WO2023284191A1 - 一种用于单细胞测序的微流控芯片及应用 - Google Patents

一种用于单细胞测序的微流控芯片及应用 Download PDF

Info

Publication number
WO2023284191A1
WO2023284191A1 PCT/CN2021/129696 CN2021129696W WO2023284191A1 WO 2023284191 A1 WO2023284191 A1 WO 2023284191A1 CN 2021129696 W CN2021129696 W CN 2021129696W WO 2023284191 A1 WO2023284191 A1 WO 2023284191A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
solution
cell
microfluidic chip
inlet
Prior art date
Application number
PCT/CN2021/129696
Other languages
English (en)
French (fr)
Inventor
郑文山
裴颢
Original Assignee
墨卓生物科技(浙江)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 墨卓生物科技(浙江)有限公司 filed Critical 墨卓生物科技(浙江)有限公司
Publication of WO2023284191A1 publication Critical patent/WO2023284191A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials

Definitions

  • the invention relates to a microfluidic chip for single-cell sequencing, which belongs to the technical fields of micro-droplets, particle encapsulation and cell encapsulation.
  • Microfluidics is a scientific technology that precisely controls and manipulates micro-scale fluids, and is characterized by manipulating fluids in the micro-nano scale space.
  • commonly used technologies for microfluidic chips include separation technology, detection technology, micro-droplet technology, and microfluidic control and drive technology.
  • the microfluidic chip separation technology has rich carrier materials, including quartz, glass, silicon and various polymers. The separation is easy to realize, the process control is simple, and it can be flexibly combined with other operating units and has a wider range of applications.
  • detection technology has higher requirements, such as high sensitivity, fast response, parallel analysis function and portable characteristics.
  • many detection technologies based on different principles have been applied to the research of microfluidic chips, mainly including optical detection, electrochemical detection, mass spectrometry and other methods.
  • Microfluidics has important applications in single-cell sequencing, life sciences, clinical medicine and other disciplines.
  • Single-cell sequencing is a new technology that has emerged in recent years. It can obtain the expression profile of the whole transcriptome from the level of a single cell, and perform high-throughput sequencing after amplification, so as to efficiently detect the gene expression level in a single cell. It has important application value in the fields of medicine and therapy, design of targeted drugs, development and differentiation of stem cells, etc.
  • Microfluidic technology usually uses microanalytical devices as the carrier of technology realization, and microfluidic chips are the most rapidly developing among various microanalytical devices.
  • Microfluidic chips use MEMS technology to process various microstructures on silicon, quartz, glass or polymer substrates, and then use micropipes to communicate with micropumps, microvalves, microreservoirs, and microdetection elements.
  • Components with functions of fluid transportation, control, detection and monitoring, etc. integrate dilution, reagent addition, sampling, reaction, separation and dispersion, detection, monitoring and other processes on the chip to the greatest extent.
  • Micro-full analysis system integrated dilution, reagent addition, sampling, reaction, separation and dispersion, detection, monitoring and other processes on the chip to the greatest extent.
  • the common microfluidic detection system usually mixes the cell solution and the reaction reagent solution (such as the lysate, which has a destructive effect on the cells), and stores them in the same small droplet storage chamber for pretreatment of the droplet sample preparation.
  • the reaction reagent solution such as the lysate, which has a destructive effect on the cells
  • microfluidic chip for single-cell sequencing, which wraps the droplets of cell solution, cell marker solution (such as microspheres with nucleic acid sequences), and reaction reagent solution (such as cell lysate) in the same chip. done on chip.
  • the invention provides a microfluidic chip for single-cell sequencing and a method for processing single-cell sequencing samples by using the microfluidic chip.
  • the microfluidic chip of the present invention stores cell solutions, cell marker solutions (such as microspheres with nucleic acid sequences), and reaction reagent solutions (such as cell lysates) in different storage chambers, so that the cell solution inlet and the reaction reagent solution (Such as cell lysate) The inlet is separated, which can effectively improve the survival rate of cells; at the same time, because the oil phase solution cuts the mixed solution at the intersection structure of the chip flow channel to form water-in-oil droplets, it can realize the separation of microspheres and cells. High encapsulation rate and improved cell viability.
  • the invention provides a microfluidic chip for single-cell sequencing, comprising an upper part and a lower part, one side of the upper part is provided with an oil phase solution inlet 1, a reaction reagent solution (such as a cell Lysis solution) inlet 2, cell solution inlet 3, cell marker solution (such as microspheres with nucleic acid sequence) inlet 4, droplet outlet 5, one side of the lower part is provided with micro Flow channel 6 is used to complete the generation of liquid droplets to wrap cells, cell markers (such as microspheres with nucleic acid sequences) and reaction reagents (such as cell lysate).
  • a reaction reagent solution such as a cell Lysis solution
  • cell solution inlet 3 cell marker solution (such as microspheres with nucleic acid sequence) inlet 4
  • droplet outlet 5 one side of the lower part is provided with micro Flow channel 6 is used to complete the generation of liquid droplets to wrap cells, cell markers (such as microspheres with nucleic acid sequences) and reaction reagents (such as
  • micro-channel 6 includes:
  • a fourth channel which is located between the first channel and the second channel, and one end is connected to the cell marker solution inlet, and the other end is connected to the first channel;
  • the fifth channel is located between the first channel and the second channel, and one end is connected to the reaction reagent solution inlet, and the other end is connected to the first channel.
  • the cross section of at least one channel changes from wide to narrow toward the direction of liquid flow.
  • the design of the upstream wide zone 8 facilitates the use of air pressure control to push the liquid phase fluid more easily
  • the design of the downstream narrow zone 9 facilitates the cells and cell markers (such as microspheres with nucleic acid sequences) to flow through the cross structure more easily in a single row in order to Maximize the realization of single package.
  • the width of the section of the channel is between 20 ⁇ m-300 ⁇ m, preferably the width of the section of the channel is between 40 ⁇ m-80 ⁇ m.
  • a plurality of supporting micropillars 7 are arranged in the chip channel to prevent the chip channel from collapsing and promote the mixing of the solution.
  • a plurality of supporting micropillars 7 are arranged in order in the channel.
  • the supporting micropillars 7 are cylindrical structures.
  • each of the sample inlets is provided with a sample storage cavity
  • the droplet outlet is provided with a droplet storage cavity
  • the volume of the droplet storage chamber is between 30 ⁇ L-700 ⁇ L.
  • At least one of the upper sheet part and the lower sheet part is a transparent part, and the upper sheet part and/or the lower sheet part are made of PMMA, PC, COP, COC or PS etc. made of molecular materials.
  • the upper part and the lower part are combined by means of heat pressing or film sticking.
  • the present invention also provides a method for processing single-cell sequencing samples using a microfluidic chip, which is characterized in that it includes:
  • reaction reagent solution such as cell lysate
  • cell solution such as cell marker solution (such as microspheres with nucleic acid sequences)
  • the oil phase solution cuts the mixed solution at the intersection structure of the chip flow channel to form water-in-oil droplets, realizes the formation of droplets, wraps cells, cell markers and reaction reagents, and completes the single-cell sequencing before library construction Sample handling.
  • step (2) comprises:
  • reaction reagent solution such as cell lysate
  • cell solution and cell marker solution such as microspheres with nucleic acid sequences
  • the reaction reagent solution such as cell lysate
  • cell marker solution such as microspheres with nucleic acid sequences
  • the flow channel of the microfluidic chip of the present invention is provided with a plurality of supporting micropillars, which can not only prevent the chip flow channel from collapsing, but also promote the mixing of the solution;
  • the microfluidic chip of the present invention adopts a high-capacity droplet storage chamber (with a volume of 30 ⁇ L-700 ⁇ L), and each independently operated microfluidic chip can process up to 20,000 cell samples in a single experiment, and the processing effect is good, To achieve high-throughput single-cell sequencing library construction;
  • microfluidic chip of the present invention can be combined in multiple pieces on one chip, which is convenient for processing multiple groups of cell samples at the same time;
  • the materials used in the upper part and the lower part of the microfluidic chip of the present invention are polymer materials such as PMMA, PC, COP, COC or PS, which are easy to produce in large quantities by injection molding, with low cost and good biocompatibility;
  • the overall structure of the microfluidic chip of the present invention is simple and compact, with good stability and good repeatability;
  • the microfluidic chip of the present invention can realize a high encapsulation rate of microspheres and cells.
  • Figure 1 is a schematic diagram of a microfluidic chip.
  • Fig. 2 is a schematic diagram of a chip containing four independently operated microfluidic chips.
  • Fig. 3 is a three-dimensional schematic diagram of a chip containing four independently operated microfluidic chips.
  • Fig. 4 is an axonometric view of a chip containing four independently operated microfluidic chips.
  • an embodiment of the present invention provides a microfluidic chip, the chip includes an upper part and a lower part, and:
  • One side of the upper part is provided with an oil phase solution inlet 1, a reaction reagent solution (such as a cell lysate) inlet 2, a cell solution inlet 3, a cell marker solution (such as a microsphere with a nucleic acid sequence) ) sample inlet 4 and droplet outlet 5;
  • a reaction reagent solution such as a cell lysate
  • a cell solution inlet 3 a cell marker solution (such as a microsphere with a nucleic acid sequence) ) sample inlet 4 and droplet outlet 5;
  • the other side of the upper part is provided with a sample storage cavity corresponding to the sample inlet for storing corresponding samples; a droplet storage cavity corresponding to the droplet outlet for storing generated droplets;
  • the flow channel is composed of five channels and droplet generation intersections, wherein the first channel connects the cell solution sample inlet 3 and the liquid droplet.
  • the fourth channel is located between the first channel and the second channel One end of which is connected to the inlet of the cell marker solution, and the other end is cross-connected to the first channel;
  • the fifth channel is located between the fourth channel and the second channel, one end of which is connected to the inlet of the reaction reagent solution, and the other end is connected to the first channel.
  • a channel is cross-connected; the cross-sections of the first channel, the second channel, the fourth channel and the fifth channel are narrowed from the width toward the liquid flow direction; each channel is provided with orderly arranged cylindrical support micropillars;
  • the cross section of at least one channel changes from wide to narrow toward the direction of liquid flow.
  • the design of the upstream wide zone 8 facilitates the use of air pressure control to push the liquid phase fluid more easily, and the design of the downstream narrow zone 9 facilitates the cells and cell markers (such as microspheres with nucleic acid sequences) to flow through the cross structure more easily in a single row in order to Maximize the realization of single package.
  • the support micro-columns are arranged in the flow channel, and the support micro-columns are arranged in an orderly manner, which can support the flow channel to prevent the chip from collapsing and cause uneven flow rate.
  • the setting of the support micro-columns can realize the function of liquid stirring, which is helpful for the effective mixing of the liquid.
  • the inner diameter of the flow channel in the embodiment of the present invention is controlled between 20 ⁇ m-300 ⁇ m, preferably in the range of 40 ⁇ m-80 ⁇ m, which can control the diameter of the formed droplets, which is beneficial to realize single-cell encapsulation and increase encapsulation rate.
  • the microfluidic chip in the embodiment of the present invention adopts a high-capacity droplet storage chamber with a capacity of 30 ⁇ L-700 ⁇ L.
  • Each independently operated microfluidic chip can process up to 20,000 cell samples in a single experiment, and the processing effect is good. Realized high-throughput single-cell sequencing library construction.
  • reaction reagent solution such as cell lysate
  • cell marker solution such as microspheres with nucleic acid sequences
  • the oil phase solution cuts the mixed solution B at the intersection structure of the chip channel to generate water-in-oil droplets, and the droplets are generated, and the cells, cell markers (such as microspheres with nucleic acid sequences) and reaction reagents (such as cell lysate) wraps it and flows into the droplet storage chamber to complete the sample processing before single-cell sequencing library construction.
  • cell markers such as microspheres with nucleic acid sequences
  • reaction reagents Such as cell lysate
  • the bioanalyzer 2100 was used to analyze the quality control data of the sequencing library of the sample obtained in the above example, and the length and concentration of the sample were in line with expectations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明提供一种用于单细胞测序的微流控芯片及利用微流控芯片进行单细胞测序样品处理的方法。本发明的微流控芯片分别将细胞溶液、细胞标记物溶液(如带有核酸序列的微球)、反应试剂溶液(如细胞裂解液)存于不同储存腔,使细胞溶液入口和反应试剂溶液入口分开,可有效地提高细胞的存活率;同时,由于油相溶液在芯片流道的交叉结构处将混合液切割生成油包水液滴,可实现微球和细胞的高包裹率。

Description

一种用于单细胞测序的微流控芯片及应用
本申请要求申请日为2021年7月16日的中国专利申请CN202110809113.6的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种用于单细胞测序的微流控芯片,属于微液滴、微粒包裹和细胞包裹技术领域。
背景技术
微流控是一种精确控制和操控微尺度流体,以在微纳米尺度空间中对流体进行操控为主要特征的科学技术。目前微流控芯片常用的技术有分离技术、检测技术、微液滴技术和微流体控制及驱动技术。与传统分离模式相比,微流控芯片分离技术载体材料丰富,有石英、玻璃、硅和各种聚合物,分离易于实现,过程控制简单,可和其他操作单元灵活组合且应用范围更大。检测技术与传统检测技术相比有更高的要求,如灵敏度高、响应速度快、具有平行分析功能和便携式特征等。目前基于不同原理的很多检测技术都已经应用到微流控芯片的研究中,主要有光学检测、电化学检测、质谱等方法。
微流控(Microfluidics)在单细胞测序、生命科学、临床医学等学科中有重要应用。单细胞测序是近几年兴起的新技术,它能够从单个细胞水平获得全转录组表达谱、扩增后进行高通量测序,从而高效地检测单个细胞内的基因表达水平,在肿瘤的诊断与治疗、靶向药物的设计、干细胞的发育与分化等领域具有重要的应用价值。
微流控技术通常要使用微分析器件作为技术实现的载体,而微流控芯片是各类微分析器件中发展最为迅速的。微流控芯片是利用MEMS技术,在硅、石英、玻璃或高分子聚合物基材上加工出各种微结构,然后以微管道来 连通微泵、微阀、微储液器、微检测元件等具有流体输送、控制和检测监视功能的元器件,最大限度地将稀释、添加试剂、采样、反应、分离分散、检测、监视等过程集成在芯片上的微全分析系统。
目前,常见的微流控检测系统通常将细胞溶液和反应试剂溶液(如裂解液,对细胞有破坏作用)混合,存放于同一个体积较小的液滴储存腔进行液滴样品制备前处理,因此造成细胞存活率低和测试通量低等不足。往往需要人工干预多次移动或操作芯片,不但自动化程度低,而且成本高。
因此需要设计一种用于单细胞测序的微流控芯片,将细胞溶液、细胞标记物溶液(如带有核酸序列的微球)、反应试剂溶液(如细胞裂解液)的液滴包裹在同一芯片内完成。
发明内容
本发明提供一种用于单细胞测序的微流控芯片及利用微流控芯片进行单细胞测序样品处理的方法。本发明的微流控芯片分别将细胞溶液、细胞标记物溶液(如带有核酸序列的微球)、反应试剂溶液(如细胞裂解液)存于不同储存腔,使细胞溶液入口和反应试剂溶液(如细胞裂解液)入口分开,可有效地提高细胞的存活率;同时,由于油相溶液在芯片流道的交叉结构处将混合液切割生成油包水液滴,可实现微球和细胞的高包裹率,并提高细胞存活率。
本发明提供了一种用于单细胞测序的微流控芯片,包括上片部分和下片部分,所述上片部分的一侧设有油相溶液进样口1、反应试剂溶液(如细胞裂解液)进样口2、细胞溶液进样口3、细胞标记物溶液(如带有核酸序列的微球)进样口4、液滴出口5,所述下片部分的一侧设有微流道6,用于完成生成液滴包裹细胞、细胞标记物(如带有核酸序列的微球)与反应试剂(如细胞裂解液)。
可选地,所述微流道6包括:
(1)第一通道,其一端与细胞溶液进样口连接,另一端与液滴生成交叉部连接;
(2)第二通道,其一端与油相溶液进样口连接,另一端与液滴生成交叉部连接;
(3)第三通道,其一端与液滴生成交叉部连接,另一端与液滴出口连接;
(4)第四通道,其位于第一通道和第二通道之间,且一端与细胞标记物溶液进样口连接,另一端与第一通道连接;
(5)第五通道,其位于第一通道和第二通道之间,且一端与反应试剂溶液进样口连接,另一端与第一通道连接。
可选地,所述第一通道、第二通道、第四通道和第五通道中,至少一个通道的截面朝向液体流动方向由宽变窄。上游宽区8设计有利于更容易使用气压控制来推动液相流体,下游窄区9设计有利于细胞和细胞标记物(如带有核酸序列的微球)更容易单列依次流过交叉结构,以最大化实现单包裹。
可选地,所述通道的截面的宽度在20μm-300μm之间,优选通道的截面的宽度为40μm-80μm之间。
可选地,所述的芯片通道内设置有多个支撑微柱7,防止芯片通道的塌陷,并促进溶液的混匀。优选多个支撑微柱7有序排列在通道内。
可选地,所述支撑微柱7为圆柱状结构。
可选地,所述每个进样口设有样品存储腔,所述液滴出口设有储存液滴存储腔。
可选地,所述液滴存储腔的容积在30μL-700μL之间。
可选地,所述上片部分和所述下片部分中的至少一者为透明部分,且所述上片部分和/或所述下片部分由PMMA、PC、COP、COC或PS等高分子材料制成。
可选地,所述上片部分和所述下片部分通过热压或贴膜等方式结合。
同时,本发明还提供一种利用微流控芯片进行单细胞测序样品处理的方法,其特征在于,包括:
(1)将油相溶液、反应试剂溶液(如细胞裂解液)、细胞溶液和细胞标记物溶液(如带有核酸序列的微球)分别转移入芯片上的各个存储腔;
(2)利用气压控制装置控制各溶液流速,将细胞标记物溶液、细胞溶液和反应试剂溶液在芯片流道内混合;
(3)油相溶液在芯片流道的交叉结构处将混合液切割生成油包水液滴,实现生成液滴,将细胞、细胞标记物和反应试剂包裹住,完成单细胞测序建库前的样品处理。
优选地,上述步骤(2)包括:
(a)利用气压控制装置控制各溶液流速,将细胞标记物溶液和细胞溶液在芯片流道的一处先混合为混合液A;
(b)混合液A和反应试剂溶液在芯片流道的另一处再混合为混合液B。
本发明的微流控芯片,具有如下有益效果:
(1)本发明的微流控芯片将反应试剂溶液(如细胞裂解液)、细胞溶液和细胞标记物溶液(如带有核酸序列的微球)分别加入对应的进样口,使细胞溶液入口和反应试剂溶液(如细胞裂解液)入口分开,从而显著提高细胞存活率(最终数据中来自游离RNA的读取数从常见单细胞测序的20-40%降低到15%以内,其中游离RNA通常来自死细胞);
(2)本发明的微流控芯片的流道内设置有多个支撑微柱,不仅可以实现防止芯片流道的塌陷,而且可以促进溶液的混匀;
(3)本发明的微流控芯片采用高容量液滴储存腔(容积为30μL-700μL),单次实验每块独立运行的微流控芯片可处理高达20000个细胞样品,且处理效果佳,从而实现高通量单细胞测序建库;
(4)本发明的微流控芯片可多块组合在一张芯片上,便于同时处理多组细胞样品;
(5)本发明的微流控芯片上片部分和下片部分中使用材料为PMMA、PC、COP、COC或PS等高分子材料,易于大批量注塑生产,成本低,生物兼容性好;
(6)本发明的微流控芯片整体结构简洁、小巧,稳定性好,重复性好;
(7)本发明的微流控芯片可实现微球和细胞的高包裹率。
附图说明
图1为微流控芯片示意图。
图2为容纳4块独立运行的微流控芯片的芯片示意图。
图3为容纳4块独立运行的微流控芯片的芯片立体示意图。
图4为容纳4块独立运行的微流控芯片的芯片轴测图。
图5单细胞测序文库质检结果。
具体实施方式
下面通过具体实施例对本发明的技术方案作进一步描述说明,但本发明并不限于以下实施例。
若无特殊说明,本发明实施例所采用的原料及其他化学试剂皆为市售商品。
实施例1
如图1所示,本发明实施例提供了一种微流控芯片,该芯片包括上片部分和下片部分,且:
上片部分的一侧设有油相溶液进样口1、反应试剂溶液(如细胞裂解液)进样口2、细胞溶液进样口3、细胞标记物溶液(如带有核酸序列的微球)进样口4和液滴出口5;
上片部分的另一侧设有对应于进样口的样品存储腔,用于存储对应的样 品;对应于液滴出口的液滴存储腔,用于存储生成的液滴;
下片部分的一侧设有连接进样口和液滴出口的流道6,该流道由五个通道和液滴生成交叉部构成,其中,第一通道连接细胞溶液进样口3和液滴生成交叉部;第二通道连接油相溶液进样口1和液滴生成交叉部;第三通道连接液滴生成交叉部和液滴出口5;第四通道位于第一通道和第二通道之间,其一端连接细胞标记物溶液进样口,另一端与第一通道交叉连接;第五通道位于第四通道和第二通道之间,其一端连接反应试剂溶液进样口,另一端与第一通道交叉连接;第一通道、第二通道、第四通道和第五通道的截面朝向液体流动方向由宽变窄;每个通道内设有有序排列的圆柱形支撑微柱;
所述第一通道、第二通道、第四通道和第五通道中,至少一个通道的截面朝向液体流动方向由宽变窄。
上游宽区8设计有利于更容易使用气压控制来推动液相流体,下游窄区9设计有利于细胞和细胞标记物(如带有核酸序列的微球)更容易单列依次流过交叉结构,以最大化实现单包裹。
流道中设置有支撑微柱,支撑微柱有序排列,可支撑流道防止芯片塌陷导致流速不匀,同时,支撑微柱的设置可实现液体搅拌的功能,有助于液体的有效混合。
本发明实施例中的流道的内径控制在20μm-300μm之间,优选范围为40μm-80μm,可控制形成的液滴的直径,有利于实现单细胞包裹,提高包裹率。
本发明实施例中的微流控芯片采用高容量液滴储存腔,其容量为30μL-700μL,单次实验每块独立运行的微流控芯片可处理高达20000个细胞样品,且处理效果佳,实现了高通量单细胞测序建库。
如图2-4所示,在实际应用中,可在一张芯片上容纳4块独立运行的微流控芯片,以便同时处理4组细胞样品,提高单细胞测序建库的效率。
本发明实施例还提供了一种利用上述微流控芯片进行测序样品处理的 方法:
(1)配置反应试剂溶液(如细胞裂解液)125μL、细胞溶液125μL、细胞标记物溶液(如带有核酸序列的微球)65μL;
(2)利用移液枪将120μL油相溶液、120μL反应试剂溶液(如细胞裂解液)、120μL细胞溶液和60μL细胞标记物溶液(如带有核酸序列的微球)分别转移入芯片上的各个样品存储腔;
(3)利用气压控制装置控制油相溶液、反应试剂溶液(如细胞裂解液)、细胞溶液、细胞标记物溶液(如带有核酸序列的微球)的压力分别为120mBar、100mBar、100mBar、250mBar,将细胞标记物溶液(如带有核酸序列的微球)和细胞溶液在芯片流道的一处混合为混合液A;
(4)混合液A和反应试剂溶液在芯片流道的另一处混合为混合液B;
(5)油相溶液在芯片流道的交叉结构处将混合液B切割生成油包水液滴,生成液滴,将细胞、细胞标记物(如带有核酸序列的微球)和反应试剂(如细胞裂解液)包裹住,流入液滴储存腔,完成单细胞测序建库前的样品处理。
如图5所示,通过生物分析仪2100仪器进行分析,上述实施例中得到的样品的测序文库质控数据,样品的长度和浓度都符合预期。
上述实施例被选取用于最佳对本发明进行阐述和说明,但并非要穷举本发明所公开的精确形式,可实现很多修改和变型,从而使得本领域技术人员能够最佳地利用本发明,本发明的范围要由所附权利要求来定义。

Claims (11)

  1. 一种微流控芯片,其特征在于,包括上片部分和下片部分,所述上片部分的一侧设有油相溶液进样口1、反应试剂溶液进样口2、细胞溶液进样口3、细胞标记物溶液进样口4、液滴出口5,所述下片部分的一侧设有微流道6,用于完成生成液滴包裹细胞标记物、细胞与反应试剂。
  2. 如权利要求1所述的一种微流控芯片,其特征在于,所述微流道6包括:
    (1)第一通道,其一端与细胞溶液进样口3连接,另一端与液滴生成交叉部连接;
    (2)第二通道,其一端与油相溶液进样口1连接,另一端与液滴生成交叉部连接;
    (3)第三通道,其一端与液滴生成交叉部连接,另一端与液滴出口连接;
    (4)第四通道,其位于第一通道和第二通道之间,且一端与细胞标记物溶液进样口4连接,另一端与第一通道连接;
    (5)第五通道,其位于第一通道和第二通道之间,且一端与反应试剂溶液进样口2连接,另一端与第一通道连接。
  3. 如权利要求2所述的一种微流控芯片,其特征在于,所述第一通道、第二通道、第四通道和第五通道中,至少一个通道的截面朝向液体流动方向由宽变窄。
  4. 如权利要求2或3所述的一种微流控芯片,其特征在于,所述通道的截面的宽度为20μm-300μm之间。
  5. 如权利要求4所述的一种微流控芯片,其特征在于,所述通道的截面的宽度为40μm-80μm之间。
  6. 如权利要求2-5中至少一项所述的一种微流控芯片,其特征在于,所 述通道内设置有多个支撑微柱7。
  7. 如权利要求6所述的一种微流控芯片,其特征在于,所述支撑微柱7为圆柱状结构。
  8. 如权利要求1-7中至少一项所述的一种微流控芯片,其特征在于,所述每个进样口设有样品存储腔,所述液滴出口设有液滴存储腔。
  9. 如权利要求8所述的一种微流控芯片,其特征在于,所述液滴存储腔的容积在30μL-700μL之间。
  10. 一种利用如权利要求1-9中至少一项所述的微流控芯片进行单细胞测序样品处理的方法,其特征在于,包括:
    (1)将油相溶液、反应试剂溶液、细胞溶液和细胞标记物溶液分别转移入芯片上的各个存储腔;
    (2)利用气压控制装置控制各溶液流速,将细胞标记物溶液、细胞溶液和反应试剂溶液在芯片流道内混合;
    (3)油相溶液在芯片流道的交叉结构处将混合液切割生成油包水液滴,实现生成液滴,将细胞、细胞标记物和反应试剂包裹住,完成单细胞测序建库前的样品处理。
  11. 如权利要求10所述的方法,其特征在于,步骤(2)包括:
    (a)利用气压控制装置控制各溶液流速,将细胞标记物溶液和细胞溶液在芯片流道的一处先混合为混合液A;
    (b)混合液A和反应试剂溶液在芯片流道的另一处再混合为混合液B。
PCT/CN2021/129696 2021-07-16 2021-11-10 一种用于单细胞测序的微流控芯片及应用 WO2023284191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110809113.6 2021-07-16
CN202110809113.6A CN114717100B (zh) 2021-07-16 2021-07-16 一种用于单细胞测序的微流控芯片及应用

Publications (1)

Publication Number Publication Date
WO2023284191A1 true WO2023284191A1 (zh) 2023-01-19

Family

ID=82234261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129696 WO2023284191A1 (zh) 2021-07-16 2021-11-10 一种用于单细胞测序的微流控芯片及应用

Country Status (2)

Country Link
CN (1) CN114717100B (zh)
WO (1) WO2023284191A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717100A (zh) * 2021-07-16 2022-07-08 墨卓生物科技(浙江)有限公司 一种用于单细胞测序的微流控芯片及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115920991A (zh) * 2022-12-23 2023-04-07 中国科学院基础医学与肿瘤研究所(筹) 一种用于微生物分选的微流控芯片与方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106854618A (zh) * 2016-12-30 2017-06-16 华东医药(杭州)基因科技有限公司 一种在芯片内部平铺液滴的方法
CN107012220A (zh) * 2017-04-10 2017-08-04 厦门大学 一种利用配对微流控芯片高通量分析单细胞内含物的方法
CN208104383U (zh) * 2018-02-11 2018-11-16 中国医科大学 一种用于高效单细胞液滴制备的微流控芯片
CN109294874A (zh) * 2018-10-29 2019-02-01 领航基因科技(杭州)有限公司 微流控芯片、含有该芯片的装置及其用途,利用该芯片或装置制备液滴的方法
CN215887015U (zh) * 2021-07-16 2022-02-22 墨卓生物科技(浙江)有限公司 一种用于单细胞测序的微流控芯片

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101647095B1 (ko) * 2014-05-19 2016-08-11 한국과학기술원 마이크로플루이딕 장치, 장치의 제조방법 및 하이드로젤에 세포를 담지하는 방법
CN105567560A (zh) * 2015-12-30 2016-05-11 西安交通大学 一种集成式液滴微流控芯片
CN106754341B (zh) * 2016-12-30 2019-01-18 领航基因科技(杭州)有限公司 一种微滴式数字pcr生物芯片
AU2017382905A1 (en) * 2016-12-21 2019-07-04 The Regents Of The University Of California Single cell genomic sequencing using hydrogel based droplets
EP4001410A1 (en) * 2017-03-13 2022-05-25 Gigagen, Inc. Systems and methods for massively parallel combinatorial analysis of single cells
CN106841151A (zh) * 2017-03-20 2017-06-13 广东顺德工业设计研究院(广东顺德创新设计研究院) 微流控芯片及其微流道结构和液态微滴的检测方法
KR102136328B1 (ko) * 2017-05-17 2020-07-22 사회복지법인 삼성생명공익재단 단일세포 분석을 위한 액적 내 세포 담지 방법 및 장치
CN109746061A (zh) * 2017-11-06 2019-05-14 北京新羿生物科技有限公司 微液滴生成装置
CN109988821A (zh) * 2019-03-15 2019-07-09 山东师范大学 基于液滴微流控技术的单细胞内miRNA高灵敏多组分同时检测方法和系统
CN111235029B (zh) * 2020-03-09 2023-01-31 辽宁中医药大学 一种多功能微流控芯片及其制备方法与应用
GB202005615D0 (en) * 2020-04-17 2020-06-03 Sphere Fluidics Ltd Droplet spacing
CN113814008A (zh) * 2020-08-28 2021-12-21 上海交通大学 微流控通道结构、芯片、颗粒有序排列方法及应用
CN112538428B (zh) * 2020-12-01 2023-01-13 中国科学院上海微系统与信息技术研究所 基于液滴微流控技术的微流控芯片及其检测方法
CN114717100B (zh) * 2021-07-16 2024-03-19 墨卓生物科技(浙江)有限公司 一种用于单细胞测序的微流控芯片及应用
CN114160222B (zh) * 2021-12-21 2022-11-29 南通大学 基于细胞电学特性和电磁微阀的微流控芯片结构及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106854618A (zh) * 2016-12-30 2017-06-16 华东医药(杭州)基因科技有限公司 一种在芯片内部平铺液滴的方法
CN107012220A (zh) * 2017-04-10 2017-08-04 厦门大学 一种利用配对微流控芯片高通量分析单细胞内含物的方法
CN208104383U (zh) * 2018-02-11 2018-11-16 中国医科大学 一种用于高效单细胞液滴制备的微流控芯片
CN109294874A (zh) * 2018-10-29 2019-02-01 领航基因科技(杭州)有限公司 微流控芯片、含有该芯片的装置及其用途,利用该芯片或装置制备液滴的方法
CN215887015U (zh) * 2021-07-16 2022-02-22 墨卓生物科技(浙江)有限公司 一种用于单细胞测序的微流控芯片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717100A (zh) * 2021-07-16 2022-07-08 墨卓生物科技(浙江)有限公司 一种用于单细胞测序的微流控芯片及应用
CN114717100B (zh) * 2021-07-16 2024-03-19 墨卓生物科技(浙江)有限公司 一种用于单细胞测序的微流控芯片及应用

Also Published As

Publication number Publication date
CN114717100A (zh) 2022-07-08
CN114717100B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
Wang et al. Concentration gradient generation methods based on microfluidic systems
Kaminski et al. Controlled droplet microfluidic systems for multistep chemical and biological assays
Vyawahare et al. Miniaturization and parallelization of biological and chemical assays in microfluidic devices
WO2023284191A1 (zh) 一种用于单细胞测序的微流控芯片及应用
Hong et al. Integrated nanoliter systems
US9138700B2 (en) Accurate and rapid micromixer for integrated microfluidic devices
Kaminski et al. Automated generation of libraries of nL droplets
US20120164036A1 (en) Microfluidic devices and uses thereof
Sharma et al. Droplet-based microfluidics
JP2003500205A (ja) 複数流体サンプルプロセッサーおよびシステム
CN102199529A (zh) 一种生物芯片杂交系统
CN215887015U (zh) 一种用于单细胞测序的微流控芯片
CN110075934B (zh) 一种3d打印微流控器件及其大通量制备单分散乳液的方法
CN103386338A (zh) 一种微流控组合化学反应芯片
Zagnoni et al. Droplet microfluidics for high-throughput analysis of cells and particles
Destgeer et al. Engineering design of concentric amphiphilic microparticles for spontaneous formation of picoliter to nanoliter droplet volumes
WO2021103970A1 (zh) 一种微流控芯片的使用方法及其装置
CN208642693U (zh) 芯片和水质多参量检测设备
Ye et al. OsciDrop: A versatile deterministic droplet generator
Maghsoudi et al. An overview of microfluidic devices
CN115651807B (zh) 核酸检测芯片和核酸检测方法
CN111389474B (zh) 一种用于样本分散的微流控芯片及其制备方法与应用
Hassani-Gangaraj et al. Developing an Off-the-Shelf Microfluidic Droplet Generation Device for Cell Encapsulation
WO2022222925A1 (zh) 离心式微滴生成芯片
Lin et al. Generation of double emulsions from commercial single-emulsion microfluidic chips: a quality-control study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21949963

Country of ref document: EP

Kind code of ref document: A1