
  • the transmitter 1035 may be collocated with a receiver 1010 in a transceiver module.
  • the transmitter 1035 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 1035 may utilize a single antenna or a set of antennas.
  • FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein.
  • the communications manager 1105 may include a first control signaling receiver 1110, a second control signaling receiver 1115, an activation state determiner 1120, a SPS configuration component 1125, a hybrid PDCCH component 1130, a slot information determiner 1135, and a hybrid PDSCH component 1140. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the first control signaling receiver 1110 may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs.
  • the first control signaling includes radio resource control signaling.
  • the first control signaling further indicates a set of SPS configurations for the UE.
  • the second control signaling receiver 1115 may receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs. In some examples, the second control signaling receiver 1115 may receive a downlink control channel transmission that indicates the SPS activation state information. In some examples, the second control signaling receiver 1115 may receive a downlink shared channel transmission that indicates the SPS activation state information. In some cases, the second control signaling includes downlink control information.
  • the activation state determiner 1120 may determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
  • the SPS configuration component 1125 may select an SPS configuration among the set of SPS configurations for the UE based on the SPS activation state information. In some examples, the SPS configuration component 1125 may activate the SPS resources based on the selected SPS configuration. In some examples, the SPS configuration component 1125 may receive third control signaling that indicates updated SPS activation state information associated with the group of UEs after receiving the second control signaling. In some examples, the SPS configuration component 1125 may activate a second SPS configuration among the set of SPS configurations associated with second SPS resources for the UE based on the updated SPS activation state information. In some examples, the SPS configuration component 1125 may deactivate the SPS configuration based on the updated SPS activation state information.
  • the SPS configuration component 1125 may maintain the SPS configuration after receiving the updated SPS activation state information. In some examples, the SPS configuration component 1125 may activate the SPS resources based on the indicated SPS configuration. In some cases, the SPS configuration is selected from a mapping table according to an SPS configuration index in the second control signaling associated with the UE. In some cases, each SPS configuration of the set of SPS configurations includes MCS information, an indication of the SPS resources, transmission parameter information (e.g., a number of repetitions, precoding information, power control commands) , or a combination thereof. In some cases, the SPS activation state information indicates an SPS configuration for the UE.
  • the SPS configuration includes MCS information, an indication of the SPS resources, transmission parameter information (e.g. a number of repetitions, precoding information, power control command) , or a combination thereof.
  • the SPS configuration further includes an indication of whether the SPS resources are uplink SPS resources or downlink SPS resources.
  • the hybrid PDCCH component 1130 may deactivate the SPS resources based on the downlink control channel transmission, the SPS resources being previously activated based on a previous downlink control channel transmission received based on a second identifier corresponding to the UE.
  • the slot information determiner 1135 may determine slot information for the SPS resources based on a scheduling delay and a slot associated with the downlink shared channel transmission.
  • the hybrid PDSCH component 1140 may activate the SPS resources based on receiving the downlink shared channel transmission.
  • the hybrid PDSCH component 1140 may receive a downlink control channel transmission that indicates a second activation state for the SPS resources of the UE.
  • the hybrid PDSCH component 1140 may deactivate the SPS resources based on receiving the second activation state.
  • the receiving the downlink control channel transmission is based on a second identifier of the UE.
  • the receiving the downlink control channel transmission is based on the identifier corresponding to the group.
  • FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of or include the components of device 905, device 1005, or a UE 115 as described herein.
  • the device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, an I/O controller 1215, a transceiver 1220, an antenna 1225, memory 1230, and a processor 1240. These components may be in electronic communication via one or more buses (e.g., bus 1245) .
  • buses e.g., bus 1245
  • the communications manager 1210 may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs, receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs, and determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
  • the I/O controller 1215 may manage input and output signals for the device 1205.
  • the I/O controller 1215 may also manage peripherals not integrated into the device 1205.
  • the I/O controller 1215 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1215 may utilize an operating system such as or another known operating system.
  • the I/O controller 1215 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1215 may be implemented as part of a processor.
  • a user may interact with the device 1205 via the I/O controller 1215 or via hardware components controlled by the I/O controller 1215.
  • the transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1230 may include RAM and ROM.
  • the memory 1230 may store computer-readable, computer-executable code 1235 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1240 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1240.
  • the processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting group activation and deactivation for SPS) .
  • the code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 13 shows a block diagram 1300 of a device 1305 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the device 1305 may be an example of aspects of a base station 105 as described herein.
  • the device 1305 may include a receiver 1310, a communications manager 1315, and a transmitter 1320.
  • the device 1305 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1310 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group activation and deactivation for SPS, etc. ) . Information may be passed on to other components of the device 1305.
  • the receiver 1310 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16.
  • the receiver 1310 may utilize a single antenna or a set of antennas.
  • the communications manager 1315 may transmit, to a group of UEs, first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs, determine SPS activation state information associated with at least one UE of the group of UEs, and transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
  • the communications manager 1315 may be an example of aspects of the communications manager 1610 described herein.
  • the communications manager 1315 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1315, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 1315 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 1315, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 1315, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 1320 may transmit signals generated by other components of the device 1305.
  • the transmitter 1320 may be collocated with a receiver 1310 in a transceiver module.
  • the transmitter 1320 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16.
  • the transmitter 1320 may utilize a single antenna or a set of antennas.
  • FIG. 14 shows a block diagram 1400 of a device 1405 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the device 1405 may be an example of aspects of a device 1305, or a base station 105 as described herein.
  • the device 1405 may include a receiver 1410, a communications manager 1415, and a transmitter 1435.
  • the device 1405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group activation and deactivation for SPS, etc. ) . Information may be passed on to other components of the device 1405.
  • the receiver 1410 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16.
  • the receiver 1410 may utilize a single antenna or a set of antennas.
  • the communications manager 1415 may be an example of aspects of the communications manager 1315 as described herein.
  • the communications manager 1415 may include a first control signaling transmitter 1420, a SPS activation state information determiner 1425, and a second control signaling transmitter 1430.
  • the communications manager 1415 may be an example of aspects of the communications manager 1610 described herein.
  • the first control signaling transmitter 1420 may transmit, to a group of UEs, first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs.
  • the SPS activation state information determiner 1425 may determine SPS activation state information associated with at least one UE of the group of UEs.
  • the second control signaling transmitter 1430 may transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
  • the transmitter 1435 may transmit signals generated by other components of the device 1405.
  • the transmitter 1435 may be collocated with a receiver 1410 in a transceiver module.
  • the transmitter 1435 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16.
  • the transmitter 1435 may utilize a single antenna or a set of antennas.
  • FIG. 15 shows a block diagram 1500 of a communications manager 1505 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the communications manager 1505 may be an example of aspects of a communications manager 1315, a communications manager 1415, or a communications manager 1610 described herein.
  • the communications manager 1505 may include a first control signaling transmitter 1510, a SPS activation state information determiner 1515, a second control signaling transmitter 1520, a slot information determiner 1525, and a PDCCH component 1530. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the first control signaling transmitter 1510 may transmit, to a group of UEs, first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs.
  • the first control signaling further indicates a set of SPS configurations for the at least one UE of the group of UEs.
  • each SPS configuration of the set of SPS configurations includes MCS information, an indication of the SPS resources, transmission parameter information (e.g. a number of repetitions, precoding information, power control command) , or a combination thereof.
  • the first control signaling includes radio resource control signaling.
  • the SPS activation state information determiner 1515 may determine SPS activation state information associated with at least one UE of the group of UEs.
  • the second control signaling transmitter 1520 may transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
  • the second control signaling transmitter 1520 may transmit a downlink control channel transmission based on the identifier and that indicates the SPS activation state information.
  • the second control signaling transmitter 1520 may transmit a downlink shared channel transmission that indicates the SPS activation state information.
  • the SPS activation state information includes an indication for the at least one UE of the group of UEs to deactivate SPS resources that were previously activated based on a previously transmitted downlink control channel transmission.
  • the SPS activation state information indicates an SPS configuration for the UE.
  • the SPS activation state information indicates an SPS configuration for the at least one UE of the group of UEs.
  • the SPS configuration includes MCS information, an indication of the SPS resources, transmission parameter information (e.g. a number of repetitions, precoding information, power control command) , or a combination thereof.
  • the SPS configuration includes an indication of whether SPS resources of the at least one UE of the group of UEs are uplink SPS resources or downlink SPS resources.
  • the second control signaling includes downlink control information.
  • the slot information determiner 1525 may determine slot information for SPS resources of the at least one UE of the group of UEs based on a scheduling delay and a slot associated with the downlink shared channel transmission.
  • the PDCCH component 1530 may transmit a downlink control channel transmission that includes a second indication for the at least one UE to deactivate the SPS resources.
  • the downlink control channel transmission is based on a second identifier corresponding to the at least one UE of the group of UEs. In some cases, the downlink control channel transmission is based on the identifier.
  • FIG. 16 shows a diagram of a system 1600 including a device 1605 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the device 1605 may be an example of or include the components of device 1305, device 1405, or a base station 105 as described herein.
  • the device 1605 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1610, a network communications manager 1615, a transceiver 1620, an antenna 1625, memory 1630, a processor 1640, and an inter-station communications manager 1645. These components may be in electronic communication via one or more buses (e.g., bus 1650) .
  • buses e.g., bus 1650
  • the communications manager 1610 may transmit, to a group of UEs, first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs, determine SPS activation state information associated with at least one UE of the group of UEs, and transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
  • the network communications manager 1615 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1615 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1620 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1620 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1620 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1625. However, in some cases the device may have more than one antenna 1625, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1630 may include RAM, ROM, or a combination thereof.
  • the memory 1630 may store computer-readable code 1635 including instructions that, when executed by a processor (e.g., the processor 1640) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1640
  • the memory 1630 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1640 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1640 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1640.
  • the processor 1640 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1630) to cause the device 1605 to perform various functions (e.g., functions or tasks supporting group activation and deactivation for SPS) .
  • the inter-station communications manager 1645 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1645 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1645 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1635 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1635 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1635 may not be directly executable by the processor 1640 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a first control signaling receiver as described with reference to FIGs. 9 through 12.
  • the UE may receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
  • the UE may determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by an activation state determiner as described with reference to FIGs. 9 through 12.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a first control signaling receiver as described with reference to FIGs. 9 through 12.
  • the UE may receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
  • the UE may determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by an activation state determiner as described with reference to FIGs. 9 through 12.
  • the UE may receive a downlink control channel transmission that indicates the SPS activation state information.
  • the operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
  • FIG. 19 shows a flowchart illustrating a method 1900 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the operations of method 1900 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs.
  • the operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a first control signaling receiver as described with reference to FIGs. 9 through 12.
  • the UE may receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs.
  • the operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
  • the UE may determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
  • the operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by an activation state determiner as described with reference to FIGs. 9 through 12.
  • the UE may receive a downlink control channel transmission that indicates the SPS activation state information.
  • the operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
  • the UE may deactivate the SPS resources based on the downlink control channel transmission, the SPS resources being previously activated based on a previous downlink control channel transmission received based on a second identifier corresponding to the UE.
  • the operations of 1925 may be performed according to the methods described herein. In some examples, aspects of the operations of 1925 may be performed by a hybrid PDCCH component as described with reference to FIGs. 9 through 12.
  • FIG. 20 shows a flowchart illustrating a method 2000 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the operations of method 2000 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 2000 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs.
  • the operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by a first control signaling receiver as described with reference to FIGs. 9 through 12.
  • the UE may receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs.
  • the operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
  • the UE may determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
  • the operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by an activation state determiner as described with reference to FIGs. 9 through 12.
  • the UE may receive a downlink shared channel transmission that indicates the SPS activation state information.
  • the operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
  • FIG. 21 shows a flowchart illustrating a method 2100 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the operations of method 2100 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 2100 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs.
  • the operations of 2105 may be performed according to the methods described herein. In some examples, aspects of the operations of 2105 may be performed by a first control signaling receiver as described with reference to FIGs. 9 through 12.
  • the UE may receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs.
  • the operations of 2110 may be performed according to the methods described herein. In some examples, aspects of the operations of 2110 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
  • the UE may determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
  • the operations of 2115 may be performed according to the methods described herein. In some examples, aspects of the operations of 2115 may be performed by an activation state determiner as described with reference to FIGs. 9 through 12.
  • the UE may receive a downlink shared channel transmission that indicates the SPS activation state information.
  • the operations of 2120 may be performed according to the methods described herein. In some examples, aspects of the operations of 2120 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
  • the UE may activate the SPS resources based on receiving the downlink shared channel transmission.
  • the operations of 2125 may be performed according to the methods described herein. In some examples, aspects of the operations of 2125 may be performed by a hybrid PDSCH component as described with reference to FIGs. 9 through 12.
  • the UE may receive a downlink control channel transmission that indicates a second activation state for the SPS resources of the UE.
  • the operations of 2130 may be performed according to the methods described herein. In some examples, aspects of the operations of 2130 may be performed by a hybrid PDSCH component as described with reference to FIGs. 9 through 12.
  • the UE may deactivate the SPS resources based on receiving the second activation state.
  • the operations of 2135 may be performed according to the methods described herein. In some examples, aspects of the operations of 2135 may be performed by a hybrid PDSCH component as described with reference to FIGs. 9 through 12.
  • FIG. 22 shows a flowchart illustrating a method 2200 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
  • the operations of method 2200 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 2200 may be performed by a communications manager as described with reference to FIGs. 13 through 16.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may transmit, to a group of UEs, first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs.
  • the operations of 2205 may be performed according to the methods described herein. In some examples, aspects of the operations of 2205 may be performed by a first control signaling transmitter as described with reference to FIGs. 13 through 16.
  • the base station may determine SPS activation state information associated with at least one UE of the group of UEs.
  • the operations of 2210 may be performed according to the methods described herein. In some examples, aspects of the operations of 2210 may be performed by a SPS activation state information determiner as described with reference to FIGs. 13 through 16.
  • the base station may transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
  • the operations of 2215 may be performed according to the methods described herein. In some examples, aspects of the operations of 2215 may be performed by a second control signaling transmitter as described with reference to FIGs. 13 through 16.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GP
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
  • the wireless communications systems described herein may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • magnetic disk storage or other magnetic storage devices
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive semi-static control signaling (e. g., a radio resource control (RRC) message) indicating a group of UEs that includes the UE. The UE may receive dynamic control signaling that indicates semi-persistent (SPS) activation state information for the indicated group of UEs. The SPS activation state information may include an indication for the UE to activate SPS resources or to deactivate or abstain from activating SPS resources, and may additionally include an indication of which SPS resources to activate or deactivate. In some cases, the dynamic control signaling may include a group-common physical downlink control channel (GC-PDCCH) that indicates the SPS activation state information. Alternatively, the GC-PDCCH may indicate resources for a group-common physical downlink shared channel (GC-PDSCH) that includes the SPS activation state information.

Description

GROUP ACTIVATION AND DEACTIVATION FOR SEMI-PERSISTENT SCHEDULING BACKGROUND
The following relates generally to wireless communications, and more specifically to group activation and deactivation for semi-persistent scheduling (SPS) .
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In general, increasing user density at a base station (e.g., the number of UEs served by a base station) may enable better coverage for users in the coverage area of the base station. However, increasing user density may be associated with correspondingly increasing a number of PDCCHs transmitted by the base station, which may be limited by a PDCCH capacity. To increase user density without increasing PDCCH capacity, a base station may configure a UE with SPS resources, which may enable a UE to receive multiple PDSCHs or transmit multiple PUSCHs with a single PDCCH.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support group activation and deactivation for semi-persistent scheduling (SPS) . Generally, the described techniques provide for enabling activation and deactivation  of SPS resources for multiple user equipments (UEs) in a manner that increases user density without increasing physical downlink control channel (PDCCH) consumption or losing an ability to perform dynamic scheduling. For example, a base station may transmit a single PDCCH or physical downlink shared channel (PDSCH) to activate or deactivate SPS resources for multiple UEs.
A base station configuring a UE with SPS resources may activate or deactivate the SPS resources by transmitting semi-static control signaling (e.g., via a radio resource control (RRC) message) or a UE-specific physical downlink control channel (PDCCH) to the UE. Activating or deactivating the SPS resources via UE-specific PDCCHs may involve sending a UE-specific PDCCH for each UE whose SPS resources are to be activated or deactivated. Sending a single PDCCH for each UE may involve transmitting multiple PDCCHs and may increase the number of PDCCHs sent by the base station. Activating and deactivating the SPS resources via semi-static control signaling, meanwhile, may limit the number of PDCCHs sent by the base station, but may suffer from resource underutilization and may not enable reuse of the SPS resources for dynamic scheduling.
To enable dynamic scheduling and enable increased user density at the base station, the base station may transmit semi-static control signaling (e.g., radio resource control (RRC) messages) indicating a group of UEs. For example, the base station may allocate an identifier (e.g., a radio network temporary identifier (RNTI) ) to the group of UEs and indicate the identifier to the group of UEs. The base station may transmit dynamic control signaling that indicates SPS activation state information for one or more UEs of the indicated group of UEs. Such SPS activation state information may include an indication for the UE to activate one or more of a set of SPS configurations, to abstain from activating any of the set of SPS configurations, or to deactivate an SPS configuration that is currently active for the UE. In some cases, the set of SPS configurations may be indicated by the semi-static control signaling. In other cases, one or more SPS configurations may be indicated by dynamic control signaling. The dynamic control signaling may include a GC-PDCCH that indicates the SPS activation state information for each UE of the indicated group of UEs. In some such cases, a UE-specific PDCCH may be used to activate SPS configurations for a UE of the group of UEs and the GC-PDCCH may be used to deactivate SPS configurations for some or all UEs of the group of UEs. Additionally or alternatively, the GC-PDCCH may indicate resources for receiving a group-common physical downlink shared channel (GC- PDSCH) that includes the SPS activation state information. In some such cases, a GC-PDSCH may be used to activate SPS configurations for UEs of the group of UEs and UE-specific PDCCHs or a GC-PDCCH may be used to deactivate SPS configurations for the UEs.
A method of wireless communications at a UE is described. The method may include receiving first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs, receiving, based on the identifier corresponding to the group of UEs, second control signaling that indicates semi-persistent scheduling (SPS) activation state information associated with the group of UEs, and determining an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs, receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates semi-persistent scheduling (SPS) activation state information associated with the group of UEs, and determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for receiving first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs, receiving, based on the identifier corresponding to the group of UEs, second control signaling that indicates semi-persistent scheduling (SPS) activation state information associated with the group of UEs, and determining an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs, receive,  based on the identifier corresponding to the group of UEs, second control signaling that indicates semi-persistent scheduling (SPS) activation state information associated with the group of UEs, and determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the second control signaling may include operations, features, means, or instructions for receiving a downlink control channel transmission that indicates the SPS activation state information.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first control signaling further indicates a set of SPS configurations for the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for selecting an SPS configuration among the set of SPS configurations for the UE based on the SPS activation state information, and activating the SPS resources based on the selected SPS configuration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving third control signaling that indicates updated SPS activation state information associated with the group of UEs after receiving the second control signaling, activating a second SPS configuration among the set of SPS configurations associated with second SPS resources for the UE based on the updated SPS activation state information, and deactivating the SPS configuration based on the updated SPS activation state information.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving third control signaling that indicates updated SPS activation state information associated with the group of UEs after receiving the second control signaling, activating a second SPS configuration among the set of SPS configurations associated with second SPS resources for the UE based on the updated SPS activation state information, and maintaining the SPS configuration after receiving the updated SPS activation state information.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the SPS configuration may be selected from a mapping table according to an SPS configuration index in the second control signaling associated with the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, each SPS configuration of the set of SPS configurations includes modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for deactivating the SPS resources based on the downlink control channel transmission, the SPS resources being previously activated based on a previous downlink control channel transmission received based on a second identifier corresponding to the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the second control signaling may include operations, features, means, or instructions for receiving a downlink shared channel transmission that indicates the SPS activation state information.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the SPS activation state information indicates an SPS configuration for the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for activating the SPS resources based on the indicated SPS configuration.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the SPS configuration includes modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  determining slot information for the SPS resources based on a scheduling delay and a slot associated with the downlink shared channel transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the SPS configuration further includes an indication of whether the SPS resources may be uplink SPS resources or downlink SPS resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for activating the SPS resources based on receiving the downlink shared channel transmission, receiving a downlink control channel transmission that indicates a second activation state for the SPS resources of the UE, and deactivating the SPS resources based on receiving the second activation state.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the receiving the downlink control channel transmission may be based on a second identifier of the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the receiving the downlink control channel transmission may be based on the identifier corresponding to the group of UEs.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first control signaling includes radio resource control signaling.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second control signaling includes downlink control information.
A method of wireless communications is described. The method may include transmitting, to a group of user equipments (UEs) , first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs, determining semi-persistent scheduling (SPS) activation state information associated with at least one UE of the group of UEs, and transmitting, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
An apparatus for wireless communications is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, to a group of user equipments (UEs) , first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs, determine semi-persistent scheduling (SPS) activation state information associated with at least one UE of the group of UEs, and transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
Another apparatus for wireless communications is described. The apparatus may include means for transmitting, to a group of user equipments (UEs) , first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs, determining semi-persistent scheduling (SPS) activation state information associated with at least one UE of the group of UEs, and transmitting, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
A non-transitory computer-readable medium storing code for wireless communications is described. The code may include instructions executable by a processor to transmit, to a group of user equipments (UEs) , first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs, determine semi-persistent scheduling (SPS) activation state information associated with at least one UE of the group of UEs, and transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the second control signaling may include operations, features, means, or instructions for transmitting a downlink control channel transmission based on the identifier and that indicates the SPS activation state information.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first control signaling further indicates a set of SPS configurations for the at least one UE of the group of UEs.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, each SPS configuration of the set of SPS configurations includes modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the SPS activation state information includes an indication for the at least one UE of the group of UEs to deactivate SPS resources that were previously activated based on a previously transmitted downlink control channel transmission.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the second control signaling may include operations, features, means, or instructions for transmitting a downlink shared channel transmission that indicates the SPS activation state information.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the SPS activation state information indicates an SPS configuration for the at least one UE of the group of UEs.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the SPS configuration includes modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the SPS configuration includes an indication of whether SPS resources of the at least one UE of the group of UEs may be uplink SPS resources or downlink SPS resources.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining slot information for SPS resources of the at least one UE of the group of UEs based on a scheduling delay and a slot associated with the downlink shared channel transmission.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a downlink control channel transmission that includes a second indication for the at least one UE to deactivate the SPS resources.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the downlink control channel transmission may be based on a second identifier corresponding to the at least one UE of the group of UEs.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the downlink control channel transmission may be based on the identifier corresponding to the group of UEs.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first control signaling includes radio resource control signaling.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second control signaling includes downlink control information.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports group activation and deactivation for semi-persistent scheduling (SPS) in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a activation bit field set that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a SPS resource activation procedure that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a hybrid SPS resource activation and deactivation procedure that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
FIG. 6 illustrates an example of a SPS resource activation procedure that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
FIG. 7 illustrates an example of a hybrid SPS resource activation and deactivation procedure that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
FIG. 8 illustrates an example of a process flow that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
FIGs. 9 and 10 show block diagrams of devices that support group activation and deactivation for SPS in accordance with aspects of the present disclosure.
FIG. 11 shows a block diagram of a communications manager that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
FIG. 12 shows a diagram of a system including a device that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
FIGs. 13 and 14 show block diagrams of devices that support group activation and deactivation for SPS in accordance with aspects of the present disclosure.
FIG. 15 shows a block diagram of a communications manager that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
FIG. 16 shows a diagram of a system including a device that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure.
FIGs. 17 through 22 show flowcharts illustrating methods that support group activation and deactivation for SPS in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some wireless communications systems, a base station may indicate one or more semi-persistent scheduling (SPS) resource configurations to a user equipment (UE) and  may selectively activate or deactivate the SPS configurations. The base station may selectively activate or deactivate the SPS configurations by transmitting an indication to the UE via semi-static control signaling or a UE-specific physical downlink control channel (PDCCH) . Upon activating an SPS configuration, the UE may receive a physical downlink shared channel (PDSCH) or may transmit a physical uplink shared channel (PUSCH) according to SPS resources defined by an SPS period of the SPS configuration and time and frequency resources signaled by the semi-static control signaling or the UE-specific PDCCH. The UE may continue to receive PDSCHs or transmit PUSCHs according to the SPS period until the UE receives semi-static control signaling or a UE-specific PDCCH providing an indication to deactivate the SPS configuration.
Generally, increasing user density at a base station is associated with an increase in utilization of PDCCH resources. However, there may be instances where a base station is limited in how much the base station can increase the number of PDCCHs, as determined by a PDCCH capacity. In such cases, the base station may transmit fewer PDCCHs for a single UE, which may increase user density without increasing PDCCH capacity. For instance, a base station may configure a UE with SPS resources, which may enable the UE to receive multiple PDSCHs or to transmit multiple PUSCHs after receiving a single PDCCH. In some cases, the base station may activate or deactivate SPS resources for UEs by transmitting UE-specific PDCCHs to each UE to be activated or deactivated. To use even fewer PDCCHs, thereby increasing user density, a base station may attempt to activate or deactivate SPS resources for UEs via semi-static control signaling (e.g., radio resource control (RRC) messages) . In such cases, the base station may forego transmitting a PDCCH. By foregoing transmitting a PDCCH, the base station may increase user density but may lack the ability to perform dynamic scheduling for re-use of configured SPS resources that are not needed. As such, resources configured for SPS transmission may not be reused until the UE receives additional semi-static control signaling, leading to poor resource utilization.
To enable dynamic scheduling and enable increased user density at the base station, the base station may provide semi-static control signaling (e.g., an RRC message) that indicates a group of UEs and dynamic control signaling that indicates SPS activation state information for the group of UEs. The SPS activation state information may include an indication of an activation state for one or more UEs of the group of UEs. The activation state  may indicate whether a UE is to activate an SPS configuration or whether the UE is to deactivate or abstain from activating SPS configurations.
In some cases, the dynamic control signaling may include a group-common PDCCH (GC-PDCCH) that indicates the SPS activation state information. In some such cases, a UE-specific PDCCH may be used to activate an SPS configuration for a UE of the group of UEs and the GC-PDCCH may be used to deactivate SPS configurations for some or all UEs of the group of UEs. Additionally or alternatively, the dynamic control signaling may include a GC-PDCCH that indicates resources for receiving a group-common PDSCH (GC-PDSCH) that indicates the SPS activation state information. In some such cases, the base station may transmit GC-PDSCH to activate SPS configurations for one or more UEs and UE-specific PDCCHs or a GC-PDCCH may be used to deactivate SPS configurations for the one or more UEs.
Aspects of the disclosure are initially described in the context of a wireless communications system. Aspects of the disclosure are additionally described in the context of an additional wireless communications system, an activation bit field set, SPS resource activation procedures, hybrid SPS resource activation and deactivation procedures, and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to group activation and deactivation for SPS.
FIG. 1 illustrates an example of a wireless communications system 100 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some cases, wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a  radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology. Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) . The UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
The geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell. For example, each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof. In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
The term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier. In some examples, a carrier may  support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices. In some cases, the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client. A UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way  communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
In some cases, a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) . One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105. In some cases, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some cases, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between UEs 115 without the involvement of a base station 105.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) . The MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC. User IP packets may be  transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operators IP services. The operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Streaming Service.
At least some of the network devices, such as a base station 105, may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) . Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) . In some configurations, various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band. The SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, wireless communications system 100 may support  millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115. However, the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
In some cases, wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band. When operating in unlicensed radio frequency spectrum bands, wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data. In some cases, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these. Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
In some examples, base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. For example, wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas. MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the  multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams. Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In one example, a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction  associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality. Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115, which may be an example of a mmW receiving device) may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions. In some examples a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) . The single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
In some cases, the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some cases, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A  base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
In some cases, wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the RRC protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data. At the Physical layer, transport channels may be mapped to physical channels.
In some cases, UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) . In some cases, a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Time intervals in LTE or NR may be expressed in multiples of a basic time unit, which may, for example, refer to a sampling period of T s = 1/30,720,000 seconds. Time intervals of a communications resource may be organized according to radio frames each having a duration of 10 milliseconds (ms) , where the frame period may be expressed as T f = 307,200 T s. The radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023. Each frame may include 10 subframes numbered from 0 to 9, and  each subframe may have a duration of 1 ms. A subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods. In some cases, a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) . In other cases, a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
In some wireless communications systems, a slot may further be divided into multiple mini-slots containing one or more symbols. In some instances, a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example. Further, some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
The term “carrier” refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125. For example, a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology. Each physical layer channel may carry user data, control information, or other signaling. A carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115. Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) . In some examples, signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
The organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) . For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data. A carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier. In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) . In some examples, each served UE 115 may be configured for operating over portions or all of the carrier bandwidth. In other examples, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) . Thus, the more resource elements that a UE 115 receives and the higher  the order of the modulation scheme, the higher the data rate may be for the UE 115. In MIMO systems, a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
Devices of the wireless communications system 100 (e.g., base stations 105 or UEs 115) may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both FDD and TDD component carriers.
In some cases, wireless communications system 100 may utilize enhanced component carriers (eCCs) . An eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration. In some cases, an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) . An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) . An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
In some cases, an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers. A shorter symbol duration may be associated with increased spacing between adjacent subcarriers. A device, such as a UE 115  or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) . A TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others. The flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums. In some examples, NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
When performing services with a continuous or semi-continuous data communication pattern (e.g., voice over internet protocol (VoIP) ) a base station 105 may configure SPS at a communicating UE 115, which may reduce control signaling overhead. For instance, the base station 105 may provide RRC signaling to the UE 115 which indicates a resource allocation interval over which SPS resources are periodically assigned. Additionally, the configuration and reconfiguration of transmissions over the SPS resources may be determined based on a PDCCH sent from the base station 105. The PDCCH may signal time and frequency domain resource allocation along with other transmission parameters (e.g., modulation and coding scheme (MCS) , a number of repetitions, precoding information, power control commands) for subsequent periodic transmissions.
Generally, increasing user density at a base station 105 involves increasing a number of PDCCHs transmitted by the base station. Using SPS may mitigate the number of PDCCHs that the base station 105 transmits, as a UE 115 may receive multiple PDSCHs or transmit multiple PUSCHs based on a single PDCCH when using SPS resources, which may enable a greater user density without increasing PDCCH capacity.
Alternatively, in some cases, the base station 105 may use RRC signaling instead of transmitting L1 signaling, such as a PDCCH, to indicate the time and frequency domain resource allocation for SPS transmissions. Using RRC signaling may further limit the number of PDCCHs that the base station 105 transmits, but may suffer from poor resource utilization,  as the base station 105 may therefore lack an ability to perform dynamic re-scheduling for the SPS resources when they are being underutilized.
According to various aspects, to support group activation and deactivation for SPS, a base station 105 may transmit semi-static control signaling (e.g., a RRC message) indicating a group of UEs 115. For example, the base station 105 may signal an identifier (e.g., RNTI) for the group of UEs. The base station 105 may also transmit dynamic control signaling that indicates SPS activation state information for one or more UEs 115 of the indicated group of UEs 115. Such SPS activation state information may include an indication for the UE 115 to activate one or more of a set of SPS configurations, to abstain from activating any of the set of SPS configurations, or to deactivate an SPS configuration from the set of SPS configurations that is currently active for the UE 115. In some cases, the set of SPS configurations may be indicated by the semi-static control signaling. In other cases, one or more SPS configurations may be indicated by dynamic control signaling (e.g., a GC-PDSCH. The dynamic control signaling may include a GC-PDCCH that indicates the SPS activation state information for each UE 115 of the indicated group of UEs 115. In some such cases, a UE-specific PDCCH may be used to activate SPS configurations for a UE 115 of the group of UEs 115 and the GC-PDCCH may be used to deactivate SPS configurations for some or all UEs 115 of the group of UEs 115. Additionally or alternatively, the GC-PDCCH may indicate resources for receiving a GC-PDSCH that includes the SPS activation state information and SPS configuration information, in some cases. In some such cases, a GC-PDSCH may be used to activate SPS configurations for one or more UEs 115 and UE-specific PDCCHs or a GC-PDCCH may be used to deactivate SPS configurations for the one or more UEs 115.
FIG. 2 illustrates an example of a wireless communications system 200 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. For instance, wireless communications system 200 may include a base station 105-a, which may be an example of a base station 105 as described with reference to FIG. 1, and UEs 115-a, 115-b, and 115-c, which may be examples of UEs 115 as described with reference to FIG. 1.
Base station 105-a may communicate with UEs 115-a, 115-b, and 115-c through communication link 205. For instance, base station 105-a may transmit semi-static control signaling 210 (e.g., RRC signaling) indicating that UEs 115-a, 115-b, and 115-c are in a group of UEs 115. The base station 105-a may transmit dynamic control signaling 215 indicating, via SPS activation state information included in the dynamic control signaling 215 whether each of UEs 115-a, 115-b, and 115-c are to activate SPS configurations and, if so, which SPS configurations each UE 115 is to activate. UE 115-a may receive the dynamic control signaling 215 and determine to activate a SPS configuration including UE1 SPS PDSCH 220 based on the SPS activation state information. UE 115-b may receive the dynamic control signaling 215 and may activate an SPS configuration including UE2 SPS PDSCH 225 based on the SPS activation state information. UE 115-c may receive the dynamic control signaling 215 and determine that UE 115-c is to deactivate all SPS configurations or is to abstain from activating any SPS resources based on the SPS activation state information.
Semi-static control signaling 210 may indicate that UEs 115-a, 115-b, and 115-c are in a set (or group) of UEs 115 by configuring UE grouping information at each of UEs 115-a, 115-b, and 115-c. For instance, semi-static control signaling 210 may include an index in the group of UEs 115 for each of UEs 115-a, 115-b, and 115-c. Additionally, the semi-static control signaling 210 may indicate a radio network temporary identifier (RNTI) , such as a group RNTI (G-RNTI) , for the group of UEs 115, which may be included in the dynamic control signaling 215 (e.g., used for scrambling the dynamic control signaling 215) for group action and/or deactivation. The RNTI may be distinct from a cell RNTI (C-RNTI) , which may also be included in dynamic control signaling 215 and may also be distinct from an SPS C-RNTI (SPS-C-RNTI) used for receiving UE-specific SPS activation/deactivation.
In some cases (e.g., if the dynamic control signaling 215 includes a GC-PDCCH which indicates the SPS activation state information) , semi-static control signaling 210 may indicate SPS configurations for UEs 115-a, 115-b, and 115-c. Each resource configuration may, for instance, include information related to resource assignment (e.g., which time and frequency resources define the SPS resources) , an SPS periodicity, an SPS offset (e.g., an offset from a start of the SPS period) , MCS, a number of repetitions (e.g., a number of times for SPS resources to repeat once a corresponding SPS configuration is activated) , precoding information, power control commands or other transmission parameters. In other cases (e.g.,  if the dynamic control signaling 215 includes a GC-PDSCH which indicates the SPS activation state information) , one or more SPS configurations for UE 115-a, 115-b, and 115-c may be indicated by the dynamic control signaling 215.
In some cases, the dynamic control signaling 215 may provide group activation or deactivation over a PDCCH, where L1 control may activate or deactivate semi-persistent grant configurations by semi-static control signaling. The dynamic control signaling may include a GC-PDCCH that indicates SPS activation state information. GC-PDCCH may include a set of bit fields indicating activation states for each of UEs 115-a, 115-b, and 115-c, as is illustrated by FIG. 3. Each bit field may include N (e.g., 2) bits which map to a preconfigured SPS resource grant via a predefined codepoint mapping table, where the preconfigured SPS resource grant may include SPS configuration information. For instance, if a bit field corresponding to UE 115-a has 2 bits and indicates a value ‘00’ , UE 115-a may deactivate all SPS configurations or may abstain from activating any SPS configurations. If the bit field corresponding to UE 115-a has 2 bits and indicates a value ‘01’ , UE 115-a may activate a first SPS configuration (e.g., a first SPS grant configuration) . If the bit field corresponding to UE 115-a has 2 bits and indicates a value ‘10’ , UE 115-a may activate a second SPS configuration (e.g., a second SPS grant configuration) . If the bit field corresponding to UE 115-a has 2 bits and indicates a value ‘11’ , UE 115-a may activate a third SPS configuration (e.g., a third SPS grant configuration) . In the present example, UE1 SPS PDSCH 320 and UE2 SPS PDSCH 325 may be associated with SPS configurations that map to “01” , “10” , or “11” in bit fields corresponding to UE 115-a and 115-b, respectively. Additionally, the bit field associated with UE 115-c in the present example may contain ‘00’ . It should be noted that more or fewer bits may be used without deviating from the scope of the present disclosure.
In some examples, a UE 115 that receives a GC-PDCCH may already have activated SPS resources associated with an initial SPS configuration (e.g., the UE may have received a previous GC-PDCCH that indicated a first SPS configuration based on the corresponding bit field having a value of ‘01’ ) . If the bit field corresponding to the UE 115 indicates another SPS configuration (e.g., if the corresponding bit field has a value of ‘11’ or ‘10’ ) , the UE 115 may deactivate the initial SPS configuration and its corresponding resources and activate the other SPS configuration and its corresponding resources. Alternatively, the UE 115 may activate the other SPS configuration and its corresponding  resources while maintaining the initial SPS configuration (e.g., the UE 115 may receive PDSCHs or transmit PUSCHs according to both SPS configurations) .
In some examples, base station 105-a may transmit a UE-specific PDCCH for SPS activation and may transmit a GC-PDCCH for deactivation (e.g., base station 105-a may use a combination of UE-specific and group-common PDCCH activation or deactivation of SPS resources) . The GC-PDCCH may include a bitmap corresponding to each SPS configuration each UE 115 of the group of UEs 115 are configured with, where the bitmap may indicate which SPS configurations each UE 115 is to deactivate. For instance, if each UE 115 of the group of UEs 115 may be configured with three SPS configurations (e.g., the first SPS configuration, the second SPS configuration, and the third SPS configuration as described herein) , the UE may receive bitmaps including three bits for each UE 115 of the group of UEs 115. Each bit may indicate whether the UE is to maintain or deactivate a corresponding SPS configuration (e.g., the first bit may indicate whether the UE is to maintain or deactivate the first SPS configuration, the second bit may indicate whether the UE is to maintain or deactivate the second SPS configuration, and the third bit may indicate whether the UE is to maintain or deactivate the third SPS configuration) .
In other cases, the dynamic control signaling 215 may provide group activation or deactivation over PDSCH for UEs 115 of the group of UEs. For instance, a GC-PDCCH may dynamically schedule a GC-PDSCH that indicates the SPS activation state information. GC-PDCCHs that include resources for GC-PDSCHs indicating SPS activation state information may not include bit fields indicating activation states as described herein. The GC-PDSCH may dynamically indicate SPS configurations to UEs 115-a, 115-b, and 115-c instead of semi-static signaling.
The GC-PDSCH may carry SPS activation or deactivation downlink control information (DCIs) for a subset of UEs 115 in the group of UEs 115. For instance, if the subset of UEs 115 includes UEs 115-a, 115-b, and 115-c, GC-PDCCH may indicate a corresponding GC-PDSCH, which may indicate SPS activation or deactivation DCIs for UEs 115-a, 115-b, and 115-c. The SPS activation or deactivation DCIs may have the same structure as DCIs included in UE-specific PDCCHs for activation or deactivation of SPS configurations. The activation or deactivation DCIs may include a 1-bit indicator for uplink and downlink differentiation, which the UE 115 receiving the DCI may use to determine  whether SPS configurations are to be used to receive PDSCHs (e.g., if the 1-bit indicator indicates downlink) or to transmit PUSCHs (e.g., if the 1-bit indicator indicates uplink) . As such, mixed uplink and downlink SPS activation or deactivation may be supported. In some cases, the SPS activation or deactivation DCIs may be carried in one or more MAC control elements (MAC-CEs) within the GC-PDSCH.
In some examples, base station 105-a may transmit the GC-PDSCH for activation of SPS configurations and may transmit UE-specific PDCCHs or GC-PDCCHs (e.g., GC-PDCCHs unassociated with a GC-PDSCH) for deactivation of SPS configurations. The GC-PDCCHs that base station 105-a transmits for deactivation of SPS resources may contain a set of bit fields as described herein. Using the GC-PDSCHs and the UE-specific or group-common PDCCHs in such a manner may enable a quicker release of SPS resources, as the decoding time of a PDCCH may be smaller than that of a PDSCH and HARQ-ACK information for SPS PDSCH release may be reported earlier to base station 105-a.
In general, the methods described herein may enable increased user density without increasing PDCCH capacity by limiting the number of PDCCHs sent by base station 105-a when activating or deactivating SPS configurations. For instance, a base station 105 may transmit a single GC-PDCCH to activate or deactivate SPS configurations for multiple UEs 115 instead of transmitting multiple PDCCHs to activate or deactivate SPS configurations for multiple UEs. Additionally, the methods described herein may enable a UE to reuse resources configured for SPS transmission for dynamic scheduling.
FIG. 3 illustrates an example of an activation bit field set 300 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. In some examples, activation bit field set 300 may be implemented by aspects of  wireless communications systems  100 and 200. For instance, activation bit field set 300 may be a set of bit fields within a GC-PDCCH as described with reference to FIG. 2.
Activation bit field set 300 may include a set of bit fields 305 that correspond to activation states for a group of UEs 115. For instance, “UE 1” may correspond to an activation state for a first UE 115 of a group of UEs 115 and “UE N” may correspond to activation state for an Nth UE 115 of the group of UEs 115. A UE 115 receiving the activation bit field set 300 (e.g., via a GC-PDCCH) may determine which bit field 305  corresponds to the UE 115 based on an index. The index may be indicated to the UE 115 via semi-static control signaling (e.g., an RRC message) .
Each activation bit field 305 may have N bits representing 2 N-1 SPS configurations. The remaining bit may represent a state where all SPS configurations are deactivated or a UE 115 is to abstain from activating any SPS configurations. In one example, an activation bit field 305 may have 2 bits and 3 corresponding SPS configurations. If the activation bit field 305 contains ‘01’ , a UE 115 may use a first SPS configuration. If the activation bit field 305 contains ‘10’ , a UE 115 may use a second SPS configuration. If the activation bit field 305 contains ‘11’ , a UE 115 may use a third SPS configuration. If the activation bit field 305 contains ‘00’ and the UE 115 is using the first, second, or third SPS configuration, the UE 115 may deactivate the corresponding SPS configuration. Otherwise, the UE 115 may abstain from activating an SPS configuration.
Additionally, activation bit field set 300 may include a cyclic redundancy check (CRC) 310 that is scrambled by a group RNTI (G-RNTI) . The G-RNTI may be indicated to the UE 115 via semi-static control signaling (e.g., an RRC message) .
FIG. 4 illustrates an example of an SPS resource activation procedure 400 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. In some examples, SPS resource activation procedure 400 may be implemented by aspects of  wireless communications systems  100 and 200. For example, SPS resource activation procedure 400 may be implemented by a base station 105 and one or more UEs 115 as described with reference to FIGs. 1 and 2. SPS resource activation procedure 400 may occur over time resources subdivided into one or more slots 405. Each of RRC message 410, GC-PDCCH 415, UE1 SPS PDSCH 420 and UE2 SPS PDSCH 425 may span time resources (e.g., depicted as width) and frequency resources (e.g., depicted as height) . While resources for receiving PDSCH are discussed in the present example, it should be noted that the resources may instead be used for transmitting PUSCHs without deviating from the scope of the present disclosure.
In some cases, a base station 105 may transmit an RRC message 410 to a UE 115. The RRC message 410 may indicate that multiple UEs 115 (e.g., UE1, UE2, UE3) make up a group of UEs 115 and may include an RNTI (e.g., a G-RNTI) associated with the group of UEs 115. Additionally, RRC message 410 may include an index associated with a UE 115 of  the group of UEs 115. In some cases, RRC message 410 may configure one or more SPS configurations for a UE 115, which may then be selected based on SPS activation state information. The base station 105 may transmit multiple RRC messages to configure each UE 115 with the group information and individual sets of SPS configurations.
The base station may transmit a GC-PDCCH 415 that contains SPS activation state information that receiving UEs 115 may use to determine whether to activate or deactivate SPS resources. For instance, in the present example, a first UE 115 of the group of UEs 115 (i.e., UE1) may receive the GC-PDCCH 415 based on the RNTI associated with the group of UEs 115 and may determine that UE1 is to activate an SPS configuration including UE1 SPS PDSCH resources 420. Additionally, a second UE 115 of the group of UEs 115 (i.e., UE2) may receive the GC-PDCCH 415 based on the RNTI and may determine that UE2 is to activate an SPS configuration including UE2 SPS PSDCH resources 425. Additionally, a third UE 115 of the group of UEs 115 (i.e., UE3) may receive the GC-PDCCH 415 based on the RNTI and may determine that UE3 is to deactivate or abstain from activating an SPS configuration. In some cases, the SPS activation state information may be conveyed through an activation bit field set (e.g., an activation bit field set 300 as described with reference to FIG. 3) .
Upon activating an SPS configuration including UE1 SPS PDSCH resources 420, UE1 may begin to receive PDSCHs according to a UE1 slot offset 430 and an SPS period 440, which may be configured by semi-static signaling, such as the RRC message 410. For instance, UE1 may receive a PDSCH at UE1 SPS PSDCH resource 420-b, which may occur a time equal to the SPS period 440 after receiving a PDSCH at UE1 SPS PDSCH resource 420-a. Likewise, upon activating an SPS configuration including UE2 SPS PDSCH resources 425, UE2 may begin to receive PDSCHs at UE2 SPS PSDCH resource 425 according to a UE2 slot offset 435 and an SPS period 440, which may be configured by semi-static signaling, such as the RRC message 410. For instance, UE2 may receive a PDSCH at UE2 SPS PSDCH resource 425-b, which may occur a time equal to the SPS period 440 after receiving a PDSCH at UE2 SPS PDSCH resource 425-a.
FIG. 5 illustrates an example of a hybrid SPS resource activation and deactivation procedure 500 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. In some examples, hybrid SPS resource activation and  deactivation procedure 500 may be implemented by aspects of  wireless communications systems  100 and 200. For example, hybrid SPS resource activation and deactivation procedure 500 may be implemented by a base station 105 and one or more UEs 115 as described with reference to FIGs. 1 and 2. Hybrid SPS resource activation and deactivation procedure 500 may occur over time resources subdivided into one or more slots 505. Each of UE1-PDCCH 510, GC-PDCCH 515, UE1 SPS PDCCH 520 and UE2 SPS PDCCH may span time resources (e.g., depicted as width) and frequency resources (e.g., depicted as height) . While resources for receiving PDSCH are discussed in the present example, it should be noted that the resources may instead be used for transmitting PUSCHs without deviating from the scope of the present disclosure.
Initially, some UEs 115 may have activated SPS configurations and may receive PDSCHs according to an SPS period 530 while other UEs 115 may have SPS configurations that are not currently activated. For instance, a first UE 115 (i.e., UE1) may not have any currently activated SPS configurations (e.g., an SPS configuration corresponding to UE1 SPS PSDCH resource 520-a may be deactivated) and may not receive SPS resources. A second UE 115 (i.e., UE2) may have a currently activated SPS configuration (e.g., an SPS configuration corresponding to UE2 SPS PDSCH resource 525-a may be activated) and may receive PDSCHs according to SPS period 530. The SPS configuration including UE2 SPS PDSCH resources 525 may have been activated by a UE-specific PDCCH directed to UE2.
At some point in time, UE1 may receive a UE-specific PDCCH (e.g., UE1-PDCCH 510) which may activate an SPS configuration corresponding to UE1 SPS PDSCH resources 520. After activating the SPS configuration, UE1 may begin receiving PDSCHs over UE1 SPS PSDCH resources 520 (e.g., over UE1 SPS PSDCH resource 520-b) . UE2 may continue to receive PDSCHs over UE2 SPS PDSCH resources 525 (e.g., over UE2 SPS PSDCH resource 525-b) .
At a later point in time, UE1 and UE2 may receive a GC-PDCCH 515 that contains one or more bitmaps corresponding to each SPS configuration that UE1 and UE2 may potentially maintain. For instance, the GC-PDCCH 515 may have a first bitmap for UE1 and a second bitmap for UE2. The SPS configuration corresponding to UE1 SPS PDSCH resources 520 may be one of a set of SPS configurations for UE1, and the first bitmap may contain bits corresponding to each SPS configuration in the set of UE1 SPS configurations. In  general, a bitmap may indicate which SPS configurations to deactivate and which SPS configurations to maintain or keep activated. In the present example, the first bitmap may contain a bit indicating that UE1 is to deactivate the SPS configuration corresponding to UE1 SPS PDSCH resources 520 and the second bitmap may contain a bit indicating that UE2 is to deactivate the SPs configuration corresponding to UE2 SPS PSDCH resources 525. After receiving the GC-PDCCH 515, UE1 may deactivate the SPS configuration corresponding to UE1 SPS PSDCH resources 520 and may not receive a PDSCH at UE1 SPS PSDCH resource 520-c. Likewise, UE2 may deactivate the SPS configuration corresponding to UE2 SPS PSDCH resources 525 and may not receive a PDSCH at UE2 SPS PDSCH resource 525-c. In some cases, UE1 and UE2 may receive the GC-PDCCH 515 based on an RNTI associated with UE1, UE2, and UE3 (e.g., a G-RNTI indicated via an RRC message) .
FIG. 6 illustrates an example of an SPS resource activation procedure 600 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. In some examples, SPS resource activation procedure 600 may be implemented by aspects of  wireless communications systems  100 and 200. For example, SPS resource activation procedure 600 may be implemented by a base station 105 and one or more UEs 115 as described with reference to FIGs. 1 and 2. SPS resource activation procedure 600 may occur over time resources subdivided into one or more slots 605. Each of RRC message 610, GC-PDCCH 615, GC-PDSCH 620, UE1 SPS PDSCH 625, UE2 SPS PDSCH 630, and UE3 SPS PSDCH 635 may span time resources (e.g., depicted as width) and frequency resources (e.g., depicted as height) . While resources for receiving PDSCH are discussed in the present example, it should be noted that the resources may instead be used for transmitting PUSCHs without deviating from the scope of the present disclosure.
In some cases, a base station 105 may transmit an RRC message 610 to a UE 115. The RRC message 610 may indicate that multiple UEs 115 (e.g., UE1, UE2, UE3) make up a group of UEs 115 and may include an identifier (e.g., a G-RNTI) associated with the group of UEs 115. Additionally, RRC message 610 may include an index associated with the UE 115 of the group of UEs 115. The base station 105 may transmit additional RRC messages 610 to other UEs 115 to convey the identifier and corresponding indices for the other UEs of the group.
The base station 105 may transmit a GC-PDCCH 615 that dynamically schedules a GC-PDSCH 620 that may include information about SPS configurations for a subset of UEs 115 (e.g., UE1, UE2, and UE3) in the group of UEs 115. The base station 105 may transmit the GC-PDSCH 620 which may indicate SPS activation state information for the subset of UEs 115. The GC-PDSCH 620 may indicate the SPS activation state information via DCIs for one or more of the UEs 115 in the subset of UEs 115. For instance, the GC-PDSCH may include a first DCI for a first UE (i.e., UE1) , a second DCI for a second UE (i.e., UE2) , and a third DCI for a third UE (i.e., UE3) . UE1 may receive the GC-PDSCH 620 (e.g., via decoding the GC-PDCCH 615 using the RNTI indicated via the RRC message 610 to determine the resource allocation for GC-PDSCH 620) and may determine, based on the first DCI, to activate an SPS configuration corresponding to UE1 SPS PDSCH resources 625. UE2 may receive the GC-PDSCH 620 using the RNTI and may determine, based on the second DCI, to activate an SPS configuration corresponding to UE2 SPS PDSCH resources 630. UE3 may receive the GC-PDSCH 620 using the RNTI and may determine, based on the third DCI, to activate an SPS configuration corresponding to UE3 SPS PDSCH resources 635. In some cases, where SPS resources are configured using GC-PDSCH 620, the SPS resources (e.g., first SPS resources) may be determined according to a scheduling delay from the slot 605 in which GC-PDSCH 620 is transmitted. In addition, SPS resources may also be determined based on an offset included in the DCI. Accordingly, after a scheduling delay 640, UE1 may receive a PDSCH at UE1 SPS PSDCH resource 625-a, UE2 may receive a PDSCH at UE2 SPS PDSCH resource 630-a, and UE3 may receive a PDSCH at UE3 SPS PDSCH resource 635-a. UE1, UE2, and UE3 may continue to receive PDSCHs according to an SPS period 645 (e.g., UE1 SPS PDSCH resource 625-b, UE2 SPS PDSCH resource 630-b, and UE3 SPS PDSCH resource 635-b may occur upon an elapsing of SPS period 645) .
FIG. 7 illustrates an example of a hybrid SPS resource activation and deactivation procedure 700 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. In some examples, hybrid SPS resource activation and deactivation procedure 700 may be implemented by aspects of  wireless communications systems  100 and 200. For example, hybrid SPS resource activation and deactivation procedure 700 may be implemented by a base station 105 and one or more UEs 115 as described with reference to FIGs. 1 and 2. Hybrid SPS resource activation and deactivation procedure 700 may occur over time resources subdivided into one or more slots 705. Each of  GC-PDCCH 710, GC-PDSCH 715, UE1 SPS PDSCH 720, UE2 SPS PSDCH 725, UE3 SPS PDSCH 730, and UE1-PDCCH 735 may span time resources (e.g., depicted as width) and frequency resources (e.g., depicted as height) . While resources for receiving PDSCH are discussed in the present example, it should be noted that the resources may instead be used for receiving PUSCHs without deviating from the scope of the present disclosure.
base station 105 may transmit a GC-PDCCH 710-a and a GC-PDSCH 715 and may activate SPS configurations for a first UE (i.e., UE1) , a second UE (i.e., UE2) , and a third UE (i.e., UE3) in a similar manner as described with regards to GC-PDCCH 615 and GC-PDSCH 620 in FIG. 6. UE1 may receive PDSCHs at UE1 SPS PDSCH resources 720 (e.g., UE1 SPS PSDCH resource 720-a) ; UE2 may receive PDSCHs at UE2 SPS PDSCH resources 725 (e.g., UE2 SPS PSDCH resource 725-a) ; and UE3 may receive PDSCHs at UE3 SPS PSDCH resources 730 (e.g., UE3 SPS PDSCH resource 730-a) after a scheduling delay 740.
To deactivate SPS configurations, the base station 105 may transmit a UE-specific PDCCH to a UE 115. For instance, the base station 105 may transmit UE1-PDCCH 735, which may be a UE-specific PDCCH for UE1, to UE1. UE1 may deactivate an SPS configuration corresponding to UE1 SPS PDSCH resources 720 and may abstain from receiving PDSCHs (e.g., UE1 may not receive a PDSCH at UE1 SPS PDSCH resource 720-b) . UE2 may continue to receive PDSCHs at UE2 SPS PDSCH resources 725 (e.g., UE2 SPS PDSCH resource 725-b) and UE3 may continue to receive PDSCHs at UE3 SPS PDSCH resources 730 (e.g., UE2 SPS PSDCH resource 730-b) .
Alternatively, to deactivate SPS resources, the base station 105 may transmit a GC-PDCCH 710-b (e.g., a GC-PDCCH 710 unassociated with a GC-PDSCH 715) to the group of UEs 115. GC-PDCCH 710-b may include SPS activation state information in the form of an activation bit field set (e.g., an activation bit field set 300 as described with reference to FIG. 3) or one or more bitmaps corresponding to each SPS configuration that UE1, UE2, and UE3 may potentially maintain. For instance, the GC-PDCCH 710-b may have a first bitmap for UE1, a second bitmap for UE2, and a third bitmap for UE3. The SPS configuration corresponding to UE1 SPS PDSCH resources 720 may be one of a set of SPS configurations for UE1, and the first bitmap may contain bits corresponding to each SPS configuration in the set of UE1 SPS configurations. In general, a bitmap may indicate which  SPS configurations to deactivate and which SPS configurations to maintain or keep activated. In the present example, the first bitmap may contain a bit indicating that UE1 is to deactivate the SPS configuration corresponding to UE1 SPS PDSCH resources 720; the second bitmap may contain a bit indicating that UE2 is to deactivate the SPS configuration corresponding to UE2 SPS PDSCH resources 725; and the third bitmap may contain a bit indicating that UE3 is to deactivate the SPS configuration corresponding to UE3 SPS PDSCH resources 730. After receiving the GC-PDCCH 515, UE1 may deactivate the SPS configuration corresponding to UE1 SPS PSDCH resources 720 and may not receive a PDSCH at UE1 SPS PSDCH resource 720-b. Likewise, UE2 may deactivate the SPS configuration corresponding to the UE2 SPS PSDCH resources 725 and may not receive a PDSCH at UE2 SPS PDSCH resource 725-c. Likewise, UE3 may deactivate the SPs configuration corresponding to UE3 SPS PSDCH resources 730 and may not receive a PDSCH at UE3 SPS PDSCH resource 730-c.
FIG. 8 illustrates an example of a process flow 800 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. In some examples, process flow 800 may be implemented by aspects of wireless communications system 100. For instance, process flow 800 may include base station 105-b and UE 115-d, which may be examples of a base station 105 and a UE 115 as described with reference to FIG. 1.
At 805, base station 105-b may transmit first control signaling (e.g., an RRC message) that indicates an identifier corresponding to a group of UEs 115 including UE 115-d and an identifier of UE 115-d within the group of UEs 115 (e.g., an index associated with UE 115-d) . UE 115-d may receive the first control signaling.
At 810, base station 105-b may determine SPS activation state information associated with UE 115-d.
At 815, base station 105-b may transmit second control signaling that indicates SPS activation state information associated with the group of UEs. UE 115-d may receive the second control signaling. In some cases, the second control signaling may include a downlink control channel transmission, such as a GC-PDCCH, that indicates the SPS activation information. In other cases, the second control signaling may include a downlink shared  channel transmission, such as a GC-PDSCH, that indicates the SPS activation state information.
At 820, UE 115-d may determine an activation state for SPS resources of UE 115-d based on the SPS activation state information and the identifier of UE 115-d.
FIG. 9 shows a block diagram 900 of a device 905 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a UE 115 as described herein. The device 905 may include a receiver 910, a communications manager 915, and a transmitter 920. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group activation and deactivation for SPS, etc. ) . Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 910 may utilize a single antenna or a set of antennas.
The communications manager 915 may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs, receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs, and determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE. The communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
The communications manager 915, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 915, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 915, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 915, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 920 may transmit signals generated by other components of the device 905. In some examples, the transmitter 920 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 920 may utilize a single antenna or a set of antennas.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a device 905, or a UE 115 as described herein. The device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1035. The device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group activation and deactivation for SPS, etc. ) . Information may be passed on to other components of the device 1005. The receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 1010 may utilize a single antenna or a set of antennas.
The communications manager 1015 may be an example of aspects of the communications manager 915 as described herein. The communications manager 1015 may include a first control signaling receiver 1020, a second control signaling receiver 1025, and  an activation state determiner 1030. The communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
The first control signaling receiver 1020 may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs.
The second control signaling receiver 1025 may receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs.
The activation state determiner 1030 may determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
The transmitter 1035 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1035 may be collocated with a receiver 1010 in a transceiver module. For example, the transmitter 1035 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 1035 may utilize a single antenna or a set of antennas.
FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein. The communications manager 1105 may include a first control signaling receiver 1110, a second control signaling receiver 1115, an activation state determiner 1120, a SPS configuration component 1125, a hybrid PDCCH component 1130, a slot information determiner 1135, and a hybrid PDSCH component 1140. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The first control signaling receiver 1110 may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs. In some cases, the first control signaling includes radio  resource control signaling. In some cases, the first control signaling further indicates a set of SPS configurations for the UE.
The second control signaling receiver 1115 may receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs. In some examples, the second control signaling receiver 1115 may receive a downlink control channel transmission that indicates the SPS activation state information. In some examples, the second control signaling receiver 1115 may receive a downlink shared channel transmission that indicates the SPS activation state information. In some cases, the second control signaling includes downlink control information.
The activation state determiner 1120 may determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
The SPS configuration component 1125 may select an SPS configuration among the set of SPS configurations for the UE based on the SPS activation state information. In some examples, the SPS configuration component 1125 may activate the SPS resources based on the selected SPS configuration. In some examples, the SPS configuration component 1125 may receive third control signaling that indicates updated SPS activation state information associated with the group of UEs after receiving the second control signaling. In some examples, the SPS configuration component 1125 may activate a second SPS configuration among the set of SPS configurations associated with second SPS resources for the UE based on the updated SPS activation state information. In some examples, the SPS configuration component 1125 may deactivate the SPS configuration based on the updated SPS activation state information. In some examples, the SPS configuration component 1125 may maintain the SPS configuration after receiving the updated SPS activation state information. In some examples, the SPS configuration component 1125 may activate the SPS resources based on the indicated SPS configuration. In some cases, the SPS configuration is selected from a mapping table according to an SPS configuration index in the second control signaling associated with the UE. In some cases, each SPS configuration of the set of SPS configurations includes MCS information, an indication of the SPS resources, transmission parameter information (e.g., a number of repetitions, precoding information, power control  commands) , or a combination thereof. In some cases, the SPS activation state information indicates an SPS configuration for the UE. In some cases, the SPS configuration includes MCS information, an indication of the SPS resources, transmission parameter information (e.g. a number of repetitions, precoding information, power control command) , or a combination thereof. In some cases, the SPS configuration further includes an indication of whether the SPS resources are uplink SPS resources or downlink SPS resources.
The hybrid PDCCH component 1130 may deactivate the SPS resources based on the downlink control channel transmission, the SPS resources being previously activated based on a previous downlink control channel transmission received based on a second identifier corresponding to the UE.
The slot information determiner 1135 may determine slot information for the SPS resources based on a scheduling delay and a slot associated with the downlink shared channel transmission.
The hybrid PDSCH component 1140 may activate the SPS resources based on receiving the downlink shared channel transmission. In some examples, the hybrid PDSCH component 1140 may receive a downlink control channel transmission that indicates a second activation state for the SPS resources of the UE. In some examples, the hybrid PDSCH component 1140 may deactivate the SPS resources based on receiving the second activation state. In some cases, the receiving the downlink control channel transmission is based on a second identifier of the UE. In some cases, the receiving the downlink control channel transmission is based on the identifier corresponding to the group.
FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The device 1205 may be an example of or include the components of device 905, device 1005, or a UE 115 as described herein. The device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, an I/O controller 1215, a transceiver 1220, an antenna 1225, memory 1230, and a processor 1240. These components may be in electronic communication via one or more buses (e.g., bus 1245) .
The communications manager 1210 may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of  the UE within the group of UEs, receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs, and determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE.
The I/O controller 1215 may manage input and output signals for the device 1205. The I/O controller 1215 may also manage peripherals not integrated into the device 1205. In some cases, the I/O controller 1215 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 1215 may utilize an operating system such as 
Figure PCTCN2019076038-appb-000001
or another known operating system. In other cases, the I/O controller 1215 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 1215 may be implemented as part of a processor. In some cases, a user may interact with the device 1205 via the I/O controller 1215 or via hardware components controlled by the I/O controller 1215.
The transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1230 may include RAM and ROM. The memory 1230 may store computer-readable, computer-executable code 1235 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable  logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1240 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1240. The processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting group activation and deactivation for SPS) .
The code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 13 shows a block diagram 1300 of a device 1305 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The device 1305 may be an example of aspects of a base station 105 as described herein. The device 1305 may include a receiver 1310, a communications manager 1315, and a transmitter 1320. The device 1305 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1310 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group activation and deactivation for SPS, etc. ) . Information may be passed on to other components of the device 1305. The receiver 1310 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16. The receiver 1310 may utilize a single antenna or a set of antennas.
The communications manager 1315 may transmit, to a group of UEs, first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs, determine SPS activation state information associated with at least one UE of the group of UEs, and transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier. The  communications manager 1315 may be an example of aspects of the communications manager 1610 described herein.
The communications manager 1315, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1315, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 1315, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 1315, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 1315, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 1320 may transmit signals generated by other components of the device 1305. In some examples, the transmitter 1320 may be collocated with a receiver 1310 in a transceiver module. For example, the transmitter 1320 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16. The transmitter 1320 may utilize a single antenna or a set of antennas.
FIG. 14 shows a block diagram 1400 of a device 1405 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The device 1405 may be an example of aspects of a device 1305, or a base station 105 as described herein. The device 1405 may include a receiver 1410, a communications manager 1415, and a transmitter 1435. The device 1405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to group activation and deactivation for SPS, etc. ) . Information may be passed on to other components of the device 1405. The receiver 1410 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16. The receiver 1410 may utilize a single antenna or a set of antennas.
The communications manager 1415 may be an example of aspects of the communications manager 1315 as described herein. The communications manager 1415 may include a first control signaling transmitter 1420, a SPS activation state information determiner 1425, and a second control signaling transmitter 1430. The communications manager 1415 may be an example of aspects of the communications manager 1610 described herein.
The first control signaling transmitter 1420 may transmit, to a group of UEs, first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs.
The SPS activation state information determiner 1425 may determine SPS activation state information associated with at least one UE of the group of UEs.
The second control signaling transmitter 1430 may transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
The transmitter 1435 may transmit signals generated by other components of the device 1405. In some examples, the transmitter 1435 may be collocated with a receiver 1410 in a transceiver module. For example, the transmitter 1435 may be an example of aspects of the transceiver 1620 described with reference to FIG. 16. The transmitter 1435 may utilize a single antenna or a set of antennas.
FIG. 15 shows a block diagram 1500 of a communications manager 1505 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The communications manager 1505 may be an example of aspects of a communications manager 1315, a communications manager 1415, or a communications manager 1610 described herein. The communications manager 1505 may include a first  control signaling transmitter 1510, a SPS activation state information determiner 1515, a second control signaling transmitter 1520, a slot information determiner 1525, and a PDCCH component 1530. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The first control signaling transmitter 1510 may transmit, to a group of UEs, first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs. In some cases, the first control signaling further indicates a set of SPS configurations for the at least one UE of the group of UEs. In some cases, each SPS configuration of the set of SPS configurations includes MCS information, an indication of the SPS resources, transmission parameter information (e.g. a number of repetitions, precoding information, power control command) , or a combination thereof. In some cases, the first control signaling includes radio resource control signaling.
The SPS activation state information determiner 1515 may determine SPS activation state information associated with at least one UE of the group of UEs.
The second control signaling transmitter 1520 may transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier. In some examples, the second control signaling transmitter 1520 may transmit a downlink control channel transmission based on the identifier and that indicates the SPS activation state information. In some examples, the second control signaling transmitter 1520 may transmit a downlink shared channel transmission that indicates the SPS activation state information. In some cases, the SPS activation state information includes an indication for the at least one UE of the group of UEs to deactivate SPS resources that were previously activated based on a previously transmitted downlink control channel transmission. In some cases, the SPS activation state information indicates an SPS configuration for the UE. In some cases, the SPS activation state information indicates an SPS configuration for the at least one UE of the group of UEs. In some cases, the SPS configuration includes MCS information, an indication of the SPS resources, transmission parameter information (e.g. a number of repetitions, precoding information, power control command) , or a combination thereof. In some cases, the SPS configuration includes an indication of whether SPS resources of the at least one UE of the group of UEs are uplink SPS resources or downlink  SPS resources. In some cases, the second control signaling includes downlink control information.
The slot information determiner 1525 may determine slot information for SPS resources of the at least one UE of the group of UEs based on a scheduling delay and a slot associated with the downlink shared channel transmission.
The PDCCH component 1530 may transmit a downlink control channel transmission that includes a second indication for the at least one UE to deactivate the SPS resources. In some cases, the downlink control channel transmission is based on a second identifier corresponding to the at least one UE of the group of UEs. In some cases, the downlink control channel transmission is based on the identifier.
FIG. 16 shows a diagram of a system 1600 including a device 1605 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The device 1605 may be an example of or include the components of device 1305, device 1405, or a base station 105 as described herein. The device 1605 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1610, a network communications manager 1615, a transceiver 1620, an antenna 1625, memory 1630, a processor 1640, and an inter-station communications manager 1645. These components may be in electronic communication via one or more buses (e.g., bus 1650) .
The communications manager 1610 may transmit, to a group of UEs, first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs, determine SPS activation state information associated with at least one UE of the group of UEs, and transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier.
The network communications manager 1615 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1615 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1620 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1620 may  represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1620 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1625. However, in some cases the device may have more than one antenna 1625, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1630 may include RAM, ROM, or a combination thereof. The memory 1630 may store computer-readable code 1635 including instructions that, when executed by a processor (e.g., the processor 1640) cause the device to perform various functions described herein. In some cases, the memory 1630 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1640 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1640 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1640. The processor 1640 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1630) to cause the device 1605 to perform various functions (e.g., functions or tasks supporting group activation and deactivation for SPS) .
The inter-station communications manager 1645 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1645 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1645 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1635 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1635 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1635 may not be directly executable by the processor 1640 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 17 shows a flowchart illustrating a method 1700 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1705, the UE may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a first control signaling receiver as described with reference to FIGs. 9 through 12.
At 1710, the UE may receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
At 1715, the UE may determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by an activation state determiner as described with reference to FIGs. 9 through 12.
FIG. 18 shows a flowchart illustrating a method 1800 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The  operations of method 1800 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1805, the UE may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a first control signaling receiver as described with reference to FIGs. 9 through 12.
At 1810, the UE may receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
At 1815, the UE may determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by an activation state determiner as described with reference to FIGs. 9 through 12.
At 1820, the UE may receive a downlink control channel transmission that indicates the SPS activation state information. The operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
FIG. 19 shows a flowchart illustrating a method 1900 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The operations of method 1900 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a UE may  execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1905, the UE may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs. The operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a first control signaling receiver as described with reference to FIGs. 9 through 12.
At 1910, the UE may receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs. The operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
At 1915, the UE may determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE. The operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by an activation state determiner as described with reference to FIGs. 9 through 12.
At 1920, the UE may receive a downlink control channel transmission that indicates the SPS activation state information. The operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
At 1925, the UE may deactivate the SPS resources based on the downlink control channel transmission, the SPS resources being previously activated based on a previous downlink control channel transmission received based on a second identifier corresponding to the UE. The operations of 1925 may be performed according to the methods described herein. In some examples, aspects of the operations of 1925 may be performed by a hybrid PDCCH component as described with reference to FIGs. 9 through 12.
FIG. 20 shows a flowchart illustrating a method 2000 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The operations of method 2000 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 2000 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 2005, the UE may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs. The operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by a first control signaling receiver as described with reference to FIGs. 9 through 12.
At 2010, the UE may receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs. The operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
At 2015, the UE may determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE. The operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by an activation state determiner as described with reference to FIGs. 9 through 12.
At 2020, the UE may receive a downlink shared channel transmission that indicates the SPS activation state information. The operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
FIG. 21 shows a flowchart illustrating a method 2100 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The operations of method 2100 may be implemented by a UE 115 or its components as described  herein. For example, the operations of method 2100 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 2105, the UE may receive first control signaling that indicates an identifier corresponding to a group of UEs including the UE and an identifier of the UE within the group of UEs. The operations of 2105 may be performed according to the methods described herein. In some examples, aspects of the operations of 2105 may be performed by a first control signaling receiver as described with reference to FIGs. 9 through 12.
At 2110, the UE may receive, based on the identifier corresponding to the group of UEs, second control signaling that indicates SPS activation state information associated with the group of UEs. The operations of 2110 may be performed according to the methods described herein. In some examples, aspects of the operations of 2110 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
At 2115, the UE may determine an activation state for SPS resources of the UE based on the SPS activation state information and the identifier of the UE. The operations of 2115 may be performed according to the methods described herein. In some examples, aspects of the operations of 2115 may be performed by an activation state determiner as described with reference to FIGs. 9 through 12.
At 2120, the UE may receive a downlink shared channel transmission that indicates the SPS activation state information. The operations of 2120 may be performed according to the methods described herein. In some examples, aspects of the operations of 2120 may be performed by a second control signaling receiver as described with reference to FIGs. 9 through 12.
At 2125, the UE may activate the SPS resources based on receiving the downlink shared channel transmission. The operations of 2125 may be performed according to the methods described herein. In some examples, aspects of the operations of 2125 may be performed by a hybrid PDSCH component as described with reference to FIGs. 9 through 12.
At 2130, the UE may receive a downlink control channel transmission that indicates a second activation state for the SPS resources of the UE. The operations of 2130 may be performed according to the methods described herein. In some examples, aspects of the operations of 2130 may be performed by a hybrid PDSCH component as described with reference to FIGs. 9 through 12.
At 2135, the UE may deactivate the SPS resources based on receiving the second activation state. The operations of 2135 may be performed according to the methods described herein. In some examples, aspects of the operations of 2135 may be performed by a hybrid PDSCH component as described with reference to FIGs. 9 through 12.
FIG. 22 shows a flowchart illustrating a method 2200 that supports group activation and deactivation for SPS in accordance with aspects of the present disclosure. The operations of method 2200 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 2200 may be performed by a communications manager as described with reference to FIGs. 13 through 16. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 2205, the base station may transmit, to a group of UEs, first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs. The operations of 2205 may be performed according to the methods described herein. In some examples, aspects of the operations of 2205 may be performed by a first control signaling transmitter as described with reference to FIGs. 13 through 16.
At 2210, the base station may determine SPS activation state information associated with at least one UE of the group of UEs. The operations of 2210 may be performed according to the methods described herein. In some examples, aspects of the operations of 2210 may be performed by a SPS activation state information determiner as described with reference to FIGs. 13 through 16.
At 2215, the base station may transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based on the identifier. The  operations of 2215 may be performed according to the methods described herein. In some examples, aspects of the operations of 2215 may be performed by a second control signaling transmitter as described with reference to FIGs. 13 through 16.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) , and other systems. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description,  the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
The wireless communications systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the  functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data  optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the  examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (107)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    receiving first control signaling that indicates an identifier corresponding to a group of UEs comprising the UE and an identifier of the UE within the group of UEs;
    receiving, based at least in part on the identifier corresponding to the group of UEs, second control signaling that indicates semi-persistent scheduling (SPS) activation state information associated with the group of UEs; and
    determining an activation state for SPS resources of the UE based at least in part on the SPS activation state information and the identifier of the UE.
  2. The method of claim 1, wherein receiving the second control signaling comprises:
    receiving a downlink control channel transmission that indicates the SPS activation state information.
  3. The method of claim 2, wherein the first control signaling further indicates a set of SPS configurations for the UE.
  4. The method of claim 3, further comprising:
    selecting an SPS configuration among the set of SPS configurations for the UE based at least in part on the SPS activation state information; and
    activating the SPS resources based at least in part on the selected SPS configuration.
  5. The method of claim 4, further comprising:
    receiving third control signaling that indicates updated SPS activation state information associated with the group of UEs after receiving the second control signaling;
    activating a second SPS configuration among the set of SPS configurations associated with second SPS resources for the UE based at least in part on the updated SPS activation state information; and
    deactivating the SPS configuration based at least in part on the updated SPS activation state information.
  6. The method of claim 4, further comprising:
    receiving third control signaling that indicates updated SPS activation state information associated with the group of UEs after receiving the second control signaling;
    activating a second SPS configuration among the set of SPS configurations associated with second SPS resources for the UE based at least in part on the updated SPS activation state information; and
    maintaining the SPS configuration after receiving the updated SPS activation state information.
  7. The method of claim 4, wherein the SPS configuration is selected from a mapping table according to an SPS configuration index in the second control signaling associated with the UE.
  8. The method of claim 3, wherein each SPS configuration of the set of SPS configurations comprises modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  9. The method of claim 2, further comprising:
    deactivating the SPS resources based at least in part on the downlink control channel transmission, the SPS resources being previously activated based at least in part on a previous downlink control channel transmission received based at least in part on a second identifier corresponding to the UE.
  10. The method of claim 1, wherein receiving the second control signaling comprises:
    receiving a downlink shared channel transmission that indicates the SPS activation state information.
  11. The method of claim 10, wherein the SPS activation state information indicates an SPS configuration for the UE.
  12. The method of claim 11, further comprising:
    activating the SPS resources based at least in part on the indicated SPS configuration.
  13. The method of claim 11, wherein the SPS configuration comprises modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  14. The method of claim 11, further comprising:
    determining slot information for the SPS resources based at least in part on a scheduling delay and a slot associated with the downlink shared channel transmission.
  15. The method of claim 11, wherein the SPS configuration further comprises an indication of whether the SPS resources are uplink SPS resources or downlink SPS resources.
  16. The method of claim 10, further comprising:
    activating the SPS resources based at least in part on receiving the downlink shared channel transmission;
    receiving a downlink control channel transmission that indicates a second activation state for the SPS resources of the UE; and
    deactivating the SPS resources based at least in part on receiving the second activation state.
  17. The method of claim 16, wherein the receiving the downlink control channel transmission is based at least in part on a second identifier of the UE.
  18. The method of claim 16, wherein the receiving the downlink control channel transmission is based at least in part on the identifier corresponding to the group of UEs.
  19. The method of claim 1, wherein the first control signaling comprises radio resource control signaling.
  20. The method of claim 1, wherein the second control signaling comprises downlink control information.
  21. A method for wireless communications, comprising:
    transmitting, to a group of user equipments (UEs) , first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs;
    determining semi-persistent scheduling (SPS) activation state information associated with at least one UE of the group of UEs; and
    transmitting, to the group of UEs, second control signaling that indicates the SPS activation state information based at least in part on the identifier.
  22. The method of claim 21, wherein transmitting the second control signaling comprises:
    transmitting a downlink control channel transmission based at least in part on the identifier and that indicates the SPS activation state information.
  23. The method of claim 22, wherein the first control signaling further indicates a set of SPS configurations for the at least one UE of the group of UEs.
  24. The method of claim 23, wherein each SPS configuration of the set of SPS configurations comprises modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  25. The method of claim 22, wherein the SPS activation state information includes an indication for the at least one UE of the group of UEs to deactivate SPS resources that were previously activated based at least in part on a previously transmitted downlink control channel transmission.
  26. The method of claim 21, wherein transmitting the second control signaling comprises:
    transmitting a downlink shared channel transmission that indicates the SPS activation state information.
  27. The method of claim 26, wherein the SPS activation state information indicates an SPS configuration for the at least one UE of the group of UEs.
  28. The method of claim 27, wherein the SPS configuration comprises modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  29. The method of claim 27, wherein the SPS configuration comprises an indication of whether SPS resources of the at least one UE of the group of UEs are uplink SPS resources or downlink SPS resources.
  30. The method of claim 26, further comprising:
    determining slot information for SPS resources of the at least one UE of the group of UEs based at least in part on a scheduling delay and a slot associated with the downlink shared channel transmission.
  31. The method of claim 26, wherein the downlink shared channel transmission includes a first indication for the at least one UE of the group of UEs to activate SPS resources of the at least one UE, the method further comprising:
    transmitting a downlink control channel transmission that includes a second indication for the at least one UE to deactivate the SPS resources.
  32. The method of claim 31, wherein the downlink control channel transmission is based at least in part on a second identifier corresponding to the at least one UE of the group of UEs.
  33. The method of claim 31, wherein the downlink control channel transmission is based at least in part on the identifier corresponding to the group of UEs.
  34. The method of claim 21, wherein the first control signaling comprises radio resource control signaling.
  35. The method of claim 21, wherein the second control signaling comprises downlink control information.
  36. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor,
    memory in electronic communication with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive first control signaling that indicates an identifier corresponding to a group of UEs comprising the UE and an identifier of the UE within the group of UEs;
    receive, based at least in part on the identifier corresponding to the group of UEs, second control signaling that indicates semi-persistent scheduling (SPS) activation state information associated with the group of UEs; and
    determine an activation state for SPS resources of the UE based at least in part on the SPS activation state information and the identifier of the UE.
  37. The apparatus of claim 36, wherein the instructions to receive the second control signaling are executable by the processor to cause the apparatus to:
    receive a downlink control channel transmission that indicates the SPS activation state information.
  38. The apparatus of claim 37, wherein the first control signaling further indicates a set of SPS configurations for the UE.
  39. The apparatus of claim 38, wherein the instructions are further executable by the processor to cause the apparatus to:
    select an SPS configuration among the set of SPS configurations for the UE based at least in part on the SPS activation state information; and
    activate the SPS resources based at least in part on the selected SPS configuration.
  40. The apparatus of claim 39, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive third control signaling that indicates updated SPS activation state information associated with the group of UEs after receiving the second control signaling;
    activate a second SPS configuration among the set of SPS configurations associated with second SPS resources for the UE based at least in part on the updated SPS activation state information; and
    deactivate the SPS configuration based at least in part on the updated SPS activation state information.
  41. The apparatus of claim 39, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive third control signaling that indicates updated SPS activation state information associated with the group of UEs after receiving the second control signaling;
    activate a second SPS configuration among the set of SPS configurations associated with second SPS resources for the UE based at least in part on the updated SPS activation state information; and
    maintain the SPS configuration after receiving the updated SPS activation state information.
  42. The apparatus of claim 39, wherein the SPS configuration is selected from a mapping table according to an SPS configuration index in the second control signaling associated with the UE.
  43. The apparatus of claim 38, wherein each SPS configuration of the set of SPS configurations comprises modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  44. The apparatus of claim 37, wherein the instructions are further executable by the processor to cause the apparatus to:
    deactivate the SPS resources based at least in part on the downlink control channel transmission, the SPS resources being previously activated based at least in part on a previous downlink control channel transmission received based at least in part on a second identifier corresponding to the UE.
  45. The apparatus of claim 36, wherein the instructions to receive the second control signaling are executable by the processor to cause the apparatus to:
    receive a downlink shared channel transmission that indicates the SPS activation state information.
  46. The apparatus of claim 45, wherein the SPS activation state information indicates an SPS configuration for the UE.
  47. The apparatus of claim 46, wherein the instructions are further executable by the processor to cause the apparatus to:
    activate the SPS resources based at least in part on the indicated SPS configuration.
  48. The apparatus of claim 46, wherein the SPS configuration comprises modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  49. The apparatus of claim 46, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine slot information for the SPS resources based at least in part on a scheduling delay and a slot associated with the downlink shared channel transmission.
  50. The apparatus of claim 46, wherein the SPS configuration further comprises an indication of whether the SPS resources are uplink SPS resources or downlink SPS resources.
  51. The apparatus of claim 45, wherein the instructions are further executable by the processor to cause the apparatus to:
    activate the SPS resources based at least in part on receiving the downlink shared channel transmission;
    receive a downlink control channel transmission that indicates a second activation state for the SPS resources of the UE; and
    deactivate the SPS resources based at least in part on receiving the second activation state.
  52. The apparatus of claim 51, wherein the receiving the downlink control channel transmission is based at least in part on a second identifier of the UE.
  53. The apparatus of claim 51, wherein the receiving the downlink control channel transmission is based at least in part on the identifier corresponding to the group of UEs.
  54. The apparatus of claim 36, wherein the first control signaling comprises radio resource control signaling.
  55. The apparatus of claim 36, wherein the second control signaling comprises downlink control information.
  56. An apparatus for wireless communications, comprising:
    a processor,
    memory in electronic communication with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, to a group of user equipments (UEs) , first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs;
    determine semi-persistent scheduling (SPS) activation state information associated with at least one UE of the group of UEs; and
    transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based at least in part on the identifier.
  57. The apparatus of claim 56, wherein the instructions to transmit the second control signaling are executable by the processor to cause the apparatus to:
    transmit a downlink control channel transmission based at least in part on the identifier and that indicates the SPS activation state information.
  58. The apparatus of claim 57, wherein the first control signaling further indicates a set of SPS configurations for the at least one UE of the group of UEs.
  59. The apparatus of claim 58, wherein each SPS configuration of the set of SPS configurations comprises modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  60. The apparatus of claim 57, wherein the SPS activation state information includes an indication for the at least one UE of the group of UEs to deactivate SPS resources that were previously activated based at least in part on a previously transmitted downlink control channel transmission.
  61. The apparatus of claim 56, wherein the instructions to transmit the second control signaling are executable by the processor to cause the apparatus to:
    transmit a downlink shared channel transmission that indicates the SPS activation state information.
  62. The apparatus of claim 61, wherein the SPS activation state information indicates an SPS configuration for the at least one UE of the group of UEs.
  63. The apparatus of claim 62, wherein the SPS configuration comprises modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  64. The apparatus of claim 62, wherein the SPS configuration comprises an indication of whether SPS resources of the at least one UE of the group of UEs are uplink SPS resources or downlink SPS resources.
  65. The apparatus of claim 61, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine slot information for SPS resources of the at least one UE of the group of UEs based at least in part on a scheduling delay and a slot associated with the downlink shared channel transmission.
  66. The apparatus of claim 61, wherein the downlink shared channel transmission includes a first indication for the at least one UE of the group of UEs to activate SPS resources of the at least one UE, the method further comprising transmitting a downlink control channel transmission that includes a second indication for the at least one UE to deactivate the SPS resources.
  67. The apparatus of claim 66, wherein the downlink control channel transmission is based at least in part on a second identifier corresponding to the at least one UE of the group of UEs.
  68. The apparatus of claim 66, wherein the downlink control channel transmission is based at least in part on the identifier corresponding to the group of UEs.
  69. The apparatus of claim 56, wherein the first control signaling comprises radio resource control signaling.
  70. The apparatus of claim 56, wherein the second control signaling comprises downlink control information.
  71. An apparatus for wireless communications at a user equipment (UE) , comprising:
    means for receiving first control signaling that indicates an identifier corresponding to a group of UEs comprising the UE and an identifier of the UE within the group of UEs;
    means for receiving, based at least in part on the identifier corresponding to the group of UEs, second control signaling that indicates semi-persistent scheduling (SPS) activation state information associated with the group of UEs; and
    means for determining an activation state for SPS resources of the UE based at least in part on the SPS activation state information and the identifier of the UE.
  72. The apparatus of claim 71, wherein the means for receiving the second control signaling comprises:
    means for receiving a downlink control channel transmission that indicates the SPS activation state information.
  73. The apparatus of claim 72, wherein the first control signaling further indicates a set of SPS configurations for the UE.
  74. The apparatus of claim 73, further comprising:
    means for selecting an SPS configuration among the set of SPS configurations for the UE based at least in part on the SPS activation state information; and
    means for activating the SPS resources based at least in part on the selected SPS configuration.
  75. The apparatus of claim 74, further comprising:
    means for receiving third control signaling that indicates updated SPS activation state information associated with the group of UEs after receiving the second control signaling;
    means for activating a second SPS configuration among the set of SPS configurations associated with second SPS resources for the UE based at least in part on the updated SPS activation state information; and
    means for deactivating the SPS configuration based at least in part on the updated SPS activation state information.
  76. The apparatus of claim 74, further comprising:
    means for receiving third control signaling that indicates updated SPS activation state information associated with the group of UEs after receiving the second control signaling;
    means for activating a second SPS configuration among the set of SPS configurations associated with second SPS resources for the UE based at least in part on the updated SPS activation state information; and
    means for maintaining the SPS configuration after receiving the updated SPS activation state information.
  77. The apparatus of claim 74, wherein the SPS configuration is selected from a mapping table according to an SPS configuration index in the second control signaling associated with the UE.
  78. The apparatus of claim 73, wherein each SPS configuration of the set of SPS configurations comprises modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  79. The apparatus of claim 72, further comprising:
    means for deactivating the SPS resources based at least in part on the downlink control channel transmission, the SPS resources being previously activated based at  least in part on a previous downlink control channel transmission received based at least in part on a second identifier corresponding to the UE.
  80. The apparatus of claim 71, wherein the means for receiving the second control signaling comprises:
    means for receiving a downlink shared channel transmission that indicates the SPS activation state information.
  81. The apparatus of claim 80, wherein the SPS activation state information indicates an SPS configuration for the UE.
  82. The apparatus of claim 81, further comprising:
    means for activating the SPS resources based at least in part on the indicated SPS configuration.
  83. The apparatus of claim 81, wherein the SPS configuration comprises modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  84. The apparatus of claim 81, further comprising:
    means for determining slot information for the SPS resources based at least in part on a scheduling delay and a slot associated with the downlink shared channel transmission.
  85. The apparatus of claim 81, wherein the SPS configuration further comprises an indication of whether the SPS resources are uplink SPS resources or downlink SPS resources.
  86. The apparatus of claim 80, further comprising:
    means for activating the SPS resources based at least in part on receiving the downlink shared channel transmission;
    means for receiving a downlink control channel transmission that indicates a second activation state for the SPS resources of the UE; and
    means for deactivating the SPS resources based at least in part on receiving the second activation state.
  87. The apparatus of claim 86, wherein the receiving the downlink control channel transmission is based at least in part on a second identifier of the UE.
  88. The apparatus of claim 86, wherein the receiving the downlink control channel transmission is based at least in part on the identifier corresponding to the group of UEs.
  89. The apparatus of claim 71, wherein the first control signaling comprises radio resource control signaling.
  90. The apparatus of claim 71, wherein the second control signaling comprises downlink control information.
  91. An apparatus for wireless communications, comprising:
    means for transmitting, to a group of user equipments (UEs) , first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs;
    means for determining semi-persistent scheduling (SPS) activation state information associated with at least one UE of the group of UEs; and
    means for transmitting, to the group of UEs, second control signaling that indicates the SPS activation state information based at least in part on the identifier.
  92. The apparatus of claim 91, wherein the means for transmitting the second control signaling comprises:
    means for transmitting a downlink control channel transmission based at least in part on the identifier and that indicates the SPS activation state information.
  93. The apparatus of claim 92, wherein the first control signaling further indicates a set of SPS configurations for the at least one UE of the group of UEs.
  94. The apparatus of claim 93, wherein each SPS configuration of the set of SPS configurations comprises modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  95. The apparatus of claim 92, wherein the SPS activation state information includes an indication for the at least one UE of the group of UEs to deactivate SPS resources that were previously activated based at least in part on a previously transmitted downlink control channel transmission.
  96. The apparatus of claim 91, wherein the means for transmitting the second control signaling comprises:
    means for transmitting a downlink shared channel transmission that indicates the SPS activation state information.
  97. The apparatus of claim 96, wherein the SPS activation state information indicates an SPS configuration for the at least one UE of the group of UEs.
  98. The apparatus of claim 97, wherein the SPS configuration comprises modulation and coding scheme (MCS) information, an indication of the SPS resources, transmission parameter information, or a combination thereof.
  99. The apparatus of claim 97, wherein the SPS configuration comprises an indication of whether SPS resources of the at least one UE of the group of UEs are uplink SPS resources or downlink SPS resources.
  100. The apparatus of claim 96, further comprising:
    means for determining slot information for SPS resources of the at least one UE of the group of UEs based at least in part on a scheduling delay and a slot associated with the downlink shared channel transmission.
  101. The apparatus of claim 96, wherein the downlink shared channel transmission includes a first indication for the at least one UE of the group of UEs to activate SPS resources of the at least one UE, the method further comprising transmitting a downlink control channel transmission that includes a second indication for the at least one UE to deactivate the SPS resources.
  102. The apparatus of claim 101, wherein the downlink control channel transmission is based at least in part on a second identifier corresponding to the at least one UE of the group of UEs.
  103. The apparatus of claim 101, wherein the downlink control channel transmission is based at least in part on the identifier corresponding to the group of UEs.
  104. The apparatus of claim 91, wherein the first control signaling comprises radio resource control signaling.
  105. The apparatus of claim 91, wherein the second control signaling comprises downlink control information.
  106. A non-transitory computer-readable medium storing code for wireless communications at a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive first control signaling that indicates an identifier corresponding to a group of UEs comprising the UE and an identifier of the UE within the group of UEs;
    receive, based at least in part on the identifier corresponding to the group of UEs, second control signaling that indicates semi-persistent scheduling (SPS) activation state information associated with the group of UEs; and
    determine an activation state for SPS resources of the UE based at least in part on the SPS activation state information and the identifier of the UE.
  107. A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to:
    transmit, to a group of user equipments (UEs) , first control signaling that indicates an identifier corresponding to the group of UEs and indices associated with each UE of the group of UEs;
    determine semi-persistent scheduling (SPS) activation state information associated with at least one UE of the group of UEs; and
    transmit, to the group of UEs, second control signaling that indicates the SPS activation state information based at least in part on the identifier.
PCT/CN2019/076038 2019-02-25 2019-02-25 Group activation and deactivation for semi-persistent scheduling WO2020172764A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076038 WO2020172764A1 (en) 2019-02-25 2019-02-25 Group activation and deactivation for semi-persistent scheduling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076038 WO2020172764A1 (en) 2019-02-25 2019-02-25 Group activation and deactivation for semi-persistent scheduling

Publications (1)

Publication Number Publication Date
WO2020172764A1 true WO2020172764A1 (en) 2020-09-03

Family

ID=72238790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076038 WO2020172764A1 (en) 2019-02-25 2019-02-25 Group activation and deactivation for semi-persistent scheduling

Country Status (1)

Country Link
WO (1) WO2020172764A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210028890A1 (en) * 2019-07-26 2021-01-28 Qualcomm Incorporated Techniques for retransmissions in wireless communication systems
WO2022152938A1 (en) * 2021-01-18 2022-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Activation and recovery of sps transmissions
WO2022197224A1 (en) * 2021-03-18 2022-09-22 Telefonaktiebolaget Lm Ericsson (Publ) Pre-configured allocation for non-periodic traffic pattern
WO2022211947A1 (en) * 2021-04-01 2022-10-06 Qualcomm Incorporated Activation and release for group-common downlink channels with repetitions
US11497042B2 (en) * 2019-02-15 2022-11-08 Qualcomm Incorporated Resource scheduling techniques in wireless systems
WO2022241688A1 (en) * 2021-05-19 2022-11-24 Nokia Shanghai Bell Co., Ltd. Activation of semi-persistent scheduling
WO2023284599A1 (en) * 2021-07-16 2023-01-19 上海朗帛通信技术有限公司 Method used in node for wireless communication, and apparatus
WO2024026663A1 (en) * 2022-08-02 2024-02-08 Qualcomm Incorporated Dynamic switching for semi-persistent scheduling and configured grant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103024680A (en) * 2011-09-20 2013-04-03 鼎桥通信技术有限公司 Activation method for semi-static scheduling and trunking communication system based on semi-static scheduling
WO2013131264A1 (en) * 2012-03-08 2013-09-12 Renesas Mobile Corporation Group sps design for low cost mtc devices
CN104754754A (en) * 2013-12-26 2015-07-01 普天信息技术研究院有限公司 Delayed access method under semi-persistent scheduling (SPS)
CN105594279A (en) * 2013-10-04 2016-05-18 高通股份有限公司 Defense against false detection of semi-persistent scheduling (SPS) activation or release
US20180049193A1 (en) * 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods of handling collisions between multiple semi-persistent grants

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103024680A (en) * 2011-09-20 2013-04-03 鼎桥通信技术有限公司 Activation method for semi-static scheduling and trunking communication system based on semi-static scheduling
WO2013131264A1 (en) * 2012-03-08 2013-09-12 Renesas Mobile Corporation Group sps design for low cost mtc devices
CN105594279A (en) * 2013-10-04 2016-05-18 高通股份有限公司 Defense against false detection of semi-persistent scheduling (SPS) activation or release
CN104754754A (en) * 2013-12-26 2015-07-01 普天信息技术研究院有限公司 Delayed access method under semi-persistent scheduling (SPS)
US20180049193A1 (en) * 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods of handling collisions between multiple semi-persistent grants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Semi-persistent scheduling for NB-IoT,R1-1801493", 3GPP TSG-RAN WG1 MEETING #92, 2 March 2018 (2018-03-02), XP051397591, DOI: 20191122163701Y *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11497042B2 (en) * 2019-02-15 2022-11-08 Qualcomm Incorporated Resource scheduling techniques in wireless systems
US20210028890A1 (en) * 2019-07-26 2021-01-28 Qualcomm Incorporated Techniques for retransmissions in wireless communication systems
US11791943B2 (en) * 2019-07-26 2023-10-17 Qualcomm Incorporated Techniques for retransmissions in wireless communication systems
WO2022152938A1 (en) * 2021-01-18 2022-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Activation and recovery of sps transmissions
WO2022197224A1 (en) * 2021-03-18 2022-09-22 Telefonaktiebolaget Lm Ericsson (Publ) Pre-configured allocation for non-periodic traffic pattern
WO2022211947A1 (en) * 2021-04-01 2022-10-06 Qualcomm Incorporated Activation and release for group-common downlink channels with repetitions
WO2022241688A1 (en) * 2021-05-19 2022-11-24 Nokia Shanghai Bell Co., Ltd. Activation of semi-persistent scheduling
WO2023284599A1 (en) * 2021-07-16 2023-01-19 上海朗帛通信技术有限公司 Method used in node for wireless communication, and apparatus
WO2024026663A1 (en) * 2022-08-02 2024-02-08 Qualcomm Incorporated Dynamic switching for semi-persistent scheduling and configured grant

Similar Documents

Publication Publication Date Title
US11025372B2 (en) Semi-persistent scheduling management in new radio
US11212034B2 (en) Techniques for signaling QoS class indicators
EP3669486B1 (en) Resolving slot format conflicts for wireless systems
US11563531B2 (en) Communication configuration for multiple component carriers
US20190098654A1 (en) User equipment-specific scheduling request repetitions
US11388586B2 (en) Downlink control channel monitoring capability for ultra-reliable low-latency communications
US11109236B2 (en) Techniques for carrier feedback in wireless systems
WO2019158080A1 (en) Techniques for activating or deactivating semi-persistent configuration for channel state indicator resource sets
US11425746B2 (en) Scheduling requests for grant-free configurations
WO2020172764A1 (en) Group activation and deactivation for semi-persistent scheduling
EP3970436B1 (en) Mixed capability signaling
US20200178272A1 (en) Flexible control information for wireless communications
US20190052424A1 (en) Configuration of sounding reference signal resources in an uplink transmission time interval
US11678335B2 (en) Uplink preemption indication
US10554448B2 (en) Dynamic scheduling of data patterns for shortened transmission time intervals
US11463228B2 (en) Duplexing modes based on power configurations for transmissions
EP3834561B1 (en) User equipment capability signaling for concurrent channel transmissions
US11039465B2 (en) Uplink control information piggybacking in wireless systems
US11570777B2 (en) Determining transmission configurations for resource block groups and precoding resource block groups
WO2020142980A1 (en) Indication of existing control channel for target user equipment
US20230174875A1 (en) Determining transmission configurations for resource block groups and precoding resource block groups

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916581

Country of ref document: EP

Kind code of ref document: A1