WO2016037500A1 - 一种往复柱塞式气体压缩机及方法 - Google Patents

一种往复柱塞式气体压缩机及方法 Download PDF

Info

Publication number
WO2016037500A1
WO2016037500A1 PCT/CN2015/080751 CN2015080751W WO2016037500A1 WO 2016037500 A1 WO2016037500 A1 WO 2016037500A1 CN 2015080751 W CN2015080751 W CN 2015080751W WO 2016037500 A1 WO2016037500 A1 WO 2016037500A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
cylinder
valve
chamber
intake
Prior art date
Application number
PCT/CN2015/080751
Other languages
English (en)
French (fr)
Inventor
张元坤
Original Assignee
武汉齐达康环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉齐达康环保科技有限公司 filed Critical 武汉齐达康环保科技有限公司
Publication of WO2016037500A1 publication Critical patent/WO2016037500A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/12Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having plural sets of cylinders or pistons

Definitions

  • the invention relates to a compressor and a method, and belongs to the field of gas compression, in particular to a reciprocating plunger type gas compressor and method.
  • prior art compressors include hydraulic compressors and crank-and-rod piston gas compression.
  • the piston-type gas compressor of the crank-and-rod mechanism has mature manufacturing technology and is widely used.
  • the number of parts is large, the volume and weight are large, the wearing parts are large, the motor power is high under the same working conditions, and the running cost is high.
  • the suction and exhaust range is narrow and the compression noise is large.
  • the hydraulic compressor piston is mainly an I-shaped piston.
  • the piston is in contact with the cylinder tube and is sealed by a sealing ring between the piston and the cylinder tube. Therefore, the requirements for the cylinder tube are high, and the cylinder roughness and straightness must be ensured; In the long-term operation process, once the impurities appear in the cylinder, the cylinder tube and the sealing ring will be scratched, and air leakage will occur immediately. In addition, due to the difficulty in processing the cylinder tube and limited materials, the hydraulic compressor has very good temperament requirements. High, limited types of compressed gases.
  • the invention mainly solves the problems of high manufacturing cost, large compression noise and high energy consumption in the prior art, and provides a reciprocating plunger type gas compressor and method, the reciprocating plunger type gas compressor and The method not wastes the energy of the inhaled gas itself and is energy-efficient, and the hydraulic drive effectively reduces the noise.
  • Still another object of the present invention is to solve the problem of limited operating environment and high gas medium requirements in the prior art, and provide a reciprocating plunger type gas compressor and method, the reciprocating plunger type
  • the gas compressor and method adopt a plunger type piston, which can be applied to various working conditions, and the requirements for the compressed medium are low.
  • a reciprocating plunger type gas compressor includes: a host system, a control system and a cooling system connected to the host system, and a power system connected to the control system, the host system comprising: a main cylinder, the main cylinder comprising: a column Plug, first cylinder, cylinder, where:
  • the first cylinder has one end connected to the cylinder, the other end is provided with a first cylinder connecting block, the plunger passes through the cylinder and enters the cylinder, and forms a sealed cavity A with the first cylinder connecting block;
  • the piston is located in a portion of the cylinder is provided with a cylinder piston, the cylinder piston divides the cylinder into upper and lower sealed oil chamber B and oil chamber C;
  • the sealing chamber A is provided with a first intake valve and a first exhaust valve, and the oil chamber B and the oil chamber C are respectively provided with an oil inlet port;
  • the first intake valve is connected to an intake end of the compressor through a control system
  • the oil inlets of the oil chamber B and the oil chamber C are respectively connected to the control system;
  • the first exhaust valve is coupled to the exhaust end of the compressor via a cooling system.
  • the above-mentioned reciprocating plunger type gas compressor further includes a second cylinder, the second cylinder is symmetrically connected to the other end of the cylinder, and the plunger enters from one end of the second cylinder.
  • the host system has more than one, forming a multi-stage compression system, wherein:
  • the oil inlet ports of the respective host systems are respectively connected to the control system;
  • the first exhaust valve of the machine system is in communication with the second exhaust valve;
  • the first intake valve and the second intake valve of the first stage host system communicate with the intake end of the compressor through the control system;
  • the first exhaust valve and the second exhaust valve of the last stage host system are respectively connected to the exhaust end of the compressor.
  • the control system comprises a first ball valve and a reversing valve, wherein: one end of the first ball valve is connected to the intake end of the compressor, and the other end is An intake valve is connected to the second intake valve, and one end of the reversing valve is respectively connected to the oil inlet port of the oil chamber B and the oil chamber C, and the other end is connected to the power system.
  • the cooling system comprises: a cooler and an oil cooler, one end of the cooler being connected to the first exhaust valve and the second exhaust valve, and the other end It is connected to the exhaust end of the compressor; one end of the oil cooler is connected to the reversing valve, and the other end is connected to the oil pool in the power system.
  • the above-mentioned reciprocating plunger type gas compressor comprises: an oil cooler, an accumulator, a filter, an oil pump, a relief valve and an oil pool, wherein: the oil pump and the overflow valve After being connected in parallel with each other, respectively connected to one end of the oil pool and the filter, the other end of the filter is connected with the accumulator connection and the reversing valve, and the end of the reversing valve connected to the filter is also connected to the oil pool. .
  • the above-mentioned reciprocating plunger type gas compressor further includes a process system, the process system includes: a safety valve, a second ball valve, a check valve, the safety valve is connected to the cooling system, and the second One end of the ball valve is connected to the cooling system, and the other end is connected to the exhaust end of the compressor through a one-way valve.
  • a method for gas compression using any of the above-described reciprocating plunger gas compressors comprising:
  • Oil filling step oiling one of the oil chamber B or the oil chamber C through the control system, so that the pushing cylinder piston moves such that one of the sealing chamber A or the sealing chamber D is compressed;
  • Intake step pumping outside air into the sealed cavity A or the sealed cavity D;
  • Exhaust step when the pressure of the gas in the compressed sealed chamber reaches the required pressure, the gas is discharged;
  • Switching step The control system is reversed, and oil is injected into another oil chamber, thereby pushing the cylinder piston to reverse movement and performing an air intake step.
  • the oil filling step is: the hydraulic oil passes through the oil pump, and the oil pool sequentially enters the filter and the reversing valve to enter one of the oil chamber B or the oil chamber C to push the cylinder piston movement. At the same time, the oil in the other oil chamber passes through the through valve of the reversing valve and the oil cooler to return to the oil pool;
  • the air intake step is: the cylinder piston drives the plunger to move, so that the volume of the uncompressed sealed cavity increases, the intake valve of the cavity is opened, the gas passes through the first ball valve, and the first intake valve or the second The intake valve enters the uncompressed sealed cavity;
  • the exhausting step is: the movement of the cylinder piston drives the plunger movement, the volume of the compressed sealed chamber is reduced, the gas pressure is increased, the intake valve is closed, and the gas pressure in the compressed sealed chamber reaches the required compression.
  • the exhaust valve is opened, and the gas is discharged through the cooler, the second exhaust ball valve, and the check valve;
  • the switching step is: when the plunger moves to the top, the reversing valve is reversing in a cross-connected state, the pressure oil will flow into the oil chamber that was not previously oiled, and the oil in the previously oiled oil chamber returns to the oil.
  • the tank, the cylinder piston moves in reverse under the action of the pressure oil, and then performs the intake step.
  • the present invention has the following advantages:
  • the suction and exhaust pressure is wider, the energy of the inhaled gas itself is not wasted, and the energy is high. It is especially suitable for the compression of medium and high pressure gas or liquid with high suction pressure, and can be compressed by two or more stages.
  • the pressure of the oil pump can be reduced, the temperature of the compressed medium can be lowered, and the hydraulic drive can effectively reduce the noise.
  • plunger piston can be applied to a variety of working conditions, low media requirements, the existing hydraulic piston machine can not meet this requirement, such as shale gas, coal seam developed in China Gas and so on.
  • the cylinder and the cylinder are each located in a separate cylinder, and the middle body is also separated in the middle, so even if the seal is broken, the gas will not penetrate into the hydraulic oil.
  • Fig. 1 is a structural view showing a first embodiment of the present invention.
  • Fig. 2 is a structural view showing a main cylinder of the first embodiment of the present invention.
  • Fig. 3 is a structural diagram of a second embodiment of the present invention.
  • a reciprocating plunger type gas compressor includes a host system, a control system and a cooling system connected to the host system, and a power system connected to the control system.
  • the host system includes a main engine cylinder 6.
  • the main engine cylinder 6 includes a plunger 22, a first cylinder 23, a second cylinder 37, and a cylinder 29, wherein: one end of the first cylinder 23 is connected to the cylinder 29, The other end is provided with a first cylinder connecting block 21, the plunger 22 passes through the cylinder 29 and enters the cylinder 23, and forms a sealed cavity A with the first cylinder connecting block 21; the opposite sides of the sealing cavity A are respectively provided with a first An intake valve 2, a first exhaust valve 4; a second cylinder 37 and a first cylinder 23 are symmetrically connected to the other end of the cylinder 29, and the plunger 22 enters the second cylinder 37 from one end of the second cylinder 37 and The second cylinder connecting block 32 on the other end of the two cylinders 37 forms a sealed cavity D; the opposite sides of the sealing cavity D are respectively provided with a second intake valve 3 and a second exhaust valve 5; the first intake valve 2.
  • the second intake valve 3 is connected to the intake end of the compressor through a control system; the first exhaust valve 4 and the second exhaust valve 5 are connected to the exhaust end of the compressor through a cooling system; the plunger 22 is located in the cylinder A cylinder piston 28 is disposed on a portion of the portion 29, and a cylinder piston seal ring 27 is disposed thereon.
  • the cylinder piston 28 divides the cylinder 29 into upper and lower sealed oil chambers B and oil chambers C; oil chamber B and oil chamber C
  • a cylinder inlet port 36 connected to the control system is disposed on the upper portion; a connection portion between the first cylinder 23 and the cylinder 29 and a second cylinder 37
  • a cylinder intermediate block 25 and a cylinder intermediate block 26 are disposed at a joint portion of the cylinder 29, and the cylinder intermediate block 25 and the cylinder intermediate block 26 are fixed to the cylinder flanges 24 of the first cylinder 23 and the second cylinder 37 by the long tie rods 30,
  • a cylinder seal 34 is disposed on the cylinder intermediate block 25, and the cylinder intermediate block 26 is provided with a cylinder seal 35; the cylinder 29 and the cylinder are separated by the cylinder intermediate block 25 and the cylinder intermediate block 26, so even if the seal is broken, the gas is also Does not penetrate into hydraulic oil.
  • the power system comprises an energy storage device 14, a filter 15, an oil pump 16, an overflow valve 17, and an oil pool 18.
  • the oil pump 16 is connected in parallel with the relief valve 17 and is connected to the oil pool 18 at one end and connected to the filter 15 at the other end.
  • the other end of the device 15 is connected to the accumulator 14 and the reversing valve 8 of the control system.
  • the cooling system includes a cooler 9 and an oil cooler 13, and an intake end of the cooler 9 is connected to the first exhaust valve 4 and the second exhaust valve 5, and the outlet end is connected to the safety valve 10 and the second ball valve 11 of the process system.
  • the oil cooler 13 is connected to the reversing valve 8 at one end and to the oil pool 18 at the other end.
  • the process gas system comprises a safety valve 10, a second ball valve 11, a check valve 12 and a pipeline.
  • One end of the safety valve 10 and the second ball valve 11 is connected to the cooler 9 of the cooling system, and the other end is connected to the compressor through the check valve 12
  • the exhaust ends are connected.
  • the control system includes a first ball valve 1, a first intake valve 2, a second intake valve 3, a first exhaust valve 4, a second exhaust valve 5 and a reversing valve 8, and the first ball valve 1 is connected to the compressor at one end.
  • the other end is connected to the first intake valve 2 and the second intake valve 3 at the same time;
  • the first exhaust valve 4 and the second exhaust valve 5 are simultaneously connected to the cooler 9, one end of the reversing valve 8 It is connected to the B-cavity of the main cylinder 6 and the cylinder inlet 36 of the C-cavity, and the other end is connected to the filter 15 and the oil cooler 13, respectively;
  • the plunger 22 and the cylinder piston 28 form four chambers A, B, C, and D after the main cylinder 6 is installed.
  • a and D are air chambers
  • B and C are oil chambers.
  • the hydraulic oil passes through the oil pump 16, and the oil pool 18 sequentially enters the filter 15 and the reversing valve 8 through the state of FIG. 1 and enters the B chamber, pushing the cylinder piston 28 to move downward, and the oil of the C chamber passes through the reversing valve 8
  • the state and oil cooler 13 of Figure 1 are passed straight back to the oil sump 18.
  • the volume of the A chamber is increased, the pressure in the chamber is lowered, the first intake valve 2 is opened, the gas passes through the first ball valve 1, and enters the A chamber from the first intake valve 2, resulting in The intake process of the A cavity.
  • the volume of the D chamber is reduced, the gas pressure is increased, and the second intake valve 3 is closed, and the compression process of the D chamber is generated.
  • the pressure in the D chamber reaches the pressure that the second exhaust valve 5 can withstand, that is, the pressure required for compression.
  • the second exhaust valve 5 is opened, and the gas is discharged into the air tank through the cooler 9, the second exhaust ball valve 11, and the check valve 12 to form an exhaust process of the D chamber.
  • the pressure in the A chamber reaches the pressure of the first exhaust valve 4, it is required.
  • the first exhaust valve 4 is opened, and the gas is discharged into the air tank through the cooler 9, the second ball valve 11, and the check valve 12 to form an exhaust process of the A chamber.
  • the oil pressure will rise rapidly, and the reversing valve 8 will be reversed after receiving the signal, at which time the reversing valve 8 is in a cross-connected state.
  • the pressure oil will flow into the B chamber, and the oil in the C chamber will return to the oil pool 18.
  • the cylinder piston 28 will move downward under the action of the pressure oil, the volume of the A chamber will increase, and the pressure in the chamber will decrease.
  • the intake valve 3 is opened, the gas passes through the first ball valve 1, and enters the A chamber from the second intake valve 3, generating an intake process of the A chamber.
  • the volume of the D chamber is reduced, the gas pressure is increased, and the first intake valve 2 is closed.
  • the first exhaust valve 4 When the pressure in the D chamber reaches the pressure of the first exhaust valve 4, that is, the pressure required for compression, the first exhaust valve 4 When opened, the gas is discharged into the gas storage tank through the cooler 9, the second ball valve 11, and the check valve 12 to form an exhaust process of the D chamber.
  • Figure 3 is a second embodiment of the present invention.
  • a main cylinder 6 is added.
  • the oil inlet ports 36 of the two host systems are respectively connected to the control system; the first intake valve 2, the second intake valve 3 of the second host system and the first exhaust valve 4 of the upper host system and the first The two exhaust valves 5 are in communication; the first intake valve 2 and the second intake valve 3 of the first host system communicate with the intake end of the compressor through the control system; the first exhaust valve 4 of the second host system And the second exhaust valve 5 is connected to the exhaust end of the compressor, respectively.
  • the first-order compression is changed into two-stage compression, which can reduce the pressure ratio of the gas, which is advantageous for the compression process.
  • it can be increased to three or more, so that the pressure of the required oil pump is relatively reduced, the work is more favorable, but the cost of the product is increased; meanwhile, if the displacement is to be increased, only each level needs to be increased. The number of cylinders is sufficient.
  • the power system is changed to a hydraulic workstation, that is, all the hydraulic components are collectively mounted together, thereby reducing the volume.
  • This patent uses hydraulic oil to push the hydraulic piston to drive the plunger up and down to compress the gas.
  • the upper and lower ends are symmetrical cylinders. When the medium is compressed above, the medium enters below, when the medium is compressed below, the medium enters the medium, and the middle is hydraulic.
  • the cylinders are separated by a piston.
  • the main wearing parts are cylinder seals.
  • the intermediate block 26 of the cylinder intermediate block 25 is separated, and the purpose is to remove the cylinder without disassembling the cylinder, which is greatly improved compared with the previous design;
  • the first cylinder connecting block 21 and the second cylinder connecting block 32 are respectively connected to the cylinder through the short pull rod 31, and the first cylinder 23 and the second cylinder 37 are located at the cylinder wall of the cylinder intermediate block 25 and the cylinder intermediate block 26
  • a venting hole 33 is provided, which serves to protect the cylinder from sealing. When the cylinder seal 34 is damaged, the medium flows out of the venting hole 33 to prevent damage to the cylinder seal 35.
  • first ball valve 1, the first intake valve 2, the second intake valve 3, the first exhaust valve 4, the second exhaust valve 5, the main cylinder 6, the reversing valve 8, and the cooling are used herein. 9, safety valve 10, second ball valve 11, check valve 12, oil cooler 13, energy storage 14, filter 15, oil pump 16, relief valve 17, oil pool 18, first cylinder connection block 21, Plunger 22, cylinder 23, cylinder flange 24, cylinder intermediate block 25, cylinder intermediate block 26, cylinder piston seal 27, cylinder piston 28, cylinder 29, long tie rod 30, short tie rod 31, second cylinder connection block 32 , vent 33, cylinder seal 34, cylinder seal 35, cylinder inlet 36, second cylinder 37, etc., but does not preclude the possibility of using other terms. These terms are used to more easily describe and explain the nature of the invention; any of these additional limitations are inconsistent with the spirit of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

一种往复柱塞式气体压缩机,包括主机系统、控制系统、冷却系统、动力系统,主机系统包括主机缸(6),主机缸(6)包括:柱塞(22)、第一气缸(23)、第二气缸(37)、油缸(29),其中:第一气缸(23)的一端与油缸(29)相连,另一端设有第一气缸连接块(21),柱塞(22)穿过油缸(29)后进入气缸(23)内,并与第一气缸连接块(21)形成密封腔体A;第二气缸(37)与第一气缸(23)对称的连接于油缸(29)的另一端,柱塞(22)从第二气缸(37)的一端进入第二气缸(37)后与第二气缸(37)另一端上的第二气缸连接块(32)形成密封腔体D;柱塞(22)位于油缸(29)内的部分上设置有油缸活塞(28),油缸活塞(28)将油缸(29)分为上下两个密封的油腔B和油腔C。该气体压缩机通过液压油推动油缸活塞从而带动柱塞上下运动对气体进行压缩,高效节能,特别适用于吸气压力较高的中高压气体压缩。

Description

一种往复柱塞式气体压缩机及方法 技术领域
本发明涉及一种压缩机及方法,属于气体压缩领域,具体涉及一种往复柱塞式气体压缩机及方法。
背景技术
目前,现有技术中的压缩机包括液压压缩机和曲柄连杆机构活塞式气体压缩。
曲柄连杆机构活塞式气体压缩机,其制造技术成熟,应用较广。但其零部件数量多、体积重量和占地面积均较大、易损件较多、相同工况下所需电机功率大,运转成本高;同时,其吸排气范围较窄、压缩噪音大。此外,为了适应其规定的吸气压力,往往需将高压气体降压后再进行压缩,浪费了压缩介质的能量。
液压压缩机活塞主要为工字型活塞,活塞与缸筒接触,靠活塞和缸筒之间的密封圈密封,这样对缸筒的要求很高,必须保证缸筒粗糙度以及直线度;而且,在长期的运行过程当中,一旦缸内出现杂质就会划伤缸筒以及密封圈,立刻出现漏气现象;另外,由于缸筒加工难度大,并且可选材料有限,液压压缩机对气质要求很高,压缩气体种类有限。
发明内容
本发明主要是解决现有技术所存在的制造成本较高、压缩噪音大,运转能耗高的问题,提供了一种往复柱塞式气体压缩机及方法,该往复柱塞式气体压缩机及方法既不浪费吸入气体自身的能量又高效节能,同时采用液压驱动有效降低了噪声。
本发明还有一目的是解决现有技术所存在的运行环境受限,气体介质要求较高的问题,提供了一种往复柱塞式气体压缩机及方法,该往复柱塞式 气体压缩机及方法采用柱塞式活塞,可以适用于各种工况,对压缩介质的要求较低。
本发明的上述技术问题主要是通过下述技术方案得以解决的:
一种往复柱塞式气体压缩机,包括:主机系统,与主机系统相连的控制系统和冷却系统、与控制系统相连的动力系统,所述主机系统包括:主机缸,所述主机缸包括:柱塞、第一气缸、油缸,其中:
所述第一气缸的一端与油缸相连,另一端设有第一气缸连接块,所述柱塞穿过油缸后进入气缸内,并与所述第一气缸连接块形成密封腔体A;
所述柱塞位于油缸内的部分上设置有油缸活塞,所述油缸活塞将所述油缸分为上下两个密封的油腔B和油腔C;
所述密封腔体A上设置有第一进气阀、第一排气阀,所述油腔B和油腔C上分别设置有油缸进油口;
所述第一进气阀通过控制系统与压缩机的进气端相连;
所述油腔B和油腔C上的油缸进油口分别与控制系统相连;
所述第一排气阀通过冷却系统与压缩机的排气端连接。
优化的,上述的一种往复柱塞式气体压缩机,还包括第二气缸,所述第二气缸与第一气缸对称的连接于油缸的另一端,所述柱塞从第二气缸的一端进入所述第二气缸后与第二气缸另一端上的第二气缸连接块形成密封腔体D,所述密封腔体D上设置有第二进气阀和第二排气阀,所述第二进气阀通过控制系统与压缩机的进气端相连,所述第二排气阀通过冷却系统与压缩机的排气端连接。
优化的,上述的一种往复柱塞式气体压缩机,所述主机系统有一个以上,形成多级压缩系统,其中:
所述各个主机系统的油缸进油口分别与控制系统相连;
所述主机系统中的各级主机系统的第一进气阀、第二进气阀与上一级主 机系统的第一排气阀和第二排气阀相通;
第一级主机系统的第一进气阀、第二进气阀通过控制系统与压缩机的进气端相通;
最后一级主机系统的第一排气阀和第二排气阀分别与压缩机的排气端连接。
优化的,上述的一种往复柱塞式气体压缩机,所述控制系统包括第一球阀、换向阀,其中:所述第一球阀的一端与压缩机的进气端相连,另一端与第一进气阀和第二进气阀连接,所述换向阀的一端分别与油腔B和油腔C上的油缸进油口相连,另一端与动力系统相连。
优化的,上述的一种往复柱塞式气体压缩机,所述冷却系统包括:冷却器、油冷器,所述冷却器的一端与第一排气阀和第二排气阀相连,另一端与压缩机的排气端相连;所述油冷器的一端与换向阀相连,另一端与动力系统中的油池相连。
优化的,上述的一种往复柱塞式气体压缩机,所述动力系统包括:油冷器、储能器、过滤器、油泵、溢流阀和油池,其中:所述油泵与溢流阀相互并联后分别与油池和过滤器的一端相连接,所述过滤器的另一端与储能器连接和换向阀连接,所述换向阀与过滤器相连的一端还与油池相连接。
优化的,上述的一种往复柱塞式气体压缩机,还包括工艺系统,所述工艺系统包括:安全阀、第二球阀、单向阀,所述安全阀与冷却系统相连,所述第二球阀的一端与冷却系统相连,另一端通过单向阀与压缩机排气端相连。
一种利用上述的任一种往复柱塞式气体压缩机进行气体压缩的方法,包括:
注油步骤:通过控制系统向油腔B或油腔C中的一个注油,从而推油缸活塞运动使得密封腔体A或密封腔体D中的一个被压缩;
进气步骤:将外界气体抽入密封腔体A或密封腔体D中;
排气步骤:当被压缩的密封腔体内的气体压力达到所需压力时,将气体排出;
切换步骤:控制系统倒向,向另一个油腔中注油,从而推动油缸活塞反向运动,执行进气步骤。
优化的,上述的气体压缩的方法,所述注油步骤为:液压油经过油泵,由油池依次进入过滤器和换向阀的直通进入油腔B或油腔C中的一个,推动油缸活塞运动,同时,另一个油腔的油则经过换向阀的直通和油冷器,回到油池;
所述进气步骤为:油缸活塞带动柱塞运动,使得未被压缩的密封腔体容积增大,开启该腔体的进气阀,气体经过第一球阀,从第一进气阀或第二进气阀进入未被压缩的密封腔体;
所述排气步骤为:油缸活塞运动带动柱塞运动,被压缩的密封腔体容积缩小,气体压力增高,其进气阀被关闭,当被压缩的密封腔体内的气体压力达到所需压缩的压力时,其排气阀打开,气体经过冷却器、第二排气球阀和单向阀排出;
所述切换步骤为:当柱塞运动到顶时,换向阀换向处于交叉相通的状态,压力油将流进先前未被注油的油腔,同时先前被注油的油腔内的油回到油池,油缸活塞在压力油的作用下反向运动,然后执行进气步骤。
因此,本发明具有如下优点:
1、更加节能环保:吸排气压力较宽、不浪费吸入气体自身的能量而高效节能,特别适用于吸气压力较高的中高压气体或液体压缩,并且可采用两级或多级压缩,可以减小油泵的压力、降低压缩介质的温度,同时采用液压驱动有效降低了噪声。
2、有效降低成本:由于采用液压驱动,因此制造成本低、运行成本低。
3、能够适应更多工况:采用柱塞式活塞,可以适用于各种工况,对介质要求较低,现有的液压活塞机满足不了此要求,比如国内现在开发的页岩气、煤层气等。
4、便于后期维护:由于本机组针对各种气液介质混输入增压,因此增加中体方便后期拆卸维修。
5、气密性更好:气缸和油缸各自位于单独的缸内,中间还有中体隔离开,因此即使密封件破损,气体也不会渗透至液压油。
附图说明
图1为本发明实施例1的结构图。
图2为本发明实施例1的主机缸的结构图。
图3为本发明实施例2的结构图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。图中,第一球阀1,第一进气阀2,第二进气阀3,第一排气阀4,第二排气阀5,主机缸6,换向阀8,冷却器9,安全阀10,第二球阀11,单向阀12,油冷器13,储能器14,过滤器15,油泵16,溢流阀17,油池18,第一气缸连接块21,柱塞22,气缸23,缸筒法兰24,气缸中间块25,油缸中间块26,油缸活塞密封圈27,油缸活塞28,油缸29,长拉杆30,短拉杆31,第二气缸连接块32,放气孔33,气缸密封34,油缸密封35,油缸进油口36,第二气缸37。
实施例1:
参见图1,一种往复柱塞式气体压缩机,包括:主机系统,与主机系统相连的控制系统和冷却系统、与控制系统相连的动力系统。
主机系统包括主机缸6。如图2所示,主机缸6包括:柱塞22、第一气缸23、第二气缸37、油缸29,其中:第一气缸23的一端与油缸29相连, 另一端设有第一气缸连接块21,柱塞22穿过油缸29后进入气缸23内,并与第一气缸连接块21形成密封腔体A;密封腔体A相对的两侧分别设置有第一进气阀2、第一排气阀4;第二气缸37与第一气缸23对称的连接于油缸29的另一端,柱塞22从第二气缸37的一端进入第二气缸37后与第二气缸37另一端上的第二气缸连接块32形成密封腔体D;密封腔体D相对的两侧上分别设置有第二进气阀3和第二排气阀5;第一进气阀2、第二进气阀3通过控制系统与压缩机的进气端相连;第一排气阀4、第二排气阀5通过冷却系统与压缩机的排气端连接;柱塞22位于油缸29内的部分上设置有油缸活塞28,其上设置有油缸活塞密封圈27,该油缸活塞28将油缸29分为上下两个密封的油腔B和油腔C;油腔B和油腔C上分别设置有与控制系统相连的油缸进油口36;在第一气缸23和油缸29连接部位以及第二气缸37和油缸29的连接部位处设置有气缸中间块25和油缸中间块26,该气缸中间块25和油缸中间块26通过长拉杆30固定于第一气缸23和第二气缸37的气缸法兰24上,在气缸中间块25上设置有气缸密封34,所述油缸中间块26设置有油缸密封35;通过气缸中间块25、油缸中间块26将油缸29和气缸隔离开,因此即使密封件破损,气体也不会渗透至液压油。
动力系统包括储能器14、过滤器15、油泵16、溢流阀17和油池18组成,油泵16与溢流阀17并联后一端与油池18连接,另一端与过滤器15连接,过滤器15的另一端和储能器14以及控制系统的换向阀8连接。
冷却系统包括冷却器9和油冷器13,冷却器9的进气端与第一排气阀4、第二排气阀5相连,出气端与工艺系统的安全阀10和第二球阀11连接,油冷器13一端连接换向阀8,另一端连接油池18。
工艺气系统包括安全阀10、第二球阀11、单向阀12和管线组成,安全阀10和第二球阀11的一端与冷却系统的冷却器9相连,另一端通过单向阀12与压缩机排气端相连。
控制系统包括第一球阀1、第一进气阀2、第二进气阀3,第一排气阀4,第二排气阀5和换向阀8,第一球阀1一端接压缩机的进气端,另外一端与第一进气阀2和第二进气阀3同时连接;第一排气阀4和第二排气阀5再同时与冷却器9连接,换向阀8的一端与主机缸6的B腔和C腔的油缸进油口36连接,另一端分别与过滤器15和油冷器13连接;
柱塞22,油缸活塞28在主机缸6安装后形成A、B、C、D四个腔,其中,A、D为气腔,B、C为油腔。液压油经过油泵16,由油池18依次进入过滤器15和换向阀8的直通图1中状态进入B腔,推动油缸活塞28向下运动,同时,C腔的油则经过换向阀8的直通图1中状态和油冷器13,回到油池18。在油缸活塞28向下运动的过程中,A腔容积会增大,腔内压力降低,第一进气阀2开启,气体经过第一球阀1,从第一进气阀2进入A腔,产生A腔的进气过程。同时,D腔容积缩小,气体压力增高,第二进气阀3关闭,产生D腔的压缩过程,当D腔内的压力达到第二排气阀5所能承受的压力即所需压缩的压力时,第二排气阀5打开,气体经过冷却器9、第二排气球阀11和单向阀12排到储气罐内,形成D腔的排气过程。
在此过程中,当D腔内压力超过排气压力时,此时D腔压力=A腔压力-C腔压力+B腔压力。由于C腔与油池相通,即与大气相通,可以不计,且A腔为气体进气压力。因此,此时的D腔压力即排气压力=油压力+进气压力。由此可知,气体的进气压力越大,所需油压力就越小,所需功率就越小。
当柱塞22运动到顶时,油压会迅速升高,换向阀8接收到信号后换向,此时换向阀8处于交叉相通的状态。这时,压力油将流进C腔,B腔内的油就回到油池18,油缸活塞28在压力油的作用下向上运动,D腔容积会增大,腔内压力降低,第二进气阀3开启,气体经过第一球阀1,从第二进气阀3进入D腔,产生D腔的进气过程。同时,A腔容积缩小,气体压力增高,第一进气阀2关闭,当A腔内的压力达到第一排气阀4所承受的压力即所需 压缩的压力时,第一排气阀4打开,气体经过冷却器9、第二球阀11和单向阀12排到储气罐内,形成A腔的排气过程。
在此过程中,当A腔内压力超过排气压力时,此时A腔压力=D腔压力-B腔压力+C腔压力。由于B腔与油池相通,即与大气相通,可以不计,且A腔为气体进气压力。因此,此时的A腔压力即排气压力=油压力+进气压力。由此可知,气体的进气压力越大,所需油压力就越小,所需功率就越小。
当柱塞22运动到顶时,油压会迅速升高,换向阀8接收到信号后换向,此时换向阀8处于交叉相通的状态。这时,压力油将流进B腔,C腔内的油就回到油池18,油缸活塞28在压力油的作用下向下运动,A腔容积会增大,腔内压力降低,第二进气阀3开启,气体经过第一球阀1,从第二进气阀3进入A腔,产生A腔的进气过程。同时,D腔容积缩小,气体压力增高,第一进气阀2关闭,当D腔内的压力达到第一排气阀4所承受的压力即所需压缩的压力时,第一排气阀4打开,气体经过冷却器9、第二球阀11和单向阀12排到储气罐内,形成D腔的排气过程。
实施例2:
图3是本发明的第二个实施例。为使用两级压缩,增加了一个主机缸6,
两个主机系统的油缸进油口36分别与控制系统相连;第二个主机系统中第一进气阀2、第二进气阀3与上一级主机系统的第一排气阀4和第二排气阀5相通;第一个主机系统的第一进气阀2、第二进气阀3通过控制系统与压缩机的进气端相通;第二个主机系统的第一排气阀4和第二排气阀5分别与压缩机的排气端连接。
本实施例将一级压缩变为两级压缩,这样可以减少气体的压比,对压缩过程较为有利。当然还可以增加到三级或更多,这样所需油泵的压力就相对减小,工作更为有利,但产品的成本会增加;同时,如果要增大排量,只需要增加每一级的气缸数量即可。
同时,在本实施例中,将动力系统改为了一个液压工作站,即将所有液压元件集中安装在一起,从而减小体积。
本专利是用液压油推动液压活塞从而带动柱塞上下运动对气体进行压缩,上下两端为对称的气缸,当上面压缩介质时,下面进介质,下面压缩介质时,上面进介质,中间为液压缸,通过活塞隔开。
本发明中主要易损件是气缸密封,为方便更换密封,气缸中间块25油缸中间块26为分开的,目的是为了拆卸气缸时不需要拆卸油缸,较以前设计有很大的提高;
在第一气缸连接块21与第二气缸连接块32分别通过短拉杆31连接于气缸上,在第一气缸23和第二气缸37位于气缸中间块25和油缸中间块26相接面的气缸壁上设置有放气孔33,该放气孔33起保护油缸密封作用,当气缸密封34损坏时,介质从放气孔33流出,防止损坏油缸密封35。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不能偏离本发明的精神或者超越所附权利要求书所定义的范围。
尽管本文较多地使用了第一球阀1,第一进气阀2,第二进气阀3,第一排气阀4,第二排气阀5,主机缸6,换向阀8,冷却器9,安全阀10,第二球阀11,单向阀12,油冷器13,储能器14,过滤器15,油泵16,溢流阀17,油池18,第一气缸连接块21,柱塞22,气缸23,缸筒法兰24,气缸中间块25,油缸中间块26,油缸活塞密封圈27,油缸活塞28,油缸29,长拉杆30,短拉杆31,第二气缸连接块32,放气孔33,气缸密封34,油缸密封35,油缸进油口36,第二气缸37等术语,但并不排除使用其它术语的可能性。使用这些术语,是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (9)

  1. 一种往复柱塞式气体压缩机,包括:主机系统,与主机系统相连的控制系统和冷却系统、与控制系统相连的动力系统,其特征在于,所述主机系统包括:主机缸(6),所述主机缸(6)包括:柱塞(22)、第一气缸(23)、油缸(29),其中:
    所述第一气缸(23)的一端与油缸(29)相连,另一端设有第一气缸连接块(21),所述柱塞(22)穿过油缸(29)后进入气缸(23)内,并与所述第一气缸连接块(21)形成密封腔体A;
    所述柱塞(22)位于油缸(29)内的部分上设置有油缸活塞(28),所述油缸活塞(28)将所述油缸(29)分为上下两个密封的油腔B和油腔C;
    所述密封腔体A上设置有第一进气阀(2)、第一排气阀(4),所述油腔B和油腔C上分别设置有油缸进油口(36);
    所述第一进气阀(2)通过控制系统与压缩机的进气端相连;
    所述油腔B和油腔C上的油缸进油口(36)分别与控制系统相连;
    所述第一排气阀(4)通过冷却系统与压缩机的排气端连接。
  2. 根据权利要求1所述的一种往复柱塞式气体压缩机,其特征在于,还包括第二气缸(37),所述第二气缸(37)与第一气缸(23)对称的连接于油缸(29)的另一端,所述柱塞(22)从第二气缸(37)的一端进入所述第二气缸(37)后与第二气缸(37)另一端上的第二气缸连接块(32)形成密封腔体D,所述密封腔体D上设置有第二进气阀(3)和第二排气阀(5),所述第二进气阀(3)通过控制系统与压缩机的进气端相连,所述第二排气阀(5)通过冷却系统与压缩机的排气端连接。
  3. 根据权利要求2所述的一种往复柱塞式气体压缩机,其特征在于,所述主机系统有一个以上,形成多级压缩系统,其中:
    所述各个主机系统的油缸进油口(36)分别与控制系统相连;
    所述主机系统中的各级主机系统的第一进气阀(2)、第二进气阀(3)与上一级主机系统的第一排气阀(4)和第二排气阀(5)相通;
    第一级主机系统的第一进气阀(2)、第二进气阀(3)通过控制系统与压缩机的进气端相通;
    最后一级主机系统的第一排气阀(4)和第二排气阀(5)分别与压缩机的排气端连接。
  4. 根据权利要求2所述的一种往复柱塞式气体压缩机,其特征在于,所述控制系统包括第一球阀(1)、换向阀(8),其中:所述第一球阀(1)的一端与压缩机的进气端相连,另一端与第一进气阀(2)和第二进气阀(3)连接,所述换向阀(8)的一端分别与油腔B和油腔C上的油缸进油口(36)相连,另一端与动力系统相连。
  5. 根据权利要求4所述的一种往复柱塞式气体压缩机,其特征在于,所述冷却系统包括:冷却器(9)、油冷器(13),所述冷却器(9)的一端与第一排气阀(4)和第二排气阀(5)相连,另一端与压缩机的排气端相连;所述油冷器(13)的一端与换向阀(8)相连,另一端与动力系统中的油池(18)相连。
  6. 根据权利要求4所述的一种往复柱塞式气体压缩机,其特征在于,所述动力系统包括:油冷器(13)、储能器(14)、过滤器(15)、油泵(16)、溢流阀(17)和油池(18),其中:所述油泵(16)与溢流阀(17)相互并联后分别与油池(18)和过滤器(15)的一端相连接,所述过滤器(15)的另一端与储能器(14)连接和换向阀(8)连接,所述换向阀(8)与过滤器(15)相连的一端还与油池(18)相连接。
  7. 根据权利要求2所述的一种往复柱塞式气体压缩机,其特征在于,还包括工艺系统,所述工艺系统包括:安全阀(10)、第二球阀(11)、单向阀(12),所述安全阀(10)与冷却系统相连,所述第二球阀(11)的一端与冷却系统相连,另一端通过单向阀(12)与压缩机排气端相连。
  8. 一种利用权利要求1-6所述的任一种往复柱塞式气体压缩机进行气体压缩的方法,其特征在于,包括:
    注油步骤:通过控制系统向油腔B或油腔C中的一个注油,从而推油缸活塞运动使得密封腔体A或密封腔体D中的一个被压缩;
    进气步骤:将外界气体抽入密封腔体A或密封腔体D中;
    排气步骤:当被压缩的密封腔体内的气体压力达到所需压力时,将气体排出;
    切换步骤:控制系统倒向,向另一个油腔中注油,从而推动油缸活塞反向运动,执行进气步骤。
  9. 根据权利要求7所述的气体压缩的方法,其特征在于,
    所述注油步骤为:液压油经过油泵(16),由油池(18)依次进入过滤器(15)和换向阀(8)的直通进入油腔B或油腔C中的一个,推动油缸活塞(28)运动,同时,另一个油腔的油则经过换向阀(8)的直通和油冷器(13),回到油池(18);
    所述进气步骤为:油缸活塞(28)带动柱塞(22)运动,使得未被压缩的密封腔体容积增大,开启该腔体的进气阀,气体经过第一球阀(1),从第一进气阀(2)或第二进气阀(3)进入未被压缩的密封腔体;
    所述排气步骤为:油缸活塞(28)运动带动柱塞(22)运动,被压缩的密封腔体容积缩小,气体压力增高,其进气阀被关闭,当被压缩的密封腔体内的气体压力达到所需压缩的压力时,其排气阀打开,气体经过冷却器(9)、第二排气球阀(11)和单向阀(12)排出;
    所述切换步骤为:当柱塞(22)运动到顶时,换向阀(8)换向处于交叉相通的状态,压力油将流进先前未被注油的油腔,同时先前被注油的油腔内的油回到油池(18),油缸活塞(28)在压力油的作用下反向运动,然后执行进气步骤。
PCT/CN2015/080751 2014-09-09 2015-06-04 一种往复柱塞式气体压缩机及方法 WO2016037500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410454848.1 2014-09-09
CN201410454848.1A CN104214071B (zh) 2014-09-09 2014-09-09 一种往复柱塞式气体压缩机及方法

Publications (1)

Publication Number Publication Date
WO2016037500A1 true WO2016037500A1 (zh) 2016-03-17

Family

ID=52095889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080751 WO2016037500A1 (zh) 2014-09-09 2015-06-04 一种往复柱塞式气体压缩机及方法

Country Status (2)

Country Link
CN (1) CN104214071B (zh)
WO (1) WO2016037500A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10072487B2 (en) 2016-09-22 2018-09-11 I-Jack Technologies Incorporated Lift apparatus for driving a downhole reciprocating pump
CN108533521A (zh) * 2018-03-30 2018-09-14 萨震压缩机(上海)有限公司 余气利用空压机
CN108561285A (zh) * 2018-02-11 2018-09-21 华中科技大学无锡研究院 用于淡水冷却除尘系统中的液压驱动往复式水泵
US10087924B2 (en) 2016-11-14 2018-10-02 I-Jack Technologies Incorporated Gas compressor and system and method for gas compressing
CN110326733A (zh) * 2019-07-15 2019-10-15 山东华春新能源有限公司 一种超高压快速冻结设备
US10544783B2 (en) 2016-11-14 2020-01-28 I-Jack Technologies Incorporated Gas compressor and system and method for gas compressing
CN111894843A (zh) * 2019-05-05 2020-11-06 赖梦超 往复压缩机自力式气动多气囊余隙调节系统
CN113565823A (zh) * 2021-06-17 2021-10-29 宣化钢铁集团有限责任公司 一种钢包滑动水口油缸及钢包水口控制装置
US11519403B1 (en) 2021-09-23 2022-12-06 I-Jack Technologies Incorporated Compressor for pumping fluid having check valves aligned with fluid ports
CN117432930A (zh) * 2023-12-07 2024-01-23 武汉齐达康能源装备有限公司 一种井口天然气混输快速增压装置及使用方法
US11952995B2 (en) 2020-02-28 2024-04-09 I-Jack Technologies Incorporated Multi-phase fluid pump system
CN118293047A (zh) * 2024-06-05 2024-07-05 博山水泵制造厂 一种氢气压缩机
EP4428366A1 (de) * 2023-03-08 2024-09-11 Ewald Landschädl Einstufiger kolbenkompressor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104214071B (zh) * 2014-09-09 2017-02-15 武汉齐达康环保科技股份有限公司 一种往复柱塞式气体压缩机及方法
CN105422449B (zh) * 2015-12-22 2019-08-09 西安交通大学 一种悬臂式无油双齿转子压缩机
CN105569979A (zh) * 2016-01-30 2016-05-11 西安昆仑工业(集团)有限责任公司 立式组合油气缸压缩机
CN107859612A (zh) * 2017-11-23 2018-03-30 陕西昆仑机械装备制造有限责任公司 立式组合增压机
CN108457930A (zh) * 2018-04-08 2018-08-28 中国重汽集团南充海乐机械有限公司 一种残障人登机车用单作用活塞式多级同步油缸
CN109653985A (zh) * 2018-12-13 2019-04-19 武汉齐达康环保科技股份有限公司 一种氢气压缩机主机及压缩方法
CN109973370A (zh) * 2019-04-24 2019-07-05 江苏恒久机械股份有限公司 一种液压驱动隔膜式压缩机
CN110107485B (zh) * 2019-06-01 2021-04-20 成都天高机电设备有限公司 一种换向阀式膜片泵系统
CN111365210B (zh) * 2020-03-06 2021-08-10 西安交通大学 活塞行程精准可调的高效增压零余隙式离子液体压缩机
CN111365212B (zh) * 2020-03-06 2021-06-22 西安交通大学 相位差实时可调型三级增压零余隙式离子液体压缩机
CN111365211B (zh) * 2020-03-06 2021-04-27 西安交通大学 一种摆动换向两级增压零余隙式离子液体压缩机
CN114198288B (zh) * 2021-12-04 2023-07-07 江阴市富仁高科股份有限公司 多级增压零余隙式离子液体压缩机
CN115681074B (zh) * 2022-10-14 2023-11-14 西安交通大学 双活塞两级增压多孔介质高效换热式离子液体压缩机
CN117191286B (zh) * 2023-08-28 2024-05-07 烟台东德实业有限公司 一种同时检测循环液封气缸多种压力状态密封件性能系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ215137A (en) * 1985-02-22 1986-12-05 F Zanarini Hydraulic drive reciprocating compressor:drive chambers each side of central compressing chambers
CN201003474Y (zh) * 2006-09-01 2008-01-09 方先鹿 往复活塞式双作用液压压缩机
CN201593488U (zh) * 2009-12-30 2010-09-29 四川金星压缩机制造有限公司 液压活塞式天然气子站用气体压缩机
US20110293447A1 (en) * 2010-05-26 2011-12-01 National Oilwell Varco, L.P. Hydraulically Actuated Reciprocating Pump
CN104214071A (zh) * 2014-09-09 2014-12-17 武汉齐达康环保科技有限公司 一种往复柱塞式气体压缩机及方法
CN204126838U (zh) * 2014-09-09 2015-01-28 武汉齐达康环保科技有限公司 一种往复柱塞式气体压缩机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2809263Y (zh) * 2005-07-29 2006-08-23 自贡通达机器制造有限公司 液压活塞式天然气压缩机
CN101089391A (zh) * 2006-06-14 2007-12-19 刘建辉 一种气压内循环直线往复式压缩机
CN200946558Y (zh) * 2006-08-17 2007-09-12 青岛绿科汽车燃气开发有限公司 一种新型液压驱动天然气往复压缩机
CN201103527Y (zh) * 2007-09-28 2008-08-20 西安昆仑液压传动机械厂 容积式液压驱动往复压缩机
CN101225808A (zh) * 2007-12-28 2008-07-23 西安交通大学 一种气/液驱动的往复活塞式压缩机或液体泵
CA2644346A1 (en) * 2008-11-12 2010-05-12 Global Energy Services Ltd. Multiphase pump
CN201568261U (zh) * 2009-09-07 2010-09-01 武汉齐达康环保科技有限公司 一种短拉杆连接式气缸
CN201599166U (zh) * 2009-09-08 2010-10-06 武汉齐达康环保科技有限公司 气液分离式双作用液压压缩机
CN102230460A (zh) * 2011-07-22 2011-11-02 昆山亿卡迪机电有限公司 油压式活塞无油特高压空气压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ215137A (en) * 1985-02-22 1986-12-05 F Zanarini Hydraulic drive reciprocating compressor:drive chambers each side of central compressing chambers
CN201003474Y (zh) * 2006-09-01 2008-01-09 方先鹿 往复活塞式双作用液压压缩机
CN201593488U (zh) * 2009-12-30 2010-09-29 四川金星压缩机制造有限公司 液压活塞式天然气子站用气体压缩机
US20110293447A1 (en) * 2010-05-26 2011-12-01 National Oilwell Varco, L.P. Hydraulically Actuated Reciprocating Pump
CN104214071A (zh) * 2014-09-09 2014-12-17 武汉齐达康环保科技有限公司 一种往复柱塞式气体压缩机及方法
CN204126838U (zh) * 2014-09-09 2015-01-28 武汉齐达康环保科技有限公司 一种往复柱塞式气体压缩机

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352138B2 (en) 2016-09-22 2019-07-16 I-Jack Technologies Incorporated Lift apparatus for driving a downhole reciprocating pump
US10072487B2 (en) 2016-09-22 2018-09-11 I-Jack Technologies Incorporated Lift apparatus for driving a downhole reciprocating pump
US11162491B2 (en) 2016-11-14 2021-11-02 I-Jack Technologies Incorporated Gas compressor and system and method for gas compressing
US11242847B2 (en) 2016-11-14 2022-02-08 I-Jack Technologies Incorporated Gas compressor and system and method for gas compressing
US10167857B2 (en) 2016-11-14 2019-01-01 I-Jack Technologies Incorporated Gas compressor and system and method for gas compressing
US11982269B2 (en) 2016-11-14 2024-05-14 I-Jack Technologies Incorporated Gas compressor and system and method for gas compressing
US11339778B2 (en) 2016-11-14 2022-05-24 I-Jack Technologies Incorporated Gas compressor and system and method for gas compressing
US10544783B2 (en) 2016-11-14 2020-01-28 I-Jack Technologies Incorporated Gas compressor and system and method for gas compressing
US10087924B2 (en) 2016-11-14 2018-10-02 I-Jack Technologies Incorporated Gas compressor and system and method for gas compressing
CN108561285A (zh) * 2018-02-11 2018-09-21 华中科技大学无锡研究院 用于淡水冷却除尘系统中的液压驱动往复式水泵
CN108533521A (zh) * 2018-03-30 2018-09-14 萨震压缩机(上海)有限公司 余气利用空压机
CN111894843A (zh) * 2019-05-05 2020-11-06 赖梦超 往复压缩机自力式气动多气囊余隙调节系统
CN110326733A (zh) * 2019-07-15 2019-10-15 山东华春新能源有限公司 一种超高压快速冻结设备
US11952995B2 (en) 2020-02-28 2024-04-09 I-Jack Technologies Incorporated Multi-phase fluid pump system
CN113565823A (zh) * 2021-06-17 2021-10-29 宣化钢铁集团有限责任公司 一种钢包滑动水口油缸及钢包水口控制装置
CN113565823B (zh) * 2021-06-17 2024-03-01 宣化钢铁集团有限责任公司 一种钢包滑动水口油缸及钢包水口控制装置
US11519403B1 (en) 2021-09-23 2022-12-06 I-Jack Technologies Incorporated Compressor for pumping fluid having check valves aligned with fluid ports
EP4428366A1 (de) * 2023-03-08 2024-09-11 Ewald Landschädl Einstufiger kolbenkompressor
CN117432930A (zh) * 2023-12-07 2024-01-23 武汉齐达康能源装备有限公司 一种井口天然气混输快速增压装置及使用方法
CN117432930B (zh) * 2023-12-07 2024-05-03 武汉齐达康能源装备有限公司 一种井口天然气混输快速增压装置及使用方法
CN118293047A (zh) * 2024-06-05 2024-07-05 博山水泵制造厂 一种氢气压缩机

Also Published As

Publication number Publication date
CN104214071A (zh) 2014-12-17
CN104214071B (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2016037500A1 (zh) 一种往复柱塞式气体压缩机及方法
CN203948264U (zh) 一种气动隔膜泵
CN209943030U (zh) 一种液压驱动的两级连续增压式超高压氢气压缩机主机
CN201003474Y (zh) 往复活塞式双作用液压压缩机
CN201599166U (zh) 气液分离式双作用液压压缩机
CN206625947U (zh) 一种双作用液压缸的泥浆泵
CN106523323A (zh) 无活塞杆连接的液压主机缸及液压压缩机
WO2015109654A1 (zh) 一种高压气泵
CN206017110U (zh) 一种多级压缩换向阀式隔膜压缩机
CN103925200A (zh) 一种气动隔膜泵
CN219774288U (zh) 一种往复式压缩机
CN204677814U (zh) 一种选择放空阀
CN114593040B (zh) 多级循环液封压缩机变压进气与平衡压力转换系统及方法
CN204126838U (zh) 一种往复柱塞式气体压缩机
CN118462669B (zh) 一种液控双级活塞式增压装置
CN206917830U (zh) 一种排气压力高及排量大的气体压缩机
CN218347538U (zh) 一种可快速冷却的两级压缩缸
CN217207056U (zh) 一种利用液体驱动的气体增压装置
CN204140373U (zh) 一种柱塞泵的密封结构
CN208651104U (zh) 可实现多级压缩的双作用隔膜压缩机
CN202117876U (zh) 立式往复式真空增压两用泵
CN106499609B (zh) 一种气压助推的单级活塞式压缩机及多级活塞式压缩机
CN201837155U (zh) 一种冷媒回收加注机的改良结构
CN213175969U (zh) 一种二级压缩高压气泵
CN104595155A (zh) 一种长冲程液控天然气压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.08.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15840372

Country of ref document: EP

Kind code of ref document: A1