WO2023282658A1 - 다중 가교된 온도감응성 하이드로겔 제조용 조성물 및 이의 용도 - Google Patents

다중 가교된 온도감응성 하이드로겔 제조용 조성물 및 이의 용도 Download PDF

Info

Publication number
WO2023282658A1
WO2023282658A1 PCT/KR2022/009842 KR2022009842W WO2023282658A1 WO 2023282658 A1 WO2023282658 A1 WO 2023282658A1 KR 2022009842 W KR2022009842 W KR 2022009842W WO 2023282658 A1 WO2023282658 A1 WO 2023282658A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
agent
composition
parts
temperature
Prior art date
Application number
PCT/KR2022/009842
Other languages
English (en)
French (fr)
Inventor
차미선
김수희
이수희
Original Assignee
주식회사 메디팹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메디팹 filed Critical 주식회사 메디팹
Priority to US18/577,650 priority Critical patent/US20240239966A1/en
Publication of WO2023282658A1 publication Critical patent/WO2023282658A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Definitions

  • thermosensitive hydrogel It relates to a composition for preparing a multi-crosslinked thermosensitive hydrogel and its use.
  • Human skin tissue maintains its structure by an extracellular matrix containing proteins such as collagen and elastin and glycosaminoglycans. Such skin tissue may be damaged due to external shock, disease, surgery, or aging. Therefore, skin tissue augmentation through biomaterials has been used for medical and cosmetic purposes. Such augmentation has been performed surgically through plastic surgery, or by injecting or attaching biological tissue or synthetic polymeric chemicals to the corresponding area to restore, restore, or correct skin tissue.
  • a material used for wrinkle improvement or contour correction through dermal filler is called a soft tissue augmentation material.
  • Adhesion refers to a phenomenon in which fibrous tissue is excessively produced or leaked blood is coagulated during the healing process of a wound formed inside the skin or abdominal cavity after a surgical operation, and the surrounding organs or tissues adhere to and combine with the wound.
  • an anti-adhesion material has been mainly used as a biomaterial to prevent adhesion between a surgical site and a normal tissue by forming a physical barrier at a site where adhesion is expected.
  • wound dressing materials among biomaterials can promote recovery and healing by providing a moist environment to the damaged area when skin tissue is damaged due to external impact, disease, surgery, or aging.
  • hydrogel refers to a material having a polymer network structure containing a large amount of water and formed by a homopolymer or copolymer.
  • Hydrogels made of synthetic polymers have strong bonding forces such as chemical covalent bonds between molecules through cross-linking, so unlike natural polymers, they have strong mechanical properties, so the hydrogel form is not damaged by external stimuli such as temperature and external force. cases are relatively rare.
  • improvements are required in terms of biocompatibility, maintenance of efficacy, and differences in manufacturing methods according to indications.
  • One aspect is a composition for preparing a temperature-sensitive hydrogel composition
  • a composition for preparing a temperature-sensitive hydrogel composition comprising a first agent of a liquid formulation containing an aqueous solution containing chitosan and phosphate ions, based on the total weight of the first agent composition, 0.05 to 3.5% by weight of chitosan.
  • a composition for preparing a temperature-sensitive hydrogel composition comprising an aqueous solution containing 0.1 to 40% by weight of phosphate ions.
  • Another aspect is preparing a temperature-sensitive hydrogel composition
  • preparing a first agent of a liquid formulation by mixing a solution containing chitosan ions and an aqueous solution containing phosphate ions, and stabilizing the first agent of the liquid formulation. to provide a way to do it.
  • Another aspect is to provide a temperature-sensitive hydrogel composition prepared by the above method.
  • Another aspect is to provide a treatment method using the temperature-sensitive hydrogel prepared by the above method.
  • One aspect is to provide a composition for preparing a composition for preparing a temperature-sensitive hydrogel composition including a first agent of a liquid formulation including an aqueous solution containing chitosan and phosphate ions.
  • hydrogel may refer to a three-dimensional network structure formed by crosslinking hydrophilic polymers through covalent or non-covalent bonds. Due to the hydrophilicity of the constituent materials, it absorbs a large amount of water in an aqueous solution and in an aqueous environment and swells, but has the property of not dissolving due to the cross-linked structure. Therefore, depending on the composition and manufacturing method, hydrogels with various shapes and properties can be made, and since they generally contain a large amount of water, they may have intermediate properties between liquid and solid.
  • hydrogel may be used interchangeably with the terms “biomaterial for tissue repair” or “biomaterial composition for tissue repair”.
  • the hydrogel may be a biomaterial for tissue repair, which may be a material used for tissue repair.
  • tissue repair refers to filling materials similar to soft tissue injected into wrinkled skin or areas requiring volume, anti-adhesive materials between surgical sites and normal tissues, tissue adhesive materials, wound covering materials for artificial skin, etc.
  • the hydrogel may be applied, for example, to body parts such as the glabella, forehead, under the eyes, wrinkles around the eyes, nasolabial folds, cheeks, wrinkles around the mouth, and the chin.
  • the hydrogel is a material that is directly applied to the human body and must have biocompatibility.
  • the hydrogel when the hydrogel is filled in an area requiring volume, excellent retention/continuity of the gel shape is required to form a sense of volume for a long period of time after injection.
  • the hydrogel When used to prevent adhesion to the surgical site, it should have tissue compatibility at the wound site and have little or no cytotoxicity.
  • excellent holding/sustaining power is required to maintain adhesion and application.
  • the skin surface may change unevenly or the treatment result may be undesirable, so it should be possible to easily decompose or transform the hydrogel formed in the body.
  • tissue repair refers to restoring the structure and function of damaged or aged tissues, and includes, for example, cosmetic fillers, anti-adhesion materials, adhesives, wound covering materials, and cosmetic implants. It may include uses and the like, but is not limited thereto.
  • temperature sensitivity refers to a physical property that the formulation changes depending on the ambient temperature, and exists in the form of a liquid formulation, that is, a sol, under room temperature conditions, for example, 4 to 25 ° C conditions, but, for example, For example, it may refer to a property that is converted into a gel form at 25 to 60 ° C.
  • multiple cross-linking refers to cross-linking several times using one or more cross-linking agents (eg, phosphate ions, glycerol, or combinations thereof), and by multiple cross-linking using one or more cross-linking agents,
  • the mechanical properties and decomposition rate of the gel can be controlled. Viscoelasticity and decomposition rate can be controlled by variously adjusting the weight ratio of one or more crosslinking agents included in the hydrogel, and through this, it can be used for adjusting the injection force and for various indications.
  • the multiple cross-linking may be performed by secondary cross-linking in an in-vivo condition after the material gelled through primary cross-linking in vitro is injected into the body.
  • the injection force can be controlled through primary crosslinking, and high physical properties can be realized by performing secondary crosslinking in the body.
  • the term "internal condition” is not limited as long as it is a condition capable of secondary crosslinking, such as an individual's body temperature, body fluid composition, internal pH, and internal salinity.
  • the in vivo condition may be a basic condition.
  • the first agent may be a liquid formulation composition containing an aqueous solution containing chitosan and phosphate ions.
  • chitosan may refer to a linear polysaccharide composed of D-glucosamine and N-acetylglucosamine.
  • the chitosan may be represented by the following Structural Formula 1 and may be obtained by treating crab, shrimp and crustacean shells with sodium hydroxide base, but is not limited thereto.
  • the chitosan may include chitosan derivatives in addition to pure chitosan.
  • the chitosan derivative may include at least one of phthalated chitosan, esterified chitosan, amidated chitosan, and formylated chitosan:
  • phosphate ion is a component that binds to the amine group of chitosan and contributes to enhancing the strength of the temperature-sensitive hydrogel formed under the first agent and room temperature conditions.
  • it is provided in the form of an aqueous solution containing phosphate ions It can be.
  • the aqueous solution containing the phosphate ion is, for example, sodium phosphate dibasic, sodium phosphate monobasic, ammonium phosphate dibasic, dihydrogen phosphate, trisodium phosphate, potassium phosphate dibasic, potassium phosphate monobasic, dimethylphosphate, mono It may contain at least one phosphate selected from the group consisting of magnesium phosphate, magnesium phosphate dibasic, lithium dihydrogen phosphate, lithium phosphate, calcium hydrogen phosphate hydrate, and calcium hydrogen phosphate, but the aqueous solution containing the phosphate ion is chitosan. Any material capable of providing a phosphoric acid group or a phosphate salt capable of bonding with an amine group of can be extended and applied without limitation.
  • the aqueous solution containing chitosan may be an aqueous solution containing 0.01 to 5% by weight, 0.01 to 4% by weight, 0.05 to 4% by weight, or 0.05 to 3.5% by weight of chitosan based on the total weight of the first agent composition.
  • the content of the chitosan-containing aqueous solution may be 0.05 to 3.5% by weight based on the total weight of the first agent composition.
  • the content of the aqueous solution containing chitosan is less than the above range, there is a problem that the content of chitosan is low and the persistence in the body is poor.
  • the filtering process is difficult due to high viscosity.
  • the aqueous solution containing phosphate ions may be an aqueous solution containing 0.01 to 50% by weight, 0.01 to 45% by weight, 0.01 to 40% by weight, or 0.1 to 40% by weight of phosphate ions based on the total weight of the first agent composition. .
  • the content of the aqueous solution containing phosphate ions may be 0.1 to 40% by weight based on the total weight of the first agent composition.
  • the content of the aqueous solution containing phosphate ions is less than the above range, there is a problem that the amount of phosphate ions for crosslinking is not sufficient to form a hydrogel, and the content of the aqueous solution containing phosphate ions is more than the above range
  • the crosslinking reaction proceeds at room temperature, and the temperature sensitivity characteristic that can be injected at room temperature is lost, and at the same time, chitosan may be precipitated due to an increase in pH.
  • a composition according to one aspect includes chitosan and phosphate ions, and the chitosan may be crosslinked by phosphate ions.
  • the chitosan may be cross-linked with phosphate ions to form a chitosan polymer.
  • the cross-linking may be a covalent or non-covalent bond.
  • a non-covalent bond may be formed by the chitosan phosphate ion.
  • the physical properties (viscosity, strength, etc.) of the hydrogel composition are adjusted by adjusting the type and content of phosphate ions. can be adjusted Therefore, the physical properties of the hydrogel composition may be adjusted according to the tissue repair purpose of the hydrogel composition.
  • the first agent may be stabilized at room temperature.
  • the first agent for example, may be exposed to room temperature conditions for 10 days or more, specifically 1 hour to 10 days, 12 hours to 10 days, 1 to 10 days, 1 to 7 days, 10 days to 14 days, 10-21 days, 10-28 days, 10-35 days, 10-42 days, 15-21 days, 15-28 days, 15-35 days, 15-42 days, 20 days to 28 days, 20 to 35 days, or 20 to 42 days, but is not limited thereto.
  • the stabilization process may contribute to adjusting the physical properties of the hydrogel by adjusting the level of ionic bonding between the amine group of chitosan and phosphate ions in the first agent.
  • the temperature-sensitive hydrogel composition may be prepared by mixing a chitosan-containing aqueous solution containing 1.5 to 3.5% chitosan and a phosphate ion-containing aqueous solution.
  • the first agent contains 0.01 to 0.3 parts by weight, 0.02 to 0.3 parts by weight, 0.03 to 0.3 parts by weight, 0.04 to 0.3 parts by weight, 0.05 parts by weight of an aqueous solution containing phosphate ions per 1 part by weight of the aqueous solution containing chitosan.
  • the first agent may include 0.126 to 0.169 parts by weight of an aqueous solution containing dibasic sodium phosphate per 1 part by weight of
  • the weight ratio of the aqueous solution containing chitosan and the aqueous solution containing phosphate ions is 1:0.10 or more and less than 0.135, 1:0.10 or more and less than 0.13, 1:0.101 or more and less than 0.13, 1:0.102 or more and less than 0.13, 1 :0.103 to less than 0.13, 1:0.104 to less than 0.13, 1:0.105 to less than 0.13, 1:0.106 to less than 0.13, 1:0.107 to less than 0.13, 1:0.108 to less than 0.13, 1:0.109 to less than 0.13, 1: 0.11 to 0.13, 1:0.111 to 0.13, 1:0.112 to 0.13, 1:0.113 to 0.13, 1:0.114 to 0.13, 1:0.115 to 0.13, 1:0.116 to 0.13, 1:0.117 Greater than 0.13, greater than 1:0.118 less than 0.13, greater than 1:0.119 less than 0.13, greater than 1:0.12 less than 0.13, greater
  • the weight ratio of the aqueous solution containing chitosan and the aqueous solution containing phosphate ions is 1:0.13 or more and less than 0.165, 1:0.13 or more and less than 0.16, 1:0.13 or more and less than 0.155, 1:0.131 or more and less than 0.15, 1 :0.132 to less than 0.15, 1:0.133 to less than 0.15, 1:0.134 to less than 0.15, 1:0.135 to less than 0.15, 1:0.13 to less than 0.145, 1:0.131 to less than 0.145, 1:0.132 to less than 0.145, 1: 0.133 to less than 0.145, 1:0.134 to less than 0.145, 1:0.135 to less than 0.145, 1:0.13 to less than 0.14, 1:0.131 to less than 0.14, 1:0.132 to less than 0.14, 1:0.133 to less than 0.14, 1:0.134 Greater than 0.14, greater than 1:0.135 less than 0.14, greater than 1:0.13 less than 0.139
  • the weight ratio of the aqueous solution containing chitosan and the aqueous solution containing phosphate ions is 1:0.14 to 0.19, 1:0.14 to 0.18, 1:0.14 to 0.17, 1:0.145 to 0.19, 1:0.145 to 0.18 .
  • :0.16 to 0.18 1:0.16 to 0.17, 1:0.161 to 0.17, 1:0.162 to 0.17, 1:0.163 to 0.17, 1:0.164 to 0.17, 1:0.165 to 0.17, 1:0.166 to 0.17, 1:0.167 to 0.17 or 1:0.168 to 0.17.
  • the complex viscosity value which means the elasticity level of the hydrogel composition
  • the composition prepared as above can be used as a material for a composition for restoring fine soft tissue such as a filler around the eye, a wound coating agent, and an injection/application type wound coating material.
  • the hydrogel composition has a composite viscosity value of 500 Pa s to 3000 Pa s It can be adjusted to the level of the range, and accordingly, the composition prepared as described above can be used as a material for a composition for restoring facial soft tissue, a synovial fluid substitute in the joint space, a wound coating material, or an adhesive wound coating material.
  • the composition prepared as described above can be used as a composition for tissue repair, such as the bridge of the nose or forehead, or as a material for an adhesive wound covering material.
  • the temperature-sensitive hydrogel composition can adjust the physical properties (viscosity, strength, etc.) of the hydrogel composition by adjusting the volume ratio between solutions containing chitosan or phosphate ions, and depending on the tissue repair use of the hydrogel composition It can be used by adjusting the physical properties of the hydrogel composition.
  • the composition of each component mentioned above it is possible to stably maintain physical properties for a longer period of time.
  • the first agent composition may undergo a stabilization period of 10 days or more exposure at room temperature conditions, or a stabilization period of 1 to 7 days or less at room temperature conditions. Through the stabilization period, physical properties can be stably maintained for a longer period of time.
  • the first agent composition may exhibit pH 5.0 to 8.0, pH 5.5 to 8.0, pH 5.5 to 7.5, or pH 5.5 to 7.0.
  • pH exceeds the above range, biomaterials may be precipitated, and when the pH is below the above range, skin pH may be affected.
  • the first agent composition may further include a decellular matrix.
  • decellularized matrix may be used interchangeably with “decellularized tissue", “decellularized extracellular matrix” or “decellularized material”.
  • the decellularized matrix refers to a tissue or organ of a human or an animal such as pig or cow, which is subjected to decellularization to remove other cellular components other than the extracellular matrix, such as nuclei, cell membranes, and nucleic acids.
  • a decellular matrix which is a decellularized extracellular matrix, a more natural biomimetic microenvironment for cell growth and differentiation can be provided.
  • extracellular matrix refers to a complex assembly of biopolymers that fills an intra-tissue or extracellular space.
  • the extracellular matrix is composed of various types of molecules synthesized by cells and secreted and accumulated extracellularly, such as complex proteins such as fibrous proteins and proteoglycans, and cell adhesion proteins such as fibronectin and laminin. Therefore, the components of the extracellular matrix may vary depending on the type of derived cell or the degree of differentiation of the cell.
  • the decellularization matrix may be included in 0.05 to 20% by weight, based on the total weight of the first agent composition, 0.06 to 20% by weight, 0.07 to 19% by weight, 0.08 to 18% by weight, 0.09 to 0.09% by weight 17 wt%, 0.1 to 16 wt%, 0.15 to 15 wt%, or 0.20 to 15 wt%.
  • the decellular matrix is not limited thereto, but may be derived from skin tissue, heart tissue, or adipose tissue.
  • the bioenvironmentally sensitive hydrogel composition may include at least one selected from the group consisting of skin tissue-derived decellular matrix, heart tissue-derived decellular matrix, and adipose tissue-derived decellular matrix.
  • the weight ratio of heart tissue-derived decellularized matrix to adipose tissue-derived decellularized matrix is 1: 0.01 to 1, 1: 0.1 to 0.9, 1: 0.1 to 0.8, 1: 0.1 to 0.7, 1 : 0.1 to 0.6, 1: 0.1 to 0.5, 1: 0.1 to 0.4, 1: 0.15 to 0.4, 1: 0.15 to 0.35 or 1: 0.2 to 0.3, preferably 1: 0.25.
  • the decellularized matrix has a weight ratio of heart tissue-derived decellularized matrix to skin tissue-derived decellularized matrix of 1: 0.01 to 1, 1: 0.1 to 0.9, 1: 0.1 to 0.8, 1: 0.1 to 0.7, 1: 0.1 to 0.6, 1:0.1 to 0.5, 1:0.1 to 0.4, 1:0.15 to 0.4, 1:0.15 to 0.35, or 1:0.2 to 0.3, preferably 1:0.25.
  • the decellular matrix When the decellular matrix is included in a weight ratio within the above range, excellent vascularized adipose tissue inducing ability is shown, but when it is out of the range, the vascularized adipose tissue inducing ability may be significantly reduced.
  • the decellularization substrate may be dissolved in an acidic solution containing an enzyme to increase dispersibility.
  • the pH of the acidic solution may be 3 to 6.5, pH 3.5 to 6.5, pH 4 to 6.5, pH 4.5 to 6.5, pH 5 to 6.5, 5.2 to 6.3, 5.4 to 6.1, 5.6 to 5.9. It is not limited.
  • the enzyme may be a protease that degrades protein, for example, pepsin, peptidase, trypsin, or papain, and preferably pepsinyl It can be, but is not limited thereto.
  • the composition for preparing the multi-crosslinked thermosensitive hydrogel composition may further include a second agent of a liquid formulation containing glycerol.
  • the second agent may be mixed with the stabilized first agent to adjust the level of covalent bonds or non-covalent bonds within the mixture to impart viscoelastic properties to the hydrogel.
  • the second agent may contain a glycerol stock solution or an aqueous solution containing glycerol.
  • the second agent may contain 100% glycerol at 100% by weight.
  • a covalent bond may be formed by the chitosan and glycerol.
  • a non-covalent bond may be formed by the chitosan phosphate ion.
  • the chitosan polymer may include both a non-covalent bond with a phosphoric acid group and a covalent bond with glycerol.
  • thermogel composition in the temperature-sensitive hydrogel composition according to one aspect, as chitosan forms covalent and/or non-covalent bonds with glycerol and/or phosphate ions, physical properties (viscosity, strength, etc.) can be adjusted.
  • the second agent is 0.01 to 0.3 parts by weight, 0.01 to 0.25 parts by weight, 0.01 to 0.2 parts by weight, 0.01 to 0.15 parts by weight, 0.01 to 0.01 to 0.01 parts by weight of glycerol per 1 part by weight of the chitosan-containing aqueous solution of the first agent.
  • the composition for preparing the multi-crosslinked temperature-sensitive hydrogel composition comprises 0.001 to 0.06 parts by weight, 0.001 to 0.05 parts by weight of the second agent, the glycerol, and 1 part by weight of the chitosan-containing aqueous solution of the first agent.
  • the composition for preparing the multi-crosslinked temperature-sensitive hydrogel composition is 0.025 to 0.120 parts by weight, 0.03 parts by weight to 0.025 parts by weight per 1 part by weight of the aqueous solution containing the chitosan of the first agent, the glycerol as the second agent 0.115 parts by weight, 0.03 parts by weight to 0.11 parts by weight, 0.03 to 0.105 parts by weight, 0.03 to 0.1 parts by weight, 0.03 to 0.09 parts by weight, 0.03 to 0.08 parts by weight, 0.03 to 0.07 parts by weight, 0.04 parts by weight to 0.115 parts by weight, 0.04 to 0.11 parts by weight, 0.04 to 0.105 parts by weight, 0.04 to 0.1 parts by weight, 0.04 to 0.09 parts by weight, 0.04 to 0.08 parts by weight, 0.04 to 0.07 parts by weight, 0.05 parts by weight to 0.115 parts by weight, 0.05 parts by weight to 0.11 parts by weight, 0.05 to 0.105 parts by weight, 0.05 to 0.1 parts by weight, 0.05 to 0.09 parts by weight,
  • the composition for preparing the multi-crosslinked temperature-sensitive hydrogel composition is 0.062 to 0.2 parts by weight, 0.065 to 0.2 parts by weight per 1 part by weight of the aqueous solution containing the chitosan of the second agent and the glycerol of the first agent.
  • the second agent composition may further include a decellular matrix.
  • the elasticity of the biomaterial composition increases according to the increase in the glycerol content of the second agent can increase
  • the weight ratio of the aqueous solution containing chitosan and the aqueous solution containing phosphate ions is in the range of 1: 0.12 or more and less than 0.013, 20 to 500 Pa depending on the level of glycerol in the second agent composition added thereto
  • An increase in the glycerol content within the range of ⁇ s may impart enhanced elasticity to the biological material composition.
  • the biomaterial when the weight ratio of the aqueous solution containing chitosan and the aqueous solution containing phosphate ions in the total volume of the first agent is in the range of 1: 0.16 to 0.18, the biomaterial rather increases with the increase in the content of glycerol in the second agent
  • the elasticity of the composition may decrease.
  • the volume ratio of the aqueous solution containing chitosan and the aqueous solution containing phosphate ions when the volume ratio of the aqueous solution containing chitosan and the aqueous solution containing phosphate ions is in the range of 1: 0.16 to 0.18, 3000 to 7000 Pa. Reduction of the glycerol content within the s range can impart enhanced elasticity to the biomaterial composition. That is, adjusting the weight ratio between the first agent and the second agent may enable secondarily adjusting the elastic force of the biological material composition.
  • the weight ratio of the first agent and the second agent may be 1:10 to 10000:1, for example, the weight ratio of the first agent and the second agent may be, for example, 1:5 to 10000:1, 1:3 to 10000:1, or 1:2 to 10000:1.
  • the weight ratio of the first agent and the second agent may be 2:1 to 10000:1.
  • the composition comprises 70 to 90% by weight, 75 to 90% by weight, 80 to 90% by weight, 81 to 90% by weight, 82 to 90% by weight, 83 to 90% by weight of the aqueous solution containing chitosan relative to the total weight %, 84 to 90% by weight, 85 to 90% by weight, 86 to 90% by weight, 70 to 89% by weight, 75 to 89% by weight, 80 to 89% by weight, 81 to 89% by weight, 82 to 89% by weight, 83 to 89% by weight, 84 to 89% by weight, 85 to 89% by weight, 86 to 89% by weight, 70 to 88% by weight, 75 to 88% by weight, 82 to 88% by weight, 83 to 88% by weight, 84 to 84% by weight 88 wt%, 85 to 88 wt%, 86 to 88 wt%, 70 to 87 wt%, 75 to 87 wt%, 80 to 87 wt%, 81 to 87 wt%, 84 to
  • the composition comprises 1 to 20%, 5 to 20%, 5 to 17%, 7 to 17%, 8 to 17%, 9 to 17%, 10% by weight of the phosphoric acid solution relative to the total weight. to 17 wt%, 5 to 15 wt%, 7 to 15 wt%, 8 to 15 wt%, 9 to 15 wt%, 10 to 15 wt%, 7 to 14.5 wt%, 7 to 13 wt%, 8 to 13 wt% 9 to 13% by weight, 10 to 13% by weight, 7 to 12% by weight, 8 to 12% by weight, 9 to 12% by weight, 10 to 14.5% by weight, 10 to 12% by weight, 10 to 11% by weight or 10.5 to 12% by weight.
  • the composition comprises 0.1 to 20%, 0.1 to 15%, 0.5 to 15%, 1 to 15%, 0.5 to 13%, 1 to 13%, 1 to 15%, 1 to 15%, 0.1% to 15%, 0.5% to 15%, glycerol relative to the total weight. 12 wt%, 1 to 11 wt%, 1 to 10 wt%, 1.5 to 15 wt%, 1.5 to 13 wt%, 1.5 to 12 wt%, 1.5 to 11 wt%, 2 to 15 wt%, 2 to 13 wt% %, 2 to 12% by weight, 2 to 11% by weight or 2 to 10% by weight.
  • the composition for preparing the temperature-sensitive hydrogel composition may further include a third agent of a liquid formulation containing a basic aqueous solution for changing the strength of the hydrogel composition.
  • a third agent when a third agent is further included in the hydrogel composition, the strength of the hydrogel composition may be changed.
  • the "basic aqueous solution" included in the third agent may contribute to enhancing the strength of the formed temperature-sensitive hydrogel, and as an example, may be provided in the form of an aqueous solution containing basic ions.
  • the basic aqueous solution is, for example, ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, zinc hydroxide, cesium hydroxide, barium hydroxide, rubidium hydroxide, ferrous hydroxide, ferric hydroxide, aluminum hydroxide, methyl It may contain at least one selected from the group consisting of amine, ethylamine, n-propylamine, n-butylamine, calcium carbonate, potassium bicarbonate, sodium carbonate and sodium bicarbonate solution, but if the basic ion is a basic ion It can be extended and applied without limitation.
  • the first agent and the second agent may be isolated in a separate space in the container. Therefore, agent 1 containing chitosan and phosphate ions and agent 2 containing glycerol can be maintained and stored as liquid formulations, respectively, before use.
  • the first agent and the second agent may form a temperature-sensitive hydrogel in which gelation proceeds under in vivo conditions through sequential mixing and stabilization processes.
  • the first agent forms an ionic bond between the amine group of chitosan and phosphate ions through mixing and stabilization processes between chitosan and an aqueous solution containing phosphate ions, and this process determines the strength level of the hydrogel can be involved in Thereafter, mixing the stabilized first agent and the second agent containing glycerol forms a covalent bond between the residual amine group of chitosan and glycerol, and this process may be involved in determining the viscoelasticity of the hydrogel.
  • the first and second agents may be mixed. Therefore, agent 1 containing chitosan and phosphate ions and agent 2 containing glycerol can be maintained and stored as a mixed liquid or gel formulation under conditions before use, and, if necessary, frozen for long-term storage. It can also be stored in its raw state.
  • the first agent and the second agent may form a temperature-sensitive hydrogel in which gelation proceeds in vitro through sequential mixing and stabilization processes.
  • Another aspect is preparing a temperature-sensitive hydrogel composition
  • preparing a first agent of a liquid formulation by mixing a solution containing chitosan ions and an aqueous solution containing phosphate ions, and stabilizing the first agent of the liquid formulation.
  • Another aspect provides a method for preparing a temperature-sensitive hydrogel composition further comprising mixing the first agent of the stabilized liquid formulation and the second agent of the liquid formulation containing glycerol after the stabilizing step.
  • Another aspect provides a method for preparing a temperature-sensitive hydrogel composition, further comprising multiple cross-linking of the liquid formulation mixture of the first and second agents under in vivo conditions.
  • Another aspect provides a method for preparing a temperature-sensitive hydrogel composition further comprising the step of additionally mixing a third agent including a basic aqueous solution for changing the strength of the hydrogel composition.
  • Another aspect includes preparing a first agent of a liquid formulation by mixing a solution containing chitosan ions and an aqueous solution containing phosphate ions, and stabilizing the first agent of the liquid formulation; and mixing the first agent of the stabilized liquid formulation and the second agent of the liquid formulation containing glycerol; It provides a method for treating a temperature-sensitive hydrogel composition comprising the step of injecting the mixed composition of the liquid formulation into the skin of the subject.
  • the method for preparing the temperature-sensitive hydrogel composition or the method for treating the temperature-sensitive hydrogel composition includes or uses the composition for preparing the temperature-sensitive hydrogel composition described above, the common content between the two is omit the description.
  • the temperature-sensitive hydrogel prepared by the above method not only provides convenience for the operator to apply the indication, but also can maintain its shape for a long time in body conditions compared to conventional hydrogel compositions, and the hydrogel Since the physical properties, specifically elasticity and strength, can be easily adjusted, it is possible to provide a hydrogel that meets the shape and characteristics of various types of tissues.
  • the liquid formulation hydrogel composition in which the first agent and the second agent are mixed forms a temperature-sensitive hydrogel in which gelation proceeds under in vivo conditions after injection, thereby providing convenience in distribution and hydrogel treatment, and at the same time, conventional hydrogels. Compared to the composition, it can maintain its shape for a long time under in vivo conditions.
  • the strength of the formed hydrogel composition can be easily changed by applying a basic aqueous solution such as an aqueous sodium hydroxide solution.
  • a basic aqueous solution such as an aqueous sodium hydroxide solution.
  • 1A is a diagram showing bond formation over time of a temperature-sensitive hydrogel according to an embodiment.
  • Figure 1b is a diagram schematically showing a change in physical properties according to a change in temperature of a temperature-sensitive hydrogel according to an embodiment.
  • FIG. 2 is a diagram showing a mixing process of a first agent and a second agent in liquid form according to an embodiment.
  • Figure 4 is a diagram showing the degree of gelation according to the ratio of the components of the first and second agents of Examples 2.2.1 to 2.2.9.
  • Figure 5a shows the gelation viscosity according to the component ratio of the first agent and the second agent in Examples 2.2.1 (G1) to 2.2.3 (G3).
  • Figure 5b shows the gelation viscosity according to the component ratio of the first agent and the second agent in Examples 2.2.4 (G4) to 2.2.6 (G6).
  • Figure 5c shows the gelation viscosity according to the component ratio of the first agent and the second agent in Examples 2.2.7 (G7) to 2.2.9 (G9).
  • Figure 6a is a diagram showing the complex viscosity (complex viscosity) according to the angular frequency of Examples 2.2.1 (G1) to 2.2.9 (G9).
  • 6B is a diagram showing the loss modulus of Examples 2.2.1 (G1) to 2.2.9 (G9).
  • 6C is a diagram showing the storage modulus of Examples 2.2.1 (G1) to 2.2.9 (G9).
  • 7a is a view of a hydrogel formed at 37° C. after mixing agent 1 and agent 2 of a liquid formulation.
  • Figure 7b is a diagram comparing the compressive strength of 1st, 2nd, 3rd and 4th weeks of the hydrogel formed at 37 ° C after mixing the first and second agents of the liquid formulation.
  • Figure 8a is a diagram comparing the recovery rate after compression according to the pressure of the hydrogel formed under the condition of 37 °C after mixing the first agent and the second agent of the liquid formulation.
  • Figure 8b is a graph showing the quantification of the recovery rate according to the pressure of the hydrogel formed at 37 ° C. after mixing the first agent and the second agent of the liquid formulation.
  • Figure 8c is a diagram comparing the deformation after compression of the hydrogel formed under the condition of 37 °C after mixing the first and second agents of the liquid formulations of Examples 2.2.7 (G7) to 2.2.9 (G9).
  • Figure 10a is a result of injecting the first and second agents of the liquid formulation according to one embodiment into a mouse and confirming the shape of the hydrogel formed in the mouse's skin through the naked eye or a microscope.
  • 10B is a diagram comparing E-modulus over time and intradermal E-modulus of mice after injection of the first and second agents of the liquid formulation according to an embodiment into mice.
  • FIG. 10C is a diagram comparing E-modulus and intradermal compressive strength of mice over time after injection of the first and second agents of the liquid formulation according to one embodiment into mice.
  • Figure 11a is a view of observing the appearance of mice when one week has elapsed after injecting agents 1 and 2 of a liquid formulation according to one embodiment into mice.
  • FIG. 11B is a view showing a mixture of the first agent and the second agent of the liquid formulation according to an embodiment and injecting the mixture into the skin of the mouse, and when one week has elapsed, the hydrogel was taken out of the body of the mouse and confirmed.
  • Figure 12a is a result of confirming the presence or absence of an immune response in the body after PBS was injected into the mouse.
  • 12B is a result of confirming whether or not an immune response in the body is caused by the chitosan filler (hydrogel) formed in the skin of a mouse after injecting the first agent and the second agent of the liquid formulation according to an embodiment.
  • Figure 12c is a comparison of the CD68 stained area of PBS and chitosan filler (hydrogel) at 3, 7, and 14 days.
  • Figure 12d is a comparison of the CD206 stained areas of PBS and chitosan filler (hydrogel) at 3, 7, and 14 days.
  • 13 is a diagram confirming the increase in physical properties according to gelation in response to temperature and body fluids simultaneously.
  • 14A is a diagram visually confirming a hydrogel sensitized with a body fluid after temperature-sensitive gelation in vitro.
  • Figure 14b shows the hydrogel (separate type) formed in the skin of a mouse after mixing the first and second agents of the liquid formulation, and the gelation in vitro by mixing the first and second agents of the liquid formulation, and then reacting to body fluids within the skin of the mouse. It is a diagram comparing the E-modulus of the gelled hydrogel (integral type).
  • FIG. 14c shows the hydrogel (separate type) formed in the skin of a mouse after mixing the first and second agents of the liquid formulation, and the gelation outside the body by mixing the first and second agents of the liquid formulation, and then reacting to body fluids within the skin of the mouse. It is a diagram comparing the compressive strength of the gelled hydrogel (integral type).
  • hydrogel 15 is a hydrogel (separate type) formed in the skin of a mouse after mixing the first and second agents of the liquid formulation, and the gelation in vitro by mixing the first and second agents of the liquid formulation, and then reacting to body fluids within the skin of the mouse. It is a diagram comparing the physical properties of the gelled hydrogel (integral type).
  • 16 is a result of comparing the decomposition rate according to the concentration of the crosslinking agent of the hydrogel formed in the skin of the mouse after mixing the first agent and the second agent of the liquid formulation according to one embodiment.
  • 17 is a view of a hydrogel before and after injection into a mouse after mixing agents 1 and 2 of a liquid formulation containing a decellularized material according to an embodiment and injecting agents 1 and 2 of the mixed liquid formulation This is an observation of one mouse.
  • Example 1 Preparation of a composition for preparing a temperature-sensitive hydrogel
  • Example 1.1 Preparation of a first agent containing chitosan and phosphate ions
  • 500 ml of 1N HCl aqueous solution was prepared by mixing 44.05 ml of a 35-37% HCl solution and 455.95 ml of distilled water.
  • 125 g of chitosan powder was added to 4500 ml of distilled water and stirred to disperse the chitosan powder.
  • 500ml of 1N HCl aqueous solution was added thereto, and mixed in a water bath at 60° C. for about 1 hour to prepare an aqueous solution containing chitosan.
  • sodium phosphate dibasic Na 2 HPO 4
  • a sodium phosphate dibasic solution 98.49 g of sodium phosphate dibasic (Na 2 HPO 4 ) was completely dissolved in 550 ml of distilled water and filtered once through a 0.45 ⁇ m filter to prepare a sodium phosphate dibasic solution.
  • 550 ml of the sodium phosphate dibasic solution was titrated thereto to prepare a first agent of a liquid formulation according to an embodiment.
  • 1.1 ml of the mixed solution was filled in a 1 ml syringe, and high-pressure steam sterilization was performed, and then stored at room temperature.
  • Example 2.1 Preparation of a composition containing the first agent
  • Example 2 using the first agent of the liquid formulation prepared in Example 1, to prepare a hydrogel composition to form a gel formulation. After sufficiently mixing the first agent, a hydrogel composition of a liquid formulation was prepared.
  • Example 2.2 Preparation of a composition containing the first agent and the second agent
  • a hydrogel composition forming a gel formulation was intended to be prepared using the first and second agents of the liquid formulation prepared in Example 1.
  • An example of the manufacturing process of the hydrogel composition in liquid form at room temperature is as shown in FIG. Specifically, after opening the sealing cap of the syringe containing the first agent or the second agent, respectively, they were connected using a connector. Then, after sufficiently mixing the first agent and the second agent by moving the push rods of both syringes, the mixture was transferred to one syringe to prepare a liquid formulation hydrogel composition.
  • the weight ratios of the chitosan-containing aqueous solution, sodium phosphate dibasic solution, and glycerol included in the first and second agents are shown in Table 1 below.
  • the viscosity of the first liquid formulation was evaluated over time to derive a stabilization period for the first agent that could induce a desired physical property change before mixing with the second agent.
  • Agent 1 of the prepared liquid formulation was sealed and stored at room temperature for 1 week, 2 weeks, 3 weeks, and 4 weeks, respectively, and the resulting change in viscosity was evaluated.
  • Viscosity was evaluated for a total of 16ml of the first agent using a Brookfield viscometer DV2TLV and a small sample adapter-spindle under conditions of measuring a total of 10 points (Mutipoint method) at room temperature for 5 minutes at 30-second intervals.
  • FIG. 3 is a result of evaluating the change in viscosity of the first agent containing chitosan and phosphate ions over time. As shown in Figure 3, the viscosity characteristics immediately after preparing the first agent of the liquid formulation and performing the high-pressure steam sterilization process and after stabilizing at room temperature for a certain period of time were clearly different, and these physical properties were clearly different at room temperature after preparing the first agent. After about several days, it showed a tendency to stabilize to some extent.
  • the injection force of the liquid formulation before gelation after mixing the first and second agents of the liquid formulation, the injection force of the liquid formulation before gelation, the viscoelasticity of the hydrogel formed at 37 ° C, the degree of gelation according to the ratio of the components of the first and second agents, and the gelation
  • the viscosity was evaluated according to.
  • the first agent of the liquid formulation was stored at room temperature for 1 week, 2 weeks, 3 weeks or 4 weeks, and then mixed with the second agent of the liquid formulation. Thereafter, a 26G needle was connected and the injection force was evaluated at a test speed of 10 mm/min at room temperature using AND MCT-2150.
  • Figure 4 is a diagram showing the degree of gelation according to the ratio of the components of the first and second agents of Examples 2.2.1 to 2.2.9.
  • the effect of the content of dibasic sodium phosphate and/or glycerol on the gel formation of the hydrogel composition was examined.
  • a total of 9 liquid formulation hydrogel compositions were mixed with 1 agent containing chitosan and sodium phosphate dibasic solution and 2 agent containing glycerol was manufactured. Thereafter, after storing the hydrogel composition for tissue repair in an incubator at 37° C. for about 24 hours, their progress in gelation was evaluated.
  • the physical properties of the hydrogel can be changed according to the ratio of dibasic sodium phosphate and glycerol, and gelation proceeds to a level that can replace the tissue to use the hydrogel according to the change in physical properties I was able to confirm.
  • Figure 5 is a diagram showing the viscosity according to gelation according to the ratio of the components of the first agent and the second agent of Examples 2.2.1 to 2.2.9. As shown in FIG. 5, the gelation time was faster as the ratio of phosphate ion and glycerol increased. Specifically, the increase in viscosity values due to gelation in 2.2.5 and 2.2.6 was the largest, and the time of viscosity increase in 2.2.6 appeared earlier than that in 2.2.5.
  • Table 2 and FIG. 6 are the results of confirming the change in physical properties according to the angular frequency of Examples 2.2.1 to 2.2.9.
  • 6A is a diagram showing the complex viscosity according to the angular frequency of Examples 2.2.1 to 2.2.9.
  • 6B is a diagram showing the loss modulus of Examples 2.2.1 to 2.2.9.
  • 6C is a diagram showing the storage modulus of Examples 2.2.1 to 2.2.9.
  • FIGS. 6A to 6C it was confirmed that the elasticity of the resulting gelling composition could be changed by adjusting the ratio of chitosan, dibasic sodium phosphate, and glycerol included in the first and second agents.
  • the compressive strength of the hydrogel formed at 37 ° C was evaluated.
  • the first agent of the liquid formulation was stored at room temperature for 1 week, 2 weeks, 3 weeks or 4 weeks, and then mixed with the second agent of the liquid formulation. Thereafter, the hydrogel composition of the liquid formulation was stored in a 37° C. incubator for 2 hours or 4 hours, respectively, and the compressive strength of the hydrogel thus formed was measured.
  • the size of the sample was adjusted to a level of 12 mm in diameter and 8.7 mm in length, and compressive strength was evaluated at room temperature at a test speed of 10 mm/min using AND MCT-2150.
  • the hydrogel composition of a liquid formulation in which the first agent and the second agent are mixed according to one aspect is present in a form that can be injected or injected into the body at room temperature, and is a temperature-sensitive hydrogel that gels in the body condition after injection. It shows that it can be applied to manufacturing.
  • FIG. 8 is a result of confirming the recovery rate after compression of the hydrogel formed at 37 ° C. after mixing the first agent and the second agent of the liquid formulation.
  • it was compressed by a specific strain rate, and the load was removed after leaving it for 5 seconds.
  • the recovery rate was calculated by measuring the height of the hydrogel after removing the load.
  • FIG. 8A the recovery rate was shown after applying a strain of 10% to 45%.
  • 8B and 8C show recovery rates according to strain of the hydrogels of Examples 2.2.7 to 2.2.9.
  • FIGS. 8A to 8C it was confirmed that the recovery rate of the resulting gelation composition could be changed by adjusting the ratio of glycerol.
  • FIG. 9 is a result of evaluating the compressive strength of a hydrogel obtained by tertiary crosslinking by treating a hydrogel containing a mixture of first and second agents with a third agent including NaOH.
  • the first agent (2.5% chitosan 10mL, 0.5M dibasic 0.8mL) and the second agent (glycerol 1.2mL) were mixed and homogenized and printed. After that, 30 mM NaOH was added to cross-link the third layer for 1 hour. As a result, it was confirmed that the compressive strength of the hydrogel increased after the tertiary crosslinking.
  • hydrogel composition of the liquid formulation of Examples 2.2.1 to 2.2.9 in which the first agent and the second agent were mixed, was implanted into the skin of the mouse. Then, autopsies were performed at 2 weeks, 4 weeks, and 12 weeks, respectively, to observe the shape of the hydrogel, and tissue samples were prepared as paraffin blocks and sectioned for H&E and MT staining.
  • the temperature-sensitive hydrogel according to one embodiment was in liquid form, and gelation started immediately after injection into the body, and gelation was completed within 30 minutes after the start.
  • 11 is a result of observing the hydrogel formed in the skin of a mouse one week after mixing the first agent and the second agent of the liquid formulation according to one embodiment.
  • FIG. 12 is a result of confirming the in vivo immune response by the hydrogel formed in the skin of a mouse after mixing the first agent and the second agent of the liquid formulation according to an embodiment. As shown in FIG. 12 , pathological findings including an inflammatory response in the mouse skin were not observed.
  • FIG. 13 is a diagram confirming the increase in physical properties according to gelation in response to temperature and body fluids simultaneously. After 30 minutes of injection into the SD-rat, the material in a liquid state mixed with the first agent and the second agent was compressed with a strain of 40%, and the physical properties were confirmed. As a result, it was confirmed that the physical properties of the temperature-sensitive hydrogel increased after temperature- and body fluid-sensitive gelation.
  • the mixture of the first agent and the second agent mixed at the ratio of Example 2.2.1 to 2.2.9 was gelled in vitro, and then 0.1 ml each was transplanted into the skin of a mouse. Then, autopsies were performed at 2 weeks, 4 weeks, and 12 weeks, respectively, to observe the shape of the hydrogel, and tissue samples were prepared as paraffin blocks and sectioned for H&E and MT staining.
  • FIG. 14 is a diagram confirming the increase in physical properties of the hydrogel when reacted with a body fluid after temperature-sensitive gelation in vitro.
  • the gelation was performed by storing the hydrogel composition for tissue repair in a liquid formulation in which the first agent and the second agent were mixed in a 37° C. incubator for about 24 hours.
  • the gelated hydrogel was injected into the body of SD-rat and 30 minutes later, it was compressed with 40% strain to confirm physical properties. As a result, it was confirmed that the physical properties of the material were further improved according to the body fluid response.
  • hydrogel 15 is a hydrogel (separate type) formed in the skin of a mouse after mixing agents 1 and 2 of a liquid formulation, and after gelation in vitro by mixing agents 1 and 2 of a liquid formulation, body fluid response in the skin of a mouse It is a diagram comparing the physical properties of the gelled hydrogel (integral type).
  • the durability of the temperature-sensitive hydrogel formed under in vivo conditions was evaluated. Specifically, the hydrogel composition of the liquid formulation, in which the first agent and the second agent were mixed, was stored in a 37 ° C. incubator for about 24 hours to proceed with gelation. Thereafter, the formed hydrogel was cut into 0.2ml portions, sealed in 1.5ml of PBS, and stored in a 37° C. incubator. Then, over time, the volume of each hydrogel was measured while removing the PBS.
  • 16 is a result of comparing the decomposition rate according to the concentration of the crosslinking agent of the hydrogel formed in the skin of the mouse after mixing the first agent and the second agent of the liquid formulation according to one embodiment. As shown in FIG. 16, it was confirmed that the decomposition rate of the hydrogel was slower when the concentration of the crosslinking agent was high.
  • the ability to induce vascularized adipose tissue was expected to be excellent, and the experiment was performed.
  • a decellular matrix was included in the first agent. Before injection into the mouse, the first agent and the second agent were mixed, and then injected into the body of the mouse to confirm gelation of the hydrogel under in vivo conditions.
  • FIG. 17 is a view of a hydrogel before and after injection into a mouse after mixing agents 1 and 2 of a liquid formulation containing a decellularized material according to an embodiment and injecting agents 1 and 2 of the mixed liquid formulation This is an observation of one mouse. As shown in FIG. 17, it was confirmed that gelation was excellently progressed under in vivo conditions.
  • FIG. 18 is a result of confirming the elasticity of the hydrogel before and after the injection into the body confirmed in FIG. 17. As shown in FIG. 18, it was confirmed that the degree of elasticity significantly increased when the agent 1 and agent 2 containing the decellularization matrix were injected into the body, compared to when agents 1 and 2 were simply mixed. Therefore, it was confirmed that the hydrogel containing the decellularized matrix exhibited a significant level of gelation in response to in vivo conditions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Hematology (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Cardiology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 출원은 온도감응성 하이드로겔 제조용 조성물 및 이의 용도에 관한 것으로서, 키토산 및 인산 이온이 함유된 수용액을 포함하는 액상 제형의 1제를 포함하며, 상기 1제 조성물 전체 중량에 대하여, 0.05 내지 3.5 중량%의 키토산, 0.1 내지 40 중량%의 인산 이온이 함유된 수용액을 포함하는 온도감응성 하이드로겔 조성물, 및 상기 조성물을 이용한 온도감응성 하이드로겔 조성물을 제조하는 방법을 제공한다.

Description

다중 가교된 온도감응성 하이드로겔 제조용 조성물 및 이의 용도
본 출원은 2021년 7월 7일 출원된 대한민국 특허출원 제 10-2021-0089206호를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다.
다중 가교된 온도감응성 하이드로겔 제조용 조성물 및 이의 용도에 관한 것이다.
인체 피부의 조직은 콜라겐, 엘라스틴 등의 단백질과 글리코스아미노글리칸을 포함하는 세포외기질에 의해 그 구조를 유지하고 있다. 이러한 피부 조직은 외부의 충격, 질병, 수술 또는 노화 등으로 인해 피부 조직의 결손이 발생할 수 있다. 따라서 생체재료를 통한 피부 조직 증강이 의학 및 미용 목적으로 사용하여 왔다. 이러한 증강은 성형수술을 통해 외과적으로 이루어지거나, 해당 부위에 생체 조직이나 합성 고분자 화학물질을 주입 또는 부착하여 피부 조직을 회복, 복원, 교정하여 왔다.
이러한 피부 조직 증강에 사용되는 생체재료 중 피부조직과 유사한 성분으로 특정 부위에 삽입되어 연부조직을 확장시킴으로써 미용상으로 볼, 입술, 가슴, 엉덩이 등의 부피를 확대시키고, 피부의 잔주름 및 깊은 주름의 감소를 통한 주름개선이나 윤곽교정 등에 사용되는 물질을 연부조직 확장제(soft tissue augmentation material)라 하는데 일반적으로 피부용 필러(dermal filler)라고 한다.
유착(adhesion)은 외과적인 수술 후에 피부나 복강 내부에 형성된 상처의 치유과정에서 섬유조직이 과도하게 생성되거나 유출된 혈액이 응고되어 주변의 장기나 조직이 상처 부위와 서로 달라붙어 결합되는 현상을 의미한다. 종래에는 유착이 예상되는 부위에 물리적 장벽을 형성함으로써 수술 부위와 정상 조직 사이에서 유착이 일어나는 것을 방지하기 위한 생체재료로써 유착방지재를 주로 사용해왔다.
또한, 생체재료 중 창상피복재는 외부의 충격, 질병, 수술 또는 노화 등으로 인하여 피부 조직이 손상되었을 때, 손상 부위에 습윤 환경을 제공함으로써 회복 및 치유를 촉진할 수 있다.
이러한 생체재료에 사용될 수 있는 고분자 중, 하이드로겔은 다량의 수분을 함유하는 고분자 네트워크 구조를 가진 물질로 단일중합체 또는 공중합체 등에 의해 형성되는 물질을 지칭한다. 합성 고분자로 만든 하이드로젤은 가교 결합을 통해 분자들 사이에 화학적 공유결합과 같은 강한 결합력을 가지고 있기 때문에 천연 고분자와 달리 강한 기계적 물성을 가지고 있어 온도와 외력 등 외부 자극에 대해 하이드로겔 형태가 손상되는 경우가 비교적 드물다. 그러나, 합성 고분자 기반의 하이드로젤의 경우, 생체 적합성, 효능 유지 및 적응증에 따른 제조 방법의 차이 등의 측면에서의 개선이 필요한 실정이다.
이러한 합성 고분자 기반의 하이드로젤은 가교율(또는 교차 결합율)에 따라 필러의 점성, 탄성, 체내 안정성 등의 물성이 달라진다. 따라서, 생체재료의 물성을 변화시켜, 적응증 등의 용도에 따라 사용할 수 있는 기술에 대한 연구 개발이 활발하게 이루어지고 있으나(한국등록특허 10-2100506), 아직은 미비한 실정이다. 예를 들어, 높은 물성의 겔이 필요한 적응증의 경우, 주입력이 너무 높아서 활용이 제한적인 문제점이 있다. 따라서 기존 천연/합성 폴리머를 이용한 제형의 장점을 극대화하면서 단점들을 보완하고, 체내 안정성이 높으면서도, 적응증에 따라 적절한 수준의 점성 및 탄성을 변화시킬 수 있는 새로운 개념의 차세대 생체재료의 개발이 요구된다.
일 양상은 키토산 및 인산 이온이 함유된 수용액을 포함하는 액상 제형의 1제를 포함하는 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물로서, 상기 1제 조성물 전체 중량에 대하여, 0.05 내지 3.5 중량%의 키토산, 0.1 내지 40 중량%의 인산 이온이 함유된 수용액을 포함하는 것인, 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물을 제공하는 것이다.
다른 양상은 키토산 이온을 포함하는 용액 및 인산 이온이 함유된 수용액을 혼합하여 액상 제형의 1제를 제조하는 단계 및 상기 액상 제형의 1제를 안정화시키는 단계를 포함하는, 온도감응성 하이드로겔 조성물을 제조하는 방법을 제공하는 것이다.
또 다른 양상은 상기 방법에 의해 제조된 온도감응성 하이드로겔 조성물을 제공하는 것이다.
또 다른 양상은 상기 방법에 의해 제조된 온도감응성 하이드로겔 이용한 시술 방법을 제공하는 것이다.
일 양상은 키토산 및 인산 이온이 함유된 수용액을 포함하는 액상 제형의 1제를 포함하는 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물을 제조하기 위한 조성물을 제공하는 것이다.
본 명세서에서 용어 "하이드로겔(hydrogel)"은 친수성 고분자가 공유 또는 비공유 결합으로 가교되어 만들어진 3차원 망상구조물을 의미할 수 있다. 구성 물질의 친수성으로 인해 수용액 내 및 수성 환경 하에서 많은 양의 물을 흡수하며 팽윤하지만 가교 구조에 의해 용해되지 않는 성질을 가지고 있다. 따라서 구성성분과 제조방법에 따라 다양한 형태와 성질을 가진 하이드로겔이 만들어질 수 있으며 일반적으로 다량의 수분을 함유하고 있으므로 액체와 고체의 중간 성질을 갖는 것일 수 있다.
일례로서, 상기 "하이드로겔"은 용어 "조직 수복용 생체재료" 또는 "조직 수복용 생체재료 조성물"과 상호 교환적으로 사용될 수 있다.
일 실시예에서, 상기 하이드로겔은 조직 수복용 생체재료일 수 있으며, 이는 조직 수복에 사용되는 물질일 수 있다. 예를 들어, 주름이 자리한 피부 또는 볼륨이 필요한 부위에 주입되는 연부 조직과 유사한 충전 물질, 수술 부위와 정상 조직 사이에서 유착 방지 물질, 조직 접착 물질, 인공 피부를 위한 창상 피복 물질 등을 지칭하는 것일 수 있다. 상기 하이드로겔은 예를 들어, 미간, 이마, 눈밑애교살, 눈가주름, 팔자주름, 볼, 입가주름, 턱 등의 신체 부위에 적용될 수 있다. 상기 하이드로겔은 인체에 직접적으로 적용되는 물질로서 생체 적합성을 지니고 있어야 한다. 예를 들어, 하이드로겔이 볼륨이 필요한 부위에 충전된 경우, 주입 후 오랜 기간 볼륨감을 형성할 수 있도록 겔 형상에 대한 우수한 유지력/지속력이 필요하다. 하이드로겔이 수술 부위에 유착 방지를 위해 사용되는 경우, 상처 부위에서의 조직 적합성을 가지며, 세포 독성이 적거나 없어야 한다. 창상 피복 물질로 사용되는 경우, 부착 및 도포 상태를 유지할 수 있도록 우수한 유지력/지속력이 필요하다. 또한, 하이드로겔 시술 조건에 따라, 피부 표면이 울퉁불퉁하게 변하거나 시술 결과가 바람직하지 않을 수 있으므로, 체내 형성된 하이드로겔을 용이하게 분해 또는 변형시킬 수 있어야 한다.
본 명세서에서 용어 "조직 수복용"은 손상 또는 노화된 조직의 구조와 기능을 복원시키는 것을 지칭하며, 예를 들어, 미용용 필러 용도, 유착방지재 용도, 접착제 용도, 창상 피복재 용도, 성형용 보형물 용도 등을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 명세서에서 용어 "온도감응성"은 주변 온도에 따라 그 제형이 변화되는 물리적 특성을 의미하는 것으로서, 실온 조건, 예를 들어, 4 내지 25℃ 조건에서는 액상 제형, 즉, 졸 형태로 존재하되, 예를 들어, 25 내지 60℃ 조건에서는 겔 형태로 전환되는 특성을 지칭하는 것일 수 있다.
본 명세서에서 용어 "다중 가교"는 1종 이상의 가교제 (예를 들어, 인산 이온, 글리세롤 또는 이들의 조합)를 이용하여 여러 번 가교된 것을 의미하는 것으로서, 1종 이상의 가교제를 이용하여 다중 가교함으로써 하이드로겔의 기계적 물성 및 분해속도 등을 조절할 수 있다. 상기 하이드로겔에 포함된 1종 이상의 가교제의 중량비를 다양하게 조절하여 점탄성 및 분해속도를 조절할 수 있으며, 이를 통해 주입력 조절 및 다양한 적응증에 활용할 수 있다.
일 실시예에서, 상기 다중 가교는 체외에서 1차 가교를 통해 겔화가 된 소재가 체내로 주입이 된 후, 체내 조건에서 2차 가교되어 수행될 수 있다. 예를 들어, 높은 물성의 하이드로겔을 필요로 하는 적응증의 경우, 1차 가교를 통해 주입력을 조절하고, 2차 가교를 체내에서 수행하여 고물성을 구현할 수 있다.
본 명세서에서 "체내 조건"이란 개체의 체온, 체액 성분, 체내 pH, 체내 염도 등 2차 가교될 수 있는 조건이라면 제한되지 않는다. 예를 들어, 상기 체내 조건은 염기성 조건일 수 있다.
일 구체예에 있어서, 상기 1제는 키토산 및 인산 이온이 함유된 수용액을 포함하는 액상 제형의 조성물일 수 있다.
본 명세서에서 용어 “키토산(chitosan)”은 D-글루코사민과 N-아세틸글루코사민으로 이루어진 선형 다당류를 의미할 수 있다. 상기 키토산은 하기 구조식 1로 표시될 수 있으며 대게, 새우와 갑각류 껍데기를 수산화나트륨 염기로 처리함으로써 수득할 수 있으나, 이에 제한되지 않는다. 상기 키토산은, 순수 키토산 외에, 키토산 유도체를 포함할 수 있다. 예를 들어, 상기 키토산 유도체는 프탈화 키토산, 에스터화 키토산, 아미드화 키토산, 또는 포르밀화 키토산 중에서 적어도 어느 하나를 포함할 수 있다:
[구조식 1]
Figure PCTKR2022009842-appb-img-000001
본 명세서에서 용어, “인산 이온”은 키토산의 아민기와 결합하여 상기 1제 및 실온 조건에서 형성된 온도감응성 하이드로겔의 강도를 강화시키는데 기여하는 성분으로서, 일례로서, 인산 이온이 함유된 수용액 형태로 제공될 수 있다. 상기 인산 이온이 함유된 수용액은 예를 들어, 인산나트륨 이염기, 인산나트륨 일염기, 인산 암모늄 이염기성, 인산 이수소, 인산 트리나트륨, 인산칼륨 이염기성, 인산칼륨 일염기성, 다이메틸포스페이트, 모노마그네슘 인산염, 마그네슘 인산염 이염기, 리튬 디수소 인산염, 리튬 인산염, 칼슘수소인산염 수화물, 칼슘수소인산염으로 이루어지는 군으로부터 선택되는 적어도 1 이상의 인산염을 포함하는 것일 수 있으나, 상기 인산 이온이 함유된 수용액은 키토산의 아민기와 결합할 수 있는 인산기 또는 인산염을 제공할 수 있는 물질이라면, 비제한적으로 확장 적용될 수 있다.
상기 키토산이 함유된 수용액은 1제 조성물 전체 중량에 대하여, 0.01 내지 5 중량%, 0.01 내지 4 중량%, 0.05 내지 4 중량%, 또는 0.05 내지 3.5 중량%의 키토산이 함유된 수용액일 수 있다.
예를 들어, 상기 키토산이 함유된 수용액의 함유량은 1제 조성물 총 중량에 대하여, 0.05 내지 3.5 중량%일 수 있다. 이때, 상기 키토산이 함유된 수용액의 함유량이 상기 범위 미만인 경우, 키토산 함량이 낮아서 체내 지속성이 떨어진다는 문제점이 있고, 상기 키토산이 함유된 수용액의 함유량이 상기 범위 이상인 경우, 키토산이 석출될 가능성이 있고, 점도가 높아 필터링 공정이 어렵다는 문제점이 존재한다.
상기 인산 이온이 함유된 수용액은 1제 조성물 전체 중량에 대하여, 0.01 내지 50 중량%, 0.01 내지 45 중량%, 0.01 내지 40 중량%, 또는 0.1 내지 40 중량%으로 인산 이온이 함유된 수용액일 수 있다.
예를 들어, 상기 인산 이온이 함유된 수용액의 함유량은 1제 조성물 총 중량에 대하여, 0.1 내지 40 중량%일 수 있다. 이때, 상기 인산 이온이 함유된 수용액의 함유량이 상기 범위 미만인 경우, 가교를 위한 인산 이온량이 충분하지 않아 하이드로겔을 형성하지 못한다는 문제점이 있고, 상기 인산 이온이 함유된 수용액의 함유량이 상기 범위 이상인 경우, 실온에서 가교 반응이 진행되어 실온 조건에서 주입이 가능한 온도감응성의 특징을 잃어버리는 동시에 pH 상승으로 키토산이 석출될 수 있다.
일 양상에 따른 조성물은 키토산 및 인산 이온을 포함하고, 상기 키토산은 인산 이온에 의해 가교결합된 것일 수 있다. 상기 키토산은 키토산이 인산 이온과 가교 결합하여 키토산 중합체를 형성하는 것일 수 있다. 상기 가교결합은 공유결합 또는 비공유 결합일 수 있다. 일 구체예에서, 상기 키토산 인산 이온에 의해 비공유 결합을 형성하는 것일 수 있다.
즉, 일 양상에 따른 온도감응성 하이드로겔 조성물은 키토산이 인산 이온에 의해 공유결합 및/또는 비공유 결합을 형성함에 따라 인산 이온의 종류 및 함량 조절을 통해 하이드로겔 조성물의 물성 (점성, 강도 등)을 조절할 수 있다. 따라서, 하이드로겔 조성물의 조직 수복 용도에 따라 하이드로겔 조성물의 물성을 조절하여 사용할 수 있다.
상기 1제는 실온 조건에서 안정화된 것일 수 있다. 상기 1제는 예를 들어, 실온 조건에서 10일 이상 노출시키는 것일 수 있으며, 구체적으로 1시간 내지 10일, 12시간 내지 10일, 1 내지 10일, 1 내지 7일, 10일 내지 14일, 10일 내지 21일, 10일 내지 28일, 10일 내지 35일, 10일 내지 42일, 15일 내지 21일, 15일 내지 28일, 15일 내지 35일, 15일 내지 42일, 20일 내지 28일, 20일 내지 35일, 또는 20일 내지 42일일 수 있으나, 이에 제한되는 것은 아니다. 상기 안정화 과정은 1제 내 키토산의 아민기와 인산 이온간 이온 결합 수준을 조정하여, 하이드로겔의 물성 조절에 기여할 수 있다.
일 구체예에서, 일 양상에 따른 온도감응성 하이드로겔 조성물은 1.5 내지 3.5% 키토산이 함유된 키토산이 함유된 수용액 및 인산 이온이 함유된 수용액을 혼합하여 제조한 것 일 수 있다. 일 실시예에서, 상기 1제는 키토산이 함유된 수용액 1 중량부 당 인산 이온이 함유된 수용액을 0.01 내지 0.3 중량부, 0.02 내지 0.3 중량부, 0.03 내지 0.3 중량부, 0.04 내지 0.3 중량부, 0.05 내지 0.3 중량부, 0.06 내지 0.3 중량부, 0.07 내지 0.3 중량부, 0.08 내지 0.3 중량부, 0.09 내지 0.3 중량부, 0.1 내지 0.3 중량부, 0.1 내지 0.25 중량부, 0.1 내지 0.2 중량부, 0.1 내지 0.19 중량부, 0.1 내지 0.18 중량부, 0.11 내지 0.18 중량부, 0.115 내지 0.175 중량부, 0.12 내지 0.17 중량부, 0.12 내지 0.15 중량부, 0.12 내지 0.14 중량부, 0.12 내지 0.13 중량부, 0.13 내지 0.18 중량부, 0.13 내지 0.17 중량부, 0.13 내지 0.16 중량부, 0.13 내지 0.15 중량부, 0.14 내지 0.19 중량부, 0.15 내지 0.19 중량부, 0.16 내지 0.19 중량부 또는 0.16 내지 0.18 중량부로 포함할 수 있다. 일 실시예에서, 상기 1제는 2.5% 키토산이 함유된 수용액 1 중량부 당 인산나트륨 이염기가 함유된 수용액을 0.126 내지 0.169 중량부로 포함할 수 있다.
일 구체예에서, 상기 키토산이 함유된 수용액 및 인산 이온이 함유된 수용액의 중량비는 1:0.10 이상 0.135 미만, 1:0.10 이상 0.13 미만, 1:0.101 이상 0.13 미만, 1:0.102 이상 0.13 미만, 1:0.103 이상 0.13 미만, 1:0.104 이상 0.13 미만, 1:0.105 이상 0.13 미만, 1:0.106 이상 0.13 미만, 1:0.107 이상 0.13 미만, 1:0.108 이상 0.13 미만, 1:0.109 이상 0.13 미만, 1:0.11 이상 0.13 미만, 1:0.111 이상 0.13 미만, 1:0.112 이상 0.13 미만, 1:0.113 이상 0.13 미만, 1:0.114 이상 0.13 미만, 1:0.115 이상 0.13 미만, 1:0.116 이상 0.13 미만, 1:0.117 이상 0.13 미만, 1:0.118 이상 0.13 미만, 1:0.119 이상 0.13 미만, 1:0.12 이상 0.13 미만, 1:0.121 이상 0.13 미만, 1:0.122 이상 0.13 미만, 1:0.123 이상 0.13 미만, 1:0.124 이상 0.13 미만, 1:0.11 내지 0.13, 1:0.11 내지 0.129, 1:0.11 내지 0.128, 1:0.11 내지 0.127, 1:0.115 내지 0.13, 1:0.115 내지 0.129, 1:0.115 내지 0.128, 1:0.115 내지 0.127, 1:0.12 내지 0.13, 1:0.12 내지 0.129, 1:0.12 내지 0.128, 1:0.12 내지 0.127 또는 1:0.123 내지 0.129 미만일 수 있다.
일 구체예에서, 상기 키토산이 함유된 수용액 및 인산 이온이 함유된 수용액의 중량비는 1:0.13 이상 0.165 미만, 1:0.13 이상 0.16 미만, 1:0.13 이상 0.155 미만, 1:0.131 이상 0.15 미만, 1:0.132 이상 0.15 미만, 1:0.133 이상 0.15 미만, 1:0.134 이상 0.15 미만, 1:0.135 이상 0.15 미만, 1:0.13 이상 0.145 미만, 1:0.131 이상 0.145 미만, 1:0.132 이상 0.145 미만, 1:0.133 이상 0.145 미만, 1:0.134 이상 0.145 미만, 1:0.135 이상 0.145 미만, 1:0.13 이상 0.14 미만, 1:0.131 이상 0.14 미만, 1:0.132 이상 0.14 미만, 1:0.133 이상 0.14 미만, 1:0.134 이상 0.14 미만, 1:0.135 이상 0.14 미만, 1:0.13 이상 0.139 미만, 1:0.131 이상 0.139 미만, 1:0.132 이상 0.139 미만, 1:0.133 이상 0.139 미만, 1:0.134 이상 0.139 미만, 1:0.135 이상 0.139 미만, 1:0.13 이상 0.138 미만, 1:0.131 이상 0.138 미만, 1:0.132 이상 0.138 미만, 1:0.133 이상 0.138 미만, 1:0.134 이상 0.138 미만, 1:0.135 이상 0.138 미만, 1:0.13 이상 0.137 미만, 1:0.131 이상 0.137 미만, 1:0.132 이상 0.137 미만, 1:0.133 이상 0.137 미만, 1:0.134 이상 0.137 미만 또는 1:0.135 이상 0.137 미만일 수 있다.
일 구체예에서, 상기 키토산이 함유된 수용액 및 인산 이온이 함유된 수용액의 중량비는 1:0.14 내지 0.19, 1:0.14 내지 0.18, 1:0.14 내지 0.17, 1:0.145 내지 0.19, 1:0.145 내지 0.18, 1:0.145 내지 0.17, 1:0.15 내지 0.19, 1:0.15 내지 0.18, 1:0.15 내지 0.17, 1:0.155 내지 0.19, 1:0.155 내지 0.18, 1:0.155 내지 0.17, 1:0.16 내지 0.19, 1:0.16 내지 0.18, 1:0.16 내지 0.17, 1:0.161 내지 0.17, 1:0.162 내지 0.17, 1:0.163 내지 0.17, 1:0.164 내지 0.17, 1:0.165 내지 0.17, 1:0.166 내지 0.17, 1:0.167 내지 0.17 또는 1:0.168 내지 0.17일 수 있다.
일 구체예에서, 상기 키토산이 함유된 수용액 및 인산 이온이 함유된 수용액의 중량비가 1: 0.12 이상 0.13 미만의 범위에 해당하는 경우, 하이드로겔 조성물의 탄성 수준을 의미하는 복합 점도값이 500 Pa·s 이하의 수준으로 조정될 수 있으며, 이에 따라, 상기와 같이 제조된 조성물은 눈 주위 필러와 같은 미세 연부조직의 수복용 조성물, 창상 피복제, 주입/도포형 창상 피복재의 소재로 활용될 수 있다. 예를 들어, 상기 키토산이 함유된 수용액 및 인산 이온이 함유된 수용액의 중량비가 1: 0.13 이상 0.15 미만의 범위에 해당하는 경우, 하이드로겔 조성물의 복합 점도값이 500 Pa·s 내지 3000 Pa·s 범위의 수준으로 조정될 수 있으며, 이에 따라, 상기와 같이 제조된 조성물은 안면부 연부조직의 수복용 조성물, 관절강 활액 대체물, 창상 피복제, 또는 부착형 창상 피복재의 소재로 활용될 수 있다. 예를 들어, 상기 키토산이 함유된 수용액 및 인산 이온이 함유된 수용액의 중량비가 1: 0.16 내지 0.18의 범위에 해당하는 경우, 하이드로겔 조성물의 복합 점도값이 3000 Pa·s 내지 7000 Pa·s 범위의 수준으로 조정될 수 있으며, 이에 따라, 상기와 같이 제조된 조성물은 콧대 또는 이마 등의 조직 수복용 조성물, 또는 부착형 창상 피복재의 소재로 활용될 수 있다.
즉, 일 양상에 따른 온도감응성 하이드로겔 조성물은 키토산 또는 인산 이온을 포함하는 용액간 부피비 조절을 통해 하이드로겔 조성물의 물성 (점성, 강도 등)을 조절할 수 있고, 하이드로겔 조성물의 조직 수복 용도에 따라 하이드로겔 조성물의 물성을 조절하여 사용할 수 있다. 상기 언급한 각 성분의 조성을 통해서, 보다 오랜 기간 안정적으로 물리적 특성을 유지시킬 수 있다.
상기 1제 조성물은 예를 들어, 실온 조건에서 10일 이상 노출시키는 안정화 기간을 거칠 수 있으며, 또는 실온 조건에서 1 내지 7일 이하의 안정화 기간을 거칠 수 있다. 상기 안정화 기간을 통해서, 보다 오랜 기간 안정적으로 물리적 특성을 유지시킬 수 있다.
상기 1제 조성물은 pH 5.0 내지 8.0, pH 5.5 내지 8.0, pH 5.5 내지 7.5, 또는 pH 5.5 내지 7.0를 나타낼 수 있다. 상기 pH가 상기 범위 초과인 경우, 생체소재가 석출될 수 있으며, 상기 pH가 상기 범위 미만인 경우 피부 pH에 영향을 미칠 수 있다.
상기 1제 조성물은 탈세포 기질을 더 포함하는 것일 수 있다.
본 명세서에서 사용된 용어 “탈세포 기질”은 “탈세포 조직”, “탈세포화된 세포외기질” 또는 “탈세포 소재”와 상호 교환적으로 사용될 수 있다. 상기 탈세포 기질은 사람, 또는 돼지나 소 등 동물의 조직, 장기에 탈세포화(decellularization)를 수행해 세포외 기질을 제외한 다른 세포 성분, 예를 들면 핵, 세포막, 핵산 등을 제거한 것을 의미한다. 이렇게 탈세포화된 세포외기질인 탈세포 기질의 경우, 세포가 성장 및 분화하기에 더욱 자연스러운 생체모방 미세환경을 제공할 수 있다.
본 명세서에서 사용된 용어 “세포외기질(extracellular matrix, ECM)”은 은 조직내 또는 세포외의 공간을 채우고 있는 생체고분자의 복잡한 집합체를 의미한다. 세포외기질은 섬유성 단백질, 프로테오글리칸과 같은 복합 단백질, 피브로넥틴, 라미닌 등의 세포 부착성 단백질 등 세포에 의해 합성되고 세포외에 분비 축적된 다양한 종류의 분자로 구성된다. 따라서 세포외기질은 유래 세포의 종류 또는 세포의 분화 정도에 따라 그 성분이 달라질 수 있다.
일 실시예에서, 상기 탈세포 기질은 1제 조성물 전체 중량에 대하여, 0.05 내지 20중량% 로 포함된 것일 수 있으며, 0.06 내지 20중량%, 0.07 내지 19중량%, 0.08 내지 18중량%, 0.09 내지 17중량%, 0.1 내지 16중량%, 0.15 내지 15중량% 또는 0.20 내지 15중량%일 수 있다.
상기 탈세포 기질은 이에 제한되는 것은 아니나, 피부조직, 심장조직 또는 지방조직에서 유래된 것일 수 있 수 있다. 또한, 상기 생체환경감응성 하이드로겔 조성물은 피부조직 유래 탈세포 기질, 심장조직 유래 탈세포 기질 및 지방조직 유래 탈세포 기질로 구성된 군에서 선택되는 하나 이상을 포함하는 것일 수 있다.
일례로서, 상기 탈세포 기질은 지방조직 유래 탈세포 기질에 대하여 심장조직 유래 탈세포 기질의 중량비가 1 : 0.01 내지 1, 1 : 0.1 내지 0.9, 1 : 0.1 내지 0.8, 1 : 0.1 내지 0.7, 1 : 0.1 내지 0.6, 1 : 0.1 내지 0.5, 1 : 0.1 내지 0.4, 1 : 0.15 내지 0.4, 1 : 0.15 내지 0.35 또는 1 : 0.2 내지 0.3 일 수 있고, 바람직하게는 1 : 0.25일 수 있다.
또한, 상기 탈세포 기질은 피부조직 유래 탈세포 기질에 대하여 심장조직 유래 탈세포 기질의 중량비가 1 : 0.01 내지 1, 1 : 0.1 내지 0.9, 1 : 0.1 내지 0.8, 1 : 0.1 내지 0.7, 1 : 0.1 내지 0.6, 1 : 0.1 내지 0.5, 1 : 0.1 내지 0.4, 1 : 0.15 내지 0.4, 1 : 0.15 내지 0.35 또는 1 : 0.2 내지 0.3 일 수 있고, 바람직하게는 1 : 0.25일 수 있다.
탈세포 기질이 상기 범위의 중량비로 포함되는 경우, 뛰어난 혈관화 지방조직 유도능을 보여주나, 범위를 벗어나는 경우, 혈관화 지방조직 유도능이 현저하게 감소할 수 있다.
한편, 상기 탈세포 기질은 분산력을 높이기 위하여, 효소가 포함된 산성 용액에 용해된 것일 수 있다. 상기 산성 용액의 pH는 3 내지 6.5, pH는 3.5 내지 6.5, pH는 4 내지 6.5, pH는 4.5 내지 6.5, pH는 5 내지 6.5, 5.2 내지 6.3, 5.4 내지 6.1, 5.6 내지 5.9일 수 있으나, 이에 제한되는 것은 아니다.
상기 효소의 경우, 단백질을 분해하는 단백질분해효소(protease)일 수 있으며, 예컨데, 펩신(pepsin), 펩티데이스(peptidase), 트립신(trypsin) 또는 파파인(papain)일 수 있으며, 바람직하게는 펩신일 수 있으나 이에 제한되는 것은 아니다.
일 구체예에서, 상기 다중 가교된 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물은 글리세롤이 함유된 액상 제형의 2제를 더 포함할 수 있다.
상기 2제는 안정화된 상기 1제와 혼합되어 혼합물 내부의 공유 결합 또는 비공유 결합 수준을 조정하여, 하이드로겔에 점탄성 특성 부여하는 것일 수 있다.
상기 2제는 글리세롤 원액 또는 글리세롤이 함유된 수용액을 함유하는 것일 수 있으며, 예를 들어, 상기 글리세롤 원액을 포함하는 경우 2제는 100% 글리세롤을 100 중량%로 함유할 수 있다.
일 구체예에서, 상기 키토산 및 글리세롤에 의해 공유결합을 형성하는 것일 수 있다. 다른 구체예에서, 상기 키토산 인산 이온에 의해 비공유 결합을 형성하는 것일 수 있다. 따라서, 상기 키토산 중합체는 인산기와의 비공유결합 및 글리세롤과의 공유결합을 모두 포함할 수 있다.
즉, 일 양상에 따른 온도감응성 하이드로겔 조성물은 키토산이 글리세롤 및/또는 인산 이온에 의해 공유결합 및/또는 비공유 결합을 형성함에 따라 가교제의 종류 및 함량 조절을 통해 조성물의 물성 (점성, 강도 등)을 조절할 수 있다.
일 실시예에서, 상기 2제는 상기 1제의 키토산이 함유된 수용액 1 중량부 당 글리세롤을 0.01 내지 0.3 중량부, 0.01 내지 0.25 중량부, 0.01 내지 0.2 중량부, 0.01 내지 0.15 중량부, 0.01 내지 0.10 중량부, 0.01 내지 0.08 중량부, 0.01 내지 0.07 중량부, 0.01 내지 0.06 중량부, 0.01 내지 0.05 중량부, 0.01 내지 0.04 중량부, 0.015 내지 0.2 중량부, 0.015 내지 0.15 중량부, 0.015 내지 0.10 중량부, 0.015 내지 0.08 중량부, 0.015 내지 0.07 중량부, 0.015 내지 0.06 중량부, 0.015 내지 0.05 중량부, 0.015 내지 0.04 중량부, 0.015 내지 0.03 중량부, 0.02 내지 0.10 중량부, 0.02 내지 0.08 중량부, 0.02 내지 0.07 중량부, 0.02 내지 0.05 중량부, 0.02 내지 0.04 중량부, 0.02 내지 0.03 중량부, 0.03 내지 0.10 중량부, 0.03 내지 0.09 중량부, 0.03 내지 0.08 중량부, 0.03 내지 0.07 중량부, 0.03 내지 0.065 중량부, 0.04 내지 0.10 중량부, 0.04 내지 0.09 중량부, 0.04 내지 0.08 중량부, 0.04 내지 0.07 중량부, 0.04 내지 0.065 중량부, 0.05 내지 0.10 중량부, 0.05 내지 0.09 중량부, 0.05 내지 0.08 중량부, 0.05 내지 0.07 중량부, 0.05 내지 0.065 중량부, 0.06 내지 1.0 중량부, 0.06 내지 0.09 중량부, 0.06 내지 0.08 중량부, 0.06 내지 0.07 중량부, 0.06 내지 0.065 중량부, 0.07 내지 0.15 중량부, 0.07 내지 0.14 중량부, 0.07 내지 0.13 중량부, 0.08 내지 0.15 중량부, 0.08 내지 0.14 중량부, 0.08 내지 0.13 중량부, 0.09 내지 0.15 중량부, 0.09 내지 0.14 중량부, 0.09 내지 0.13 중량부, 0.10 내지 0.15 중량부, 0.10 내지 0.14 중량부, 0.10 내지 0.13 중량부, 0.11 내지 0.15 중량부, 0.11 내지 0.14 중량부, 0.11 내지 0.13 중량부, 0.12 내지 0.15 중량부, 0.12 내지 0.14 중량부 또는 0.12 내지 0.13 중량부로 포함할 수 있다. 일 실시예에서, 상기 2제는 상기 1제의 2.5% 키토산이 함유된 수용액 1 중량부 당 100% 글리세롤을 0.024 내지 0.122 중량부로 포함할 수 있다.
일 구체예에서, 상기 다중 가교된 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물은 상기 2제를 상기 글리세롤을 상기 1제의 키토산이 함유된 수용액 1 중량부 당 0.001 내지 0.06 중량부, 0.001 내지 0.05 중량부, 0.001 내지 0.04 중량부, 0.001 내지 0.03 중량부, 0.01 내지 0.06 중량부, 0.01 내지 0.05 중량부, 0.01 내지 0.04 중량부, 0.01 내지 0.03 중량부, 0.015 내지 0.06 중량부, 0.015 내지 0.05 중량부, 0.015 내지 0.04 중량부, 0.015 내지 0.03 중량부, 0.02 내지 0.06 중량부, 0.02 내지 0.05 중량부, 0.02 내지 0.04 중량부, 0.02 내지 0.03 중량부, 0.021 내지 0.06 중량부, 0.021 내지 0.05 중량부, 0.021 내지 0.04 중량부, 0.021 내지 0.03 중량부, 0.022 내지 0.06 중량부, 0.022 내지 0.05 중량부, 0.022 내지 0.04 중량부, 0.022 내지 0.03 중량부, 0.023 내지 0.06 중량부, 0.023 내지 0.05 중량부, 0.023 내지 0.04 중량부, 0.023 내지 0.03 중량부, 0.02 내지 0.029 중량부, 0.02 내지 0.028 중량부, 0.02 내지 0.027 중량부, 0.02 내지 0.026 중량부, 0.02 내지 0.025 중량부 또는 0.022 내지 0.026 중량부로 포함할 수 있다.
일 구체예에서, 상기 다중 가교된 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물은 상기 2제는 상기 글리세롤을 상기 1제의 키토산이 함유된 수용액 1 중량부 당 0.025 내지 0.120 중량부, 0.03 중량부 내지 0.115 중량부, 0.03 중량부 내지 0.11 중량부, 0.03 내지 0.105 중량부, 0.03 내지 0.1 중량부, 0.03 내지 0.09 중량부, 0.03 내지 0.08 중량부, 0.03 내지 0.07 중량부, 0.04 중량부 내지 0.115 중량부, 0.04 중량부 내지 0.11 중량부, 0.04 내지 0.105 중량부, 0.04 내지 0.1 중량부, 0.04 내지 0.09 중량부, 0.04 내지 0.08 중량부, 0.04 내지 0.07 중량부, 0.05 중량부 내지 0.115 중량부, 0.05 중량부 내지 0.11 중량부, 0.05 내지 0.105 중량부, 0.05 내지 0.1 중량부, 0.05 내지 0.09 중량부, 0.05 내지 0.08 중량부, 0.05 내지 0.07 중량부, 0.06 중량부 내지 0.115 중량부, 0.06 중량부 내지 0.11 중량부, 0.06 내지 0.105 중량부, 0.06 내지 0.1 중량부, 0.06 내지 0.09 중량부, 0.06 내지 0.08 중량부 또는 0.06 내지 0.07 중량부로 포함할 수 있다.
일 구체예에서, 상기 다중 가교된 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물은 상기 2제를 상기 글리세롤을 상기 1제의 키토산이 함유된 수용액 1 중량부 당 0.062 내지 0.2 중량부, 0.065 내지 0.2 중량부, 0.07 내지 0.2 중량부, 0.08 내지 0.2 중량부, 0.09 내지 0.2 중량부, 0.1 내지 0.2 중량부, 0.11 내지 0.2 중량부, 0.12 내지 0.2 중량부, 0.062 내지 0.19 중량부, 0.065 내지 0.19 중량부, 0.07 내지 0.19 중량부, 0.08 내지 0.19 중량부, 0.09 내지 0.19 중량부, 0.1 내지 0.19 중량부, 0.11 내지 0.19 중량부, 0.12 내지 0.19 중량부, 0.07 내지 0.18 중량부, 0.08 내지 0.18 중량부, 0.09 내지 0.18 중량부, 0.1 내지 0.18 중량부, 0.11 내지 0.18 중량부, 0.12 내지 0.18 중량부, 0.07 내지 0.17 중량부, 0.08 내지 0.17 중량부, 0.09 내지 0.17 중량부, 0.1 내지 0.17 중량부, 0.11 내지 0.17 중량부, 0.12 내지 0.17 중량부, 0.07 내지 0.16 중량부, 0.08 내지 0.16 중량부, 0.09 내지 0.16 중량부, 0.1 내지 0.16 중량부, 0.11 내지 0.16 중량부, 0.12 내지 0.16 중량부, 0.07 내지 0.15 중량부, 0.08 내지 0.15 중량부, 0.09 내지 0.15 중량부, 0.1 내지 0.15 중량부, 0.11 내지 0.15 중량부, 0.12 내지 0.15 중량부, 0.07 내지 0.14 중량부, 0.08 내지 0.14 중량부, 0.09 내지 0.14 중량부, 0.1 내지 0.14 중량부, 0.11 내지 0.14 중량부, 0.12 내지 0.14 중량부, 0.07 내지 0.13 중량부, 0.08 내지 0.13 중량부, 0.09 내지 0.13 중량부, 0.1 내지 0.13 중량부, 0.11 내지 0.13 중량부, 0.12 내지 0.13 중량부 또는 0.115 내지 0.125 중량부로 포함할 수 있다.
상기 2제 조성물은 탈세포 기질을 더 포함하는 것일 수 있다.
일 구체예에서, 1제의 총 부피 중 키토산이 함유된 수용액과 인산 이온이 함유된 수용액의 중량비가 1: 0.11 이상 0.13 미만 인 경우에는 2제의 글리세롤 함량의 증가에 따라 생체소재 조성물의 탄성력이 증가할 수 있다. 예를 들어, 상기 키토산이 함유된 수용액 및 인산 이온이 함유된 수용액의 중량비가 1: 0.12 이상 0.013 미만의 범위에 해당하는 경우, 여기에 첨가되는 2제 조성물 내 글리세롤의 수준에 따라 20 내지 500 Pa·s 범위 내에서 글리세롤 함량의 증가는 생체 소재 조성물에 대한 강화된 탄성력을 부여할 수 있다.
다른 구체예에서, 1제의 총 부피 중 키토산이 함유된 수용액과 인산 이온이 함유된 수용액의 중량비가 1: 0.16 내지 0.18의 범위인 경우에는, 오히려 2제의 글리세롤의 함량의 증가에 따라 생체소재 조성물의 탄성력이 감소할 수 있다. 예를 들어, 상기 키토산이 함유된 수용액 및 인산 이온이 함유된 수용액의 부피비가 1: 0.16 내지 0.18의 범위에 해당하는 경우, 여기에 첨가되는 2제 조성물 내 글리세롤의 수준에 따라 3000 내지 7000 Pa·s 범위 내에서 글리세롤 함량의 감소는 생체 소재 조성물에 대한 강화된 탄성력을 부여할 수 있다. 즉, 상기 1제 및 2제간 중량 비율의 조정은 생체 소재 조성물의 탄성력에 대한 2차적으로 조절을 가능하게 할 수 있다.
상기 1제 및 2제의 중량 비율은 1:10 내지 10000:1일 수 있으며, 예를 들어, 상기 1제 및 2제의 중량 비율은 예를 들어, 1:5 내지 10000:1, 1:3 내지 10000:1, 또는 1:2 내지 10000:1일 수 있다. 예를 들어, 상기 1제 및 2제의 중량 비율은 2:1 내지 10000:1일 수 있다. 이때, 상기 중량 비율이 상기 범위 미만인 경우, 겔화가 일어나지 않거나 형성된 하이드로겔의 강도 수준이 매우 약하다는 문제점이 있고 상기 중량 비율이 상기 범위 이상인 경우, 겔화가 일어나지 않거나 형성된 하이드로겔의 강도 수준이 매우 약하다는 문제점이 존재한다. 1제의 비율이 높아 인산기의 농도가 과할 경우, 실온에서도 1제 내의 겔화가 진행되어 액상 형태에서 주입되어 체내 겔화가 진행된다는 온도감응성 필러만의 특성을 잃어버리게 되고, 2제의 비율이 높아 글리세롤의 농도가 과할 경우, 용액의 농도가 묽어져 체내 및 고온에서 겔화가 일어나지 않거나 형성된 하이드로겔의 물성이 매우 약해진다는 문제점이 있다.
일 실시예에서, 조성물은 총 중량 대비 키토산이 함유된 수용액을 70 내지 90 중량%, 75 내지 90 중량%, 80 내지 90 중량%, 81 내지 90 중량%, 82 내지 90 중량%, 83 내지 90 중량%, 84 내지 90 중량%, 85 내지 90 중량%, 86 내지 90 중량%, 70 내지 89 중량%, 75 내지 89 중량%, 80 내지 89 중량%, 81 내지 89 중량%, 82 내지 89 중량%, 83 내지 89 중량%, 84 내지 89 중량%, 85 내지 89 중량%, 86 내지 89 중량%, 70 내지 88 중량%, 75 내지 88 중량%, 82 내지 88 중량%, 83 내지 88 중량%, 84 내지 88 중량%, 85 내지 88 중량%, 86 내지 88 중량%, 70 내지 87 중량%, 75 내지 87 중량%, 80 내지 87 중량%, 81 내지 87 중량%, 82 내지 87 중량%, 83 내지 87 중량%, 84 내지 87 중량%, 85 내지 87 중량% 또는 86 내지 87 중량%로 포함할 수 있다.
일 실시예에서, 조성물은 총 중량 대비 인산 용액을 1 내지 20 중량%, 5 내지 20 중량%, 5 내지 17 중량%, 7 내지 17 중량%, 8 내지 17 중량%, 9 내지 17 중량%, 10 내지 17 중량%, 5 내지 15 중량%, 7 내지 15 중량%, 8 내지 15 중량%, 9 내지 15 중량%, 10 내지 15 중량%, 7 내지 14.5 중량%, 7 내지 13 중량%, 8 내지 13 중량%, 9 내지 13 중량%, 10 내지 13 중량%, 7 내지 12 중량%, 8 내지 12 중량%, 9 내지 12 중량%, 10 내지 14.5 중량%, 10 내지 12 중량%, 10 내지 11 중량% 또는 10.5 내지 12 중량%로 포함할 수 있다.
일 실시예에서, 조성물은 총 중량 대비 글리세롤을 0.1 내지 20 중량%, 0.1 내지 15 중량%, 0.5 내지 15 중량%, 1 내지 15 중량%, 0.5 내지 13 중량%, 1 내지 13 중량%, 1 내지 12 중량%, 1 내지 11 중량%, 1 내지 10 중량%, 1.5 내지 15 중량%, 1.5 내지 13 중량%, 1.5 내지 12 중량%, 1.5 내지 11 중량%, 2 내지 15 중량%, 2 내지 13 중량%, 2 내지 12 중량%, 2 내지 11 중량% 또는 2 내지 10 중량%로 포함할 수 있다.
일 구체예에 있어서, 상기 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물은 하이드로겔 조성물의 강도 변화를 위한 염기성 수용액이 함유된 액상 제형의 3제를 더 포함할 수 있다. 일 실시예에서, 상기 하이드로겔 조성물에 3제를 더 포함하는 경우, 하이드로겔 조성물의 강도를 변화시킬 수 있다.
본 명세서에서 3제에 포함된 "염기성 수용액"은 형성된 온도감응성 하이드로겔의 강도를 강화시키는데 기여할 수 있으며, 일례로서, 염기성 이온이 함유된 수용액 형태로 제공될 수 있다. 상기 염기성 수용액은 예를 들어, 암모니아, 수산화리튬, 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화마그네슘, 수산화아연, 수산화세슘, 수산화바륨, 수산화루비듐, 수산화제1철, 수산화제2철, 수산화알루미늄, 메틸아민, 에틸아민, n-프로필아민, n-부틸아민, 탄산칼슘, 중탄산칼륨, 탄산나트륨 및 중탄산나트륨 용액으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있으나, 상기 염기성 이온은 염기성을 띄는 이온이라면 비제한적으로 확장 적용될 수 있다.
일 구체예에 있어서, 상기 1제 및 2제는 용기 내 분리된 공간에 격리되어 있는 것일 수 있다. 따라서, 사용하기 전 조건에서 키토산 및 인산 이온이 함유된 1제 및 글리세롤이 함유된 2제는 각각 액상 제형으로 유지 및 보관될 수 있다.
일 구체예에서, 상기 1제 및 2제는 순차적인 혼합 및 안정화 공정으로 거쳐 체내 조건에서 겔화가 진행되는 온도감응성 하이드로겔을 형성하는 것일 수 있다. 도 1에 나타낸 바와 같이, 상기 1제는 키토산 및 인산 이온이 함유된 수용액간 혼합 및 안정화 과정을 통해 키토산의 아민기 및 인산 이온간 이온 결합을 형성하며, 이러한 과정은 하이드로겔의 강도 수준을 결정하는데 관여할 수 있다. 이후 상기 안정화된 1제와 글리세롤이 함유된 2제간 혼합은 키토산의 잔여 아민기와 글리세롤간 공유 결합을 형성하며, 이러한 과정은 하이드로겔의 점탄성을 결정하는데 관여할 수 있다.
일 구체예에 있어서, 상기 1제 및 2제는 혼합되어 있는 것일 수 있다. 따라서, 사용하기 전 조건에서 키토산 및 인산 이온이 함유된 1제 및 글리세롤이 함유된 2제는 혼합된 상태의 액상 제형 또는 겔 제형으로 유지 및 보관될 수 있으며, 필요에 따라, 장기간 보관을 위하여 동결된 상태로도 보관될 수 있다.
일 구체예에서, 상기 1제 및 2제는 순차적인 혼합 및 안정화 공정으로 거쳐 체외에서 겔화가 진행되는 온도감응성 하이드로겔을 형성하는 것일 수 있다.
다른 양상은 키토산 이온을 포함하는 용액 및 인산 이온이 함유된 수용액을 혼합하여 액상 제형의 1제를 제조하는 단계 및 상기 액상 제형의 1제를 안정화시키는 단계를 포함하는, 온도감응성 하이드로겔 조성물을 제조하는 방법을 제공한다.
다른 양상은 상기 안정화시키는 단계 이후에 상기 안정화된 액상 제형의 1제와 글리세롤이 함유된 액상 제형의 2제를 혼합하는 단계를 더 포함하는 온도감응성 하이드로겔 조성물을 제조하는 방법을 제공한다.
다른 양상은 상기 1제 및 2제의 액상 제형 혼합물을 체내 조건에서 다중 가교시키는 단계를 더 포함하는, 온도감응성 하이드로겔 조성물을 제조하는 방법을 제공한다.
다른 양상은 하이드로겔 조성물의 강도 변화를 위한 염기성 수용액을 포함하는 3제를 추가로 혼합하는 단계를 더 포함하는 온도감응성 하이드로겔 조성물을 제조하는 방법을 제공한다.
다른 양상은 키토산 이온을 포함하는 용액 및 인산 이온이 함유된 수용액을 혼합하여 액상 제형의 1제를 제조하는 단계 및 상기 액상 제형의 1제를 안정화시키는 단계; 및 상기 안정화된 액상 제형의 1제와 글리세롤이 함유된 액상 제형의 2제를 혼합하는 단계; 상기 혼합된 액상 제형의 조성물을 개체의 피내에 주입하는 단계를 포함하는, 온도감응성 하이드로겔 조성물을 시술하는 방법을 제공한다.
상기 온도감응성 하이드로겔 조성물을 제조하는 방법, 또는 온도감응성 하이드로겔 조성물을 시술하는 방법은 전술한 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물 그대로 포함하거나, 이를 이용하기 때문에, 이 둘 사이에 공통된 내용은 기재를 생략한다.
일 양상에 따르면, 상기 방법에 의해 제조된 온도감응성 하이드로겔은 시술자에게 적응증 적용에 대한 편의성을 제공할 뿐만 아니라, 기존의 하이드로겔 조성물에 비해 체내 조건에서 오래동안 그 형상을 유지할 수 있고, 하이드로겔의 물리적 특성, 구체적으로 탄성 및 강도를 용이하게 조절 가능하므로, 다양한 형태의 조직의 형태 및 특성에 부합하는 하이드로겔을 제공할 수 있다.
일 양상에 따른 1제 및 2제가 혼합된 액상 제형의 하이드로겔 조성물은 주입 후 체내 조건에서 겔화가 진행되는 온도감응성 하이드로겔을 형성함으로써, 유통 및 하이드로겔 시술의 편의성을 제공함과 동시에 기존의 하이드로겔 조성물에 비해 체내 조건에서 오래동안 그 형상을 유지할 수 있다.
또한, 일 양상에 따른 조성물에 따르면, 수산화나트륨 수용액 등과 같은 염기성 수용액을 적용함으로써, 형성된 하이드로겔 조성물의 강도를 간편하게 변화시킬 수 있다. 일 양상에 있어서, 적응증에 따라 상기 하이드로겔 조성물의 탄성 및 강도를 변화시킬 수 있으므로, 다양한 조직의 형태 및 특성에 부합하는 하이드로겔을 제공할 수 있다.
도 1a는 일 실시예에 따른 온도감응성 하이드로겔의 시간의 경과에 따른 결합 형성을 나타낸 도이다.
도 1b는 일 실시예에 따른 온도감응성 하이드로겔의 온도의 변화에 따른 물성 변화를 개략적으로 나타낸 도이다.
도 2는 일 실시예에 따른 액상 형태의 1제 및 2제의 혼합 과정을 나타낸 도이다.
도 3은 일 실시예에 따른 키토산 및 인산 이온을 포함하는 1제에서, 시간의 경과에 따른 점도 변화를 평가한 결과이다.
도 4는 실시예 2.2.1 내지 2.2.9의 1제 및 2제의 성분의 비율에 따른 겔화 정도를 나타낸 도이다.
도 5a는 실시예 2.2.1(G1) 내지 2.2.3(G3)의 1제 및 2제의 성분비에 따른 겔화 점도를 나타낸다.
도 5b는 실시예 2.2.4(G4) 내지 2.2.6(G6)의 1제 및 2제의 성분비에 따른 겔화 점도를 나타낸다.
도 5c는 실시예 2.2.7(G7) 내지 2.2.9(G9)의1제 및 2제의 성분비에 따른 겔화 점도를 나타낸다.
도 6a는 실시예 2.2.1(G1) 내지 2.2.9(G9)의 angular frequency에 따른 복합 점도(complex viscosity)를 나타낸 도이다.
도 6b는 실시예 2.2.1(G1) 내지 2.2.9(G9)의 손실 탄성률(Loss modulus)에 대해 나타낸 도이다.
도 6c는 실시예 2.2.1(G1) 내지 2.2.9(G9)의 저장 탄성율(Storage modulus)에 대해 나타낸 도이다.
도 7a는 액상 제형의 1제와 2제를 혼합한 후, 37℃ 조건에서 형성된 하이드로겔을 촬영한 도이다.
도 7b는 액상 제형의 1제와 2제를 혼합한 후, 37℃ 조건에서 형성된 하이드로겔의 1, 2, 3 및 4주차의 압축강도를 비교한 도이다.
도 8a는 액상 제형의 1제와 2제를 혼합한 후, 37℃ 조건에서 형성된 하이드로겔의 압력에 따른 압축 후 회복율을 비교한 도이다.
도 8b는 액상 제형의 1제와 2제를 혼합한 후, 37℃ 조건에서 형성된 하이드로겔의 압력에 따른 회복율을 정량화하여 나타낸 그래프이다.
도 8c는 실시예 2.2.7(G7) 내지 2.2.9(G9)의 액상 제형의 1제와 2제를 혼합한 후, 37℃ 조건에서 형성된 하이드로겔의 압축 후 변형을 비교한 도이다.
도 9는 1제, 2제 및 NaOH를 포함하는 3제를 첨가하여 1시간 동안 가교하기 전과 후의 점성을 나타낸다.
도 10a는 일 실시예에 따른 액상 제형의 1제와 2제를 마우스에 주입하고 마우스의 피내에서 형성된 하이드로겔의 형상을 육안 또는 현미경을 통해 확인한 결과이다.
도 10b는 일 실시예에 따른 액상 제형의 1제와 2제를 마우스에 주입한 다음 시간에 따른 E-modulus 및 마우스 피내에서의 E-modulus를 비교한 도이다.
도 10c는 일 실시예에 따른 액상 제형의 1제와 2제를 마우스에 주입한 다음 시간에 따른 E-modulus 정도 및 마우스 피내에서의 Compressive strength를 비교한 도이다.
도 11a는 일 실시예에 따른 액상 제형의 1제와 2제를 마우스에 주입하고 1주일이 경과했을 때, 마우스의 외관을 관찰한 도이다.
도 11b는 일 실시예에 따른 액상 제형의 1제와 2제를 혼합하여 마우스 피내에 주입하고 1주일이 경과했을 때, 하이드로겔을 마우스의 체외로 꺼내어 확인한 도이다.
도 12a는 마우스에 PBS를 주입한 다음, 체내 면역 반응 여부를 확인한 결과이다.
도 12b는 일 실시예에 따른 액상 제형의 1제와 2제를 주입한 다음, 마우스의 피내에서 형성된 키토산 필러(하이드로겔)에 의한 체내 면역 반응 여부를 확인한 결과이다.
도 12c는 PBS 및 키토산 필러(하이드로겔)의 CD68 염색 영역을 3일, 7일, 14일에서 비교한 도이다.
도 12d는 PBS 및 키토산 필러(하이드로겔)의 CD206 염색 영역을 3일, 7일, 14일에서 비교한 도이다.
도 13은 온도 및 체액 동시 감응 겔화에 따른 물성 증가를 확인한 도이다.
도 14a는 체외에서 온도 감응 겔화 후, 체액과 감응시킨 하이드로겔을 육안으로 확인한 도이다.
도 14b는 액상 제형의 1제와 2제를 혼합한 후, 마우스의 피내에서 형성된 하이드로겔(분리형) 및 액상 제형의 1제와 2제를 혼합하여 체외에서 겔화한 후, 마우스의 피내에서 체액 감응 겔화한 하이드로겔(일체형)의 E-modulus를 비교한 도이다.
도 14c는 액상 제형의 1제와 2제를 혼합한 후, 마우스의 피내에서 형성된 하이드로겔(분리형) 및 액상 제형의 1제와 2제를 혼합하여 체외에서 겔화한 후, 마우스의 피내에서 체액 감응 겔화한 하이드로겔(일체형)의 Compressive strength를 비교한 도이다.
도 15는 액상 제형의 1제와 2제를 혼합한 후, 마우스의 피내에서 형성된 하이드로겔(분리형) 및 액상 제형의 1제와 2제를 혼합하여 체외에서 겔화한 후, 마우스의 피내에서 체액 감응 겔화한 하이드로겔(일체형)의 물성을 비교한 도이다.
도 16은 일 실시예에 따른 액상 제형의 1제와 2제를 혼합한 후, 마우스의 피내에서 형성된 하이드로겔의 가교제 농도에 따른 분해속도를 비교한 결과이다.
도 17은 일 실시예에 따른 탈세포 소재가 포함된 액상 제형의 1제와 2제를 혼합한 후, 마우스에 주입하기 전후의 하이드로겔의 모습 및 혼합된 액상 제형의 1제 및 2제를 주입한 마우스를 관찰한 도이다.
도 18은 상기 도 17에서 확인한 체내 주입 전후 하이드로겔의 탄성도를 정량화한 결과이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예]
실시예 1. 온도감응성 하이드로겔 제조용 조성물의 제조
실시예 1.1. 키토산 및 인산 이온을 포함하는 1제의 제조
본 실시예에서는 35~37%의 HCl 용액 44.05ml와 증류수 455.95ml를 혼합하여 1N HCl 수용액 500ml를 제조하였다. 또한, 키토산 파우더 125g을 증류수 4500ml에 첨가하고, 이를 교반하여 키토산 파우더를 분산시켰다. 여기에 1N HCl 수용액 500ml을 첨가하고, 60℃의 물 중탕 조건에서 약 1시간 동안 혼합하여 키토산이 함유된 수용액을 제조하였다.
한편, 인산나트륨 이염기 (Sodium phosphate dibasic, Na2HPO4) 98.49g을 증류수 550ml에 완전히 용해시킨 후, 이를 0.45μm 필터로 한 차례 여과하여, 인산나트륨 이염기 용액을 제조하였다. 이후, 상기 키토산이 함유된 수용액 5000ml를 계속 교반시키면서, 여기에 상기 인산나트륨 이염기 용액 550ml을 적정하여, 일 실시예에 따른 액상 제형의 1제를 제조하였다. 이후, 1ml 시린지에 상기 혼합 용액을 1.1ml씩 충진하고 고압증기 멸균을 진행한 후, 이를 실온에 보관하였다.
실시예 1.2. 글리세롤을 포함하는 2제의 제조
본 실시예에서는 100% glycerol을 사용하여 2제를 제조하였다.
실시예 2. 액상 제형의 조성물의 제조
실시예 2.1. 1제를 포함하는 조성물의 제조
본 실시예에서는 상기 실시예 1에서 제조된 액상 제형의 1제를 사용하여, 겔 제형을 형성하는 하이드로겔 조성물을 제조하고자 하였다. 상기 1제를 충분히 혼합한 뒤, 액상 제형의 하이드로겔 조성물을 제조하였다.
실시예 2.2. 1제 및 2제를 포함하는 조성물의 제조
본 실시예에서는 상기 실시예 1에서 제조된 액상 제형의 1제 및 2제를 사용하여, 겔 제형을 형성하는 하이드로겔 조성물을 제조하고자 하였다. 실온에서 액상 형태인 하이드로겔 조성물의 제조 과정의 일례는 도 2에 나타낸 바와 같다. 구체적으로, 상기 1제 또는 2제가 각각 담긴 주사기의 밀봉캡을 열어 준 후, 커넥터를 사용하여 이들을 연결하였다. 이후, 양쪽 주사기의 밀대를 이동시켜 상기 1제 및 2제를 충분히 혼합한 뒤, 상기 혼합물을 하나의 주사기로 이동시켜, 액상 제형의 하이드로겔 조성물을 제조하였다.
상기 1제 및 2제에 포함된 키토산이 함유된 수용액, 인산나트륨 이염기 용액 및 글리세롤의 중량비는 하기 표 1과 같다.
실시예 키토산이 함유된 수용액 인산 용액 글리세롤
2.2.1 (G1) 1 0.126 0.024
2.2.2 (G2) 0.061
2.2.3 (G3) 0.122
2.2.4 (G4) 0.136 0.024
2.2.5 (G5) 0.061
2.2.6 (G6) 0.122
2.2.7 (G7) 0.169 0.024
2.2.8 (G8) 0.061
2.2.9 (G9) 0.122
(단위: 중량부)
[실험예]
실험예 1. 키토산 및 인산 이온을 포함하는 1제의 점도 평가
본 실험예에서는 액상 제형 1제의 점도를 시간의 경과에 따라 평가하여, 2제와의 혼합 전, 목적하는 물성 변화를 유도할 수 있는 1제의 안정화 기간을 도출하고자 하였다. 상기 제조된 액상 제형의 1제를 각각 1주, 2주, 3주, 4주간 실온에서 밀봉하여 보관하였고, 이에 따른 점도 변화를 평가하였다. 총 16ml의 1제를 대상으로 브룩필드 점도계 DV2TLV, Small sample adapter-spindle를 사용하여, 실온, 30초 간격으로 5분 동안 총 10포인트 측정(Mutipoint 방법)하는 조건에서 점도를 평가하였다.
도 3은 키토산 및 인산 이온을 포함하는 1제의 점도 변화를 시간의 경과에 따라 평가한 결과이다. 도 3에 나타낸 바와 같이, 액상 제형의 1제를 제조하여 고압증기 멸균 공정을 수행한 직후와 실온에서 일정 기간 안정화한 후의 점도 특성은 명백하게 상이하였으며, 이러한 물리적 특성은 1제를 제조한 후 실온에서 약 수 일이 지난 후부터 어느 정도 안정화되는 경향을 나타내었다.
실험예 2. 온도감응성 하이드로겔의 성능 평가
본 실험예에서는 액상 제형의 1제와 2제를 혼합한 후 겔화 전 액상 제형의 주입력, 37℃ 조건에서 형성된 하이드로겔의 점탄성, 1제 및 2제의 성분의 비율에 따른 겔화 정도 및 상기 겔화에 따른 점도을 평가하였다. 주입력 평가에서, 상기 액상 제형의 1제를 실온에서 1주, 2주, 3주 또는 4주간 보관한 뒤, 이를 액상 제형의 2제와 혼합하였다. 이후, 26G 바늘을 연결하고 AND MCT-2150를 사용하여, 실온, 10 mm/min의 테스트 속도로 주입력을 평가하였다.
또한, 점탄성 평가에서, 상기 액상 제형의 1제를 실온에서 1주, 2주, 3주 또는 4주간 보관한 뒤, 이를 액상 제형의 2제와 혼합하였다. 이후, 액상 제형의 필러 조성물을 37℃ 인큐베이터에서 24시간 보관한 뒤, 이에 따라 형성된 조직 수복용 하이드로겔의 점탄성을 회전형 레오미터(TA instrument Ltd., ARES-G2)를 사용하여, 25℃, 0.628 ~ 198 rad/s의 조건에서 측정하였다. 한편, 비교군으로는 현재 시판중인 Allaergan 사의 필러 조성물을 사용하였다.
도 4는 실시예 2.2.1 내지 2.2.9의 1제 및 2제의 성분의 비율에 따른 겔화 정도를 나타낸 도이다. 본 실험예에서는 인산 나트륨 이염기 및/또는 글리세롤의 함량이 하이드로겔 조성물의 겔 형성에 미치는 영향을 확인하고자 하였다. 상기 실시예 2.2.1 내지 2.2.9의 각 성분 비율을 기준으로 하여, 키토산, 인산나트륨 이염기 용액을 포함하는 1제, 글리세롤을 포함하는 2제를 혼합하여 총 9개의 액상 제형의 하이드로겔 조성물을 제조하였다. 이후, 상기 조직 수복용 하이드로겔 조성물을 37℃ 인큐베이터에서 약 24시간 보관한 뒤, 이들의 겔화 진행 여부를 평가하였다.
도 4에 나타낸 바와 같이, 인산나트륨 이염기 및 글리세롤의 비율에 따라 하이드로겔의 물성을 변화시킬 수 있으며, 그러한 물성 변화에 따라 상기 하이드로겔을 이용하려는 조직을 대체할 수 있는 수준의 겔화가 진행됨을 확인할 수 있었다.
도 5는 실시예 2.2.1 내지 2.2.9의 1제 및 2제의 성분의 비율에 따른 겔화에 따른 점도를 나타낸 도이다. 도 5에 나타낸 바와 같이, 인산이온 및 글리세롤의 비율이 증가할 수록 겔화 시간이 빠르게 나타났다. 구체적으로, 2.2.5 및 2.2.6의 겔화에 따른 점도값 증가가 가장 컸으며, 2.2.6이 점도 증가 시기는 2.2.5에 비해 더 이른 시점에 나타났다.
또한, 표 2와 도 6은 실시예 2.2.1 내지 2.2.9의 angular frequency에 따른 물성 변화를 확인한 결과이다. 도 6A는 실시예 2.2.1 내지 2.2.9의 angular frequency에 따른 복합 점도(complex viscosity)를 나타낸 도이다. 도 6B는 실시예 2.2.1 내지 2.2.9의 손실 탄성률(Loss modulus)에 대해 나타낸 도이다. 도 6C는 실시예 2.2.1 내지 2.2.9의 저장 탄성율(Storage modulus)에 대해 나타낸 도이다. 도 6A 내지 6C에 나타낸 바와 같이, 제1 및 2제에 포함된 키토산, 인산나트륨 이염기 및 글리세롤의 비율을 조정함으로써, 생성된 겔화 조성물의 탄성을 변화시킬 수 있음을 확인하였다.
0.5 rad/s G1 G2 G3 G4 G5 G6 G7 G8 G9 cross-linked hyaluronic acid
Complex Viscosity (Pa·s) 25.634 202.38 432.94 231.88 950.86 1670.9 4200 4052.3 2111.7 497.93
Storage Modulus (Pa) 12.285 101.18 216.47 115.72 475.32 835.35 2011.1 1964.1 1042.2 246.51
Loss Modulus (Pa) 3.652 0.8764 1.2363 7.0733 10.54 13.411 503.123 497.68 169.34 34.885
실험예 3. 온도감응성 하이드로겔의 압축 강도 평가
본 실험예에서는 액상 제형의 1제와 2제를 혼합한 후, 37℃ 조건에서 형성된 하이드로겔의 압축 강도를 평가하였다. 상기 액상 제형의 1제는 실온에서 1주, 2주, 3주 또는 4주간 보관한 뒤, 이를 액상 제형의 2제와 혼합하였다. 이후, 액상 제형의 하이드로겔 조성물을 37℃ 인큐베이터에서 각각 2시간 또는 4시간 보관한 뒤, 이에 따라 형성된 하이드로겔의 압축 강도를 측정하였다. 샘플의 크기는 직경 12mm, 길이 8.7mm 수준으로 조정하였으며, AND MCT-2150를 사용하여, 실온, 10 mm/min의 테스트 속도로 압축 강도를 평가하였다.
도 7은 액상 제형의 1제와 2제를 혼합한 후, 37℃ 조건에서 형성된 하이드로겔의 압축 강도를 평가한 결과이다. 도 7에 나타낸 바와 같이, 액상 제형의 하이드로겔 조성물은 37℃ 조건에서 약 2시간이 경과한 후부터 하이드로겔 형태로 전환되었으며, 시간이 경과함에 따라 압축 강도가 증가되는 것을 확인하였다. 이러한 실험 결과는 일 양상에 따른 1제 및 2제가 혼합된 액상 제형의 하이드로겔 조성물은 실온 조건에서 체내 주입 또는 주사 가능한 형태로 존재하며, 주입 후 체내 조건에서 겔화가 진행되는, 온도감응성 하이드로겔을 제조하는데 적용될 수 있음을 나타낸 것이다.
도 8은 액상 제형의 1제와 2제를 혼합한 후, 37℃ 조건에서 형성된 하이드로겔의 압축 후 회복율을 확인한 결과이다. 압축 후 회복율 확인을 위해 특정 변형율만큼 압축하고, 5초 방치 후 Load를 제거하였다. Load 제거 후 하이드로겔의 높이 측정하여 회복율 계산하였다. 그 결과, 도 8A에 나타난 봐와 같이, 10% 내지 45%의 strain을 가한 후에 회복율을 나타내었다. 도 8B 및 8C는 실시예 2.2.7 내지 2.2.9의 하이드로겔의 strain에 따른 회복율을 나타낸다. 도 8A 내지 8C에 나타낸 바와 같이, 글리세롤의 비율을 조정함으로써, 생성된 겔화 조성물의 회복율을 변화시킬 수 있음을 확인하였다.
도 9는 1제 및 2제를 혼합한 하이드로겔에, NaOH를 포함한 3제를 처리하여 3차 가교한 하이드로겔의 압축 강도를 평가한 결과이다. 일 실시예에서, 1제(2.5% chitosan 10mL, 0.5M dibasic 0.8mL) 및 2제 (glycerol 1.2mL)를 혼합 Homogenizing 및 printing하였다. 그 후 30mM NaOH를 첨가하여 1시간 동안 3차 가교하였다. 그 결과, 3차 가교 후에 하이드로겔의 압축 강도가 증가되는 것을 확인하였다. 이러한 실험 결과는 일 양상에 따른 1제, 2제 및 3제가 혼합된 액상 제형의 하이드로겔 조성물은 실온 조건에서 1제 및 2제만이 혼합된 액상 제형의 하이드로겔 혼합물에 비해 큰 압력을 견딜 필요가 있는 제형에 적용될 수 있음을 나타낸 것이다.
실험예 4. 동물 모델을 이용한 온도감응성 하이드로겔의 평가
실험예 4.1. 액상형으로 후 체내 주입
본 실험예에서는 동물 모델을 이용하여, 액상형으로 체내 주입시 형성된 온도감응성 하이드로겔의 물성 변화, 체내 면역반응을 평가하고자 하였다.
구체적으로, 1제 및 2제가 혼합된, 실시예 2.2.1 내지 2.2.9의 액상 제형의 하이드로겔 조성물을 마우스의 피내에 0.1ml씩 이식하였다. 이후 각각 2주, 4주, 12주가 경과된 시점에 부검하여 하이드로겔의 형상을 관찰하고, 조직 샘플을 파라핀 블록으로 제조 후 섹션하여 H&E 및 MT staining을 진행하였다.
도 10은 일 실시예에 따른 액상 제형의 1제와 2제를 혼합한 후, 마우스의 피내에서 형성된 하이드로겔의 형상을 육안 또는 현미경을 통해 확인한 결과이다. 도 14에 나타낸 바와 같이, 일 실시예에 따른 온도감응성 하이드로겔은 액상형으로 체내 주입 즉시 겔화가 시작되었으며, 시작 후 30분 내에 겔화가 완료되었다.
도 11은 일 실시예에 따른 액상 제형의 1제와 2제를 혼합한 후, 마우스의 피내에서 형성된 하이드로겔을 1주일 후에 관찰한 결과이다.
도 12는 일 실시예에 따른 액상 제형의 1제와 2제를 혼합한 후, 마우스의 피내에서 형성된 하이드로겔에 의한 체내 면역 반응 여부를 확인한 결과이다. 도 12에 나타낸 바와 같이, 마우스 피내 염증 반응을 포함하는 병리학적 소견은 관찰되지 않았다.
도 13은 온도 및 체액 동시 감응 겔화에 따른 물성 증가를 확인한 도이다. 1제 및 2제를 혼합한 액상 상태의 소재를 SD-rat 체내 주입 30분 후에, 40%의 Strain으로 압축하여 물성을 확인하였다. 그 결과, 온도 및 체액 감응 겔화 후 온도감응성 하이드로겔의 물성이 증가한 것을 확인할 수 있었다.
실험예 4.2. 겔화 후 체내 주입
본 실험예에서는 동물 모델을 이용하여, 1제 및 2제를 혼합하여 체외에서 겔화된 형성된 온도감응성 하이드로겔을 체내 주입시의 물성 변화를 평가하고자 하였다.
구체적으로, 실시예 2.2.1 내지 2.2.9의 비율로 혼합된 1제 및 2제의 혼합물을 체외에서 겔화시킨 후 마우스의 피내에 0.1ml씩 이식하였다. 이후 각각 2주, 4주, 12주가 경과된 시점에 부검하여 하이드로겔의 형상을 관찰하고, 조직 샘플을 파라핀 블록으로 제조 후 섹션하여 H&E 및 MT staining을 진행하였다.
도 14는 체외에서 온도 감응 겔화 후, 체액과 감응시킨 경우 하이드로겔의 물성 증가를 확인한 도이다. 구체적으로, 상기 1제와 2제가 혼합한 된, 액상 제형의 조직 수복용 하이드로겔 조성물을 37℃ 인큐베이터에서 약 24시간 보관하여 겔화를 진행하였다. 상기 겔화된 하이드로겔을 SD-rat 체내 주입하고 30분 후에, 40%의 Strain으로 압축하여 물성을 확인하였다. 그 결과, 체액 감응에 따라 소재의 물성이 추가로 향상된 것을 확인하였다.
도 15는 액상 제형의 1제와 2제를 혼합한 후, 마우스의 피내에서 형성된 하이드로겔 (분리형) 및 액상 제형의 1제와 2제를 혼합하여 체외에서 겔화한 후, 마우스의 피내에서 체액 감응 겔화한 하이드로겔 (일체형)의 물성을 비교한 도이다.
실험예 5. 온도감응성 하이드로겔의 지속성 평가
본 실험예에서는 체내 조건에서 형성된 온도감응성 하이드로겔의 지속성을 평가하고자 하였다. 구체적으로, 상기 1제와 2제가 혼합한 된, 액상 제형의 하이드로겔 조성물을 37℃ 인큐베이터에서 약 24시간 보관하여 겔화를 진행하였다. 이후, 형성된 하이드로겔을 0.2ml씩 잘라 1.5ml의 PBS에 담아 밀봉하여 37℃ 인큐베이터에서 보관하였다. 이후, 시간의 경과에 따라, PBS를 제거하면서 각 하이드로겔의 부피를 측정하였다.
도 16은 일 실시예에 따른 액상 제형의 1제와 2제를 혼합한 후, 마우스의 피내에서 형성된 하이드로겔의 가교제 농도에 따른 분해속도를 비교한 결과이다. 도 16에 나타낸 바와 같이, 가교제의 농도가 높은 경우에 하이드로겔의 분해 속도가 더 느린 것을 확인할 수 있었다.
실험예 6. 탈세포 기질을 포함한 하이드로겔의 겔화 확인
본 실험예에서는 하이드로겔에 탈세포 기질을 포함시키는 경우, 혈관화 지방조직 유도능이 우수할 것으로 예상하여 이에 대한 실험을 수행하였다. 구체적으로, 상기 1제에 탈세포 기질을 포함시켰다. 마우스에 주입전, 상기 1제 및 2제를 혼합한 다음, 마우스의 체내에 주입하여 체내 조건에서 하이드로겔의 겔화를 확인하였다.
도 17는 일 실시예에 따른 탈세포 소재가 포함된 액상 제형의 1제와 2제를 혼합한 후, 마우스에 주입하기 전후의 하이드로겔의 모습 및 혼합된 액상 제형의 1제 및 2제를 주입한 마우스를 관찰한 도이다. 도 17에 나타낸 바와 같이, 체내 조건에서 겔화가 우수하게 진행된 것을 확인할 수 있었다.
도 18은 상기 도 17에서 확인한 체내 주입 전후 하이드로겔의 탄성도를 확인한 결과이다. 도 18에서 나타낸 바와 같이, 상기 탈세포 기질을 포함시킨 1제와 2제를 단순히 혼합했을 때보다, 체내에 주입했을 때, 탄성도가 현저한 수준으로 증가하는 것을 확인하였다. 따라서, 탈세포 기질을 포함하는 하이드로겔은 체내 조건에 반응하여 현저한 수준의 겔화가 이뤄지는 것을 확인할 수 있었다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (16)

  1. 키토산 및 인산 이온이 함유된 수용액을 포함하는 액상 제형의 1제를 포함하는 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물로서,
    상기 1제 조성물 전체 중량에 대하여, 0.05 내지 3.5 중량%의 키토산, 0.1 내지 40 중량%의 인산 이온이 함유된 수용액을 포함하는 것인, 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물로서,
    상기 1제에 포함된 상기 키토산이 함유된 수용액 및 인산 이온이 함유된 수용액의 중량비는 1: 0.01 내지 0.3 중량부인 것인, 조성물.
  2. 청구항 1에 있어서,
    상기 액상 제형의 1제는 실온 조건에서 1시간 내지 7일간 안정화시킨 것인, 조성물.
  3. 청구항 1에 있어서,
    상기 인산 이온이 함유된 수용액은 인산나트륨 이염기, 인산나트륨 일염기, 인산 암모늄 이염기성, 인산 이수소, 인산 트리나트륨, 인산칼륨 이염기성, 인산칼륨 일염기성, 다이메틸포스페이트, 모노마그네슘 인산염, 마그네슘 인산염 이염기, 리튬 디수소 인산염, 리튬 인산염, 칼슘수소인산염 수화물, 칼슘수소인산염으로 이루어지는 군으로부터 선택되는 적어도 1 이상의 인산염을 포함하는 것인, 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물.
  4. 청구항 1에 있어서,
    상기 키토산이 함유된 수용액 및 인산 이온이 함유된 수용액의 중량비는 1: 0.16 내지 0.18인 것인, 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물.
  5. 청구항 1에 있어서,
    상기 액상 제형의 1제는 탈세포 기질을 더 포함하는 것인, 조성물.
  6. 청구항 1에 있어서,
    글리세롤이 함유된 액상 제형의 2제를 더 포함하는, 다중 가교된 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물.
  7. 청구항 6에 있어서,
    상기 액상 제형의 2제는 탈세포 기질을 더 포함하는 것인, 조성물.
  8. 청구항 6에 있어서,
    상기 2제는 상기 글리세롤을 상기 1제의 키토산이 함유된 수용액 1 중량부 당 0.10 내지 0.14 중량부로 포함하는 것인, 다중 가교된 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물.
  9. 청구항 1에 있어서,
    상기 조성물은 하이드로겔 조성물의 강도 변화를 위한 염기성 수용액을 포함하는 3제를 추가로 포함하는 것인, 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물.
  10. 청구항 6에 있어서,
    상기 1제 및 2제는 용기 내 분리된 공간에 격리되어 있는 것인, 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물로서,
    상기 조성물은 상기 1제 및 2제의 혼합물이 체내에 주입된 후, 겔 제형을 형성하는 것인, 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물.
  11. 청구항 6에 있어서,
    상기 1제 및 2제는 혼합되어 있는 것인, 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물로서,
    상기 조성물은 상기 1제 및 2제의 혼합물이 체내에 주입되기 전, 겔 제형을 형성하는 것인, 온도감응성 하이드로겔 조성물을 제조하기 위한 조성물.
  12. 키토산 이온을 포함하는 용액 및 인산 이온이 함유된 수용액을 혼합하여 액상 제형의 1제를 제조하는 단계로서,
    상기 1제에 포함된 상기 키토산이 함유된 수용액 및 인산 이온이 함유된 수용액의 중량비는 1: 0.01 내지 0.3 중량부인 것인, 온도감응성 하이드로겔 조성물을 제조하는 방법.
  13. 청구항 12에 있어서,
    상기 하이드로겔 조성물을 제조하는 방법은 상기 액상 제형의 1제를 1시간 내지 7일간 안정화시키는 단계를 더 포함하는 것인, 온도감응성 하이드로겔 조성물을 제조하는 방법.
  14. 청구항 12에 있어서, 상기 액상 제형의 1제와 글리세롤이 함유된 액상 제형의 2제를 혼합하는 단계를 더 포함하는, 온도감응성 하이드로겔 조성물을 제조하는 방법.
  15. 청구항 14에 있어서, 상기 1제 및 2제의 액상 제형 혼합물을 체내 조건에서 다중 가교시키는 단계를 더 포함하는, 온도감응성 하이드로겔 조성물을 제조하는 방법.
  16. 청구항 12에 있어서, 하이드로겔 조성물의 강도 변화를 위한 염기성 수용액을 포함하는 3제를 추가로 혼합하는 단계를 더 포함하는, 온도감응성 하이드로겔 조성물을 제조하는 방법.
PCT/KR2022/009842 2021-07-07 2022-07-07 다중 가교된 온도감응성 하이드로겔 제조용 조성물 및 이의 용도 WO2023282658A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/577,650 US20240239966A1 (en) 2021-07-07 2022-07-07 Composition for preparing multi-crosslinked temperature-sensitive hydrogel, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0089206 2021-07-07
KR1020210089206A KR102415342B1 (ko) 2021-07-07 2021-07-07 다중 가교된 온도감응성 하이드로겔 제조용 조성물 및 이의 용도

Publications (1)

Publication Number Publication Date
WO2023282658A1 true WO2023282658A1 (ko) 2023-01-12

Family

ID=82399147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009842 WO2023282658A1 (ko) 2021-07-07 2022-07-07 다중 가교된 온도감응성 하이드로겔 제조용 조성물 및 이의 용도

Country Status (3)

Country Link
US (1) US20240239966A1 (ko)
KR (1) KR102415342B1 (ko)
WO (1) WO2023282658A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102415342B1 (ko) * 2021-07-07 2022-07-04 주식회사 메디팹 다중 가교된 온도감응성 하이드로겔 제조용 조성물 및 이의 용도

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130021385A (ko) * 2010-04-06 2013-03-05 동국대학교 산학협력단 콜라겐 하이드로겔 제조용 멀티 시린지
KR20180117417A (ko) * 2017-04-19 2018-10-29 한국과학기술연구원 하이드로겔 조성물 및 그를 포함하는 바이오 잉크 조성물
KR102100506B1 (ko) * 2019-06-27 2020-04-13 주식회사 메디팹 온도 감응성 키토산 하이드로겔 조성물 및 그를 포함하는 바이오 잉크 조성물
KR102415342B1 (ko) * 2021-07-07 2022-07-04 주식회사 메디팹 다중 가교된 온도감응성 하이드로겔 제조용 조성물 및 이의 용도

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201536326A (zh) * 2013-05-10 2015-10-01 Shih-Hwa Chiou 一種緩釋醫藥組合物
KR20200049998A (ko) * 2018-10-30 2020-05-11 (주)더스탠다드 온도 감응성 조성물 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130021385A (ko) * 2010-04-06 2013-03-05 동국대학교 산학협력단 콜라겐 하이드로겔 제조용 멀티 시린지
KR20180117417A (ko) * 2017-04-19 2018-10-29 한국과학기술연구원 하이드로겔 조성물 및 그를 포함하는 바이오 잉크 조성물
KR102100506B1 (ko) * 2019-06-27 2020-04-13 주식회사 메디팹 온도 감응성 키토산 하이드로겔 조성물 및 그를 포함하는 바이오 잉크 조성물
KR102415342B1 (ko) * 2021-07-07 2022-07-04 주식회사 메디팹 다중 가교된 온도감응성 하이드로겔 제조용 조성물 및 이의 용도

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM EUN JI, CHOI JI SUK, KIM JUN SUNG, CHOI YOUNG CHAN, CHO YONG WOO: "Injectable and Thermosensitive Soluble Extracellular Matrix and Methylcellulose Hydrogels for Stem Cell Delivery in Skin Wounds", BIOMACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 17, no. 1, 11 January 2016 (2016-01-11), US , pages 4 - 11, XP093022652, ISSN: 1525-7797, DOI: 10.1021/acs.biomac.5b01566 *
MEKHAIL MINA, MARYAM TABRIZIAN: "Injectable Chitosan-Based Scaffolds in Regenerative Medicine and their Clinical Translatability", ADVANCED HEALTHCARE MATERIALS, vol. 3, no. 10, 10 March 2014 (2014-03-10), pages 1529 - 1545, XP093022654, DOI: 10.1002/adhm.201300586 *

Also Published As

Publication number Publication date
US20240239966A1 (en) 2024-07-18
KR102415342B1 (ko) 2022-07-04

Similar Documents

Publication Publication Date Title
CN113164652B (zh) 具有优异的填充剂性能的包含透明质酸水凝胶的填充剂
WO2018080221A1 (ko) 생체친화형 하이드로젤 및 제조방법
EP2892575B1 (en) Hyaluronic acid/collagen- based dermal filler compositions and methods for making same
WO2021132969A1 (ko) 마취제, 완충 용액 및 히알루론산 하이드로겔을 포함하는 주사용 조성물 및 이의 제조방법
WO2020009555A1 (ko) 높은 점탄성 및 응집성을 동시에 갖는 히알루론산 필러
US20230190998A1 (en) Method for producing a collagen membrane and uses thereof
WO2023282658A1 (ko) 다중 가교된 온도감응성 하이드로겔 제조용 조성물 및 이의 용도
WO2018159983A1 (ko) 피부 주입용 조성물
WO2013015579A9 (ko) 콜라겐 및 히알루론산 유도체를 포함하는 의료용 복합 생체 소재
KR102067187B1 (ko) 이중 가교를 이용한 조직수복용 생체조성물의 제조방법 및 그로부터 제조된 생체조성물
WO2014092239A1 (ko) 콜라겐과 피브린이 혼합된 조직 실란트 및 그 제조방법
WO2020013580A1 (ko) 높은 리프트 능력 및 낮은 주입력을 갖는 히알루론산 필러
WO2021256820A1 (ko) 골 유착능이 우수한 피크 임플란트 및 이의 제조방법
WO2021235662A1 (ko) 펩타이드 가교제를 이용한 히알루론산 기반의 하이드로겔 및 이의 제조 방법
WO2018159984A1 (ko) 피부 주입용 조성물
WO2011126294A2 (ko) 콜라겐 하이드로겔 제조용 멀티 시린지
WO2018062728A1 (ko) 가교 히알루론산을 포함하는 주사용 조성물
WO2023027330A1 (ko) 폴리에틸렌글리콜(peg)과 글리콜라이드(ga)를 가교제로 사용한 히알루론산(ha) 필러 조성물 및 그 제조방법
WO2023125686A1 (en) Soft tissue augmentation using injectable, neutral ph soluble collagen-glycosaminoglycan compositions
WO2023038463A1 (ko) 6-arm peg 수화겔의 시간 경과에 따른 졸-겔 전환
WO2022145577A1 (ko) 온도감응성 조직 수복용 생체재료 제조용 조성물 및 이의 용도
WO2021125373A1 (ko) 지방조직 유래 세포외기질을 포함하는 의료용 조성물 및 그 제조방법
DE3650152T2 (de) Viskoelastische Kollagenlösung für augenheilkundige Verwendung und Verfahren zur Herstellung.
WO2014084567A1 (ko) 실크 하이드로겔 조성물 및 실크 하이드로겔 마스크
WO2017057824A1 (en) Polyethylene glycol hydrogel injection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22838010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 18577650

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 22838010

Country of ref document: EP

Kind code of ref document: A1