WO2023284398A1 - 一种石墨烯改性硅钛纳米聚合物浆料及其制备方法和应用 - Google Patents

一种石墨烯改性硅钛纳米聚合物浆料及其制备方法和应用 Download PDF

Info

Publication number
WO2023284398A1
WO2023284398A1 PCT/CN2022/092762 CN2022092762W WO2023284398A1 WO 2023284398 A1 WO2023284398 A1 WO 2023284398A1 CN 2022092762 W CN2022092762 W CN 2022092762W WO 2023284398 A1 WO2023284398 A1 WO 2023284398A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
modified
silicon
titanium
coupling agent
Prior art date
Application number
PCT/CN2022/092762
Other languages
English (en)
French (fr)
Inventor
马金华
Original Assignee
长沙天源羲王材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙天源羲王材料科技有限公司 filed Critical 长沙天源羲王材料科技有限公司
Priority to US17/950,304 priority Critical patent/US20230039006A1/en
Publication of WO2023284398A1 publication Critical patent/WO2023284398A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/04Epoxynovolacs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • the invention belongs to the technical field of coatings, and in particular relates to a graphene-modified silicon-titanium nanometer polymer slurry and a preparation method and application thereof.
  • the coating materials mainly include zinc-rich, aluminum-rich, iron red, chromate, phosphate, organic corrosion inhibitors, etc.
  • electrochemical protection mechanism coating materials are not competent.
  • Existing coatings generally have too large coating pores, such as epoxy zinc-rich coatings (epoxy iron red, epoxy zinc phosphate, epoxy glass flakes and vinyl glass flakes, etc.), and the main internal fillers are 200-800 mesh , the fineness after grinding is above 40 microns, and the internal microscopic gap is large after the coating film is dried; at the same time, the amount of filler powder is relatively large, especially the zinc-rich type, and the maximum amount can reach more than 90%, resulting in the binder content.
  • epoxy zinc-rich coatings epoxy zinc-rich coatings
  • epoxy zinc phosphate epoxy zinc phosphate
  • the main internal fillers are 200-800 mesh , the fineness after grinding is above 40 microns, and the internal microscopic gap is large after the coating film is dried; at the same time, the amount of filler powder is relatively large, especially the zinc-rich type, and the maximum amount can reach more than 90%, resulting in the binder content.
  • the adhesion is limited, generally only 6-10 MPa, and its anti-permeability to the medium is limited, and water vapor molecules can penetrate
  • the coating film reaches the metal substrate interface, it will affect or even change the adsorption mechanism of the coating, resulting in a great difference between its adhesion (wet adhesion) and the adhesion in the dry state, so that the bond between the coating and the substrate is broken and Loss of adhesion.
  • the coating loses its wet adhesion, it will be peeled off from the metal substrate, affecting the protective performance of the coating.
  • the object of the present invention is to provide a kind of graphene-modified silicon-titanium nanopolymer slurry and its preparation method and application, the graphene-modified silicon-titanium nanopolymer slurry provided by the invention can improve the adhesion of coating performance, thereby further improving the corrosion resistance.
  • the present invention provides the following technical solutions:
  • the invention provides a graphene-modified silicon-titanium nanopolymer slurry, which comprises the following raw materials in parts by mass: 40-60 parts of titanium hydride, 2-5 parts of active silicon dioxide, and silane coupling agent modified graphite 1-2 parts of alkene, 10-30 parts of silicon-modified epoxy resin, 3-6 parts of reactive diluent, 2-10 parts of N-methylpyrrolidone, 1-5 parts of dispersant, 1-5 parts of coupling agent, 0.01-0.1 part of catalyst, 0.1-0.2 part of wetting agent, 0.1-0.2 part of wetting aid.
  • the particle size of the titanium hydride is ⁇ 500 mesh; the particle size of the active silicon dioxide is 2-15 nm.
  • the silane coupling agent in the silane coupling agent-modified graphene is ⁇ -aminopropyltriethoxysilane.
  • the silane coupling agent modified graphene is a silane coupling agent modified graphene with 3 to 7 layers, the thickness of the silane coupling agent modified graphene is 2 to 8 nm, and the silane The sheet diameter of the coupling agent-modified graphene is 0.2-5 ⁇ m.
  • the preparation method of described silane coupling agent modified graphene comprises the following steps:
  • the graphene, propylene glycol methyl ether acetate, silane coupling agent and water are mixed and subjected to ultraviolet radiation to obtain the silane coupling agent modified graphene.
  • the mass ratio of graphene, propylene glycol methyl ether acetate, silane coupling agent and water is (10-300):(5000-10000):(1-20):(1-20).
  • the ultraviolet wavelength of the ultraviolet radiation is 150-300 nm; the time of the ultraviolet radiation is 30-90 minutes.
  • the silicon-modified epoxy resin is one or more of active solvent-free silicon-modified epoxy resins, active silicon-modified novolac epoxy resins and active silazane-modified epoxy resins;
  • the mass of silicon in the silicon-modified epoxy resin is >30%.
  • the dispersant is preferably a polymer containing aromatic rings, polycyclic compounds, amino groups, carboxyl groups or sulfonic acid groups.
  • the reactive diluent is a benzyl glycidyl ether reactive diluent or a phenyl glycidyl ether reactive diluent.
  • the coupling agent is an epoxy silane coupling agent
  • the catalyst is nano-cerium oxide and/or silicon-modified nano-gamma crystal aluminum oxide
  • the wetting agent is fluorine-containing acrylate, and the wetting aid is fluorine-modified acrylate-based siloxane, alkyl polyoxyethylene ether phosphate, alkyl phosphate or siloxane phosphate.
  • the preparation method of the graphene-modified silicon-titanium nano-polymer slurry described in the above-mentioned technical scheme comprises the following steps:
  • Titanium hydride, active silica, silane coupling agent modified graphene, silicon modified epoxy resin, reactive diluent, N-methylpyrrolidone, dispersant, coupling agent, catalyst, wetting agent and wetting Additives are mixed, and low-temperature nanoball milling is performed to obtain graphene-modified silicon-titanium nanopolymer slurry;
  • the temperature of the low-temperature nano ball mill is 50-70°C.
  • the mixing method is stirring, the stirring speed is 800-1000 rpm, and the stirring time is 5-30 min.
  • the speed of the low-temperature nano ball milling is 140-160 rpm, and the time of the low-temperature nano-ball milling is 3-10 h.
  • the material of the grinding balls used in the low-temperature nanoball mill is stainless steel, bearing steel, zirconium beads or agate; the diameter of the grinding balls is 5-15 mm; 20% 8mm diameter grinding balls, 30% 10mm diameter grinding balls, 30% 12mm diameter grinding balls and 10% 15mm diameter grinding balls.
  • the invention provides a graphene-modified silicon-titanium nanopolymer slurry, which comprises the following raw materials in parts by mass: 40-60 parts of titanium hydride, 2-5 parts of active silicon dioxide, and silane coupling agent modified graphite 1-2 parts of alkene, 10-30 parts of silicon-modified epoxy resin, 3-6 parts of reactive diluent, 2-10 parts of N-methylpyrrolidone, 1-5 parts of dispersant, 1-5 parts of coupling agent, 0.01-0.1 part of catalyst, 0.1-0.2 part of wetting agent, 0.1-0.2 part of wetting aid.
  • the hydroxyl group of the silicon-modified epoxy resin combines with the titanium atoms on the surface of the titanium hydride particles to form a Ti-O-C bond
  • the epoxy resin of the silicon-modified epoxy resin The group is combined with the amino group on the surface of the graphene modified by the silane coupling agent to form a C-N bond
  • the silanol group of the silicon-modified epoxy resin is combined with the silanol group of the active silica to form a Si-O-Si bond
  • the silanol compound Silane coupling agent-modified graphene, silicon-modified epoxy resin, active silica and coupling agent
  • Nano-polymer slurry has the characteristics of safe operation, low odor, short ball milling time, high grinding efficiency, high degree of grafting between nano-particles and polymer resin materials, long-term storage stability, hydrophilic and lipophilic properties, and is used as an excellent anti-corrosion coating.
  • Additives can greatly improve the compactness and mechanical properties of the coating, thereby resisting the penetration and erosion of various media, and improving the comprehensive anti-corrosion performance of the coating such as impact resistance, flexibility, and wear resistance.
  • the excellent corrosion resistance of the silane coupling agent-modified graphene, titanium hydride and active silica nanoparticles themselves endows the formed coating Super stability, not easy to react with various media such as acid, alkali and salt, the coating is not easy to consume to form pores, and it is not easy to react with corrosive media to form soluble dissolved salt or cathode loose expansion products, ensuring long-term stability of coating composition and structure It is not damaged; and the silicon-modified epoxy resin polymer forms an organic-inorganic hybrid network with titanium hydride and active silica particles, supplemented by the two-dimensional structure of graphene, so that the internal stress can be dispersed and transmitted, so that The coating has good hardness, toughness and anti-wear and anti-crack properties.
  • the coating has excellent resistance to gas and liquid permeability, and the nano-network structure of silicon-titanium graphene also greatly improves the resistance of the coating to medium permeability, thereby improving the corrosion resistance of the coating.
  • Figure 1 is a diagram of the XQM-20L nano ball mill
  • Fig. 2 is the graphene modified silicon-titanium nanopolymer slurry figure of embodiment 1;
  • Fig. 3 is the particle size distribution figure of the graphene-modified silicon-titanium nanopolymer slurry of embodiment 1;
  • Fig. 4 is the scanning electron micrograph of the graphene-modified silicon-titanium nanopolymer slurry of embodiment 1 at a scale of 0.5 ⁇ m;
  • Fig. 5 is the scanning electron micrograph of the graphene-modified silicon-titanium nanopolymer slurry of embodiment 1 under the scale of 10nm;
  • Fig. 6 is the scanning electron micrograph of the graphene-modified silicon-titanium nanopolymer slurry of embodiment 1 at the 20nm scale;
  • Fig. 7 is the scanning electron micrograph of the graphene-modified silicon-titanium nanopolymer slurry of embodiment 1 at the scale of 1 ⁇ m;
  • Fig. 8 is the scanning electron micrograph of the graphene-modified silicon-titanium nanopolymer slurry of embodiment 1 at a scale of 200nm;
  • Fig. 9 is the scanning electron micrograph of the graphene-modified silicon-titanium nanopolymer slurry of embodiment 1 at a scale of 50nm;
  • Fig. 10 is the scanning electron micrograph of the graphene-modified silicon-titanium nanopolymer slurry of embodiment 1 at a scale of 50nm;
  • Fig. 11 is the scanning electron micrograph of the graphene-modified silicon-titanium nanopolymer slurry of embodiment 1 at the 50nm scale;
  • Fig. 12 is the scanning electron micrograph of the graphene-modified silicon-titanium nano-polymer slurry of embodiment 1 at a scale of 20nm;
  • Fig. 13 is the scanning electron micrograph of the graphene-modified silicon-titanium nanopolymer slurry of embodiment 1 at a scale of 20nm;
  • Fig. 14 is the scanning electron micrograph of the graphene-modified silicon-titanium nanopolymer slurry of embodiment 1 at a scale of 50nm;
  • Fig. 15 is the figure before and after corrosion of the graphene-modified silicon-titanium nanopolymer slurry coating tile of embodiment 1.
  • the invention provides a graphene-modified silicon-titanium nanopolymer slurry, which comprises the following raw materials in parts by mass: 40-60 parts of titanium hydride, 2-5 parts of active silicon dioxide, and silane coupling agent modified graphite 1-2 parts of alkene, 10-30 parts of silicon-modified epoxy resin, 3-6 parts of reactive diluent, 2-10 parts of N-methylpyrrolidone, 1-5 parts of dispersant, 1-5 parts of coupling agent, 0.01-0.1 part of catalyst, 0.1-0.2 part of wetting agent, 0.1-0.2 part of wetting aid.
  • the present invention has no special requirements on the sources of the raw materials used for the preparation, and commercially available products well known to those skilled in the art can be used.
  • the raw materials for preparing the graphene-modified silicon-titanium nanopolymer slurry provided by the present invention include 40-60 parts of titanium hydride, more preferably 45-55 parts.
  • the particle size of the titanium hydride is preferably ⁇ 500 mesh.
  • the titanium hydride selected in the present invention is more brittle than pure titanium and is easier to break.
  • the silicon hydroxyl groups on the surface of the broken titanium hydride nanoparticles react with the epoxy groups in the polymer epoxy resin material to form silicon oxide titanium, so that the hydrogenation
  • the organic-inorganic hybrid polymer is an organic-inorganic hybrid polymer with alternating soft and hard phases formed by grafting titanium particles and epoxy resin, and its uniform distribution.
  • the inorganic particles reach the nanometer level, which can improve the mechanical support, thereby improving the wear resistance of the coating.
  • the raw material for preparing the graphene-modified silicon-titanium nanopolymer slurry provided by the present invention includes 2-5 parts of active silica, more preferably 3-4 parts.
  • the particle size of the active silicon dioxide is 2-15 nm.
  • active silica is used as an abrasive to aid in grinding, and it also contains large silanol groups, which can condense with silane coupling agent-modified epoxy resins and silanol groups of coupling agents, and at the same time condense with the silanol groups on the surface of titanium hydride nanoparticles.
  • the silanol is reacted and grafted to form a three-dimensional silicon-titanium nano-polymer network slurry.
  • the raw material for preparing the graphene-modified silicon-titanium nanopolymer slurry provided by the present invention includes 1-2 parts of silane coupling agent-modified graphene, more preferably 2 parts.
  • the silane coupling agent modified graphene is preferably a silane coupling agent modified graphene with 3 to 7 layers, and the thickness of the silane coupling agent modified graphene is preferably 2 to 8 nm.
  • the sheet diameter of the silane coupling agent-modified graphene is preferably 0.2-5 ⁇ m.
  • the preparation method of described silane coupling agent modified graphene preferably comprises the following steps:
  • the graphene, propylene glycol methyl ether acetate, silane coupling agent and water are mixed and subjected to ultraviolet radiation to obtain the silane coupling agent modified graphene.
  • the silane coupling agent in the silane coupling agent modified graphene is preferably ⁇ -aminopropyltriethoxysilane, more preferably KH-550, A-1100, Z-6011, KBE- 903 or AMEO.
  • the mass ratio of the graphene, propylene glycol methyl ether acetate, silane coupling agent and water is preferably (10 ⁇ 300):(5000 ⁇ 10000):(1 ⁇ 20):(1 ⁇ 20) , more preferably 100:7900:5:5.
  • the ultraviolet wavelength of the ultraviolet radiation is preferably 150-300 nm, more preferably 150-280 nm; the time of the ultraviolet radiation is preferably 30-90 min, more preferably 40-80 min.
  • the ozone generated by ultraviolet light irradiating oxygen oxidizes the surface of graphene.
  • the surface of graphene is oxidized to form carbonyl, carbon hydroxyl, carboxyl, etc., and the carbonyl and carbon hydroxyl produced on the surface of graphene , carboxyl, etc., under high-energy radiation, undergo a graft reaction with the silane hydroxyl formed by hydrolysis of the silane coupling agent to obtain silane coupling agent-modified graphene.
  • graphene is a two-dimensional sheet structure with good shielding properties, and it can be spread in the silicon-titanium-graphene network structure to make the coating more compact and improve the corrosion resistance of the coating.
  • the raw materials for preparing the graphene-modified silicon-titanium nanopolymer slurry provided by the present invention include 10-30 parts of silicon-modified epoxy resin, more preferably 15-25 parts.
  • the silicon-modified epoxy resin is preferably one or more of active solvent-free silicon-modified epoxy resins, active silicon-modified novolak epoxy resins and active silazane-modified epoxy resins , more preferably active solvent-free silicon-modified epoxy resin, active silicon-modified novolac epoxy resin and active silazane-modified epoxy resin; when the silicon-modified epoxy resin is several of the above-mentioned types , the present invention has no special limitation on its proportioning, any proportioning is all right.
  • the silicon-modified epoxy resin is an active solvent-free silicon-modified epoxy resin, an active silicon-modified novolak epoxy resin and an active silazane-modified epoxy resin
  • the active solvent-free silicon-modified epoxy resin The mass ratio of the resin, the active silicon-modified novolak epoxy resin and the active silazane-modified epoxy resin is preferably 6:3:1.
  • the mass content of silicon in the silicon-modified epoxy resin is >30%.
  • R 1 is methyl
  • R 2 is phenyl
  • R 1 is phenyl
  • R 2 is methyl
  • m, n are natural numbers.
  • reaction formula of the silicon-modified novolac epoxy resin and the titanium hydride particle grafting reaction is as follows:
  • the silicon hydroxyl group and hydroxyl group of silicon-modified epoxy resin are grafted with the surface of nano-sized titanium hydride. Because of the surface effect and small volume effect of nano-titanium hydride, the activity of surface atoms is very high. The dangling bonds generated on the surface of Ti atoms themselves act as catalysts Under the above conditions, bond grafting occurs to form Ti-O-C and Ti-O-Si bonds, and the epoxy functional group of the silicon-modified epoxy resin in the above formula can also continue to couple with the surface of the silane coupling agent-modified graphene The amino groups in the agent continue to be grafted, linking titanium hydride and graphene to form a complex network polymer.
  • the raw materials for preparing the graphene-modified silicon-titanium nanopolymer slurry provided by the present invention include 3-6 parts of active diluent, more preferably 4-5 parts.
  • the reactive diluent is benzyl glycidyl ether reactive diluent or phenyl glycidyl ether reactive diluent, more preferably the 692 type reactive diluent (benzyl Glycidyl ether reactive diluent) or 690 type reactive diluent (phenyl glycidyl ether reactive diluent) of Anhui Xinyuan Technology Co., Ltd.
  • the active diluent selected in the present invention can reduce the viscosity of the slurry system, and at the same time, the boiling point is above 200 DEG C, which is safe and environment-friendly.
  • the raw materials for preparing the graphene-modified silicon-titanium nanopolymer slurry provided by the present invention include 2-10 parts of N-methylpyrrolidone, more preferably 3-9 parts.
  • N-methylpyrrolidone is used to dilute the viscosity of the slurry system, and its boiling point is greater than 200°C, which is safe and environmentally friendly.
  • N-methylpyrrolidone is miscible with water, which is good for the general use of water-oil coatings in the later stage, and will not cause incompatibility. content problem.
  • the raw materials for preparing the graphene-modified silicon-titanium nanopolymer slurry provided by the present invention include 1-5 parts of dispersant, more preferably 2-4 parts.
  • the dispersant is preferably a polymer containing aromatic rings, polycyclic compounds, amino groups, carboxyl groups or sulfonic acid groups, more preferably Changshapet VK-DP345 (containing aromatic rings and polycyclic compounds and carboxyl groups) high molecular polymer), Shanghai Tiger Polymer TECH5010 (polycyclic compound polymer containing amino group) or BYK110 BYK chemical (high molecular polymer containing carboxyl and sulfonic acid groups).
  • titanium hydride particles are not refined and are not grafted with silicon-modified epoxy resin, coupling agent, and active silica, because of its relatively large particle size, it is easy to settle, and the added dispersant can be Before the titanium hydride particles are not refined and grafted, they play the role of anchoring and dispersing the titanium hydride and active silica to prevent them from agglomerating and settling, and the dispersant has a good effect on the titanium hydride and the grafted titanium hydride that are not completely covered in the later stage.
  • the surface of active silica still has the function of anchoring and dispersing to prevent its agglomeration and precipitation, so as to ensure the long-term dispersion and storage stability of the final graphene-modified silicon-titanium nano-slurry. self-dispersing.
  • the raw materials for preparing the graphene-modified silicon-titanium nanopolymer slurry provided by the present invention include 1-5 parts of coupling agent, more preferably 2-4 parts.
  • the coupling agent is preferably an epoxy silane coupling agent, more preferably Changshapet VK SL113 or TECH7150 of Shanghai Tigermed Polymer.
  • one end of epoxy silane coupling agent contains silicon hydroxyl group, and one end contains epoxy group, and the curing agent in the coating is amino curing agent, and the epoxy group of epoxy silane coupling agent can be combined with epoxy coating The amino groups in the reaction react and finally solidify together to form a solid network structure.
  • the raw materials for preparing the graphene-modified silicon-titanium nanopolymer slurry provided by the present invention include 0.01-0.1 parts of catalyst, more preferably 0.02-0.08 parts.
  • the catalyst is preferably nano-cerium oxide and/or silicon-modified nano- ⁇ -crystalline alumina, more preferably nano-cerium oxide and silicon-modified nano- ⁇ -crystalline alumina.
  • the mass ratio of nano-cerium oxide and silicon-modified nano-gamma crystal alumina is 2:1.
  • the particle size of the nano-cerium oxide is preferably 1-10 nm.
  • the catalyst can improve the activity of silanol in silicon-modified epoxy resin, coupling agent and active silica, and simultaneously catalyze the breaking of some epoxy groups in silicon-modified epoxy resin to form more hydroxyl groups , grafted with the surface of titanium hydride particles, and grafted with hydroxyl groups of active silica.
  • the raw materials for preparing the graphene-modified silicon-titanium nanopolymer slurry provided by the present invention include 0.1-0.2 parts of wetting agent, more preferably 0.11-0.19 parts.
  • the wetting agent is preferably fluorine-containing acrylate, more preferably Tego 450.
  • the wetting agent can increase the surface wetting and wrapping speed of the silicon-modified epoxy resin, the coupling agent, titanium hydride and active silicon dioxide, and prepare for the subsequent grafting reaction.
  • the raw material for preparing the graphene-modified silicon-titanium nanopolymer slurry provided by the present invention includes 0.1-0.2 parts of wetting aid, more preferably 0.11-0.19 parts.
  • the wetting aid is preferably fluorine-modified acrylate-based siloxane, alkyl polyoxyethylene ether phosphate, alkyl phosphate or siloxane phosphate, more preferably Guangzhou Heng Yu trade T-7588 type or Allnex brand ADDITOL XL180 type.
  • the wetting aid can change the surface energy of the surface of titanium hydride and active silica, can quickly wet the surface of titanium hydride and active silica, and facilitate the spreading and generation of organic polymer compounds and modifiers on the surface. reaction, which ultimately affects the surface energy of the coating.
  • the present invention also provides a preparation method for the graphene-modified silicon-titanium nanopolymer slurry described in the above technical solution, comprising the following steps:
  • the present invention combines titanium hydride, active silica, silane coupling agent modified graphene, silicon modified epoxy resin, active diluent, N-methylpyrrolidone, dispersant, coupling agent, catalyst, wetting agent and Wetting aid mix.
  • the mixing equipment is preferably a high-speed stirring device, more preferably a BGD741 high-speed disperser.
  • titanium hydride active silicon dioxide, silane coupling agent modified graphene, silicon modified epoxy resin, reactive diluent, N-methylpyrrolidone, dispersant, coupling agent, catalyst, wetting agent are preferably used , and wetting aids are added to the high-speed stirring device in the order of liquid first and then solid for mixing.
  • the mixing method is preferably stirring, and the stirring speed is preferably 800-1000 rpm, more preferably 850-950 rpm; the stirring time is preferably 5-30 min, more preferably 10-20 min.
  • the present invention performs low-temperature nano ball milling on the mixed material.
  • the temperature of the low-temperature nano-ball mill is preferably 50-70°C, more preferably 60-70°C; the speed of the low-temperature nano-ball mill is preferably 140-160rpm, more preferably 145-155rpm; the low-temperature The time of nanoball milling is preferably 3 ⁇ 10h, preferably 5 ⁇ 9h;
  • the material of grinding ball used in described low-temperature nanoball milling process is preferably stainless steel, bearing steel, zirconium ball or agate;
  • the diameter of described grinding ball is preferably 5 ⁇ 9h. 15mm, more preferably 5mm, 8mm, 10mm, 12mm and 15mm; the proportioning of the grinding balls is preferably 10% 5mm grinding balls, 20% 8mm grinding balls, 30% 10mm grinding balls, 30% 12mm grinding balls and 10% 15mm grinding ball.
  • the equipment for the low-temperature nano ball mill is preferably a nano ball mill, more preferably an XQM-20L nano ball mill.
  • the structure of the XQM-20L nanometer ball mill is shown in Figure 1, and its right side is a variable frequency refrigerator, which is connected to the ball mill ball mill chamber for temperature control through pipelines.
  • the refrigeration capacity of the refrigerator is 7000-10000W, and the air volume is 2000 ⁇ 5000L/min, the lowest temperature can reach -10°C, the ball mill contains 4 5L stainless steel ball mill tanks, the rotation speed is 0 ⁇ 640rpm, the revolution speed is 0 ⁇ 320rpm, each ball mill tank contains 5 ⁇ 10kg of grinding balls, Material 3 ⁇ 3.5kg.
  • the present invention reduces the viscosity of the system through the compounding of active solvent-free silicon-modified epoxy resin, active diluent and N-methylpyrrolidone, so that it can reach the optimum viscosity for ball milling, thereby ensuring the efficiency of ball milling, while active diluent and N-methylpyrrolidone
  • the boiling point of N-methylpyrrolidone is above 200°C, which can fully guarantee the safety of ball milling and the controllability of VOC volatilization.
  • the grinding balls in the ball mill tank will not be able to fully move due to the high viscosity of the material, resulting in low impact and grinding energy, and the material will not be crushed between the grinding balls and the grinding ball due to the low viscosity. During the collision process, the grinding balls will slide away from the gap quickly, which is not conducive to ball grinding.
  • the viscosity of the compounded materials can effectively increase the collision probability and mechanochemical energy, which is beneficial to shorten the ball milling time. Under the action of the catalyst, The preparation of slurry can be completed quickly at low temperature.
  • the present invention preferably uses a vibrating screen to separate the material from the balls to obtain a slurry.
  • the present invention preferably seals and preserves the slurry in a paint tin bucket.
  • the specification of the paint tin bucket is preferably 36kg/barrel.
  • the catalyst is combined with a wetting agent.
  • the titanium hydride particles are refined. Due to the surface effect and small volume effect of the nano-titanium hydride particles, the titanium atoms on the surface form dangling bonds and Fermi levels It is discontinuous, and it is very easy to react with reactive groups to graft.
  • the silicon-modified epoxy resin and the titanium atoms produced by the titanium particles in the ball milling process undergo a graft reaction.
  • the coupling agent is compounded with the silane coupling agent modified graphene, and the silicon-titanium nanoparticles are fixed on the surface of the graphene.
  • Nano-polymer slurry has the characteristics of safe operation, low odor, short ball milling time, high grinding efficiency, high degree of grafting between nano-particles and polymer resin materials, long-term storage stability, hydrophilic and lipophilic properties, and is used as a heavy-duty anti-corrosion coating
  • the additive of the material can greatly improve the compactness and mechanical properties of the coating, thereby resisting the penetration and erosion of various media, and improving the comprehensive anti-corrosion performance of the coating such as impact resistance, flexibility, and wear resistance.
  • the invention is easy to operate, does not need to add a thickener, is beneficial to slurry ball mill collision grinding, and has high ball mill efficiency. It only takes 4-6 hours to meet the requirements, and there is no precipitation in one year of storage; there is almost no VOC emission in the whole process; unique formula ,
  • the selection of balls of various sizes and the ability to freeze ball mills are beneficial to temperature control and timely unloading of tanks during shutdown, greatly improving efficiency; a large amount of silanol and methylpyrrolidone are grafted on the surface of graphene and titanium particles as the secondary dispersion medium. It can be easily added into various oily resins and water-based emulsions, expanding the scope of application.
  • the present invention also provides the graphene-modified silicon-titanium nanopolymer slurry described in the above technical scheme or the graphene-modified silicon-titanium nanopolymer slurry prepared by the preparation method of the graphene-modified silicon-titanium nanopolymer slurry described in the technical scheme Application of nano-polymer slurry in heavy-duty anti-corrosion coatings.
  • the graphene-modified silicon-titanium nanopolymer slurry in the heavy-duty anti-corrosion coating there is no special limitation on the application of the graphene-modified silicon-titanium nanopolymer slurry in the heavy-duty anti-corrosion coating, and the application methods well known in the art can be adopted.
  • Example 2 The difference from Example 1 is that the raw materials are 45 parts of titanium hydride ( ⁇ 500 mesh), 3 parts of active silica (2-15nm), 2 parts of KH-550 modified graphene, silicon-modified epoxy resin (active Silicon-modified novolac epoxy resin) 25 parts, reactive diluent (692 type reactive diluent (benzyl glycidyl ether reactive diluent) of Anhui Xinyuan Technology Co., Ltd.) 4 parts, N-methylpyrrolidone 5 parts , 3 parts of dispersant (Changshapet VK-DP345), 3 parts of coupling agent (Changshapet VK SL113), catalyst (nano-cerium oxide and silicon-modified nano-crystalline ⁇ -crystalline alumina with a mass ratio of 2:1) 0.05 part, 0.15 part of wetting agent (Digo 450), 0.15 part of wetting aid (Allnex brand ADDITOL XL180 type), and the remaining contents are consistent with Example 1.
  • Example 1 The difference from Example 1 is that the raw materials for preparation are 55 parts of titanium hydride ( ⁇ 500 mesh), 3 parts of active silicon dioxide (2-15nm), 2 parts of KH-550 modified graphene, silicon-modified epoxy resin (active Silicon-modified novolac epoxy resin) 15 parts, reactive diluent (692 type reactive diluent (benzyl glycidyl ether reactive diluent) of Anhui Xinyuan Technology Co., Ltd.) 4 parts, N-methylpyrrolidone 5 parts , 3 parts of dispersant (Changshapet VK-DP345), 3 parts of coupling agent (Changshapet VK SL113), catalyst (nano-cerium oxide and silicon-modified nano-crystalline ⁇ -crystalline alumina with a mass ratio of 2:1) 0.05 part, 0.15 part of wetting agent (Digo 450), 0.15 part of wetting aid (Allnex brand ADDITOL XL180 type), and the remaining contents are consistent with Example 1.
  • the color of the graphene-modified silicon-titanium nanopolymer slurry of embodiment 1 is black, and drop three drops of graphene-modified silicon-titanium nanopolymer slurry in a cup, add 20gDBE solvent, do not It needs to be stirred to disperse by itself, and it does not settle or stratify within 48 hours.
  • the particle diameter of graphene in the graphene-modified silicon-titanium nanopolymer slurry of embodiment 1 is less than 10 ⁇ m, and the graphene-modified silicon-titanium nanopolymer slurry titanium nanoparticles of embodiment 1
  • the average particle size is less than 50nm, the content of graphene is >1.5%, and the content of titanium nanoparticles is >60%.
  • the graphene-modified silicon-titanium nanopolymer slurry in Example 1 is a dispersion of epoxy resin, graphene and titanium through high-resolution transmission electron microscope observation of the sample, and titanium is compounded on graphene.
  • the thickness of graphene is relatively uniform, and the number of layers at the thinnest part is 3 to 5 layers.
  • Example 5 The graphene-modified silicon-titanium nanopolymer slurry and the curing agent (Cardleline's NC2015 type) in Example 1 were cured at a mass ratio of 7:1 to obtain a paint film. Detect the appearance, adhesion, pencil hardness, impact resistance, drying time, and flexibility of the paint film.
  • the specific steps are: spray 1 coat, dry film thickness: 23 ⁇ m ⁇ 2 ⁇ m; start drying after 2 hours: curing temperature 80°C, curing time: 1h, test after standing at room temperature for 4h; test the adhesion (pull-off method), the specific steps are: spray 1 layer, thickness: 100 ⁇ m ⁇ 150um, start drying after 2h of self-drying, curing temperature 80°C, curing time 2h, test after standing at room temperature for 4h; test chemical resistance, alkali resistance, saturated salt water resistance, acid boiling resistance, the specific steps are: spray 3 times, interval 3h, spray 3 times and then self- Start drying after 2 hours of drying: curing temperature 80°C, curing time 2 hours, test after 4 hours at room temperature (the total thickness of each dry film is 70 ⁇ m to 80 ⁇ m, and the total thickness of the dry film after spraying 3 coats is 200 ⁇ m to 240 ⁇ m); neutral resistance Salt spray, heat resistance and abrasion resistance are tested: spray 3 coats with an interval of 3 hours, after
  • Table 2 The test result table of the graphene-modified silicon-titanium nanopolymer slurry paint film of embodiment 1
  • the adhesion of the paint film formed by the graphene-modified silicon-titanium nanopolymer slurry of embodiment 1 is 17MPa, after acid and alkali solution treatment, the paint film has no foaming, no corrosion, no cracking, No falling off, after heat treatment, the paint film has no foaming, no falling off, no cracking, no discoloration, and the wear resistance reaches 0.028g, which shows that the graphene modified silicon-titanium nanopolymer slurry provided by the invention has high Adhesion, high corrosion resistance and high wear resistance.
  • Example 6 The graphene-modified silicon-titanium nano-polymer slurry of Example 1 is coated on the tile, and a high-temperature and high-pressure reactor is used to simulate a corrosion (saturated concentrated brine NaCl) environment to accelerate the corrosion of the tile, and detect the corrosion of the tile under this corrosion environment.
  • the coating is resistant to corrosion, high temperature and high pressure.
  • the test period is 120h, the test gas is air, the test temperature is 130°C and 130°C, and the test pressure is 5MPa.
  • the results of the graphene-modified silicon-titanium nanopolymer slurry-coated tile in Example 1 before and after corrosion are shown in FIG. 15 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于涂料技术领域,具体涉及一种石墨烯改性硅钛纳米聚合物浆料及其制备方法和应用。本发明提供的石墨烯改性硅钛纳米聚合物浆料,添加到高分子涂料中,通过石墨烯超强的抗气体、液体渗透性及硅钛石墨烯网络结构大幅提高所形成涂层的抗介质渗透性;石墨烯、钛及硅纳米颗粒的耐蚀性,赋予涂层超强的稳定性,不易与酸碱盐等各类介质反应,涂层不易消耗形成孔隙,更不易与腐蚀性介质反应生成可溶性溶盐或阴极松疏膨胀产物,涂层成分及结构长期稳定不受破坏;硅钛石墨烯网络结构可以提高涂层的附着力及硬度、韧性、抗磨抗裂性能等综合防腐蚀性能。

Description

一种石墨烯改性硅钛纳米聚合物浆料及其制备方法和应用
本申请要求于2021年07月13日提交中国专利局、申请号为202110788222.4、发明名称为“一种石墨烯改性硅钛纳米聚合物浆料及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于涂料技术领域,具体涉及一种石墨烯改性硅钛纳米聚合物浆料及其制备方法和应用。
背景技术
目前,防腐蚀涂料的应用主要基于两点:涂层的屏蔽和电化学保护机理,其中靠屏蔽作用的涂层材料主要有云铁类、玻璃鳞片类、石墨烯类等;靠电化学保护机理的涂层材料主要有富锌、富铝、铁红、铬酸盐、磷酸盐、有机缓蚀剂等。在涉及直接与化学腐蚀性介质如酸、碱性物质接触的场合,电化学保护机理涂层材料则难以胜任。
现有涂料一般均存在涂层孔隙过大,如环氧富锌涂料(环氧铁红、环氧磷酸锌、环氧玻璃鳞片和乙烯基玻璃鳞片等),内部主要填充料在200~800目,研磨后细度均在40微米以上,涂膜干燥后内部微观间隙大;同时填充料粉剂加入量均较大,特别是富锌类,最大添加量可达90%以上,造成粘结剂含量少,又由于物料之间为物理混合,粘结剂与基材为氢键共价吸附,附着力有限,一般仅6~10兆帕,而且其对介质的抗渗透性有限,水汽分子穿透涂膜达到金属基材界面时,会影响甚至改变涂层的吸附机制,导致其附着力(湿附着力)与干态下的附着力有很大差异,使涂层与基体的结合键断裂而失去附着力。当涂层丧失湿附着力时,将会导致其从金属基体的剥离,影响涂层防护性能的发挥。
发明内容
有鉴于此,本发明的目的在于提供一种石墨烯改性硅钛纳米聚合物浆料及其制备方法和应用,本发明提供的石墨烯改性硅钛纳米聚合物浆料可提高涂料的附着性能,从而进一步提高耐腐蚀性能。
为了实现上述目的,本发明提供了如下技术方案:
本发明提供了一种石墨烯改性硅钛纳米聚合物浆料,包括以下质量份数的制备原料:氢化钛40~60份、活性二氧化硅2~5份、硅烷偶联剂 改性石墨烯1~2份、硅改性环氧树脂10~30份、活性稀释剂3~6份、N-甲基吡咯烷酮2~10份、分散剂1~5份、偶联剂1~5份、催化剂0.01~0.1份、润湿剂0.1~0.2份、润湿助剂0.1~0.2份。
优选的,所述氢化钛的粒径≥500目;所述活性二氧化硅的粒径为2~15nm。
优选的,所述硅烷偶联剂改性石墨烯中硅烷偶联剂为γ-氨丙基三乙氧基硅烷。
优选的,所述硅烷偶联剂改性石墨烯为层数3~7层的硅烷偶联剂改性石墨烯,所述硅烷偶联剂改性石墨烯的厚度为2~8nm,所述硅烷偶联剂改性石墨烯的片径为0.2~5μm。
优选的,所述硅烷偶联剂改性石墨烯的制备方法包括以下步骤:
将石墨烯、丙二醇甲醚醋酸酯、硅烷偶联剂和水混合,进行紫外辐射,得到硅烷偶联剂改性石墨烯。
优选的,所述石墨烯、丙二醇甲醚醋酸酯、硅烷偶联剂和水的质量比为(10~300):(5000~10000):(1~20):(1~20)。
优选的,所述紫外辐射的紫外波长为150~300nm;所述紫外辐射的时间为30~90min。
优选的,所述硅改性环氧树脂为活性无溶剂硅改性环氧树脂、活性硅改性酚醛环氧树脂和活性硅氮烷改性环氧树脂中的一种或几种;所述硅改性环氧树脂中硅的质量>30%。
优选的,所述分散剂优选为含芳香环、多环化合物、氨基、羧基或磺酸基的聚合物。
优选的,所述活性稀释剂为苄基缩水甘油醚类活性稀释剂或苯基缩水甘油醚类活性稀释剂。
优选的,所述偶联剂为环氧基硅烷偶联剂;
所述催化剂为纳米氧化铈和/或硅改性纳米γ晶型氧化铝;
所述润湿剂为含氟丙烯酸酯,所述润湿助剂为氟改性丙烯酸酯基硅氧烷、烷基聚氧乙烯醚磷酸酯盐、烷基磷酸酯盐或硅氧烷磷酸酯。
上述技术方案所述石墨烯改性硅钛纳米聚合物浆料的制备方法,包括以下步骤:
将氢化钛、活性二氧化硅、硅烷偶联剂改性石墨烯、硅改性环氧树脂、活性稀释剂、N-甲基吡咯烷酮、分散剂、偶联剂、催化剂、润湿剂 和润湿助剂混合,进行低温纳米球磨,得到石墨烯改性硅钛纳米聚合物浆料;
所述低温纳米球磨的温度为50~70℃。
优选的,所述混合的方式为搅拌,所述搅拌的速率为800~1000rpm,所述搅拌的时间为5~30min。
优选的,所述低温纳米球磨的速率为140~160rpm,所述低温纳米球磨的时间为3~10h。
优选的,所述低温纳米球磨所用研磨球的材料为不锈钢、轴承钢、锆珠或玛瑙;所述研磨球的直径为5~15mm;所述研磨球的级配为10%直径5mm研磨球、20%直径8mm研磨球、30%直径10mm研磨球、30%直径12mm研磨球和10%直径15mm研磨球。
上述技术方案所述石墨烯改性硅钛纳米聚合物浆料或上述技术方案所述石墨烯改性硅钛纳米聚合物浆料的制备方法制备得到的石墨烯改性硅钛纳米聚合物浆料在重防腐涂料中的应用。
本发明提供了一种石墨烯改性硅钛纳米聚合物浆料,包括以下质量份数的制备原料:氢化钛40~60份、活性二氧化硅2~5份、硅烷偶联剂改性石墨烯1~2份、硅改性环氧树脂10~30份、活性稀释剂3~6份、N-甲基吡咯烷酮2~10份、分散剂1~5份、偶联剂1~5份、催化剂0.01~0.1份、润湿剂0.1~0.2份、润湿助剂0.1~0.2份。本发明提供的石墨烯改性硅钛纳米聚合物浆料中,硅改性环氧树脂的羟基与氢化钛颗粒表面的钛原子结合,形成Ti-O-C键,硅改性环氧树脂的环氧基与硅烷偶联剂改性石墨烯表面的氨基结合,形成C-N键,硅改性环氧树脂的硅羟基与活性二氧化硅的硅羟基结合,形成Si-O-Si键,硅羟基化合物(硅烷偶联剂改性石墨烯、硅改性环氧树脂、活性二氧化硅和偶联剂)与氢化钛颗粒钛原子形成Ti-O-Si键,硅改性环氧树脂的羟基、硅羟基与氢化钛颗粒表面反应形成接枝,同时硅改性环氧树脂另一端的环氧基与硅烷偶联剂改性石墨烯表面的氨基反应接枝,硅改性环氧树脂分子支链中的环氧基与硅烷偶联剂改性石墨烯表面的氨基接枝,经过重重接枝反应互相形成复杂聚合的硅钛石墨烯网络结构,而且在接枝过程中,形成大量开环,生成更多的羟基和硅羟基等基团,可有效提高涂料在基材表面的锚固键合反应,提高涂层附着力(特别是湿膜附着力),在金属上的附着力可达25Mpa以上。
本发明通过优化石墨烯改性硅钛纳米聚合物浆料的配方,使其不需要 高温接枝,在通过通冷气控制温度,在低温球磨过程中即可完成接枝得到石墨烯改性硅钛纳米聚合物浆料,具有操作安全,气味小,球磨时间短,研磨效率高,纳米颗粒与高分子树脂材料接枝程度高,具有长期储存稳定,亲水亲油等特性,作为重防腐涂料的添加剂,可大幅改善涂层致密性和机械性能,从而抵抗各类介质的渗透和侵蚀,提高涂层的抗冲击、柔韧性、耐磨性等综合防腐蚀性能。
本发明提供的石墨烯改性硅钛纳米聚合物浆料中,硅烷偶联剂改性石墨烯、氢化钛及活性二氧化硅纳米颗粒自身所具有的优异的耐蚀性,赋予所形成涂层超强的稳定性,不易与酸碱盐等各类介质反应,涂层不易消耗形成孔隙,更不易与腐蚀性介质反应生成可溶性溶盐或阴极松疏膨胀产物,保证涂层成分及结构长期稳定不受破坏;而且硅改性环氧树脂高分子聚合物与氢化钛及活性二氧化硅颗粒形成有机-无机杂化网络,再辅以石墨烯的二维结构,使内应力得以分散传递,使涂层具有良好的硬度、韧性及抗磨抗裂性能。通过石墨烯超强的屏蔽性,使涂层具有优良抗气体、液体渗透性,而且硅钛石墨烯纳米网络结构也大幅提高了涂层的抗介质渗透性,从而提高涂层的耐腐蚀性能。
说明书附图
图1为XQM-20L纳米球磨机图;
图2为实施例1的石墨烯改性硅钛纳米聚合物浆料图;
图3为实施例1的石墨烯改性硅钛纳米聚合物浆料的粒径分布图;
图4为实施例1的石墨烯改性硅钛纳米聚合物浆料在0.5μm尺度下的扫描电镜图;
图5为实施例1的石墨烯改性硅钛纳米聚合物浆料在10nm尺度下的扫描电镜图;
图6为实施例1的石墨烯改性硅钛纳米聚合物浆料在20nm尺度下的扫描电镜图;
图7为实施例1的石墨烯改性硅钛纳米聚合物浆料在1μm尺度下的扫描电镜图;
图8为实施例1的石墨烯改性硅钛纳米聚合物浆料在200nm尺度下的扫描电镜图;
图9为实施例1的石墨烯改性硅钛纳米聚合物浆料在50nm尺度下的扫描电镜图;
图10为实施例1的石墨烯改性硅钛纳米聚合物浆料在50nm尺度下的扫描电镜图;
图11为实施例1的石墨烯改性硅钛纳米聚合物浆料在50nm尺度下的扫描电镜图;
图12为实施例1的石墨烯改性硅钛纳米聚合物浆料在20nm尺度下的扫描电镜图;
图13为实施例1的石墨烯改性硅钛纳米聚合物浆料在20nm尺度下的扫描电镜图;
图14为实施例1的石墨烯改性硅钛纳米聚合物浆料在50nm尺度下的扫描电镜图;
图15为实施例1的石墨烯改性硅钛纳米聚合物浆料涂层瓦片腐蚀前后图。
具体实施方式
本发明提供了一种石墨烯改性硅钛纳米聚合物浆料,包括以下质量份数的制备原料:氢化钛40~60份、活性二氧化硅2~5份、硅烷偶联剂改性石墨烯1~2份、硅改性环氧树脂10~30份、活性稀释剂3~6份、N-甲基吡咯烷酮2~10份、分散剂1~5份、偶联剂1~5份、催化剂0.01~0.1份、润湿剂0.1~0.2份、润湿助剂0.1~0.2份。
如无特殊说明,本发明对所用制备原料的来源没有特殊要求,采用本领域技术人员所熟知的市售商品即可。
以质量份数计,本发明提供的石墨烯改性硅钛纳米聚合物浆料的制备原料包括氢化钛40~60份,更优选为45~55份。
在本发明中,所述氢化钛的粒径优选为≥500目。
本发明所选用的氢化钛比纯钛更脆,更易于破碎,经破碎后的氢化钛纳米颗粒表面的硅羟基与高分子环氧树脂材料中的环氧基反应形成硅氧钛,从而使氢化钛颗粒与环氧树脂接枝形成的软硬相交替排列的有机无机杂化聚合物,并且其均匀分布,无机颗粒达到纳米级,可以提高受力支撑,从而提高了涂层的耐磨性。
以所述氢化钛的质量份数为基准,本发明提供的石墨烯改性硅钛纳米聚合物浆料的制备原料包括活性二氧化硅2~5份,更优选为3~4份。
在本发明中,所述活性二氧化硅的粒径为2~15nm。
在本发明中,活性二氧化硅作为研磨剂辅助研磨,其还含有大硅羟基,可以与硅烷偶联剂改性环氧树脂和偶联剂的硅羟基缩合,同时与氢化钛纳 米颗粒表面的硅羟基反应接枝,形成三维立体的硅钛纳米聚合物网络状浆料。
以所述氢化钛的质量份数为基准,本发明提供的石墨烯改性硅钛纳米聚合物浆料的制备原料包括硅烷偶联剂改性石墨烯1~2份,更优选为2份。
在本发明中,所述硅烷偶联剂改性石墨烯优选为层数3~7层的硅烷偶联剂改性石墨烯,所述硅烷偶联剂改性石墨烯的厚度优选为2~8nm,所述硅烷偶联剂改性石墨烯的片径优选为0.2~5μm。
在本发明中,所述硅烷偶联剂改性石墨烯的制备方法优选包括以下步骤:
将石墨烯、丙二醇甲醚醋酸酯、硅烷偶联剂和水混合,进行紫外辐射,得到硅烷偶联剂改性石墨烯。
在本发明中,所述硅烷偶联剂改性石墨烯中硅烷偶联剂优选为γ-氨丙基三乙氧基硅烷,更优选为KH-550、A-1100、Z-6011、KBE-903或AMEO。
在本发明中,所述γ-氨丙基三乙氧基硅烷的结构式如下式所示:
Figure PCTCN2022092762-appb-000001
在本发明中,所述石墨烯、丙二醇甲醚醋酸酯、硅烷偶联剂和水的质量比优选为(10~300):(5000~10000):(1~20):(1~20),更优选为100:7900:5:5。
在本发明中,所述紫外辐射的紫外波长优选为150~300nm,更优选为150~280nm;所述紫外辐射的时间优选为30~90min,更优选为40~80min。
在石墨烯改性的过程中,紫外光辐射氧气产生的臭氧对石墨烯表面进行氧化,在水分子环境下石墨烯表面氧化形成羰基、碳羟基、羧基等,石墨烯表面产生的羰基、碳羟基、羧基等在高能辐射下与硅烷偶联剂水解形成的硅羟基发生接枝反应得到硅烷偶联剂改性石墨烯。
在本发明中,改性石墨烯形成的极性基团如下式(1)所示:
Figure PCTCN2022092762-appb-000002
KH-550改性石墨烯形成的极性基团与硅羟基接枝改性如下式(2)所示:
Figure PCTCN2022092762-appb-000003
本发明中,石墨烯是二维片状结构,具有很好的屏蔽性,将其平铺于硅钛石墨烯网络结构中,能够使涂层更加致密,提高涂层的耐腐蚀性能。
以所述氢化钛的质量份数为基准,本发明提供的石墨烯改性硅钛纳米聚合物浆料的制备原料包括硅改性环氧树脂10~30份,更优选为15~25份。
在本发明中,所述硅改性环氧树脂优选为活性无溶剂硅改性环氧树脂、活性硅改性酚醛环氧树脂和活性硅氮烷改性环氧树脂中的一种或几种,更优选为活性无溶剂硅改性环氧树脂、活性硅改性酚醛环氧树脂和活性硅氮烷改性环氧树脂;当所述硅改性环氧树脂为上述种类中的几种时,本发明对其配比没有特殊限定,任意配比均可。当所述硅改性环氧树脂为活性无溶剂硅改性环氧树脂、活性硅改性酚醛环氧树脂和活性硅氮烷改性环氧树脂时,所述活性无溶剂硅改性环氧树脂、活性硅改性酚醛环氧树脂和活性硅氮烷改性环氧树脂的质量比优选为6﹕3﹕1。
在本发明中,所述硅改性环氧树脂中硅的质量含量>30%。
在本发明中,所述活性硅氮烷改性环氧树脂的结构式如下式(3)所示:
Figure PCTCN2022092762-appb-000004
(3),其中,R 1为甲基,R 2为苯基,或R 1为苯基,R 2为甲基,m,n为
自然数。
在本发明中,所述活性硅改性酚醛环氧树脂的结构式如下式(4)所示:
Figure PCTCN2022092762-appb-000005
(4),其中,R 1为甲基,R 2为苯基,或R 1为苯基,R 2为甲基,m,n为自然数。
在本发明中,所述活性无溶剂硅改性环氧树脂的结构式如下式(5)所示:
Figure PCTCN2022092762-appb-000006
其中,
Figure PCTCN2022092762-appb-000007
m、n为自然数。
在本发明中,所述硅改性酚醛环氧树脂与所述氢化钛颗粒接枝反应的反应式如下所示:
Figure PCTCN2022092762-appb-000008
硅改性环氧树脂的硅羟基和羟基与纳米化的氢化钛表面发生接枝,纳米氢化钛因为表面效应以及小体积效应,表面原子活性十分高,Ti原子表面自身产生的悬键在催化剂作用下,发生键合接枝形成Ti-O-C和Ti-O-Si键,而且上式中硅改性环氧树脂的环氧基官能团还可以继续与硅烷偶联剂改性石墨烯表面的偶联剂中的氨基继续接枝,将氢化钛与石墨烯连接起来,形成复杂的网络聚合物。
以所述氢化钛的质量份数为基准,本发明提供的石墨烯改性硅钛纳米聚合物浆料的制备原料包括活性稀释剂3~6份,更优选为4~5份。
在本发明中,所述活性稀释剂为苄基缩水甘油醚类活性稀释剂或苯基缩水甘油醚类活性稀释剂,更优选为安徽新远科技股份有限公司的692型活性稀释剂(苄基缩水甘油醚类活性稀释剂)或安徽新远科技股份有限 公司的690型活性稀释剂(苯基缩水甘油醚类活性稀释剂)。
本发明中选用的活性稀释剂能降低浆料体系的粘度,同时沸点在200℃上,安全环保。
以所述氢化钛的质量份数为基准,本发明提供的石墨烯改性硅钛纳米聚合物浆料的制备原料包括N-甲基吡咯烷酮2~10份,更优选为3~9份。
本发明中采用N-甲基吡咯烷酮稀释浆料体系的粘度,而且其沸点大于200℃,安全环保,同时N-甲基吡咯烷酮与水互溶,对后期水油涂料通用有好处,不会造成不相容的问题。
以所述氢化钛的质量份数为基准,本发明提供的石墨烯改性硅钛纳米聚合物浆料的制备原料包括分散剂1~5份,更优选为2~4份。
在本发明中,所述分散剂优选为含芳香环、多环化合物、氨基、羧基或磺酸基的聚合物,更优选为长沙佩特VK-DP345(含芳香环和多环化合物及羧基的高分子聚合物)、上海泰格聚合物TECH5010(含氨基的多环化合物类高分子聚合物)或毕克化学的BYK110(含羧基和磺酸基的高分子聚合物)。
本发明中,在氢化钛颗粒未细化及未与硅改性环氧树脂、偶联剂、活性二氧化硅接枝前,由于其颗粒度比较大,易于沉降,而添加的分散剂可以在氢化钛颗粒未细化及未进行接枝前,对氢化钛及活性二氧化硅起到锚固分散的作用,防止其发生团聚和沉降,而且分散剂对后期未完全包覆接枝的氢化钛和活性二氧化硅表面依然有锚固分散防止其团聚沉淀的作用,从而保证最终的石墨烯改性硅钛纳米浆料的长期分散性和储存稳定性,储存一年不沉降,易于在各类溶剂中自分散。
以所述氢化钛的质量份数为基准,本发明提供的石墨烯改性硅钛纳米聚合物浆料的制备原料包括偶联剂1~5份,更优选为2~4份。
在本发明中,所述偶联剂优选为环氧基硅烷偶联剂,更优选为长沙佩特VK SL113或上海泰格聚合物的TECH7150。
在本发明中,环氧基硅烷偶联剂的一端含硅羟基,一端含环氧基,涂料中的固化剂为氨基固化剂,环氧基硅烷偶联剂的环氧基可以和环氧涂料中的氨基反应,最终一起固化,形成固体网络结构。
以所述氢化钛的质量份数为基准,本发明提供的石墨烯改性硅钛纳米聚合物浆料的制备原料包括催化剂0.01~0.1份,更优选为0.02~0.08份。
在本发明中,所述催化剂优选为纳米氧化铈和/或硅改性纳米γ晶型氧化铝,更优选为纳米氧化铈和硅改性纳米γ晶型氧化铝。当催化剂为纳米 氧化铈和硅改性纳米γ晶型氧化铝时,所述纳米氧化铈和硅改性纳米γ晶型氧化铝的质量比为2:1。在本发明中,所述纳米氧化铈的粒径优选为1~10nm。
本发明中,催化剂可以提高硅改性环氧树脂、偶联剂和活性二氧化硅中的硅羟基活性,同时催化硅改性环氧树脂中的部分环氧基断开,形成更多的羟基,与氢化钛颗粒表面接枝,同时与活性二氧化硅的羟基接枝。
以所述氢化钛的质量份数为基准,本发明提供的石墨烯改性硅钛纳米聚合物浆料的制备原料包括润湿剂0.1~0.2份,更优选为0.11~0.19份。
在本发明中,所述润湿剂优选为含氟丙烯酸酯,更优选为迪高450。
在本发明中,润湿剂可以提高硅改性环氧树脂、偶联剂与氢化钛、活性二氧化硅的表面润湿包裹速度,为后续接枝反应作准备。
以所述氢化钛的质量份数为基准,本发明提供的石墨烯改性硅钛纳米聚合物浆料的制备原料包括润湿助剂0.1~0.2份,更优选为0.11~0.19份。
在本发明中,所述润湿助剂优选为氟改性丙烯酸酯基硅氧烷、烷基聚氧乙烯醚磷酸酯盐、烷基磷酸酯盐或硅氧烷磷酸酯,更优选为广州恒宇贸易T-7588型或Allnex品牌ADDITOL XL180型。
本发明中,润湿助剂可以改变氢化钛及活性二氧化硅表面的表面能,能快速润湿氢化钛及活性二氧化硅表面,便于有机高分子化合物及改性剂在表面的铺展和发生反应,最终影响涂层的表面能。
本发明还提供了上述技术方案所述石墨烯改性硅钛纳米聚合物浆料的制备方法,包括以下步骤:
将氢化钛、活性二氧化硅、硅烷偶联剂改性石墨烯、活性无溶剂硅改性环氧树脂、活性稀释剂、N-甲基吡咯烷酮、分散剂、偶联剂、催化剂、润湿剂、和润湿助剂混合,进行低温纳米球磨,得到石墨烯改性硅钛纳米聚合物浆料;所述低温纳米球磨的温度为50~70℃。
本发明将氢化钛、活性二氧化硅、硅烷偶联剂改性石墨烯、硅改性环氧树脂、活性稀释剂、N-甲基吡咯烷酮、分散剂、偶联剂、催化剂、润湿剂和润湿助剂混合。
在本发明中,所述混合的设备优选为高速搅拌装置,更优选为BGD741高速分散机。
本发明优选将氢化钛、活性二氧化硅、硅烷偶联剂改性石墨烯、硅改性环氧树脂、活性稀释剂、N-甲基吡咯烷酮、分散剂、偶联剂、催化剂、润湿剂、和润湿助剂按照先液体再固体的顺序加入高速搅拌装置进行混 合。
在本发明中,所述混合的方式优选为搅拌,所述搅拌的速率优选为800~1000rpm,更优选为850~950rpm;所述搅拌的时间优选为5~30min,更优选为10~20min。
混合后,本发明对所述混合后的物料进行低温纳米球磨。
在本发明中,所述低温纳米球磨的温度优选为50~70℃,更优选为60~70℃;所述低温纳米球磨的速率优选为140~160rpm,更优选为145~155rpm;所述低温纳米球磨的时间优选为3~10h,优选为5~9h;所述低温纳米球磨过程中所用研磨球的材料优选为不锈钢、轴承钢、锆珠或玛瑙;所述研磨球的直径优选为5~15mm,更优选为5mm、8mm、10mm、12mm和15mm;所述研磨球的配比优选为10%5mm研磨球、20%8mm研磨球、30%10mm研磨球、30%12mm研磨球和10%15mm研磨球。
在本发明中,所述低温纳米球磨的设备优选为纳米球磨机,更优选为XQM-20L纳米球磨机。在本发明中,所述XQM-20L纳米球磨机的结构如图1所示,其右侧为变频制冷机,通过管道联接至球磨机球磨室进行温度控制,制冷机制冷量为7000~10000W,风量为2000~5000L/分钟,最低温度可达-10℃,该球磨机含4个5L的不锈钢球磨罐,自转速度为0~640rpm,公转速度为0~320rpm,每个球磨罐装研磨球5~10kg,物料3~3.5kg。
本发明通过采用活性无溶剂硅改性环氧树脂、活性稀释剂及N-甲基吡咯烷酮的复配降低了体系粘度,使其达到球磨的最佳粘度,从而保证球磨效率,同时活性稀释剂及N-甲基吡咯烷酮的沸点在200℃以上,能充分保证球磨的安全性和VOC挥发可控性。
在本发明所述原料配比范围内,不会因物料粘度过高致使球磨罐内的研磨球不能充分动起来,导致撞击研磨能量小,也不会因粘度太小,使物料在研磨球与研磨球碰撞的过程中会从间隙迅速滑走,不利于球磨。在本发明所述磨球配比和珠料比(物料和磨球的配比)范围内,配合物料的粘度能有效提高碰撞机率和机械化学能量,有利于缩短球磨时间,在催化剂作用下,能低温快速地完成浆料的制备。
球磨完成后,本发明优选采用振动筛将物料和磨球分离,得到浆料。
得到浆料后,本发明优选将浆料用涂料铁皮桶密封保存。本发明中,所述涂料铁皮桶的规格优选为36kg/桶。
在本发明中,催化剂配合润湿剂组合,在球磨过程中,氢化钛颗粒被 细化,由于纳米氢化钛颗粒的表面效应和小体积效应,其表面的钛原子形成悬键及费米能级的不连续,极易与可反应基团反应接枝,硅改性环氧树脂与钛颗粒在球磨过程中产生的钛原子进行接枝反应,环氧树脂中可反应基团硅羟基和羟基与新生钛颗粒表面钛原子发生键合反应,同时活性纳米二氧化硅的硅羟基及硅烷偶联剂的活性基团同时与硅改性环氧树脂及钛颗粒的钛原子产生锚固接枝,进一步改性接枝稳定钛金属颗粒,在不断的球磨破碎过程中不断的进行改性接枝,最终在钛金属达到纳米级目标细度后,充分接枝环氧树脂高分子材料的钛金属颗粒通过硅烷偶联剂与硅烷偶联剂改性石墨烯进行复合,将硅钛纳米颗粒固定在石墨烯表面。
本发明通过优化石墨烯改性硅钛纳米聚合物浆料的配方,使其不需要高温接枝,在通过通冷气控制温度,在低温球磨过程中即可完成接枝得到石墨烯改性硅钛纳米聚合物浆料,具有操作安全,气味小,球磨时间短,研磨效率高,纳米颗粒与高分子树脂材料接枝程度高,具有长期储存稳定,亲水亲油等特性,作为重防腐涂层材料的添加剂,可大幅改善涂层致密性和机械性能,从而抵抗各类介质的渗透和侵蚀,提高涂层的抗冲击、柔韧性、耐磨性等综合防腐蚀性能。
本发明操作简单,无需外加增稠剂,有利于浆料球磨碰撞研磨,球磨效率高,仅需4~6h即可达到要求,并且储存一年无任何沉淀;全程几乎无VOC排放;独特的配方、各类尺寸磨球的优选及可冷冻球磨,有利于控制温度及停机及时开罐卸料,大幅提高效率;石墨烯及钛颗粒表面接枝大量硅羟基和甲基吡咯烷酮作为次要分散介质,可方便添加入各类油性树脂和水性乳液当中,扩大了应用范围。
本发明还提供了上述技术方案所述石墨烯改性硅钛纳米聚合物浆料或上述技术方案所述石墨烯改性硅钛纳米聚合物浆料的制备方法制备得到的石墨烯改性硅钛纳米聚合物浆料在重防腐涂料中的应用。本发明对所述石墨烯改性硅钛纳米聚合物浆料在重防腐涂料中的应用方式没有特殊限定,采用本领域熟知的应用方式即可。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。
实施例1
将100g石墨烯与7900g丙二醇甲醚醋酸酯混合搅拌均匀,滴加5gKH-550及5g去离子水后,继续搅拌均匀,将混合液用500×300mm的 不锈钢托盘盛放,置于254nm波段的紫外线清洗机内进行紫外高能辐射曝照60min,得到KH-550改性石墨烯;
将氢化钛(≥500目)50份、活性二氧化硅(2~15nm)3份、KH-550改性稀释剂(安徽新远科技股份有限公司的692型活性稀释剂(苄基缩水甘油醚类活性稀释剂))4份、N-甲基吡咯烷酮5份、分散剂(长沙佩特VK-DP345)3份、偶联剂(长沙佩特VK SL113)3份、催化剂(质量比为2∶1的纳米氧化铈和硅改性纳米γ晶型氧化铝)0.05份、润湿剂(迪高450)0.15份、润湿助剂(Allnex品牌ADDITOL XL180型)0.15份,按照先液体后固体的顺序加入到BGD741高速分散机中,以900rpm的速度搅拌10min,使物料混合均匀,再将物料转移至XQM-20L纳米球磨机的球磨罐内,每个球磨罐内装有8kg不锈钢研磨球,其中10%5mm研磨球、20%8mm研磨球、30%10mm研磨球、30%12mm研磨球和10%15mm研磨球,和3.2kg上述混合后的物料,并以150rpm在70℃下进行球磨6h(运行5min停1min),然后通过振动筛将磨球和物料进行分离,得到石墨烯改性硅钛纳米聚合物浆料,最后将其装入36kg/桶的涂料铁皮桶中进行密封保存。
实施例2
与实施例1的区别在于制备原料为氢化钛(≥500目)45份、活性二氧化硅(2~15nm)3份、KH-550改性石墨烯2份、硅改性环氧树脂(活性硅改性酚醛环氧树脂)25份、活性稀释剂(安徽新远科技股份有限公司的692型活性稀释剂(苄基缩水甘油醚类活性稀释剂))4份、N-甲基吡咯烷酮5份、分散剂(长沙佩特VK-DP345)3份、偶联剂(长沙佩特VK SL113)3份、催化剂(质量比为2∶1的纳米氧化铈和硅改性纳米γ晶型氧化铝)0.05份、润湿剂(迪高450)0.15份、润湿助剂(Allnex品牌ADDITOL XL180型)0.15份,其余内容与实施例1一致。
实施例3
与实施例1的区别在于制备原料为氢化钛(≥500目)55份、活性二氧化硅(2~15nm)3份、KH-550改性石墨烯2份、硅改性环氧树脂(活性硅改性酚醛环氧树脂)15份、活性稀释剂(安徽新远科技股份有限公司的692型活性稀释剂(苄基缩水甘油醚类活性稀释剂))4份、N-甲基吡咯烷酮5份、分散剂(长沙佩特VK-DP345)3份、偶联剂(长沙佩特VK SL113)3份、催化剂(质量比为2∶1的纳米氧化铈和硅改性纳米γ晶型氧化铝)0.05份、润湿剂(迪高450)0.15份、润湿助剂(Allnex品 牌ADDITOL XL180型)0.15份,其余内容与实施例1一致。
表征及测试:
1)对实施例1的石墨烯改性硅钛纳米聚合物浆料进行颜色比对、分散性和沉降性检验.
由图2可知,实施例1的石墨烯改性硅钛纳米聚合物浆料的颜色为黑色,并滴三滴石墨烯改性硅钛纳米聚合物浆料在一次杯中,加入20gDBE溶剂,不需要搅拌即自行分散,且48h不沉降,不分层。
2)对实施例1的石墨烯改性硅钛纳米聚合物浆料的粒径和含量进行检验(外委),检测结果如图3~14所示。
由图3~14可知,实施例1的石墨烯改性硅钛纳米聚合物浆料中石墨烯的粒径小于10μm,实施例1的石墨烯改性硅钛纳米聚合物浆料钛纳米颗粒的平均粒径小于50nm,石墨烯的含量>1.5%,钛纳米颗粒的含量>60%。
3)扫描电镜
样品处理:将实施例1的石墨烯改性硅钛纳米聚合物浆料采用乙醇稀释104倍,在40KHz频率下超声30min得到样品分散液。将分散液静置6小时后,取10uL上层分散液滴涂至高分辨透射电镜用微栅上,于室温干燥12小时,适当遮盖防止灰尘污染,进样观察,其结果如图3~14所示。
由图4~6可知,经过高分辨透射电镜对样品进行观察可知实施例1的石墨烯改性硅钛纳米聚合物浆料为环氧树脂、石墨烯和钛的分散体,钛复合在石墨烯上,石墨烯厚度较均匀,最薄处层数为3~5层。
4)对实施例1的石墨烯改性硅钛纳米聚合物浆料进行成分分析,其结果如表1所示。
表1 实施例1的石墨烯改性硅钛纳米聚合物浆料成分分析表
元素 线类型 wt.% 原子百分比
C K线系 9.20 27.90
O K线系 2.19 4.99
Al K线系 0.08 0.11
Si K线系 0.49 0.64
Ca K线系 0.22 0.20
Ti K线系 81.57 62.02
Cr K线系 1.27 0.89
Fe K线系 4.98 3.25
总量   100.00 100.00
由表1可知,实施例1的石墨烯改性硅钛纳米聚合物浆料的成分中Ti原子最多,占62.03%,其次为C原子,占27.9%,O原子占4.99%。
5)将实施例1的石墨烯改性硅钛纳米聚合物浆料与固化剂(卡德莱的NC2015型)以质量比7:1进行固化,得到漆膜。对漆膜外观、附着力、铅笔硬度、耐冲击性、干燥时间、柔韧性进行检测,具体步骤为:喷涂1道,干膜厚度:23μm±2μm;自干2h后开始h烘干:固化温度80℃,固化时间:1h,在常温放置4h后测试;对附着力(拉开法)进行检测,具体步骤为:喷涂1道,厚度:100μm~150um,自干2h后开始烘干,固化温度80℃,固化时间2h,在常温放置4h后测试;对耐化学试剂、耐碱性、耐饱和盐水、耐酸煮性进行检测,具体步骤为:喷涂3道,间隔3h,喷涂3道后先自干2h后开始烘干:固化温度80℃,固化时间2h,在常温放置4h后测试(每道干膜总厚度70μm~80μm,喷涂3道后干膜总厚度200μm~240μm);对耐中性盐雾、耐热性、耐磨性进行检测:喷涂3道,间隔3h,喷涂3道后先自干2h后开始烘干:固化温度80℃,固化时间:2h,在常温放置4h后测试(每道干膜总厚度:70μm~80μm,喷涂3道后干膜总厚度200μm~240μm),检测结果如表2所示。
表2 实施例1的石墨烯改性硅钛纳米聚合物浆料漆膜的测试结果表
Figure PCTCN2022092762-appb-000009
Figure PCTCN2022092762-appb-000010
由表2可知,实施例1的石墨烯改性硅钛纳米聚合物浆料形成的漆膜的附着力为17MPa,经酸、碱溶液处理后,漆膜无起泡、无腐蚀、无开裂、无脱落,经热处理后,漆膜无起泡、无脱落、无开裂、无变色,耐磨性达到0.028g,说明本发明提供的石墨烯改性硅钛纳米聚合物浆料成膜后具有高附着力、高耐腐蚀性和高耐磨性。
6)将实施例1的石墨烯改性硅钛纳米聚合物浆料涂在瓦片上,用高温高压反应釜模拟腐蚀(饱和浓盐水NaCl)环境,加速对瓦片腐蚀,并检测此腐蚀环境下涂层耐腐蚀、高温、高压性能。试验周期为120h,试验气体为空气,试验温度为130℃和130℃,试验压力为5MPa。实施例1的石墨烯改性硅钛纳米聚合物浆料涂层瓦片在腐蚀前后的结果如图15所示。
由图15可知,实施例1的石墨烯改性硅钛纳米聚合物浆料涂在瓦片上后,在经过上述腐蚀环境处理后,无变化,仍保持良好的结合力。
尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。

Claims (16)

  1. 一种石墨烯改性硅钛纳米聚合物浆料,包括以下质量份数的制备原料:氢化钛40~60份、活性二氧化硅2~5份、硅烷偶联剂改性石墨烯1~2份、硅改性环氧树脂10~30份、活性稀释剂3~6份、N-甲基吡咯烷酮2~10份、分散剂1~5份、偶联剂1~5份、催化剂0.01~0.1份、润湿剂0.1~0.2份、润湿助剂0.1~0.2份。
  2. 根据权利要求1所述的石墨烯改性硅钛纳米聚合物浆料,其特征在于,所述氢化钛的粒径≥500目;所述活性二氧化硅的粒径为2~15nm。
  3. 根据权利要求1所述的石墨烯改性硅钛纳米聚合物浆料,其特征在于,所述硅烷偶联剂改性石墨烯中硅烷偶联剂为γ-氨丙基三乙氧基硅烷。
  4. 根据权利要求1或3所述的石墨烯改性硅钛纳米聚合物浆料,其特征在于,所述硅烷偶联剂改性石墨烯为层数3~7层的硅烷偶联剂改性石墨烯,所述硅烷偶联剂改性石墨烯的厚度为2~8nm,所述硅烷偶联剂改性石墨烯的片径为0.2~5μm。
  5. 根据权利要求1或3所述的石墨烯改性硅钛纳米聚合物浆料,其特征在于,所述硅烷偶联剂改性石墨烯的制备方法包括以下步骤:
    将石墨烯、丙二醇甲醚醋酸酯、硅烷偶联剂和水混合,进行紫外辐射,得到硅烷偶联剂改性石墨烯。
  6. 根据权利要求5所述的石墨烯改性硅钛纳米聚合物浆料,其特征在于,所述石墨烯、丙二醇甲醚醋酸酯、硅烷偶联剂和水的质量比为(10~300):(5000~10000):(1~20):(1~20)。
  7. 根据权利要求5所述的石墨烯改性硅钛纳米聚合物浆料,其特征在于,所述紫外辐射的紫外波长为150~300nm;所述紫外辐射的时间为30~90min。
  8. 根据权利要求1所述的石墨烯改性硅钛纳米聚合物浆料,其特征在于,所述硅改性环氧树脂为活性无溶剂硅改性环氧树脂、活性硅改性酚醛环氧树脂和活性硅氮烷改性环氧树脂中的一种或几种;所述硅改性环氧树脂中硅的质量含量>30%。
  9. 根据权利要求1所述的石墨烯改性硅钛纳米聚合物浆料,其特征在于,所述分散剂为含芳香环、多环化合物、氨基、羧基或磺酸基的聚合物。
  10. 根据权利要求1所述的石墨烯改性硅钛纳米聚合物浆料,其特征在于,所述活性稀释剂为苄基缩水甘油醚类活性稀释剂或苯基缩水甘油醚类活性稀释剂。
  11. 根据权利要求1所述的石墨烯改性硅钛纳米聚合物浆料,其特征在于,所述偶联剂为环氧基硅烷偶联剂;
    所述催化剂为纳米氧化铈和/或硅改性纳米γ晶型氧化铝;
    所述润湿剂为含氟丙烯酸酯,所述润湿助剂为氟改性丙烯酸酯基硅氧烷、烷基聚氧乙烯醚磷酸酯盐、烷基磷酸酯盐或硅氧烷磷酸酯。
  12. 权利要求1~11任一项所述石墨烯改性硅钛纳米聚合物浆料的制备方法,其特征在于,包括以下步骤:
    将氢化钛、活性二氧化硅、硅烷偶联剂改性石墨烯、硅改性环氧树脂、活性稀释剂、N-甲基吡咯烷酮、分散剂、偶联剂、催化剂、润湿剂和润湿助剂混合,进行低温纳米球磨,得到石墨烯改性硅钛纳米聚合物浆料;
    所述低温纳米球磨的温度为50~70℃。
  13. 根据权利要求12所述的制备方法,其特征在于,所述混合的方式为搅拌,所述搅拌的速率为800~1000rpm,所述搅拌的时间为5~30min。
  14. 根据权利要求12所述的制备方法,其特征在于,所述低温纳米球磨的速率为140~160rpm,所述低温纳米球磨的时间为3~10h。
  15. 根据权利要求12所述的制备方法,其特征在于,所述低温纳米球磨所用研磨球的材料为不锈钢、轴承钢、锆珠或玛瑙;所述研磨球的直径为5~15mm;所述研磨球的级配为10%直径5mm研磨球、20%直径8mm研磨球、30%直径10mm研磨球、30%直径12mm研磨球和10%直径15mm研磨球。
  16. 权利要求1~11任一项所述石墨烯改性硅钛纳米聚合物浆料或权利要求12~15任一项所述石墨烯改性硅钛纳米聚合物浆料的制备方法制备得到的石墨烯改性硅钛纳米聚合物浆料在重防腐涂料中的应用。
PCT/CN2022/092762 2021-07-13 2022-05-13 一种石墨烯改性硅钛纳米聚合物浆料及其制备方法和应用 WO2023284398A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/950,304 US20230039006A1 (en) 2021-07-13 2022-09-22 Graphene-modified silicon-titanium nano-polymer slurry, and preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110788222.4A CN113416469B (zh) 2021-07-13 2021-07-13 一种石墨烯改性硅钛纳米聚合物浆料及其制备方法和应用
CN202110788222.4 2021-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/950,304 Continuation US20230039006A1 (en) 2021-07-13 2022-09-22 Graphene-modified silicon-titanium nano-polymer slurry, and preparation method and use thereof

Publications (1)

Publication Number Publication Date
WO2023284398A1 true WO2023284398A1 (zh) 2023-01-19

Family

ID=77720762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092762 WO2023284398A1 (zh) 2021-07-13 2022-05-13 一种石墨烯改性硅钛纳米聚合物浆料及其制备方法和应用

Country Status (3)

Country Link
US (1) US20230039006A1 (zh)
CN (1) CN113416469B (zh)
WO (1) WO2023284398A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416469B (zh) * 2021-07-13 2022-03-18 长沙天源羲王材料科技有限公司 一种石墨烯改性硅钛纳米聚合物浆料及其制备方法和应用
CN116515369A (zh) * 2023-05-31 2023-08-01 高州市名洋化工有限公司 一种耐磨涂料及其制备方法
CN116334933B (zh) * 2023-05-31 2023-07-21 广东荣昌纺织实业有限公司 一种适用于三防篷布的高强度阻燃聚合物改性涂覆料及其制备方法
CN116713166A (zh) * 2023-06-08 2023-09-08 山东钢铁集团日照有限公司 一种trt叶片异构涂层的制备方法
CN116928492B (zh) * 2023-07-06 2024-01-30 辽宁华益管业有限责任公司 一种煤矿用涂层复合钢管

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104592864A (zh) * 2015-02-15 2015-05-06 江苏金陵特种涂料有限公司 石墨烯改性钛纳米高分子合金换热器底漆的制备方法
US20170225233A1 (en) * 2016-02-09 2017-08-10 Aruna Zhamu Chemical-free production of graphene-reinforced inorganic matrix composites
CN107090205A (zh) * 2017-06-06 2017-08-25 湖南邦泽科技有限公司 一种静电辅助石墨烯插层包覆钛纳米聚合物的制备方法
US20190169443A1 (en) * 2017-12-04 2019-06-06 Hamilton Sundstrand Corporation Increasing anti-corrosion through nanocomposite materials
CN110343443A (zh) * 2019-06-10 2019-10-18 宜昌市三峡天润纳米材料工程技术研究中心有限公司 一种石墨烯涂料及其制备方法
CN111662611A (zh) * 2020-06-18 2020-09-15 国家能源集团宁夏煤业有限责任公司 具有防腐功能的复合涂料及其制备方法
CN112390956A (zh) * 2021-01-19 2021-02-23 泽铱(佛山)工业技术有限公司 一种羟基有机钛聚合物及其制备方法和应用
CN113416469A (zh) * 2021-07-13 2021-09-21 长沙天源羲王材料科技有限公司 一种石墨烯改性硅钛纳米聚合物浆料及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104592864A (zh) * 2015-02-15 2015-05-06 江苏金陵特种涂料有限公司 石墨烯改性钛纳米高分子合金换热器底漆的制备方法
US20170225233A1 (en) * 2016-02-09 2017-08-10 Aruna Zhamu Chemical-free production of graphene-reinforced inorganic matrix composites
CN107090205A (zh) * 2017-06-06 2017-08-25 湖南邦泽科技有限公司 一种静电辅助石墨烯插层包覆钛纳米聚合物的制备方法
US20190169443A1 (en) * 2017-12-04 2019-06-06 Hamilton Sundstrand Corporation Increasing anti-corrosion through nanocomposite materials
CN110343443A (zh) * 2019-06-10 2019-10-18 宜昌市三峡天润纳米材料工程技术研究中心有限公司 一种石墨烯涂料及其制备方法
CN111662611A (zh) * 2020-06-18 2020-09-15 国家能源集团宁夏煤业有限责任公司 具有防腐功能的复合涂料及其制备方法
CN112390956A (zh) * 2021-01-19 2021-02-23 泽铱(佛山)工业技术有限公司 一种羟基有机钛聚合物及其制备方法和应用
CN113416469A (zh) * 2021-07-13 2021-09-21 长沙天源羲王材料科技有限公司 一种石墨烯改性硅钛纳米聚合物浆料及其制备方法和应用

Also Published As

Publication number Publication date
US20230039006A1 (en) 2023-02-09
CN113416469A (zh) 2021-09-21
CN113416469B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2023284398A1 (zh) 一种石墨烯改性硅钛纳米聚合物浆料及其制备方法和应用
US11878909B2 (en) Method for preparing modified graphene and method for preparing slurry containing the modified graphene
CN103555016B (zh) 一种耐高温耐磨石墨烯涂料及其制备方法
CN108531006A (zh) 石墨烯增强的水性防腐底漆及其制备方法
CN110918108A (zh) 一种MXene复合纳米材料及其制备方法和应用
TW201742895A (zh) 抗腐蝕複合層
CN109943169B (zh) 一种纳米复合海洋防腐涂料及其制备方法
CN112391122A (zh) 一种钛基高分子合金耐高温防腐涂料及其制备方法
Xie et al. Anti-corrosion and self-healing behaviors of waterborne polyurethane composite coatings enhanced via chitosan-modified graphene oxide and phosphate intercalated hydrotalcite
CN101353491A (zh) 防腐蚀烟气脱硫、脱硝、除尘涂料及其生产方法
Song et al. Tribological behavior of polyurethane-based composite coating reinforced with TiO2 nanotubes
CN115044279B (zh) 二维聚多巴胺增强水性环氧复合防腐涂料及其制法与应用
CN113061358A (zh) 一种抗渗透长效防腐涂料及其制备方法和应用
CN110305504A (zh) 一种杂化碳纳米管增强耐磨减摩陶瓷涂层及制备方法
CN112457698A (zh) 一种石墨烯修饰的锌粉、制备方法及其在富锌防腐涂料中的应用
CN112390956A (zh) 一种羟基有机钛聚合物及其制备方法和应用
Wang et al. Modified montmorillonite synergizes with Co-MOF@ PBO fabric to improve the wear resistance of PBO/phenolic resin composites
Gao et al. Bifunctional oxygen-vacancy abundant perovskite nanosheets for improving protective performance of epoxy coatings
CN113637338B (zh) 改性六方氮化硼、水性抗氧防腐涂层及其制备方法
CN109181480B (zh) 一种包含改性二氧化钛的环氧富锌涂料及制备方法和用途
CN112210262B (zh) 一种导热涂料及其制备方法
CN113150644A (zh) 一种pH响应石墨烯基固体缓蚀剂自修复涂料的制备方法
TWI816400B (zh) 回收鋁材助磨劑
CN112029314A (zh) 一种纳米填料及其制备方法与应用
CN110760239A (zh) 一种复合纳米材料增强的水性环氧底漆及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE