WO2023284393A1 - 一种高强韧汽车车轮用钢、薄壁汽车车轮及其制备方法 - Google Patents

一种高强韧汽车车轮用钢、薄壁汽车车轮及其制备方法 Download PDF

Info

Publication number
WO2023284393A1
WO2023284393A1 PCT/CN2022/092179 CN2022092179W WO2023284393A1 WO 2023284393 A1 WO2023284393 A1 WO 2023284393A1 CN 2022092179 W CN2022092179 W CN 2022092179W WO 2023284393 A1 WO2023284393 A1 WO 2023284393A1
Authority
WO
WIPO (PCT)
Prior art keywords
automobile wheel
strength
steel
walled
cooling
Prior art date
Application number
PCT/CN2022/092179
Other languages
English (en)
French (fr)
Inventor
李贤君
张文良
罗平
姜超
王德成
孙立壮
Original Assignee
北京机电研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京机电研究所有限公司 filed Critical 北京机电研究所有限公司
Priority to PL443769A priority Critical patent/PL443769A1/pl
Publication of WO2023284393A1 publication Critical patent/WO2023284393A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3093Fe as the principal constituent with other elements as next major constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/34Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tyres; for rims
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to the field of steel research. More specifically, it relates to a steel for high-strength and tough automobile wheels and a thin-walled automobile wheel.
  • the publication number is CN107052720A
  • the Chinese invention patent application titled "A Manufacturing Method for Steel Wheels and Wheels Formed by This Method” adopts medium-low carbon and low-alloy steel, and controls the temperature and The cooling method after forming is used to obtain automobile rims and spokes with a tensile strength Rm of about 600MPa, and then the rims and spokes are tailor-welded into automobile wheels.
  • Rm tensile strength
  • the structure and properties of welds are different from those of rims and spokes, which is not conducive to the fatigue life and service life of integral automotive wheels.
  • the publication number is CN109355577A, and the Chinese invention patent application titled "A Preparation Method for 1200MPa Heat-treated Wheels" uses low-carbon and low-alloy steel materials with poor hardenability as automobile wheel materials, and is prepared by conventional automobile wheel forming methods Car wheel blanks are then subjected to salt bath quenching to obtain car wheels with an overall tensile strength Rm greater than 1200MPa. Because salt bath quenching has the characteristics of serious pollution, unenvironmental protection and easy to cause safety accidents, it is restricted by the country; and after salt bath quenching, a layer of salt is formed on the surface of the workpiece, which needs to be cleaned before subsequent tempering or partitioning treatment.
  • the salt will decompose during the tempering or partitioning process, and the decomposition products will pollute the environment, damage human health and the heating furnace. Therefore, for the process requirements that need to be cooled to a certain temperature and immediately partitioned, it is impossible to achieve large-scale continuous heat treatment production .
  • the publication number is CN109355576A
  • the Chinese invention patent application titled "Preparation Method for 1500MPa Heat-treated Wheels” uses low-carbon low-alloy steel with poor hardenability as the material of automobile wheels, and adopts conventional automobile wheel forming methods to prepare automobile wheels. After the wheel blank is quenched with boiling water, an automobile wheel with an overall tensile strength Rm greater than 1500MPa is obtained.
  • the low-hardenability low-carbon low-alloy steel material is used as the car wheel material
  • boiling water is used as the quenching medium, and the car wheel is cooled quickly but the quenching temperature cannot be accurately controlled, making it difficult to achieve stable batch production.
  • the present invention provides a high-strength and tough automobile wheel steel, a thin-walled automobile wheel and a preparation method thereof.
  • the first object of the present invention is to provide a high-strength and tough steel for automobile wheels.
  • the second object of the present invention is to provide a high-strength and thin-walled automobile wheel.
  • the third object of the present invention is to provide a method for preparing a high-strength and tough thin-walled automobile wheel.
  • the present invention provides a high-strength and tough steel for automobile wheels.
  • a high-strength and toughness automobile wheel steel according to the present invention its components include: C: 0.1%-0.25%, Mn: 1.5%-2.5%, Si: 0.8%-1.7%, Cr: 0.8%- 2.5%, Mo: 0.1% ⁇ 0.5%, Ni: 0.3% ⁇ 0.6%; Cu: 0.1% ⁇ 1.5%, Nb ⁇ 0.1%, Ti ⁇ 0.2%; V ⁇ 0.2%; P ⁇ 0.015%, S ⁇ 0.005 %, the rest is Fe and unavoidable impurity elements; among them, the sum of the mass percentages of Mn and Cr is not higher than 4.5%.
  • the contents of O and N in the composition of the steel for automobile wheels are not higher than 0.005% by mass percentage.
  • the composition of the steel for automobile wheels includes one or more of V, Nb and Ti in terms of mass percentage, and the sum of the percentages is not higher than 0.4%.
  • the microstructure of the steel for automobile wheels is a multiphase structure of bainite, martensite and retained austenite.
  • carbon element C a typical basic strong hardening element in steel, improves the strength and hardenability of steel.
  • the thermal stability and mechanical stability of celite can improve the plasticity and toughness of automobile steel wheels; but with the increase of C content, the weldability and toughness of steel will decrease. Therefore, the carbon content of C for high-strength and tough automobile wheels is 0.1 % to 0.25%.
  • Manganese element Mn a typical alloying element in steel, it is a solute element that replaces solid solution, and exerts a strong solid solution strengthening effect.
  • Tensile body decomposition temperature Ar1 improve the hardenability of steel.
  • the content of Mn element in the steel is higher than 3%, segregation zone of Mn element will appear, which is not conducive to the toughness and fatigue performance of the steel. Therefore, the Mn content of high-strength and tough automobile wheel steel is 1.5%-2.5%.
  • Silicon element Si is a common solute element that replaces solid solution in steel. It exerts a strong solid solution strengthening effect, can inhibit the precipitation of carbides, and is easy to obtain carbide-free bainite and lath retained austenite. At the same time, it is beneficial to During the partitioning process, C atoms are partitioned from the martensite phase to the austenite phase, which improves the thermal and mechanical stability of the retained austenite and ensures good strength and toughness matching.
  • the Si content is too high, the precipitation tendency of ferrite will increase, and the steel plate will be easily oxidized during the heating process. Therefore, the Si content of the steel for high-strength and tough automobile wheels is 0.8% to 1.7%.
  • Chromium element Cr It can exert a large solid solution strengthening effect and can improve the hardenability of steel, but when the Cr element is too high, it will cause hot cracking in the steel. Therefore, the Cr content of high-strength automobile wheel steel is 0.8 % to 2.5%.
  • Molybdenum element Mo It can significantly improve the hardenability of steel, and the degree of delaying the phase transformation at medium temperature is obviously less than that at high temperature, so that bainite structure can be obtained in a wide cooling range, and the matching of strength and toughness can be improved, but the price is relatively high. It is expensive, therefore, the Mo content of high-strength and tough automobile wheel steel is 0.1% to 0.5%.
  • Nickel element Ni lower the bainite transition temperature, easy to obtain lath or lower bainite structure with fine structure, help to match strength and toughness, can significantly improve impact toughness, and reduce ductile-brittle transition temperature, but the price is more expensive, so ,
  • the Ni content of high-strength and tough automobile wheel steel is 0.3% to 0.6%.
  • Copper element Cu can precipitate ⁇ -Cu particles in supersaturated solid solution, and has a strong precipitation strengthening effect.
  • Cu can improve the corrosion resistance of steel, but if the Cu content is too high, hot embrittlement will easily occur. Therefore, the Cu content of high-strength and tough automobile wheel steel is 0.1% to 1.5%.
  • the microalloying elements in the steel are one or more of Nb, Ti, V, and the sum of their mass percentages is not higher than 0.4%.
  • Impurity elements P and S Common impurity elements in steel.
  • P element is easy to segregate at the grain boundary, forming cold and brittle, reducing the toughness of steel.
  • S element is easy to form inclusions with other elements, especially MnS with low melting point, forming hot embrittlement and reducing the toughness of steel. Therefore, the content of P and S should be reduced as much as possible in high-strength and tough automobile wheel steel.
  • Gas elements O and N Common gas elements in steel are easy to combine with other elements to form inclusions, reducing the toughness and fatigue performance of steel. Therefore, the content of O and N should be reduced as much as possible in high-strength automotive wheel steel.
  • the present invention provides a high-strength and tough thin-walled automobile wheel prepared from the above-mentioned high-strength and tough steel for automobile wheels.
  • the rim of the high-strength and tough thin-walled automobile wheel is 4-5mm, and the spoke thickness is 8-9mm.
  • the weight of the high-strength and tough thin-walled automobile wheel is reduced by 30% to 50% compared with conventional automobile steel wheels of the same type.
  • the microstructure of the high-strength and tough thin-walled automobile wheel is a multiphase structure of bainite, martensite and retained austenite.
  • the high-strength and tough thin-walled automobile wheel is strengthened and toughened by integral heat treatment.
  • the present invention provides a method for preparing a high-strength and tough thin-walled automobile wheel.
  • a kind of preparation method of high-strength toughness thin-walled automobile wheel of the present invention comprises the following steps:
  • Step 1 the components of the high-strength and toughness steel for automobile wheels of the present invention are prepared by conventional steelmaking and steel rolling processes to prepare steel plates with a thickness of 4 to 5 mm and 8 to 9 mm;
  • Step 2 heating the steel plate obtained in step 1 to 880-950° C. for 10-30 minutes, then cooling to room temperature with the furnace temperature, and performing annealing treatment;
  • Step 3 preparing the 4-5mm steel plate obtained in step 2 according to the conventional production process of the wheel to prepare the rim of the automobile wheel;
  • Step 4 preparing automobile wheel spokes with the 8-9mm steel plate obtained in step 2 according to the conventional production process of the wheel;
  • Step 5 tailor welding the rim and spokes obtained in step 3 and step 4 to prepare a thin-walled automobile wheel blank
  • Step 6 heating the automobile wheel blank obtained in step 5 to 850-1000° C. for 10-30 minutes, and cooling to 150-240° C. after being released from the furnace;
  • Step 7 Heat the automobile wheel blank cooled to 150-240°C in step 6 to 260-400°C and keep it warm for 20-90 minutes for partitioning treatment, and then cool to room temperature to obtain a high-strength and tough thin-walled automobile wheel.
  • the preparation of the automobile wheel rim in step 3 includes the following steps: blanking, rolling, flash butt welding, annealing, rolling, end cutting, compound rounding, flaring, rolling, expanding and shaping, and punching the door hole .
  • the preparation of the automobile wheel spokes in step 4 includes the following steps: blanking, blanking, punching center holes, bolt holes, spinning, blasting holes, expanding bolt holes, and turning.
  • the mass percentages of welding wire components used in flash butt welding in step 3 and tailor welding in step 5 are: C: 0.1% to 0.2%, Mn: 1.5% to 2.0%, Si: 0.8% to 1.5% , Cr: 0.8% to 1.5%, Mo: 0.3% to 0.5%, Ni: 0.2% to 0.6%.
  • the continuous cooling method is selected from one or both of air cooling and mist cooling.
  • step 6 the vehicle wheel rotates around its center line while cooling, and the spokes and rims of the vehicle wheel have different wind or spray amounts.
  • step 7 one or more of air cooling, air cooling, and mist cooling are used for cooling to room temperature.
  • the steel for high-strength and tough automobile wheels provided by the invention has high strength, high toughness and high fatigue resistance (high fatigue crack growth threshold).
  • the present invention adopts air-cooling and/or mist-cooling quenching methods instead of salt bath quenching, which has the advantages of safety and environmental protection.
  • the yield strength of the high-strength and tough thin-walled automobile wheel provided by the invention is Re>1100MPa, tensile strength Rm>1400MPa, elongation ⁇ >16%, impact toughness Akv (20°C)>50J, fatigue crack growth threshold ⁇ Kth>13MPa m 1/2 , can significantly increase the service life of the wheel.
  • the thin-walled automobile wheel provided by the invention adopts an integral heat treatment method, and the structure and performance of the thin-walled automobile wheel are more uniform.
  • the thin-walled automobile wheel provided by the invention is light in weight and can reduce the energy consumption and exhaust gas emission of the automobile.
  • the present invention utilizes air cooling and spray cooling to make the thin-walled Automotive wheels are suitable for continuous, large-scale heat treatment production.
  • Figure 1 is the continuous cooling transformation curve of low hardenability automobile wheel steel.
  • F represents ferrite
  • P represents pearlite
  • B represents bainite
  • M represents martensite
  • Ac1 represents the starting temperature of austenite transformation
  • Ac3 represents the ending temperature of austenite transformation
  • Ms represents the starting temperature of martensite transformation
  • Mf represents the martensite finish transformation temperature.
  • Figure 2 is the time-varying curve of temperature from 950 °C to 150 °C at the central position of a plate with a thickness of 9 mm by air blowing to 150 °C.
  • the opposite number of the slope in the figure represents the cooling rate, and the unit is °C/s.
  • Figure 3 is the curve of temperature change with time for spray cooling from 950°C to 150°C at the central position of a plate with a thickness of 9mm.
  • the opposite number of the slope in the figure represents the cooling rate, and the unit is °C/s.
  • Fig. 4 is the continuous cooling transition curve of the high-strength and toughness automobile wheel steel of the present invention.
  • F represents ferrite
  • P represents pearlite
  • B represents bainite
  • M represents martensite
  • Ac1 represents the starting temperature of austenite transformation
  • Ac3 represents the ending temperature of austenite transformation
  • Ms represents the starting temperature of martensite transformation
  • Mf represents the martensite finish transformation temperature.
  • Fig. 5 is a structure diagram of the automobile wheel of the present invention.
  • Fig. 6 is an optical microstructure photograph taken by an optical microscope of the automobile wheel of the present invention.
  • Fig. 7 is a scanning electron micrograph of the automobile wheel of the present invention, wherein B represents bainite, and M represents martensite.
  • Fig. 8 is a photo of the fine structure of the automobile wheel of the present invention taken by transmission electron microscope.
  • Austenite For ferrous metal materials, it refers to the solid solution of carbon in ⁇ -Fe. Austenite has good plasticity, low strength and certain toughness.
  • Martensite For ferrous metal materials, it is a supersaturated solid solution of carbon in ⁇ -Fe. This structure can usually be obtained by rapid cooling in medium and high carbon steels. High strength and hardness are one of the main characteristics of martensite in steel.
  • Ferrite It is an interstitial solid solution in which carbon is dissolved in ⁇ -Fe, and is often represented by the symbol F. With a body-centered cubic lattice, its ability to dissolve carbon is very low.
  • Pearlite It is a mechanical mixture composed of ferrite and cementite, represented by the symbol "P".
  • the average carbon content of the pearlite structure in carbon steel is about 0.77%. Its mechanical properties are between ferrite and cementite, that is, its strength and hardness are significantly higher than ferrite, and its plasticity and toughness are worse than ferrite, but much better than cementite.
  • Hardenability The ability of steel materials to obtain the depth of hardened layer under certain quenching conditions is mainly affected by the content of carbon and alloy elements in austenite.
  • Solid solution strengthening the solid solution of alloying elements in the base metal causes a certain degree of lattice distortion, thereby increasing the strength of the alloy.
  • the solute atoms integrated into the solid solution cause lattice distortion, which increases the resistance of dislocation movement and makes slip difficult, thus increasing the strength and hardness of the alloy solid solution.
  • Solid Solution Refers to an alloy phase in which solute atoms dissolve into a solvent lattice while remaining solvent-like.
  • Continuous cooling transformation curve when the iron and steel material is continuously cooled after austenitization, the relationship curve between the time, temperature, product, transformation amount and hardness of the supercooled austenite transformation start and transformation termination, and the cooling rate is called continuous cooling transition curve.
  • Hydrogen-induced delayed fracture A phenomenon in which brittle fracture of steel suddenly occurs after a certain period of time under the action of static stress. It is the result of the interaction between material-environment-stress and is a form of hydrogen-induced material deterioration.
  • Partitioning treatment the steel after austenitization is quenched to a certain temperature between the martensite start transformation temperature and the end transformation temperature to form a certain amount of martensite structure, and then isothermal at a certain temperature for a period of time to make The carbon atoms in the martensite structure are allocated to the untransformed retained austenite, and the operation of performing the above isothermal process is called partition treatment.
  • Quenching of steel refers to heating the steel to a temperature above the critical temperature Ac3 (hypoeutectoid steel) or Ac1 (hypereutectoid steel), keeping it warm for a period of time to make it fully or partially austenitized, and then cooling at a rate greater than the critical cooling rate A heat treatment process in which the cooling rate is rapidly cooled to below Ms (or isothermal near Ms) for martensite (or bainite) transformation.
  • Blanking refers to the operation process of removing materials of a certain shape, quantity or quality from the whole or a whole batch of materials after determining the shape, quantity or quality of the materials required to make a certain equipment or product.
  • Blanking refers to the process of separating the required material from the plate base material with a press or other machine.
  • Example 1 Design and improvement of steel components for automobile wheels
  • Table 1 shows the mass percentages of each component of low hardenability automobile wheel steel similar to that described in CN109355577A in the technical background, and the rest are iron elements and unavoidable impurity elements.
  • Figure 1 is the continuous cooling transformation curve of low hardenability automobile wheel steel.
  • Figure 1 shows that after complete austenitization of low hardenability steel for automobile wheels, when the cooling rate is less than 0.1°C/s, the microstructure at room temperature is ferrite and pearlite complex structure, and when the cooling rate is greater than 0.1°C/s s and less than 2°C/s, the room temperature structure obtained is ferrite, pearlite and bainite multiphase structure, when the cooling rate is greater than 2°C/s and less than 3°C/s, the room temperature structure obtained is ferrite and bainite Tenite complex structure, when the cooling rate is greater than 3°C/s and less than 80°C/s, the room temperature structure is ferrite, bainite and martensite complex structure, when the cooling rate is greater than 80°C/s and less than
  • the room temperature microstructure obtained at 150°C/s is a composite structure of bainite and martensite, and the room temperature microstructure obtained when the cooling rate is greater than 150°C/s is martensite.
  • Fig. 2 is the temperature variation curve with time during the center position of the 9mm thick plate is blown from 950°C to room temperature. It can be seen from Figure 2 that under air cooling conditions, the cooling rate at the center of the 9mm thick plate between 950°C and 500°C is about 3.5°C/s, and the cooling rate at the center of the 9mm thick plate between 500°C and 150°C The cooling rate is about 1.4°C/s.
  • the cooling condition of air cooling the low hardenability automobile wheel steel obtains a ferrite and bainite composite structure at room temperature, rather than a bainite/martensite composite phase or martensite
  • the single-phase structure cannot meet the high-strength performance requirements of automobile wheels. Therefore, the quenching and cooling of steel for automobile wheels with low hardenability cannot adopt the cooling method of air cooling, but the cooling method of salt bath quenching or boiling water quenching in the technical background is required.
  • Fig. 3 is a graph showing the change of temperature with time in the process of spray cooling the central position of a 9mm thick plate from 950°C to room temperature. It can be seen from Figure 3 that under spray cooling conditions, the cooling rate at the center of the 9mm-thick plate between 950°C and 430°C is about 4.8°C/s, and the cooling rate at the center of the 9mm-thick plate between 430°C and 150°C The cooling rate is about 4.2°C/s.
  • the low-hardenability automobile wheel steel obtains a multi-phase structure of ferrite, bainite and a small amount of martensite at room temperature, rather than a bainite/martensite composite structure.
  • Fig. 4 is the continuous cooling transformation curve of the steel for automobile wheel according to the embodiment of the present invention.
  • Figure 4 shows that: after the steel for automobile wheels of the present invention is fully austenitized, the room temperature microstructure obtained when the cooling rate is less than 0.1°C/s is ferrite, pearlite and bainite multiphase microstructure, and when the cooling rate is slightly When the cooling rate is greater than 0.1°C/s and less than 60°C/s, the room temperature structure is bainite and martensite composite structure, and when the cooling rate is greater than 60°C/s, the room temperature structure is martensite.
  • Fig. 2 air cooling and Fig.
  • the steel for automobile wheels provided by the present invention can be quenched by air cooling or spray cooling, and the room temperature structure obtained under the air cooling and spray cooling is Bainian Body/martensite complex phase structure, which can meet the high strength requirements of automobile steel wheels.
  • Embodiment 2 the production method of high-strength toughness thin-walled automobile wheel
  • the high-strength and tough thin-walled automobile wheel is prepared, and the structure diagram of the prepared high-strength and tough thin-walled automobile wheel is as shown in Figure 5.
  • Automobile steel wheels are about 40% lighter than steel wheels.
  • the production method comprises the following steps:
  • Step 1 According to the components in Table 2, conventional steelmaking and rolling processes are used to obtain 4mm and 9mm plates by rolling.
  • Step 2 Heat the 4mm and 9mm plates to 950°C, keep them warm for 15 minutes, and then cool to room temperature with the furnace.
  • Step 3 Cut the 4mm steel plate according to the size of the rim and cut the material (cutting), roll the plate material into a cylinder (rolling), weld the butt joint of the cylinder by flash resistance welding (flash butt welding), and The welding seam is annealed, the welding part is rolled (rolled) by rolling equipment, the two open ends of the cylinder are cut (end cut), restored to a round shape (rerounded), and the open ends of the cylinder are rolled (rolled) by a belling machine. The two open ends are expanded (flared), the cylinder is rolled (rolled) by a rolling machine, expanded and shaped by a shaping machine, and finally the door hole is punched to prepare the wheel rim.
  • the annealing process is as follows: heat the welded cylinder to 930°C, keep it warm for 10 minutes, and then cool it to room temperature with the furnace.
  • the mass percentages of the welding wire used in flash butt welding are: C: 0.18%, Mn: 1.8%, Si: 0.8%, Cr: 1.2%, Mo: 0.3%, Ni: 0.6%.
  • Step 4 the 9mm steel plate is prepared through blanking, blanking, center hole and bolt hole punching, spinning, air punching hole, bolt hole expansion, and turning to prepare wheel spokes.
  • Step 5 Tailor welding the rim and spokes obtained in Step 3 and Step 4 to prepare a thin-walled automobile wheel blank.
  • the mass percentage of welding wire used in tailor welding is: C: 0.18%, Mn: 1.8%, Si: 0.8%, Cr: 1.2%, Mo: 0.3%, Ni: 0.6%.
  • Step 6 Heat the automobile wheel blank obtained in step 5 to 920° C. and keep it warm for 25 minutes. After coming out of the furnace, cool the wheel to (200-220)° C. by means of compound cooling. Due to the different thicknesses of the spokes (9mm) and the rims (4mm), the car wheels are quenched and cooled by a combined cooling method, that is, the spokes of the car wheels are cooled by spraying and the rims of the wheels are cooled by spraying air, which can ensure Uniform cooling of the spokes and rim. Roller hearth type protective atmosphere continuous heat treatment furnace is adopted, and the heating furnace has been heated to 920°C before the wheel blank enters the furnace. The distance between the wheel and the wheel is 50mm, and the distance between the wheel and the furnace wall is 300mm. During the quenching process, the wheel keeps rotating around its center line.
  • Step 7 Heat the automobile wheel blank cooled to (200-220)°C in step 6 to 280°C, keep it warm for 45 minutes, and air-cool to room temperature after being out of the furnace to obtain a high-strength and tough thin-walled automobile wheel.
  • the roller hearth type continuous heat treatment furnace is adopted.
  • the heating furnace has been heated to 280°C before the car wheels enter the furnace.
  • the distance between the car wheels and the wheels is 50mm, and the distance between the car wheels and the air guide wall is 350mm.
  • Industrial fans are used to cool the wheels to room temperature. Obtain high-strength and thin-walled automobile wheels.
  • the mechanical properties of the thin-walled automobile wheel obtained by the present invention are excellent, the specific yield strength Re>1100MPa, the tensile strength Rm>1400MPa, the elongation ⁇ >16%, and the impact toughness Akv (20 °C)>50J , the fatigue crack growth threshold value ⁇ K th >13MPa ⁇ m 1/2 , which has a good performance matching of high strength, high toughness, high plasticity and high fatigue crack growth threshold value.
  • the shape of the wheel was measured, and the results showed that the shape and size of the high-strength and tough thin-walled automobile wheel produced in this embodiment met the requirements.
  • Fig. 6 is an optical microstructure photograph taken by an optical microscope of an automobile wheel prepared according to Example 2 of the present invention.
  • Fig. 7 is a scanning electron microscopic photo of the car wheel prepared according to Example 2 of the present invention.
  • Fig. 8 is a photograph of the fine tissue structure of the automobile wheel prepared according to Example 2 of the present invention taken by a transmission electron microscope. It shows that the microstructure of the high-strength and tough thin-walled automobile wheel of the present invention is a multi-phase structure of bainite, martensite and retained austenite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及一种高强韧汽车车轮用钢,其特征在于,按质量百分比,其组分包括:C:0.1%~0.25%,Mn:1.5%~2.5%,Si:0.8%~1.7%,Cr:0.8%~2.5%,Mo:0.1%~0.5%,Ni:0.3%~0.6%;Cu:0.1%~1.5%,Nb≤0.1%,Ti≤0.2%;V≤0.2%;P≤0.015%,S≤0.005%,其余为Fe及不可避免的杂质元素;其中,Mn和Cr的质量百分比之和不高于4.5%。本发明还涉及由该高强韧汽车车轮用钢制备的薄壁汽车车轮及其制备方法。本发明提供的薄壁汽车车轮的屈服强度和抗拉强度等性能高,并且汽车车轮重量轻。

Description

一种高强韧汽车车轮用钢、薄壁汽车车轮及其制备方法 技术领域
本发明涉及钢材研究领域。更具体地,涉及一种高强韧汽车车轮用钢及薄壁汽车车轮。
背景技术
全球变暖问题日益严峻,石油价格不断上涨,汽车销量不断攀升,使得节能减排成为建设资源节约型、环境友好型社会的必然选择。据有关统计,汽车自重每减轻10%,可降低油耗6%~8%,CO 2的排放量约减少13%。因此,在确保汽车强度和安全性的前提下,汽车轻量化成为实现节能减排目标的关键路径之一。
为实现汽车轻量化的需求,各国将先进高强钢作为汽车材料进行了大量的研究。然而,受设备加工能力和材料焊接性能等因素的限制,目前钢制汽车车轮仍然较多地选用抗拉强度Rm约为400MPa级别的钢铁材料,少量采用抗拉强度Rm高于1000MPa级别的钢铁材料。
公开号为CN107052720A,名称为“一种钢制车轮的制造方法及其采用该方法成型的车轮”的中国发明专利申请,采用中低碳低合金钢,通过控制汽车轮辋和轮辐成形后的温度和成形后的冷却方式,得到抗拉强度Rm约为600MPa的汽车轮辋和轮辐,再将轮辋和轮辐拼焊成汽车车轮。显然,对于整体车轮来说,焊缝处的组织和性能与轮辋和轮辐不同,不利于整体汽车车轮的疲劳寿命和服役寿命。
公开号为CN109355577A,名称为“一种1200MPa级别热处理车轮的制备方法”的中国发明专利申请,采用淬透性较差的低碳低合金钢铁材料作为汽车车轮材料,采用常规的汽车车轮成形方法制备汽车车轮坯件后再进行盐浴淬火,获得整体抗拉强度Rm大于 1200MPa级别的汽车车轮。由于盐浴淬火具有污染严重不环保且易造成安全事故的特点,因此被国家限制使用;且经盐浴淬火处理后,工件表面形成一层盐,需清洗后再进行后续回火或配分处理,否则在回火或配分过程盐发生分解,分解产物污染环境、损害人体健康和加热炉,因此,对于需冷却到某一温度后立即进行配分处理的工艺要求而言,无法实现大规模连续热处理生产。
公开号为CN109355576A,名称为“一种1500MPa级别热处理车轮的制备方法”的中国发明专利申请,采用淬透性较差的低碳低合金钢作为汽车车轮材料,采用常规的汽车车轮成形方式制备汽车车轮坯件后采用沸水淬火,获得整体抗拉强度Rm大于1500MPa级别的汽车车轮。在其公开的专利中,由于采用淬透性低的低碳低合金钢铁材料作为汽车车轮材料,故其采用沸水作为淬火介质,汽车车轮冷却快但无法精确控制淬火温度,从而较难实现稳定批量生产,同时将从沸水中出来的钢车轮立即进行配分处理,易导致其在配分过程中引入氢原子,从而导致存在氢致延迟断裂的危险,且在热处理过程中需将装有沸水的淬火水槽提升一定高度和需要采用淬火夹具防止淬火变形,操作困难,无法实现大规模连续热处理生产。
有鉴于此,为解决目前汽车车轮在研发和实际生产过程中存在的上述缺陷和不足,本发明提供一种高强韧汽车车轮用钢、薄壁汽车车轮及其制备方法。
发明内容
本发明的第一个目的在于提供一种高强韧汽车车轮用钢。
本发明的第二个目的在于提供一种高强韧薄壁汽车车轮。
本发明的第三个目的在于提供一种高强韧薄壁汽车车轮的制备方法。
根据本发明的第一个目的,本发明提供一种高强韧汽车车轮用钢。
本发明的一种高强韧汽车车轮用钢,按质量百分比,其组 分包括:C:0.1%~0.25%,Mn:1.5%~2.5%,Si:0.8%~1.7%,Cr:0.8%~2.5%,Mo:0.1%~0.5%,Ni:0.3%~0.6%;Cu:0.1%~1.5%,Nb≤0.1%,Ti≤0.2%;V≤0.2%;P≤0.015%,S≤0.005%,其余为Fe及不可避免的杂质元素;其中,Mn和Cr的质量百分比之和不高于4.5%。
优选地,按质量百分比,所述的汽车车轮用钢的组分中O和N的含量均不高于0.005%。
优选地,按质量百分比,所述的汽车车轮用钢的组成包含V、Nb、Ti中的一种或多种,且百分含量之和不高于0.4%。
优选地,所述的汽车车轮用钢的显微组织为贝氏体、马氏体和残余奥氏体的复相组织。
通过严格限定高强韧汽车车轮用钢中杂质元素P、S和气体元素O、N的含量,可以降低高强韧汽车车轮用钢中的夹杂物含量和尺寸,在少量的合金元素的前提下,通过调控热处理工艺的方法,获得以贝氏体/马氏体复相为主,并含有少量残余奥氏体的显微组织的、具有高强度、高韧性、高疲劳强度、低重量的薄壁汽车车轮。
在本发明中,碳元素C:钢中典型的基础强硬化元素,提高钢的强度和淬透性,在配分处理过程中C元素从马氏体相配分至奥氏体相中,提高残余奥氏体的热稳定性和机械稳定性,提高汽车钢车轮的塑性和韧性;但是随着C含量的增加,钢的焊接性和韧性会降低,因此,高强韧汽车车轮用C的碳含量为0.1%~0.25%。
锰元素Mn:钢中典型的合金元素,是置换固溶体的溶质元素,发挥较强的固溶强化效果,Mn元素固溶于奥氏体中,扩大奥氏体区,且大幅度降低钢的奥氏体开始分解温度Ar1,提高钢的淬透性。但是当钢中Mn元素的含量高于3%时,出现Mn元素偏析带,不利于钢的韧性和疲劳性能,因此,高强韧汽车车轮用钢的Mn含量为1.5%~2.5%。
硅元素Si:是钢中常见的置换固溶体的溶质元素,发挥较强的固溶强化效果,可抑制碳化物的析出,易获得无碳化物贝氏体和 板条残余奥氏体,同时有益于配分处理过程中C原子从马氏体相配分至奥氏体相中,提高残余奥氏体的热稳定性和机械稳定性,可保证良好的强韧性匹配。但是Si含量过高时,增加铁素体的析出倾向,且容易导致钢板在加热过程氧化,因此,高强韧汽车车轮用钢的Si含量为0.8%~1.7%。
铬元素Cr:能发挥较大的固溶强化效果,且可提高钢的淬透性,但Cr元素过高时,会导致钢产生热裂,因此,高强韧汽车车轮用钢的Cr含量为0.8%~2.5%。
钼元素Mo:能显著提高钢的淬透性,推迟中温相变的程度明显小于推迟高温相变的程度,使得在较宽的冷却范围内获得贝氏体组织,提高强韧性匹配,但是价格较昂贵,因此,高强韧汽车车轮用钢的Mo含量为0.1%~0.5%。
镍元素Ni:降低贝氏体转变温度,容易获得结构精细的板条或下贝氏体组织,有助于强韧性匹配,能显著提高冲击韧性,降低韧脆转变温度,但是价格较昂贵,因此,高强韧汽车车轮用钢的Ni含量为0.3%~0.6%。
铜元素Cu:能在过饱和固溶体中析出ε-Cu粒子,具有较强的析出强化效果。Cu能提高钢的耐蚀性,但Cu含量过高易产生热脆,因此,高强韧汽车车轮用钢的Cu含量为0.1%~1.5%。
微合金化元素Nb(铌)、Ti(钛)、V(钒):强碳氮化物形成元素,可通过析出强化,提高强韧性。同时,强碳化物析出粒子熔点较高,可阻碍焊接热影响区晶粒的长大,提高焊接性能,但微合金化元素含量太高的话,不利于冶炼工艺的控制,因此,高强韧汽车车轮用钢中微合金化元素为Nb、Ti、V中的一种或几种,且其质量百分量之和不高于0.4%。
杂质元素P和S:钢中常见的杂质元素。P元素易在晶界处偏聚,形成冷脆,降低钢的韧性。S元素易与其它元素形成夹杂物,尤其以形成低熔点夹杂物MnS,形成热脆,降低钢的韧性,因此,高强韧汽车车轮钢中应尽量降低P和S的含量。
气体元素O和N:钢中常见的气体元素,易与其它元素结合形成夹杂物,降低钢的韧性和疲劳性能,因此,高强韧汽车车轮用钢中应尽量降低O和N的含量。
根据本发明的第二个目的,本发明提供一种由上述高强韧汽车车轮用钢制备的高强韧薄壁汽车车轮。
优选地,所述的高强韧薄壁汽车车轮的轮辋为4~5mm,轮辐厚度为8~9mm。优选地,所述的高强韧薄壁汽车车轮与常规同型号的汽车钢车轮相比重量降低30%~50%。
优选地,所述的高强韧薄壁汽车车轮的显微组织为贝氏体、马氏体和残余奥氏体的复相组织。
优选地,所述的高强韧薄壁汽车车轮采用整体热处理方式进行强韧化。
根据本发明的第三个目的,本发明提供一种高强韧薄壁汽车车轮的制备方法。
本发明的一种高强韧薄壁汽车车轮的制备方法:其包括如下步骤:
步骤1、将本发明的高强韧汽车车轮用钢的组分按常规的炼钢和轧钢工艺,制备厚度为4~5mm和8~9mm的钢板;
步骤2、将步骤1所得的钢板加热至880~950℃保温10~30min后随炉温冷却至室温,进行退火处理;
步骤3、将步骤2所得的4~5mm钢板按车轮常规生产工艺制备汽车车轮轮辋;
步骤4、将步骤2所得的8~9mm钢板按车轮常规生产工艺制备汽车车轮轮辐;
步骤5、将步骤3和步骤4获得的轮辋和轮辐拼焊制备薄壁汽车车轮坯件;
步骤6、将步骤5所得的汽车车轮坯件加热至850~1000℃保温10~30min,出炉后冷却至150~240℃;
步骤7、将步骤6冷却至150~240℃的汽车车轮坯件加热至 260~400℃并保温20~90min进行配分处理,随后冷却至室温,得到高强韧薄壁汽车车轮。
优选地,步骤3中汽车车轮轮辋的制备包括以下步骤:下料、卷圆、闪光对焊、退火处理,滚压、端切、复圆、扩口、滚型、扩涨整形、冲气门孔。
优选地,步骤4中汽车车轮轮辐的制备包括以下步骤:下料、落料、冲中心孔、螺栓孔、旋压、冲风孔、扩螺栓孔、车削加工。
优选地,步骤3中的闪光对焊和步骤5中的拼焊采用的焊丝组分的质量百分数为:C:0.1%~0.2%,Mn:1.5%~2.0%,Si:0.8%~1.5%,Cr:0.8%~1.5%,Mo:0.3%~0.5%,Ni:0.2%~0.6%。
优选地,步骤6中,连续冷却的方式选自风冷、雾冷中的一种或两种。
优选地,步骤6中,汽车车轮一边冷却一边绕其中心线旋转,且汽车车轮的轮辐和轮辋的喷风或喷雾量不同。
优选地,步骤7中,冷却至室温的方式采用空冷、风冷、雾冷中的一种或几种。
本发明的有益效果如下:
本发明提供的一种高强韧汽车车轮用钢,具有高强度、高韧性的同时,还有高抗疲劳强度(高疲劳裂纹扩展门槛值)。
本发明采用风冷和/或雾冷的淬火方式代替盐浴淬火,具有安全环保的优点。
本发明提供的高强韧薄壁汽车车轮的屈服强度Re>1100MPa,抗拉强度Rm>1400MPa,延伸率δ>16%,冲击韧性Akv(20℃)>50J,疲劳裂纹扩展门槛值ΔKth>13MPa●m 1/2,可显著提高车轮的服役寿命。
本发明提供的薄壁汽车车轮采用整体热处理方式,薄壁汽车车轮的组织和性能更加均匀。
本发明提供的薄壁汽车车轮重量轻,可降低汽车的能源消耗和废气的排放。
由于盐浴淬火具有污染严重、不安全环保的特点,无法实现工业连续大规模热处理生产;另外沸水淬火在实际生产中难以实施;本发明利用风冷和喷雾冷却的方式,使得本发明的薄壁汽车车轮适合连续、大规模热处理生产。
附图说明
图1是低淬透性汽车车轮用钢连续冷却转变曲线。其中F表示铁素体,P表示珠光体,B表示贝氏体,M表示马氏体,Ac1表示奥氏体开始转变温度,Ac3表示奥氏体结束转变温度,Ms表示马氏体开始转变温度,Mf表示马氏体结束转变温度。
图2是厚度为9mm板材的中心位置从950℃吹风冷却至150℃的温度随时间变化曲线,图中斜率的相反数代表冷却速度,单位为℃/s。
图3是厚度为9mm板材的中心位置从950℃喷雾冷却至150℃的温度随时间变化曲线,图中斜率的相反数代表冷却速度,单位为℃/s。
图4是本发明高强韧汽车车轮用钢连续冷却转变曲线。其中F表示铁素体,P表示珠光体,B表示贝氏体,M表示马氏体,Ac1表示奥氏体开始转变温度,Ac3表示奥氏体结束转变温度,Ms表示马氏体开始转变温度,Mf表示马氏体结束转变温度。
图5是本发明汽车车轮结构图。
图6是本发明汽车车轮通过光学显微镜拍摄的光镜组织照片。
图7是本发明汽车车轮通过扫描电镜拍摄的扫描组织照片,其中B表示贝氏体,M表示马氏体。
图8是本发明汽车车轮通过透射电镜拍摄的精细组织结构照片。
具体实施方式
为了更清楚地说明本发明,下面结合优选的实施例和附图对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
名词解释
奥氏体:对黑色金属材料而言,是指碳在γ-Fe中的固溶体。奥氏体塑性很好,强度较低,具有一定韧性。
马氏体:对黑色金属材料而言,是碳在α-Fe中的过饱和固溶体。在中、高碳钢中快速冷却通常能够获得这种组织。高的强度和硬度是钢中马氏体的主要特征之一。
铁素体:是碳溶解在α-Fe中的间隙固溶体,常用符号F表示。具有体心立方晶格,其溶碳能力很低。
珠光体:是铁素体和渗碳体一起组成的机械混合物,用符号“P”表示。碳素钢中珠光体组织的平均碳含量约为0.77%。它的力学性能介于铁素体和渗碳体之间,即其强度、硬度比铁素体显著增高,塑性、韧性比铁素体要差,但比渗碳体要好得多。
淬透性:钢铁材料在一定的淬火条件下获得淬硬层深度的能力,主要受奥氏体中碳元素和合金元素含量的影响。
固溶强化:合金元素固溶于基体金属中造成一定程度的晶格畸变从而使合金强度提高的现象。融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加。
固溶体:指溶质原子溶入溶剂晶格中而仍保持溶剂类型的合金相。
连续冷却转变曲线:钢铁材料奥氏体化后连续冷却时,过冷奥氏体转变开始及转变终止的时间、温度、产物、转变量及硬度与冷却速度之间的关系曲线,称为连续冷却转变曲线。
氢致延迟断裂:钢铁在静止应力的作用下,经过一定时间后突然发生脆性破坏的一种现象,它是材料—环境—应力之间相互作用的结果,是氢致材质恶化的一种形态。
配分处理:经奥氏体化后的钢材淬火至马氏体开始转变温度和结束转变温度之间的某一温度使得形成一定量的马氏体组织,然后再在某一温度进行等温一段时间使得马氏体组织中的碳原子分配至未转变残余奥氏体中,执行上述等温过程的操作称为配分处理。
钢的淬火:是指将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。
下料:是指确定制作某个设备或产品所需的材料形状、数量或质量后,从整个或整批材料中取下一定形状、数量或质量的材料的操作过程。
落料:是指用压力机或其他机器把所需材料从板类母材上分离出来的工艺。
实施例1:汽车车轮用钢组分的设计和改进
表1为与技术背景中CN109355577A所述相似的低淬透性汽车车轮用钢各组分的质量百分数,其余为铁元素及不可避免的杂质元素。图1为低淬透性汽车车轮用钢的连续冷却转变曲线。图1表明,低淬透性汽车车轮用钢完全奥氏体化后,当冷却速度小于0.1℃/s时得到的室温组织为铁素体和珠光体复相组织,当冷却速度大于0.1℃/s且小于2℃/s得到的室温组织为铁素体、珠光体和贝氏体复相组织,当冷却速度大于2℃/s且小于3℃/s得到的室温组织为铁素体和贝氏体复相组织,当冷却速度大于3℃/s且小于80℃/s得到的室温组织为铁素体、贝氏体和马氏体复相组织,当冷却速度大于80℃/s且小于150℃/s得到的室温组织为贝氏体和马氏体复相组织,当冷却速度大于150℃/s得到的室温组织为马氏体组织。
表1低淬透性汽车车轮用钢各组分质量百分数
元素 C Mn Si Al P S
含量 0.20 1.8 1.0 0.036 0.014 0.002
图2为9mm厚板材的中心位置从950℃吹风冷却至室温过 程中温度随时间的变化曲线。由图2可知,在风冷冷却条件下,在950℃到500℃之间9mm厚板材的中心位置的冷却速度约为3.5℃/s,在500℃到150℃之间9mm厚板材的中心位置的冷却速度约为1.4℃/s。结合图1可知,在风冷的冷却条件下,低淬透性汽车车轮钢得到室温组织为铁素体和贝氏体复相组织,而非贝氏体/马氏体复相或马氏体单相组织,无法满足汽车车轮高强度的性能要求。因此,低淬透性汽车车轮用钢的淬火冷却不能采用风冷的冷却方式,而需采用技术背景中的盐浴淬火或沸水淬火的冷却方式。
图3为9mm厚板材的中心位置从950℃喷雾冷却至室温过程中温度随时间的变化曲线。由图3可知,在喷雾冷却条件下,在950℃到430℃之间9mm厚板材的中心位置的冷却速度约为4.8℃/s,在430℃到150℃之间9mm厚板材的中心位置的冷却速度约为4.2℃/s。结合图1可知,在喷雾的冷却条件下,低淬透性汽车车轮钢得到室温组织为铁素体、贝氏体和少量马氏体的复相组织,而非贝氏体/马氏体复相或马氏体单相组织,无法满足汽车车轮高强度的性能要求。因此,低淬透性汽车车轮用钢的淬火冷却不能采用喷雾的冷却方式,而需采用技术背景中的盐浴淬火或沸水淬火的冷却方式。
通过我们对汽车车轮用钢组分的改进,我们发明得到如表2所示的汽车车轮用钢各组分的质量百分数,其余为铁元素及不可避免的杂质元素。图4为本发明实施例汽车车轮用钢的连续冷却转变曲线。图4表明:本发明的汽车车轮用钢完全奥氏体化后,当冷却速度小于0.1℃/s时得到的室温组织为铁素体、珠光体和贝氏体复相组织,当冷却速度稍大于0.1℃/s且小于60℃/s得到的室温组织为贝氏体和马氏体复相组织,当冷却速度大于60℃/s时得到的室温组织为马氏体组织。结合图2风冷和图3喷雾冷却实验结果,对于本发明提供的汽车车轮用钢可采用风冷或喷雾的冷却方式进行淬火,在风冷和喷雾的冷却方式下获得的室温组织为贝氏体/马氏体复相组织,能满足汽车钢车轮高强度的要求。
表2:汽车车轮用钢的各组分质量百分含量
元素 C Mn Si Cr Mo Ni Cu Ti V P S
含量 0.20 1.8 1.0 1.0 0.3 0.5 0.2 0.05 0.06 0.01 0.005
实施例2:高强韧薄壁汽车车轮的生产方法
按照如下所述的方法,制备高强韧薄壁汽车车轮,制备的高强韧薄壁汽车车轮的结构图如图5所示,该高强韧薄壁汽车车轮的重量约为28kg,与常规同型号的汽车钢车轮相比重量降低约40%。该生产方法包括以下步骤:
步骤1、按照表2中组分,采用常规的炼钢和轧钢工艺,轧制得到4mm和9mm后的板材。
步骤2、将4mm和9mm的板材加热至950℃,保温15min后随炉冷却至室温。
步骤3、将4mm钢板按照轮辋尺寸剪切下料(下料)、将板材料卷成圆筒状(卷圆)、通过闪光电阻焊将圆筒的对接部位进行焊接(闪光对焊)、对焊缝进行退火处理,通过滚压设备将焊接部位进行滚压(滚压)、对圆筒的两开口端进行端切(端切)、恢复成圆形(复圆)、通过扩口机将两开口端进行扩张(扩口)、通过滚压机将圆筒进行滚制(滚型)、通过整形机进行扩涨整形、最后进行冲气门孔工序制备车轮轮辋。其中退火工艺为:将焊接得到的圆筒加热至930℃,保温10min后随炉冷却至室温。闪光对焊采用的焊丝的组分质量百分含量为:C:0.18%,Mn:1.8%,Si:0.8%,Cr:1.2%,Mo:0.3%,Ni:0.6%。
步骤4、将9mm钢板经下料、落料、冲中心孔及螺栓孔、旋压、冲风孔、扩螺栓孔、车削加工工序制备车轮轮辐。
步骤5、将步骤3和步骤4获得轮辋和轮辐拼焊制备薄壁汽车车轮坯件。拼焊采用的焊丝的组分质量百分含量为:C:0.18%,Mn:1.8%,Si:0.8%,Cr:1.2%,Mo:0.3%,Ni:0.6%。
步骤6、将步骤5所得的汽车车轮坯件加热至920℃保温 25min,出炉后,采用复合冷却的方式将车轮冷却至(200~220)℃。由于轮辐(9mm)和炉辋(4mm)的厚度不同,故采用复合冷却的方式对汽车车轮进行淬火冷却,即汽车车轮轮辐采用喷雾的冷却方式而车轮轮辋采用喷风的冷却方式,这样可确保轮辐和轮辋均匀冷却。采用辊底式保护气氛连续热处理炉、车轮坯件进炉前加热炉已加热至920℃,车轮与车轮的间距为50mm,车轮与炉壁的间距为300mm,采用仿形喷淬淬火设备,在淬火的过程中车轮绕其中心线一直旋转。
步骤7、将步骤6冷却至(200~220)℃的汽车车轮坯件加热至280℃,并保温45min,出炉后风冷至室温,得到高强韧薄壁汽车车轮。采用辊底式连续热处理炉,汽车车轮进炉前加热炉已加热至280℃,汽车车轮与车轮的间距为50mm,汽车车轮与导风壁的间距为350mm,采用工业电扇将车轮冷却至室温,得到高强韧薄壁汽车车轮。
通过万能拉伸试验机和冲击试验机,根据国家标准GB/T 228-2002和国家标准GB/T 229-2009制定了标准力学拉伸试样、冲击试样并测试了汽车车轮的力学性能,如表3所示。同时,根据国家标准GB/T 6398-2000制定了标准的疲劳裂纹扩展C-T试样,并运用电液伺服高频疲劳实验机测定了疲劳裂纹扩展C-T试样的疲劳裂纹扩展门槛值ΔK th,结果如表3所示。
表3汽车车轮的力学性能
Figure PCTCN2022092179-appb-000001
由以上测试结果可知,本发明得到的薄壁汽车车轮的力学性能优良,具体的屈服强度Re>1100MPa,抗拉强度Rm>1400MPa,延伸率δ>16%,冲击韧性Akv(20℃)>50J,疲劳裂纹扩展门槛值ΔK th>13MPa●m 1/2,具有高强度、高韧性、高塑性和高疲劳裂纹扩展门槛值的良好性能匹配。同时根据国家标准GB/T 9769-2005测定了车轮的外形车轮,结果表明本实施例生产的高强韧薄壁汽车车轮的外形尺寸满足要求。
图6是根据本发明实施例2制备的汽车车轮通过光学显微镜拍摄的光镜组织照片。图7是根据本发明实施例2制备的汽车车轮通过扫描电镜拍摄的扫描组织照片。图8是根据本发明实施例2制备的汽车车轮通过透射电镜拍摄的精细组织结构照片。显示了本发明的高强韧薄壁汽车车轮的显微组织为贝氏体、马氏体和残余奥氏体复相组织。
显然,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种高强韧汽车车轮用钢,其特征在于,按质量百分比,其组分包括:
    C:0.1%~0.25%,Mn:1.5%~2.5%,Si:0.8%~1.7%,Cr:0.8%~2.5%,Mo:0.1%~0.5%,Ni:0.3%~0.6%;Cu:0.1%~1.5%,Nb≤0.1%,Ti≤0.2%;V≤0.2%;P≤0.015%,S≤0.005%,其余为Fe及不可避免的杂质元素;
    其中,Mn和Cr的质量百分比之和不高于4.5%;
    优选地,按质量百分比,所述汽车车轮用钢的组分中O和N的含量均不高于0.005%;
    优选地,按质量百分比,所述汽车车轮用钢的组成包含Nb、Ti、V中的一种或多种,且百分含量之和不高于0.4%。
  2. 根据权利要求1所述的高强韧汽车车轮用钢,其特征在于,所述汽车车轮用钢的显微组织为贝氏体、马氏体和残余奥氏体的复相组织。
  3. 一种由权利要求1或2所述的高强韧汽车车轮用钢制备的高强韧薄壁汽车车轮。
  4. 根据权利要求3所述的高强韧薄壁汽车车轮,其中,所述高强韧薄壁汽车车轮包括轮辋和轮辐,所述轮辋的厚度为4~5mm,所述轮辐的厚度为8~9mm。
  5. 根据权利要求3所述的高强韧薄壁汽车车轮,其中,所述高强韧薄壁汽车车轮采用整体热处理方式进行强韧化;优选地,所述高强韧薄壁汽车车轮的显微组织为贝氏体、马氏体和残余奥氏体的复相组织。
  6. 一种高强韧薄壁汽车车轮的制备方法,其包括如下步骤:
    步骤1、将权利要求1或2所述的高强韧汽车车轮用钢的组分按常规的炼钢和轧钢工艺,制备厚度分别为4~5mm和8~9mm的钢板;
    步骤2、将步骤1所得的钢板加热至880~950℃保温10~30min后随炉温冷却至室温,进行退火处理;
    步骤3、将步骤2所得的4~5mm钢板制备汽车车轮轮辋;
    步骤4、将步骤2所得的8~9mm钢板制备汽车车轮轮辐;
    步骤5、将步骤3和步骤4获得的汽车车轮轮辋和轮辐拼焊制备高强韧薄壁汽车车轮坯件;
    步骤6、将步骤5所得的汽车车轮坯件加热至850~1000℃保温10~30min,出炉后冷却至150~240℃;
    步骤7、将步骤6冷却至150~240℃的汽车车轮坯件加热至260~400℃并保温20~90min进行配分处理,随后冷却至室温,得到高强韧薄壁汽车车轮。
  7. 根据权利要求6所述的高强韧薄壁汽车车轮的制备方法,其中,
    步骤3中汽车车轮轮辋的制备包括以下步骤:下料、卷圆、闪光对焊、退火处理,滚压、端切、复圆、扩口、滚型、扩涨整形、冲气门孔;
    步骤4中汽车车轮轮辐的制备包括以下步骤:下料、落料、冲中心孔、螺栓孔、旋压、冲风孔、扩螺栓孔、车削加工。
  8. 根据权利要求7所述的高强韧薄壁汽车车轮的制备方法,其中,步骤3中的闪光对焊和步骤5中的拼焊采用的焊丝成分为:
    C:0.1%~0.2%,Mn:1.5%~2.0%,Si:0.8%~1.5%,Cr:0.8%~1.5%,Mo:0.3%~0.5%,Ni:0.2%~0.6%。
  9. 根据权利要求6所述的高强韧薄壁汽车车轮的制备方法,其中,步骤6中,冷却采用连续冷却的方式,选自风冷、雾冷中的一种或两 种;
    优选地,步骤6中,汽车车轮一边冷却一边绕其中心线旋转,且轮辐和轮辋的喷风或喷雾量不同;
    优选地,步骤7中,冷却至室温的方式采用空冷、风冷、雾冷中的一种或几种。
  10. 通过权利要求6-9中任一项所述的制备方法得到的高强韧薄壁汽车车轮。
PCT/CN2022/092179 2021-07-12 2022-05-11 一种高强韧汽车车轮用钢、薄壁汽车车轮及其制备方法 WO2023284393A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL443769A PL443769A1 (pl) 2021-07-12 2022-11-05 Stal o wysokiej wytrzymałości i wysokiej odporności na obciążenie dynamiczne do produkcji kół samochodowych, cienkościenne koła samochodowe i sposób ich wytwarzania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110785499.1 2021-07-12
CN202110785499.1A CN113652605B (zh) 2021-07-12 2021-07-12 一种高强韧汽车车轮用钢、薄壁汽车车轮及其制备方法

Publications (1)

Publication Number Publication Date
WO2023284393A1 true WO2023284393A1 (zh) 2023-01-19

Family

ID=78490027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092179 WO2023284393A1 (zh) 2021-07-12 2022-05-11 一种高强韧汽车车轮用钢、薄壁汽车车轮及其制备方法

Country Status (3)

Country Link
CN (1) CN113652605B (zh)
PL (1) PL443769A1 (zh)
WO (1) WO2023284393A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113652605B (zh) * 2021-07-12 2022-07-26 北京机电研究所有限公司 一种高强韧汽车车轮用钢、薄壁汽车车轮及其制备方法
CN115194415B (zh) * 2022-08-09 2023-09-05 中新(重庆)超高强材料研究院有限公司 一种超高强度轻量化商用车钢制车轮的制造方法
CN115505691B (zh) * 2022-09-02 2023-12-19 中国机械总院集团北京机电研究所有限公司 中碳低合金汽车刹车鼓及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800427A (zh) * 2004-12-31 2006-07-12 马鞍山钢铁股份有限公司 铁道车辆车轮用贝氏体钢
CN101474648A (zh) * 2009-01-23 2009-07-08 王洪国 型材无内胎车轮轮辋生产工艺
CN108588580A (zh) * 2018-04-24 2018-09-28 北京交通大学 一种高纯净贝氏体钢、包含其的车轮及制造方法
WO2018188580A1 (zh) * 2017-04-12 2018-10-18 浙江金固股份有限公司 一种轮辋、轮辐、钢制车轮的制造方法及该方法成型的钢制车轮
CN109023092A (zh) * 2018-09-10 2018-12-18 武汉钢铁有限公司 轮辋用1300MPa级热成形钢及制备方法
CN110724877A (zh) * 2019-10-30 2020-01-24 鞍钢股份有限公司 一种汽车用1180MPa级高塑性贝氏体复相钢板及其制备方法
CN113652605A (zh) * 2021-07-12 2021-11-16 北京机电研究所有限公司 一种高强韧汽车车轮用钢、薄壁汽车车轮及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128795A (ja) * 2016-01-18 2017-07-27 株式会社神戸製鋼所 鍛造用鋼及び大型鍛鋼品
CN106917055B (zh) * 2017-03-17 2018-10-09 北京科技大学 一种第三代高强韧汽车用钢及其制备方法
CN108385022B (zh) * 2018-03-30 2020-05-29 鞍钢股份有限公司 重载铁路用高强韧耐磨耐腐蚀贝氏体钢轨及其制造方法
CN108754304A (zh) * 2018-04-24 2018-11-06 北京交通大学 一种耐腐蚀贝氏体钢、包含其的车轮及制造方法
KR102528161B1 (ko) * 2018-10-19 2023-05-03 닛폰세이테츠 가부시키가이샤 열연 강판 및 그 제조 방법
CN110129670B (zh) * 2019-04-25 2020-12-15 首钢集团有限公司 一种1300MPa级高强高塑性热冲压用钢及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800427A (zh) * 2004-12-31 2006-07-12 马鞍山钢铁股份有限公司 铁道车辆车轮用贝氏体钢
CN101474648A (zh) * 2009-01-23 2009-07-08 王洪国 型材无内胎车轮轮辋生产工艺
WO2018188580A1 (zh) * 2017-04-12 2018-10-18 浙江金固股份有限公司 一种轮辋、轮辐、钢制车轮的制造方法及该方法成型的钢制车轮
CN108588580A (zh) * 2018-04-24 2018-09-28 北京交通大学 一种高纯净贝氏体钢、包含其的车轮及制造方法
CN109023092A (zh) * 2018-09-10 2018-12-18 武汉钢铁有限公司 轮辋用1300MPa级热成形钢及制备方法
CN110724877A (zh) * 2019-10-30 2020-01-24 鞍钢股份有限公司 一种汽车用1180MPa级高塑性贝氏体复相钢板及其制备方法
CN113652605A (zh) * 2021-07-12 2021-11-16 北京机电研究所有限公司 一种高强韧汽车车轮用钢、薄壁汽车车轮及其制备方法

Also Published As

Publication number Publication date
CN113652605A (zh) 2021-11-16
CN113652605B (zh) 2022-07-26
PL443769A1 (pl) 2023-06-19

Similar Documents

Publication Publication Date Title
WO2023284393A1 (zh) 一种高强韧汽车车轮用钢、薄壁汽车车轮及其制备方法
JP7269588B2 (ja) ホットスタンピングに使用される鋼、ホットスタンピング方法および成形された構成要素
US8926768B2 (en) High-strength and high-ductility steel for spring, method for producing same, and spring
CN101871078B (zh) 一种超高强度冷轧钢及其制造方法
CN109207849B (zh) 高强高塑性1000MPa级热轧钢板及制备方法
CN107829037B (zh) 热冲压成形用钢板、热冲压成形构件及梯度力学性能控制方法
WO2022152158A1 (zh) 一种高强韧易切削非调质圆钢及其制造方法
CN110358970B (zh) 屈服强度1100MPa级的焊接结构贝氏体高强钢及其制备方法
CN112877591B (zh) 一种高强韧五金工具及链条用钢及其制造方法
KR102415763B1 (ko) 냉간성형성이 우수한 열연 소둔강판, 부재 및 그 제조 방법
WO2018227740A1 (zh) 一种低屈强比高强韧厚规格钢板及其制造方法
JPH08176659A (ja) 低降伏比高張力鋼の製造方法
KR102209555B1 (ko) 강도 편차가 적은 열연 소둔 강판, 부재 및 이들의 제조방법
CN111575602A (zh) 车轮用1500MPa级热成形钢板及其生产方法
CN114752855B (zh) 一种460MPa级经济性低屈强比低裂纹敏感性结构钢及其制造方法
JP3993703B2 (ja) 加工用薄鋼板の製造方法
CN111748751A (zh) 一种非调质钢及其制造方法以及该非调质钢的应用
CN111363978B (zh) 一种抗焊接软化的铁素体马氏体热轧双相钢及制造方法
WO2012172185A1 (en) Method for manufacturing a medium carbon steel product and a hot rolled medium carbon steel product
CN107419174B (zh) 经济型高碳钢及其制造方法
JPH09287027A (ja) 高強度高靱性継目無鋼管の製造方法
CN111511953A (zh) 超高强度热轧钢板、钢管、部件及其制造方法
CN114457284B (zh) 一种高硅含钒、钛不锈钢材料及其制备方法
KR102209556B1 (ko) 구멍확장성이 우수한 강판, 부재 및 이들의 제조방법
JP2001073083A (ja) 耐摩耗性に優れたアズロール電縫鋼管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE