WO2023279506A1 - 一种气体压缩装置及其实现方法 - Google Patents

一种气体压缩装置及其实现方法 Download PDF

Info

Publication number
WO2023279506A1
WO2023279506A1 PCT/CN2021/116398 CN2021116398W WO2023279506A1 WO 2023279506 A1 WO2023279506 A1 WO 2023279506A1 CN 2021116398 W CN2021116398 W CN 2021116398W WO 2023279506 A1 WO2023279506 A1 WO 2023279506A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
cylinder
gas
compression
assembly
Prior art date
Application number
PCT/CN2021/116398
Other languages
English (en)
French (fr)
Inventor
邹孟林
Original Assignee
东莞市先马机电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市先马机电有限公司 filed Critical 东莞市先马机电有限公司
Publication of WO2023279506A1 publication Critical patent/WO2023279506A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/02Multi-stage pumps of stepped piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • F04B39/0022Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons piston rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0094Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/122Cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation

Definitions

  • the present application relates to the field of mechanical technology, in particular to a gas compression device and its implementation method.
  • a compressor is a driven fluid machine that lifts low-pressure gas into high-pressure gas. It inhales low-temperature and low-pressure gas from the outside, drives the piston to compress it through the operation of the motor, and discharges high-temperature and high-pressure gas to the exhaust pipe.
  • An oil-free compressor is a type of compressor, specifically referring to a compressor that does not use lubricating oil in the compressor cylinder.
  • small oil-free compressors generally only have one-stage or two-stage compression, and cannot perform high-pressure compression operations, so that the output air pressure cannot be applied to scenarios with higher air pressure requirements.
  • the present application is proposed to provide a gas compression device that overcomes the above problems or at least partially solves the above problems.
  • a gas compression device which is characterized in that it comprises: a top cover, a first cylinder connected to the top cover, a driving mechanism located under the first cylinder, a The piston assembly in the first cylinder, and the second cylinder extending from the top cover to the first cylinder; the drive mechanism is used to drive the piston assembly to move back and forth;
  • the piston assembly includes a first piston located between the first cylinder and the second cylinder, a first piston connecting rod connected to the first piston, and a first piston located in the second cylinder.
  • a first compression chamber is formed by the top cover, the first piston, the first cylinder and the second cylinder, and, below the first piston, by The first piston, the first cylinder and the first piston connecting rod form a second compression chamber;
  • a third compression chamber is formed by the second piston, the second cylinder and the top cover.
  • the piston assembly further includes a first compression valve disposed in the first piston;
  • One end of the first compression valve communicates with the first compression chamber, and the other end communicates with the second compression chamber.
  • a gas storage through hole communicating with the second compression chamber is provided in the cylinder wall of the first cylinder;
  • the gas storage through hole is used to store the secondary compressed gas.
  • it also includes a gas output assembly connected to the top cover, and a second compression valve arranged on the top cover; one end of the second compression valve communicates with the third cavity, and the other end communicates with the third cavity.
  • the gas storage through hole is connected;
  • the second piston is used for absorbing the secondary compressed gas passing through the second compression valve when moving back and forth, compressing it to generate a tertiary compressed gas, and transmitting the tertiary compressed gas to the gas output assembly.
  • the drive mechanism includes a mechanism body connected to the first cylinder, a transmission assembly located inside the mechanism body, and a drive assembly located on one side of the mechanism body; the transmission assembly and the piston assembly And the drive assembly is connected.
  • the transmission assembly includes: a push plate and a crankshaft;
  • the push plate is connected with the crankshaft and the piston assembly
  • crankshaft One end of the crankshaft is connected to the drive assembly, and the other end is provided with a first bearing;
  • the drive assembly is used to drive the crankshaft to rotate
  • crankshaft is used to drive the push plate to move back and forth when rotating, so as to drive the piston assembly to move back and forth.
  • the drive assembly includes: a rotating shaft connected to the transmission assembly, a gear connected to the rotating shaft, a motor connected to the gear, a housing for accommodating the gear, and a second bearing;
  • the rotating shaft extends from the cover body into the mechanism body, and the second bearing is sleeved on the rotating shaft and located at the joint between the cover body and the mechanism body.
  • the gas output assembly includes an exhaust valve, a first conduit, a condenser connected in sequence, a filter connected to the condenser, an output joint, and one or more A fluid control valve, a pressure gauge set on the filter, and a safety valve connected to the output joint.
  • the top cover is provided with an air intake hole, an air intake valve, and an air intake filter element;
  • One end of the air intake hole is connected to the air intake valve, and the other end is connected to the air intake filter element;
  • One end of the intake valve communicates with the first compression chamber, and the other end communicates with the intake hole;
  • An oil injection hole is arranged between the intake filter element and the intake valve.
  • the device also includes:
  • the embodiment of the present application also discloses a method for realizing the gas compression device as described above, including the following steps:
  • the gas sucked from the outside of the first cylinder is compressed to obtain the first-stage compressed gas, and at the same time, the second compression chamber sucks the gas into the Primary compressed gas;
  • the first compression cavity sucks the gas outside the first cylinder again, and the first piston compresses the gas Perform secondary compression to obtain secondary compressed gas, and at the same time, the second piston moves from the fourth position to the third position to suck the secondary compressed gas into the third compression chamber;
  • the first position point is the top dead center when the first piston moves
  • the second position point is the bottom dead center when the first piston moves
  • the third position is the second The bottom dead center when the piston moves
  • the fourth position is the top dead center when the second piston moves.
  • the gas compression device includes a top cover, a first cylinder, a drive mechanism, a piston assembly, and a second cylinder.
  • the piston assembly includes a first piston located between the first cylinder and the second cylinder, and a piston connected to the first piston.
  • the first compression chamber is formed by the top cover, the first piston, the first cylinder and the second cylinder, and, below the first piston, the first compression chamber is formed by the first piston, the first cylinder and the first piston connecting rod.
  • the piston base is connected to the driving mechanism, and the driving structure drives the piston base to move back and forth, so as to drive the first piston and the second piston to move back and forth.
  • the first compression chamber and the second compression chamber are obtained during the reciprocating movement of a piston to perform primary compression and secondary compression on the gas sucked from the outside of the first cylinder, and are connected by the second piston and the first piston
  • the rod and the top cover form a third compression chamber, and the second piston sucks the gas after two stages of compression into the third compression chamber for three stages of compression to obtain three stages of compressed gas, and outputs the three stages of compressed gas through the top cover , so that the space between the first cylinder and the second cylinder can be reused to perform one-stage compression and two-stage compression of the gas, and to perform three-stage compression on the gas in the second cylinder located in the first cylinder,
  • the volume of the gas compression device is reduced, and at the same time, the gas is compressed in multiple stages to improve
  • Fig. 1 is a first perspective structure diagram of an embodiment of a gas compression device of the present application
  • Fig. 2 is a second perspective cross-sectional view of an embodiment of a gas compression device of the present application
  • Fig. 3 is another second perspective cross-sectional view of an embodiment of a gas compression device of the present application.
  • Fig. 4 is a cross-sectional view of a first viewing angle of an embodiment of a gas compression device of the present application
  • Fig. 5 is another cross-sectional view of a first viewing angle of an embodiment of a gas compression device of the present application
  • Fig. 6 is a first perspective sectional view of another embodiment of a gas compression device of the present application.
  • Fig. 7 is a flow chart of the implementation method of a gas compression device of the present application.
  • the compressor includes a first cylinder 2 and a second cylinder 5, the second cylinder 5 extends from the top of the first cylinder 2 into the first cylinder 2, and the After the gas outside the cylinder body 2, the space between the first cylinder body 2 and the second cylinder body 5 is used to perform primary and secondary compression on the gas respectively, and the second cylinder body 5 absorbs the gas after the secondary compression and Three-stage compression is performed to achieve three-stage compression of the gas sequentially on the basis of maintaining the space occupied by the first cylinder 2 to output high-pressure gas.
  • FIG. 1 it shows a structure diagram of a first viewing angle of an embodiment of a gas compression device of the present application
  • FIG. 2 a cross-sectional view of a second viewing angle of an embodiment of a gas compression device of the present application is shown.
  • the embodiment of the present application may specifically include: a top cover 1, a first cylinder 2 connected to the top cover 1, a drive mechanism 3 located below the first cylinder 2, and a drive mechanism 3 located in the first cylinder 2.
  • a piston assembly 4, and a second cylinder 5 extending from the top cover 1 into the first cylinder 2; the drive mechanism 3 is used to drive the piston assembly 4 to move back and forth;
  • the piston assembly 4 includes a first piston 401 located between the first cylinder 2 and the second cylinder 5, a first piston connecting rod 402 connected to the first piston 401, and a first piston connecting rod 402 located between the first cylinder 2 and the second cylinder 5.
  • the piston base 405 is connected with the drive mechanism 3;
  • first piston 401, the first piston connecting rod 402 and the piston base 405 can be integrally formed or detachable; the second piston 403, the second piston rod 404 and the piston base 405 can be integrated
  • the forming structure can also be a detachable structure, that is, the second piston rod 404 can be rigidly connected to the piston base 405, or the second piston rod 404 can be connected to the piston base 405, which is not limited in the embodiment of the present application.
  • a first compression chamber 6 is formed by the top cover 1, the first piston 401, the first cylinder 2 and the second cylinder 5, and, in the Below the first piston 401, a second compression chamber 7 is formed by the first piston 401, the first cylinder 2 and the second cylinder 5;
  • a third compression chamber 8 is formed by the second piston 402 , the first piston connecting rod 402 and the top cover 1 .
  • the first cylinder body 2 can be made of high temperature resistant and high hardness materials such as alloys, plastics or organic materials.
  • the first cylinder 2 can be a cube, a cylinder, or an irregular body.
  • the volume of the first cylinder 2 can be adjusted according to actual needs. If a large volume of gas needs to be compressed, the volume of the first cylinder 2 can be appropriately increased, thereby increasing the capacity of the gas in the first cylinder 2. If necessary When compressing gas with a small capacity, the volume of the first cylinder 2 can be appropriately reduced, and the capacity of the gas in the first cylinder 2 can be reduced.
  • the second cylinder body 5 is similar to the first cylinder body 2 and can be adjusted similarly to the first cylinder body 2 , which will not be repeated here.
  • FIG. 3 shows another cross-sectional view from a second viewing angle of an embodiment of a gas compression device of the present application.
  • the driving mechanism 3 drives the piston base 405 to move back and forth, and the piston base 405 drives the first piston 401 and the second piston 403 to move back and forth through the first piston connecting rod 402 and the second piston rod 404 .
  • the first piston 401 moves back and forth in the space between the first cylinder 2 and the second cylinder 5, so that the first piston 401 is at the first position (the position of the first piston 401 as shown in FIG. 2 ) and the second position point (the position of the first piston 401 as shown in Figure 3), and the second piston 403 moves back and forth between the second position point (the position of the second piston 403 as shown in Figure 2 position) and the fourth position point (the position of the second piston 403 as shown in FIG.
  • the space above the first piston 401 is formed by the top cover 1, the first piston 401, the first cylinder 2 and the second cylinder 5.
  • the first compression chamber 6, and the second compression chamber 7 formed below the first piston 401 by the first piston 401, the first cylinder body 2 and the first piston connecting rod 402 can be understood Notably, the space between the first compression chamber 6 and the second compression chamber 7 changes as the first piston 401 moves.
  • the first piston 401 moves from the first position to the second position, the gas outside the first cylinder 2 is sucked into the first compression chamber 6; the first piston 401 moves from the second position to the first position At the same time, the gas inhaled from the outside of the first cylinder 2 is compressed to obtain the first-stage compressed gas. At the same time, the second compression chamber 7 absorbs the first-stage compressed gas. Since the volume of the second compression chamber 7 is smaller than that of the first compression chamber 6 volume, so when the gas enters the second compression chamber 7, the gas pressure in the second compression chamber 7 will be greater than the pressure of the gas inhaled by the first compression chamber 6.
  • the first compression chamber 6 sucks in the gas outside the first cylinder body 2 again, and the first piston 401 compresses the gas in the first stage to the second stage
  • the secondary compressed gas is obtained, and at the same time, the second piston 403 moves from the fourth position to the third position, sucking the secondary compressed gas into the third compression chamber 8 .
  • the first piston 401 moves from the second position point to the first position point again
  • the second piston 403 moves from the third position point to the fourth position point
  • the second piston 403 performs three-stage compression on the two-stage compressed gas to generate three
  • the gas is compressed in stages and output to the outside of the first cylinder 2, so as to realize the three-stage compression of the gas.
  • the first-stage compression and the third-stage compression of the gas can be performed synchronously. Compression and secondary compression are performed asynchronously to improve the compression efficiency of gas.
  • the gas compression device includes a top cover 1, a first cylinder body 2, a driving mechanism 3, a piston assembly 4, and a second cylinder body 5.
  • the first piston 401 is located between the inner wall of the first cylinder body 2 and the second cylinder body.
  • the first compression chamber 6 is formed by the top cover 1, the first piston 401, the first cylinder 2 and the second cylinder 5, and, at the first piston 401 below, the second compression chamber 7 is formed by the first piston 401, the first cylinder 2 and the second cylinder 5 to reuse the space between the first cylinder 2 and the second cylinder 5, and the first piston 401
  • the first compression chamber 6 and the second compression chamber 7 are obtained during the reciprocating movement, so as to perform primary compression and secondary compression on the gas sucked from the outside of the first cylinder 2, and are compressed by the second piston 403 and the second piston 403.
  • the cylinder body 5 and the top cover 1 form a third compression chamber 8, and the second piston 403 sucks the gas after two-stage compression into the third compression chamber 8 for three-stage compression to obtain a three-stage compressed gas.
  • the cover 1 outputs three-stage compressed gas, so that the space between the first cylinder 2 and the second cylinder 5 can be reused to perform primary compression and secondary compression of the gas, and the second cylinder located in the first cylinder 2
  • the gas is compressed in three stages in the cylinder body 5, so that the volume of the gas compression device is small, and at the same time, the gas is compressed in multiple stages to improve the compression efficiency of the gas.
  • the piston assembly 4 further includes a first compression valve 406 disposed in the first piston 401;
  • One end of the first compression valve 406 communicates with the first compression chamber 6 , and the other end communicates with the second compression chamber 7 .
  • the first piston 401 is provided with a one-way first compression valve 406.
  • the inhaled gas is compressed in one stage to obtain a one-stage compressed gas.
  • the primary compressed gas is delivered to the second compression chamber 7 .
  • first piston 401 is attached to the outer wall of the second cylinder 5, and a sealing member is provided at the connection between the first piston 401 and the inner wall of the first cylinder 2, so as to prevent gas from being transmitted from the outside of the first piston 401 to the second compressed air. cavity 7.
  • a gas storage through hole 201 communicating with the second compression chamber 7 is provided in the cylinder wall of the first cylinder 2;
  • the gas storage through hole 201 is used to store the secondary compressed gas.
  • the first piston 401 When the first piston 401 moves from the second position point to the first position point, it performs two-stage compression on the first-stage compressed gas to obtain the second-stage compressed gas, and when the first piston 401 moves to the first position point, the two-stage compressed gas is compressed.
  • the stage compressed gas is delivered to the gas storage through hole 201.
  • it also includes a gas output assembly 10 connected to the top cover 1, and a second compression valve 11 arranged on the top cover 1; the second compression valve 11 One end communicates with the third cavity, and the other end communicates with the gas storage through hole 201;
  • the second piston 403 is used to absorb the secondary compressed gas passing through the second compression valve 11 when moving back and forth, and compress it to generate a tertiary compressed gas, and transmit the tertiary compressed gas to the gas output assembly 10.
  • the secondary compressed gas stored in the gas storage through hole 201 is drawn in from the second valve.
  • three-stage compression is performed on the two-stage compressed gas to obtain three-stage compressed gas, and the three-stage compressed gas is transmitted to the gas output assembly 10 to realize the output of the gas compression device Three-stage compressed gas.
  • the driving mechanism 3 includes a mechanism body 301 connected to the first cylinder 2 , a transmission assembly 302 located in the mechanism body 301 , a transmission assembly 302 located in the mechanism body 301 One side drive assembly 303 ; the transmission assembly 302 is connected with the piston assembly 4 and the drive assembly 303 .
  • the drive mechanism 3 includes a mechanism body 301, a transmission assembly 302, and a drive assembly 303 arranged below the first cylinder body 2.
  • the drive assembly 303 is used to drive the transmission assembly 302 to rotate.
  • the transmission assembly 302 is used to drive the transmission assembly 302 when it rotates.
  • the piston assembly 4 moves back and forth.
  • the transmission assembly 302 includes: a push plate 3021, a crankshaft 3022;
  • the push plate 3021 is connected with the crankshaft 3022 and the piston assembly 4;
  • crankshaft 3022 One end of the crankshaft 3022 is connected to the driving assembly 303, and the other end is provided with a first bearing 3023;
  • the drive assembly 303 is used to drive the crankshaft to rotate
  • the crankshaft 3022 is used to drive the push plate 3021 to move back and forth when rotating, so as to drive the piston assembly 4 to move back and forth.
  • the driving assembly 303 drives the crankshaft 3022 to rotate.
  • the crankshaft 3022 rotates, it drives the push plate 3021 to move back and forth along the extending direction of the piston assembly 4, and the push plate 3021 is fixedly connected with the piston assembly 4, so that the piston assembly 4 moves back and forth in the extending direction.
  • the driving assembly 303 includes: a rotating shaft 3031 connected to the transmission assembly 302, a gear 3032 connected to the rotating shaft 3031, a motor 3033 connected to the gear 3032, a housing 3034 for accommodating the gear 3032, and a second bearing 3035;
  • the rotating shaft 3031 extends from the cover body 3034 into the mechanism body 301 , and the second bearing 3035 sleeves on the rotating shaft 3031 and is located at the connection between the cover body 3034 and the mechanism body 301 .
  • the motor 3033 is provided with an output shaft, and the output shaft rotates when the motor 3033 works.
  • the output shaft is engaged with the gear 3032, and when the output shaft rotates, the gear 3032 is driven to rotate.
  • the gear 3032 is meshed with the rotating shaft 3031, and the rotating shaft 3031 is driven to rotate when the gear 3032 rotates.
  • the second bearing 3035 is sleeved on the rotating shaft 3031 to limit the position of the rotating shaft 3031 and reduce the rotational friction force on the rotating shaft 3031 to reduce capacity loss.
  • One end of the rotating shaft 3031 is connected to the crankshaft connecting plate 3023, and the other end is provided with a third bearing 3036, which further reduces the rotational friction of the rotating shaft 3031, and at the same time, better stabilizes the position of the rotating shaft 3031.
  • the cover 3034 covers the gear 3032 to protect the gear 3032 and prevent the gear 3032 from being damaged by external objects.
  • At least one fan blade 3037 is connected to the output shaft of the motor 3033.
  • the fan blade 3037 rotates synchronously to enhance the air flow near the motor 3033 and dissipate heat from the motor 3033.
  • the motor 3033 can be a high-power motor 3033, a high-speed motor 3033, or a high-torque motor 3033.
  • the type of the motor 3033 can be adjusted according to actual needs, which is not limited in the embodiment of the present application.
  • the gas output assembly 10 includes an exhaust valve 1001, a first conduit 1002, a condenser 1003 connected in sequence, a filter 1004 connected to the condenser, and an output joint 1005 , and one or more fluid control valves 1006 arranged on the condenser 1004, a pressure gauge 1007 arranged on the filter, and a safety valve 1008 connected to the output joint 1005.
  • the exhaust valve 1001 When the second piston 403 moves from the third position to the fourth position, the exhaust valve 1001 is in an open state due to the high pressure of the third-stage compressed gas, and the third-stage compressed gas passes through the first conduit 1002 under the action of pressure Transported to the condenser 1003, the condenser 1003 can be loaded with liquid, because the temperature may rise after the gas is compressed, the liquid in the condenser 1003 can absorb the heat energy in the tertiary compressed gas to reduce the tertiary The temperature of the compressed gas.
  • Corresponding materials are provided in the filter 1003 to filter the tertiary compressed gas and remove part or all of the impurities in the tertiary compressed gas.
  • the filter 1003 may be provided with one or more materials among filter cotton, molecular sieve and activated carbon.
  • the filtered three-stage compressed gas is output to the outside of the gas compression device through the output joint 1005 and the safety valve 1008, so as to output the filtered three-stage compressed high-pressure gas to the outside of the gas compression device.
  • one or more fluid control valves 1006 are provided on the condenser 1004 for controlling the flow of fluid (for example: water) into/out of the condenser.
  • the fluid control valve may include a first drain valve 10061 and a second drain valve 10062 .
  • the filter 1004 is provided with a pressure gauge 1007 for detecting gas pressure.
  • FIG. 4 it shows a cross-sectional view of a first viewing angle of an embodiment of a gas compression device of the present application.
  • FIG. 5 it shows another cross-sectional view of a first viewing angle of an embodiment of a gas compression device of the present application. .
  • the top cover 1 is provided with an air intake hole 101, an air intake valve 102, and an air intake filter element 103;
  • One end of the air intake hole 101 is connected to the air intake valve 102, and the other end is connected to the air intake filter element 103;
  • One end of the intake valve 102 communicates with the first compression chamber 6, and the other end communicates with the intake hole 101;
  • An oil injection hole 104 is provided between the intake filter element 103 and the intake valve 102 .
  • the first piston ring 12 sleeved on the first piston 401, the second piston ring 13 sleeved on the second piston 403, are arranged at the bottom of the first cylinder 2 and connected with the first piston
  • the rod 402 contacts the connected third piston ring 14 and the guide sleeve 15 arranged at the bottom of the first cylinder.
  • the first piston ring 12 is used to prevent the gas in the first compression chamber 6 from flowing from the connection between the first piston 401 and the first cylinder 2 to the second compression chamber 7;
  • the second piston ring 13 is used to prevent the third
  • the gas in the compression chamber 8 flows from the connection between the second piston 403 and the second cylinder 5 to the position between the second piston 403 and the piston base 405;
  • the third piston ring 14 is used to prevent the second compression chamber 7 from The gas flows from the connection between the first piston connecting rod 402 and the bottom of the first cylinder 2 to the outside of the first cylinder 2;
  • the guide sleeve 15 is used to limit the first piston connecting rod 402 and the piston base 405 .
  • the second piston 403 and the second piston rod 404 have an integrated plunger structure, and the sealing is realized by the close fit between the second piston 403 and the second cylinder body 5, without setting The soft material (second piston ring 13 as described above) seals.
  • FIG. 5 it shows a cross-sectional view of another gas compression device embodiment of the present application from a first viewing angle.
  • the top cover 1 is provided with an air intake hole 101, an air intake valve 102, an air intake filter element 103, a second conduit 105, a connecting piece 106, an oil dripping part 107 and an oil storage component 108;
  • the air inlet 101, the second conduit 105, the connector 106, and the air inlet filter element 103 are sequentially connected;
  • One end of the intake valve 102 communicates with the first compression chamber 6, and the other end communicates with the intake hole 101;
  • the oil dripping part 107 and the oil storage part 108 are embedded in the connecting part 106, the oil dripping part 107 and the oil storage part 108 are arranged oppositely, and the oil dripping part 107 is used for feeding the oil storage part output oil mist;
  • the gas flows from the position between the oil dripping part 107 and the oil storage part 108 to the second conduit 105, so that the oil dripping part can automatically output oil mist, and the oil mist is accompanied by the gas. It enters into the first compression chamber 6 through the second conduit 105 , the intake hole 101 and the intake valve 102 .
  • the oil dripping part 107 is capable of outputting oil mist according to a certain frequency, and the oil dripping part 107 is provided with a lubricator that can adjust the size of the oil mist.
  • the oil storage part 108 may be a bottle structure, used for storing lubricating oil that does not flow to the second conduit 105 with the gas.
  • the present application also discloses an implementation method embodiment of the above-mentioned gas compression device. Referring to FIG.: Step 1
  • Step S1 when the first piston moves from the first position point to the second position point, sucking the gas outside the first cylinder into the first compression chamber;
  • Step S2 when the first piston moves from the second position to the first position, perform primary compression on the gas sucked from the outside of the first cylinder to obtain primary compressed gas, and at the same time, the second compression chamber inhale said primary compressed gas;
  • Step S3 when the first piston moves from the first position point to the second position point again, the first compression cavity sucks the gas outside the first cylinder again, and the first piston moves a
  • the second-stage compressed gas is compressed to obtain the second-stage compressed gas, and at the same time, the second piston moves from the fourth position point to the third position point, and the second-stage compressed gas is sucked into the third compression chamber;
  • Step S4 when the first piston moves from the second position point to the first position point again, the second piston moves from the third position point to the fourth position point, and the second piston will performing three-stage compression on the two-stage compressed gas to generate the three-stage compressed gas, and outputting it to the outside of the first cylinder;
  • the first position point is the top dead center when the first piston moves
  • the second position point is the bottom dead center when the first piston moves
  • the third position is the second The bottom dead center when the piston moves
  • the fourth position is the top dead center when the second piston moves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

一种气体压缩装置及其实现方法,包括:顶盖(1)、与顶盖(1)连接的第一缸体(2)、位于第一缸体(2)下方的驱动机构(3)、位于第一缸体(2)内的活塞组件(4),以及从顶盖(1)延伸至第一缸体(2)内的第二缸体(5);驱动机构(3)用于驱动活塞组件(4)进行往返移动;活塞组件(4)包括位于第一缸体(2)与第二缸体(5)之间的第一活塞(401)、第一活塞连接杆(402),位于第二缸体(5)内的第二活塞(403)、第二活塞杆(404),以及活塞底座(405);由顶盖(1)、第一活塞(401)、第一缸体(2)和第二缸体(5)形成第一压缩腔(6),以及,由第一活塞(401)、第一缸体(2)和第一活塞连接杆(402)形成第二压缩腔(7);由第二活塞(403)、第二缸体(5)和顶盖(1)形成第三压缩腔(408)。通过复用第一缸体(2)与第二缸体(5)之间的空间对气体进行两级压缩,并在第二缸体(5)内进行三级压缩,提高气体压缩效率。

Description

一种气体压缩装置及其实现方法
相关申请的交叉引用
本公开要求在2021年07月09日提交中国专利局、申请号为202110780049.3、名称为“一种气体压缩装置及其实现方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本申请涉及机械技术领域,特别是涉及一种气体压缩装置及其实现方法。
背景技术
压缩机(compressor)是一种将低压气体提升为高压气体的从动的流体机械。它从外部吸入低温低压的气体,通过电机运转带动活塞对其进行压缩后,向排气管排出高温高压的气体。
无油压缩机是压缩机的一种,具体是指在压缩机汽缸内不用润滑油的压缩机。
在现有技术中,小型的无油压缩机一般只有一级或者二级压缩,无法进行高压压缩作业,使得输出的气压无法应用于较高气压需求的场景。
概述
鉴于上述问题,提出了本申请以便提供一种克服上述问题或者至少部分地解决上述问题的一种气体压缩装置。
为了解决上述问题,本申请公开了一种气体压缩装置,其特征在于,包括:顶盖、与所述顶盖连接的第一缸体、位于所述第一缸体下方的驱动机构、位于所述第一缸体内的活塞组件,以及从所述顶盖延伸至所述第一缸体内的第二缸体;所述驱动机构用于驱动活塞组件进行往返移动;
所述活塞组件包括位于所述第一缸体与所述第二缸体之间的第一活塞、与所述第一活塞连接的第一活塞连接杆,位于所述第二缸体内的第二活塞、与所述第二活塞连接的第二活塞杆,以及与所述第一活塞连接杆、所述第二活塞杆连接的活塞底座;所述活塞底座与所述驱动机构连接;
在所述第一活塞上方,由所述顶盖、所述第一活塞、所述第一缸体和所述第二缸体形成第一压缩腔,以及,在所述第一活塞下方,由所述第一活塞、所述第一缸体和所述第一活塞连接杆形成第二压缩腔;
由所述第二活塞、所述第二缸体和所述顶盖形成第三压缩腔。
可选地,所述活塞组件还包括设置在所述第一活塞中的第一压缩阀门;
所述第一压缩阀门的一端与所述第一压缩腔连通,另一端与所述第二压缩腔连通。
可选地,所述第一缸体的缸壁内设置有与所述第二压缩腔连通的储气通孔;
所述储气通孔用于存储所述二级压缩气体。
可选地,还包括与所述顶盖连接的气体输出组件,以及设置在所述顶盖的第二压缩阀门;所述第二压缩阀门的一端与所述第三腔体连通,另一端与所述储气通孔连通;
所述第二活塞用于在往返移动时吸收经过所述第二压缩阀门的二级压缩气体,并压缩生成三级压缩气体,以及将所述三级压缩气体传输至所述气体输出组件。
可选地,所述驱动机构包括与所述第一缸体连接的机构本体、位于所述机构本体内的传动组件、位于所述机构本体一侧驱动组件;所述传动组件与所述活塞组件以及所述驱动组件连接。
可选地,所述传动组件包括:推板和曲轴;
所述推板与所述曲轴、所述活塞组件连接;
所述曲轴的一端与所述驱动组件连接,另一端设置有第一轴承;
所述驱动组件用于驱动所述曲轴转动;
所述曲轴用于在转动时带动所述推板往返移动,以带动所述活塞组件往返移动。
可选地,所述驱动组件包括:与所述传动组件连接的转轴、与所述转轴连接的齿轮、与所述齿轮连接的电机、收容所述齿轮的罩体,以及第二轴承;
所述转轴从所述罩体延伸至所述机构本体内,所述第二轴承套设在转轴上且位于所述罩体与所述机构本体连接处。
可选地,所述气体输出组件包括依次连接的排气阀、第一导管、冷凝器, 与所述冷凝器连接的过滤器、输出接头,以及,设置在所述冷凝器上的一个或多个流体控制阀、设置在所述过滤器上的压力表、与所述输出接头连接的安全阀。
可选地,所述顶盖设置有进气孔、进气阀、进气滤芯;
所述进气孔的一端与所述进气阀连接,另一端与所述进气滤芯连接;
所述进气阀的一端与所述第一压缩腔连通,另一端与所述进气孔连通;
所述进气滤芯与所述进气阀之间设置有注油孔。
可选地,所述装置还包括:
套设在所述第一活塞的第一活塞环、套设在所述第二活塞的第二活塞环、设置在所述第一缸体底部并与所述第一活塞连接杆接触连接的第三活塞环、设置在所述第一缸体底部的导套。
本申请实施例还公开了如上所述的气体压缩装置的实现方法,包括如下步骤:
当所述第一活塞从第一位置点移动至第二位置点时,将所述第一缸体外部的气体吸入至所述第一压缩腔内;
当第一活塞从第二位置点往第一位置点时,将从所述第一缸体外部吸入的气体进行一级压缩得到一级压缩气体,同时,所述第二压缩腔体吸入所述一级压缩气体;
当所述第一活塞再次从第一位置点移动至第二位置点时,所述第一压缩腔体再次吸入所述第一缸体外部的气体,以及所述第一活塞将一级压缩气体进行二级压缩得到二级压缩气体,同时,所述第二活塞从第四位置点移动至第三位置点,将二级压缩气体吸入至所述第三压缩腔内;
当所述第一活塞再次从第二位置点移动至第一位置点时,所述第二活塞从所述第三位置点移动至所述第四位置点,所述第二活塞将二级压缩气体进行三级压缩生成所述三级压缩气体,并输出至所述第一缸体外部;
其中,所述第一位置点为所述第一活塞移动时的上止点,所述第二位置点为所述第一活塞移动时的下止点;所述第三位置为所述第二活塞移动时的下止点,所述第四位置点为所述第二活塞移动时的上止点。
本申请包括以下优点:
气体压缩装置包括有顶盖、第一缸体、驱动机构、活塞组件、第二缸体, 活塞组件包括位于第一缸体与第二缸体之间的第一活塞、与第一活塞连接的第一活塞连接杆,位于第二缸体内的第二活塞、与第二活塞连接的第二活塞杆,以及与第一活塞连接杆、第二活塞杆连接的活塞底座;并在第一活塞上方,由顶盖、第一活塞、第一缸体和第二缸体形成第一压缩腔,以及,在第一活塞下方,由第一活塞、第一缸体和第一活塞连接杆形成第二压缩腔,以复用第一缸体与第二缸体之间的空间,活塞底座与驱动机构连接,驱动结构驱动活塞底座往返移动,以驱动第一活塞和第二活塞往返移动,在第一活塞往返移动中得到第一压缩腔和第二压缩腔,以对从第一缸体外部吸入的气体进行一级压缩和二级压缩,并由所述第二活塞、所述第一活塞连接杆和所述顶盖形成第三压缩腔,通过第二活塞将经过二级压缩后的气体吸入至第三压缩腔内进行三级压缩得到三级压缩气体,从经由顶盖输出三级压缩气体,从而实现复用第一缸体与第二缸体之间的空间对气体进行一级压缩和二级压缩,并在位于第一缸体中的第二缸体内对气体进行三级压缩,使得气体压缩装置的体积较小,同时,对气体进行多级压缩,提高对气体的压缩效率。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请的一种气体压缩装置实施例的第一视角结构图;
图2是本申请的一种气体压缩装置实施例的一种第二视角剖视图;
图3是本申请的一种气体压缩装置实施例的另一种第二视角剖视图;
图4是本申请的一种气体压缩装置实施例的一种第一视角剖视图;
图5是本申请的一种气体压缩装置实施例的另一种第一视角剖视图;
图6是本申请的另一种气体压缩装置实施例的第一视角剖视图;并且
图7是本申请的一种气体压缩装置的实现方法步骤流程图。
详细描述
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
本申请的核心构思之一在于,压缩机包含有第一缸体2和第二缸体5,第二缸体5从第一缸体2顶部延伸至第一缸体2内,在吸入第一缸体2外的气体后,通过复用第一缸体2与第二缸体5之间的空间分别对气体进行一、二级压缩,第二缸体5吸收经过二级压缩后的气体并进行三级压缩,实现在保持第一缸体2占用空间的基础上,对气体依次进行三级压缩,输出高压气体。
参照图1,示出了本申请的一种气体压缩装置实施例的第一视角结构图,参照图2,示出了本申请的一种气体压缩装置实施例的一种第二视角剖视图。本申请实施例具体可以包括:顶盖1、与所述顶盖1连接的第一缸体2、位于所述第一缸体2下方的驱动机构3、位于所述第一缸体2内的活塞组件4,以及从所述顶盖1延伸至所述第一缸体2内的第二缸体5;所述驱动机构3用于驱动活塞组件4进行往返移动;
所述活塞组件4包括位于所述第一缸体2与所述第二缸体5之间的第一活塞401、与所述第一活塞401连接的第一活塞连接杆402,位于所述第二缸体5内的第二活塞403、与所述第二活塞403连接的第二活塞杆404,以及与所述第一活塞连接杆402、第二活塞杆404连接的活塞底座405;所述活塞底座405与所述驱动机构3连接;
在具体实现中,第一活塞401、第一活塞连接杆402和活塞底座405可以为一体成型结构,也可以为可分离结构;第二活塞403、第二活塞杆404和活塞底座405可以为一体成型结构,也可以为可分离结构,即第二活塞杆404可以与活塞底座405刚性连接,也可以是第二活塞杆404可以与活塞底座405接触连接,本申请实施例对此不作限定。
在所述第一活塞401上方,由所述顶盖1、所述第一活塞401、所述第一缸体2和所述第二缸体5形成第一压缩腔6,以及,在所述第一活塞401下方,由所述第一活塞401、所述第一缸体2和所述第二缸体5形成第二压缩腔7;
由所述第二活塞402、所述第一活塞连接杆402和所述顶盖1形成第三压缩腔8。
需要说明的是,该第一缸体2可以采用合金,塑料或有机材料等耐高温、高硬度材料。该第一缸体2可以是方体,圆柱体,也可以是不规则体。该第一缸体2的容积可以根据实际需要进行调整,若需要压缩大容量的气体时,可以适当增加第一缸体2的体积,从而可以增加第一缸体2内气体的容量,若需要压缩小容量的气体时,可以适当减少第一缸体2的体积,可以减少第一缸体2内气体的容量。第二缸体5与第一缸体2类似,可以针对第一缸体2做相似调整,在此不再赘述。
参照图3,示出了本申请的一种气体压缩装置实施例的另一种第二视角剖视图。
驱动机构3驱动活塞底座405往返移动,活塞底座405通过第一活塞连接杆402、第二活塞杆404驱动第一活塞401和第二活塞403往返移动。第一活塞401在第一缸体2与第二缸体5之间的空间进行往返移动,以使第一活塞401在第一位置点(如图2所出示的第一活塞401所处位置)与第二位置点(如图3所示的第一活塞401所处位置)之间进行往返移动,以及,第二活塞403在第三位置点(如图2所出示的第二活塞403所处位置)与第四位置点(如图3所示的第二活塞403所处位置)之间进行往返移动,即驱动组件303驱动第一活塞401与第二活塞403同步移动。
在第一活塞401往返移动的空间中,由所述顶盖1、所述第一活塞401、所述第一缸体2和所述第二缸体5形成在所述第一活塞401上方的第一压缩腔6,以及,由所述第一活塞401、所述第一缸体2和所述第一活塞连接杆402形成在所述第一活塞401下方的第二压缩腔7,可以理解的是,第一压缩腔6和第二压缩腔7的空间随第一活塞401移动而变化。
当第一活塞401从第一位置点移动至第二位置点时,将第一缸体2外部的气体吸入至第一压缩腔6内;第一活塞401从第二位置点往第一位置点时,将从第一缸体2外部吸入的气体进行一级压缩得到一级压缩气体,同时,第二压缩腔7体吸入一级压缩气体,由于第二压缩腔7的体积小于第一压缩腔6的体积,所以当气体进入第二压缩腔7时,第二压缩腔7内的气体压强会大于第一压缩腔6吸入的气体压强。当第一活塞401再次从第一位置点移动至第二位置点时,第一压缩腔6体再次吸入第一缸体2外部的气体,以及第一活塞401将一级压缩气体进行二级压缩得到二级压缩气体,同时,第二活塞 403从第四位置点移动至第三位置点,将二级压缩气体吸入至第三压缩腔8内。当第一活塞401再次从第二位置点移动至第一位置点时,第二活塞403从第三位置点移动至第四位置点,第二活塞403将二级压缩气体进行三级压缩生成三级压缩气体,并输出至第一缸体2外部,从而实现对气体的三级压缩,进一步的,在驱动机构3的驱动下,针对气体的一级压缩和三级压缩能够同步进行,一级压缩与二级压缩异步进行,提高对气体的压缩效率。
在本申请实施例中,气体压缩装置包括有顶盖1、第一缸体2、驱动机构3、活塞组件4、第二缸体5,第一活塞401位于第一缸体2内壁与第二缸体5外壁之间,并在第一活塞401上方,由顶盖1、第一活塞401、第一缸体2和第二缸体5形成第一压缩腔6,以及,在第一活塞401下方,由第一活塞401、第一缸体2和第二缸体5形成第二压缩腔7,以复用第一缸体2与第二缸体5之间的空间,在第一活塞401往返移动中得到第一压缩腔6和第二压缩腔7,以对从第一缸体2外部吸入的气体进行一级压缩和二级压缩,并由所述第二活塞403、所述第二缸体5和所述顶盖1形成第三压缩腔8,通过第二活塞403将经过二级压缩后的气体吸入至第三压缩腔8内进行三级压缩得到三级压缩气体,从经由顶盖1输出三级压缩气体,从而实现复用第一缸体2与第二缸体5之间的空间对气体进行一级压缩和二级压缩,并在位于第一缸体2中的第二缸体5内对气体进行三级压缩,使得气体压缩装置的体积较小,同时,对气体进行多级压缩,提高对气体的压缩效率。
在本申请的一种可选实施例中,所述活塞组件4还包括设置在所述第一活塞401中的第一压缩阀门406;
所述第一压缩阀门406的一端与所述第一压缩腔6连通,另一端与所述第二压缩腔7连通。
第一活塞401中设置有单向导通的第一压缩阀门406,当第一活塞401从第一位置点往第二位置点移动过程中,对吸入的气体进行一级压缩得到一级压缩气体,并通过第一压缩阀门406将一级压缩气体传输到第二压缩腔7。
进一步的,第一活塞401与第二缸体5外壁贴合连接,第一活塞401与第一缸体2内壁连接处设置有密封部件,以防止气体从第一活塞401外侧传输至第二压缩腔7内。
在本申请的一种可选实施例中,所述第一缸体2的缸壁内设置有与所述 第二压缩腔7连通的储气通孔201;
所述储气通孔201用于存储所述二级压缩气体。
第一活塞401在第二位置点往第一位置点移动过程中,对一级压缩气体进行二级压缩,得到二级压缩气体,并当第一活塞401移动至第一位置点时,将二级压缩气体传输至储气通孔201中。
由于储气通孔201设置在第一缸体2内部,有效防止二级压缩气体发生泄漏。
在本申请的一种可选实施例中,还包括与所述顶盖1连接的气体输出组件10,以及设置在所述顶盖1的第二压缩阀门11;所述第二压缩阀门11的一端与所述第三腔体连通,另一端与所述储气通孔201连通;
所述第二活塞403用于在往返移动时吸收经过所述第二压缩阀门11的二级压缩气体,并压缩生成三级压缩气体,以及将所述三级压缩气体传输至所述气体输出组件10。
当第二活塞403从第四位置点移动至第三位置点时,从第二阀门吸入储气通孔201存储的二级压缩气体。当第二活塞403从第三位置移动至第四位置时,对二级压缩气体进行三级压缩得到三级压缩气体,并经三级压缩气体传输至气体输出组件10,以实现气体压缩装置输出三级压缩气体。
在本申请的一种可选实施例中,所述驱动机构3包括与所述第一缸体2连接的机构本体301、位于所述机构本体301内的传动组件302、位于所述机构本体301一侧驱动组件303;所述传动组件302与所述活塞组件4以及所述驱动组件303连接。
驱动机构3包括有设置在第一缸体2下方的机构本体301、传动组件302、驱动组件303,驱动组件303用于驱动传动组件302进行转动,传动组件302用于在其自身转动时,带动活塞组件4进行往返移动。
在本申请的一种可选实施例中,所述传动组件302包括:推板3021、曲轴3022;
所述推板3021与所述曲轴3022、所述活塞组件4连接;
所述曲轴3022的一端所述驱动组件303连接,另一端设置有第一轴承3023;
所述驱动组件303用于驱动所述曲轴转动;
所述曲轴3022用于在转动时带动所述推板3021往返移动,以带动所述活塞组件4往返移动。
在驱动组件303工作时,驱动组件303带动曲轴3022进行转动。在曲轴3022转动时,带动推板3021沿活塞组件4延伸方向往返移动,推板3021与活塞组件4固定连接,使得活塞组件4在其延伸方向作往返移动。
在本申请的一种可选实施例中,所述驱动组件303包括:与所述传动组件302连接的转轴3031、与所述转轴3031连接的齿轮3032、与所述齿轮3032连接的电机3033、收容所述齿轮3032的罩体3034,以及第二轴承3035;
所述转轴3031从所述罩体3034延伸至所述机构本体301内,所述第二轴承3035套设在转轴3031上且位于所述罩体3034与所述机构本体301连接处。
电机3033设置有输出轴,当电机3033工作时其输出轴进行转动。输出轴与齿轮3032啮合连接,在输出轴转动时,带动齿轮3032进行转动。齿轮3032与转轴3031啮合连接,在齿轮3032转动时带动转轴3031进行转动。
第二轴承3035套设在转轴3031上,以对转轴3031进行限位作为,以及降低转轴3031受到的转动摩擦力,减少能力损耗。
转轴3031的一端与曲轴连接板3023连接,另一端设置有第三轴承3036,进一步减少转轴3031的转动摩擦力,同时,更好的稳定转轴3031的位置。
罩体3034覆盖在齿轮3032外部,以保护齿轮3032,防止齿轮3032由于外部物体导致受损。
在具体实现中,电机3033输出轴还连接有至少一个扇叶3037,在电机3033驱动齿轮3032进行转动时,扇叶3037同步转动,增强电机3033附近的空气流动,对电机3033进行散热。
电机3033可以选择高功率电机3033,可以选择高转速电机3033,也可以选择搞扭矩电机3033,电机3033的类型可以根据实际需要进行调整,本申请实施例对此不作限定。
在本申请的一种可选实施例中,所述气体输出组件10包括依次连接的排气阀1001、第一导管1002、冷凝器1003,与所述冷凝器连接的过滤器1004、输出接头1005,以及,设置在所述冷凝器1004上的一个或多个流体控制阀1006、设置在所述过滤器上的压力表1007、与所述输出接头1005连接的安全 阀1008。
在第二活塞403从第三位置点移动至第四位置点时,由于三级压缩气体的气压较大,使得排气阀1001处于开启状态,三级压缩气体在压强作用下经过第一导管1002传输至冷凝器1003,冷凝器1003中可以装载有液体,由于气体经过压缩后,可能会存在温度升高的情况,冷凝器1003中的液体能够吸收三级压缩气体中的热能,以降低三级压缩气体的温度。
过滤器1003中设置有相应材料对三级压缩气体进行过滤,去除三级压缩气体中的部分或全部杂质。其中,过滤器1003中可以设置有滤棉、分子筛和活性炭中的一种或多种材料。
过滤后的三级压缩气体经过输出接头1005、安全阀1008后向气体压缩装置外部输出,以实现向气体压缩装置外部输出过滤的经过三级压缩的高压气体。
其中,在冷凝器1004上设置有一个或多个流体控制阀1006,用于控制流体(例如:水)流入/流出冷凝器。在本实施例中,流体控制阀可以包括第一排水阀10061和第二排水阀10062。过滤器1004设置有检测气体压强的压力表1007。
参照图4,示出了本申请的一种气体压缩装置实施例的一种第一视角剖视图,参照图5,示出了本申请的一种气体压缩装置实施例的另一种第一视角剖视图。
在本申请的一种可选实施例中,所述顶盖1设置有进气孔101、进气阀102、进气滤芯103;
所述进气孔101的一端与所述进气阀102连接,另一端与所述进气滤芯103连接;
所述进气阀102的一端与所述第一压缩腔6连通,另一端与所述进气孔101连通;
所述进气滤芯103与所述进气阀102之间设置有注油孔104。
在第一活塞401从第二位置点(如图6所示)移动至第一位置点(如图7所示)时,由于第一压缩腔6气压小于外部气压,进气阀102被打开,进气孔101与第一压缩腔6连通,则第一缸体2外部的气体经过进气滤芯103、进气孔101、进气阀102后,被吸入至第一腔体内。
在本申请的一种可选实施例中,还包括:
套设在所述第一活塞401的第一活塞环12、套设在所述第二活塞403的第二活塞环13、设置在所述第一缸体2底部并与所述第一活塞连接杆402接触连接的第三活塞环14、设置在所述第一缸体底部的导套15。
第一活塞环12用于防止第一压缩腔6中的气体从第一活塞401与第一缸体2之间的连接处流向至第二压缩腔7;第二活塞环13用于防止第三压缩腔8中的气体从第二活塞403与第二缸体5之间的连接处流向第二活塞403与活塞底座405之间的位置;第三活塞环14用于防止第二压缩腔7中的气体从第一活塞连接杆402与第一缸体2底部之间的连接处流向第一缸体2外部;
导套15用于对第一活塞连接杆402和活塞底座405进行限位。
在本申请的另一可选实施例中,第二活塞403和第二活塞杆404为一体式柱塞结构,通过第二活塞403与第二缸体5之间紧密贴合实现密封,无需设置软性材料(如上所述的第二活塞环13)进行密封。
参照图5,示出了本申请的另一种气体压缩装置实施例的第一视角剖视图。在本申请的另一可选实施例中,所述顶盖1设置有进气孔101、进气阀102、进气滤芯103、第二导管105、连接件106、滴油部件107以及储油部件108;
所述进气孔101、第二导管105、连接件106、进气滤芯103依次连接;
所述进气阀102的一端与所述第一压缩腔6连通,另一端与所述进气孔101连通;
所述滴油部件107、所述储油部件108嵌入所述连接件106,所述滴油部件107和所述储油部件108相对设置,所述滴油部件107用于向所述储油部件输出油雾;
当外部气体经过进气滤芯103后,气体从所述滴油部件107和所述储油部件108之间的位置流向第二导管105,使得滴油部件能够自动输出油雾,油雾随气体一同经过第二导管105、进气孔101、进气阀102进入第一压缩腔6内。
其中,滴油部件107能够按照一定频率输出油雾,滴油部件107中设置有可以调节油雾大小的油雾器。
储油部件108可以为瓶体结构,用于存储没有随气体流向第二导管105的润滑油。
本申请还公开了一种如上所述的的气体压缩装置的实现方法实施例,参照图7,示出了本申请的一种气体压缩装置的实现方法步骤流程图,本申请实施例具体可以包括如下步骤:
步骤S1,当所述第一活塞从第一位置点移动至第二位置点时,将所述第一缸体外部的气体吸入至所述第一压缩腔内;
步骤S2,当第一活塞从第二位置点往第一位置点时,将从所述第一缸体外部吸入的气体进行一级压缩得到一级压缩气体,同时,所述第二压缩腔体吸入所述一级压缩气体;
步骤S3,当所述第一活塞再次从第一位置点移动至第二位置点时,所述第一压缩腔体再次吸入所述第一缸体外部的气体,以及所述第一活塞将一级压缩气体进行二级压缩得到二级压缩气体,同时,所述第二活塞从第四位置点移动至第三位置点,将二级压缩气体吸入至所述第三压缩腔内;
步骤S4,当所述第一活塞再次从第二位置点移动至第一位置点时,所述第二活塞从所述第三位置点移动至所述第四位置点,所述第二活塞将二级压缩气体进行三级压缩生成所述三级压缩气体,并输出至所述第一缸体外部;
其中,所述第一位置点为所述第一活塞移动时的上止点,所述第二位置点为所述第一活塞移动时的下止点;所述第三位置为所述第二活塞移动时的下止点,所述第四位置点为所述第二活塞移动时的上止点。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的一种气体压缩装置及其实现方法,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领 域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种气体压缩装置,其特征在于,包括:顶盖、与所述顶盖连接的第一缸体、位于所述第一缸体下方的驱动机构、位于所述第一缸体内的活塞组件,以及从所述顶盖延伸至所述第一缸体内的第二缸体;所述驱动机构用于驱动活塞组件进行往返移动;
    所述活塞组件包括位于所述第一缸体与所述第二缸体之间的第一活塞、与所述第一活塞连接的第一活塞连接杆,位于所述第二缸体内的第二活塞、与所述第二活塞连接的第二活塞杆,以及与所述第一活塞连接杆、所述第二活塞杆连接的活塞底座;所述活塞底座与所述驱动机构连接;
    在所述第一活塞上方,由所述顶盖、所述第一活塞、所述第一缸体和所述第二缸体形成第一压缩腔,以及,在所述第一活塞下方,由所述第一活塞、所述第一缸体和所述第一活塞连接杆形成第二压缩腔;
    由所述第二活塞、所述第二缸体和所述顶盖形成第三压缩腔。
  2. 根据权利要求1所述的气体压缩装置,其特征在于,所述活塞组件还包括设置在所述第一活塞中的第一压缩阀门;
    所述第一压缩阀门的一端与所述第一压缩腔连通,另一端与所述第二压缩腔连通。
  3. 根据权利要求2所述的气体压缩装置,其特征在于,所述第一缸体的缸壁内设置有与所述第二压缩腔连通的储气通孔;
    所述储气通孔用于存储所述二级压缩气体。
  4. 根据权利要求3所述的气体压缩装置,其特征在于,还包括与所述顶盖连接的气体输出组件,以及设置在所述顶盖的第二压缩阀门;所述第二压缩阀门的一端与所述第三腔体连通,另一端与所述储气通孔连通;
    所述第二活塞用于在往返移动时吸收经过所述第二压缩阀门的二级压缩气体,并压缩生成三级压缩气体,以及将所述三级压缩气体传输至所述气体输出组件。
  5. 根据权利要求1所述的气体压缩装置,其特征在于,所述驱动机构包括与所述第一缸体连接的机构本体、位于所述机构本体内的传动组件、位于所述机构本体一侧驱动组件;所述传动组件与所述活塞组件以及所述驱动组件连接。
  6. 根据权利要求5所述的气体压缩装置,其特征在于,所述传动组件包括:推板和曲轴;
    所述推板与所述曲轴、所述活塞组件连接;
    所述曲轴的一端与所述驱动组件连接,另一端设置有第一轴承;
    所述驱动组件用于驱动所述曲轴转动;
    所述曲轴用于在转动时带动所述推板往返移动,以带动所述活塞组件往返移动。
  7. 根据权利要求5或6所述的气体压缩装置,其特征在于,所述驱动组件包括:与所述传动组件连接的转轴、与所述转轴连接的齿轮、与所述齿轮连接的电机、收容所述齿轮的罩体,以及第二轴承;
    所述转轴从所述罩体延伸至所述机构本体内,所述第二轴承套设在转轴上且位于所述罩体与所述机构本体连接处。
  8. 根据权利要求1-6任一项所述的气体压缩装置,其特征在于,所述气体输出组件包括依次连接的排气阀、第一导管、冷凝器,与所述冷凝器连接的过滤器、输出接头,以及,设置在所述冷凝器上的一个或多个流体控制阀、设置在所述过滤器上的压力表、与所述输出接头连接的安全阀。
  9. 根据权利要求1-6任一项所述的气体压缩装置,其特征在于,所述顶盖设置有进气孔、进气阀、进气滤芯;
    所述进气孔的一端与所述进气阀连接,另一端与所述进气滤芯连接;
    所述进气阀的一端与所述第一压缩腔连通,另一端与所述进气孔连通;
    所述进气滤芯与所述进气阀之间设置有注油孔。
  10. 一种如权利要求1-9任一项所述的气体压缩装置的实现方法,其特征在于,包括如下步骤:
    当所述第一活塞从第一位置点移动至第二位置点时,将所述第一缸体外部的气体吸入至所述第一压缩腔内;
    当第一活塞从第二位置点往第一位置点时,将从所述第一缸体外部吸入的气体进行一级压缩得到一级压缩气体,同时,所述第二压缩腔体吸入所述一级压缩气体;
    当所述第一活塞再次从第一位置点移动至第二位置点时,所述第一压缩腔体再次吸入所述第一缸体外部的气体,以及所述第一活塞将一级压缩气体 进行二级压缩得到二级压缩气体,同时,所述第二活塞从第四位置点移动至第三位置点,将二级压缩气体吸入至所述第三压缩腔内;
    当所述第一活塞再次从第二位置点移动至第一位置点时,所述第二活塞从所述第三位置点移动至所述第四位置点,所述第二活塞将二级压缩气体进行三级压缩生成所述三级压缩气体,并输出至所述第一缸体外部;
    其中,所述第一位置点为所述第一活塞移动时的上止点,所述第二位置点为所述第一活塞移动时的下止点;所述第三位置为所述第二活塞移动时的下止点,所述第四位置点为所述第二活塞移动时的上止点。
PCT/CN2021/116398 2021-07-09 2021-09-03 一种气体压缩装置及其实现方法 WO2023279506A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110780049.3A CN115596638A (zh) 2021-07-09 2021-07-09 一种气体压缩装置及其实现方法
CN202110780049.3 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023279506A1 true WO2023279506A1 (zh) 2023-01-12

Family

ID=84801237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116398 WO2023279506A1 (zh) 2021-07-09 2021-09-03 一种气体压缩装置及其实现方法

Country Status (2)

Country Link
CN (1) CN115596638A (zh)
WO (1) WO2023279506A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB189809589A (en) * 1898-04-26 1899-01-14 Ingersoll Sergeant Drill Co. Improvements in Compressors for air and the like.
US5525044A (en) * 1995-04-27 1996-06-11 Thermo Power Corporation High pressure gas compressor
CN105697288A (zh) * 2016-03-21 2016-06-22 南通广兴气动设备有限公司 气动多级加压装置
CN206448913U (zh) * 2017-01-24 2017-08-29 河北省吴桥空压机有限责任公司 一种耐磨活塞式空压机
CN208310987U (zh) * 2018-06-11 2019-01-01 东莞市速美机电设备有限公司 微型高压空气压缩机
CN209115300U (zh) * 2018-12-07 2019-07-16 成都岷雅机械设备有限公司 一种高压缸体及高压空气压缩装置
CN213270181U (zh) * 2020-04-13 2021-05-25 东莞市先马机电有限公司 一种新型压缩机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB189809589A (en) * 1898-04-26 1899-01-14 Ingersoll Sergeant Drill Co. Improvements in Compressors for air and the like.
US5525044A (en) * 1995-04-27 1996-06-11 Thermo Power Corporation High pressure gas compressor
CN105697288A (zh) * 2016-03-21 2016-06-22 南通广兴气动设备有限公司 气动多级加压装置
CN206448913U (zh) * 2017-01-24 2017-08-29 河北省吴桥空压机有限责任公司 一种耐磨活塞式空压机
CN208310987U (zh) * 2018-06-11 2019-01-01 东莞市速美机电设备有限公司 微型高压空气压缩机
CN209115300U (zh) * 2018-12-07 2019-07-16 成都岷雅机械设备有限公司 一种高压缸体及高压空气压缩装置
CN213270181U (zh) * 2020-04-13 2021-05-25 东莞市先马机电有限公司 一种新型压缩机

Also Published As

Publication number Publication date
CN115596638A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
US4072210A (en) Compressor
WO2016037500A1 (zh) 一种往复柱塞式气体压缩机及方法
EP1806503A1 (en) Booster-type gas compressor
US20070041858A1 (en) Booster-type compressor
CN208281131U (zh) 两级压缩机及具有该两级压缩机的机械装备
WO2023279506A1 (zh) 一种气体压缩装置及其实现方法
CN100465439C (zh) 用于封闭式压缩机的供油装置
CN112377384A (zh) 一种可控制的二级压缩空压机
WO2020029562A1 (zh) 一种压缩机及制冷设备
WO2020029561A1 (zh) 一种压缩机及制冷设备
CN107905976B (zh) 一种高纯氟气压缩机
CN111120279A (zh) 一种液压隔膜泵
CN216518468U (zh) 一种气体压缩装置
US11988200B2 (en) Multi-stage compressor
CN102997524A (zh) 制冷剂回收机
CN204200534U (zh) 液压容积泵
KR101013124B1 (ko) 터보압축기 누설 방지 구조.
CN208734637U (zh) 一种小型双层气缸
CN104295473B (zh) 液压容积泵
CN213016732U (zh) 一种隔膜压缩机
CN214660690U (zh) 高压泵
KR102075974B1 (ko) 다단 싱글타입 오일 프리 왕복동 압축장치
US20040184937A1 (en) Piston pump having cylinder with leak opening
CN209990637U (zh) 一种空气压缩机
CN218177398U (zh) 一种无油式增压压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE