WO2023280302A1 - 一种基于分级阵列式智能分选进行矿石预选的方法及系统 - Google Patents

一种基于分级阵列式智能分选进行矿石预选的方法及系统 Download PDF

Info

Publication number
WO2023280302A1
WO2023280302A1 PCT/CN2022/104611 CN2022104611W WO2023280302A1 WO 2023280302 A1 WO2023280302 A1 WO 2023280302A1 CN 2022104611 W CN2022104611 W CN 2022104611W WO 2023280302 A1 WO2023280302 A1 WO 2023280302A1
Authority
WO
WIPO (PCT)
Prior art keywords
sorting
ore
particle size
level
granularity
Prior art date
Application number
PCT/CN2022/104611
Other languages
English (en)
French (fr)
Inventor
郭劲
童晓蕾
Original Assignee
湖州霍里思特智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖州霍里思特智能科技有限公司 filed Critical 湖州霍里思特智能科技有限公司
Priority to AU2022308860A priority Critical patent/AU2022308860A1/en
Priority to CA3224924A priority patent/CA3224924A1/en
Publication of WO2023280302A1 publication Critical patent/WO2023280302A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/346Sorting according to other particular properties according to radioactive properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C21/00Disintegrating plant with or without drying of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/14Separating or sorting of material, associated with crushing or disintegrating with more than one separator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • B07C5/363Sorting apparatus characterised by the means used for distribution by means of air
    • B07C5/365Sorting apparatus characterised by the means used for distribution by means of air using a single separation means
    • B07C5/366Sorting apparatus characterised by the means used for distribution by means of air using a single separation means during free fall of the articles

Definitions

  • the invention belongs to the technical field of ore sorting, and more specifically relates to a method and system for pre-selecting ore based on hierarchical array intelligent sorting.
  • conventional beneficiation methods mainly include forward flotation, forward-reverse flotation, reverse flotation, double reverse flotation, dense medium beneficiation, dense medium-flotation combined beneficiation, etc.
  • flotation is still the dominant separation method.
  • the high energy consumption, high chemical consumption, and tailings water treatment of phosphate rock flotation make the cost of obtaining phosphate concentrate too high, and the problem of being unfriendly to the environment has become increasingly prominent.
  • X-ray (X-ray) separation technology is also beginning to try to apply.
  • the present invention provides a phosphate rock preselection method based on array type intelligent sorting.
  • the ore pre-selection process such as phosphate rock of the present invention is generally applicable to the beneficiation process, and is especially suitable for the situation when a large amount of ore needs to be separated.
  • a method for ore preselection based on hierarchical array intelligent sorting comprising:
  • the sorting hierarchy structure includes at least two sorting levels and each sorting level includes at least one intelligent sorting device;
  • the sorting hierarchy structure of the plurality of intelligent sorting devices determine a granularity hierarchy structure for multi-level granularity processing of the ore to be processed, wherein the granularity hierarchy structure includes at least two granularity levels;
  • the ore to be processed is pre-selected to obtain ore that meets the predetermined particle size.
  • the number of smart sorting devices and the sorting hierarchy of multiple smart sorting devices used for hierarchical array smart sorting are determined according to the parameter information, including:
  • determining the number of intelligent sorting equipment based on throughput includes:
  • the number of intelligent sorting equipment is determined based on the ore sorting volume and throughput per unit time of each intelligent sorting equipment.
  • the sorting hierarchy of multiple intelligent sorting devices for hierarchical array intelligent sorting is determined, including:
  • the sorting hierarchical structure of multiple intelligent sorting equipment is: the hierarchical structure in which the number of intelligent sorting equipment decreases from the large granularity sorting level to the small granularity sorting level;
  • the sorting hierarchical structure of the equipment is: select at least one target sorting level among multiple sorting levels and arrange at least two intelligent sorting devices in parallel at each target sorting level.
  • the intelligent sorting equipment can use the feeding sub-equipment to provide ore with a predetermined particle size to the high-speed belt of the transmission sub-equipment;
  • the high-speed belt of the transmission sub-equipment enters a steady state after transporting the ore with a predetermined particle size for a predetermined distance, and transmits the ore with a predetermined particle size to the sensing sub-equipment;
  • the ray source uses X-rays excited by high pressure to irradiate the ore with a predetermined particle size. different degrees of attenuation;
  • the attenuation data information is collected by the detector located under the belt of the sensing sub-equipment, the attenuation data information is converted into a photoelectric digital signal, and the photoelectric digital signal is transmitted to the intelligent identification sub-equipment of the intelligent identification system;
  • the intelligent identification sub-equipment generates the image to be identified based on the photoelectric digital signal, and performs content identification on the image to be identified to determine the ore parameters of the ore with a predetermined particle size, determine the current sorting parameters based on the current grade threshold, and compare the ore parameters with the current sorting parameters , to mark the ore of the predetermined particle size as waste rock, concentrate ore or intermediate ore based on the comparison result, and send the position information of the ore marked as waste rock, concentrate ore or intermediate ore to the injection control unit of the separation sub-equipment;
  • the air discharge gun of the separation sub-equipment is under the control of the injection control unit, and is marked as waste rock, concentrate or intermediate by blowing through the nozzle of the air discharge gun.
  • the ore of the ore so as to separate the waste rock, the concentrate and the intermediate ore, and realize the separation of the ore with a predetermined particle size.
  • each granularity level includes: crushing treatment and screening treatment, and according to the processing sequence from the largest granularity ore to the smallest granularity ore in the multi-level granularity treatment, the granularity of the ore obtained by each granularity level in the multiple granularity levels Decrease in turn.
  • the input ore is crushed, and the crushed ore is screened;
  • the sorting hierarchy structure of multiple intelligent sorting devices for hierarchical array intelligent sorting includes a first sorting level, a second sorting level and a third sorting level;
  • the granularity hierarchy structure includes a first granularity level, a second granularity level and a third granularity level.
  • It also includes performing primary crushing and primary screening on the ore to be processed by using the crushing treatment of the first particle size level, so as to obtain ores in the first crushing particle size range and ores in the second crushing particle size range;
  • Secondary crushing and secondary screening are carried out on the primary intermediate ore and the ore in the second crushing particle size range by the crushing treatment of the second particle size level, so as to obtain the ore in the third crushing particle size range and the ore in the fourth crushing particle size range;
  • the secondary intermediate ore circulation is subjected to three-stage crushing and three-stage screening to obtain ores in the fourth crushing particle size range and fifth crushing particle size range;
  • the second sorting level and/or the third sorting level include multiple intelligent sorting devices connected in parallel.
  • the first crushed particle size range is a particle size range less than or equal to the first particle size and greater than or equal to the second particle size
  • the second broken particle size range is a particle size range smaller than the second particle size and greater than 0;
  • the third broken particle size range is a particle size range smaller than the second particle size and greater than or equal to the third particle size
  • the fourth broken particle size range is a particle size range smaller than the third particle size and greater than 0;
  • the fifth broken particle size range is a particle size range smaller than the fourth particle size and greater than or equal to the third particle size
  • first particle size is larger than the second particle size
  • second particle size is larger than the third particle size
  • fourth particle size is larger than the third particle size
  • Each processing level includes: granularity level and sorting level.
  • each intelligent sorting device among multiple intelligent sorting devices, wherein multiple intelligent sorting devices in the same sorting level are used to sort ores in the same crushing size range, and different sorting levels Advanced intelligent sorting equipment is used to sort ores with different crushing particle size ranges.
  • Configuring each of the multiple smart sorting devices includes:
  • Configuring each of the multiple smart sorting devices includes:
  • Configuring each of the multiple smart sorting devices includes:
  • the injection control unit of the intelligent sorting equipment to be configured is set, and the injection control unit controls the gas discharge gun according to the gas injection parameters, so that each nozzle of the gas discharge gun can spray the gas of predetermined pressure or intensity;
  • the gas injection parameters include: nozzle size, gas flow pressure and/or single injection time length.
  • the intelligent sorting equipment is capable of sorting at least two different types of ores by using an air discharge gun, wherein the air discharge gun includes a plurality of nozzles, and each nozzle can spray at a predetermined time and at a predetermined pressure under the control of the injection control unit gas.
  • the separation of at least two different types of ores by means of air discharge guns includes:
  • the injection control unit controls the air flow pressure of the gas injected by the nozzle of the air exhaust gun, so that the injected gas can produce different hitting strengths for each type of ore in at least two different types of ores, so as to promote each Types of ore enter the corresponding silo.
  • the air exhaust gun is located on one side of the ore path, and the air exhaust gun includes at least one row of nozzles.
  • the air exhaust gun includes at least one row of nozzles.
  • the gas discharge guns are located on both sides of the ore path, and the gas discharge guns on each side include at least one row of nozzles, so that the gas discharge guns inject gas from two different directions to strike at least two different types of ore.
  • a system for ore preselection based on hierarchical array intelligent sorting comprising:
  • the sorting setting device is used to obtain the parameter information of the ore to be processed, and determine the number of intelligent sorting equipment and the sorting hierarchy structure of multiple intelligent sorting equipment for hierarchical array intelligent sorting according to the parameter information, said the sorting hierarchy comprises at least two sorting levels and each sorting level comprises at least one intelligent sorting device;
  • the granularity setting device determines the granularity hierarchical structure for multi-level granularity processing of the ore to be processed, wherein the granularity hierarchical structure includes at least two granularity levels;
  • Associating means for associating each sorting level in the sorting hierarchy with a corresponding granularity level in the granularity hierarchy to form a multi-level ore processing structure including at least two processing levels;
  • the processing device is based on the multi-level ore processing structure for ore pre-selection of the ore to be processed, so as to obtain ore that meets the predetermined particle size.
  • the sorting setting device determines the number of intelligent sorting devices according to the parameter information and the sorting hierarchy of multiple smart sorting devices used for hierarchical array smart sorting includes:
  • the sorting setting device obtains the configuration file associated with ore pre-selection, and determines the throughput of ore pre-selection according to the configuration file;
  • the sorting setting device analyzes the parameter information to determine the initial waste rock ratio, initial concentrate ratio and initial average particle size of the ore to be processed;
  • the sorting setting device determines the number of smart sorting devices based on throughput, and determines multiple smart sorters for hierarchical array smart sorting based on the initial waste rock ratio, initial concentrate ratio, and initial average particle size of ores to be processed The sorting hierarchy for the device.
  • the sorting setting device determines the quantity of intelligent sorting equipment based on the throughput including:
  • the sorting setting device determines the ore sorting amount per unit time of each intelligent sorting device
  • the sorting setting device determines the number of smart sorting devices based on the ore sorting volume and throughput per unit time of each smart sorting device.
  • the sorting setting device determines the sorting hierarchy of multiple intelligent sorting devices for hierarchical array intelligent sorting based on the initial waste rock ratio, initial concentrate ratio and initial average particle size of the ore to be processed, including:
  • the sorting setting device determines the sorting hierarchical structure of multiple intelligent sorting devices for intelligent sorting is: the hierarchical structure in which the number of intelligent sorting devices decreases from the large granularity sorting level to the small granularity sorting level;
  • the sorting setting device determines the multiple The sorting hierarchical structure of an intelligent sorting device is: select at least one target sorting level among multiple sorting levels and arrange at least two intelligent sorting devices in parallel at each target sorting level.
  • Intelligent sorting equipment which can use the feeding sub-equipment to provide ore with a predetermined particle size to the high-speed belt of the transmission sub-equipment;
  • the high-speed belt of the transmission sub-equipment enters into a steady state after transporting the ore with a predetermined particle size for a predetermined distance, and the ore with a predetermined particle size is transmitted to the sensing sub-equipment;
  • the ray source uses X-rays excited by high pressure to irradiate the ore with a predetermined particle size. different degrees of attenuation;
  • the attenuation data information is collected by the detector located under the belt of the sensing sub-equipment, the attenuation data information is converted into a photoelectric digital signal, and the photoelectric digital signal is transmitted to the intelligent identification sub-equipment of the intelligent identification system;
  • the intelligent identification sub-equipment generates the image to be identified based on the photoelectric digital signal, and performs content identification on the image to be identified to determine the ore parameters of the ore with a predetermined particle size, determine the current sorting parameters based on the current grade threshold, and compare the ore parameters with the current sorting parameters , to mark the ore of the predetermined particle size as waste rock, concentrate ore or intermediate ore based on the comparison result, and send the position information of the ore marked as waste rock, concentrate ore or intermediate ore to the injection control unit of the separation sub-equipment;
  • the air discharge gun of the separation sub-equipment is under the control of the injection control unit, and is marked as waste rock, concentrate or intermediate by blowing through the nozzle of the air discharge gun.
  • the ore of the ore so as to separate the waste rock, the concentrate and the intermediate ore, and realize the separation of the ore with a predetermined particle size.
  • each granularity level includes: crushing treatment and screening treatment, and according to the processing sequence from the largest granularity ore to the smallest granularity ore in the multi-level granularity treatment, the granularity of the ore obtained by each granularity level in the multiple granularity levels Decrease in turn.
  • the input ore is crushed, and the crushed ore is screened;
  • the sorting hierarchy structure of multiple intelligent sorting devices for hierarchical array intelligent sorting includes a first sorting level, a second sorting level and a third sorting level;
  • the granularity hierarchy structure includes a first granularity level, a second granularity level and a third granularity level.
  • It also includes performing primary crushing and primary screening on the ore to be processed by using the crushing treatment of the first particle size level, so as to obtain ores in the first crushing particle size range and ores in the second crushing particle size range;
  • Secondary crushing and secondary screening are carried out on the primary intermediate ore and the ore in the second crushing particle size range by the crushing treatment of the second particle size level, so as to obtain the ore in the third crushing particle size range and the ore in the fourth crushing particle size range;
  • the secondary intermediate ore circulation is subjected to three-stage crushing and three-stage screening to obtain ores in the fourth crushing particle size range and fifth crushing particle size range;
  • the second sorting level and/or the third sorting level include multiple intelligent sorting devices connected in parallel.
  • the first crushed particle size range is a particle size range less than or equal to the first particle size and greater than or equal to the second particle size
  • the second broken particle size range is a particle size range smaller than the second particle size and greater than 0;
  • the third broken particle size range is a particle size range smaller than the second particle size and greater than or equal to the third particle size
  • the fourth broken particle size range is a particle size range smaller than the third particle size and greater than 0;
  • the fifth broken particle size range is a particle size range smaller than the fourth particle size and greater than or equal to the third particle size
  • first particle size is larger than the second particle size
  • second particle size is larger than the third particle size
  • fourth particle size is larger than the third particle size
  • Each processing level includes: granularity level and sorting level.
  • each intelligent sorting device among multiple intelligent sorting devices, wherein multiple intelligent sorting devices in the same sorting level are used to sort ores in the same crushing size range, and different sorting levels Advanced intelligent sorting equipment is used to sort ores with different crushing particle size ranges.
  • Configuring each of the multiple smart sorting devices includes:
  • Configuring each of the multiple smart sorting devices includes:
  • Configuring each of the multiple smart sorting devices includes:
  • the injection control unit of the intelligent sorting equipment to be configured is set, and the injection control unit controls the gas discharge gun according to the gas injection parameters, so that each nozzle of the gas discharge gun can spray gas with a predetermined pressure or strength;
  • the gas injection parameters include: nozzle size, gas flow pressure and/or single injection time length.
  • the intelligent sorting equipment is capable of sorting at least two different types of ores by using an air discharge gun, wherein the air discharge gun includes a plurality of nozzles, and each nozzle can spray at a predetermined time and at a predetermined pressure under the control of the injection control unit gas.
  • the separation of at least two different types of ores by means of air discharge guns includes:
  • the injection control unit controls the air flow pressure of the gas injected by the nozzle of the air exhaust gun, so that the injected gas can produce different hitting strengths for each type of ore in at least two different types of ores, so as to promote each The type of ore enters the corresponding silo.
  • the air exhaust gun is located on one side of the ore path, and the air exhaust gun includes at least one row of nozzles.
  • the air exhaust gun includes at least one row of nozzles.
  • the gas discharge guns are located on both sides of the ore path, and the gas discharge guns on each side include at least one row of nozzles, so that the gas discharge guns inject gas from two different directions to strike at least two different types of ore.
  • a phosphate rock pre-selection process method based on array type intelligent sorting comprising:
  • Step 101 the raw ore undergoes initial crushing, and the crushing particle size is controlled at N1-N2mm. After crushing, it passes through the first screening system, and after screening, the particle size greater than N2mm is recycled to the crusher, and the particle size is smaller than N1mm, enters the second screening system , the intermediate particle size N1-N2mm enters the first sorting system;
  • Step 102 the first sorting system sorts the incoming phosphate rock into worthless waste rocks with a grade lower than M1, commercial ores with a grade higher than M2, and intermediate ores in between;
  • Step 103 the intermediate ore enters the medium or fine crushing system for crushing and then enters the second screening system.
  • the particles with a particle size greater than N1mm are circulated back to the crusher, and those with a particle size smaller than n1mm enter the fine ore collection system, and those with a particle size of n1-N1mm Enter the second sorting system for sorting.
  • Both the first sorting system and the second sorting system are X-ray intelligent sorting machines, including a sensing system, an intelligent identification system and a separation system.
  • the second sorting system is a parallel connection of multiple intelligent sorting machines.
  • the second sorting system sorts the incoming phosphate rock into three types: tailings, concentrate, and intermediate ore. After crushing and screening the sorted intermediate ore, it is sent to the third sorting system for further processing. sorting.
  • a computer-readable storage medium wherein the storage medium stores a computer program, and the computer program is used to execute any one of the methods described above.
  • an electronic device wherein the electronic device includes:
  • the processor is configured to read the executable instruction from the memory, and execute the instruction to implement any one of the methods described above.
  • the invention breaks ores such as phosphate rock into different particle sizes, identifies and separates waste rocks and concentrates within each particle size range, reduces the rate of fine ore produced, improves the grade of fine ore, and avoids the The problem of high energy consumption caused by crushing into small particle sizes.
  • Fig. 1 is the flow chart of the method for ore preselection based on hierarchical array intelligent sorting according to an embodiment of the present invention
  • Fig. 2 is the flowchart of the method for ore preselection based on hierarchical array intelligent sorting according to another embodiment of the present invention
  • FIG. 3 is a schematic structural view of a device for ore preselection based on hierarchical array intelligent sorting according to an embodiment of the present invention
  • Fig. 4 is a schematic structural diagram of an intelligent sorting system according to an embodiment of the present invention.
  • Fig. 1 is a flowchart of a method 100 for ore preselection based on hierarchical array intelligent sorting according to an embodiment of the present invention.
  • Method 100 starts at step 101 .
  • step 101 the parameter information of the ore to be processed is obtained, and the number of intelligent sorting equipment and the sorting hierarchy structure of multiple intelligent sorting equipment for hierarchical array intelligent sorting are determined according to the parameter information, and the sorting hierarchy
  • the structure includes at least two sorting levels and each sorting level includes at least one intelligent sorting device.
  • the determination of the number of intelligent sorting equipment and the sorting hierarchy structure of multiple intelligent sorting equipment for hierarchical array intelligent sorting according to the parameter information includes: obtaining the configuration file associated with the ore pre-selection, and determining the ore pre-selection according to the configuration file Throughput; analyze the parameter information to determine the initial waste rock ratio, initial concentrate ratio and initial average particle size of the ore to be processed; determine the number of intelligent sorting equipment based on the throughput, and based on the initial waste rock ratio of the ore to be processed The stone ratio, the initial concentrate ratio and the initial average particle size determine the sorting hierarchy of multiple intelligent sorting devices used for hierarchical array intelligent sorting.
  • the determination of the number of intelligent sorting equipment based on throughput includes: determining the ore sorting volume per unit time of each intelligent sorting equipment; determining the ore sorting volume and throughput per unit time based on each intelligent sorting equipment The number of intelligent sorting equipment.
  • the sorting hierarchy of multiple intelligent sorting devices for hierarchical array intelligent sorting includes: when the initial ore to be processed When the waste rock ratio is greater than or equal to the waste rock ratio threshold, the initial concentrate ratio is greater than or equal to the concentrate ratio threshold, or the initial average particle size is greater than or equal to the initial particle size threshold, determine multiple intelligent sorting devices for hierarchical array intelligent sorting
  • the sorting hierarchical structure is: the hierarchical structure in which the number of intelligent sorting equipment decreases from the large granularity sorting level to the small granularity sorting level;
  • the sorting hierarchical structure of the equipment is: select at least one target sorting level in multiple sorting levels and arrange at least two intelligent sorting devices in parallel at each target sorting level.
  • Fig. 4 is the structural schematic diagram of the intelligent sorting system according to the embodiment of the present invention, as shown in Fig. 4, described intelligent sorting equipment can utilize the ore of predetermined granularity to be provided to the high-speed belt of transmission sub-equipment by feeding sub-equipment;
  • the high-speed belt of the equipment enters into a steady state after transporting the ore with a predetermined particle size for a predetermined distance, and transmits the ore with a predetermined particle size to the sensing sub-equipment; when the ore with a predetermined particle size passes through the ray of the sensing sub-equipment
  • the X-ray source uses high-voltage excited X-rays to irradiate the ore with a predetermined particle size, and the X-rays that penetrate the ore with a predetermined particle size are attenuated to varying degrees due to the content of the measured elements;
  • the attenuation data information is collected by the detector located under the belt of the sensing sub-equipment, the attenuation data information is converted into a photoelectric digital signal, and the photoelectric digital signal is transmitted to the intelligent identification sub-equipment of the intelligent identification system;
  • the intelligent identification sub-equipment generates the image to be identified based on the photoelectric digital signal, and performs content identification on the image to be identified to determine the ore parameters of the ore with a predetermined particle size, determine the current sorting parameters based on the current grade threshold, and compare the ore parameters with the current sorting parameters , to mark the ore of the predetermined particle size as waste rock, concentrate ore or intermediate ore based on the comparison result, and send the position information of the ore marked as waste rock, concentrate ore or intermediate ore to the injection control unit of the separation sub-equipment;
  • the air discharge gun of the separation sub-equipment is under the control of the injection control unit, and is marked as waste rock, concentrate or intermediate by blowing through the nozzle of the air discharge gun.
  • the ore of the ore so as to separate the waste rock, the concentrate and the intermediate ore, and realize the separation of the ore with a predetermined particle size.
  • a large-size intelligent sorting machine can sort ore into three categories, namely: a) worthless waste rock with a grade lower than M1, such as phosphate rock with a grade lower than about 12. The value of this part of the ore is extremely low, and it can be discarded directly after being screened out.
  • the grade parameter M1 used for screening can be determined according to the specific ore value and production cost.
  • the grade parameter M2 used for screening can be determined according to the sales demand.
  • a granularity hierarchy structure for multi-level granularity processing of the ore to be processed is determined, wherein the granularity hierarchy structure includes at least two granularity levels.
  • each granularity level includes: crushing treatment and screening treatment, and according to the processing sequence from the largest granularity ore to the smallest granularity ore in the multi-level granularity treatment, the granularity of the ore obtained by each granularity level in the multiple granularity levels Decrease in turn.
  • each granularity level the input ore is crushed, and the crushed ore is screened; the ore that can pass the screening process is sent to the connected intelligent sorting equipment or the next granularity level; The ore that cannot be processed by screening continues to be crushed until it can be processed by screening.
  • the screening system screens three kinds of ores with different particle sizes, and they are processed in the following ways: a) The ores with a particle size of N1-N2mm (including endpoints N1mm and N2mm) are sent to a large-size intelligent sorter for intelligent sorting . b) The ore whose particle size is less than N1mm is sent to the screening system 2 for secondary screening. c) The ore whose particle size is greater than N2mm is sent to the primary crushing system for secondary crushing.
  • N1 is a value greater than or equal to 40, and N2 is a value less than or equal to 100. More preferably, N1 is a value greater than or equal to 45, and N2 is a value less than or equal to 90. Further, N1 is 50, and N2 is 80. It should be understood that the actual figures in the present application are all illustrative figures and are not restrictive.
  • each sorting level in the sorting hierarchy is associated with the corresponding granularity level in the granularity hierarchy to form a multi-level ore processing structure including at least two processing levels.
  • An example of a multi-stage ore processing structure is shown in Figure 2. It should be understood that this application can set any reasonable number of sorters, crushing systems, and screening systems at each processing level, and can treat the same processing level Separators, crushing systems and screening systems can be arranged in any reasonable configuration, for example, in parallel, in series or in parallel-series mixing.
  • the sorting hierarchical structure of multiple intelligent sorting devices for hierarchical array intelligent sorting includes a first sorting level, a second sorting level and a third sorting level; the granularity hierarchical structure includes a first granularity level, second level of granularity, and third level of granularity.
  • It also includes, using the crushing treatment of the first particle size level to perform primary crushing and primary screening on the ore to be processed, so as to obtain ores in the first crushing particle size range and ores in the second crushing particle size range; using the first sorting level
  • Each intelligent sorting equipment in the system sorts the ores in the first crushing size range to obtain waste rocks, first-grade concentrates and first-grade intermediate ores; the first-grade intermediate ores and the second-grade intermediate ores are processed by crushing at the second particle size level.
  • the ore in the second crushing size range is circulated for secondary crushing and secondary screening to obtain the ore in the third crushing size range and the ore in the fourth crushing size range; use each intelligent sorting equipment in the second sorting level to The ore in the third crushing particle size range is sorted to obtain waste rock, secondary concentrate and secondary intermediate ore; the secondary intermediate ore is circulated for tertiary crushing and tertiary screening by using the crushing treatment of the third particle size level, To obtain the ore in the fourth crushing particle size range and the ore in the fifth crushing particle size range; use each intelligent sorting device in the third sorting level to sort the ore in the fifth crushing particle size range to obtain waste rock and third grade Concentrate.
  • the second sorting level and/or the third sorting level include multiple intelligent sorting devices connected in parallel.
  • the first crushing particle size range is less than or equal to the first particle size and greater than or equal to the second particle size range; the second crushing particle size range is less than the second particle size and greater than 0 particle size range; the third crushing particle size range is less than the second The particle size range is greater than or equal to the third particle size; the fourth broken particle size range is a particle size range smaller than the third particle size and greater than 0; the fifth broken particle size range is a particle size range smaller than the fourth particle size and greater than or equal to the third particle size; Wherein the first particle size is larger than the second particle size, the second particle size is larger than the third particle size, and the fourth particle size is larger than the third particle size.
  • step 104 ore pre-selection is performed on the ore to be processed based on the multi-level ore processing structure, so as to obtain ore meeting a predetermined particle size.
  • Each processing level includes: granularity level and sorting level. After determining the number of intelligent sorting equipment and the sorting hierarchy structure of multiple intelligent sorting equipment for hierarchical array intelligent sorting according to the parameter information, it also includes:
  • each intelligent sorting device among multiple intelligent sorting devices, wherein multiple intelligent sorting devices in the same sorting level are used to sort ores in the same crushing size range, and different sorting levels Advanced intelligent sorting equipment is used to sort ores with different crushing particle size ranges.
  • Configuring each of the multiple intelligent sorting devices includes: determining the current sorting level of the smart sorting device to be configured; determining the current crushing particle size range corresponding to the current sorting level; The current broken particle size range determines the selected spectral segment of the X-ray; the spectral segment of the ray source of the intelligent sorting device to be configured is set as the selected spectral segment.
  • Configuring each of the multiple intelligent sorting devices includes: determining the current sorting level of the smart sorting device to be configured; determining the current crushing particle size range corresponding to the current sorting level; The current crushing particle size range determines the target wear resistance of the load belt; according to the target wear resistance, a load belt with a selected thickness and a selected material is determined for the intelligent sorting equipment to be configured.
  • Configuring each of the multiple intelligent sorting devices includes: determining the current sorting level of the smart sorting device to be configured; determining the current crushing particle size range corresponding to the current sorting level; The current broken particle size range determines the gas injection parameters of the intelligent sorting equipment to be configured; according to the gas injection parameters, the injection control unit of the intelligent sorting equipment to be configured is set, and the injection control unit performs the gas discharge gun according to the gas injection parameters. Control, so that each nozzle of the air exhaust gun can inject gas with a predetermined pressure or force; the gas injection parameters include: nozzle diameter, air flow pressure and/or single injection time length.
  • the intelligent sorting equipment is capable of sorting at least two different types of ores by using an air discharge gun, wherein the air discharge gun includes a plurality of nozzles, and each nozzle can spray at a predetermined time and at a predetermined pressure under the control of the injection control unit gas.
  • Sorting at least two different types of ores by using an air exhaust gun includes: the injection control unit controls the air flow pressure of the gas injected by the nozzle of the air exhaust gun, so as to realize the injection of the gas to at least two different types of ores.
  • the injection control unit controls the air flow pressure of the gas injected by the nozzle of the air exhaust gun, so as to realize the injection of the gas to at least two different types of ores.
  • Each type of ore produces a different striking force to force each type of ore into the corresponding silo.
  • the air exhaust gun is located on one side of the ore path, and the air exhaust gun includes at least one row of nozzles.
  • the air exhaust gun includes at least one row of nozzles.
  • the air flow pressure of the gas is used to obtain the different hitting strength of the air flow ejected by the nozzle.
  • the gas discharge guns are located on both sides of the ore path, and the gas discharge guns on each side include at least one row of nozzles, so that the gas discharge guns inject gas from two different directions to strike at least two different types of ore.
  • Fig. 2 is a flowchart of a method for ore preselection based on hierarchical array intelligent sorting according to another embodiment of the present invention.
  • the first step is to crush and screen the raw ore for the first time, as shown in Figure 2, after the raw ore passes through the primary crushing system, it enters the screening system 1, and three kinds of ores with different particle sizes are screened through the screening system 1, respectively as follows Way to deal with:
  • N1 is a value greater than or equal to 40, and N2 is a value less than or equal to 100. More preferably, N1 is a value greater than or equal to 45, and N2 is a value less than or equal to 90. Further, N1 is 50, and N2 is 80. It should be understood that the actual figures in the present application are all illustrative figures and are not restrictive.
  • the large-size intelligent sorting machine intelligently sorts the ore with a particle size of N1-N2mm.
  • the large-size intelligent sorting machine can sort the ore into three categories, respectively:
  • M1 Valueless waste rock with a grade lower than M1
  • the value of this part of the ore is extremely low, and it can be discarded directly after being screened out.
  • the grade parameter M1 used for screening can be determined according to the specific ore value and production cost.
  • b) Concentrates with a grade higher than M2, such as phosphate rock with a grade higher than 27. This part of the ore can be sold as a commodity mine after screening. Correspondingly, the grade parameter M2 used for screening can be determined according to the sales demand.
  • Intelligent sorting machine includes feeding system, transmission system, sensing system, intelligent identification system and separation system, etc.
  • the ore after screening and classification is fed into the high-speed belt of the transmission system through the feeding system. After the high-speed belt runs for a certain distance, it is adjusted to a stable state and transmitted to the sensor system.
  • the ore passes directly under the ray source, it is irradiated by X-rays excited by high voltage.
  • the ore blocks on the conveyor belt will weaken the ray intensity, so that the X-rays penetrating the ore will be attenuated to varying degrees due to the content of the elements measured in the ore.
  • the detector under the transmission belt collects the attenuation intensity data information, converts it into a photoelectric digital signal and sends it to the industrial computer of the intelligent identification system.
  • the intelligent sorting software is run in the industrial computer to image the data and analyze and identify it. According to the pre-set sorting parameters, the industrial computer distinguishes and marks the ore blocks as waste rock a, concentrate ore b, and intermediate ore c, and at the same time sends the marked ore position information to the injection control unit of the separation system.
  • the ore block When the ore block flies off the belt of the transmission system, it will pass through the air discharge gun of the separation system, and the marked waste rock a, concentrate b, and intermediate ore c will be accurately sprayed through the nozzle of the air discharge gun, so that the waste rock a, fine ore Ore b and intermediate ore c are separated.
  • the intermediate ore sorted by the large-size intelligent sorter is sent to the secondary crushing or fine crushing system for secondary crushing, and then sent to the screening system 2 for secondary screening after crushing.
  • the screening system 2 carries out the screening process, and the ores sent into the screening system 2 include: in the first step, the ores with a particle size smaller than N1mm screened out by the screening system 1, and in the second step, the intelligent sorting machine sorting The intermediate ore with a particle size of N1-N2mm is secondary crushed ore.
  • the ores of three particle sizes are sieved through the screening system 2, and are processed in the following manner respectively:
  • the intelligent sorting equipment sorts two kinds of ores with different particle sizes, that is, waste ore and concentrate. If the process level of the intelligent sorting equipment is not the last level or the lowest level, then the intelligent sorting equipment sorts ores with three different particle sizes, namely waste ore, intermediate ore (or medium ore) and concentrate.
  • the large particle size intelligent separator, medium particle size intelligent separator and small particle size intelligent separator can be set with different conveyor belt materials, conveyor belt thicknesses, conveyor motors, X-ray parameters and blowing forces, etc.
  • an intelligent sorting machine wants to have a larger output, there are three options: (1) widen the belt width, which will lead to an increase in the width of the equipment, and has certain limitations in the design of the optical path, that is, there is a limit. (2) Increase the belt speed, which will greatly lengthen the length of the intelligent sorting machine. These two methods will bring great design challenges to the equipment and requirements for the installation site. At the same time, the current price of equipment is basically linked to these two indicators. These two indicators are the main parameters of the equipment model. Manufacturers generally only provide a few types of equipment for selection, which will increase the burden on customers. (3) In the case of a specified model, to increase the output, it can only rely on the third option, that is, to increase the size of the processed ore. Practical example: using the same optical separator, the output when processing 35-70mm particle size is more than four times the output of 10-35mm particle size ore.
  • the hitting force can be changed, so that there are three flight paths: not being hit, hitting with a small force, and hitting with a strong force, so that the ore enters three silos;
  • the two rows of nozzles are located on the same side, but are designed for different air pressures and nozzle coverage areas;
  • Two rows of nozzles are located on both sides of the ore path, hitting the ore from two different directions;
  • the output of the large-size intelligent optical separator located at the front end is much greater than the output of the medium/small particle-sized intelligent optical separator located at the back end.
  • the output of the 10-40mm ore of the conventional type separator is about 60 tons per hour, and about 3 sorters need to be connected in parallel to meet the output (16 hours of production a day).
  • the primary selection can be selected under 40-80mm crushing.
  • the output of a single device is 150 tons. above.
  • One sorting machine can complete all the ore sorting, and after the sorted middle ore is crushed, because the number of middle ore is reduced compared with the original ore, only one more sorting machine can be connected in series in 10- 40mm to complete the sorting. Without changing the type selection of the sorting machine, this sorting process reduces the use of one sorting machine.
  • only the middle ore is crushed after sorting, which not only reduces the production rate of fine ore, but also improves The grade of fine ore is improved, so that fine ore can also be sold.
  • Sorting machines with the same transmission belt width and the same transmission belt speed will have certain differences in the design of the signal acquisition, identification and separation systems because of the processing of different particle sizes. For this reason, the sorting machine has the ability to process ores of different particle sizes. Taking phosphate rock as an example, increasing the particle size of the ore will increase the shift of the energy spectrum when the X-ray signal is attenuated, and more algorithm corrections are required to complete effective identification.
  • multiple medium/small particle size intelligent sorting machines can be connected in parallel for sorting, or the medium/small particle size intelligent optical sorting machines at the back end can also be set to three kinds of sorting results, according to the second step and the second step
  • the three steps are similar to the steps of re-sorting, crushing and sieving.
  • the flow process described in the present invention can be copied to further refine the particle size control of crushing, sieving, and sorting.
  • each link only the fully dissociated ore in this particle size range needs to be effectively sorted to produce Tailings (waste rock) and concentrate are two effective products, while the third product, the undissociated intermediate ore, is sent to the next process for crushing, screening and sorting.
  • an intelligent sorting machine with the functions of identifying and separating three types of products is adopted, the dissociated waste rocks are thrown away, the pure concentrate is selected as commercial ore directly, and the undissociated part The intermediate ore is sent to the next process. Only the medium ore is crushed again, which greatly reduces the amount of ore when the phosphate rock is crushed to a dissociated particle size of 10-35, the rate of fine ore produced is greatly reduced, and the crushing energy consumption is also greatly reduced. According to the solution provided by the present invention, only the crushed medium ore is sorted again, and multiple intelligent optical separators can be paralleled to complete the output with the required throughput.
  • Fig. 3 is a schematic structural diagram of a system for ore preselection based on hierarchical array intelligent sorting according to an embodiment of the present invention.
  • the system 300 includes a sorting setting device 301 , a granularity setting device 302 , an associating device 303 and a processing device 304 .
  • the sorting setting device 301 obtains the parameter information of the ore to be processed, and determines the number of intelligent sorting equipment and the sorting hierarchy structure of multiple intelligent sorting equipment for hierarchical array intelligent sorting according to the parameter information.
  • the hierarchical structure includes at least two sorting levels and each sorting level includes at least one intelligent sorting device.
  • the determination of the number of intelligent sorting equipment and the sorting hierarchy structure of multiple intelligent sorting equipment for hierarchical array intelligent sorting according to the parameter information includes: obtaining the configuration file associated with the ore pre-selection, and determining the ore pre-selection according to the configuration file Throughput; analyze the parameter information to determine the initial waste rock ratio, initial concentrate ratio and initial average particle size of the ore to be processed; determine the number of intelligent sorting equipment based on the throughput, and based on the initial waste rock ratio of the ore to be processed The stone ratio, the initial concentrate ratio and the initial average particle size determine the sorting hierarchy of multiple intelligent sorting devices used for hierarchical array intelligent sorting.
  • the determination of the number of intelligent sorting equipment based on throughput includes: determining the ore sorting volume per unit time of each intelligent sorting equipment; determining the ore sorting volume and throughput per unit time based on each intelligent sorting equipment The number of intelligent sorting equipment.
  • the sorting hierarchy of multiple intelligent sorting devices for hierarchical array intelligent sorting includes: when the initial ore to be processed When the waste rock ratio is greater than or equal to the waste rock ratio threshold, the initial concentrate ratio is greater than or equal to the concentrate ratio threshold, or the initial average particle size is greater than or equal to the initial particle size threshold, determine multiple intelligent sorting devices for hierarchical array intelligent sorting
  • the sorting hierarchical structure is: the hierarchical structure in which the number of intelligent sorting equipment decreases from the large granularity sorting level to the small granularity sorting level;
  • the sorting hierarchical structure of the equipment is: select at least one target sorting level among multiple sorting levels and arrange at least two intelligent sorting devices in parallel at each target sorting level.
  • the intelligent sorting equipment can use the feeding sub-equipment to provide ore with a predetermined particle size to the high-speed belt of the transmission sub-equipment;
  • the high-speed belt of the transmission sub-equipment enters a steady state after transporting the ore with a predetermined particle size for a predetermined distance, and transmits the ore with a predetermined particle size to the sensing sub-equipment;
  • the ray source uses X-rays excited by high pressure to irradiate the ore with a predetermined particle size. different degrees of attenuation;
  • the attenuation data information is collected by the detector located under the belt of the sensing sub-equipment, the attenuation data information is converted into a photoelectric digital signal, and the photoelectric digital signal is transmitted to the intelligent identification sub-equipment of the intelligent identification system;
  • the intelligent identification sub-equipment generates the image to be identified based on the photoelectric digital signal, and performs content identification on the image to be identified to determine the ore parameters of the ore with a predetermined particle size, determine the current sorting parameters based on the current grade threshold, and compare the ore parameters with the current sorting parameters , to mark the ore of the predetermined particle size as waste rock, concentrate ore or intermediate ore based on the comparison result, and send the position information of the ore marked as waste rock, concentrate ore or intermediate ore to the injection control unit of the separation sub-equipment;
  • the air discharge gun of the separation sub-equipment is under the control of the injection control unit, and is marked as waste rock, concentrate or intermediate by blowing through the nozzle of the air discharge gun.
  • the ore of the ore so as to separate the waste rock, the concentrate and the intermediate ore, and realize the separation of the ore with a predetermined particle size.
  • a large-size intelligent sorting machine can sort ore into three categories, namely: a) worthless waste rock with a grade lower than M1, such as phosphate rock with a grade lower than about 12. The value of this part of the ore is extremely low, and it can be discarded directly after being screened out.
  • the grade parameter M1 used for screening can be determined according to the specific ore value and production cost.
  • the grade parameter M2 used for screening can be determined according to the sales demand.
  • the granularity setting device 302 determines a granularity hierarchy structure for multi-level granularity processing of the ore to be processed according to the sorting hierarchy structure of the plurality of intelligent sorting devices, wherein the granularity hierarchy structure includes at least two granularity levels.
  • each granularity level includes: crushing treatment and screening treatment, and according to the processing sequence from the largest granularity ore to the smallest granularity ore in the multi-level granularity treatment, the granularity of the ore obtained by each granularity level in the multiple granularity levels Decrease in turn.
  • each granularity level According to the current needs, the input ore can be selected to be crushed, and the crushed ore or the input ore can be screened; the ore that can be screened can be sent to the connected intelligent classification The ore that cannot pass the screening process will continue to be crushed until it can pass the screening process.
  • the screening system screens three kinds of ores with different particle sizes, and they are processed in the following ways: a) The ores with a particle size of N1-N2mm (including endpoints N1mm and N2mm) are sent to a large-size intelligent sorter for intelligent sorting . b) The ore whose particle size is less than N1mm is sent to the screening system 2 for secondary screening. c) The ore whose particle size is greater than N2mm is sent to the primary crushing system for secondary crushing.
  • N1 is a value greater than or equal to 40, and N2 is a value less than or equal to 100. More preferably, N1 is a value greater than or equal to 45, and N2 is a value less than or equal to 90. Further, N1 is 50, and N2 is 80. It should be understood that the actual figures in the present application are all illustrative figures and are not restrictive.
  • the associating means 303 associates each sorting level in the sorting hierarchy with the corresponding granularity level in the granularity hierarchy to form a multi-level ore processing structure including at least two processing levels.
  • An example of a multi-stage ore processing structure is shown in Figure 2. It should be understood that any reasonable number of separators, crushing systems, and screening systems, etc. Separators, crushing systems and screening systems can be arranged in any reasonable configuration, for example, in parallel, in series or in parallel-series mixing.
  • the sorting hierarchical structure of multiple intelligent sorting devices for hierarchical array intelligent sorting includes a first sorting level, a second sorting level and a third sorting level; the granularity hierarchical structure includes a first granularity level, second level of granularity, and third level of granularity.
  • It also includes, using the crushing treatment of the first particle size level to perform primary crushing and primary screening on the ore to be processed, so as to obtain ores in the first crushing particle size range and ores in the second crushing particle size range; using the first sorting level
  • Each intelligent sorting equipment in the system sorts the ores in the first crushing size range to obtain waste rocks, first-grade concentrates and first-grade intermediate ores; the first-grade intermediate ores and the second-grade intermediate ores are processed by crushing at the second particle size level.
  • the ore in the second crushing size range is circulated for secondary crushing and secondary screening to obtain the ore in the third crushing size range and the ore in the fourth crushing size range; use each intelligent sorting equipment in the second sorting level to The ore in the third crushing particle size range is sorted to obtain waste rock, secondary concentrate and secondary intermediate ore; the secondary intermediate ore is circulated for tertiary crushing and tertiary screening by using the crushing treatment of the third particle size level, To obtain the ore in the fourth crushing particle size range and the ore in the fifth crushing particle size range; use each intelligent sorting device in the third sorting level to sort the ore in the fifth crushing particle size range to obtain waste rock and third grade Concentrate.
  • the second sorting level and/or the third sorting level include multiple intelligent sorting devices connected in parallel.
  • the first crushing particle size range is less than or equal to the first particle size and greater than or equal to the second particle size range; the second crushing particle size range is less than the second particle size and greater than 0 particle size range; the third crushing particle size range is less than the second The particle size range is greater than or equal to the third particle size; the fourth broken particle size range is a particle size range smaller than the third particle size and greater than 0; the fifth broken particle size range is a particle size range smaller than the fourth particle size and greater than or equal to the third particle size; Wherein the first particle size is larger than the second particle size, the second particle size is larger than the third particle size, and the fourth particle size is larger than the third particle size.
  • the processing device 304 performs ore pre-selection on the ore to be processed based on the multi-stage ore processing structure, so as to obtain ore meeting a predetermined particle size.
  • Each processing level includes: granularity level and sorting level. After determining the number of intelligent sorting equipment and the sorting hierarchy structure of multiple intelligent sorting equipment for hierarchical array intelligent sorting according to the parameter information, it also includes:
  • each intelligent sorting device among multiple intelligent sorting devices, wherein multiple intelligent sorting devices in the same sorting level are used to sort ores in the same crushing size range, and different sorting levels Advanced intelligent sorting equipment is used to sort ores with different crushing particle size ranges.
  • Configuring each of the multiple intelligent sorting devices includes: determining the current sorting level of the smart sorting device to be configured; determining the current crushing particle size range corresponding to the current sorting level; The current broken particle size range determines the selected spectral segment of the X-ray; the spectral segment of the ray source of the intelligent sorting device to be configured is set as the selected spectral segment.
  • the above configuration can make the X-rays penetrate the ore in the current crushing particle size range, and still meet the needs of the detector to collect attenuation data information.
  • Configuring each of the multiple intelligent sorting devices includes: determining the current sorting level of the smart sorting device to be configured; determining the current crushing particle size range corresponding to the current sorting level; The current crushing particle size range determines the target wear resistance of the load belt; according to the target wear resistance, a load belt with a selected thickness and a selected material is determined for the intelligent sorting equipment to be configured.
  • the above configuration can not only meet the service life of the belt during the pre-selection of ore in the current crushing particle size range, but also avoid the waste caused by the belt parameter setting being too high.
  • Configuring each of the multiple intelligent sorting devices includes: determining the current sorting level of the smart sorting device to be configured; determining the current crushing particle size range corresponding to the current sorting level; The current broken particle size range determines the gas injection parameters of the intelligent sorting equipment to be configured; according to the gas injection parameters, the injection control unit of the intelligent sorting equipment to be configured is set, and the injection control unit performs the gas discharge gun according to the gas injection parameters. Control, so that each nozzle of the air exhaust gun can inject gas with a predetermined pressure or force; the gas injection parameters include: nozzle diameter, air flow pressure and/or single injection time length.
  • the intelligent sorting equipment is capable of sorting at least two different types of ores by using an air discharge gun, wherein the air discharge gun includes a plurality of nozzles, and each nozzle can spray at a predetermined time and at a predetermined pressure under the control of the injection control unit gas.
  • Sorting at least two different types of ores by using an air exhaust gun includes: the injection control unit controls the air flow pressure of the gas injected by the nozzle of the air exhaust gun, so as to realize the injection of the gas to at least two different types of ores.
  • the injection control unit controls the air flow pressure of the gas injected by the nozzle of the air exhaust gun, so as to realize the injection of the gas to at least two different types of ores.
  • Each type of ore produces a different striking force to force each type of ore into the corresponding silo.
  • the air exhaust gun has multiple arrangements.
  • the air exhaust gun is located on one side of the ore path, and the air exhaust gun includes at least one row of nozzles.
  • the different hitting strength of the jetted airflow or, by controlling the airflow pressure of the jetted gas from the nozzle to obtain the different hitting strength of the jetted airflow from the nozzle, the trajectory of the ore hit by the gas in the above method is all within the original predetermined trajectory.
  • the collection devices for collecting different ores are all arranged on the side of the original drop point.
  • the gas discharge guns are located on both sides of the ore path, and the gas discharge guns on each of the two sides include at least one row of nozzles, so that the gas discharge guns inject gas from two different directions to strike the ore At least two different types of ores, the trajectory of the ores hit by the gas in the above method is on both sides of the original predetermined trajectory, and correspondingly, the collection devices for collecting different ores are all set on both sides of the original drop point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Sorting Of Articles (AREA)

Abstract

本申请涉及一种基于分级阵列式智能分选进行矿石预选的方法及系统,其中方法包括:获取待处理的矿石的参数信息,根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构;根据所述多个智能分选设备的分选层级结构,确定用于对待处理的矿石的进行多级粒度处理的粒度层级结构;将所述分选层级结构中的每个分选层级与所述粒度层级结构中的相应粒度层级进行关联,以组成包括至少两个处理层级的多级矿石处理结构;基于多级矿石处理结构对待处理的矿石进行矿石预选,从而获得符合预定粒度的矿石。

Description

一种基于分级阵列式智能分选进行矿石预选的方法及系统 技术领域
本发明属于矿石分选技术领域,并且更具体地,涉及一种基于分级阵列式智能分选进行矿石预选的方法及系统。
背景技术
目前,常规的选矿方法主要包括正浮选、正-反浮选、反浮选、双反浮选、重介质选矿、重介质-浮选联合选矿等。磷块岩类矿石的成熟选矿技术中,浮选仍然是占主导地位的选别方法。但是磷矿浮选的高能耗、高药耗、尾矿水处理的状况使得获取磷精矿的成本过高,并且对环境不友好的问题日趋凸显。随着各行业的科技进步,新型选矿方法越来越多,并且X射线(X-ray)分选技术也在开始尝试应用。
在应用X射线分选技术时,需要将原矿石解离至一定细粒度下才能进行分选。对于磷矿的情况,一般而言,至少要将原矿石破碎到45mm以下。目前的常规操作是,用破碎机将磷矿石解离到10-45粒度后,采用光电分选机进行分选获得磷精矿。但是,将原矿石破碎到粒度45mm以下的过程存在如下问题:一方面,破碎越小的颗粒,需要的破碎机的耗能越大,产生的无法进行分选的粉矿多且贫化(破碎过程中,由于磷矿特性较脆,破碎时容易产生大量粉矿,随着过度破碎,废石也会产生大量粉矿)。另一方面,粒度越小,同样的光电分选机的产量越小,需要的投资成本更大,场地限制也会更大,耗能更多,不利于节能减排。
发明内容
为了解决现有技术中的问题,本发明提供一种基于阵列式智能分选的磷矿石预选方法。本发明的诸如磷矿石的矿石预选工艺普遍适用于选矿过程,特别适用于当需要对大量矿石进行选别的情况。
根据本发明的一个方面,提供一种基于分级阵列式智能分选进行矿石预选的方法,所述方法包括:
获取待处理的矿石的参数信息,根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构,所述分选层级结构包括至少两个分选层级并且每个分选层级包括至少一个智能分选设备;
根据所述多个智能分选设备的分选层级结构,确定用于对待处理的矿石的进行多级粒度处理的粒度层级结构,其中所述粒度层级结构包括至少两个粒度层级;
将所述分选层级结构中的每个分选层级与所述粒度层级结构中的相应粒度层级进行关联,以组成包括至少两个处理层级的多级矿石处理结构;
基于多级矿石处理结构对待处理的矿石进行矿石预选,从而获得符合预定粒度的矿石。
其中根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构包括:
获取与矿石预选相关联的配置文件,根据配置文件确定矿石预选的吞吐量;
对参数信息进行解析以确定待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度;
基于吞吐量确定智能分选设备的数量,并且基于待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构。
其中基于吞吐量确定智能分选设备的数量包括:
确定每个智能分选设备的单位时间内的矿石分选量;
基于每个智能分选设备的单位时间内的矿石分选量和吞吐量确定智能分选设备的数量。
其中基于待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构包括:
当待处理的矿石的初始废石比率大于或等于废石比率阈值、初始精矿 比率大于或等于精矿比率阈值或初始平均粒度大于或等于初始粒度阈值时,确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构为:智能分选设备的数量从大粒度分选等级至小粒度分选等级递减的层级结构;
当待处理的矿石的初始废石比率小于废石比率阈值、初始精矿比率小于精矿比率阈值或初始平均粒度小于初始粒度阈值时,确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构为:在多个分选层级中选择至少一个目标分选层级并在每个目标分选层级并行布置至少两个智能分选设备的层级结构。
所述智能分选设备能够利用给料子设备将预定粒度的矿石提供给传输子设备的高速皮带;
传输子设备的高速皮带在运送预定粒度的矿石运行预定距离后,进入至平稳状态,并预定粒度的矿石传输至传感子设备;
当预定粒度的矿石在皮带的传输下通过传感子设备的射线源正下方时,射线源利用高压激发的X射线照射预定粒度的矿石,穿透预定粒度的矿石的X射线由于所测元素含量的不同而产生不同程度的衰减;
由传感子设备的位于皮带下方的探测器采集衰减数据信息,将衰减数据信息转化为光电数字信号,并将光电数字信号传送给智能识别系统的智能识别子设备;
智能识别子设备基于光电数字信号生成待识别成像,并对待识别图像进行内容识别以确定预定粒度的矿石的矿石参数,基于当前品位阈值确定当前分选参数,将矿石参数与当前分选参数进行比较,以基于比较结果将预定粒度的矿石标记为废石、精矿石或中间矿石,将标记为废石、精矿石或中间矿石的矿石的位置信息发送给分离子设备的喷吹控制单元;
当预定粒度的矿石在传输子设备的皮带输送下到达预定位置时,分离子设备的气排枪在喷吹控制单元的控制下,通过气排枪的喷嘴喷吹被标记为废石、精矿石或中间矿石的矿石,从而将废石、精矿石和中间矿石进行分选,实现对预定粒度的矿石进行分选。
其中每个粒度层级包括:破碎处理和筛分处理,并且按照多级粒度处理中的从最大粒度矿石到最小粒度矿石的处理顺序,多个粒度层级中的每 个粒度层级所获得的矿石的粒度依次减小。
在每个粒度层级中:
将输入的矿石进行破碎处理,将经过破碎处理的矿石进行筛分处理;
将能够通过筛分处理的矿石传送至相连接的智能分选设备或下一个粒度层级;
将无法通过筛分处理的矿石继续进行破碎处理,直至能够通过筛分处理为止。
所述用于分级阵列式智能分选的多个智能分选设备的分选层级结构包括第一分选层级、第二分选层级和第三分选层级;
所述粒度层级结构包括第一粒度层级、第二粒度层级和第三粒度层级。
还包括,利用第一粒度层级的破碎处理对待处理的矿石循环进行一级破碎和一级筛分,以获得第一破碎粒度范围的矿石和第二破碎粒度范围的矿石;
利用第一分选层级中的每个智能分选设备对第一破碎粒度范围的矿石进行分选,以获得废石、一级精矿石和一级中间矿石;
利用第二粒度层级的破碎处理对一级中间矿石和第二破碎粒度范围的矿石循环进行二级破碎和二级筛分,以获得第三破碎粒度范围的矿石和第四破碎粒度范围的矿石;
利用第二分选层级中的每个智能分选设备对第三破碎粒度范围的矿石进行分选,以获得废石、二级精矿石和二级中间矿石;
利用第三粒度层级的破碎处理对二级中间矿石循环进行三级破碎和三级筛分,以获得第四破碎粒度范围的矿石和第五破碎粒度范围的矿石;
利用第三分选层级中的每个智能分选设备对第五破碎粒度范围的矿石进行分选,以获得废石和三级精矿石。
其中第二分选层级和/或第三分选层级包括并联的多个智能分选设备。
其中第一破碎粒度范围为小于或等于第一粒度并且大于或等于第二粒度的粒度范围;
第二破碎粒度范围为小于第二粒度并且大于0的粒度范围;
第三破碎粒度范围为小于第二粒度并且大于或等于第三粒度的粒度范围;
第四破碎粒度范围为小于第三粒度并且大于0的粒度范围;
第五破碎粒度范围为小于第四粒度并且大于或等于第三粒度的粒度范围;
其中第一粒度大于第二粒度,第二粒度大于第三粒度,并且第四粒度大于第三粒度。
其中每个处理层级包括:粒度层级和分选层级。
在根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构之后还包括:
对多个智能分选设备中的每个智能分选设备进行配置,其中相同分选层级中的多个智能分选设备用于对相同破碎粒度范围的矿石进行分选,并且不同分选层级中的智能分选设备用于对不同破碎粒度范围的矿石进行分选。
对多个智能分选设备中的每个智能分选设备进行配置包括:
确定待配置的智能分选设备的当前分选层级;
确定与所述当前分选层级相对应的当前破碎粒度范围;
根据所述当前破碎粒度范围确定X射线的选定光谱段;
将待配置的智能分选设备的射线源的光谱段设置为所述选定光谱段。
对多个智能分选设备中的每个智能分选设备进行配置包括:
确定待配置的智能分选设备的当前分选层级;
确定与所述当前分选层级相对应的当前破碎粒度范围;
根据所述当前破碎粒度范围确定载物皮带的目标耐磨度;
根据目标耐磨度为待配置的智能分选设备确定选定厚度和选定材料的载物皮带。
对多个智能分选设备中的每个智能分选设备进行配置包括:
确定待配置的智能分选设备的当前分选层级;
确定与所述当前分选层级相对应的当前破碎粒度范围;
根据所述当前破碎粒度范围确定待配置的智能分选设备的气体喷射参数;
根据气体喷射参数对待配置的智能分选设备的喷吹控制单元进行设置,喷吹控制单元根据气体喷射参数对气排枪进行控制,使得气排枪的每 个喷嘴能够喷射预定压强或力度的气体;
所述气体喷射参数包括:喷嘴的口径尺寸、气流压强和/或单次喷射时间长度。
所述智能分选设备能够利用气排枪对至少两种不同类型矿石进行分选,其中气排枪包括多个喷嘴,并且每个喷嘴能够在喷吹控制单元的控制下在预定时间并且以预定压强喷射气体。
其中利用气排枪对至少两种不同类型矿石进行分选包括:
喷吹控制单元对气排枪的喷嘴所喷射的气体的气流压强进行控制,从而实现所喷射的气体对至少两种不同类型矿石中的每种类型的矿石产生不同的击打力度,以促使每个类型的矿石进入相应的料仓。
所述气排枪位于矿石路径的单侧,并且所述气排枪包括至少一排喷嘴,通过控制喷嘴的有效口径的大小来获得喷嘴所喷射的气流的不同击打力度,或者,通过控制喷嘴所喷射气体的气流压强来获得喷嘴所喷射的气流的不同击打力度。
所述气排枪位于矿石路径的两侧,并且两侧中的每侧的气排枪包括至少一排喷嘴,使得气排枪从两个不同的方向喷射气体来击打矿石至少两种不同类型矿石。
根据本发明的另一方面,提供一种基于分级阵列式智能分选进行矿石预选的系统,所述系统包括:
分选设置装置,用于获取待处理的矿石的参数信息,根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构,所述分选层级结构包括至少两个分选层级并且每个分选层级包括至少一个智能分选设备;
粒度设置装置,根据所述多个智能分选设备的分选层级结构,确定用于对待处理的矿石的进行多级粒度处理的粒度层级结构,其中所述粒度层级结构包括至少两个粒度层级;
关联装置,将所述分选层级结构中的每个分选层级与所述粒度层级结构中的相应粒度层级进行关联,以组成包括至少两个处理层级的多级矿石处理结构;
处理装置,基于多级矿石处理结构对待处理的矿石进行矿石预选,从 而获得符合预定粒度的矿石。
其中分选设置装置根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构包括:
分选设置装置获取与矿石预选相关联的配置文件,根据配置文件确定矿石预选的吞吐量;
分选设置装置对参数信息进行解析以确定待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度;
分选设置装置基于吞吐量确定智能分选设备的数量,并且基于待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构。
其中分选设置装置基于吞吐量确定智能分选设备的数量包括:
分选设置装置确定每个智能分选设备的单位时间内的矿石分选量;
分选设置装置基于每个智能分选设备的单位时间内的矿石分选量和吞吐量确定智能分选设备的数量。
其中分选设置装置基于待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构包括:
当待处理的矿石的初始废石比率大于或等于废石比率阈值、初始精矿比率大于或等于精矿比率阈值或初始平均粒度大于或等于初始粒度阈值时,分选设置装置确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构为:智能分选设备的数量从大粒度分选等级至小粒度分选等级递减的层级结构;
当待处理的矿石的初始废石比率小于废石比率阈值、初始精矿比率小于精矿比率阈值或初始平均粒度小于初始粒度阈值时,分选设置装置确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构为:在多个分选层级中选择至少一个目标分选层级并在每个目标分选层级并行布置至少两个智能分选设备的层级结构。
智能分选设备,能够利用给料子设备将预定粒度的矿石提供给传输子设备的高速皮带;
传输子设备的高速皮带在运送预定粒度的矿石运行预定距离后,进入 至平稳状态,并预定粒度的矿石传输至传感子设备;
当预定粒度的矿石在皮带的传输下通过传感子设备的射线源正下方时,射线源利用高压激发的X射线照射预定粒度的矿石,穿透预定粒度的矿石的X射线由于所测元素含量的不同而产生不同程度的衰减;
由传感子设备的位于皮带下方的探测器采集衰减数据信息,将衰减数据信息转化为光电数字信号,并将光电数字信号传送给智能识别系统的智能识别子设备;
智能识别子设备基于光电数字信号生成待识别成像,并对待识别图像进行内容识别以确定预定粒度的矿石的矿石参数,基于当前品位阈值确定当前分选参数,将矿石参数与当前分选参数进行比较,以基于比较结果将预定粒度的矿石标记为废石、精矿石或中间矿石,将标记为废石、精矿石或中间矿石的矿石的位置信息发送给分离子设备的喷吹控制单元;
当预定粒度的矿石在传输子设备的皮带输送下到达预定位置时,分离子设备的气排枪在喷吹控制单元的控制下,通过气排枪的喷嘴喷吹被标记为废石、精矿石或中间矿石的矿石,从而将废石、精矿石和中间矿石进行分选,实现对预定粒度的矿石进行分选。
其中每个粒度层级包括:破碎处理和筛分处理,并且按照多级粒度处理中的从最大粒度矿石到最小粒度矿石的处理顺序,多个粒度层级中的每个粒度层级所获得的矿石的粒度依次减小。
在每个粒度层级中:
将输入的矿石进行破碎处理,将经过破碎处理的矿石进行筛分处理;
将能够通过筛分处理的矿石传送至相连接的智能分选设备或下一个粒度层级;
将无法通过筛分处理的矿石继续进行破碎处理,直至能够通过筛分处理为止。
所述用于分级阵列式智能分选的多个智能分选设备的分选层级结构包括第一分选层级、第二分选层级和第三分选层级;
所述粒度层级结构包括第一粒度层级、第二粒度层级和第三粒度层级。
还包括,利用第一粒度层级的破碎处理对待处理的矿石循环进行一级破碎和一级筛分,以获得第一破碎粒度范围的矿石和第二破碎粒度范围的 矿石;
利用第一分选层级中的每个智能分选设备对第一破碎粒度范围的矿石进行分选,以获得废石、一级精矿石和一级中间矿石;
利用第二粒度层级的破碎处理对一级中间矿石和第二破碎粒度范围的矿石循环进行二级破碎和二级筛分,以获得第三破碎粒度范围的矿石和第四破碎粒度范围的矿石;
利用第二分选层级中的每个智能分选设备对第三破碎粒度范围的矿石进行分选,以获得废石、二级精矿石和二级中间矿石;
利用第三粒度层级的破碎处理对二级中间矿石循环进行三级破碎和三级筛分,以获得第四破碎粒度范围的矿石和第五破碎粒度范围的矿石;
利用第三分选层级中的每个智能分选设备对第五破碎粒度范围的矿石进行分选,以获得废石和三级精矿石。
其中第二分选层级和/或第三分选层级包括并联的多个智能分选设备。
其中第一破碎粒度范围为小于或等于第一粒度并且大于或等于第二粒度的粒度范围;
第二破碎粒度范围为小于第二粒度并且大于0的粒度范围;
第三破碎粒度范围为小于第二粒度并且大于或等于第三粒度的粒度范围;
第四破碎粒度范围为小于第三粒度并且大于0的粒度范围;
第五破碎粒度范围为小于第四粒度并且大于或等于第三粒度的粒度范围;
其中第一粒度大于第二粒度,第二粒度大于第三粒度,并且第四粒度大于第三粒度。
其中每个处理层级包括:粒度层级和分选层级。
在根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构之后还包括:
对多个智能分选设备中的每个智能分选设备进行配置,其中相同分选层级中的多个智能分选设备用于对相同破碎粒度范围的矿石进行分选,并且不同分选层级中的智能分选设备用于对不同破碎粒度范围的矿石进行分选。
对多个智能分选设备中的每个智能分选设备进行配置包括:
确定待配置的智能分选设备的当前分选层级;
确定与所述当前分选层级相对应的当前破碎粒度范围;
根据所述当前破碎粒度范围确定X射线的选定光谱段;
将待配置的智能分选设备的射线源的光谱段设置为所述选定光谱段。
对多个智能分选设备中的每个智能分选设备进行配置包括:
确定待配置的智能分选设备的当前分选层级;
确定与所述当前分选层级相对应的当前破碎粒度范围;
根据所述当前破碎粒度范围确定载物皮带的目标耐磨度;
根据目标耐磨度为待配置的智能分选设备确定选定厚度和选定材料的载物皮带。
对多个智能分选设备中的每个智能分选设备进行配置包括:
确定待配置的智能分选设备的当前分选层级;
确定与所述当前分选层级相对应的当前破碎粒度范围;
根据所述当前破碎粒度范围确定待配置的智能分选设备的气体喷射参数;
根据气体喷射参数对待配置的智能分选设备的喷吹控制单元进行设置,喷吹控制单元根据气体喷射参数对气排枪进行控制,使得气排枪的每个喷嘴能够喷射预定压强或力度的气体;
所述气体喷射参数包括:喷嘴的口径尺寸、气流压强和/或单次喷射时间长度。
所述智能分选设备能够利用气排枪对至少两种不同类型矿石进行分选,其中气排枪包括多个喷嘴,并且每个喷嘴能够在喷吹控制单元的控制下在预定时间并且以预定压强喷射气体。
其中利用气排枪对至少两种不同类型矿石进行分选包括:
喷吹控制单元对气排枪的喷嘴所喷射的气体的气流压强进行控制,从而实现所喷射的气体对至少两种不同类型矿石中的每种类型的矿石产生不同的击打力度,以促使每个类型的矿石进入相应的料仓。
所述气排枪位于矿石路径的单侧,并且所述气排枪包括至少一排喷嘴,通过控制喷嘴的有效口径的大小来获得喷嘴所喷射的气流的不同击打力 度,或者,通过控制喷嘴所喷射气体的气流压强来获得喷嘴所喷射的气流的不同击打力度。
所述气排枪位于矿石路径的两侧,并且两侧中的每侧的气排枪包括至少一排喷嘴,使得气排枪从两个不同的方向喷射气体来击打矿石至少两种不同类型矿石。
根据本发明的再一方面,提供一种基于阵列式智能分选的磷矿石预选工艺方法,所述方法包括:
步骤101,原矿经过初破,破碎粒度控制在N1-N2mm,破碎后经过第一筛分系统,经筛分,粒度大于N2mm的经过循环返回破碎机,粒度小于N1mm的,进入第二筛分系统,中间粒度N1-N2mm的进入第一分选系统;
步骤102,第一分选系统将进入的磷矿分选为品位低于M1的无价值废石,品位大于M2的商品矿,以及介于二者之间的中间矿;
步骤103,中间矿进入中破或细破系统破碎后进入第二筛分系统,经筛分,粒度大于N1mm的循环返回破碎机,粒度小于n1mm的进入粉矿收集系统,中间粒度n1-N1mm的进入第二分选系统进行分选。
所述第一分选系统、第二分选系统均为X光智能分选机,包括传感系统、智能识别系统和分离系统。
所述第二分选系统为多台智能分选机并联。
所述第二分选系统根据品味将进入的磷矿分选为尾矿、精矿、中间矿三种,对分选所得的中间矿进行破碎、筛分后,送入第三分选系统进行分选。
N1为大于等于40的数值,N2为小于等于100的数值;N1为大于等于45的数值,N2为小于等于90的数值;N1为50,N2为80;n1取值范围为8-13;n1=10;
根据本发明的再一方面,提供一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述任一所述的方法。
根据本发明的再一方面,提供一种电子设备,其特征在于,所述电子设备包括:
处理器;
用于存储所述处理器可执行指令的存储器;
所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现上述任一所述的方法。
本发明将诸如磷矿石的矿石破碎成不同的粒度,在每个粒度范围内识别和分离出废石、精矿,产生的粉矿率降低,提高粉矿的品位,同时避免了将全部矿石破碎成小粒度带来的高能耗问题。
附图说明
通过参考下面的附图,可以更为完整地理解本发明的示例性实施方式:
图1为根据本发明实施方式的基于分级阵列式智能分选进行矿石预选的方法的流程图;
图2为根据本发明另一实施方式的基于分级阵列式智能分选进行矿石预选的方法的流程图;
图3为根据本发明实施方式的基于分级阵列式智能分选进行矿石预选的装置的结构示意图;
图4为根据本发明实施方式的智能分选系统的结构示意图。
具体实施方式
图1为根据本发明实施方式的基于分级阵列式智能分选进行矿石预选的方法100的流程图。方法100从步骤101处开始。
在步骤101,获取待处理的矿石的参数信息,根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构,所述分选层级结构包括至少两个分选层级并且每个分选层级包括至少一个智能分选设备。
其中根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构包括:获取与矿石预选相关联的配置文件,根据配置文件确定矿石预选的吞吐量;对参数信息进行解析以确定待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度;基于吞吐量确定智能分选设备的数量,并且基于待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度确定用于分级阵列式智能分选的多个智能分 选设备的分选层级结构。
其中基于吞吐量确定智能分选设备的数量包括:确定每个智能分选设备的单位时间内的矿石分选量;基于每个智能分选设备的单位时间内的矿石分选量和吞吐量确定智能分选设备的数量。
其中基于待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构包括:当待处理的矿石的初始废石比率大于或等于废石比率阈值、初始精矿比率大于或等于精矿比率阈值或初始平均粒度大于或等于初始粒度阈值时,确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构为:智能分选设备的数量从大粒度分选等级至小粒度分选等级递减的层级结构;
当待处理的矿石的初始废石比率小于废石比率阈值、初始精矿比率小于精矿比率阈值或初始平均粒度小于初始粒度阈值时,确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构为;在多个分选层级中选择至少一个目标分选层级并在每个目标分选层级并行布置至少两个智能分选设备的层级结构。
图4为根据本发明实施方式的智能分选系统的结构示意图,如图4所示,所述智能分选设备能够利用给料子设备将预定粒度的矿石提供给传输子设备的高速皮带;传输子设备的高速皮带在运送预定粒度的矿石运行预定距离后,进入至平稳状态,并将预定粒度的矿石传输至传感子设备;当预定粒度的矿石在皮带的传输下通过传感子设备的射线源正下方时,射线源利用高压激发的X射线照射预定粒度的矿石,穿透预定粒度的矿石的X射线由于所测元素含量的不同而产生不同程度的衰减;
由传感子设备的位于皮带下方的探测器采集衰减数据信息,将衰减数据信息转化为光电数字信号,并将光电数字信号传送给智能识别系统的智能识别子设备;
智能识别子设备基于光电数字信号生成待识别成像,并对待识别图像进行内容识别以确定预定粒度的矿石的矿石参数,基于当前品位阈值确定当前分选参数,将矿石参数与当前分选参数进行比较,以基于比较结果将预定粒度的矿石标记为废石、精矿石或中间矿石,将标记为废石、精矿石 或中间矿石的矿石的位置信息发送给分离子设备的喷吹控制单元;
当预定粒度的矿石在传输子设备的皮带输送下到达预定位置时,分离子设备的气排枪在喷吹控制单元的控制下,通过气排枪的喷嘴喷吹被标记为废石、精矿石或中间矿石的矿石,从而将废石、精矿石和中间矿石进行分选,实现对预定粒度的矿石进行分选。
例如,大粒度智能分选机能够将矿石分选为三类,分别为:a)品位低于M1的无价值废石,例如品位低于12左右的磷矿石。该部分矿石价值极低,筛选出来后可以直接废弃。通常,可以根据具体矿石价值和生产成本确定筛选所用的品位参数M1。b)品位高于M2的精矿石,例如品位大于27的磷矿石。这部分矿石筛选出后可以作为商品矿出售。相应地,可以根据销售需求来确定筛选所用的品位参数M2。c)品位介于M1和M2(包括端点M1和M2)之间的中间矿石,例如品位为12-27之间的磷矿石。
在步骤102,根据所述多个智能分选设备的分选层级结构,确定用于对待处理的矿石的进行多级粒度处理的粒度层级结构,其中所述粒度层级结构包括至少两个粒度层级。
其中每个粒度层级包括:破碎处理和筛分处理,并且按照多级粒度处理中的从最大粒度矿石到最小粒度矿石的处理顺序,多个粒度层级中的每个粒度层级所获得的矿石的粒度依次减小。
在每个粒度层级中:将输入的矿石进行破碎处理,将经过破碎处理的矿石进行筛分处理;将能够通过筛分处理的矿石传送至相连接的智能分选设备或下一个粒度层级;将无法通过筛分处理的矿石继续进行破碎处理,直至能够通过筛分处理为止。
例如,筛分系统筛分三种不同粒度的矿石,分别按照如下方式处理:a)粒度为N1-N2mm(包括端点N1mm和N2mm)的矿石,送入大粒度智能分选机中进行智能分选。b)粒度小于N1mm的矿石,送入筛分系统2进行二次筛分。c)粒度大于N2mm的矿石,送入初破系统进行再次破碎。
作为优选,N1为大于或等于40的数值,N2为小于或等于100的数值。更优选地,N1为大于或等于45的数值,N2为小于或等于90的数值。进一步地,N1为50,N2为80。应当了解的是本申请的实际数字均为示意性数字,并不具有限制性。
在步骤103,将所述分选层级结构中的每个分选层级与所述粒度层级结构中的相应粒度层级进行关联,以组成包括至少两个处理层级的多级矿石处理结构。多级矿石处理结构的实例如图2所示,应当了解的是,本申请可以在每个处理层级设置任意合理数量的分选机、破碎系统和筛分系统等,并且可以对相同处理层级的分选机、破碎系统和筛分系统进行任意合理的结构布置,例如,并联、串联或并联串联混合。
所述用于分级阵列式智能分选的多个智能分选设备的分选层级结构包括第一分选层级、第二分选层级和第三分选层级;所述粒度层级结构包括第一粒度层级、第二粒度层级和第三粒度层级。
还包括,利用第一粒度层级的破碎处理对待处理的矿石循环进行一级破碎和一级筛分,以获得第一破碎粒度范围的矿石和第二破碎粒度范围的矿石;利用第一分选层级中的每个智能分选设备对第一破碎粒度范围的矿石进行分选,以获得废石、一级精矿石和一级中间矿石;利用第二粒度层级的破碎处理对一级中间矿石和第二破碎粒度范围的矿石循环进行二级破碎和二级筛分,以获得第三破碎粒度范围的矿石和第四破碎粒度范围的矿石;利用第二分选层级中的每个智能分选设备对第三破碎粒度范围的矿石进行分选,以获得废石、二级精矿石和二级中间矿石;利用第三粒度层级的破碎处理对二级中间矿石循环进行三级破碎和三级筛分,以获得第四破碎粒度范围的矿石和第五破碎粒度范围的矿石;利用第三分选层级中的每个智能分选设备对第五破碎粒度范围的矿石进行分选,以获得废石和三级精矿石。
其中第二分选层级和/或第三分选层级包括并联的多个智能分选设备。其中第一破碎粒度范围为小于或等于第一粒度并且大于或等于第二粒度的粒度范围;第二破碎粒度范围为小于第二粒度并且大于0的粒度范围;第三破碎粒度范围为小于第二粒度并且大于或等于第三粒度的粒度范围;第四破碎粒度范围为小于第三粒度并且大于0的粒度范围;第五破碎粒度范围为小于第四粒度并且大于或等于第三粒度的粒度范围;其中第一粒度大于第二粒度,第二粒度大于第三粒度,并且第四粒度大于第三粒度。
在步骤104,基于多级矿石处理结构对待处理的矿石进行矿石预选,从而获得符合预定粒度的矿石。
其中每个处理层级包括:粒度层级和分选层级。在根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构之后还包括:
对多个智能分选设备中的每个智能分选设备进行配置,其中相同分选层级中的多个智能分选设备用于对相同破碎粒度范围的矿石进行分选,并且不同分选层级中的智能分选设备用于对不同破碎粒度范围的矿石进行分选。
对多个智能分选设备中的每个智能分选设备进行配置包括:确定待配置的智能分选设备的当前分选层级;确定与所述当前分选层级相对应的当前破碎粒度范围;根据所述当前破碎粒度范围确定X射线的选定光谱段;将待配置的智能分选设备的射线源的光谱段设置为所述选定光谱段。
对多个智能分选设备中的每个智能分选设备进行配置包括:确定待配置的智能分选设备的当前分选层级;确定与所述当前分选层级相对应的当前破碎粒度范围;根据所述当前破碎粒度范围确定载物皮带的目标耐磨度;根据目标耐磨度为待配置的智能分选设备确定选定厚度和选定材料的载物皮带。
对多个智能分选设备中的每个智能分选设备进行配置包括:确定待配置的智能分选设备的当前分选层级;确定与所述当前分选层级相对应的当前破碎粒度范围;根据所述当前破碎粒度范围确定待配置的智能分选设备的气体喷射参数;根据气体喷射参数对待配置的智能分选设备的喷吹控制单元进行设置,喷吹控制单元根据气体喷射参数对气排枪进行控制,使得气排枪的每个喷嘴能够喷射预定压强或力度的气体;所述气体喷射参数包括:喷嘴的口径尺寸、气流压强和/或单次喷射时间长度。
所述智能分选设备能够利用气排枪对至少两种不同类型矿石进行分选,其中气排枪包括多个喷嘴,并且每个喷嘴能够在喷吹控制单元的控制下在预定时间并且以预定压强喷射气体。
其中利用气排枪对至少两种不同类型矿石进行分选包括:喷吹控制单元对气排枪的喷嘴所喷射的气体的气流压强进行控制,从而实现所喷射的气体对至少两种不同类型矿石中的每种类型的矿石产生不同的击打力度,以促使每个类型的矿石进入相应的料仓。
所述气排枪位于矿石路径的单侧,并且所述气排枪包括至少一排喷嘴,通过控制喷嘴的有效口径的大小来获得喷嘴所喷射的气流的不同击打力度,或者,通过控制喷嘴所喷射气体的气流压强来获得喷嘴所喷射的气流的不同击打力度。所述气排枪位于矿石路径的两侧,并且两侧中的每侧的气排枪包括至少一排喷嘴,使得气排枪从两个不同的方向喷射气体来击打矿石至少两种不同类型矿石。
由于经过上一处理层级的处理(一部分精矿可直接出售,另一部分废矿被废弃)进入到下一处理层级的矿石仅为部分待选矿石,因此进行破碎和筛选的矿石对象数量减少,能够在下一处理层级配置数量更少的智能分选设备,在保证相同产量的同时减少设备投资、场地占用和能耗。同时,在下一处理层级的粒度层级中需要进行破碎的矿石量减少,不但减少了粉矿的产生率,而且提高了粉矿的品位,使得粉矿也可以销售。图2为根据本发明另一实施方式的基于分级阵列式智能分选进行矿石预选的方法的流程图。
第一步骤,对原矿进行初次破碎与筛分,如图2所示,原矿经过初破系统后,进入筛分系统1,通过筛分系统1筛分出三种不同粒度的矿石,分别按照如下方式处理:
a)粒度为N1-N2mm(包括端点N1mm和N2mm)的矿石,送入大粒度智能分选机中进行智能分选。
b)粒度小于N1mm的矿石,送入筛分系统2进行二次筛分。
c)粒度大于N2mm的矿石,送入初破系统进行再次破碎。
作为优选,N1为大于或等于40的数值,N2为小于或等于100的数值。更优选地,N1为大于或等于45的数值,N2为小于或等于90的数值。进一步地,N1为50,N2为80。应当了解的是本申请的实际数字均为示意性数字,并不具有限制性。
第二步骤,大粒度智能分选机对粒度为N1-N2mm的矿石进行智能分选,通过定义分选参数,大粒度智能分选机能够将矿石分选为三类,分别为:
a)品位低于M1的无价值废石,例如品位低于12左右的磷矿石。该部分矿石价值极低,筛选出来后可以直接废弃。通常,可以根据具体矿石价 值和生产成本确定筛选所用的品位参数M1。
b)品位高于M2的精矿石,例如品位大于27的磷矿石。这部分矿石筛选出后可以作为商品矿出售。相应地,可以根据销售需求来确定筛选所用的品位参数M2。
c)品位介于M1和M2(包括端点M1和M2)之间的中间矿石,例如品位为12-27之间的磷矿石。
智能分选机包括给料系统、传输系统、传感系统、智能识别系统和分离系统等。第一步骤筛选分级后的矿石,经给料系统给入传输系统的高速皮带。在高速皮带运行一定距离后调整至平稳状态,并传输至传感系统。当矿石通过射线源正下方时,由高压激发的X射线照射。传输皮带上的矿石块会减弱射线强度,使穿透矿石的X射线因矿石中所测元素含量的高低而产生不同程度的衰减。传输皮带下方的探测器采集衰减强度数据信息,将其转化为光电数字信号传送给智能识别系统的工控机。工控机中运行智能分选软件,对数据进行成像处理并进行分析识别。工控机根据预先设定的分选参数,判别并标记矿石块为废石a、精矿石b、中间矿石c,同时把已标记的矿石位置信息发送给分离系统的喷吹控制单元。当矿石块飞离传输系统的皮带后,将经过分离系统的气排枪,通过气排枪的喷嘴精准地喷吹已标记的废石a、精矿石b、中间矿石c,从而将废石a、精矿石b、中间矿石c进行分离。
第三步骤,将大粒度智能分选机分选出的中间矿石送入中破或细破系统进行二次破碎,破碎后送入筛分系统2进行二次筛分。
筛分系统2进行筛分处理,送入筛分系统2的矿石包括:第一步骤中,筛分系统1筛分出的粒度小于N1mm的矿石,以及第二步骤中,智能分选机分选出的粒度N1-N2mm的中间矿石经二次破碎后的矿石。
通过筛分系统2筛分出三种粒度的矿石,分别按照如下方式处理:
a)粒度小于k1mm的矿石,直接进入粉矿。k1通常取值为8-13,作为优选,k1=10;
b)粒度大于N1mm的矿石,送入中破或细破系统进行再次破碎;
c)粒度为k1-N1mm的矿石,送入中粒度或小粒度智能分选机进行分选。
应当了解的是,根据智能分选设备所处的工序层级确定分选三种不同 粒度的矿石,还是分选两种不同粒度的矿石。例如,如果智能分选设备所处的工序层级为最后一个层级或最低层级,那么智能分选设备分选两种不同粒度的矿石,即废矿和精矿。如果智能分选设备所处的工序层级不是最后一个层级或最低层级,那么智能分选设备分选三种不同粒度的矿石,即废矿、中间矿(或中矿)和精矿。
应当了解的是,大粒度智能分选机、中粒度智能分选机和小粒度智能分选机可以设置不同的传输皮带材料、传输皮带厚度、传输马达、X射线参数和喷吹力度等。
一台智能分选机想要具有较大的产量,存在3个选项:(1)加宽皮带宽度,这会导致设备宽度加大,而且具有一定光路设计上的局限性,即存在极限。(2)加大皮带速度,这个会大大加长智能分选机的长度,这两个方式都会对设备带来大的设计上的挑战以及安装场地的要求。同时,现在的设备售价基本跟这两个指标挂钩,这两个指标是设备型号的主要参数,厂家一般只提供几款设备供选择,会加大客户的负担。(3)在指定型号的情况下,要加大产量就只能依赖于第三个选项,即加大处理的矿石粒度。实际例子:采用同样的光选机,处理35-70mm粒度时产量为处理10-35mm粒度的矿石的产量的四倍以上。
举例来说,以技术方式进行大粒度智能分选机的改进:
1、调制合适的光谱段对大颗粒进行X光照射。X光的透射能力与被照射物的厚度直接相关,颗粒变大连带着使得X光透射的矿石厚度变大,需要针对性的设计X光的光谱范围;
2、大粒度矿石带来对设备的磨损,尤其是载物皮带的磨损加大,需要采用适合大粒度的耐磨损的材料以及材料的厚度,但同时材料的更改及厚度的变化不能带来X光的过衰减,使得信号强度过弱;
3、大粒度矿石需要配比更大压强以及力度的喷射气流,加大单个喷嘴的覆盖面积,使得能有效克服矿石惯性,使得其在经过气流击打后能进入新的运行轨道;
4、目前这种方案的实现,依赖于设备能实现对矿石路径的双重改变,此双重改变可以通过以下方式获得:
4.1、同一排喷嘴,通过控制喷嘴喷射时气流压强的大小,实现击打力 度的大小变化,从而使得出现三个飞行路径:未被击打,小力度击打,大力度击打,使得矿石进入三个料仓;
4.2、同一排喷嘴,通过控制喷嘴有效开口面积的大小获得不同单个喷嘴击打气流力度大小,后续同4.1;
4.3、两排喷嘴位于同一侧,但是设计为不同气压以及喷嘴覆盖面积;
4.4;两排喷嘴位于矿石路径的两侧,从两个不同的方向击打矿石;
5、算法要能有效的基于大粒度矿石进行分类识别,需要能识别出精矿、中矿和尾矿。
在本申请的工艺流程中,位于前端的大粒度智能光选机的产量远大于位于后端中/小粒度智能光选机的产量。以生产实例来看,对于一个年产为100万吨的磷矿。在进行光电分选,解离粒度为40mm情况下,若采用现在的分选工艺,矿石全破碎到40mm以下,产生的粉矿(<10mm)率约为40%。常规型号分选机10-40mm矿石的产量约为60吨/小时,需要并联约3台分选机以满足产量(一天16小时生产)。此种方案下,当原矿品位不佳时,粉矿很大概率无法达到商品矿的指标,无法进行销售。若采用本发明所示串联型、并联型或串并混合型结构进行生产,可选择在40-80mm破碎下先进行初选,此时同样分选机选型下,单台设备产量在150吨以上。1台分选机可完成全部矿石分选,并且分选后的中矿再经破碎后,由于中矿数量较原始矿石量的减少,只需要再串联1台分选机便可在在10-40mm完成分选。在不改变分选机选型的情况下,此分选工艺减少了1台分选机的使用量,同时,分选后仅对中矿进行破碎,不但减少了粉矿的产生率,而且提高了粉矿的品位,使得粉矿也可以销售。
传输皮带宽度相同并且传输皮带速度相同的分选机,因为处理不同粒度,信号采集、识别、分离系统的设计会存在一定差异。为此,分选机具有处理不同粒度矿石的能力。以磷矿为例,加大矿石粒度,加大了对X射线信号衰减时能谱的迁移,需要做更多的算法矫正来完成有效识别。
在后端,可选择地,并联多台中/小粒度智能分选机进行分选,或者将后端的中/小粒度智能光选机也设置为三种分选结果,按照与第二步骤和第三步骤相似的步骤进行再次分选、破碎、筛分处理。
如有需要,可以复制本发明所描述的流程,进一步细化破碎、筛分、 分选的粒度控制,在每一个环节中,只需有效分选这一个粒度范围内完全解离的矿石,产生尾矿(即废石)、精矿两个有效产品,同时将第三个产品即未解离的中间矿送入下一个流程进行破碎、筛分、分选。
在大粒度下,必然存在一部分矿石解离,一部分矿石未解离的情况。根据本发明所提供的方案,采用具有识别和分离出三类产品功能的智能分选机,将解离后的废石抛除,选出纯精矿直接作为商品矿,将未解离的部分的中间矿送入下一个流程。只将中矿进行再次破碎,大大减少了将磷矿石破碎到10-35解离粒度时矿石的量,产生的粉矿率大大减少,同时破碎耗能也大大减少。根据本发明所提供的方案,只将破碎后的中矿再次分选,可并列多台智能光选机以所需吞吐量完成产量。
图3为根据本发明实施方式的基于分级阵列式智能分选进行矿石预选的系统的结构示意图。系统300包括分选设置装置301、粒度设置装置302、关联装置303以及处理装置304。
分选设置装置301获取待处理的矿石的参数信息,根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构,所述分选层级结构包括至少两个分选层级并且每个分选层级包括至少一个智能分选设备。
其中根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构包括:获取与矿石预选相关联的配置文件,根据配置文件确定矿石预选的吞吐量;对参数信息进行解析以确定待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度;基于吞吐量确定智能分选设备的数量,并且基于待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构。
其中基于吞吐量确定智能分选设备的数量包括:确定每个智能分选设备的单位时间内的矿石分选量;基于每个智能分选设备的单位时间内的矿石分选量和吞吐量确定智能分选设备的数量。
其中基于待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构包括:当待处理的矿石的初始废石比率大于或等于废石比率阈值、初始精矿 比率大于或等于精矿比率阈值或初始平均粒度大于或等于初始粒度阈值时,确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构为:智能分选设备的数量从大粒度分选等级至小粒度分选等级递减的层级结构;
当待处理的矿石的初始废石比率小于废石比率阈值、初始精矿比率小于精矿比率阈值或初始平均粒度小于初始粒度阈值时,确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构为:在多个分选层级中选择至少一个目标分选层级并在每个目标分选层级并行布置至少两个智能分选设备的层级结构。
所述智能分选设备能够利用给料子设备将预定粒度的矿石提供给传输子设备的高速皮带;
传输子设备的高速皮带在运送预定粒度的矿石运行预定距离后,进入至平稳状态,并预定粒度的矿石传输至传感子设备;
当预定粒度的矿石在皮带的传输下通过传感子设备的射线源正下方时,射线源利用高压激发的X射线照射预定粒度的矿石,穿透预定粒度的矿石的X射线由于所测元素含量的不同而产生不同程度的衰减;
由传感子设备的位于皮带下方的探测器采集衰减数据信息,将衰减数据信息转化为光电数字信号,并将光电数字信号传送给智能识别系统的智能识别子设备;
智能识别子设备基于光电数字信号生成待识别成像,并对待识别图像进行内容识别以确定预定粒度的矿石的矿石参数,基于当前品位阈值确定当前分选参数,将矿石参数与当前分选参数进行比较,以基于比较结果将预定粒度的矿石标记为废石、精矿石或中间矿石,将标记为废石、精矿石或中间矿石的矿石的位置信息发送给分离子设备的喷吹控制单元;
当预定粒度的矿石在传输子设备的皮带输送下到达预定位置时,分离子设备的气排枪在喷吹控制单元的控制下,通过气排枪的喷嘴喷吹被标记为废石、精矿石或中间矿石的矿石,从而将废石、精矿石和中间矿石进行分选,实现对预定粒度的矿石进行分选。
例如,大粒度智能分选机能够将矿石分选为三类,分别为:a)品位低于M1的无价值废石,例如品位低于12左右的磷矿石。该部分矿石价值极低, 筛选出来后可以直接废弃。通常,可以根据具体矿石价值和生产成本确定筛选所用的品位参数M1。b)品位高于M2的精矿石,例如品位大于27的磷矿石。这部分矿石筛选出后可以作为商品矿出售。相应地,可以根据销售需求来确定筛选所用的品位参数M2。c)品位介于M1和M2(包括端点M1和M2)之间的中间矿石,例如品位为12-27之间的磷矿石。
粒度设置装置302根据所述多个智能分选设备的分选层级结构,确定用于对待处理的矿石的进行多级粒度处理的粒度层级结构,其中所述粒度层级结构包括至少两个粒度层级。
其中每个粒度层级包括:破碎处理和筛分处理,并且按照多级粒度处理中的从最大粒度矿石到最小粒度矿石的处理顺序,多个粒度层级中的每个粒度层级所获得的矿石的粒度依次减小。
在每个粒度层级中:根据当前需要可选择将输入的矿石进行破碎处理,将经过破碎处理的矿石或输入的矿石进行筛分处理;将能够通过筛分处理的矿石传送至相连接的智能分选设备或下一个粒度层级;将无法通过筛分处理的矿石继续进行破碎处理,直至能够通过筛分处理为止。
例如,筛分系统筛分三种不同粒度的矿石,分别按照如下方式处理:a)粒度为N1-N2mm(包括端点N1mm和N2mm)的矿石,送入大粒度智能分选机中进行智能分选。b)粒度小于N1mm的矿石,送入筛分系统2进行二次筛分。c)粒度大于N2mm的矿石,送入初破系统进行再次破碎。
作为优选,N1为大于或等于40的数值,N2为小于或等于100的数值。更优选地,N1为大于或等于45的数值,N2为小于或等于90的数值。进一步地,N1为50,N2为80。应当了解的是本申请的实际数字均为示意性数字,并不具有限制性。
关联装置303将所述分选层级结构中的每个分选层级与所述粒度层级结构中的相应粒度层级进行关联,以组成包括至少两个处理层级的多级矿石处理结构。多级矿石处理结构的实例如图2所示,应当了解的是,本申请可以在每个处理层级设置任意合理数量的分选机、破碎系统和筛分系统等,并且可以对相同处理层级的分选机、破碎系统和筛分系统进行任意合理的结构布置,例如,并联、串联或并联串联混合。
所述用于分级阵列式智能分选的多个智能分选设备的分选层级结构包 括第一分选层级、第二分选层级和第三分选层级;所述粒度层级结构包括第一粒度层级、第二粒度层级和第三粒度层级。
还包括,利用第一粒度层级的破碎处理对待处理的矿石循环进行一级破碎和一级筛分,以获得第一破碎粒度范围的矿石和第二破碎粒度范围的矿石;利用第一分选层级中的每个智能分选设备对第一破碎粒度范围的矿石进行分选,以获得废石、一级精矿石和一级中间矿石;利用第二粒度层级的破碎处理对一级中间矿石和第二破碎粒度范围的矿石循环进行二级破碎和二级筛分,以获得第三破碎粒度范围的矿石和第四破碎粒度范围的矿石;利用第二分选层级中的每个智能分选设备对第三破碎粒度范围的矿石进行分选,以获得废石、二级精矿石和二级中间矿石;利用第三粒度层级的破碎处理对二级中间矿石循环进行三级破碎和三级筛分,以获得第四破碎粒度范围的矿石和第五破碎粒度范围的矿石;利用第三分选层级中的每个智能分选设备对第五破碎粒度范围的矿石进行分选,以获得废石和三级精矿石。
其中第二分选层级和/或第三分选层级包括并联的多个智能分选设备。其中第一破碎粒度范围为小于或等于第一粒度并且大于或等于第二粒度的粒度范围;第二破碎粒度范围为小于第二粒度并且大于0的粒度范围;第三破碎粒度范围为小于第二粒度并且大于或等于第三粒度的粒度范围;第四破碎粒度范围为小于第三粒度并且大于0的粒度范围;第五破碎粒度范围为小于第四粒度并且大于或等于第三粒度的粒度范围;其中第一粒度大于第二粒度,第二粒度大于第三粒度,并且第四粒度大于第三粒度。
处理装置304基于多级矿石处理结构对待处理的矿石进行矿石预选,从而获得符合预定粒度的矿石。
其中每个处理层级包括:粒度层级和分选层级。在根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构之后还包括:
对多个智能分选设备中的每个智能分选设备进行配置,其中相同分选层级中的多个智能分选设备用于对相同破碎粒度范围的矿石进行分选,并且不同分选层级中的智能分选设备用于对不同破碎粒度范围的矿石进行分选。
对多个智能分选设备中的每个智能分选设备进行配置包括:确定待配置的智能分选设备的当前分选层级;确定与所述当前分选层级相对应的当前破碎粒度范围;根据所述当前破碎粒度范围确定X射线的选定光谱段;将待配置的智能分选设备的射线源的光谱段设置为所述选定光谱段。上述配置能够使X射线穿透当前破碎粒度范围的矿石后,仍满足探测器采集衰减数据信息的需要。
对多个智能分选设备中的每个智能分选设备进行配置包括:确定待配置的智能分选设备的当前分选层级;确定与所述当前分选层级相对应的当前破碎粒度范围;根据所述当前破碎粒度范围确定载物皮带的目标耐磨度;根据目标耐磨度为待配置的智能分选设备确定选定厚度和选定材料的载物皮带。上述配置既能够满足当前破碎粒度范围矿石预选过程中皮带的使用寿命,也避免了皮带参数设置过高所造成的浪费问题。
对多个智能分选设备中的每个智能分选设备进行配置包括:确定待配置的智能分选设备的当前分选层级;确定与所述当前分选层级相对应的当前破碎粒度范围;根据所述当前破碎粒度范围确定待配置的智能分选设备的气体喷射参数;根据气体喷射参数对待配置的智能分选设备的喷吹控制单元进行设置,喷吹控制单元根据气体喷射参数对气排枪进行控制,使得气排枪的每个喷嘴能够喷射预定压强或力度的气体;所述气体喷射参数包括:喷嘴的口径尺寸、气流压强和/或单次喷射时间长度。
所述智能分选设备能够利用气排枪对至少两种不同类型矿石进行分选,其中气排枪包括多个喷嘴,并且每个喷嘴能够在喷吹控制单元的控制下在预定时间并且以预定压强喷射气体。
其中利用气排枪对至少两种不同类型矿石进行分选包括:喷吹控制单元对气排枪的喷嘴所喷射的气体的气流压强进行控制,从而实现所喷射的气体对至少两种不同类型矿石中的每种类型的矿石产生不同的击打力度,以促使每个类型的矿石进入相应的料仓。
气排枪具有多种布置方式,在第一种布置方式中,所述气排枪位于矿石路径的单侧,并且所述气排枪包括至少一排喷嘴,通过控制喷嘴的有效口径的大小来获得喷嘴所喷射的气流的不同击打力度,或者,通过控制喷嘴所喷射气体的气流压强来获得喷嘴所喷射的气流的不同击打力度,上述 方式中被气体击打的矿石的运动轨迹全部在原预定轨迹的一侧,对应地,收集不同矿石的收集装置全部设置在原落点的一侧。在第二种布置方式中,所述气排枪位于矿石路径的两侧,并且两侧中的每侧的气排枪包括至少一排喷嘴,使得气排枪从两个不同的方向喷射气体来击打矿石至少两种不同类型矿石,上述方式中被气体击打的矿石的运动轨迹在原预定轨迹的两侧,对应地,收集不同矿石的收集装置全部设置在原落点的两侧。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还能够对上述实施方案方式进行变更和修改。但是,本发明并不局限于上述的具体实施方式,凡是本领域技术人员在本发明的基础上所作出的任何显而易见的改进、替换或变型均属于本发明的保护范围。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (23)

  1. 一种基于分级阵列式智能分选进行矿石预选的方法,所述方法包括:
    获取待处理的矿石的参数信息,根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构,所述分选层级结构包括至少两个分选层级并且每个分选层级包括至少一个智能分选设备;
    根据所述多个智能分选设备的分选层级结构,确定用于对待处理的矿石的进行多级粒度处理的粒度层级结构,其中所述粒度层级结构包括至少两个粒度层级;
    将所述分选层级结构中的每个分选层级与所述粒度层级结构中的相应粒度层级进行关联,以组成包括至少两个处理层级的多级矿石处理结构;
    基于多级矿石处理结构对待处理的矿石进行矿石预选,从而获得符合预定粒度的矿石。
  2. 根据权利要求1所述的方法,
    其中根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构包括:
    获取与矿石预选相关联的配置文件,根据配置文件确定矿石预选的吞吐量;
    对参数信息进行解析以确定待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度;
    基于吞吐量确定智能分选设备的数量,并且基于待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构。
  3. 根据权利要求2所述的方法,
    其中基于吞吐量确定智能分选设备的数量包括:
    确定每个智能分选设备的单位时间内的矿石分选量;
    基于每个智能分选设备的单位时间内的矿石分选量和吞吐量确定智能 分选设备的数量。
  4. 根据权利要求2所述的方法,
    其中基于待处理的矿石的初始废石比率、初始精矿比率和初始平均粒度确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构包括:
    当待处理的矿石的初始废石比率大于或等于废石比率阈值、初始精矿比率大于或等于精矿比率阈值或初始平均粒度大于或等于初始粒度阈值时,确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构为:智能分选设备的数量从大粒度分选等级至小粒度分选等级递减的层级结构;
    当待处理的矿石的初始废石比率小于废石比率阈值、初始精矿比率小于精矿比率阈值或初始平均粒度小于初始粒度阈值时,确定用于分级阵列式智能分选的多个智能分选设备的分选层级结构为:在多个分选层级中选择至少一个目标分选层级并在每个目标分选层级并行布置至少两个智能分选设备的层级结构。
  5. 根据权利要求1所述的方法,
    所述智能分选设备能够利用给料子设备将预定粒度的矿石提供给传输子设备的高速皮带;
    传输子设备的高速皮带在运送预定粒度的矿石运行预定距离后,进入至平稳状态,并预定粒度的矿石传输至传感子设备;
    当预定粒度的矿石在皮带的传输下通过传感子设备的射线源正下方时,射线源利用高压激发的X射线照射预定粒度的矿石,穿透预定粒度的矿石的X射线由于所测元素含量的不同而产生不同程度的衰减;
    由传感子设备的位于皮带下方的探测器采集衰减数据信息,将衰减数据信息转化为光电数字信号,并将光电数字信号传送给智能识别系统的智能识别子设备;
    智能识别子设备基于光电数字信号生成待识别成像,并对待识别图像进行内容识别以确定预定粒度的矿石的矿石参数,基于当前品位阈值确定 当前分选参数,将矿石参数与当前分选参数进行比较,以基于比较结果将预定粒度的矿石标记为废石、精矿石或中间矿石,将标记为废石、精矿石或中间矿石的矿石的位置信息发送给分离子设备的喷吹控制单元;
    当预定粒度的矿石在传输子设备的皮带输送下到达预定位置时,分离子设备的气排枪在喷吹控制单元的控制下,通过气排枪的喷嘴喷吹被标记为废石、精矿石或中间矿石的矿石,从而将废石、精矿石和中间矿石进行分选,实现对预定粒度的矿石进行分选。
  6. 根据权利要求1所述的方法,
    其中每个粒度层级包括:破碎处理和筛分处理,并且按照多级粒度处理中的从最大粒度矿石到最小粒度矿石的处理顺序,多个粒度层级中的每个粒度层级所获得的矿石的粒度依次减小。
  7. 根据权利要求1所述的方法,
    在每个粒度层级中:将输入的矿石进行破碎处理,将经过破碎处理的矿石进行筛分处理;将能够通过筛分处理的矿石传送至相连接的智能分选设备或下一个粒度层级;将无法通过筛分处理的矿石继续进行破碎处理,直至能够通过筛分处理为止。
  8. 根据权利要求1所述的方法,
    所述用于分级阵列式智能分选的多个智能分选设备的分选层级结构包括第一分选层级、第二分选层级和第三分选层级;所述粒度层级结构包括第一粒度层级、第二粒度层级和第三粒度层级。
  9. 根据权利要求8所述的方法,还包括,
    利用第一粒度层级的破碎处理对待处理的矿石循环进行一级破碎和一级筛分,以获得第一破碎粒度范围的矿石和第二破碎粒度范围的矿石;
    利用第一分选层级中的每个智能分选设备对第一破碎粒度范围的矿石进行分选,以获得废石、一级精矿石和一级中间矿石;
    利用第二粒度层级的破碎处理对一级中间矿石和第二破碎粒度范围的 矿石循环进行二级破碎和二级筛分,以获得第三破碎粒度范围的矿石和第四破碎粒度范围的矿石;
    利用第二分选层级中的每个智能分选设备对第三破碎粒度范围的矿石进行分选,以获得废石、二级精矿石和二级中间矿石;
    利用第三粒度层级的破碎处理对二级中间矿石循环进行三级破碎和三级筛分,以获得第四破碎粒度范围的矿石和第五破碎粒度范围的矿石;
    利用第三分选层级中的每个智能分选设备对第五破碎粒度范围的矿石进行分选,以获得废石和三级精矿石。
  10. 根据权利要求9所述的方法,
    其中第二分选层级和/或第三分选层级包括并联的多个智能分选设备。
  11. 根据权利要求9所述的方法,
    第一破碎粒度范围为小于或等于第一粒度并且大于或等于第二粒度的粒度范围;
    第二破碎粒度范围为小于第二粒度并且大于0的粒度范围;
    第三破碎粒度范围为小于第二粒度并且大于或等于第三粒度的粒度范围;
    第四破碎粒度范围为小于第三粒度并且大于0的粒度范围;
    第五破碎粒度范围为小于第四粒度并且大于或等于第三粒度的粒度范围;其中
    第一粒度大于第二粒度,第二粒度大于第三粒度,并且第四粒度大于第三粒度。
  12. 根据权利要求1所述的方法,
    其中每个处理层级包括:粒度层级和分选层级。
  13. 根据权利要求1所述的方法,
    在根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构之后还包括:对多个智能分选设备中 的每个智能分选设备进行配置,其中相同分选层级中的多个智能分选设备用于对相同破碎粒度范围的矿石进行分选,并且不同分选层级中的智能分选设备用于对不同破碎粒度范围的矿石进行分选。
  14. 根据权利要求13所述的方法,
    对多个智能分选设备中的每个智能分选设备进行配置包括:
    确定待配置的智能分选设备的当前分选层级;
    确定与所述当前分选层级相对应的当前破碎粒度范围;
    根据所述当前破碎粒度范围确定X射线的选定光谱段;
    将待配置的智能分选设备的射线源的光谱段设置为所述选定光谱段。
  15. 根据权利要求13所述的方法,
    对多个智能分选设备中的每个智能分选设备进行配置包括:
    确定待配置的智能分选设备的当前分选层级;
    确定与所述当前分选层级相对应的当前破碎粒度范围;
    根据所述当前破碎粒度范围确定载物皮带的目标耐磨度;
    根据目标耐磨度为待配置的智能分选设备确定选定厚度和选定材料的载物皮带。
  16. 根据权利要求13所述的方法,
    对多个智能分选设备中的每个智能分选设备进行配置包括:
    确定待配置的智能分选设备的当前分选层级;
    确定与所述当前分选层级相对应的当前破碎粒度范围;
    根据所述当前破碎粒度范围确定待配置的智能分选设备的气体喷射参数;
    根据气体喷射参数对待配置的智能分选设备的喷吹控制单元进行设置,喷吹控制单元根据气体喷射参数对气排枪进行控制,使得气排枪的每个喷嘴能够喷射预定压强或力度的气体;
    所述气体喷射参数包括:喷嘴的口径尺寸、气流压强和/或单次喷射时间长度。
  17. 根据权利要求1所述的方法,
    所述智能分选设备能够利用气排枪对至少两种不同类型矿石进行分选,其中气排枪包括多个喷嘴,并且每个喷嘴能够在喷吹控制单元的控制下在预定时间并且以预定压强喷射气体。
  18. 根据权利要求17所述的方法,
    其中利用气排枪对至少两种不同类型矿石进行分选包括:喷吹控制单元对气排枪的喷嘴所喷射的气体的气流压强进行控制,从而实现所喷射的气体对至少两种不同类型矿石中的每种类型的矿石产生不同的击打力度,以促使每个类型的矿石进入相应的料仓。
  19. 根据权利要求16-18中任意一项所述的方法,
    所述气排枪位于矿石路径的单侧,并且所述气排枪包括至少一排喷嘴,通过控制喷嘴的有效口径的大小来获得喷嘴所喷射的气流的不同击打力度,或者通过控制喷嘴所喷射气体的气流压强来获得喷嘴所喷射的气流的不同击打力度。
  20. 根据权利要求16-18中任意一项所述的方法,
    所述气排枪位于矿石路径的两侧,并且两侧中的每侧的气排枪包括至少一排喷嘴,使得气排枪从两个不同的方向喷射气体来击打矿石至少两种不同类型矿石。
  21. 一种基于分级阵列式智能分选进行矿石预选的系统,
    所述系统包括:
    分选设置装置,用于获取待处理的矿石的参数信息,根据参数信息确定智能分选设备的数量和用于分级阵列式智能分选的多个智能分选设备的分选层级结构,所述分选层级结构包括至少两个分选层级并且每个分选层级包括至少一个智能分选设备;
    粒度设置装置,根据所述多个智能分选设备的分选层级结构,确定用 于对待处理的矿石的进行多级粒度处理的粒度层级结构,其中所述粒度层级结构包括至少两个粒度层级;
    关联装置,将所述分选层级结构中的每个分选层级与所述粒度层级结构中的相应粒度层级进行关联,以组成包括至少两个处理层级的多级矿石处理结构;
    处理装置,基于多级矿石处理结构对待处理的矿石进行矿石预选,从而获得符合预定粒度的矿石。
  22. 一种计算机可读存储介质,其特征在于,
    所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-20任一所述的方法。
  23. 一种电子设备,其特征在于,
    所述电子设备包括:处理器;用于存储所述处理器可执行指令的存储器;所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现上述权利要求1-20任一所述的方法。
PCT/CN2022/104611 2021-07-08 2022-07-08 一种基于分级阵列式智能分选进行矿石预选的方法及系统 WO2023280302A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022308860A AU2022308860A1 (en) 2021-07-08 2022-07-08 Method and system for performing ore pre-dressing on basis of hierarchical array-type intelligent dressing
CA3224924A CA3224924A1 (en) 2021-07-08 2022-07-08 Method and system for conducting ore presorting based on hierarchical arrayed intelligent sorting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110774607.5A CN113500015B (zh) 2021-07-08 2021-07-08 一种基于分级阵列式智能分选进行矿石预选的方法及系统
CN202110774607.5 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023280302A1 true WO2023280302A1 (zh) 2023-01-12

Family

ID=78012305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104611 WO2023280302A1 (zh) 2021-07-08 2022-07-08 一种基于分级阵列式智能分选进行矿石预选的方法及系统

Country Status (4)

Country Link
CN (1) CN113500015B (zh)
AU (1) AU2022308860A1 (zh)
CA (1) CA3224924A1 (zh)
WO (1) WO2023280302A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113500015B (zh) * 2021-07-08 2023-03-31 湖州霍里思特智能科技有限公司 一种基于分级阵列式智能分选进行矿石预选的方法及系统
CN117443748A (zh) * 2023-12-20 2024-01-26 北京霍里思特科技有限公司 一种物块分选系统的控制方法及物块分选系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110180638A1 (en) * 2008-09-11 2011-07-28 Damien Harding Sorting mined material
US20110288679A1 (en) * 2008-12-19 2011-11-24 Omya Development Ag Method for separating mineral impurities from calcium carbonate-containing rocks by x-ray sorting
CN102921638A (zh) * 2012-11-16 2013-02-13 鞍钢集团矿业公司 利用x射线分选机对贫赤铁矿预处理抛尾的方法
CN103316853A (zh) * 2013-06-06 2013-09-25 东北大学 一种采用x-射线辐射分选预富集贫赤铁矿的方法
CN103639027A (zh) * 2013-12-06 2014-03-19 中信大锰矿业有限责任公司大新锰矿分公司 一种碳酸锰矿石的干选方法
CN108787149A (zh) * 2018-07-23 2018-11-13 湖北冯家山硅纤有限公司 一种利用干法分选分级提纯硅灰石的方法
CN210159985U (zh) * 2019-06-05 2020-03-20 山东泰安煤矿机械有限公司 基于射线的多粒度干法的选煤装置
CN112221657A (zh) * 2020-09-03 2021-01-15 湖北杉树垭矿业有限公司 磷矿光电选矿分选工艺
CN112264181A (zh) * 2020-09-29 2021-01-26 赣州有色冶金研究所 一种低品位硫化铜矿石的预选抛废选矿方法
CN112452516A (zh) * 2020-11-12 2021-03-09 中钢集团南京新材料研究院有限公司 一种强磁性矿石半自磨工艺的顽石破碎方法
CN113500015A (zh) * 2021-07-08 2021-10-15 湖州霍里思特智能科技有限公司 一种基于分级阵列式智能分选进行矿石预选的方法及系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU532826B2 (en) * 1982-02-12 1983-10-13 Electric Power Development Co. Ltd. Processing of low rank coal to a coal-oil mixture
CN101457299A (zh) * 2007-12-10 2009-06-17 北京有色金属研究总院 一种用于高寒地区高泥氧化铜矿的湿法处理工艺
WO2010048493A2 (en) * 2008-10-23 2010-04-29 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
CN201711212U (zh) * 2010-04-19 2011-01-19 北京矿冶研究总院 粗颗粒磁铁矿湿式预选磁选机
CN106401586B (zh) * 2016-06-24 2019-02-22 中国矿业大学 一种煤岩同采工作面的煤岩分选与利用方法
CN106269149B (zh) * 2016-08-04 2018-03-20 攀钢集团攀枝花钢铁研究院有限公司 一种海绵钛加工破碎系统及方法
CN107055542B (zh) * 2016-11-18 2019-04-16 云南永昌硅业股份有限公司 处理含硅硅渣的方法
CN109499747A (zh) * 2018-12-05 2019-03-22 金石资源集团股份有限公司 一种多金属矿石中伴生萤石的分选系统及分选工艺
SE544132C2 (en) * 2019-07-29 2022-01-11 Metso Sweden Ab A beneficiation arrangement for use with geological material
CN110560387A (zh) * 2019-09-06 2019-12-13 湖南水口山有色金属集团有限公司 一种铅锌块状矿石智能分选方法
CN112090479A (zh) * 2020-09-21 2020-12-18 马钢集团设计研究院有限责任公司 一种低品位铬铁矿的干式预选系统及其工艺
CN112495831A (zh) * 2020-12-04 2021-03-16 湖州霍里思特智能科技有限公司 矿产分选机
CN112547562A (zh) * 2020-12-14 2021-03-26 赣州有色冶金研究所 一种智能矿石分选机
CN112844763A (zh) * 2021-03-01 2021-05-28 长沙矿冶研究院有限责任公司 一种矿石x射线预选-破碎系统及其工艺

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110180638A1 (en) * 2008-09-11 2011-07-28 Damien Harding Sorting mined material
US20110288679A1 (en) * 2008-12-19 2011-11-24 Omya Development Ag Method for separating mineral impurities from calcium carbonate-containing rocks by x-ray sorting
CN102921638A (zh) * 2012-11-16 2013-02-13 鞍钢集团矿业公司 利用x射线分选机对贫赤铁矿预处理抛尾的方法
CN103316853A (zh) * 2013-06-06 2013-09-25 东北大学 一种采用x-射线辐射分选预富集贫赤铁矿的方法
CN103639027A (zh) * 2013-12-06 2014-03-19 中信大锰矿业有限责任公司大新锰矿分公司 一种碳酸锰矿石的干选方法
CN108787149A (zh) * 2018-07-23 2018-11-13 湖北冯家山硅纤有限公司 一种利用干法分选分级提纯硅灰石的方法
CN210159985U (zh) * 2019-06-05 2020-03-20 山东泰安煤矿机械有限公司 基于射线的多粒度干法的选煤装置
CN112221657A (zh) * 2020-09-03 2021-01-15 湖北杉树垭矿业有限公司 磷矿光电选矿分选工艺
CN112264181A (zh) * 2020-09-29 2021-01-26 赣州有色冶金研究所 一种低品位硫化铜矿石的预选抛废选矿方法
CN112452516A (zh) * 2020-11-12 2021-03-09 中钢集团南京新材料研究院有限公司 一种强磁性矿石半自磨工艺的顽石破碎方法
CN113500015A (zh) * 2021-07-08 2021-10-15 湖州霍里思特智能科技有限公司 一种基于分级阵列式智能分选进行矿石预选的方法及系统

Also Published As

Publication number Publication date
CN113500015B (zh) 2023-03-31
CN113500015A (zh) 2021-10-15
AU2022308860A1 (en) 2024-01-18
CA3224924A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
WO2023280302A1 (zh) 一种基于分级阵列式智能分选进行矿石预选的方法及系统
US11135619B2 (en) Ore intelligence sorting apparatus and method based on X-rays discernment
CN113500014B (zh) 一种基于阈值的动态调整进行智能分选的方法及系统
CN204996734U (zh) 一种铁矿石分拣机
CN105880003B (zh) 一种磁铁矿石无筛分高压辊磨干式磁选方法
AU2011245066B2 (en) Sorting mined material
CN104815739A (zh) 一种磁铁矿干磨干选方法和装置
CN108672081A (zh) 磁铁矿高压辊磨湿式预选-阶段磨矿-细筛塔磨磁选工艺
CN213255039U (zh) 选矿装置
CN109174622B (zh) 一种锑矿智能机选预先抛废方法
CN112090480A (zh) 一种低品位萤石矿的干式预选系统及工艺
CN111617987A (zh) 一种用于煤炭的智能自动分选系统
CN114472207B (zh) 一种用于矿物的分选系统及矿物分选方法
CN105562366A (zh) 一种智能干选主再选的工艺及设备
CN106881282B (zh) 一种矿石分选设备及方法
CN107081282A (zh) 轻质物料分选设备
CN213700011U (zh) 一种低品位萤石矿的干式预选系统
CN105107597A (zh) 一种基于气体分选机和柱磨机的粗粒分选方法
CN212576904U (zh) 一种用于煤炭的智能自动分选系统
CN207238206U (zh) 一种环保型制粉系统
US20220176415A1 (en) Method for processing electronic/electrical device component scraps
CN112090479A (zh) 一种低品位铬铁矿的干式预选系统及其工艺
CN114950710A (zh) 一种煤系共伴生矿产镓锂的全粒级分选预富集系统及工艺
CN110694937A (zh) 一种低品位浸染状矽卡岩型白钨矿预先抛废工艺
CN213943270U (zh) 一种低品位铬铁矿的干式预选系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022308860

Country of ref document: AU

Ref document number: AU2022308860

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 3224924

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024000180

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022308860

Country of ref document: AU

Date of ref document: 20220708

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2024101937

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112024000180

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240105