WO2023284240A1 - Particule sphérique de silice creuse, son procédé de préparation et son application - Google Patents

Particule sphérique de silice creuse, son procédé de préparation et son application Download PDF

Info

Publication number
WO2023284240A1
WO2023284240A1 PCT/CN2021/137713 CN2021137713W WO2023284240A1 WO 2023284240 A1 WO2023284240 A1 WO 2023284240A1 CN 2021137713 W CN2021137713 W CN 2021137713W WO 2023284240 A1 WO2023284240 A1 WO 2023284240A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow silica
particles
spherical particles
silica
hours
Prior art date
Application number
PCT/CN2021/137713
Other languages
English (en)
Chinese (zh)
Inventor
罗遂斌
高钰博
于淑会
于均益
孙蓉
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023284240A1 publication Critical patent/WO2023284240A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Definitions

  • the invention belongs to the technical field of novel electronic packaging materials, and more specifically, the invention relates to a hollow silica spherical particle and a preparation method and application thereof.
  • hollow silica spherical particles it is unavoidable to form many fine mesopores on the walls of hollow silica. This leads to unstable structure of the hollow silica particles, lack of compactness, and insufficient surface strength, making the overall structure of the hollow silica particles unstable. As a result, when it is used as a filler, it will be broken after ultrasonic, stirring, ball milling and other processing techniques, and cracks will appear on the surface. Bubbles, irregular particles, impurities and other defects will be introduced into the composite material, which will lead to the overall performance of the composite material. decline.
  • the object of the present invention is to provide a hollow silica spherical particle and its preparation method and application.
  • the present invention obtains better fillers with high strength, high compactness, low dielectric constant, low dielectric loss and low CTE by controlling the single-layer wall thickness, layer number and particle size of the hollow silica spherical particle shell particles.
  • the present invention provides a hollow spherical silica particle, which uses a single-walled hollow silica spherical particle as a nucleus, and at least one layer of silica Silicon is the shell.
  • the particle diameter of the single-wall hollow silica spherical particles is 50nm-50 ⁇ m, preferably 100nm-10 ⁇ m, more preferably 200nm-5 ⁇ m.
  • the number of layers of the silica shell in the hollow spherical silica particles is 2-20 layers, preferably 3-15 layers, more preferably 3-8 layers.
  • the single-layer wall thickness of the silica shell is 2nm-1 ⁇ m, preferably 5nm-500nm, more preferably 10nm-200nm.
  • the particle size of the hollow spherical silica particles depends on the particle size of the single-walled hollow spherical silica particles, the single-layer wall thickness of the silica shell, and the number of layers of the silica shell.
  • the present invention provides a method for preparing any one of the hollow silica spherical particles described above, comprising the following steps:
  • the single-layer wall thickness, layer number and particle size of hollow silica spherical particles can all be controlled.
  • the template used in the template method in step (1) is a polymer or a micelle
  • the polymer comprises polystyrene, polylactic acid, polypropylene, polyacrylic acid, polyurethane, polybutadiene, polytetrafluoroethylene, polyisoprene, polyvinylidene fluoride, polypara p-phenylenediamine phthalate, polyvinyl chloride, polyethylene, polychloroprene, polyacrylonitrile, polyvinylidene chloride, polyvinyl alcohol, acrylonitrile-butadiene-styrene copolymer, acrylonitrile- One or more of butadiene copolymer, polycarbonate, polyphenylene ether, polyphenylene sulfide, polychlorotrifluoroethylene;
  • the micelles include cetyltrimethylammonium bromide, sodium cetylsulfonate, cetyltrimethylammonium chloride, sodium stearate, sodium oleate, dodecyl Sodium Alkylbenzene Sulfonate, Lauryl Polyoxyethylene Ether, Lauryl Ammonium Chloride, Sodium Octyl Sulfonate, Sodium Octyl Sulfate, Sodium Lauryl Sulfate, Sodium Tetradecyl Sulfate, Decyl One or more of sodium hexaalkyl sulfate, sodium stearyl sulfate, potassium stearate, potassium oleate, potassium laurate, and dioctyl sodium succinate.
  • the step (1) is specifically: when the polymer is a particle, uniformly disperse the polymer into the solvent, then add polyvinylpyrrolidone, raise the temperature to 60°C and then add a weak base Make the pH value of the solution change to 10, then add tetraethyl orthosilicate and stir for 6-10 hours; wash the prepared solution with a solvent, dry the obtained product, and then calcinate at 700°C for 4 hours to prepare single-walled hollow dioxide Silicon spherical particles;
  • the polymer when the polymer is an emulsion, disperse the polymer evenly in the solvent, then add a weak base to make the pH value of the solution become 10, raise the temperature to 70°C and stir for 30 minutes, then drop tetraethyl orthosilicate and stir to react 6-8 hours; the prepared solution is centrifuged and washed with a solvent, the obtained product is dried, and then calcined at 700° C. for 4 hours to prepare single-walled hollow silica spherical particles;
  • the step (1) is: uniformly disperse the micelle into the solvent, then add a weak base to make the pH of the solution 10, then drop tetraethyl orthosilicate, and stir the reaction at room temperature for 6 -8 hours; the prepared solution was centrifuged and washed with a solvent, the obtained product was dried, and then calcined at 700° C. for 4 hours to prepare single-walled hollow silica spherical particles.
  • step (2) is specifically: uniformly disperse single-wall hollow silica spherical particles as nuclei in the solvent, then drop ammonia water, followed by drop tetraethyl orthosilicate, and then stir for 6-8 hours ;
  • the prepared solution is centrifugally washed with a solvent, the obtained product is dried and ground, and then calcined at 700°C for 4 hours, and the above steps are repeated as required to obtain at least one coating of silica on the surface of single-walled hollow silica spherical particles.
  • Hollow silica spherical particles are specifically: uniformly disperse single-wall hollow silica spherical particles as nuclei in the solvent, then drop ammonia water, followed by drop tetraethyl orthosilicate, and then stir for 6-8 hours ;
  • the prepared solution is centrifugally washed with a solvent, the obtained product is dried and ground, and then calcined at 700°C for 4 hours, and
  • the present invention provides an application of any one of the above-mentioned hollow silica spherical particles as a filler particle in a composite material with low dielectric, low loss, and low CTE.
  • the present invention provides an application of any one of the above-mentioned hollow silica spherical particles in printed circuit boards, substrates, substrate semiconductors and electronic packaging systems.
  • the present invention adopts the method of coating the silica with multiple layers on the surface.
  • the control of the wall thickness of the hollow silica is realized;
  • the structure of hollow silica spherical particles is unstable without dense defects.
  • This multi-wall hollow silica structure still has the original cavity structure, and because the outer layer is covered with multiple layers of silica, the mesopores disappear and the surface becomes dense.
  • processing as a composite material filler after ultrasonic, stirring, ball milling and other processing processes, it can continue to maintain a complete shape without breaking, cracks, etc., and can be evenly dispersed, which helps to effectively improve the composite material. overall performance.
  • the multi-walled hollow silica spherical particles of the present invention have high structural strength and surface compactness, and their dielectric constant, dielectric loss, CTE, etc. are very low, and can be used as filler particles for composite materials with low dielectric and low loss.
  • Materials, and then used in semiconductor and electronic packaging systems such as printed circuit boards (PCBs), substrates, and carrier boards, to realize the manufacture of fine electronic circuits to meet the needs of the development of high-end electronic packaging systems.
  • Figure 1a is a SEM image of the single-walled hollow silica spherical particles prepared in Example 1 of the present invention
  • Figure 1b is a TEM image of the single-walled hollow silica spherical particles prepared in Example 1 of the present invention.
  • Fig. 2a is a SEM image of the double-walled hollow silica spherical particles prepared in Example 1 of the present invention
  • Fig. 2b is a TEM image of the double-walled hollow silica spherical particles prepared in Example 1 of the present invention.
  • Figure 3a is the TEM image of the single-walled hollow spherical silica particles prepared in Comparative Example 1 of the present invention after ball milling
  • Figure 3b is the TEM image of the ball-milled double-walled hollow spherical silica particles prepared in Example 1 of the present invention.
  • Fig. 4 is a schematic diagram of the flow from single-wall hollow silica core body to multi-wall hollow silica particles.
  • spherical polymers or micelles are used as templates, and a layer of silica is deposited on the surface of the templates through the hydrolysis and condensation reaction of tetraethyl orthosilicate, and the template itself is degraded by calcination, and finally the template with Single-walled hollow silica particles with a cavity, but the particles themselves have many pores on the surface due to the influence of calcination, resulting in insufficient strength of the particles.
  • Multi-layer silica reduces the pores on the surface of single-wall hollow silica spherical particles, reduces porosity, and finally achieves the purpose of increasing particle strength.
  • the prepared solution was washed three times with absolute ethanol and deionized water respectively, and the obtained product was vacuum-dried at 80°C for 8 hours, placed in a muffle furnace for calcination at 700°C for 4 hours, and finally obtained a particle size of 220nm and a wall thickness of 20nm single-wall hollow silica spherical particles.
  • the prepared solution was washed three times with absolute ethanol and deionized water respectively, and the obtained product was vacuum-dried at 80°C for 8 hours, and the dried white powder was calcined in a muffle furnace at 700°C for 4 hours, and finally a layer of coated Double-walled hollow silica spherical particles with a particle size of 260nm and a wall thickness of 40nm.
  • the SEM image of the single-walled hollow silica spherical particles prepared in Example 1 of the present invention is shown in Figure 1a
  • the TEM image of the single-walled hollow silica spherical particles prepared in Example 1 of the present invention is shown in Figure 1b.
  • Figure 1a it is found that the particle size of the particles is very uniform, but the surface is very rough and uneven, with an average particle size of 220nm;
  • Figure 1b it is found that the structure of the particles is a hollow structure, and the outside is a ring, which is a silica shell with a thickness of about 20nm.
  • the SEM image of the double-walled hollow silica spherical particles prepared in Example 1 of the present invention is shown in Figure 2a
  • the TEM image of the double-walled hollow silica spherical particles prepared in Example 1 of the present invention is shown in Figure 2b.
  • Figure 2a it is found that the particle size of the particles is very uniform, the surface becomes smooth and flat, without obvious roughness, and the average particle size is 260nm;
  • Figure 2b it is found that the particles are also a hollow structure with a cavity, and the outer ring is composed of two layers
  • the walls are made of silicon dioxide and have a thickness of about 40 nm.
  • the prepared solution was washed 3 times with absolute ethanol and deionized water respectively, and the obtained product was vacuum-dried at 80°C for 8 hours, and the dried white powder was calcined at 700°C for 4 hours in a muffle furnace to obtain a particle size of 940nm.
  • the prepared solution was washed three times with absolute ethanol and deionized water respectively, and the obtained product was vacuum-dried at 80°C for 8 hours, and the dried white powder was calcined in a muffle furnace at 700°C for 4 hours, and finally a layer of coated Double-walled hollow silica spherical particles with a particle size of 260nm and a wall thickness of 40nm.
  • the prepared solution was washed three times with absolute ethanol and deionized water respectively, and the obtained product was vacuum-dried at 80°C for 8 hours, and the dried white powder was calcined at 700°C for 4 hours in a muffle furnace to obtain a three-wall coated particle size 340nm, hollow silica spherical particles with a wall thickness of 90nm.
  • the prepared solution was washed three times with absolute ethanol and deionized water respectively, and the obtained product was vacuum-dried at 80°C for 8 hours, placed in a muffle furnace for calcination at 700°C for 4 hours, and finally obtained a particle size of 4.2 ⁇ m and a wall thickness of Single-wall hollow silica spherical particles of 100nm.
  • the prepared solution was washed three times with absolute ethanol and deionized water respectively, and the obtained product was vacuum-dried at 80°C for 8 hours, and the dried white powder was calcined in a muffle furnace at 700°C for 4 hours, and finally a layer of coated Double-walled hollow silica spherical particles with a particle size of 4.3 ⁇ m and a wall thickness of 150 nm.
  • the prepared solution was washed three times with absolute ethanol and deionized water respectively, and the obtained product was vacuum-dried at 80°C for 8 hours, placed in a muffle furnace for calcination at 700°C for 4 hours, and finally a single-walled hollow compound with a particle size of 200nm was obtained.
  • Silica spherical particles Silica spherical particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

Particule sphérique de silice creuse, son procédé de préparation et son application. La particule sphérique de silice creuse utilise une particule sphérique de silice creuse à paroi unique en tant que corps de cœur et au moins une couche de silice en tant qu'écorce. Le procédé de préparation comprend les étapes suivantes consistant : à préparer des particules sphériques de silice creuses à paroi unique à l'aide d'un procédé à matrice ; et à utiliser un procédé sol-gel pour préparer des particules sphériques de silice creuses par revêtement de silice sur la surface des particules sphériques de silice creuses à paroi unique au moins une fois. Les particules de silice creuses présentent une résistance structurale élevée et une densité de surface élevée, et leur constante diélectrique, leur perte diélectrique, leur coefficient de dilatation thermique (CTE), etc. sont très faibles. Les particules peuvent être utilisées comme particules de charge et appliquées à des matériaux composites à faible constante diélectrique et à faible perte, puis appliquées dans des systèmes d'encapsulation de semi-conducteurs et électroniques tels que des cartes de circuits imprimés, des substrats, des cartes de support, etc., de sorte que la fabrication de circuits électroniques fins est obtenue de manière à satisfaire aux exigences en vue du développement de systèmes d'encapsulation électronique haut de gamme.
PCT/CN2021/137713 2021-07-15 2021-12-14 Particule sphérique de silice creuse, son procédé de préparation et son application WO2023284240A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110799658.3A CN113428867A (zh) 2021-07-15 2021-07-15 一种空心二氧化硅球形颗粒及其制备方法和应用
CN202110799658.3 2021-07-15

Publications (1)

Publication Number Publication Date
WO2023284240A1 true WO2023284240A1 (fr) 2023-01-19

Family

ID=77760468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137713 WO2023284240A1 (fr) 2021-07-15 2021-12-14 Particule sphérique de silice creuse, son procédé de préparation et son application

Country Status (2)

Country Link
CN (1) CN113428867A (fr)
WO (1) WO2023284240A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113428867A (zh) * 2021-07-15 2021-09-24 深圳先进技术研究院 一种空心二氧化硅球形颗粒及其制备方法和应用
CN113979466B (zh) * 2021-10-27 2023-04-28 烟台佳隆纳米产业有限公司 ZnO@SiO2纳米胶囊的制备方法
CN114620737B (zh) * 2022-01-19 2023-09-15 深圳先进电子材料国际创新研究院 一种空心二氧化硅及其制备方法和应用
CN114560468B (zh) * 2022-02-25 2022-09-16 金三江(肇庆)硅材料股份有限公司 一种化学机械抛光用二氧化硅及其制备方法和应用
CN116119674A (zh) * 2022-11-23 2023-05-16 安徽凯盛基础材料科技有限公司 采用硬模板法制备二氧化硅空心微球的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006050638A1 (fr) * 2004-11-11 2006-05-18 Institute Of Chemistry, Chinese Academy Of Science Procede pour la preparation de spheres creuses et spheres creuses composites avec modele
CN101259402A (zh) * 2004-11-11 2008-09-10 中国科学院化学研究所 用模板法制备双层结构中空球和多层复合结构的中空球的方法
CN101274246A (zh) * 2007-12-26 2008-10-01 中国科学院上海硅酸盐研究所 二氧化硅/二氧化钛空心微球的溶胶-凝胶法制备方法
KR20140004939A (ko) * 2012-07-03 2014-01-14 한국기계연구원 메조-메크로 기공을 포함하는 다공질 입자의 제조 방법
KR20190030361A (ko) * 2017-09-14 2019-03-22 계명대학교 산학협력단 아민작용기를 도입하여 이산화탄소 흡착률을 향상시킨 메조다공성 중공형 실리카 물질의 제조방법
KR20210062451A (ko) * 2019-11-21 2021-05-31 계명대학교 산학협력단 아민작용기가 도입된 이산화탄소 및 질소산화물 흡착용 이중쉘 메조다공성 중공형 실리카 물질의 제조방법
CN113428867A (zh) * 2021-07-15 2021-09-24 深圳先进技术研究院 一种空心二氧化硅球形颗粒及其制备方法和应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101259401B (zh) * 2004-11-11 2010-06-23 中国科学院化学研究所 用模板法制备中空球和复合结构的中空球的方法
CN1781997A (zh) * 2004-12-02 2006-06-07 北京化工大学 一种新型SiO2载体材料及在聚烯烃催化剂中的应用及其制备方法
CN102557051B (zh) * 2012-01-04 2013-11-27 复旦大学 基于聚合物模板的制备空心介孔二氧化硅纳米粒子的方法
CN102633265B (zh) * 2012-03-29 2013-12-25 中国科学院山西煤炭化学研究所 一种可控中空介孔二氧化硅纳米球的制备方法
JP2014094867A (ja) * 2012-11-12 2014-05-22 Hiroshima Univ 中空シリカ粒子の製造方法
CN102923721B (zh) * 2012-11-20 2014-06-11 黑龙江大学 中空二氧化硅核/介孔二氧化硅壳结构单分散微球的制备方法
CN103864082B (zh) * 2014-03-11 2015-12-02 深圳先进技术研究院 双粒径分布的球形纳米二氧化硅材料及其制备方法
CN104445215B (zh) * 2014-11-05 2016-11-16 上海大学 中空二氧化硅纳米材料的制备方法
CN106009428B (zh) * 2016-05-13 2018-02-13 电子科技大学 一种二氧化硅填充ptfe复合材料及其制备方法
CN105836795B (zh) * 2016-05-25 2017-11-21 深圳先进技术研究院 一种具有核壳结构二氧化硅无机颗粒的制备方法
CN107954429B (zh) * 2017-06-30 2020-01-10 华南理工大学 二氧化硅中空微球及其制备方法与在隔热涂料中的应用
CN109626381A (zh) * 2018-12-07 2019-04-16 沈阳化工大学 一种壳厚可控的空心二氧化硅椭球的制备方法
CN110508222B (zh) * 2019-08-02 2022-03-18 复旦大学 具有介孔二氧化硅壳层的单分散核壳微球及其制备方法
CN111232993B (zh) * 2020-03-06 2021-09-14 山东国瓷功能材料股份有限公司 一种5g高频用超低介电常数中空二氧化硅及其制备方法
CN112694093A (zh) * 2021-01-28 2021-04-23 山东瑞利泰阳新材料科技有限公司 一种低介电损耗二氧化硅微球及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006050638A1 (fr) * 2004-11-11 2006-05-18 Institute Of Chemistry, Chinese Academy Of Science Procede pour la preparation de spheres creuses et spheres creuses composites avec modele
CN101259402A (zh) * 2004-11-11 2008-09-10 中国科学院化学研究所 用模板法制备双层结构中空球和多层复合结构的中空球的方法
CN101274246A (zh) * 2007-12-26 2008-10-01 中国科学院上海硅酸盐研究所 二氧化硅/二氧化钛空心微球的溶胶-凝胶法制备方法
KR20140004939A (ko) * 2012-07-03 2014-01-14 한국기계연구원 메조-메크로 기공을 포함하는 다공질 입자의 제조 방법
KR20190030361A (ko) * 2017-09-14 2019-03-22 계명대학교 산학협력단 아민작용기를 도입하여 이산화탄소 흡착률을 향상시킨 메조다공성 중공형 실리카 물질의 제조방법
KR20210062451A (ko) * 2019-11-21 2021-05-31 계명대학교 산학협력단 아민작용기가 도입된 이산화탄소 및 질소산화물 흡착용 이중쉘 메조다공성 중공형 실리카 물질의 제조방법
CN113428867A (zh) * 2021-07-15 2021-09-24 深圳先进技术研究院 一种空心二氧化硅球形颗粒及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAO SHUNSHENG, ZHAO ZHIYUAN, JIN XIN, SHENG WEICHEN, LI SONGJUN, GE YI, DONG MINGDONG, WU WEIWEI, FANG LONG: "Unique double-shelled hollow silica microspheres: template-guided self-assembly, tunable pore size, high thermal stability, and their application in removal of neutral red", JOURNAL OF MATERIALS CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 21, no. 47, 1 January 2011 (2011-01-01), GB , pages 19124, XP093024360, ISSN: 0959-9428, DOI: 10.1039/c1jm13011k *

Also Published As

Publication number Publication date
CN113428867A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2023284240A1 (fr) Particule sphérique de silice creuse, son procédé de préparation et son application
CN111547729B (zh) 一种低介电常数中空氧化铝/二氧化硅纳米复合材料及应用
WO2021253727A1 (fr) Procédé de préparation d'une microsphère creuse de silice à faible constante diélectrique
JP2001181403A (ja) 複合粒子、その製造方法および使用方法
CN103962074B (zh) 一种中空亚微米球、其制备方法与应用
CN108671859B (zh) 基于溶菌酶纳米薄膜制备Janus颗粒的方法
CN111620342B (zh) 一种小尺寸单分散中空二氧化硅微球及其制备方法和应用
CN110698859A (zh) 一种二氧化硅包覆改性钛酸钡/聚砜的介电复合材料及其制备方法
CN102745988A (zh) 一种壳/核纳米陶瓷电介质粉体材料的制备方法
CN110002452A (zh) 一种中空多孔二氧化硅微球、制备方法及应用
US11279624B2 (en) Production method for forsterite fine particles
CN102258945B (zh) 一种陶瓷分离膜的湿化学制备方法
CN106526961B (zh) 一种高散射性超疏水量子点膜及其制备方法
CN110092591B (zh) 一种三维有序多孔网络状结构的vo2薄膜及其制备方法和应用
CN101613078A (zh) 一种具有核壳结构的二氧化硅/氧化锡纳米复合微粒及其制备方法
CN111499214B (zh) 一种高频用中空二氧化硅纳米分散液及其制备方法与应用
CN115784243A (zh) 一种以盐为模板构筑单分散空心结构氧化硅微球材料的制备方法
CN107445627B (zh) 一种酚醛树脂和二氧化锰双层覆膜陶瓷粉末的制备方法
CN101382734A (zh) 一种制作纳透镜列阵的方法
JP2024507418A (ja) 複合材料薄膜、その調製方法及び表示パネル
KR20180086616A (ko) ZnO 무기주형입자를 이용한 소듐실리케이트부터의 중공 실리카 입자 제조방법
JP6277387B2 (ja) フォルステライト微粒子の製造方法
KR102087011B1 (ko) 이산화타이타늄 쉘이 형성된 중공 실리카 입자의 제조방법
CN118289767A (zh) 一种自支撑中空SiO2纳米球及其制备方法
JP2015030663A (ja) ジスプロシウム酸化物ナノ粒子およびその合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE