WO2018188580A1 - 一种轮辋、轮辐、钢制车轮的制造方法及该方法成型的钢制车轮 - Google Patents

一种轮辋、轮辐、钢制车轮的制造方法及该方法成型的钢制车轮 Download PDF

Info

Publication number
WO2018188580A1
WO2018188580A1 PCT/CN2018/082474 CN2018082474W WO2018188580A1 WO 2018188580 A1 WO2018188580 A1 WO 2018188580A1 CN 2018082474 W CN2018082474 W CN 2018082474W WO 2018188580 A1 WO2018188580 A1 WO 2018188580A1
Authority
WO
WIPO (PCT)
Prior art keywords
spoke
wheel
rim
manufacturing
blank
Prior art date
Application number
PCT/CN2018/082474
Other languages
English (en)
French (fr)
Inventor
大卫塞勒
倪小飞
袁海州
陈晓弟
金向勇
熊东东
汪康
Original Assignee
浙江金固股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江金固股份有限公司 filed Critical 浙江金固股份有限公司
Priority to US16/499,277 priority Critical patent/US11633777B2/en
Priority to EP18784975.7A priority patent/EP3610983A4/en
Priority to JP2019555227A priority patent/JP6894529B2/ja
Priority to CA3058493A priority patent/CA3058493C/en
Priority to BR112019021284-1A priority patent/BR112019021284B1/pt
Priority to RU2019135051A priority patent/RU2735604C1/ru
Publication of WO2018188580A1 publication Critical patent/WO2018188580A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/26Making other particular articles wheels or the like
    • B21D53/30Making other particular articles wheels or the like wheel rims
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • B21K1/32Making machine elements wheels; discs discs, e.g. disc wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • B21K1/38Making machine elements wheels; discs rims; tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B21/00Rims
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/04Disc wheels, i.e. wheels with load-supporting disc body with a single disc body not integral with rim, i.e. disc body and rim being manufactured independently and then permanently attached to each other in a second step, e.g. by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/10Disc wheels, i.e. wheels with load-supporting disc body apertured to simulate spoked wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2310/00Manufacturing methods
    • B60B2310/20Shaping
    • B60B2310/206Shaping by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2310/00Manufacturing methods
    • B60B2310/20Shaping
    • B60B2310/228Shaping by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2360/00Materials; Physical forms thereof
    • B60B2360/10Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2360/00Materials; Physical forms thereof
    • B60B2360/10Metallic materials
    • B60B2360/102Steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/10Reduction of
    • B60B2900/111Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/10Reduction of
    • B60B2900/112Costs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a wheel and a method of manufacturing the same, and more particularly to a steel wheel formed by hot stamping and a method of manufacturing the same.
  • Conventional methods of manufacturing steel wheels have problems such as dimensional instability, early failure of durability, and weighting of wheels made with other metal alloys such as aluminum.
  • aluminum alloy wheels although lighter in weight, are much more expensive to produce than steel wheels.
  • Conventional methods of producing steel wheels include various metal forming processes that harden the metal due to the application of force to the material during the forming process.
  • Conventional methods also include joining processes that heat localized portions of steel wheels that may result in poor mechanical properties. Poor mechanical properties can cause premature failure of steel wheels.
  • a steel wheel or member manufactured by a conventional method can be heat-treated to eliminate undesirable characteristics.
  • Known heat treatment methods associated with conventional steel wheel manufacturing methods are a time consuming and expensive process.
  • the present invention provides a hot stamped forming wheel and a manufacturing method which are not only lighter than steel wheels produced by a conventional method, but also ensure dimensional stability and durability of the product, and are more effective and cost-effective;
  • the existing heat treatment method is time consuming and expensive, and the technical problem that the produced wheel is prone to failure.
  • a method for manufacturing a rim of a steel wheel includes the steps of heating a circular tube in a heating furnace and heating the circular tubular shape The object is moved to the hot press. The temperature of the circular tube transferred to the hot press is maintained above the desired temperature. The required temperature is at least above 950 ° C, and then the inner profile is used to shape the circular tube for the purpose of producing wheel rims.
  • the wheel rim made by the above method can be combined with the wheel spoke to produce the wheel mentioned in the present invention.
  • the time during which the circular tube heated in the heating furnace is transferred from the heating furnace to the hot press should be controlled to 12 seconds or less.
  • a device having a plurality of nozzles and capable of cross-spraying water or a coolant is used to uniformly spray the formed wheel rim on the surface of the tread surface thereof or the like. Coolant. It also includes removing contaminants on the rim by placing the rim in a pickling tank of an organic acid.
  • a method of manufacturing a spoke of a steel wheel includes preparing a spoke blank having a variable section thickness and heating the blank in a heating furnace.
  • the heated spoke blank can not be transferred from the furnace to the hot press for more than 12 seconds.
  • the temperature of the spoke blank transferred to the hot press is higher than the desired temperature, and the temperature required for the spokes is at least 950 °C.
  • the mold with cooling function on the hot press is used to cool and shape the spoke blank to make it a wheel spoke. It also includes placing the spokes in a pickling tank of an organic acid to remove contaminants from the spokes.
  • the wheel spokes can be coupled to the wheel rim to produce a wheel.
  • the step of preparing the spoke blank of variable cross-sectional thickness comprises concentrically positioning the reinforcing ring over the spoke substrate and welding the outer edge of the reinforcing ring to the spoke substrate.
  • the outer edge of the reinforcing ring is welded to the spoke substrate, and the weld is produced to a depth of 12-15 mm. It also includes spinning the spoke substrate with a hard roll die to reduce the thickness of the outer edge region of the spoke substrate.
  • a spoke blank of variable thickness is formed by welding a reinforcing ring to the spoke substrate.
  • a spoke blank of variable thickness means that the middle portion of the blank is a thicker portion and the outer periphery is a thinner portion.
  • the hot stamped forming wheel and the manufacturing method of the present invention have the following advantages:
  • Advantages of steel wheels using the manufacturing method and structure of the present invention include increased durability and extended service life.
  • the steel wheels of the present invention are also significantly lighter in weight than steel wheels produced by conventional methods.
  • the manufacturing method of the present invention is less expensive and more efficient than conventional methods.
  • FIG. 1 is a schematic illustration of an embodiment of a wheel in accordance with the present disclosure.
  • FIG. 2 is a schematic illustration of an example process for making a wheel in accordance with the present disclosure.
  • FIG 3 is a schematic illustration of an exemplary process for making a circular tube in accordance with the present disclosure.
  • FIG. 4 is a schematic illustration of an embodiment of a rim substrate in accordance with the present disclosure.
  • Figure 5 is a schematic illustration of a circular member in accordance with the present disclosure.
  • Figure 6 is a schematic illustration of an embodiment of a circular member with a flattened portion in accordance with the present disclosure.
  • Figure 7 is a schematic illustration of an embodiment of a closed circular member in accordance with the present disclosure.
  • Figure 8 is a schematic illustration of an embodiment of a circular tubular body in accordance with the present disclosure.
  • FIG. 9 is a schematic illustration of an exemplary process of forming a circular tubular in accordance with the present disclosure.
  • Figure 10 is a schematic illustration of an embodiment of a circular tubular with outwardly flared edges in accordance with the present disclosure.
  • Figure 11 is a schematic illustration of an embodiment of a rim disclosed in accordance with the present invention.
  • Figure 12 is a schematic illustration of another embodiment of a rim in accordance with the present disclosure.
  • Figure 13a is a schematic illustration of an embodiment of a spoke blank disclosed in accordance with the present invention.
  • Figure 13b is a side view of Figure 13a.
  • Figure 14 is a schematic illustration of another embodiment of a spoke blank disclosed in accordance with the present invention.
  • FIG. 15 is a schematic illustration of an embodiment of a spoke in accordance with the present disclosure.
  • Figure 16 is a schematic illustration of another embodiment of a spoke in accordance with the present disclosure.
  • 17 is a schematic illustration of an embodiment of a wheel in accordance with the present disclosure.
  • FIG. 18 is a schematic illustration of an embodiment of a wheel composite weld in accordance with the present disclosure.
  • FIG. 19 is a schematic illustration of another embodiment of a spoke blank in accordance with the present disclosure.
  • FIG. 20 is a schematic illustration of another embodiment of a spoke in accordance with the present disclosure.
  • Figure 1 is a wheel made using the method disclosed in the present invention.
  • the components of the wheel 100 include a rim 102 and spokes 104.
  • the wheel 100 also includes a mounting aperture 106 through which the wheel 100 is mounted for use.
  • Wheel 100 may also include one or more vents 108.
  • the spokes 104 have different thicknesses, the central portion of the wheel 100 near the mounting aperture 106 is thicker, and the outer peripheral portion of the spokes 104 is relatively thin.
  • Materials, structures and hot stamping methods result in a steel wheel that has both durability and significant weight savings.
  • the steel wheel having a product specification of 22.5 x 8.25 cm has a weight of only about 21.5 kg.
  • the steel wheels of the same specification produced by conventional manufacturing methods weigh approximately 31 kg.
  • the weight of the forged aluminum alloy wheel is similar to that of the steel wheel manufactured by the method of the present invention, but the cost of the forged aluminum alloy wheel can be significantly increased.
  • FIG. 1 is an example of a wheel manufacturing method.
  • the manufacturing method described herein is suitable for the manufacture of steel wheels.
  • the preferred material for the manufacture of rim 102 and spoke 104 is boron steel.
  • Boron steel is particularly suitable for the wheel disclosed in the present invention because of its mechanical properties, especially in meeting the formability at the time of forming.
  • the chemical composition of the boron steel which can be used in the examples is shown in Table 1, and the material properties are shown in Table 2.
  • the manufacturing process of the rim includes the process of making a circular tubular 210, machining the circular tubular into the initial forming rim 212, and finally completing the rim 214 processing.
  • FIG. 3 is an example process for making a circular tubular 210. As shown, the example process includes the steps of preparing a rim substrate 302, processing the rim substrate into a notched circle 304, machining a flattened region 306 over the circular indentation, closing the notch 308, and removing the slag. 310 and process it into a circular tube 312. The steps described above can process the rim substrate into a circular tube and can be further processed into the wheel of the present disclosure.
  • FIG. 3 An exemplary process for making a circular tube is shown in Figure 3, which begins with the preparation of the rim substrate in step 302.
  • the rim substrate 402 is a rectangular steel plate or other alloy suitable for use in wheels and machining. This rectangular blank is different from the blank used for conventionally produced rims, which are about 0.4% to 0.5% shorter than otherwise. This slightly shorter blank is required to accommodate a 0.4%-0.5% decrease in density of the steel during martensite transformation during hot forming. The expansion of the rim will provide a small plastic deformation of the rim, rounding the rim and achieving the final size. Coincidentally, the expansion is about 0.5%, so if you don't shorten the length of the blank before the transition, the rim will not have the correct final size.
  • the rim substrate 402 can be immersed in the pickling solution or held in the oil to maintain its characteristics so that the quality of the subsequent forming and joining processes (described further) can be optimized to produce a strong Durable wheels.
  • the rim substrate 402 is formed into a circle 502 in step 304.
  • the circle 502 is in the shape of a circle having a radial dimension that is much smaller than the final dimension of the wheel 100.
  • the rim substrate 402 can be fed into a reel or the other suitable processing method can be used to roll the rectangular rim substrate 402 into a circle 502.
  • the circle 502 is essentially a circle with a notch 504 at the first end 506 and the second end 508 of the circle 502.
  • the notch 504 has dimensions such that the circle 502 can close the notch 504 such that the first end 506 and the second end 508 can meet each other and are engaged in step 308.
  • the circle 502 with the flattened portion 602 can be fabricated on a flattening die with appropriate pressure.
  • the flattened portion 602 extends a certain distance above the first end 506 and below the second end 508.
  • the gap 504 is closed.
  • the notch 504 should be closed by welding.
  • the flat portion 602 of the circle 502 is placed into the device or other device and the first end 506 is to remain adjacent the second end 508, which causes the notch 504 to be closed.
  • the first end 506 and the second end 508 are joined by suitable welding means such as, but not limited to, MIG welding, laser welding, gas shielded metal arc welding, and the like.
  • Figure 7 shows a closed circle 502 with the weld 702 expanding in the direction of its width. As we have seen, the slag may build up along the weld 702 or at the edges during the welding process.
  • the circle 502 is machined into a circular tube 708 (shown in Figure 8) which is generally cylindrical in shape but which requires further The processing is performed to remove the generated slag and eliminate the flat portion 602.
  • the notch 504 is closed with a resistance butt weld.
  • the first end 506 and the second end 508 are butted together and then heated to the desired temperature using electrical current.
  • pressure should be applied to the first end 506 and the second end 508 such that the applied pressure can join the first end 506 to the second when the circular 502 reaches the plastic state.
  • Welding slag or local deformation on the welded joint may result in subsequent processes 310 being necessary.
  • step 310 the slag is removed from the tube 708.
  • Any suitable processing method can be used to remove the weld slag and prepare a round tube 708 for subsequent processing.
  • Various processing techniques such as grinding, sanding, polishing, trimming, and the like can be used in step 310.
  • the weld slag along the weld of the tube 708 and the slag on the edges 704 and 706 are removed.
  • the tube 708 must undergo the necessary processing until the surface at the weld 710 of the tube 708 is smooth and free of burrs or raised defects.
  • the round tube 708 eliminates the flattened portion 602 by shaping. Once the tube 708 is joined into a continuous, complete shape, its cylindrical shape must be restored. A suitable roll machine or other processing method can be used to remove the flat portion 602.
  • the shape of the circular tube 708 is a cylindrical shape as shown in FIG. After this step, the outer diameter of the tube 708 is smaller than the final diameter of the rim 102. As described, the tube 708 is ultimately expanded and formed to form the final desired size of the rim 102.
  • FIG. 9 is an exemplary method of forming a circular tube 708.
  • the steps of the exemplary method of forming the tubular tube 708 include: flare 902, forming the valve bore plane 904, heating the formed tubular tube 906 and forming the rim 908.
  • flare 902 flare 902
  • valve bore plane 904 heating the formed tubular tube 906
  • rim 908 rim 908.
  • step 902 the edge of the tube 708 is flared.
  • the circular tube 708 is flared such that its edge 1002, 1004 has a larger diameter than the intermediate portion of the circular tube 708.
  • Any suitable flaring process can be used in step 902. The best method is to use the press and the corresponding mold to make the flared edges 1002 and 1004. In this exemplary method, a circular tube 708 is placed into the mold and flared edges 1002 and 1004 are simultaneously produced. In other methods, a roll type machine or a flaring machine can be used. In other examples, flared edges 1002 and 1004 can be produced in two steps.
  • a valve bore plane 1202 is formed.
  • the inner contour 1102 includes a section for the subsequent processing of the valve bore.
  • the valve hole is used to mount the valve.
  • the valve hole plane 1202 is shaped along the cross-section of the inner contour 1102.
  • the valve bore plane 1202 is a section of the inner contour 1102, which is generally a plane in the partial region, but the valve bore plane 1202 is located at an oblique angle relative to the axis of the tube 708.
  • the formed tubular tube 1000 is heated to a high temperature.
  • the exact temperature will vary depending on the composition of the formed tubular tube 1000.
  • the preferred temperature is at least the Ac3 temperature of the alloy of the formed tubular tube 1000.
  • the Ac3 temperature is 950 °C.
  • the steel structure of the formed tubular tube 1000 transforms into austenite and becomes a more uniform metal part of the structure; at the same time, it eliminates the work hardening or other undesirable process that occurred during the previous processing. The resulting microstructure.
  • the high temperature of the formed tubular tube 1000 needs to be maintained in the subsequent step 908 of forming the rim.
  • the formed tubular tube 1000 is preferably transferred from the furnace that heats it to the thermoforming press within 12 seconds. Other times or transfer methods can also be used as long as the formed tubular tube 1000 can be maintained at a high temperature during forming and cooling (described later).
  • step 908 the inner contour of the tube 708 is formed on a heat press.
  • FIG. 11 illustrates an example of an inner contour 1102 of the wheel 100.
  • various internal contours can be formed in step 904 depending on the dimensional specifications and structural requirements of the wheel 100.
  • the inner contour of the tube 708 is formed and the outer diameter of the tube 708 is expanded to the final desired diameter of the rim 102.
  • the forming process of step 908 also provides the necessary cooling for the shaped tube and imparts the desired microstructure to provide superior mechanical properties.
  • One of the examples when using an expansion die in step 908 is to provide proper cooling with water or other coolant.
  • the formed rim is sprayed onto the tire-mounted side surface 1104 of the rim 702 when the formed rim is held on an expansion die for expanding the diameter of the tube 708.
  • the nozzle array can spray water or other coolant across the tire-facing side surface 1104 (as shown in Figure 12).
  • the overlapping application of the coolant ensures that the phase change that occurs during cooling is uniform. Uneven cooling or uneven application of the coolant can cause dimensional deformation of the rim 102 or cause poor mechanical properties in localized areas, which can cause the wheel 100 to fail prematurely during use.
  • the rim 102 is quickly cooled to about 200 ° C using a spreading die and water spray and extracted from the mold.
  • the extraction temperature of 200 ° C contributes to the emission of hydrogen in the metal.
  • the rim 102 is optionally tempered at 400 ° C and the tempering time is controlled between 20 and 60 minutes.
  • the rim obtained after appropriate cooling has a hardness of about 52 HRC and a tensile strength of about 1300 to 1500 MPa.
  • Processing of the rim 102 continues in step 214 of the example method to finish the formed rim. At this stage, further processing and other processes are required to complete the final shape of the rim 102 and add other structural features, such as increasing the valve bore.
  • the valve holes can be laser cut, punched, drilled or other suitable machining methods, but laser cutting is the preferred method of machining.
  • the steps include the preparation of the spoke blanks 220, forming the spoke blanks 222 and finishing the spokes 224. In order to prepare the spokes 104 that are then attached to the rim 102, these steps also include more sub-steps and processes.
  • a spoke blank for processing is prepared.
  • spoke blanks of variable section thickness are produced.
  • the spoke blank of variable section thickness allows the center of the spokes of the wheel 100 to be mounted to the area of the vehicle with a thicker or stronger material.
  • the central region is subject to high stresses, and if improper thickness or material properties are insufficient, the wheel can easily fail before the desired life.
  • Producing a wheel having a thicker section in the center of the spoke 104 can compensate for the deficiencies of the previous design without significantly increasing the weight of the wheel 100.
  • the spoke blank 1302 has a thickness T1 in the central portion, and the peripheral portion radially outward from the center hole 1306 has a thickness T2.
  • T1 is greater than T2.
  • the spoke blank 1302 is structurally characterized by a variable section thickness, i.e., the central region of the final shaped spoke 104 is thicker, and the region is connected to the vehicle during installation; the outer peripheral region of the spoke 104 is the region that is connected to the rim 102. Thinner.
  • the spoke blank 1302 has a thickness T1 of approximately 8 mm and a thickness T2 of approximately 4.5 mm. In other examples, the spoke blanks 1302 may have other thicknesses depending on the final desired size and material properties of the spokes 104.
  • One example method includes making a spliced blank that is fabricated by concentrically positioning a reinforcing ring 1304 onto a spoke substrate 1308 and then welding the reinforcing ring 1304 to the spoke substrate 1308.
  • welding the reinforcement ring 1304 to the spoke substrate 13008 it includes welding along the outer edge 1310 and the inner edge 1312 of the reinforcement ring 1304.
  • the most important of the process of welding the reinforcement ring 1304 to the spoke substrate 1308 is the weld depth of the outer edge 1310. In this exemplary method, it is desirable to ensure that the weld depth of the outer edge is within the range of 12-15 mm.
  • the weld depth of the outer edge 1310 reaches this desired value, the durability of the wheel 100 will be greatly improved; if the weld depth is insufficient, the weld will be particularly prone to fatigue cracking. If the weld thickness of the outer edge 1310 can be as previously described, the weld will be located under the edge or gasket of the nut used to connect the wheel to the vehicle. In the above manner, the amount of material weakened by the welding process is pressed under the nut flange or the nut spacer, so the fatigue life of the finished wheel 100 is greatly increased.
  • Variable section thickness spoke blanks can be obtained by making conical shaped section thickness spoke blanks.
  • a spoke blank having a constant thickness of the mesopores is roll formed by a hard roll mold to reduce the thickness of the radially outer periphery of the spoke blank.
  • the spoke base material having a thickness of about 8 to 10 mm is spin-formed by a hard roll mold so that the outer diameter of the spoke blank increases and the thickness of the radially outer periphery of the blank is thinned.
  • the conical section thickness spoke blank 1402 described in the example is shown in FIG.
  • the conical section thickness spoke blanks provide the spokes 104 with the advantages of a thicker central region and a thinner radially outer peripheral region. These advantages include an increase in durability and a reduction in weight. Subsequent processing of the conical shaped section thickness spoke blank 1402 can be followed by a similar processing process as described for the spoke blank 1302.
  • the spoke blank 1802 can include a gas spring cavity 1804.
  • the groove 1902 shown in FIG. 20 needs to be machined on the spoke substrate 1806.
  • eight grooves 1902 are evenly spaced along the center hole 1904 of the spoke substrate 1806.
  • the groove 1902 refers to the recessed portion of the spoke base material 1806.
  • the gas spring chamber 1804 is formed when the reinforcing ring 1808 is welded or secured to the slot 1902 of the spoke base 1806.
  • the function of the gas spring chamber 1804 is to eliminate the vibrations that occur when the wheel is mounted on the vehicle.
  • the layered gas spring chamber can provide a variable modulus to the finished structure to break and/or distort any sound that can be transmitted from the wheel to the brakes and axles of the vehicle.
  • the present example shown in Figure 20 shows eight elliptical grooves 1902. Other shapes or numbers of grooves 1902 can also be used to machine one or more gas spring chambers 1804.
  • the spoke blanks 1302 require further processing.
  • the spoke blank 1302 is heated to a certain elevated temperature.
  • the exact temperature is determined by the composition of the spoke blank 1302.
  • the preferred temperature is at least the Ac3 temperature of the alloy of the spoke blanks 1302.
  • the microstructure of the spoke blank 1302 is transformed into austenite, and a more uniform cross-section thickness spoke blank having a more uniform microstructure is produced.
  • the time during which the spoke blank 1302 is transferred from the heated furnace to the thermoforming press is preferably less than 12 seconds. Other times or transfer methods can be used as long as the spoke blank 1302 can maintain a high temperature during the forming and cooling.
  • the spoke blanks 1302 are generally machined into a concave shape as shown in FIG.
  • the central region of the spoke blank 1302 having a larger thickness T1 remains planar after the process, while the radially outer peripheral region of the spoke blank 1302 is machined into a concave cross-section as shown in FIG.
  • the spoke blanks 1302 can be machined with different contours and configurations, including gussets, ribs, raised edges or other strengths, stiffness and durability that can increase the final assembled wheel 100. shape.
  • the lightweight steel wheel mentioned in the present disclosure has a lower section rigidity than a conventional steel wheel, so it is required to increase rigidity by reinforcing ribs and gussets.
  • Figure 16 is an example construction of a shaped spoke blank with gussets 1602 and raised edges 1604.
  • a gusset 1602 is added between each of the vents, and a raised edge 1604 is machined at the location of each vent.
  • the raised edge 1604 is an important feature that increases the life of the wheel 100.
  • microcracks may be generated at the edges of the wind holes 1606.
  • the raised edge 1604 removes the high stress region of the finished wheel from the edge of the vent 1606. Accordingly, this improves the life and durability of the wheel 100.
  • the vents 1606 can be increased in number and size to increase the ventilation of the brakes of the vehicle in which the wheel 100 is mounted. Larger vents can also reduce the weight of the wheel 100.
  • Other shapes and configurations can also be applied to the spoke blanks 1302 depending on the desired end characteristics and application of the wheel 100.
  • the step 222 of forming the spoke blank is carried out in a hot press at elevated temperatures.
  • the heated spoke blanks 1302 are transferred from the furnace to the hot press using a robot.
  • the temperature of the heated spoke blank 1302 is monitored by an infrared monitor prior to or simultaneously with placing the heated spoke blank 1302 into the mold of the hot press during transfer.
  • the processing at high temperatures is such that the spokes 104 can achieve the desired microstructure.
  • the forming process occurring in the hot press causes the spokes 104 to require proper cooling so that the spokes 104 can achieve the desired microstructure and take the spokes 104 at about 200 °C to limit the amount of hydrogen embrittlement.
  • the mold in the hot press can provide a cooling function for maintaining the proper temperature of the mold, which makes the cooling speed of the mold of the hot press controllable, thereby achieving the desired microstructure. .
  • Another way to get this result is through the operation of the die unit pressure. Higher unit pressures allow for faster cooling rates.
  • the splitting of the mold or the ability of the press to provide locally different pressures allows the unit pressure to be controlled to provide an appropriate and advantageous amount of cooling during processing.
  • the mold can be equipped with a temperature monitoring assembly such that the mold can remain closed until the forming spoke blank 1302 is cooled to the appropriate temperature.
  • the opening temperature of the mold in this example was 200 °C. After the spoke blank is formed, the formed spoke blanks are finished into spokes 104 in step 224.
  • the formed spoke blank 1502 requires further processing of various openings and apertures as shown in FIG.
  • the spokes 104 may include a vent 1606 and a bolt hole 1608.
  • the center through hole 1610 can be reworked to obtain the final size.
  • Various holes may be processed by a variety of suitable methods, but laser cutting is the preferred method. Laser cutting of the air holes, screw holes and center holes 1610 can increase the durability and fatigue life of the wheel 100, because various holes processed by other methods, such as stamping, may cause microcracks, which may expand so that the wheels occur prematurely Invalid.
  • the rim 102 and spokes 104 will be assembled in step 228.
  • the rim is positioned on the radially outer wall 1702 of the spoke 104 as shown in FIG.
  • the radially outer wall 1702 is located adjacent the inner weld face 1704 of the rim 102.
  • the outer diameter of the spokes 104 should be slightly larger than the diameter of the inner weld face 1704 such that there will be an interference fit between the spokes 104 and the rim 102.
  • the interference between the outer diameter of the radially outer wall 1702 and the inner weld face 1704 is preferably between 0.5 mm and 2.5 mm, which provides a high quality weld for the joining components. Excessive interference may cause the size of the spokes 104 to deform, or the machining of the spokes 104 into the rim 102 becomes difficult. On the other hand, too small an interference can lead to defective welding, which can lead to premature failure of the wheel.
  • the two components are joined together by welding.
  • Laser welding is the preferred method of soldering because it reduces the harmful effects of heating the substrate.
  • Other welding processes can also be used, such as MIG welding (melted inert gas shielded welding).
  • MIG welding can cause undesirable characteristics in the heat affected zone of the material due to its heating. Unnecessary heating can adversely affect dimensional accuracy and can also lead to premature failure of the wheel 100.
  • laser welding is used in the groove 1706 on the convex side of the spokes 104 with a weld zone of about 1 mm to 2 mm.
  • step 236 After the wheel 100 has been manufactured, some late and other processing may be performed in step 236. Subsequent processing may include cleaning, electrophoresis, painting, and testing/certification of finished wheels.
  • This type of post-process may provide corrosion resistance to the finished wheel and affect its mechanical properties.
  • the surface of the wheel is coated with a primer and a topcoat using static electricity or other means, and the primer and topcoat used are cured in a furnace to obtain sufficient corrosion resistance.
  • the wheel 100 is cleaned using pickling (after processing and prior to painting).
  • pickling After processing and prior to painting.
  • Many of the foregoing processes of machining the metal parts of the wheel 100 can result in discoloration or scale on the surface of the metal part.
  • the scale should be eliminated. Acids are often used during the pickling process to remove these contaminants.
  • the acid often used in the pickling process is hydrochloric acid.
  • this acid is not desirable in the wheel processing process because such acids can cause hydrogen embrittlement. Therefore, organic acids are preferred in the manufacture of the wheel 100.
  • Organic acids, such as citric acid can be used to remove oxides, impurities or other contaminants that may be present on the metal components of the wheel 100.
  • the wheel 100 is immersed in a quantity of organic acid and, after a sufficient amount of time, removes unwanted contaminants.
  • the pickling process as previously described can be used in the final processing or can be used in different stages of the previously described manufacturing process.
  • the rim substrate 402, the spoke blank 1302 or the reinforcement ring 1304 can all be organically acid washed prior to the previously described manufacturing process.
  • the surface of the welded joint is also sensitive to contaminants.
  • the components of the wheel 100 that are welded together, namely the rim 102 and the spokes 104, may also be pickled prior to step 228 to reduce the likelihood of weld failure.
  • orientations such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” and the like are indicated. Or the positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is merely for the convenience of the description of the invention and the simplification of the description, which are not intended to indicate or imply the indicated device or component. It must be constructed and operated in a specific orientation or in a specific orientation, and thus is not to be construed as limiting the scope of the invention; the orientations “inside and outside” refer to the inside and outside of the contour of the components themselves.
  • spatially relative terms such as “above”, “above”, “on top”, “above”, etc., may be used herein to describe as in the drawings.
  • the exemplary term “above” can include both “over” and "under”.
  • the device can also be positioned in other different ways (rotated 90 degrees or at other orientations) and the corresponding description of the space used herein is interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种轮辋、轮辐、钢制车轮的制造方法及其采用该方法成型的钢制车轮。其方法包括在加热炉内加轮辋/轮辐毛坯,将加热的轮辋/轮辐毛坯转移到热压力机上。在将轮辋/轮辐毛坯转移到热压力机的过程中,轮辋/轮辐毛坯温度要保持在所需温度之上。然后在热压力机内成形轮辋/轮辐毛坯。成型后的轮辋(102)与轮辐(104)被连接以产生一个钢制车轮(100)。提供了一种不仅重量比常规方法生产的钢制车轮轻,而且能够保证产品的尺寸稳定和耐久性,而且更加有效成本更低的热冲压成形车轮及制造方法;解决了现有技术中存在的热处理方法耗时并且昂贵,生产的车轮容易失效的技术问题。

Description

[根据细则37.2由ISA制定的发明名称] 一种轮辋、轮辐、钢制车轮的制造方法及该方法成型的钢制车轮 技术领域
本发明涉及一种车轮及其制造方法,尤其涉及一种钢制的采用热冲压成形的车轮及其制造方法。
背景技术
钢制车轮制造的常规方法存在尺寸不稳定性、耐久性早期失效、以及比用其它金属合金(例如铝)制成的车轮要重等问题。然而,铝合金车轮虽然重量更轻,但是生产成本比钢制车轮高很多。生产钢制车轮的常规方法包括各种金属成型工艺,由于在成型过程中在材料上施加了作用力而使得金属硬化。常规方法也包括加热钢制车轮的局部区域的连接工艺,其有可能会导致不良的机械性能。不良的机械性能可能会导致钢制车轮的过早失效。为了解决以上这些问题,可以对一个按常规方法制造的钢制车轮或元件进行热处理以消除不良特性。已知的与常规钢制车轮的制造方法相关的热处理方法是一个既耗时又昂贵的方法。因此,需要一种能制造产品尺寸稳定的钢制车轮制造方法,此方法生产的钢制车轮不仅重量比常规方法生产的钢制车轮轻,而且能保证产品的尺寸稳定和耐久性。而且,还需要一种比常规方法更有效且成本更低的钢制车轮制造方法。
发明内容
本发明提供了一种不仅重量比常规方法生产的钢制车轮轻,而且能保证产品的尺寸稳定和耐久性,而且更加有效成本更低的热冲压成形车轮及制造方法;解决了现有技术中存在的热处理方法耗时并且昂贵,生产的车轮容易失效的技术问题。
本发明的上述技术问题是通过下述技术方案解决的:在本发明中,一种钢制车轮的轮辋制造方法包括以下步骤:在加热炉内加热圆形管状物,并将加热的圆形管状物移到热压力机上。转移到热压力机上的圆形管状物的温度要保持在所期望的温度之上。所需的温度至少在950℃以上,然后利用内部轮廓使圆形管状物成形以达到生产车轮轮辋的目的。上述方法制成的车轮轮辋能与车轮轮辐合成以生产本发明中提到的车轮。
在本发明中,在加热炉中加热的圆形管状物从加热炉转移到热压力机的时间应控制在12秒甚至更少。
在本发明中,当轮辋被放在热压力机后,使用带多根喷嘴且能交叉喷射水或冷却剂的装置对已成形的车轮轮辋在其装胎面的表面进行均匀的喷射水或者其它冷却剂。还包括通过将所述轮辋放置在有机酸的酸洗槽中来去除轮辋上的污染物。
在本发明中,制造钢制车轮的轮辐的方法包括:准备一个变截面厚度的轮辐毛坯,并在加热炉内加热这个毛坯。加热后的轮辐毛坯从加热炉转移到热压力机上的时间不能超过12秒。 转移到热压力机中的轮辐毛坯的温度要高于所需温度,轮辐所需的温度至少为950℃。用热压力机上的带冷却功能的模具来冷却且成形轮辐毛坯,使其成为一个车轮轮辐。还包括将所述轮辐放置在有机酸的酸洗槽中来去除轮辐上的污染物。车轮轮辐能与车轮轮辋连接从而生产出一个车轮。
作为优选,准备变截面厚度的轮辐毛坯的步骤包括,将加强环同心定位到轮辐基材的上方,且将加强环的外侧边缘焊接到轮辐基材上。将加强环的外侧边缘焊接到轮辐基材上,焊接所产生的焊缝的深度为12-15mm。还包括用硬辊型模具旋压轮辐基材,以减薄轮辐基材外侧边缘区域的厚度。
通过将加强环焊接到轮辐基材上制成一个变厚度的轮辐毛坯。变厚度的轮辐毛坯是指毛坯的中间区域为较厚的部分,外侧周边为较薄的部分。
因此,本发明的热冲压成形车轮及制造方法具备下述优点:
使用本发明的制造方法和结构的钢制车轮的优点包括,增加耐久性和延长使用寿命。本发明中钢制车轮的重量还显著轻于用常规方法生产的钢制车轮。而且,本发明的制造方法比常规方法的成本更低且更有效率。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是按照本发明公开的车轮的实施例的示意图。
图2是按照本发明公开的制造车轮的示例过程的示意图。
图3是按照本发明公开的制作圆管的示例过程的示意图。
图4是按照本发明公开的轮辋基材的实施例的示意图。
图5是按照本发明公开的圆形件的示意图。
图6是按照本发明公开的带扁平部分的圆形件的实施例的示意图。
图7是按照本发明公开的闭合的圆形件的实施例的示意图。
图8是按照本发明公开的圆形管状物的实施例的示意图。
图9是按照本发明公开的成形圆形管状物的示例过程的示意图。
图10是按照本发明公开的带向外扩展边的圆形管状物的实施例的示意图。
图11是按照本发明公开的轮辋的实施例的示意图。
图12是按照本发明公开的轮辋的另一个实施例的示意图。
图13a是按照本发明公开的轮辐毛坯的实施例的示意图。
图13b是图13a的侧视图。
图14是按照本发明公开的轮辐毛坯的另一个实施例的示意图。
图15是按照本发明公开的轮辐的实施例的示意图。
图16是按照本发明公开的轮辐的另一个实施例的示意图。
图17是按照本发明公开的车轮的实施例的示意图。
图18是按照本发明公开的车轮合成焊接的实施例的示意图。
图19是按照本发明公开的轮辐毛坯的另一个实施例的示意图。
图20是按照本发明公开的轮辐的另一个实施例的示意图。
具体实施方式
下面通过实施例,并结合附图,对发明的技术方案作进一步具体的说明。
实施例:
图1是采用本发明中公开的方法制造的车轮。车轮100的组件包括轮辋102和轮辐104。车轮100也包括安装孔106,车轮100通过安装孔106被安装到车辆上去使用。车轮100可能也包括1个或者多个风孔108。正如之前被提到的,轮辐104有不同的厚度,靠近安装孔106的车轮100的中心部分较厚,而轮辐104的外侧周边部分相对较薄。材料、结构和热冲压成形方法造就了一个既有一定耐久性又显著减轻重量的钢制车轮。例如,在本发明公开的实施例中,产品规格是22.5×8.25cm的钢制车轮的重量只有21.5kg左右。用常规制造方式生产的同样规格的钢制车轮的重量大约为31kg。锻造铝合金车轮生产的重量与用本发明中的方法制造的钢制车轮的重量相似,但是锻造铝合金车轮的成本会显著提高。
以下描述的是车轮和相关的制造方法。本发明中公开的车轮制造方法的相关步骤包括轮辋制造,轮辐制造以及轮辐与轮辋的连接。轮辋制造也包括多个制造阶段。图1是车轮制造方法的示例。
在此描述的制造方法是适合钢制车轮的制造的。轮辋102和轮辐104制造的首选材料是硼钢。硼钢特别适合本发明中公开的车轮,其原因在于它的机械性能,尤其是在满足成形时的可淬性。在实施例中可以使用的硼钢的化学成分见表1,材料性能见表2。
表1化学成分
Figure PCTCN2018082474-appb-000001
表2材料性能
Figure PCTCN2018082474-appb-000002
如图2的示例方法所示,轮辋的制造工艺包括以下工艺:制造一个圆形管状物210,把圆形管状物加工成初成形轮辋212,最终完成轮辋214加工。图3是制造圆形管状物210的示例过程。如图所示,示例过程包括以下步骤:准备轮辋基材302,把轮辋基材加工成带有缺口的圆形304,在圆形缺口上加工一个扁平的区域306,闭合缺口308,去除焊渣310,并把它加工成圆形管状物312。以上所述的步骤可以将轮辋基材加工成圆形管状物,且能进一步加工成本发明公开中的车轮。
制造圆形管状物的示例过程见图3,它以步骤302准备轮辋基材为开始。轮辋基材402是一块矩形钢板或者其它适合用于车轮及加工的合金。此矩形毛坯与用于常规生产的轮辋的毛坯不同,此毛坯的长度比其它情况要短大约0.4%—0.5%。要求这种稍短的毛坯是为了适应在热成形过程中钢材在进行马氏体转变时出现的0.4%-0.5%的密度下降。轮辋的扩涨会给轮辋提供一个小的塑性变形,使轮辋变圆且得到最终的尺寸。巧合的是,扩涨量大约为0.5%,所以如果在转变前不做减短毛坯长度的调整,那么轮辋将没有正确的最终尺寸。在步骤302中,轮辋基材402可以浸入酸洗液中或者保持在油中,以便保持其特性,使得之后的成形和连接工艺(将进一步描述)的质量能够得到最佳的,从而生产出坚固耐用的车轮。
如图4和5所示,轮辋基材402,在步骤304中,被成形加工成圆形502。通常,圆形502在形状上是一个径向尺寸远小于车轮100的最终尺寸的圆形。轮辋基材402可以送入一个卷圆机或者用其它适合的加工方法把矩形轮辋基材402卷成圆形502。如图5所示,圆形502本质上是一个带有缺口504的圆形,缺口是在圆形502的第一个末端506和第二个末端508处。缺口504具有以下这样的尺寸,它使得圆形502可以闭合缺口504,使得第一个末端506和第二个末端508能彼此相遇并在步骤308中被接合。
在闭合缺口504之前,为了使得随后的工艺能更简单和高质量,在步骤306中会把圆形502的一部分区域压平。如图6所示,带有平整部分602的圆形502可以在压平模具上用适当的压力制造而成。平整部分602在第一个末端506的上方和第二个末端508的下方延伸一定的距离。
在步骤308中,缺口504被闭合。在一个首选的实施例中,缺口504应该通过焊接闭合。在这个实例中,圆形502的平整部分602被放进设备或者其它的装置内,并且第一个末端506要保持在第二个末端508的附近,这使得缺口504被关闭。第一个末端506和第二个末端508通过合适的焊接方式接合,例如,但不局限于,熔化极惰性气体保护焊,激光焊接,气体保护金属极电弧焊,诸如此类。图7显示了闭合圆形502,焊缝702沿着其宽度的方向扩展。正如我们所意识到的,在焊接过程中,焊渣可能会沿着焊缝702或者在边缘堆积。在步骤308中第一个末端506和第二个末端508焊接之后,圆形502被加工成圆管708(如图8 所示),它通常在形状上是圆柱形的,但是它需要更进一步的加工处理来去除生成的焊渣并消除平整部分602。
在步骤308的另一个示例中,缺口504用电阻对接焊来闭合。在这种方法中,第一个末端506和第二个末端508被对接在一起,然后使用电流加热至所需温度。在该工艺之前和进行时,应该将压力施加到第一个末端506和第二个末端508上,使得当圆形502达到塑性状态时所施加的压力可以将第一个末端506接合到第二个末端508上。在焊接接头上的焊渣或局部变形可能导致后续工艺310是必须要的。
在步骤310中,焊渣从圆管708上被去除。可以使用任何合适的加工方法来去除焊渣,并制备用于后续工艺的圆管708。在步骤310中可以使用各种加工处理技术,例如研磨,砂磨,抛光,修整等。去除沿着圆管708焊缝的焊渣以及边缘704和706上的焊渣。圆管708必须经过必要的加工处理直到在圆管708的焊缝710处的表面是光滑的,且无毛刺或凸起的缺陷。
在步骤310中,圆管708通过成形消除平整部分602。一旦圆管708连接成一个连续完整的形状,它的圆柱形状必须恢复。一个合适的辊型机或者其它加工方法都可以被用来去除平整部分602。在步骤310的最后,圆管708的形状是一个圆柱形,如图8所示。这个步骤之后,圆管708的外径要小于轮辋102的最终直径。正如所描述的一样,圆管708最终被扩展且成形成轮辋102的最终的理想尺寸。
在圆管用之前描述的步骤制造好后,圆管708被成形为作为车轮使用的轮廓。图9为成形圆管708的一种示例方法。成形圆管708的示例方法的步骤包括:扩口902,成形气门嘴孔平面904,加热已成型圆管906和成形轮辋908。正如本领域普通技术人员所知的那样,也有可能使用其它额外的步骤或者每个之前提到的步骤都可以被进一步分离或者分成多个步骤。
在步骤902中,圆管708的边缘被扩口。如图10所示,圆管708被扩口以致其边缘1002,1004的直径大于圆管708的中间部分。任何合适的扩口工艺都可以在步骤902中使用。最好的方法是用压力机和相应的模具来制造扩口边1002和1004。在这个示例方法中,圆管708被放进模具中,扩口边1002和1004同时产生。在其它的方法中,可以使用辊型机或者扩口机。在其它的示例中,扩口边1002和1004可以在两个步骤中产生。
在步骤904中,气门孔平面1202形成。如图11所示,内轮廓1102包括一个用于后序加工气门嘴孔的截面。当车轮100投入使用并且轮胎装配到车轮100上时,气门嘴孔用于安装气门嘴。为了在后续过程中制造该孔,气门嘴孔平面1202沿着内轮廓1102的截面成形。气门嘴孔平面1202是内轮廓1102的一个截面,通常它在局部区域是一个平面,但是气门嘴孔平面1202位于一个相对于圆管708的轴线的斜角上。
在步骤906中,将已成型圆管1000加热至一个高温。确切的温度是取决于已成型圆管1000的构成不同而变化的。然而,首选的温度至少达到已成型圆管1000的合金的Ac3温度。在应用硼钢的实例中,Ac3温度为950℃。在高于Ac3温度的高温下,已成型圆管1000的钢 组织转变成奥氏体,且成为一个组织更均匀的金属零件;同时,消除了在先前加工过程中产生的加工硬化或者其它不希望产生的微观结构。已成型圆管1000的高温需要在随后的成形轮辋的步骤908中保持住。为了在步骤908中保持必要的温度,已成型圆管1000最好在12秒内从加热它的加热炉转移到热成形压力机上。也可以使用其它时间或者转移方法,只要已成型圆管1000在成形和冷却(后续会描述)时能被保持在高温中。
在步骤908中,圆管708的内轮廓在热压力机上形成。图11展示了车轮100的内轮廓1102的实例。正如所意识到的,在步骤904中可以根据车轮100的尺寸规格和结构要求成形出各种不同的内轮廓。在步骤908中,圆管708的内轮廓被形成,且圆管708的外径被扩张至轮辋102最终的期望直径。步骤908的成型工艺还为成形圆管提供必要的冷却,并赋予理想的微观结构以提供优越的机械性能。在步骤908中使用扩张模时,其中一个示例是用水或者其它冷却剂来提供恰当的冷却。在其它的示例中,已成形轮辋被保持在用于扩张圆管708的直径的扩张模上时,喷嘴阵列将水或者冷却剂喷洒到轮辋702的装胎侧表面1104上。在该示例中,喷嘴阵列能将水或其它冷却剂交叉重叠地喷洒到装胎侧表面1104上(如图12所示)。冷却剂的重叠应用确保了在冷却期间发生的相变是均匀的。不均匀的冷却或冷却剂的不均匀应用会导致轮辋102的尺寸变形或者导致局部区域的不良机械性能,这会使得车轮100在使用过程中过早失效。使用扩张模和喷水迅速将轮辋102冷却到200℃左右,并从模具中提取出来。200℃的提取温度有助于金属内的氢气散发出来。轮辋102可选择地在400℃时回火,回火时间控制在20~60分钟之间。经过适当冷却后得到的轮辋具有约为52HRC的硬度和约为1300~1500Mpa的抗拉强度。这些机械特性允许轮辋102使用比常规钢制轮辋更薄的钢材,这使得车轮100在重量上有明显的减轻。
轮辋102的加工在示例方法的步骤214中继续,精加工已成形轮辋。在这个阶段,需要进一步的加工和其它工艺过程来完成轮辋102的最终的形状和增加其它的结构特征,例如增加气门嘴孔。气门嘴孔可以采用激光切割,冲孔,钻孔或者其它合适的加工方式,但是激光切割是首选的加工方式。
除了轮辋102的制造,还有轮辐的制造218。在制造轮辐104的示例方法中,其步骤包轮辐毛坯220的准备,成形轮辐毛坯222和精加工轮辐224。为了准备之后与轮辋102连的轮辐104,这些步骤都还包括了更多的子步骤和工艺。
在步骤220中,准备加工用的轮辐毛坯。在该步骤中,变截面厚度的轮辐毛坯被生产。变截面厚度的轮辐毛坯允许车轮100的轮辐的中心安装到车辆的区域采用更厚或更强的材料。在车轮100的使用过程,其中心区域承受着高应力,如果采用不恰当的厚度或者材料性能不足,那么车轮很容易在期望的寿命之前就失效了。生产一个在轮辐104的中心区域截面厚度更厚的车轮,可以弥补先前设计的不足,同时又没有显著增加车轮100的重量。如图13所示,轮辐毛坯1302在中心区域的厚度为T1,从中心孔1306径向向外的周边部分的厚度为T2。在这个示例中,T1大于T2。轮辐毛坯1302在结构上有着变截面厚度的特点,即最终成形的轮辐104的中心区域会更厚,安装时该区域与车辆进行连接;轮辐104的外侧周边区域即与轮辋102相连接的区域相对较薄。在一个示例中,轮辐毛坯1302的厚度T1大约为8mm, 厚度T2大约为4.5mm。在其它的示例中,轮辐毛坯1302可能会有其它的厚度,这取决于轮辐104最终期望的尺寸和材料性能。
本发明中公开了两种生产变截面厚度轮辐毛坯的实例工艺。其中一个实例方法包括制造一个拼接毛坯,该毛坯是把加强环1304同心定位到轮辐基材1308上,然后将加强环1304焊接到轮辐基材1308上制造而成。在将加强环1304焊接到轮辐基材1308上的这样一个实例中,包括沿着加强环1304的外侧边缘1310和内侧边缘1312焊接。在把加强环1304焊接到轮辐基材1308上的这个过程中最重要的是外侧边缘1310的焊接深度。在这个示例方法中,期望能确保外侧边缘的焊接深度在12-15mm的范围之内。如果外侧边缘1310的焊接深度达到该要求值,车轮100的耐久性将被大大提高;如果焊接深度不够,焊接处会特别容易产生疲劳裂纹。如果外侧边缘1310的焊接厚度能如之前描述的一样,焊接处会位于连接车轮和车辆所用的螺母的边缘或者垫片的下方。按以上方式,因焊接加工而弱化的材料的数量被压在螺母法兰或者螺母垫片下,因此成品车轮100的疲劳寿命将大大增加。
变截面厚度轮辐毛坯可以通过制造圆锥形变截面厚度轮辐毛坯来得到。在该示例中,带有中孔的厚度恒定不变的轮辐毛坯会被硬辊型模具辊压成形,以减薄轮辐毛坯径向外侧周边的厚度。在实施例中,厚度为8-10mm左右的轮辐基材被硬辊模具旋压成型,使得轮辐毛坯的外径增加且毛坯径向外侧周边的厚度减薄。示例中所述的圆锥形变截面厚度轮辐毛坯1402如图14所示。正如所理解的,圆锥形变截面厚度轮辐毛坯使得轮辐104具有较厚的中心区域和较薄的径向外侧周边区域的优点。这些优点包括耐久性的增加和重量的减轻。圆锥形变截面厚度轮辐毛坯1402之后可以进行类似于轮辐毛坯1302所描述的后续的加工工艺过程。
车轮100的另一实施例如图19所示,轮辐毛坯1802可以包括气弹簧腔1804。为了生成弹簧座,如图20所示的凹槽1902需要加工在轮辐基材1806上。在本实例中,8个凹槽1902均匀地沿着轮辐基材1806的中孔1904间隔开。凹槽1902是指轮辐基材1806上凹进去的部分。当加强环1808被焊接或者固定在轮辐基材1806的孔槽1902上时,气弹簧腔1804就形成了。设置气弹簧腔1804的作用是用于消除车轮安装到车辆上使用时发生的振动。分层的气弹簧腔可以为成品结构提供可变的模量,以破坏和/或失真任何可能从车轮传递到车辆的制动器和车轴中的声音。如图20所示的本实例展示了8个椭圆形的凹槽1902。也可以使用其它形状或数量的凹槽1902加工成一个或多个气弹簧腔1804。
完成变截面厚度轮辐毛坯的加工之后,轮辐毛坯1302需要进行进一步加工。轮辐毛坯1302被加热到一定的高温。准确的温度要根据轮辐毛坯1302的组成来决定。然而,首选的温度至少为轮辐毛坯1302的合金的Ac3温度。在高于Ac3温度的高温下,轮辐毛坯1302的微观组织转变成奥氏体,同时产生了微观组织更均匀的变截面厚度轮辐毛坯。将轮辐毛坯1302转移到随后的加工轮辐毛坯的步骤222的过程期间,需要保持轮辐毛坯1302的高温。为了在步骤222期间保持所需的温度,轮辐毛坯1302从加热的加热炉转移到热成形压力机上的时间最好小于12秒。其它的时间或转移方法都可以使用,只要轮辐毛坯1302在所述的成形和冷却中能保持住高温就可以了。
在步骤222中,轮辐毛坯1302被大致加工成如图15所示的凹形。具有较大厚度T1的轮辐毛坯1302的中心区域在本工艺后仍保持平面的结构,而轮辐毛坯1302的径向外侧周边区域则被加工成如图15所示的凹形横截面。除了凹形横截面以外,轮辐毛坯1302还可以加工出不同的轮廓和结构,其包括角撑板,加强筋,凸起的边缘或其它可以增加最终组装的车轮100的强度,刚度和耐久性的形状。比如在本发明公开中提到的轻量化钢制车轮的截面刚性要低于常规的钢制车轮,所以它要通过加强筋和角撑板来提高刚性。图16是一个带有角撑板1602和凸起的边缘1604的成形的轮辐毛坯的实例结构。如图16所示的实例中,在每个风孔之间增加角撑板1602,在每个风孔的位置处加工凸起的边缘1604。凸起的边缘1604是增加车轮100的寿命的重要特征。制造时,在风孔1606的边缘处可能产生微裂纹。凸起的边缘1604将成品车轮的高应力区域从风孔1606的边缘移开。相应地,这就改进了车轮100的寿命和耐久性。以这种方式,风孔1606可以在数量和尺寸上增加以提高安装车轮100的车辆的制动器的通风效果。较大的风孔还可以减小车轮100的重量。其它的形状和结构也可以应用到轮辐毛坯1302上,这取决于车轮100期望的最终特性和应用。
如前面所述,成形轮辐毛坯的步骤222是在高温情况下,在热压力机内进行的。加热之后,加热的轮辐毛坯1302用机器人从加热炉转移到热压力机上。在转移期间,把加热的轮辐毛坯1302放置到热压力机的模具中的之前或同时,加热的轮辐毛坯1302的温度由红外监视器监测。在高温下的加工,是为了轮辐104能得到期望中的微观组织。发生在热压力机中的成形工艺使得轮辐104需要适当的冷却,以致轮辐104能得到期望的微观组织结构,并在200℃左右时取出轮辐104以限制氢脆化的量。为了实现这一目标,热压力机中的模具能提供冷却功能,该冷却功能用于维持模具的适当温度,这使得热压力机的模具的冷却速度是可控的,从而实现期望的微观组织结构。得到这个结果的另一种方法是通过模具单元压力的操作。较高的单元压力能使更快的冷却速度发生。以模具分瓣或者使压力机具有提供局部不同压力的能力来允许单元压力是可控制的,从而在加工期间提供适当和有利的冷却量。为了有助于该过程,模具可以配备温度监测组件,使得模具可以保持闭合状态直到成形轮辐毛坯1302冷却到适当的温度。本实例中模具的打开温度为200℃。轮辐毛坯被成形后,在步骤224中成形轮辐毛坯被精加工成轮辐104。
在步骤224中,成形的轮辐毛坯1502需要进一步加工各种不同的如图16所示的开口和孔。如前所述,轮辐104可能包括风孔1606和螺栓孔1608。在步骤224中,中心通孔1610可再加工以得到最终尺寸。各种孔可能通过各种合适的方法加工,但是激光切割是首选方法。风孔,螺孔和中孔1610的激光切割可以增加车轮100的耐久性和疲劳寿命,因为用其它方法加工的各种孔,例如冲压,可能导致微裂纹,微裂纹可以扩展以致车轮发生过早失效。
轮辋102和轮辐104制造完成后,轮辋102和轮辐104将在步骤228中被组装。在步骤228中,如图17所示轮辋被定位于轮辐104的径向外壁1702上。径向外壁1702位于靠近轮辋102的内侧焊接面1704处。在一个优选的实施例中,轮辐104的外径应该略大于内焊接面1704的直径,这样轮辐104和轮辋102之间将会有一个过盈量配合。径向外壁1702的外径和内焊接面1704之间的过盈量最好在0.5mm和2.5mm之间,这为连接部件提供一个高质量的焊接。过大的过盈量可能使得轮辐104的尺寸变形,或者使得轮辐104装配进轮辋 102的加工变得困难。另一方面,过小的过盈量会导致有缺陷的焊接,进一步会导致车轮的过早失效。
轮辐104定位于轮辋102内侧后,用焊接将两个部件连接在一起。激光焊接是优先的焊接方式,因为这种焊接方式可以减少因加热基材而造成的有害影响。其它的焊接工艺也可以使用,例如MIG焊(熔化极惰性气体保护焊)。然而,MIG焊因其加热的原因会在材料的热影响区产生的不良特性。不必要的加热会对尺寸精度产生不利地影响,也会导致车轮100的过早失效。在优选的实例中,如图18所示,在轮辐104的凸侧的沟槽1706内使用激光焊接,其焊接区大约1mm至2mm。
车轮100完成制造后,可能在步骤236内进行一些后期的和其它的加工处理。后期的加工可能包括清洗、电泳、涂装和成品车轮的测试/认证。这类后期工艺可能可以为成品车轮提供抗腐蚀性并影响其机械性能。在后期处理的优选实例中,使用静电或者其它方式用底漆及面漆涂装车轮表面,所用的底漆和面漆在加热炉内固化以获得足够的防腐性能。
在其它的后期处理的优选案例中,使用酸洗清洁车轮100(在加工之后和涂装之前)。许多前述的加工车轮100的金属部件的过程会导致在金属部件的表面上产生变色或氧化皮。为了提高车轮100的寿命或改进金属组件的加工,氧化皮应该被消除。在酸洗过程中经常使用酸来去除这些污染物。酸洗过程中经常使用的酸是盐酸。然而,这种酸在车轮加工过程是不可取的,因为这类酸会导致氢脆现象的发生。因此,在车轮100的制造过程中,有机酸是首选。有机酸中,如柠檬酸,能用来去除可能存在于车轮100的金属部件上的氧化物、杂质或其它污染物。在一个实例方法中,车轮100被浸入一定量的有机酸内,经过充足的时间之后,去除掉不要的污染物。
如前所述的酸洗过程可以在最终的加工过程中使用,或者可以在之前描述的制造过程的不同阶段内中使用。例如,轮辋基材402,轮辐毛坯1302或者加强环1304都可以在先前描述的制造方法之前进行有机酸洗。同样的,焊接连接的表面对污染物也很敏感。被焊接在一起的车轮100的部件即轮辋102和轮辐104,可能也要在步骤228之前进行酸洗以减小焊接失效的可能性。
前面的描述产生了一种具有以下优点的车轮100:重量轻于传统生产的钢制车轮,尺寸精度更高,以及具有足够的耐久性和使用寿命。应当理解的是,对于本领域的技术人员来说,对本文中公开的优选的示例进行各种改变和修改将是轻而易举的。在不脱离本公开的精神和范围内,且不减少其预期优点的情况下,可以进行这样的改变和修改。因此,这些改变和修改应被包括在所附的权利要求内。
本发明中描述了各种实施例,对于本领域的技术人员来说,明白本发明范围内的更多实施例和实施方式都是有可能的。因此,除了根据附加的权利要求及其等同物之外,本发明不受限制。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图 包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种制造钢制车轮轮辋的方法,其特征在于:第一步,在加热炉内加热圆管;第二步,将加热的圆管转移到热压力机上,转移到热压力机上的加热的圆管的温度要高于所需的温度;第三步,对所述的圆管的内轮廓进行加工以形成所述的轮辋。
  2. 根据权利要求1所述的一种制造钢制车轮轮辋的方法,其特征在于:要求所需的温度至少为950℃。
  3. 根据权利要求1所述的一种制造钢制车轮轮辋的方法,其特征在于:加热的圆管从加热炉内转移到热压力机上用时不能超过12秒。
  4. 根据权利要求1所述的一种制造钢制车轮轮辋的方法,其特征在于:还包括在热压力机内用水喷射器冷却轮辋。
  5. 根据权利要求4所述的一种制造钢制车轮轮辋的方法,其特征在于:所述的水喷射器包括喷嘴阵列,所述的喷嘴阵列以重叠交叉的方式喷射水在轮辋的装胎面上。
  6. 根据权利要求5所述的一种制造钢制车轮轮辋的方法,其特征在于:在轮辋处于热压力机的模具中进行加工时,水被喷到轮辋上。
  7. 根据权利要求1所述的一种制造钢制车轮轮辋的方法,其特征在于:还包括通过将所述轮辋放置在有机酸的酸洗槽中来去除轮辋上的污染物。
  8. 一种制造车轮轮辐的方法,其特征在于:第一步,准备变截面厚度的轮辐毛坯;第二步,加热变截面厚度的轮辐毛坯,将加热的轮辐毛坯转移到热压力机上,转移到热压力机中的轮辐毛坯的温度要高于所需温度;第三步,将加热的轮辐毛坯成形成带有凹形轮廓的轮辐,其中所述凹形轮廓包括外壁。
  9. 根据权利要求8所述的一种制造车轮轮辐的方法,其特征在于:还包括对轮辐毛坯在热压力机中成形时对轮辐的冷却。
  10. 根据权利要求8所述的一种制造车轮轮辐的方法,其特征在于:加热的轮辐毛坯从加热炉内转移到热压力机内用时不能超过12秒。
  11. 根据权利要求8所述的一种制造车轮轮辐的方法,其特征在于:轮辐所需的温度至少为950℃。
  12. 根据权利要求8所述的一种制造车轮轮辐的方法,其特征在于:热压力机包括用来成形轮辐毛坯的模具,且这个模具带有水冷却的功能。
  13. 根据权利要求8所述的一种制造车轮轮辐的方法,其特征在于:还包括将所述轮辐放置在有机酸的酸洗槽中来去除轮辐上的污染物。
  14. 根据权利要求8所述的一种制造车轮轮辐的方法,其特征在于:准备变截面厚度的轮辐毛坯的步骤包括,将加强环同心定位到轮辐基材的上方,且将加强环的外侧边缘焊接到轮辐基材上。
  15. 根据权利要求14所述的一种制造车轮轮辐的方法,其特征在于:包括:将加强环的外侧边缘焊接到轮辐基材上,焊接所产生的焊缝的深度为12-15mm。
  16. 根据权利要求8所述的一种制造车轮轮辐的方法,其特征在于:包括:准备变截面厚度轮辐毛坯的步骤还包括用硬辊型模具旋压轮辐基材,以减薄轮辐基材外侧边缘区域的厚度。
  17. 一种制造钢制车轮的方法,其特征在于:连接根据权利要求1所述方法制造的轮辋和根据权利要求8所述的方法制造的轮辐。
  18. 一种钢制车轮,其特征在于:包括一个根据权利要求1所述方法制造的车轮轮辋。
  19. 一种钢制车轮,其特征在于:包括一个根据权利要求8所述方法制造的车轮轮辐。
  20. 一种钢制车轮,其特征在于:包括一个根据权利要求1所述方法制造的车轮轮辋,一个根据权利要求8所述方法制造的并且与轮辋相连接的轮辐。
PCT/CN2018/082474 2017-04-12 2018-04-10 一种轮辋、轮辐、钢制车轮的制造方法及该方法成型的钢制车轮 WO2018188580A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/499,277 US11633777B2 (en) 2017-04-12 2018-04-10 Manufacturing methods for wheel rim, spoke and steel wheel and steel wheel formed by methods
EP18784975.7A EP3610983A4 (en) 2017-04-12 2018-04-10 MANUFACTURING METHOD FOR WHEEL RIM, SPOKES AND STEEL WHEEL, AND STEEL WHEEL MANUFACTURED USING THE SAME METHOD
JP2019555227A JP6894529B2 (ja) 2017-04-12 2018-04-10 ホイールリム、スポーク及びスチール製ホイールの製造方法、ならびに該方法により成形されたスチール製ホイール
CA3058493A CA3058493C (en) 2017-04-12 2018-04-10 Manufacturing methods for a wheel rim, a spoke and a steel wheel and a steel wheel formed by the methods
BR112019021284-1A BR112019021284B1 (pt) 2017-04-12 2018-04-10 Métodos de fabricação de um aro da roda, uma peça de raios e uma roda de aço, e uma roda de aço formada pelos métodos
RU2019135051A RU2735604C1 (ru) 2017-04-12 2018-04-10 Способы изготовления обода колеса, диска и стального колеса и стальное колесо, которое выполнено с помощью этих способов

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710237795.1 2017-04-12
CN201710237795.1A CN107052720B (zh) 2017-04-12 2017-04-12 一种钢制车轮的制造方法及其采用该方法成型的车轮

Publications (1)

Publication Number Publication Date
WO2018188580A1 true WO2018188580A1 (zh) 2018-10-18

Family

ID=59601904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082474 WO2018188580A1 (zh) 2017-04-12 2018-04-10 一种轮辋、轮辐、钢制车轮的制造方法及该方法成型的钢制车轮

Country Status (8)

Country Link
US (1) US11633777B2 (zh)
EP (1) EP3610983A4 (zh)
JP (1) JP6894529B2 (zh)
CN (1) CN107052720B (zh)
BR (1) BR112019021284B1 (zh)
CA (1) CA3058493C (zh)
RU (1) RU2735604C1 (zh)
WO (1) WO2018188580A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023284393A1 (zh) * 2021-07-12 2023-01-19 北京机电研究所有限公司 一种高强韧汽车车轮用钢、薄壁汽车车轮及其制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107052720B (zh) * 2017-04-12 2019-11-08 浙江金固股份有限公司 一种钢制车轮的制造方法及其采用该方法成型的车轮
DE102018205772A1 (de) * 2018-04-17 2019-10-17 Thyssenkrupp Ag Verfahren und Vorrichtung zur Herstellung einer Felge
CN108568649B (zh) * 2018-04-29 2020-05-05 江苏刘一刀精密机械有限公司 焊接式螺旋刀体制作工艺
CN109338234B (zh) * 2018-12-14 2022-03-11 辽宁衡业高科新材股份有限公司 一种1100MPa级别热处理车轮的制备方法
CN109747332B (zh) * 2018-12-17 2022-05-31 东风汽车车轮随州有限公司 一种高耐久性轮辐辐底的设计方法
USD951165S1 (en) * 2019-01-08 2022-05-10 Howmet Aerospace Inc. Vehicle wheel disc
CN109759801A (zh) * 2019-03-22 2019-05-17 东营贝特尔机械科技有限公司 一种马氏体钢制车轮的生产工艺
CN109759803A (zh) * 2019-03-29 2019-05-17 无锡锐力金属制品有限公司 一种旋压真空胎轮辋及其制作工艺
KR102218422B1 (ko) * 2019-09-24 2021-02-19 주식회사 포스코 휠 디스크 및 그 제조방법
CN110781568B (zh) * 2019-11-28 2023-05-26 重庆市超群工业股份有限公司 一种轮辋开料长度计算方法
JP7420548B2 (ja) * 2019-12-24 2024-01-23 ファナック株式会社 ワーク搬送システム
DE102020204310B3 (de) * 2020-04-02 2021-04-01 Thyssenkrupp Steel Europe Ag Stahl-Fahrzeugrad
CN112171186A (zh) * 2020-09-03 2021-01-05 东风汽车底盘系统有限公司 一种车轮轮辐制造方法及车轮轮辐
CN112605612A (zh) * 2020-12-13 2021-04-06 杭州润德车轮制造有限公司 一种工程机械车轮用高强度外轮缘的生产工艺
CN113146155A (zh) * 2021-04-14 2021-07-23 洪荣州 一种卷桶式钢圈辐板的制作新工艺
WO2023129793A1 (en) * 2021-12-29 2023-07-06 Bridgestone Americas Tire Operations, Llc Non-pneumatic tire having curved spokes and method of making same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070157470A1 (en) * 2006-01-09 2007-07-12 Murray Scott L Foam wheel cladding process
CN101722401A (zh) * 2008-10-22 2010-06-09 上海保隆汽车科技股份有限公司 镁合金车轮制造工艺及镁合金车轮的轮辋制造工艺
JP2016117079A (ja) * 2014-12-19 2016-06-30 Ntn株式会社 車輪用軸受装置のハブ輪および内方部材の製造方法
CN106102953A (zh) * 2014-03-14 2016-11-09 新日铁住金株式会社 车轮轮辋的制造方法以及汽车用车轮轮辋的制造方法
CN106363353A (zh) * 2016-08-31 2017-02-01 浙江金固股份有限公司 一种热成形轮辋的制造方法
CN107052720A (zh) * 2017-04-12 2017-08-18 浙江金固股份有限公司 一种钢制车轮的制造方法及其采用该方法成型的车轮

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1038031A1 (ru) * 1981-06-30 1983-08-30 Институт черной металлургии Способ изготовлени изделий типа колес
RU1797514C (ru) * 1991-08-20 1993-02-23 С.Т.Басюк, Б.И.Бондарев, В.Е.Борисенко, В.С.Волков, Е.С.Шерстнев, А.В.Бирюлев, МЛ.Шер, В.Т.Алентьев, Е.М.Чернышев и Б.Ф.Токарев Способ изготовлени изделий типа колес
JP3318099B2 (ja) 1994-03-18 2002-08-26 トピー工業株式会社 不均板厚ディスク
DE10058806A1 (de) * 2000-06-27 2002-06-06 Hayes Lemmerz Holding Gmbh Fahrzeugrad für Personenkraftwagen
CN2915566Y (zh) * 2006-06-19 2007-06-27 山东济宁车轮厂 旋压轮辐型钢车轮
RU2355502C1 (ru) * 2007-07-27 2009-05-20 Василий Павлович Романенко Способ изготовления цельнокатаных железнодорожных колес
CN101434020A (zh) * 2007-11-16 2009-05-20 赖建辉 一件式轮辋制造工艺
RU2374028C1 (ru) * 2008-04-02 2009-11-27 Онищенко Анатолий Кондратьевич Способ изготовления диска газотурбинного двигателя
JP6026439B2 (ja) 2011-03-01 2016-11-16 スネクマ タービンエンジンブレード補強材などの金属部品を製造するプロセス
CN202518032U (zh) * 2012-03-09 2012-11-07 浙江金固股份有限公司 合成焊接型商用车轮
PL2987872T3 (pl) 2013-04-17 2018-12-31 Scientific And Manufacturing Enterprise "Tomsk Electronic Company" Ltd. Urządzenie do termicznej obróbki szyn
CN104589910B (zh) * 2014-11-25 2017-02-22 浙江金固股份有限公司 热成形车轮及其制作方法
CN104551553B (zh) * 2014-11-25 2017-04-12 浙江金固股份有限公司 内加厚式冲压硬化车轮及其制作方法
CN104551552B (zh) * 2014-11-25 2017-01-11 浙江金固股份有限公司 热成形车轮制作方法
CN205996023U (zh) * 2016-08-09 2017-03-08 浙江金固股份有限公司 用于轮辋扩涨的热成形模具
CN106378397A (zh) * 2016-08-31 2017-02-08 浙江金固股份有限公司 一种轮辋的热成形工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070157470A1 (en) * 2006-01-09 2007-07-12 Murray Scott L Foam wheel cladding process
CN101722401A (zh) * 2008-10-22 2010-06-09 上海保隆汽车科技股份有限公司 镁合金车轮制造工艺及镁合金车轮的轮辋制造工艺
CN106102953A (zh) * 2014-03-14 2016-11-09 新日铁住金株式会社 车轮轮辋的制造方法以及汽车用车轮轮辋的制造方法
JP2016117079A (ja) * 2014-12-19 2016-06-30 Ntn株式会社 車輪用軸受装置のハブ輪および内方部材の製造方法
CN106363353A (zh) * 2016-08-31 2017-02-01 浙江金固股份有限公司 一种热成形轮辋的制造方法
CN107052720A (zh) * 2017-04-12 2017-08-18 浙江金固股份有限公司 一种钢制车轮的制造方法及其采用该方法成型的车轮

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023284393A1 (zh) * 2021-07-12 2023-01-19 北京机电研究所有限公司 一种高强韧汽车车轮用钢、薄壁汽车车轮及其制备方法

Also Published As

Publication number Publication date
CN107052720A (zh) 2017-08-18
EP3610983A4 (en) 2020-03-25
BR112019021284B1 (pt) 2023-12-19
BR112019021284A2 (pt) 2020-07-28
JP6894529B2 (ja) 2021-06-30
RU2735604C1 (ru) 2020-11-05
JP2020515465A (ja) 2020-05-28
EP3610983A1 (en) 2020-02-19
CA3058493A1 (en) 2018-10-18
CN107052720B (zh) 2019-11-08
US20210107051A1 (en) 2021-04-15
CA3058493C (en) 2021-12-28
US11633777B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2018188580A1 (zh) 一种轮辋、轮辐、钢制车轮的制造方法及该方法成型的钢制车轮
US6539765B2 (en) Rotary forging and quenching apparatus and method
US10017210B2 (en) Spring strut dome and method for producing same
CN104551552B (zh) 热成形车轮制作方法
CN102672435A (zh) 一种异型曲面钛合金薄壁零件整体成形方法及模具
US6757976B2 (en) Method for manufacturing alloy wheel for automobile
US8123303B2 (en) Automobile wheel and process for producing the same
CN104589910A (zh) 热成形车轮及其制作方法
US20010005939A1 (en) Method and apparatus for producing a one-part vehicle wheel
CN104551551B (zh) 热冲压车轮制作方法
JP2003211901A (ja) 自動車用ホイールの製造方法
US6536111B1 (en) Process for spin forming a vehicle wheel
KR20090052233A (ko) 후판 용접형 예비성형체를 이용한 유동성형 압력 용기제작 방법
CN104551553B (zh) 内加厚式冲压硬化车轮及其制作方法
US11577300B2 (en) Method and device for producing a wheel rim
KR19990067197A (ko) 경합금제 휠의 제작방법
US8336208B1 (en) Process for producing a cast, coated vehicle wheel
CN109127908A (zh) 一种汽车零部件生产加工用模具及其制造方法
CN104551554B (zh) 外加厚式冲压硬化车轮制作方法
CN106391986A (zh) 一种轿车连接叉锻件的制备方法
KR101645521B1 (ko) 아우터레이스의 열간단조 제조방법
JPS5930437A (ja) Al合金製大型車用ホイ−ルの製造方法
JP7472332B1 (ja) 軽金属製の車両用熱間回転鍛造ホイールリム製造方法
JP2838593B2 (ja) 軽合金製車輛用ホイール
CN117680934A (zh) 轻量化轮辋的制作方法、轻量化轮辋、车轮及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3058493

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019555227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019021284

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018784975

Country of ref document: EP

Effective date: 20191112

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112019021284

Country of ref document: BR

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE CHINESA REIVINDICADA 201710237795.1 DE 12/04/2017 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DA CITADA PRIORIDADE, NEM SEUS INVENTORES, INFORMACAO NECESSARIA PARA O EXAME.

ENP Entry into the national phase

Ref document number: 112019021284

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191010