WO2020142980A1 - Indication of existing control channel for target user equipment - Google Patents

Indication of existing control channel for target user equipment Download PDF

Info

Publication number
WO2020142980A1
WO2020142980A1 PCT/CN2019/071135 CN2019071135W WO2020142980A1 WO 2020142980 A1 WO2020142980 A1 WO 2020142980A1 CN 2019071135 W CN2019071135 W CN 2019071135W WO 2020142980 A1 WO2020142980 A1 WO 2020142980A1
Authority
WO
WIPO (PCT)
Prior art keywords
information block
control channel
indication
receiving
control signal
Prior art date
Application number
PCT/CN2019/071135
Other languages
French (fr)
Inventor
Changlong Xu
Liangming WU
Jian Li
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/071135 priority Critical patent/WO2020142980A1/en
Publication of WO2020142980A1 publication Critical patent/WO2020142980A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0254Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity detecting a user operation or a tactile contact or a motion of the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the following relates generally to wireless communications, and more specifically to indication of existing control channel for target user equipment (UE) .
  • UE target user equipment
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as UE.
  • Wireless networks typically use a variety of channels for wireless communications between wireless devices.
  • a control channel e.g., physical downlink control channel (PDCCH) and/or physical uplink control channel (PUCCH)
  • PDCCH physical downlink control channel
  • PUCCH physical uplink control channel
  • the control channel may include downlink control information (DCI) which carries or conveys information used by a UE to decode the corresponding data channel.
  • DCI downlink control information
  • One or more control resource sets may be defined or otherwise configured to define a search space to carry the control signal (e.g., DCI) .
  • Each search space may include one or more control channel elements (CCEs) , with each CCE having a corresponding unique index.
  • the location of the control signal within the control channel may be determined by its CCE index and a corresponding aggregation level.
  • the UE can determine the location of the control signal by performing blind decoding to detect the CCE index and the aggregation level. If the UE detects a control signal (e.g., DCI) in the control channel, the UE recovers the control information and uses this to receive the data in the corresponding data channel.
  • a control signal e.g., DCI
  • DCI control signal
  • Such conventional techniques are inefficient because the UE must perform blind decoding of the control channel to determine whether or not the control signal (e.g., DCI) for the UE is included on the control channel. For example, conventional techniques force the UE to attempt blind decoding of each control channel regardless of whether or not there is a control signal for that UE in the control channel.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support indication of existing control channel for target user equipment (UE) .
  • the described techniques provide a mechanism to improve the efficiency and conserve resources by transmitting or otherwise providing a signal (e.g., in a bit, field, an information block, and the like) that indicates whether or not there is a control signal for the UE in the control channel during a transmission period.
  • the transmission period may include a frame, a subframe, a slot, mini-slot, a transmission opportunity, and the like.
  • the base station may determine whether or not UE (s) within its coverage area will have a control signal (e.g., downlink control information (DCI) ) in a control channel (e.g., physical downlink control channel (PDCCH) ) during the transmission period. Accordingly, the base station may configure or otherwise provide an information block for transmission that carries or conveys, for some or all of the UEs within its coverage area, an indication of whether or not the control channel in the transmission period will include a control signal for the corresponding UE.
  • UEs within the coverage area of the base station may receive the information block and determine whether it includes an indication for the receiving UE. Based on the indication, the receiving (or target) UE will determine whether or not to perform blind decoding of the control channel during the transmission period.
  • the UE When the information block indicates that the control channel carries a control signal for the UE, the UE will attempt blind decoding of the control channel during the transmission period. When the information block indicates that the control channel does not carry a control signal for the UE, the UE will not attempt to perform blind decoding of control channel during the transmission period. For example, the UE may transition to a sleep state or tune-away from the base station to address other wireless communication functions. Accordingly, the UE may conserve power during the transmission period by not attempting blind decoding on the control channel when signaled that there is no control signal for the UE during the transmission period.
  • a method of wireless communication at a receiving UE is described.
  • the method may include receiving, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE, identifying that the information block includes an indication for the receiving UE, and determining, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE, identify that the information block includes an indication for the receiving UE, and determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
  • the apparatus may include means for receiving, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE, identifying that the information block includes an indication for the receiving UE, and determining, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
  • a non-transitory computer-readable medium storing code for wireless communication at a receiving UE is described.
  • the code may include instructions executable by a processor to receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE, identify that the information block includes an indication for the receiving UE, and determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
  • determining whether to attempt blind decoding may include operations, features, means, or instructions for determining to attempt blind decoding of the control channel based on the indication indicating that the control channel includes the control signal for the receiving UE during the transmission period.
  • determining whether to attempt blind decoding may include operations, features, means, or instructions for determining to not attempt blind decoding of the control channel based on the indication indicating that the control channel does not include the control signal for the receiving UE during the transmission period.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE may be located.
  • receiving the information block may include operations, features, means, or instructions for receiving the information block via a common control channel that may be different from the control channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, in advance of the information block, a configuration that identifies one or more of time-frequency resources, a modulation order, or an information block size pertaining to the common control channel.
  • receiving the information block may include operations, features, means, or instructions for receiving the information block via a DCI message within the control channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, in advance of the information block, a configuration that identifies one or more of a common search space, time resources, a radio network temporary identifier (RNTI) , or an information block size pertaining to the DCI message.
  • RNTI radio network temporary identifier
  • the indication may be a one-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period.
  • the indication may be a two-or-more-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period and at least one of whether the control signal may be in a common search space or a UE-specific search space, or a set of aggregation levels that includes an aggregation level for the control signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a configuration signal indicating resources to use to receive the information block.
  • the configuration signal includes a radio resource control (RRC) signal.
  • RRC radio resource control
  • the first portion of the transmission period occurs before transmission of the control signal.
  • a method of wireless communication at a base station may include determining whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period, including, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal, and transmitting, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to determine whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period, include, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal, and transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
  • the apparatus may include means for determining whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period, including, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal, and transmitting, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to determine whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period, include, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal, and transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the control signal in accordance with the indication indicating that the control channel includes the control signal for the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining not to transmit the control signal in accordance with the indication indicating that the control channel does not include the control signal for the receiving UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE may be located.
  • transmitting the information block may include operations, features, means, or instructions for transmitting the information block via a common control channel that may be different from the control channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, in advance of the information block, a configuration that identifies one or more of time-frequency resources, a modulation order, or an information block size pertaining to the common control channel.
  • transmitting the information block may include operations, features, means, or instructions for transmitting the information block via a DCI message within the control channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, in advance of the information block, a configuration that identifies one or more of a common search space, time resources, a RNTI, or an information block size pertaining to the DCI message.
  • the indication may be a one-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period.
  • the indication may be a two-or-more-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period and at least one of whether the control signal may be in a common search space or a UE-specific search space, or a set of aggregation levels that includes an aggregation level for the control signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a configuration signal identifying resources for the receiving UE to use to receive the information block.
  • the configuration signal includes a RRC signal.
  • the first portion of the transmission period occurs before transmission of the control signal.
  • FIG. 1 illustrates an example of a system for wireless communications that supports indication of existing control channel for target user equipment (UE) in accordance with aspects of the present disclosure.
  • UE target user equipment
  • FIG. 2 illustrates an example of a timeline that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a timeline that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communications manager that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • FIGs. 9 and 10 show block diagrams of devices that support indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • FIG. 11 shows a block diagram of a communications manager that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • FIG. 12 shows a diagram of a system including a device that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • FIGs. 13 through 15 show flowcharts illustrating methods that support indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • control channel e.g., physical downlink control channel (PDCCH) and/or physical uplink control channel (PUCCH)
  • PDCCH physical downlink control channel
  • PUCCH physical uplink control channel
  • the control channel may include downlink control information (DCI) which carries or conveys information used by a UE to decode the corresponding data channel.
  • DCI downlink control information
  • One or more control resource sets may be defined or otherwise configured to define a search space to carry the control signal (e.g., DCI) .
  • Each search space may include one or more control channel elements (CCEs) , with each CCE having a corresponding unique index.
  • the location of the control signal may be determined by its CCE index and a corresponding aggregation level.
  • the UE can determine the location of the control signal by performing blind decoding of the control channel to detect the CCE index and the aggregation level. If the UE detects a control signal (e.g., DCI) on the control channel, it recovers the control information and uses this to receive the data in the corresponding data channel.
  • a control signal e.g., DCI
  • DCI control signal
  • Such conventional techniques are inefficient because the UE must perform blind decoding on the control channel to determine whether or not the control signal (e.g., DCI) for that UE is included on the control channel. For example, conventional techniques force the UE to attempt blind decoding of each control channel regardless of whether or not there is a control signal for that UE in the control channel.
  • the described techniques provide a mechanism to improve the efficiency and conserve resources by transmitting or otherwise providing a signal (e.g., in a bit, field, an information block, and the like) that indicates whether or not there is a control signal for the UE in the control channel during a transmission period.
  • the base station may determine whether or not UE (s) within its coverage area will have a control signal (e.g., DCI) on a control channel (e.g., PDCCH) during the transmission period.
  • a control signal e.g., DCI
  • a control channel e.g., PDCCH
  • the base station may configure or otherwise provide an information block for transmission that carries or conveys, for each UE, an indication of whether or not the control channel in the transmission period will include a control signal for the corresponding UE.
  • UEs within the coverage area of the base station may receive the information block and determine whether it includes an indication for the receiving UE. Based on the indication, the receiving (or target) UE will determine whether or not to perform blind decoding of the control channel during the transmission period.
  • the information block indicates that the control channel carries a control signal for the UE, the UE will attempt blind decoding of the control channel during the transmission period.
  • the UE When the information block indicates that the control channel does not carry a control signal for the UE, the UE will not attempt to perform blind decoding of the control channel during the transmission period. For example, the UE may transition to a sleep/idle state or tune away from the base station to address other wireless communications. Accordingly, the UE may conserve power during the transmission period by not attempting blind decoding on the control channel when signaled that there is no control signal for the UE during the transmission period.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-Advanced Pro
  • NR New Radio
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • ultra-reliable e.g., mission critical
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas.
  • Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology.
  • Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) .
  • the UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
  • Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
  • the geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell.
  • each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
  • the term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices.
  • MTC machine-type communication
  • NB-IoT narrowband Internet-of-Things
  • eMBB enhanced mobile broadband
  • the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
  • UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client.
  • a UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC massive machine type communications
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
  • critical functions e.g., mission critical functions
  • a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) .
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications.
  • D2D communications are carried out between UEs 115 without the involvement of a base
  • Base stations 105 may communicate with the core network 130 and with one another.
  • base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) .
  • Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) .
  • the MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC.
  • User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Stream
  • At least some of the network devices may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) .
  • Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) .
  • TRP transmission/reception point
  • various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
  • Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band.
  • SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
  • ISM bands 5 GHz industrial, scientific, and medical bands
  • Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • EHF extremely high frequency
  • wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz ISM band.
  • wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data.
  • LBT listen-before-talk
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these.
  • Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas.
  • MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams.
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • MU-MIMO multiple-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be, transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality.
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions.
  • a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
  • the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack.
  • PDCP Packet Data Convergence Protocol
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency.
  • HARQ hybrid automatic repeat request
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) .
  • a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023.
  • SFN system frame number
  • Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms.
  • a subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods.
  • a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) .
  • TTI transmission time interval
  • a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols.
  • a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling.
  • Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example.
  • some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
  • carrier refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125.
  • a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology.
  • Each physical layer channel may carry user data, control information, or other signaling.
  • a carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • E-UTRA absolute radio frequency channel number
  • Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • the organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data.
  • a carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier.
  • acquisition signaling e.g., synchronization signals or system information, etc.
  • control signaling that coordinates operation for the carrier.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) .
  • each served UE 115 may be configured for operating over portions or all of the carrier bandwidth.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) .
  • the more resource elements that a UE 115 receives and the higher the order of the modulation scheme the higher the data rate may be for the UE 115.
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
  • a spatial resource e.g., spatial layers
  • Devices of the wireless communications system 100 may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
  • Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both FDD and TDD component carriers.
  • wireless communications system 100 may utilize enhanced component carriers (eCCs) .
  • eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration.
  • an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) .
  • An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) .
  • An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
  • an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers.
  • a shorter symbol duration may be associated with increased spacing between adjacent subcarriers.
  • a device such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) .
  • a TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
  • Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others.
  • the flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums.
  • NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
  • a UE 115 may receive, during a first portion of a transmission period, an information block that includes a plurality of indications for a corresponding plurality of UEs 115, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE 115.
  • the UE 115 may identify that the information block includes an indication for the receiving UE 115.
  • the UE 115 may determine, by the receiving UE and based at least in part on the indication, whether to attempt blind decoding of the control channel during the transmission period.
  • a base station 105 may determine whether a control signal for a receiving UE 115 is to be transmitted over a control channel during a transmission period.
  • the base station 105 may include, in an information block that includes a plurality of indications for a corresponding plurality of UEs 115, an indication of whether the control channel includes the control signal.
  • the base station 105 may transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE 115.
  • FIG. 2 illustrates an example of a timeline 200 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • timeline 200 may implement aspects of wireless communication system 100. Aspects of timeline 200 may be implemented by a base station 205 and/or UE 210, which may be examples of corresponding devices described herein.
  • control channels may be used to carry or otherwise convey control information for a corresponding data channel (e.g., PDSCH and/or PUSCH) .
  • the control channel may include DCI which carries or conveys information used by a UE to decode the corresponding data channel.
  • One or more control resource sets may be defined or otherwise configured to define a search space to carry the control signal (e.g., DCI) .
  • Each search space may include one or more CCEs, with each CCE having a corresponding unique index. The location of the control signal may be determined by its CCE index and a corresponding aggregation level.
  • the UE can determine the location of the control signal by performing blind decoding of the control channel to detect the CCE index and the aggregation level. If the UE detects a control signal (e.g., DCI) on the control channel, it recovers the control information and uses this to receive the data in the corresponding data channel.
  • a control signal e.g., DCI
  • DCI control signal
  • such conventional techniques are inefficient because the UE must perform blind decoding on the control channel to determine whether or not the control signal (e.g., DCI) for that UE is included on the control channel.
  • conventional techniques force the UE to attempt blind decoding of each control channel regardless of whether or not there is a control signal for that UE in the control channel.
  • conventional techniques may support up to 44 hypothesis based on the combination of CCE indices and aggregation levels. While UE 210 may terminate the blind decoding if 210 correctly decodes a control signal (e.g., DCI) early, a worst-case situation may be that UE 210 attempts to blind decode the maximum number of hypothesis and does not detect the control signal on the control channel (e.g., PDCCH) . This may result in a large waste a power and time for the blind detection.
  • aspects of the described techniques include transmitting an indication to UE 210 (and other UEs within the coverage area of base station 205) to indicate if there is a control signal for the receiving UE during the transmission period, e.g., during the current slot. Broadly, if there is no PDCCH for a target UE, the UE does not perform blind detection at all. If there is a PDCCH for a target UE, the UE may utilize various schemes to improve the efficiency for blind detection.
  • timeline 200 may begin during a first transmission period 215 that includes a control channel 220 (e.g., a PDCCH channel) and a data channel 225 (e.g., a PDSCH and/or a PUSCH) .
  • the first transmission period 215 may be based on a contention procedure performed by a base station 205 and/or UE 210 (e.g., in an unlicensed frequency spectrum band) and/or may be based on a contention-free procedure (e.g., in a licensed frequency spectrum band) .
  • Base station 205 may identify or otherwise determine whether a control signal for the receiving UE (e.g., such as UE 210, which may also be referred to as a target UE) will be transmitted over the control channel 220 during the first transmission period 215. For example, base station 205 may determine whether there are downlink and/or uplink communications to be performed during the first transmission period 215 between base station 205 and UE 210. In some aspects, base station 205 may perform similar functionality for some or all of the UEs within its coverage area.
  • a control signal for the receiving UE e.g., such as UE 210, which may also be referred to as a target UE
  • base station 205 may perform similar functionality for some or all of the UEs within its coverage area.
  • Base station 205 may use an information block that includes or is otherwise configured to convey one or more indications for a corresponding plurality of UEs, which may include UE 210 in this example.
  • the indication in the information block may identify or otherwise indicate whether or not, for each UE, the control channel 220 includes the control signal for the receiving UE.
  • the information block may contain one or more bits that are used to indicate if there is a control signal for the receiving UE during the first transmission period 215.
  • the information block may additionally carry or otherwise convey an indication of an aggregation level and/or location for the corresponding control signal, when present on the control channel.
  • one bit in the information block may be allocated to, or otherwise correspond with each UE.
  • the information block may contain a plurality of bits (e.g., a bitmap) , with each bit corresponding to the respective UE.
  • Base station 205 may order the bits within the bitmap such that each UE knows which bit corresponds to it.
  • the ordering of the bitmap to be configured via higher layer signaling (e.g., via a medium access control (MAC) control element (CE) , a radio resource control (RRC) signaling, and the like) .
  • MAC medium access control
  • CE control element
  • RRC radio resource control
  • Base station 205 may configure or otherwise set the bit to “1” to signal that there is a control signal for the receiving UE being transmitted over the control channel during the first transmission period 215, and set the bit to “0” to signal that there is not a control signal for the receiving UE being transmitted over control channel during the first transmission period 215, or vice versa. Accordingly, the bit set to “0” may inform the receiving UE to not detect PDCCH candidates since there is no PDCCH (e.g., no DCI/control signal) for that UE during the current transmission period, whereas the bit set to “1” may inform the receiving UE to begin blind decoding of the control channel during the transmission period.
  • PDCCH e.g., no DCI/control signal
  • two (or more) bits in the information block may be allocated to, or otherwise correspond with each UE.
  • the information block may contain a plurality of bits (e.g., a bitmap) , with two (or more) of the bits corresponding to the respective UE.
  • base station 205 may order the bits within the bitmap such that each UE knows which bits correspond to it.
  • Using two (or more) bits for each UE allows additional information to be signaled in the information block, such as control signal location, aggregation level information, and the like.
  • base station 205 may configure or otherwise set the bits to “00” to signal that there is no control signal for the receiving UE over control channel 220 during the first transmission period 215. Accordingly, a UE receiving the information block with the bit set to “00” may not attempt blind decoding of control channel 220 during the first transmission period 215 based on the information block.
  • base station 205 may configure otherwise set the bits to “01” to signal that there is a control signal for the receiving UE in control channel 220 during the first transmission period 215.
  • setting the bit to “01” may also convey an indication that the corresponding aggregation level for the control signal is equal to one.
  • setting the bits to “01” may also convey an indication identifying a location of the control signal within the control channel 220, e.g., to signal that PDCCH is located in the common search space.
  • base station 205 may configure or otherwise set the bits to “10” to signal that there is a control signal for the receiving UE in the control channel 220 during the first transmission period 215.
  • setting the bits to “10” may also convey an indication that the corresponding aggregation level for the control signal is equal to two (or four) .
  • setting the bits to “10” may also convey an indication identifying a location of the control signal within the control channel 220 and/or a corresponding aggregation level, e.g., to signal that PDCCH is located in a UE-specific search space and uses an aggregation level of one or two.
  • base station 205 may configure or otherwise set the bits to “11” to signal that there is a control signal for the receiving UE in the control channel 220 during the first transmission period 215.
  • setting the bits to “11” may also convey an indication that the corresponding aggregation level for the control signal is equal to eight (or 16) .
  • setting the bits to “11” may also convey an indication identifying a location of the control signal within the control channel 220 and/or a corresponding aggregation level, e.g., to signal that PDCCH is located in a UE-specific search space and uses an aggregation level of four, eight, or 16.
  • base station 205 may group the bit (s) for each UE into a single information block and/or may use a single information block to convey the bits for each UE. Accordingly, during the first transmission period 215 base station 205 may transmit (and UE 210 may receive) an information block 230 that includes one or more indications (e.g., one indication when the information block is for one UE, the plurality of indications for corresponding plurality of UEs) , with each indication in the information block 230 indicating whether the control channel 220 in the first transmission period 215 includes a control signal for a respective UE.
  • one indication when the information block is for one UE, the plurality of indications for corresponding plurality of UEs e.g., one indication when the information block is for one UE, the plurality of indications for corresponding plurality of UEs
  • a new DCI format may be used to carry or otherwise convey the information block 230 in the control channel 220.
  • a new control resource set and/or corresponding common search space with time resources as early as possible during the first transmission period 215 may be configured to convey the information block 230.
  • These may be configured (e.g., along with the size of the information block 230) by higher layers, e.g., MAC CE, RRC, and the like.
  • the location of the bit (s) for each receiving UE in information block 230 may also be configured by higher layers, e.g., such as using a DCI format 2_2 for transmit power control command.
  • a new identifier (e.g., a new radio network temporary identifier (RNTI) ) may be used in the information block 230 for UE 210 and/or for a group of UEs.
  • UE 210 may not perform blind decoding (or blind detection) to receive the information block 230 since the location and size of the information block 230 is configured by higher layers.
  • UE 210 may receive the information block 230 during a first portion of the first transmission period 215.
  • the first portion may refer to the first symbol of the first transmission period 215.
  • UE 210 may identify or otherwise determine that the information block 230 includes an indication for it.
  • the information block 230 is configured to indicate that there is a control signal in the control channel 220 for UE 210 during the first transmission period 215.
  • UE 210 may determine that the information block carries or otherwise conveys an indication (e.g., using one or more bits) that the control channel 220 will carry the control signal (e.g., DCI) for UE 210 during the first transmission period 215.
  • UE 210 may begin or otherwise attempt blind decoding of control channel 220 to receive the control signal.
  • UE 210 may receive or otherwise detect the control signal during the control channel 220 by performing the blind decoding.
  • the control signal carries or otherwise conveys an indication of resources and/or tracking/synchronization information that are used to communicate data over the data channel 225. Accordingly, UE 210 may perform active downlink and/or uplink communications 245 with base station 205.
  • Timeline 200 further illustrates a second transmission period 250 that includes a control channel 255 and the data channel 260.
  • the second transmission period 250 is included to illustrate the example where no control signal is being communicated or otherwise transmitted to UE 210 over the control channel 255 during the second transmission period 250. That is, base station 205 may determine that no control signal is to be communicated to UE 210 during the second transmission period 250. Accordingly, base station 205 may configure the information block 265 to indicate that no control signal is being transmitted to UE 210 over control channel 255 during the second transmission period 250. UE 210 may receive the information block 265 at 270 and identify or otherwise determine that the information block includes an indication for UE 210.
  • the information block may be configured to indicate that no control signal will be transmitted to UE 210 over control channel 255 during the second transmission period 250. Accordingly, at 275 UE 210 may determine not to attempt blind decoding of control channel 255 based at least in part on the indication indicating that control channel 255 does not include a control signal for UE 210. Instead, UE 210 may transition to a sleep or idle state to conserve power or may perform other functions during the second transmission. 250, e.g., may tune away to a different channel/base station to perform wireless communications during the second transmission period 250. In another example, UE 210 may tune away in order to perform channel measurements to identify suitable candidate channel (s) available for wireless communications during the second transmission period 250.
  • timeline 200 illustrates techniques to improved power efficiency for PDCCH blind detection by allowing UE 210 to skip slot (s) , e.g., transmission period (s) , where there is no PDCCH for the target or receiving UE.
  • the described techniques may further improved power efficiency for PDCCH blind detection by a selection of the candidates with known aggregation levels.
  • FIG. 3 illustrates an example of a timeline 300 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • timeline 300 may implement aspects of wireless communication system 100 and/or timeline 200. Aspects of timeline 300 may be implemented by base station 305 and/or UE 310, which may be examples of corresponding devices described herein.
  • timeline 200 illustrates an example where a new DCI format may be used to transmit or otherwise convey an information block from base station 205 to UE 210 indicating whether a control channel in the transmission period includes a control signal for the respective UE.
  • Timeline 300 illustrates an example where a new common control channel is used to convey the information block.
  • the new common control channel may be a new downlink common channel, with configuration information being signaled by higher layers, e.g., MAC CE, RRC, and the like.
  • base station 305 may configure (e.g., via one or more configuration signals) UE 310 with the parameters to receive the information block and/or for the common control channel, e.g., time-frequency resources, modulation order, information block size, and the like. Again, a time resource used in the common control channel may occur early during the transmission period. Base station 305 may also configure the information location for each UE in the information block by higher layers, e.g., such as DCI format 2_2 for a transmit power control command.
  • higher layers e.g., such as DCI format 2_2 for a transmit power control command.
  • base station 305 may identify their otherwise determine whether a control signal (e.g., DCI) for receiving UE is to be transmitted over control channel 325 during a first transmission period 315.
  • the first transmission period 315 may include a common control channel 320 (e.g., the new downlink common channel) , a control channel 325 (e.g., PDCCH and/or PUCCH) , and a data channel 330 (e.g., PDSCH and/or PUSCH) .
  • Base station 305 may include or otherwise configure an information block that includes one or more indications for a corresponding one or more UEs.
  • Base station 305 may include in the information block an indication of whether the control channel 325 includes a control signal for the receiving UE.
  • Base station 305 may transmit or otherwise convey an indication of the information block 335 over the common control channel 320, which occurs prior to the control channel 325.
  • UE 310 may receive the information block 335 at 340 and identify or otherwise determine whether the information block indicates that the control channel 325 will include a control signal for UE 310 during the first transmission period 315.
  • the control signal is included for UE 310 over the control channel 325 during the first transmission period 315.
  • UE 310 may identify or otherwise determine to attempt blind decoding of the control channel 325 to receive or otherwise detect the control signal for UE 310.
  • UE 310 may perform active uplink and/or downlink communications with the base station 305 over the data channel 330.
  • Timeline 300 further illustrates a second transmission period 355 that includes the common control channel 360, the control channel 365, and the data channel 370.
  • the second transmission period 355 is included to illustrate the example where no control signal is being communicated or otherwise transmitted to UE 310 during the control channel 365. That is, base station 305 may determine that no control signal is to be communicated to UE 310 during the second transmission period 355. Accordingly, base station 305 may configure the information block 375 to indicate that no control signal is being transmitted to UE 310 over control channel 365 during the second transmission period 355. UE 310 may receive the information block 375 at 380 and identify or otherwise determine that the information block includes an indication for UE 310.
  • the information block 375 may be configured to indicate that no control signal will be transmitted to UE 310 over control channel 365 during the second transmission period 355. Accordingly, at 385 UE 210 may determine not to attempt blind decoding of control channel 365 based at least in part on the indication indicating that control channel 365 does not include a control signal for UE 310. Instead, UE 310 may transition to a sleep or idle state to conserve power or may perform other functions during the second transmission period 355, e.g., may tune away to a different channel/base station to perform wireless communications during the second transmission period 355. In another example, UE 310 may tune away in order to perform channel measurements to identify suitable candidate channel (s) available for wireless communications during the second transmission period 355.
  • timeline 300 illustrates techniques to improved power efficiency for PDCCH blind detection by allowing UE 310 to skip slot (s) , e.g., transmission period (s) , where there is no PDCCH for the target or receiving UE.
  • the described techniques may further improved power efficiency for PDCCH blind detection by a selection of the candidates with known aggregation levels.
  • FIG. 4 illustrates an example of a process 400 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • process 400 may implement aspects of wireless communication system 100, timeline 200, and/or timeline 300. Aspects of process 400 may be implemented by UE 405 and/or base station 410, which may be examples of corresponding devices described herein.
  • base station 410 may determine whether a control signal for receiving UE is to be transmitted over control channel during a transmission period. In some aspects, this may include base station 410 determining whether or not there uplink and/or downlink communications to be performed between base station 410 and UE 405 during the transmission period.
  • base station 410 may include, in an information block that includes a plurality of indications for a corresponding plurality of UEs, an indication of whether the control channel includes the control signal for UE 405. In some aspects, this may include base station 410 configuring or otherwise setting bit (s) in the information block to convey the indication of whether the control channel includes a control signal for UE 405 during the transmission period. In some aspects, this may include base station 410 configuring or otherwise setting one or more bits in the information block to additionally provide or otherwise convey an indication of a location and/or an aggregation level associated with control signal, when the control channel carries the control signal for UE 405.
  • this may include base station 410 configuring the information block to provide the indication as a one-bit indication that signals whether the control channel includes a control signal for the receiving UE during the transmission period. In some aspects, this may include base station 410 configuring the information block to provide the indication as 2-or-more bits that indicate whether the control channel includes a control signal for the receiving UE during the transmission period, as well as whether the control signal is in a common search space or a UE-specific search space and/or a set of aggregation levels that includes an aggregation level for the control signal.
  • base station 410 may transmit (and UE 405 may receive) , during a first portion of the transmission period, the information block that includes the indication for the receiving UE (e.g., for UE 405) .
  • this may include base station 410 transmitting the information block in a common control channel that is different from the control channel that might carry the control signal for UE 405.
  • base station 410 may transmit, in advance of transmitting the information block, a configuration signal that identifies or more time-frequency resources, a modulation order, an information block size, and the like, pertaining to the common control channel.
  • the first portion of the transmission period occurs before transmission of the control signal.
  • this may include base station 410 transmitting a configuration signal identifying resources for UE 405 to use to receive the information block, e.g., via higher layer signaling such as RRC signaling, MAC CE signaling, and the like.
  • higher layer signaling such as RRC signaling, MAC CE signaling, and the like.
  • this may include base station 410 transmitting the information block via a DCI message within the control channel.
  • base station 410 may transmit, in advance of transmitting the information block, a configuration signal that identifies one or more of a common search space, time resources, a RNTI, an information block size, and the like, pertaining to the DCI message.
  • UE 405 may identify or otherwise determine that the information block includes an indication for the receiving UE (e.g., for UE 405) . For example, UE 405 may decode or otherwise recover the information conveyed in the information block to determine whether the control channel carries the control signal for UE 405. As discussed, base station 410 may configure UE 405 with various information relating to the information block such that UE 405 knows the information block size, resources used for the information block, a modulation order used for the information block, and the like. Accordingly, UE 405 may not perform blind decoding to receive the information block, but may, instead, utilize the configured resources to receive and recover the information contained or otherwise indicated in the information block.
  • base station 410 may configure UE 405 with various information relating to the information block such that UE 405 knows the information block size, resources used for the information block, a modulation order used for the information block, and the like. Accordingly, UE 405 may not perform blind decoding to receive the information block, but may, instead, utilize the configured resources
  • UE 405 may determine, based at least in part on the indication, whether to attempt blind decoding of the control channel during the transmission period. In some aspects, this may include base station 410 transmitting the control signal in accordance with the indication indicating that the control channel includes a control signal for UE 405. Accordingly, UE 405 may determine to attempt blind decoding of control channel based at least in part on the indication indicating that a control channel includes the control signal for UE 405 during the transmission period. In some aspects, this may include base station 410 determining not to transmit the control signal in accordance with the indication indicating that the control channel does not include the control signal for UE 405. Accordingly, UE 405 may determine to not attempt blind decoding of the control channel based at least in part on the indication indicating that a control channel does not include the control signal for the UE 405 during the transmission period.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication of existing control channel for target UE, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE, identify that the information block includes an indication for the receiving UE, and determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
  • the communications manager 515 may be an example of aspects of the communications manager 810 described herein.
  • the communications manager 515 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 515 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 515, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 515, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 520 may transmit signals generated by other components of the device 505.
  • the transmitter 520 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 520 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505, or a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 630.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication of existing control channel for target UE, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may be an example of aspects of the communications manager 515 as described herein.
  • the communications manager 615 may include a PDCCH indication manager 620 and a blind decoding manager 625.
  • the communications manager 615 may be an example of aspects of the communications manager 810 described herein.
  • the PDCCH indication manager 620 may receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE and identify that the information block includes an indication for the receiving UE.
  • the blind decoding manager 625 may determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
  • the transmitter 630 may transmit signals generated by other components of the device 605.
  • the transmitter 630 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 630 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 630 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a communications manager 705 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • the communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein.
  • the communications manager 705 may include a PDCCH indication manager 710, a blind decoding manager 715, a location configuration manager 720, a common control channel indication manager 725, a DCI indication manager 730, and a resource configuration manager 735. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the PDCCH indication manager 710 may receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE.
  • the PDCCH indication manager 710 may identify that the information block includes an indication for the receiving UE.
  • the indication is a one-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period.
  • the indication is a two-or-more-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period and at least one of whether the control signal is in a common search space or a UE-specific search space, or a set of aggregation levels that includes an aggregation level for the control signal.
  • the first portion of the transmission period occurs before transmission of the control signal.
  • the blind decoding manager 715 may determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period. In some examples, the blind decoding manager 715 may determine to attempt blind decoding of the control channel based on the indication indicating that the control channel includes the control signal for the receiving UE during the transmission period. In some examples, the blind decoding manager 715 may determine to not attempt blind decoding of the control channel based on the indication indicating that the control channel does not include the control signal for the receiving UE during the transmission period.
  • the location configuration manager 720 may receive, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE is located.
  • the common control channel indication manager 725 may receive the information block via a common control channel that is different from the control channel. In some examples, the common control channel indication manager 725 may receive, in advance of the information block, a configuration that identifies one or more of time-frequency resources, a modulation order, or an information block size pertaining to the common control channel.
  • the DCI indication manager 730 may receive the information block via a DCI message within the control channel. In some examples, the DCI indication manager 730 may receive, in advance of the information block, a configuration that identifies one or more of a common search space, time resources, a radio network temporary identifier (RNTI) , or an information block size pertaining to the DCI message.
  • RNTI radio network temporary identifier
  • the resource configuration manager 735 may receive a configuration signal indicating resources to use to receive the information block.
  • the configuration signal includes a RRC signal.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
  • buses e.g., bus 845
  • the communications manager 810 may receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE, identify that the information block includes an indication for the receiving UE, and determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
  • the I/O controller 815 may manage input and output signals for the device 805.
  • the I/O controller 815 may also manage peripherals not integrated into the device 805.
  • the I/O controller 815 may represent a physical connection or port to an external peripheral.
  • the I/O controller 815 may utilize an operating system such as or another known operating system.
  • the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 815 may be implemented as part of a processor.
  • a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
  • the transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 830 may include RAM and ROM.
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 830 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting indication of existing control channel for target UE) .
  • the code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a base station 105 as described herein.
  • the device 905 may include a receiver 910, a communications manager 915, and a transmitter 920.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication of existing control channel for target UE, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communications manager 915 may determine whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period, include, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal, and transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
  • the communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
  • the communications manager 915 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 915 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 915, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 915, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 920 may transmit signals generated by other components of the device 905.
  • the transmitter 920 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 920 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1035.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication of existing control channel for target UE, etc. ) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 1010 may utilize a single antenna or a set of antennas.
  • the communications manager 1015 may be an example of aspects of the communications manager 915 as described herein.
  • the communications manager 1015 may include a control channel manager 1020, an information block configuration manager 1025, and a PDCCH indication manager 1030.
  • the communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
  • the control channel manager 1020 may determine whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period.
  • the information block configuration manager 1025 may include, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal.
  • the PDCCH indication manager 1030 may transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
  • the transmitter 1035 may transmit signals generated by other components of the device 1005.
  • the transmitter 1035 may be collocated with a receiver 1010 in a transceiver module.
  • the transmitter 1035 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 1035 may utilize a single antenna or a set of antennas.
  • FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • the communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein.
  • the communications manager 1105 may include a control channel manager 1110, an information block configuration manager 1115, a PDCCH indication manager 1120, a control channel transmission manager 1125, a location configuration manager 1130, a common control channel indication manager 1135, a DCI indication manager 1140, and a resource configuration manager 1145.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the control channel manager 1110 may determine whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period.
  • the information block configuration manager 1115 may include, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal.
  • the PDCCH indication manager 1120 may transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
  • the PDCCH indication manager 1120 may transmit, in advance of the information block, a configuration that identifies one or more of a common search space, time resources, a RNTI, or an information block size pertaining to the DCI message.
  • the indication is a one-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period.
  • the indication is a two-or-more-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period and at least one of whether the control signal is in a common search space or a UE-specific search space, or a set of aggregation levels that includes an aggregation level for the control signal.
  • the first portion of the transmission period occurs before transmission of the control signal.
  • the control channel transmission manager 1125 may transmit the control signal in accordance with the indication indicating that the control channel includes the control signal for the UE. In some examples, the control channel transmission manager 1125 may determine not to transmit the control signal in accordance with the indication indicating that the control channel does not include the control signal for the receiving UE.
  • the location configuration manager 1130 may transmit, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE is located.
  • the common control channel indication manager 1135 may transmit the information block via a common control channel that is different from the control channel. In some examples, the common control channel indication manager 1135 may transmit, in advance of the information block, a configuration that identifies one or more of time-frequency resources, a modulation order, or an information block size pertaining to the common control channel.
  • the DCI indication manager 1140 may transmit the information block via a DCI message within the control channel.
  • the resource configuration manager 1145 may transmit a configuration signal identifying resources for the receiving UE to use to receive the information block.
  • the configuration signal includes a RRC signal.
  • FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein.
  • the device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (e.g., bus 1250) .
  • buses e.g., bus 1250
  • the communications manager 1210 may determine whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period, include, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal, and transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
  • the network communications manager 1215 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1230 may include RAM, ROM, or a combination thereof.
  • the memory 1230 may store computer-readable code 1235 including instructions that, when executed by a processor (e.g., the processor 1240) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1240
  • the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1240 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1240.
  • the processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting indication of existing control channel for target UE) .
  • the inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between base stations 105.
  • the code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a PDCCH indication manager as described with reference to FIGs. 5 through 8.
  • the UE may identify that the information block includes an indication for the receiving UE.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a PDCCH indication manager as described with reference to FIGs. 5 through 8.
  • the UE may determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a blind decoding manager as described with reference to FIGs. 5 through 8.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a PDCCH indication manager as described with reference to FIGs. 5 through 8.
  • the UE may identify that the information block includes an indication for the receiving UE.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a PDCCH indication manager as described with reference to FIGs. 5 through 8.
  • the UE may determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a blind decoding manager as described with reference to FIGs. 5 through 8.
  • the UE may receive, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE is located.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a location configuration manager as described with reference to FIGs. 5 through 8.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may determine whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a control channel manager as described with reference to FIGs. 9 through 12.
  • the base station may include, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by an information block configuration manager as described with reference to FIGs. 9 through 12.
  • the base station may transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a PDCCH indication manager as described with reference to FIGs. 9 through 12.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GP
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
  • the wireless communications systems described herein may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • magnetic disk storage or other magnetic storage devices
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, during a first portion of a transmission period, an information block that includes a plurality of indications for a corresponding plurality of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE. The UE may identify that the information block includes an indication for the receiving UE. The UE may determine, by the receiving UE and based at least in part on the indication, whether to attempt blind decoding of the control channel during the transmission period.

Description

INDICATION OF EXISTING CONTROL CHANNEL FOR TARGET USER EQUIPMENT BACKGROUND
The following relates generally to wireless communications, and more specifically to indication of existing control channel for target user equipment (UE) .
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as UE.
Wireless networks typically use a variety of channels for wireless communications between wireless devices. For example, a control channel (e.g., physical downlink control channel (PDCCH) and/or physical uplink control channel (PUCCH) ) may be used to carry or otherwise convey control information for a corresponding data channel (e.g., physical downlink shared channel (PDSCH) and/or physical uplink shared channel (PUSCH) ) . The control channel may include downlink control information (DCI) which carries or conveys information used by a UE to decode the corresponding data channel. One or more control resource sets may be defined or otherwise configured to define a search space to carry the control signal (e.g., DCI) . Each search space may include one or more control channel elements (CCEs) , with each CCE having a corresponding unique index. The location of the control signal within the control channel may be determined by its CCE index and a corresponding aggregation level. Conventionally, the UE can determine the location of the  control signal by performing blind decoding to detect the CCE index and the aggregation level. If the UE detects a control signal (e.g., DCI) in the control channel, the UE recovers the control information and uses this to receive the data in the corresponding data channel. However, such conventional techniques are inefficient because the UE must perform blind decoding of the control channel to determine whether or not the control signal (e.g., DCI) for the UE is included on the control channel. For example, conventional techniques force the UE to attempt blind decoding of each control channel regardless of whether or not there is a control signal for that UE in the control channel.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support indication of existing control channel for target user equipment (UE) . Generally, the described techniques provide a mechanism to improve the efficiency and conserve resources by transmitting or otherwise providing a signal (e.g., in a bit, field, an information block, and the like) that indicates whether or not there is a control signal for the UE in the control channel during a transmission period. Generally, the transmission period may include a frame, a subframe, a slot, mini-slot, a transmission opportunity, and the like. The base station may determine whether or not UE (s) within its coverage area will have a control signal (e.g., downlink control information (DCI) ) in a control channel (e.g., physical downlink control channel (PDCCH) ) during the transmission period. Accordingly, the base station may configure or otherwise provide an information block for transmission that carries or conveys, for some or all of the UEs within its coverage area, an indication of whether or not the control channel in the transmission period will include a control signal for the corresponding UE. UEs within the coverage area of the base station may receive the information block and determine whether it includes an indication for the receiving UE. Based on the indication, the receiving (or target) UE will determine whether or not to perform blind decoding of the control channel during the transmission period. When the information block indicates that the control channel carries a control signal for the UE, the UE will attempt blind decoding of the control channel during the transmission period. When the information block indicates that the control channel does not carry a control signal for the UE, the UE will not attempt to perform blind decoding of control channel during the transmission period. For example, the UE may transition to a sleep state or tune-away from the base station to address other wireless communication functions. Accordingly, the UE may  conserve power during the transmission period by not attempting blind decoding on the control channel when signaled that there is no control signal for the UE during the transmission period.
A method of wireless communication at a receiving UE is described. The method may include receiving, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE, identifying that the information block includes an indication for the receiving UE, and determining, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
An apparatus for wireless communication at a receiving UE is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE, identify that the information block includes an indication for the receiving UE, and determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
Another apparatus for wireless communication at a receiving UE is described. The apparatus may include means for receiving, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE, identifying that the information block includes an indication for the receiving UE, and determining, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
A non-transitory computer-readable medium storing code for wireless communication at a receiving UE is described. The code may include instructions executable  by a processor to receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE, identify that the information block includes an indication for the receiving UE, and determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining whether to attempt blind decoding may include operations, features, means, or instructions for determining to attempt blind decoding of the control channel based on the indication indicating that the control channel includes the control signal for the receiving UE during the transmission period.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining whether to attempt blind decoding may include operations, features, means, or instructions for determining to not attempt blind decoding of the control channel based on the indication indicating that the control channel does not include the control signal for the receiving UE during the transmission period.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE may be located.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the information block may include operations, features, means, or instructions for receiving the information block via a common control channel that may be different from the control channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, in advance of the information block, a configuration that identifies one or more of time-frequency resources, a modulation order, or an information block size pertaining to the common control channel.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the information block may include operations, features, means, or instructions for receiving the information block via a DCI message within the control channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, in advance of the information block, a configuration that identifies one or more of a common search space, time resources, a radio network temporary identifier (RNTI) , or an information block size pertaining to the DCI message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication may be a one-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication may be a two-or-more-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period and at least one of whether the control signal may be in a common search space or a UE-specific search space, or a set of aggregation levels that includes an aggregation level for the control signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a configuration signal indicating resources to use to receive the information block.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the configuration signal includes a radio resource control (RRC) signal.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first portion of the transmission period occurs before transmission of the control signal.
A method of wireless communication at a base station is described. The method may include determining whether a control signal for a receiving UE is to be transmitted over  a control channel during a transmission period, including, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal, and transmitting, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to determine whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period, include, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal, and transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for determining whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period, including, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal, and transmitting, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to determine whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period, include, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal, and transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the control signal in accordance with the indication indicating that the control channel includes the control signal for the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining not to transmit the control signal in accordance with the indication indicating that the control channel does not include the control signal for the receiving UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE may be located.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the information block may include operations, features, means, or instructions for transmitting the information block via a common control channel that may be different from the control channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, in advance of the information block, a configuration that identifies one or more of time-frequency resources, a modulation order, or an information block size pertaining to the common control channel.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the information block may include operations, features, means, or instructions for transmitting the information block via a DCI message within the control channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, in advance of the information block, a configuration that identifies one or more of a common search space, time resources, a RNTI, or an information block size pertaining to the DCI message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication may be a one-bit indication that indicates  whether the control channel includes the control signal for the receiving UE during the transmission period.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication may be a two-or-more-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period and at least one of whether the control signal may be in a common search space or a UE-specific search space, or a set of aggregation levels that includes an aggregation level for the control signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a configuration signal identifying resources for the receiving UE to use to receive the information block.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the configuration signal includes a RRC signal.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first portion of the transmission period occurs before transmission of the control signal.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports indication of existing control channel for target user equipment (UE) in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a timeline that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a timeline that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a process that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
FIGs. 5 and 6 show block diagrams of devices that support indication of existing control channel for target UE in accordance with aspects of the present disclosure.
FIG. 7 shows a block diagram of a communications manager that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
FIG. 8 shows a diagram of a system including a device that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
FIGs. 9 and 10 show block diagrams of devices that support indication of existing control channel for target UE in accordance with aspects of the present disclosure.
FIG. 11 shows a block diagram of a communications manager that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
FIG. 12 shows a diagram of a system including a device that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.
FIGs. 13 through 15 show flowcharts illustrating methods that support indication of existing control channel for target UE in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Wireless networks typically use a variety of channels for wireless communications between wireless devices. For example, control channel (e.g., physical downlink control channel (PDCCH) and/or physical uplink control channel (PUCCH) ) may be used to carry or otherwise convey control information for a corresponding data channel (e.g., physical downlink shared channel (PDSCH) and/or physical uplink shared channel (PUSCH) ) . The control channel may include downlink control information (DCI) which carries or conveys information used by a UE to decode the corresponding data channel. One or more control resource sets may be defined or otherwise configured to define a search space to carry the control signal (e.g., DCI) . Each search space may include one or more control channel elements (CCEs) , with each CCE having a corresponding unique index. The location of the control signal may be determined by its CCE index and a corresponding aggregation level. Conventionally, the UE can determine the location of the control signal by performing blind decoding of the control channel to detect the CCE index and the aggregation level. If the UE detects a control signal (e.g., DCI) on the control channel, it recovers the control information and uses this to receive the data in the corresponding data channel. However, such  conventional techniques are inefficient because the UE must perform blind decoding on the control channel to determine whether or not the control signal (e.g., DCI) for that UE is included on the control channel. For example, conventional techniques force the UE to attempt blind decoding of each control channel regardless of whether or not there is a control signal for that UE in the control channel.
Aspects of the disclosure are initially described in the context of a wireless communications system. Generally, the described techniques provide a mechanism to improve the efficiency and conserve resources by transmitting or otherwise providing a signal (e.g., in a bit, field, an information block, and the like) that indicates whether or not there is a control signal for the UE in the control channel during a transmission period. The base station may determine whether or not UE (s) within its coverage area will have a control signal (e.g., DCI) on a control channel (e.g., PDCCH) during the transmission period. Accordingly, the base station may configure or otherwise provide an information block for transmission that carries or conveys, for each UE, an indication of whether or not the control channel in the transmission period will include a control signal for the corresponding UE. UEs within the coverage area of the base station may receive the information block and determine whether it includes an indication for the receiving UE. Based on the indication, the receiving (or target) UE will determine whether or not to perform blind decoding of the control channel during the transmission period. When the information block indicates that the control channel carries a control signal for the UE, the UE will attempt blind decoding of the control channel during the transmission period. When the information block indicates that the control channel does not carry a control signal for the UE, the UE will not attempt to perform blind decoding of the control channel during the transmission period. For example, the UE may transition to a sleep/idle state or tune away from the base station to address other wireless communications. Accordingly, the UE may conserve power during the transmission period by not attempting blind decoding on the control channel when signaled that there is no control signal for the UE during the transmission period.
Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to indication of existing control channel for target UE.
FIG. 1 illustrates an example of a wireless communications system 100 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure. The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some cases, wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology. Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) . The UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
The geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell. For example, each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various  combinations thereof. In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
The term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier. In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices. In some cases, the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client. A UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a  base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
In some cases, a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) . One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105. In some cases, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some cases, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between UEs 115 without the involvement of a base station 105.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) . The MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC. User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operators IP services. The operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Streaming Service.
At least some of the network devices, such as a base station 105, may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) . Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) . In some configurations, various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features.  However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band. The SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115. However, the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
In some cases, wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band. When operating in unlicensed radio frequency spectrum bands, wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data. In some cases, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a  combination of these. Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
In some examples, base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. For example, wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas. MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams. Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular  orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In one example, a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be, transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality. Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115, which may be an example of a mmW receiving device) may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by  processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions. In some examples a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) . The single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
In some cases, the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some cases, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
In some cases, wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data. At the Physical layer, transport channels may be mapped to physical channels.
In some cases, UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) . In some cases, a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Time intervals in LTE or NR may be expressed in multiples of a basic time unit, which may, for example, refer to a sampling period of T s = 1/30,720,000 seconds. Time intervals of a communications resource may be organized according to radio frames each having a duration of 10 milliseconds (ms) , where the frame period may be expressed as T f = 307,200 T s. The radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023. Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms. A subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods. In some cases, a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) . In other cases, a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
In some wireless communications systems, a slot may further be divided into multiple mini-slots containing one or more symbols. In some instances, a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example. Further, some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
The term “carrier” refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125. For example, a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology. Each physical layer channel may carry user data, control information, or other signaling. A carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115. Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) . In some examples, signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
The organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) . For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data. A carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier. In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) . In some examples, each served UE 115 may be configured for operating over portions or all of the carrier bandwidth. In other examples, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. In MIMO systems, a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
Devices of the wireless communications system 100 (e.g., base stations 105 or UEs 115) may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both FDD and TDD component carriers.
In some cases, wireless communications system 100 may utilize enhanced component carriers (eCCs) . An eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration. In some cases, an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) . An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) . An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
In some cases, an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers. A shorter symbol duration may be associated with increased spacing between adjacent subcarriers. A device, such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) . A TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others. The flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums. In some examples, NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
In some aspects, a UE 115 may receive, during a first portion of a transmission period, an information block that includes a plurality of indications for a corresponding plurality of UEs 115, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE 115. The UE 115 may identify that the information block includes an indication for the receiving UE 115.  The UE 115 may determine, by the receiving UE and based at least in part on the indication, whether to attempt blind decoding of the control channel during the transmission period.
In some aspects, a base station 105 may determine whether a control signal for a receiving UE 115 is to be transmitted over a control channel during a transmission period. The base station 105 may include, in an information block that includes a plurality of indications for a corresponding plurality of UEs 115, an indication of whether the control channel includes the control signal. The base station 105 may transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE 115.
FIG. 2 illustrates an example of a timeline 200 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure. In some examples, timeline 200 may implement aspects of wireless communication system 100. Aspects of timeline 200 may be implemented by a base station 205 and/or UE 210, which may be examples of corresponding devices described herein.
Wireless networks typically use a variety of channels for wireless communications between wireless devices. For example, control channels (e.g., PDCCH and/or PUCCH) may be used to carry or otherwise convey control information for a corresponding data channel (e.g., PDSCH and/or PUSCH) . The control channel may include DCI which carries or conveys information used by a UE to decode the corresponding data channel. One or more control resource sets may be defined or otherwise configured to define a search space to carry the control signal (e.g., DCI) . Each search space may include one or more CCEs, with each CCE having a corresponding unique index. The location of the control signal may be determined by its CCE index and a corresponding aggregation level. Conventionally, the UE can determine the location of the control signal by performing blind decoding of the control channel to detect the CCE index and the aggregation level. If the UE detects a control signal (e.g., DCI) on the control channel, it recovers the control information and uses this to receive the data in the corresponding data channel. However, such conventional techniques are inefficient because the UE must perform blind decoding on the control channel to determine whether or not the control signal (e.g., DCI) for that UE is included on the control channel. For example, conventional techniques force the UE to attempt blind decoding of each control  channel regardless of whether or not there is a control signal for that UE in the control channel.
More particularly, conventional techniques may support up to 44 hypothesis based on the combination of CCE indices and aggregation levels. While UE 210 may terminate the blind decoding if 210 correctly decodes a control signal (e.g., DCI) early, a worst-case situation may be that UE 210 attempts to blind decode the maximum number of hypothesis and does not detect the control signal on the control channel (e.g., PDCCH) . This may result in a large waste a power and time for the blind detection. However, aspects of the described techniques include transmitting an indication to UE 210 (and other UEs within the coverage area of base station 205) to indicate if there is a control signal for the receiving UE during the transmission period, e.g., during the current slot. Broadly, if there is no PDCCH for a target UE, the UE does not perform blind detection at all. If there is a PDCCH for a target UE, the UE may utilize various schemes to improve the efficiency for blind detection.
Accordingly, timeline 200 may begin during a first transmission period 215 that includes a control channel 220 (e.g., a PDCCH channel) and a data channel 225 (e.g., a PDSCH and/or a PUSCH) . The first transmission period 215 may be based on a contention procedure performed by a base station 205 and/or UE 210 (e.g., in an unlicensed frequency spectrum band) and/or may be based on a contention-free procedure (e.g., in a licensed frequency spectrum band) . Base station 205 may identify or otherwise determine whether a control signal for the receiving UE (e.g., such as UE 210, which may also be referred to as a target UE) will be transmitted over the control channel 220 during the first transmission period 215. For example, base station 205 may determine whether there are downlink and/or uplink communications to be performed during the first transmission period 215 between base station 205 and UE 210. In some aspects, base station 205 may perform similar functionality for some or all of the UEs within its coverage area.
Base station 205 may use an information block that includes or is otherwise configured to convey one or more indications for a corresponding plurality of UEs, which may include UE 210 in this example. Broadly, the indication in the information block may identify or otherwise indicate whether or not, for each UE, the control channel 220 includes the control signal for the receiving UE. Broadly, the information block may contain one or more bits that are used to indicate if there is a control signal for the receiving UE during the  first transmission period 215. In some aspects, the information block may additionally carry or otherwise convey an indication of an aggregation level and/or location for the corresponding control signal, when present on the control channel.
In one case, one bit in the information block may be allocated to, or otherwise correspond with each UE. For example, the information block may contain a plurality of bits (e.g., a bitmap) , with each bit corresponding to the respective UE. Base station 205 may order the bits within the bitmap such that each UE knows which bit corresponds to it. For example, the ordering of the bitmap to be configured via higher layer signaling (e.g., via a medium access control (MAC) control element (CE) , a radio resource control (RRC) signaling, and the like) . Base station 205 may configure or otherwise set the bit to “1” to signal that there is a control signal for the receiving UE being transmitted over the control channel during the first transmission period 215, and set the bit to “0” to signal that there is not a control signal for the receiving UE being transmitted over control channel during the first transmission period 215, or vice versa. Accordingly, the bit set to “0” may inform the receiving UE to not detect PDCCH candidates since there is no PDCCH (e.g., no DCI/control signal) for that UE during the current transmission period, whereas the bit set to “1” may inform the receiving UE to begin blind decoding of the control channel during the transmission period.
In another case, two (or more) bits in the information block may be allocated to, or otherwise correspond with each UE. Again, the information block may contain a plurality of bits (e.g., a bitmap) , with two (or more) of the bits corresponding to the respective UE. Similarly, base station 205 may order the bits within the bitmap such that each UE knows which bits correspond to it. Using two (or more) bits for each UE allows additional information to be signaled in the information block, such as control signal location, aggregation level information, and the like.
For example, base station 205 may configure or otherwise set the bits to “00” to signal that there is no control signal for the receiving UE over control channel 220 during the first transmission period 215. Accordingly, a UE receiving the information block with the bit set to “00” may not attempt blind decoding of control channel 220 during the first transmission period 215 based on the information block.
In another example, base station 205 may configure otherwise set the bits to “01” to signal that there is a control signal for the receiving UE in control channel 220 during the  first transmission period 215. In some aspects, setting the bit to “01” may also convey an indication that the corresponding aggregation level for the control signal is equal to one. In some aspects, setting the bits to “01” may also convey an indication identifying a location of the control signal within the control channel 220, e.g., to signal that PDCCH is located in the common search space.
In another example, base station 205 may configure or otherwise set the bits to “10” to signal that there is a control signal for the receiving UE in the control channel 220 during the first transmission period 215. In some aspects, setting the bits to “10” may also convey an indication that the corresponding aggregation level for the control signal is equal to two (or four) . In some aspects, setting the bits to “10” may also convey an indication identifying a location of the control signal within the control channel 220 and/or a corresponding aggregation level, e.g., to signal that PDCCH is located in a UE-specific search space and uses an aggregation level of one or two.
In another example, base station 205 may configure or otherwise set the bits to “11” to signal that there is a control signal for the receiving UE in the control channel 220 during the first transmission period 215. In some aspects, setting the bits to “11” may also convey an indication that the corresponding aggregation level for the control signal is equal to eight (or 16) . In some aspects, setting the bits to “11” may also convey an indication identifying a location of the control signal within the control channel 220 and/or a corresponding aggregation level, e.g., to signal that PDCCH is located in a UE-specific search space and uses an aggregation level of four, eight, or 16.
In some aspects, base station 205 may group the bit (s) for each UE into a single information block and/or may use a single information block to convey the bits for each UE. Accordingly, during the first transmission period 215 base station 205 may transmit (and UE 210 may receive) an information block 230 that includes one or more indications (e.g., one indication when the information block is for one UE, the plurality of indications for corresponding plurality of UEs) , with each indication in the information block 230 indicating whether the control channel 220 in the first transmission period 215 includes a control signal for a respective UE.
It is to be understood that various techniques may be used to convey the information block to UE 210. In the example illustrated in timeline 200, a new DCI format  may be used to carry or otherwise convey the information block 230 in the control channel 220. For example, a new control resource set and/or corresponding common search space with time resources as early as possible during the first transmission period 215 may be configured to convey the information block 230. These may be configured (e.g., along with the size of the information block 230) by higher layers, e.g., MAC CE, RRC, and the like. The location of the bit (s) for each receiving UE in information block 230 may also be configured by higher layers, e.g., such as using a DCI format 2_2 for transmit power control command. In some aspects, a new identifier (e.g., a new radio network temporary identifier (RNTI) ) may be used in the information block 230 for UE 210 and/or for a group of UEs. In some aspects, UE 210 may not perform blind decoding (or blind detection) to receive the information block 230 since the location and size of the information block 230 is configured by higher layers.
UE 210 may receive the information block 230 during a first portion of the first transmission period 215. In some aspects, the first portion may refer to the first symbol of the first transmission period 215. At 235, UE 210 may identify or otherwise determine that the information block 230 includes an indication for it. In the example timeline 200, the information block 230 is configured to indicate that there is a control signal in the control channel 220 for UE 210 during the first transmission period 215. Accordingly, UE 210 may determine that the information block carries or otherwise conveys an indication (e.g., using one or more bits) that the control channel 220 will carry the control signal (e.g., DCI) for UE 210 during the first transmission period 215. At 240, UE 210 may begin or otherwise attempt blind decoding of control channel 220 to receive the control signal.
UE 210 may receive or otherwise detect the control signal during the control channel 220 by performing the blind decoding. Generally, the control signal carries or otherwise conveys an indication of resources and/or tracking/synchronization information that are used to communicate data over the data channel 225. Accordingly, UE 210 may perform active downlink and/or uplink communications 245 with base station 205.
Timeline 200 further illustrates a second transmission period 250 that includes a control channel 255 and the data channel 260. Generally, the second transmission period 250 is included to illustrate the example where no control signal is being communicated or otherwise transmitted to UE 210 over the control channel 255 during the second transmission  period 250. That is, base station 205 may determine that no control signal is to be communicated to UE 210 during the second transmission period 250. Accordingly, base station 205 may configure the information block 265 to indicate that no control signal is being transmitted to UE 210 over control channel 255 during the second transmission period 250. UE 210 may receive the information block 265 at 270 and identify or otherwise determine that the information block includes an indication for UE 210. However, in this example the information block may be configured to indicate that no control signal will be transmitted to UE 210 over control channel 255 during the second transmission period 250. Accordingly, at 275 UE 210 may determine not to attempt blind decoding of control channel 255 based at least in part on the indication indicating that control channel 255 does not include a control signal for UE 210. Instead, UE 210 may transition to a sleep or idle state to conserve power or may perform other functions during the second transmission. 250, e.g., may tune away to a different channel/base station to perform wireless communications during the second transmission period 250. In another example, UE 210 may tune away in order to perform channel measurements to identify suitable candidate channel (s) available for wireless communications during the second transmission period 250.
Accordingly, timeline 200 illustrates techniques to improved power efficiency for PDCCH blind detection by allowing UE 210 to skip slot (s) , e.g., transmission period (s) , where there is no PDCCH for the target or receiving UE. The described techniques may further improved power efficiency for PDCCH blind detection by a selection of the candidates with known aggregation levels.
FIG. 3 illustrates an example of a timeline 300 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure. In some examples, timeline 300 may implement aspects of wireless communication system 100 and/or timeline 200. Aspects of timeline 300 may be implemented by base station 305 and/or UE 310, which may be examples of corresponding devices described herein.
As discussed above, timeline 200 illustrates an example where a new DCI format may be used to transmit or otherwise convey an information block from base station 205 to UE 210 indicating whether a control channel in the transmission period includes a control signal for the respective UE. Timeline 300 illustrates an example where a new common control channel is used to convey the information block. Generally, the new common control  channel may be a new downlink common channel, with configuration information being signaled by higher layers, e.g., MAC CE, RRC, and the like. For example, base station 305 may configure (e.g., via one or more configuration signals) UE 310 with the parameters to receive the information block and/or for the common control channel, e.g., time-frequency resources, modulation order, information block size, and the like. Again, a time resource used in the common control channel may occur early during the transmission period. Base station 305 may also configure the information location for each UE in the information block by higher layers, e.g., such as DCI format 2_2 for a transmit power control command.
Accordingly, base station 305 may identify their otherwise determine whether a control signal (e.g., DCI) for receiving UE is to be transmitted over control channel 325 during a first transmission period 315. The first transmission period 315 may include a common control channel 320 (e.g., the new downlink common channel) , a control channel 325 (e.g., PDCCH and/or PUCCH) , and a data channel 330 (e.g., PDSCH and/or PUSCH) . Base station 305 may include or otherwise configure an information block that includes one or more indications for a corresponding one or more UEs. Base station 305 may include in the information block an indication of whether the control channel 325 includes a control signal for the receiving UE. Base station 305 may transmit or otherwise convey an indication of the information block 335 over the common control channel 320, which occurs prior to the control channel 325. UE 310 may receive the information block 335 at 340 and identify or otherwise determine whether the information block indicates that the control channel 325 will include a control signal for UE 310 during the first transmission period 315. In the example illustrated in timeline 300, the control signal is included for UE 310 over the control channel 325 during the first transmission period 315. Accordingly, at 345 UE 310 may identify or otherwise determine to attempt blind decoding of the control channel 325 to receive or otherwise detect the control signal for UE 310. Based on the information recovered from the control signal, at 350 UE 310 may perform active uplink and/or downlink communications with the base station 305 over the data channel 330.
Timeline 300 further illustrates a second transmission period 355 that includes the common control channel 360, the control channel 365, and the data channel 370. Generally, the second transmission period 355 is included to illustrate the example where no control signal is being communicated or otherwise transmitted to UE 310 during the control channel 365. That is, base station 305 may determine that no control signal is to be communicated to  UE 310 during the second transmission period 355. Accordingly, base station 305 may configure the information block 375 to indicate that no control signal is being transmitted to UE 310 over control channel 365 during the second transmission period 355. UE 310 may receive the information block 375 at 380 and identify or otherwise determine that the information block includes an indication for UE 310. However, in this example the information block 375 may be configured to indicate that no control signal will be transmitted to UE 310 over control channel 365 during the second transmission period 355. Accordingly, at 385 UE 210 may determine not to attempt blind decoding of control channel 365 based at least in part on the indication indicating that control channel 365 does not include a control signal for UE 310. Instead, UE 310 may transition to a sleep or idle state to conserve power or may perform other functions during the second transmission period 355, e.g., may tune away to a different channel/base station to perform wireless communications during the second transmission period 355. In another example, UE 310 may tune away in order to perform channel measurements to identify suitable candidate channel (s) available for wireless communications during the second transmission period 355.
Accordingly, timeline 300 illustrates techniques to improved power efficiency for PDCCH blind detection by allowing UE 310 to skip slot (s) , e.g., transmission period (s) , where there is no PDCCH for the target or receiving UE. The described techniques may further improved power efficiency for PDCCH blind detection by a selection of the candidates with known aggregation levels.
FIG. 4 illustrates an example of a process 400 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure. In some examples, process 400 may implement aspects of wireless communication system 100, timeline 200, and/or timeline 300. Aspects of process 400 may be implemented by UE 405 and/or base station 410, which may be examples of corresponding devices described herein.
At 415, base station 410 may determine whether a control signal for receiving UE is to be transmitted over control channel during a transmission period. In some aspects, this may include base station 410 determining whether or not there uplink and/or downlink communications to be performed between base station 410 and UE 405 during the transmission period.
At 420, base station 410 may include, in an information block that includes a plurality of indications for a corresponding plurality of UEs, an indication of whether the control channel includes the control signal for UE 405. In some aspects, this may include base station 410 configuring or otherwise setting bit (s) in the information block to convey the indication of whether the control channel includes a control signal for UE 405 during the transmission period. In some aspects, this may include base station 410 configuring or otherwise setting one or more bits in the information block to additionally provide or otherwise convey an indication of a location and/or an aggregation level associated with control signal, when the control channel carries the control signal for UE 405.
In some aspects, this may include base station 410 configuring the information block to provide the indication as a one-bit indication that signals whether the control channel includes a control signal for the receiving UE during the transmission period. In some aspects, this may include base station 410 configuring the information block to provide the indication as 2-or-more bits that indicate whether the control channel includes a control signal for the receiving UE during the transmission period, as well as whether the control signal is in a common search space or a UE-specific search space and/or a set of aggregation levels that includes an aggregation level for the control signal.
At 425, base station 410 may transmit (and UE 405 may receive) , during a first portion of the transmission period, the information block that includes the indication for the receiving UE (e.g., for UE 405) . In some aspects, this may include base station 410 transmitting the information block in a common control channel that is different from the control channel that might carry the control signal for UE 405. For example, base station 410 may transmit, in advance of transmitting the information block, a configuration signal that identifies or more time-frequency resources, a modulation order, an information block size, and the like, pertaining to the common control channel. In some aspects, the first portion of the transmission period occurs before transmission of the control signal.
In some aspects, this may include base station 410 transmitting a configuration signal identifying resources for UE 405 to use to receive the information block, e.g., via higher layer signaling such as RRC signaling, MAC CE signaling, and the like.
In some aspects, this may include base station 410 transmitting the information block via a DCI message within the control channel. For example, base station 410 may  transmit, in advance of transmitting the information block, a configuration signal that identifies one or more of a common search space, time resources, a RNTI, an information block size, and the like, pertaining to the DCI message.
At 430, UE 405 may identify or otherwise determine that the information block includes an indication for the receiving UE (e.g., for UE 405) . For example, UE 405 may decode or otherwise recover the information conveyed in the information block to determine whether the control channel carries the control signal for UE 405. As discussed, base station 410 may configure UE 405 with various information relating to the information block such that UE 405 knows the information block size, resources used for the information block, a modulation order used for the information block, and the like. Accordingly, UE 405 may not perform blind decoding to receive the information block, but may, instead, utilize the configured resources to receive and recover the information contained or otherwise indicated in the information block.
At 435, UE 405 may determine, based at least in part on the indication, whether to attempt blind decoding of the control channel during the transmission period. In some aspects, this may include base station 410 transmitting the control signal in accordance with the indication indicating that the control channel includes a control signal for UE 405. Accordingly, UE 405 may determine to attempt blind decoding of control channel based at least in part on the indication indicating that a control channel includes the control signal for UE 405 during the transmission period. In some aspects, this may include base station 410 determining not to transmit the control signal in accordance with the indication indicating that the control channel does not include the control signal for UE 405. Accordingly, UE 405 may determine to not attempt blind decoding of the control channel based at least in part on the indication indicating that a control channel does not include the control signal for the UE 405 during the transmission period.
FIG. 5 shows a block diagram 500 of a device 505 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication of existing control channel for target UE, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE, identify that the information block includes an indication for the receiving UE, and determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period. The communications manager 515 may be an example of aspects of the communications manager 810 described herein.
The communications manager 515, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 515, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 515, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 515, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other  components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 520 may transmit signals generated by other components of the device 505. In some examples, the transmitter 520 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 520 may utilize a single antenna or a set of antennas.
FIG. 6 shows a block diagram 600 of a device 605 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a device 505, or a UE 115 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a transmitter 630. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication of existing control channel for target UE, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may be an example of aspects of the communications manager 515 as described herein. The communications manager 615 may include a PDCCH indication manager 620 and a blind decoding manager 625. The communications manager 615 may be an example of aspects of the communications manager 810 described herein.
The PDCCH indication manager 620 may receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE and identify that the information block includes an indication for the receiving UE.
The blind decoding manager 625 may determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
The transmitter 630 may transmit signals generated by other components of the device 605. In some examples, the transmitter 630 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 630 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 630 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a communications manager 705 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure. The communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein. The communications manager 705 may include a PDCCH indication manager 710, a blind decoding manager 715, a location configuration manager 720, a common control channel indication manager 725, a DCI indication manager 730, and a resource configuration manager 735. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The PDCCH indication manager 710 may receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE.
In some examples, the PDCCH indication manager 710 may identify that the information block includes an indication for the receiving UE. In some cases, the indication is a one-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period. In some cases, the indication is a two-or-more-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period and at least one of whether the control signal is in a common search space or a UE-specific search space, or a set of aggregation levels that includes an aggregation level for the control signal. In some cases, the first portion of the transmission period occurs before transmission of the control signal.
The blind decoding manager 715 may determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period. In some examples, the blind decoding manager 715 may determine to attempt blind decoding of the control channel based on the indication indicating that the control channel includes the control signal for the receiving UE during the transmission period. In some examples, the blind decoding manager 715 may determine to not attempt blind decoding of the control channel based on the indication indicating that the control channel does not include the control signal for the receiving UE during the transmission period.
The location configuration manager 720 may receive, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE is located.
The common control channel indication manager 725 may receive the information block via a common control channel that is different from the control channel. In some examples, the common control channel indication manager 725 may receive, in advance of the information block, a configuration that identifies one or more of time-frequency resources, a modulation order, or an information block size pertaining to the common control channel.
The DCI indication manager 730 may receive the information block via a DCI message within the control channel. In some examples, the DCI indication manager 730 may receive, in advance of the information block, a configuration that identifies one or more of a common search space, time resources, a radio network temporary identifier (RNTI) , or an information block size pertaining to the DCI message.
The resource configuration manager 735 may receive a configuration signal indicating resources to use to receive the information block. In some cases, the configuration signal includes a RRC signal.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein. The device 805 may include components for bi-directional voice and data communications including components for transmitting and  receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
The communications manager 810 may receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE, identify that the information block includes an indication for the receiving UE, and determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period.
The I/O controller 815 may manage input and output signals for the device 805. The I/O controller 815 may also manage peripherals not integrated into the device 805. In some cases, the I/O controller 815 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 815 may utilize an operating system such as 
Figure PCTCN2019071135-appb-000001
or another known operating system. In other cases, the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 815 may be implemented as part of a processor. In some cases, a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
The transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 830 may include RAM and ROM. The memory 830 may store computer-readable, computer-executable code 835 including instructions that, when  executed, cause the processor to perform various functions described herein. In some cases, the memory 830 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting indication of existing control channel for target UE) .
The code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 9 shows a block diagram 900 of a device 905 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a base station 105 as described herein. The device 905 may include a receiver 910, a communications manager 915, and a transmitter 920. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication of existing control channel for target UE, etc. ) . Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 910 may utilize a single antenna or a set of antennas.
The communications manager 915 may determine whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period, include, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal, and transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE. The communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
The communications manager 915, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 915, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 915, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 915, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 920 may transmit signals generated by other components of the device 905. In some examples, the transmitter 920 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 920 may utilize a single antenna or a set of antennas.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure.  The device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein. The device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1035. The device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to indication of existing control channel for target UE, etc. ) . Information may be passed on to other components of the device 1005. The receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 1010 may utilize a single antenna or a set of antennas.
The communications manager 1015 may be an example of aspects of the communications manager 915 as described herein. The communications manager 1015 may include a control channel manager 1020, an information block configuration manager 1025, and a PDCCH indication manager 1030. The communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
The control channel manager 1020 may determine whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period.
The information block configuration manager 1025 may include, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal.
The PDCCH indication manager 1030 may transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
The transmitter 1035 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1035 may be collocated with a receiver 1010 in a transceiver module. For example, the transmitter 1035 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 1035 may utilize a single antenna or a set of antennas.
FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure. The communications manager 1105 may be an example of aspects of a  communications manager 915, a communications manager 1015, or a communications manager 1210 described herein. The communications manager 1105 may include a control channel manager 1110, an information block configuration manager 1115, a PDCCH indication manager 1120, a control channel transmission manager 1125, a location configuration manager 1130, a common control channel indication manager 1135, a DCI indication manager 1140, and a resource configuration manager 1145. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The control channel manager 1110 may determine whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period.
The information block configuration manager 1115 may include, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal.
The PDCCH indication manager 1120 may transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE. In some examples, the PDCCH indication manager 1120 may transmit, in advance of the information block, a configuration that identifies one or more of a common search space, time resources, a RNTI, or an information block size pertaining to the DCI message. In some cases, the indication is a one-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period. In some cases, the indication is a two-or-more-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period and at least one of whether the control signal is in a common search space or a UE-specific search space, or a set of aggregation levels that includes an aggregation level for the control signal. In some cases, the first portion of the transmission period occurs before transmission of the control signal.
The control channel transmission manager 1125 may transmit the control signal in accordance with the indication indicating that the control channel includes the control signal for the UE. In some examples, the control channel transmission manager 1125 may determine not to transmit the control signal in accordance with the indication indicating that the control channel does not include the control signal for the receiving UE.
The location configuration manager 1130 may transmit, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE is located.
The common control channel indication manager 1135 may transmit the information block via a common control channel that is different from the control channel. In some examples, the common control channel indication manager 1135 may transmit, in advance of the information block, a configuration that identifies one or more of time-frequency resources, a modulation order, or an information block size pertaining to the common control channel.
The DCI indication manager 1140 may transmit the information block via a DCI message within the control channel.
The resource configuration manager 1145 may transmit a configuration signal identifying resources for the receiving UE to use to receive the information block. In some cases, the configuration signal includes a RRC signal.
FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure. The device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein. The device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (e.g., bus 1250) .
The communications manager 1210 may determine whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period, include, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal, and transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
The network communications manager 1215 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1230 may include RAM, ROM, or a combination thereof. The memory 1230 may store computer-readable code 1235 including instructions that, when executed by a processor (e.g., the processor 1240) cause the device to perform various functions described herein. In some cases, the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1240 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1240. The processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting indication of existing control channel for target UE) .
The inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the  inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between base stations 105.
The code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 13 shows a flowchart illustrating a method 1300 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1305, the UE may receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a PDCCH indication manager as described with reference to FIGs. 5 through 8.
At 1310, the UE may identify that the information block includes an indication for the receiving UE. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a PDCCH indication manager as described with reference to FIGs. 5 through 8.
At 1315, the UE may determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a blind decoding manager as described with reference to FIGs. 5 through 8.
FIG. 14 shows a flowchart illustrating a method 1400 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1405, the UE may receive, during a first portion of a transmission period, an information block that includes a set of indications for a corresponding set of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a PDCCH indication manager as described with reference to FIGs. 5 through 8.
At 1410, the UE may identify that the information block includes an indication for the receiving UE. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a PDCCH indication manager as described with reference to FIGs. 5 through 8.
At 1415, the UE may determine, by the receiving UE and based on the indication, whether to attempt blind decoding of the control channel during the transmission period. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a blind decoding manager as described with reference to FIGs. 5 through 8.
At 1420, the UE may receive, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the  receiving UE is located. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a location configuration manager as described with reference to FIGs. 5 through 8.
FIG. 15 shows a flowchart illustrating a method 1500 that supports indication of existing control channel for target UE in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1505, the base station may determine whether a control signal for a receiving UE is to be transmitted over a control channel during a transmission period. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a control channel manager as described with reference to FIGs. 9 through 12.
At 1510, the base station may include, in an information block that includes a set of indications for a corresponding set of UEs, an indication of whether the control channel includes the control signal. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by an information block configuration manager as described with reference to FIGs. 9 through 12.
At 1515, the base station may transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a PDCCH indication manager as described with reference to FIGs. 9 through 12.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise  modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) , and other systems. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g.,  licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
The wireless communications systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or  AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (80)

  1. A method for wireless communication at a receiving user equipment (UE) , comprising:
    receiving, during a first portion of a transmission period, an information block that includes a plurality of indications for a corresponding plurality of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE;
    identifying that the information block includes an indication for the receiving UE;and
    determining, by the receiving UE and based at least in part on the indication, whether to attempt blind decoding of the control channel during the transmission period.
  2. The method of claim 1, wherein determining whether to attempt blind decoding comprises:
    determining to attempt blind decoding of the control channel based at least in part on the indication indicating that the control channel includes the control signal for the receiving UE during the transmission period.
  3. The method of claim 1, wherein determining whether to attempt blind decoding comprises:
    determining to not attempt blind decoding of the control channel based at least in part on the indication indicating that the control channel does not include the control signal for the receiving UE during the transmission period.
  4. The method of claim 1, further comprising:
    receiving, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE is located.
  5. The method of claim 1, wherein receiving the information block comprises:
    receiving the information block via a common control channel that is different from the control channel.
  6. The method of claim 5, further comprising:
    receiving, in advance of the information block, a configuration that identifies one or more of time-frequency resources, a modulation order, or an information block size pertaining to the common control channel.
  7. The method of claim 1, wherein receiving the information block comprises:
    receiving the information block via a downlink control information (DCI) message within the control channel.
  8. The method of claim 7, further comprising:
    receiving, in advance of the information block, a configuration that identifies one or more of a common search space, time resources, a radio network temporary identifier (RNTI) , or an information block size pertaining to the DCI message.
  9. The method of claim 1, wherein the indication is a one-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period.
  10. The method of claim 1, wherein the indication is a two-or-more-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period and at least one of whether the control signal is in a common search space or a UE-specific search space, or a set of aggregation levels that includes an aggregation level for the control signal.
  11. The method of claim 1, further comprising:
    receiving a configuration signal indicating resources to use to receive the information block.
  12. The method of claim 11, wherein the configuration signal comprises a radio resource control (RRC) signal.
  13. The method of claim 1, wherein the first portion of the transmission period occurs before transmission of the control signal.
  14. A method for wireless communication at a base station, comprising:
    determining whether a control signal for a receiving user equipment (UE) is to be transmitted over a control channel during a transmission period;
    including, in an information block that includes a plurality of indications for a corresponding plurality of UEs, an indication of whether the control channel includes the control signal; and
    transmitting, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
  15. The method of claim 14, further comprising:
    transmitting the control signal in accordance with the indication indicating that the control channel includes the control signal for the UE.
  16. The method of claim 14, further comprising:
    determining not to transmit the control signal in accordance with the indication indicating that the control channel does not include the control signal for the receiving UE.
  17. The method of claim 14, further comprising:
    transmitting, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE is located.
  18. The method of claim 14, wherein transmitting the information block comprises:
    transmitting the information block via a common control channel that is different from the control channel.
  19. The method of claim 18, further comprising:
    transmitting, in advance of the information block, a configuration that identifies one or more of time-frequency resources, a modulation order, or an information block size pertaining to the common control channel.
  20. The method of claim 14, wherein transmitting the information block comprises:
    transmitting the information block via a downlink control information (DCI) message within the control channel.
  21. The method of claim 20, further comprising:
    transmitting, in advance of the information block, a configuration that identifies one or more of a common search space, time resources, a radio network temporary identifier (RNTI) , or an information block size pertaining to the DCI message.
  22. The method of claim 14, wherein the indication is a one-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period.
  23. The method of claim 14, wherein the indication is a two-or-more-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period and at least one of whether the control signal is in a common search space or a UE-specific search space, or a set of aggregation levels that includes an aggregation level for the control signal.
  24. The method of claim 14, further comprising:
    transmitting a configuration signal identifying resources for the receiving UE to use to receive the information block.
  25. The method of claim 24, wherein the configuration signal comprises a radio resource control (RRC) signal.
  26. The method of claim 14, wherein the first portion of the transmission period occurs before transmission of the control signal.
  27. An apparatus for wireless communication at a receiving user equipment (UE) , comprising:
    a processor,
    memory in electronic communication with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, during a first portion of a transmission period, an information block that includes a plurality of indications for a corresponding plurality of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE;
    identify that the information block includes an indication for the receiving UE; and
    determine, by the receiving UE and based at least in part on the indication, whether to attempt blind decoding of the control channel during the transmission period.
  28. The apparatus of claim 27, wherein the instructions to determine whether to attempt blind decoding are executable by the processor to cause the apparatus to:
    determine to attempt blind decoding of the control channel based at least in part on the indication indicating that the control channel includes the control signal for the receiving UE during the transmission period.
  29. The apparatus of claim 27, wherein the instructions to determine whether to attempt blind decoding are executable by the processor to cause the apparatus to:
    determine to not attempt blind decoding of the control channel based at least in part on the indication indicating that the control channel does not include the control signal for the receiving UE during the transmission period.
  30. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE is located.
  31. The apparatus of claim 27, wherein the instructions to receive the information block are executable by the processor to cause the apparatus to:
    receive the information block via a common control channel that is different from the control channel.
  32. The apparatus of claim 31, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, in advance of the information block, a configuration that identifies one or more of time-frequency resources, a modulation order, or an information block size pertaining to the common control channel.
  33. The apparatus of claim 27, wherein the instructions to receive the information block are executable by the processor to cause the apparatus to:
    receive the information block via a downlink control information (DCI) message within the control channel.
  34. The apparatus of claim 33, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, in advance of the information block, a configuration that identifies one or more of a common search space, time resources, a radio network temporary identifier (RNTI) , or an information block size pertaining to the DCI message.
  35. The apparatus of claim 27, wherein the indication is a one-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period.
  36. The apparatus of claim 27, wherein the indication is a two-or-more-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period and at least one of whether the control signal is in a common search space or a UE-specific search space, or a set of aggregation levels that includes an aggregation level for the control signal.
  37. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a configuration signal indicating resources to use to receive the information block.
  38. The apparatus of claim 37, wherein the configuration signal comprises a radio resource control (RRC) signal.
  39. The apparatus of claim 27, wherein the first portion of the transmission period occurs before transmission of the control signal.
  40. An apparatus for wireless communication at a base station, comprising:
    a processor,
    memory in electronic communication with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    determine whether a control signal for a receiving user equipment (UE) is to be transmitted over a control channel during a transmission period;
    include, in an information block that includes a plurality of indications for a corresponding plurality of UEs, an indication of whether the control channel includes the control signal; and
    transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
  41. The apparatus of claim 40, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit the control signal in accordance with the indication indicating that the control channel includes the control signal for the UE.
  42. The apparatus of claim 40, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine not to transmit the control signal in accordance with the indication indicating that the control channel does not include the control signal for the receiving UE.
  43. The apparatus of claim 40, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE is located.
  44. The apparatus of claim 40, wherein the instructions to transmit the information block are executable by the processor to cause the apparatus to:
    transmit the information block via a common control channel that is different from the control channel.
  45. The apparatus of claim 44, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, in advance of the information block, a configuration that identifies one or more of time-frequency resources, a modulation order, or an information block size pertaining to the common control channel.
  46. The apparatus of claim 40, wherein the instructions to transmit the information block are executable by the processor to cause the apparatus to:
    transmit the information block via a downlink control information (DCI) message within the control channel.
  47. The apparatus of claim 46, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, in advance of the information block, a configuration that identifies one or more of a common search space, time resources, a radio network temporary identifier (RNTI) , or an information block size pertaining to the DCI message.
  48. The apparatus of claim 40, wherein the indication is a one-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period.
  49. The apparatus of claim 40, wherein the indication is a two-or-more-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period and at least one of whether the control signal is in a common search space or a UE-specific search space, or a set of aggregation levels that includes an aggregation level for the control signal.
  50. The apparatus of claim 40, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit a configuration signal identifying resources for the receiving UE to use to receive the information block.
  51. The apparatus of claim 50, wherein the configuration signal comprises a radio resource control (RRC) signal.
  52. The apparatus of claim 40, wherein the first portion of the transmission period occurs before transmission of the control signal.
  53. An apparatus for wireless communication at a receiving user equipment (UE) , comprising:
    means for receiving, during a first portion of a transmission period, an information block that includes a plurality of indications for a corresponding plurality of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE;
    means for identifying that the information block includes an indication for the receiving UE; and
    means for determining, by the receiving UE and based at least in part on the indication, whether to attempt blind decoding of the control channel during the transmission period.
  54. The apparatus of claim 53, wherein the means for determining whether to attempt blind decoding comprises:
    means for determining to attempt blind decoding of the control channel based at least in part on the indication indicating that the control channel includes the control signal for the receiving UE during the transmission period.
  55. The apparatus of claim 53, wherein the means for determining whether to attempt blind decoding comprises:
    means for determining to not attempt blind decoding of the control channel based at least in part on the indication indicating that the control channel does not include the control signal for the receiving UE during the transmission period.
  56. The apparatus of claim 53, further comprising:
    means for receiving, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE is located.
  57. The apparatus of claim 53, wherein the means for receiving the information block comprises:
    means for receiving the information block via a common control channel that is different from the control channel.
  58. The apparatus of claim 57, further comprising:
    means for receiving, in advance of the information block, a configuration that identifies one or more of time-frequency resources, a modulation order, or an information block size pertaining to the common control channel.
  59. The apparatus of claim 53, wherein the means for receiving the information block comprises:
    means for receiving the information block via a downlink control information (DCI) message within the control channel.
  60. The apparatus of claim 59, further comprising:
    means for receiving, in advance of the information block, a configuration that identifies one or more of a common search space, time resources, a radio network temporary identifier (RNTI) , or an information block size pertaining to the DCI message.
  61. The apparatus of claim 53, wherein the indication is a one-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period.
  62. The apparatus of claim 53, wherein the indication is a two-or-more-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period and at least one of whether the control signal is in a common search space or a UE-specific search space, or a set of aggregation levels that includes an aggregation level for the control signal.
  63. The apparatus of claim 53, further comprising:
    means for receiving a configuration signal indicating resources to use to receive the information block.
  64. The apparatus of claim 63, wherein the configuration signal comprises a radio resource control (RRC) signal.
  65. The apparatus of claim 53, wherein the first portion of the transmission period occurs before transmission of the control signal.
  66. An apparatus for wireless communication at a base station, comprising:
    means for determining whether a control signal for a receiving user equipment (UE) is to be transmitted over a control channel during a transmission period;
    means for including, in an information block that includes a plurality of indications for a corresponding plurality of UEs, an indication of whether the control channel includes the control signal; and
    means for transmitting, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
  67. The apparatus of claim 66, further comprising:
    means for transmitting the control signal in accordance with the indication indicating that the control channel includes the control signal for the UE.
  68. The apparatus of claim 66, further comprising:
    means for determining not to transmit the control signal in accordance with the indication indicating that the control channel does not include the control signal for the receiving UE.
  69. The apparatus of claim 66, further comprising:
    means for transmitting, in advance of the information block, a configuration that identifies a location within the information block where the indication that pertains to the receiving UE is located.
  70. The apparatus of claim 66, wherein the means for transmitting the information block comprises:
    means for transmitting the information block via a common control channel that is different from the control channel.
  71. The apparatus of claim 70, further comprising:
    means for transmitting, in advance of the information block, a configuration that identifies one or more of time-frequency resources, a modulation order, or an information block size pertaining to the common control channel.
  72. The apparatus of claim 66, wherein the means for transmitting the information block comprises:
    means for transmitting the information block via a downlink control information (DCI) message within the control channel.
  73. The apparatus of claim 72, further comprising:
    means for transmitting, in advance of the information block, a configuration that identifies one or more of a common search space, time resources, a radio network temporary identifier (RNTI) , or an information block size pertaining to the DCI message.
  74. The apparatus of claim 66, wherein the indication is a one-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period.
  75. The apparatus of claim 66, wherein the indication is a two-or-more-bit indication that indicates whether the control channel includes the control signal for the receiving UE during the transmission period and at least one of whether the control signal is in a common search space or a UE-specific search space, or a set of aggregation levels that includes an aggregation level for the control signal.
  76. The apparatus of claim 66, further comprising:
    means for transmitting a configuration signal identifying resources for the receiving UE to use to receive the information block.
  77. The apparatus of claim 76, wherein the configuration signal comprises a radio resource control (RRC) signal.
  78. The apparatus of claim 66, wherein the first portion of the transmission period occurs before transmission of the control signal.
  79. A non-transitory computer-readable medium storing code for wireless communication at a receiving user equipment (UE) , the code comprising instructions executable by a processor to:
    receive, during a first portion of a transmission period, an information block that includes a plurality of indications for a corresponding plurality of UEs, each indication in the information block indicating whether a control channel in the transmission period includes a control signal for a respective UE;
    identify that the information block includes an indication for the receiving UE; and
    determine, by the receiving UE and based at least in part on the indication, whether to attempt blind decoding of the control channel during the transmission period.
  80. A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to:
    determine whether a control signal for a receiving user equipment (UE) is to be transmitted over a control channel during a transmission period;
    include, in an information block that includes a plurality of indications for a corresponding plurality of UEs, an indication of whether the control channel includes the control signal; and
    transmit, during a first portion of the transmission period, the information block that includes the indication for the receiving UE.
PCT/CN2019/071135 2019-01-10 2019-01-10 Indication of existing control channel for target user equipment WO2020142980A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071135 WO2020142980A1 (en) 2019-01-10 2019-01-10 Indication of existing control channel for target user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071135 WO2020142980A1 (en) 2019-01-10 2019-01-10 Indication of existing control channel for target user equipment

Publications (1)

Publication Number Publication Date
WO2020142980A1 true WO2020142980A1 (en) 2020-07-16

Family

ID=71520198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071135 WO2020142980A1 (en) 2019-01-10 2019-01-10 Indication of existing control channel for target user equipment

Country Status (1)

Country Link
WO (1) WO2020142980A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11569886B2 (en) 2019-04-01 2023-01-31 Qualcomm Incorporated Network-sensitive transmit diversity scheme

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631007A (en) * 2008-07-14 2010-01-20 大唐移动通信设备有限公司 Method, device and system for transmitting data
US20110299489A1 (en) * 2008-12-11 2011-12-08 So Yeon Kim Method for control channel detection in a multicarrier system
US20180279223A1 (en) * 2017-03-23 2018-09-27 Apple Inc. Control Indicator for Power Saving in a Mobile Wireless Communication Device
CN108886786A (en) * 2016-03-31 2018-11-23 英特尔公司 The blind decoding of device-to-device communication is reduced
US20180368115A1 (en) * 2017-06-16 2018-12-20 Mediatek Inc. Design of group-common pdcch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631007A (en) * 2008-07-14 2010-01-20 大唐移动通信设备有限公司 Method, device and system for transmitting data
US20110299489A1 (en) * 2008-12-11 2011-12-08 So Yeon Kim Method for control channel detection in a multicarrier system
CN108886786A (en) * 2016-03-31 2018-11-23 英特尔公司 The blind decoding of device-to-device communication is reduced
US20180279223A1 (en) * 2017-03-23 2018-09-27 Apple Inc. Control Indicator for Power Saving in a Mobile Wireless Communication Device
US20180368115A1 (en) * 2017-06-16 2018-12-20 Mediatek Inc. Design of group-common pdcch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11569886B2 (en) 2019-04-01 2023-01-31 Qualcomm Incorporated Network-sensitive transmit diversity scheme

Similar Documents

Publication Publication Date Title
US10757583B2 (en) Uplink-based positioning reference signaling in multi-beam systems
US10736099B2 (en) Resolving slot format conflicts for wireless systems
US11711750B2 (en) Control search space overlap indication
US20200205149A1 (en) Pucch carrying harq-a for multi-trp with non-ideal backhaul
EP3881620B1 (en) Control resource set monitoring rules based on active quasi-co-location assumption capabilities of a user equipment (ue)
EP3844903A1 (en) Candidate transmission configuration information states for slot aggregation
US11438887B2 (en) Default beam identification and beam failure detection in cross carrier scheduling
US20190104510A1 (en) Flexible monitoring periodicity for slot format indicator
US11722181B2 (en) Default quasi co-location assumption for cross carrier reference signal triggering
EP3970436B1 (en) Mixed capability signaling
US11729783B2 (en) Soft-combining for control channels
US10993215B2 (en) SPDCCH reuse indication constraint under DMRS sharing
US11483860B2 (en) Wideband control signal transmission
US11265129B2 (en) Dynamic configuration and adaptation of physical downlink control channel candidates
US20200100226A1 (en) Uplink preemption indication
WO2021129594A1 (en) Determining whether an uplink switching gap is to be applied between changes in radio frequency status of a user equipment
US11324030B2 (en) System information block delivery for narrowband user equipment
US10848276B2 (en) Carrier aggregation for downlink throughput enhancement in shortened transmission time interval operation
EP3718243B1 (en) Slot format indicator in frequency division duplexing
US10863520B2 (en) Reference signal tone location shift
US11039465B2 (en) Uplink control information piggybacking in wireless systems
WO2020142980A1 (en) Indication of existing control channel for target user equipment
US20210307054A1 (en) Aperiodic channel state information reference signal rate matching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908714

Country of ref document: EP

Kind code of ref document: A1