WO2020029562A1 - 一种压缩机及制冷设备 - Google Patents

一种压缩机及制冷设备 Download PDF

Info

Publication number
WO2020029562A1
WO2020029562A1 PCT/CN2019/073422 CN2019073422W WO2020029562A1 WO 2020029562 A1 WO2020029562 A1 WO 2020029562A1 CN 2019073422 W CN2019073422 W CN 2019073422W WO 2020029562 A1 WO2020029562 A1 WO 2020029562A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
storage tank
oil storage
cylinder
compressor
Prior art date
Application number
PCT/CN2019/073422
Other languages
English (en)
French (fr)
Inventor
袁珊娜
刘华
宋斌
高山
吴远刚
李衡国
Original Assignee
青岛海尔智能技术研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔智能技术研发有限公司 filed Critical 青岛海尔智能技术研发有限公司
Publication of WO2020029562A1 publication Critical patent/WO2020029562A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing

Definitions

  • the present invention relates to the technical field of compressors, and in particular, to a compressor and refrigeration equipment.
  • the linear compressor is a relatively commonly used compressor type in the mechanical field at present. Its body mainly includes a housing, an oil supply device and an electromagnet assembly, and the specific parts include a motor assembly, a cylinder, a piston, and an exhaust valve. Blades, movers, spring supporting components, motors, etc .; linear compressors have the advantages of high compression efficiency and small overall volume.
  • Linear compressors generally use the reciprocating motion of the piston mechanism to perform compression operations. Therefore, it is important for the long-term reliable operation of the linear compressor to facilitate the lubrication of the piston mechanism by lubricating fluid such as lubricating oil.
  • the existing linear compressor mainly uses an independent oil pump device as the power supply for the lubricating oil.
  • the disadvantages of this method of oil supply are mainly the following aspects: 1. Many components, high cost, poor production process and assembly; 2. the compressor The volume is large, the oil pump device takes up extra space of the compressor, and the utilization rate is low; 3. Poor reliability. The addition of the oil pump device may cause the problem of unstable operation of the compressor.
  • the present invention provides a compressor and refrigeration equipment, which aims to solve the above-mentioned disadvantages of the existing compressors that use an oil pump device to supply oil.
  • a brief summary is given below. This summary is not a general overview, nor is it intended to identify key / important constituent elements or to describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
  • a compressor is provided.
  • the compressor includes a body.
  • the body is provided with a cylinder, a driving module, a piston mechanism and an oil storage portion provided in the cylinder.
  • the driving module is used to drive the piston mechanism along The axial direction of the cylinder performs a reciprocating compression movement, and the oil storage part is used to store the lubricating fluid;
  • the inner wall of the cylinder is provided with a first oil storage tank, and an elastically deformable oil suction valve disc is provided in the first oil storage tank;
  • the machine body is also provided with an oil suction line.
  • the oil suction end of the oil suction line communicates with the oil storage part, and the oil discharge end communicates with the first oil storage tank and is turned on or blocked by the elastic deformation of the oil suction valve plate.
  • the oil discharge end of the oil suction pipeline is communicated to the bottom of the groove of the first oil storage tank, and the oil suction valve plate is disposed abutting the bottom of the groove;
  • One end of the suction valve plate is fixed to the bottom of the groove; the other end corresponds to the position of the oil discharge end, and can be elastically lifted up and reset to conduct or block the oil discharge end.
  • the piston mechanism includes a piston head and a piston rod, and an outer wall of the piston rod is provided with a second oil storage tank; when the piston mechanism performs a reciprocating compression movement in the axial direction of the cylinder, the first oil storage tank and the first The two oil storage tanks can be switched between the connected state and the separated state.
  • the distance between the first oil storage tank and the exhaust end of the compressor is not less than the distance between the piston head and the exhaust end when the piston mechanism moves to the maximum backward position.
  • the second oil storage tank is an annular groove opened along a circumferential direction of the piston rod;
  • the body is also provided with an oil drain line.
  • the oil inlet end of the oil drain line communicates with the inner wall of the cylinder.
  • a distance in the axial direction of the cylinder between a side edge of the first oil storage tank adjacent to the oil inlet end and the oil input end is larger than a groove width of the second oil storage tank in the axial direction of the cylinder.
  • the distance between the oil inlet end of the oil discharge pipe and the exhaust end of the compressor is not less than the distance between the piston head and the exhaust end when the piston mechanism moves to the maximum backward position.
  • the oil inlet end is in communication with the second oil storage tank.
  • the volume of the tank space of the first oil storage tank is not greater than the volume of the tank space of the second oil storage tank.
  • the compressor provided by the invention provides an oil storage tank on the inner wall of the cylinder and an oil suction pipeline communicating with the oil storage tank, so that the compressor can use the negative pressure generated by its reciprocating motion to automatically extract the lubricating fluid to lubricate the piston mechanism during operation, without the need to
  • the additional oil pump device can realize automatic oil supply operation, simplify the internal structure of the compressor, and improve the stability of the compressor operation.
  • FIG. 1 is a schematic structural diagram of a compressor of the present invention according to an example
  • FIG. 2 is a second structural schematic diagram of a compressor according to the present invention.
  • FIG. 3 is an enlarged view of a portion A of FIG. 1;
  • FIG. 4 is an enlarged view of a portion B of FIG. 2;
  • the oil discharge end; 8. The oil discharge line.
  • FIG. 1 is a structural schematic diagram 1 of a compressor of the present invention according to an example, and the piston mechanism in FIG. 1 is at a maximum backward position;
  • FIG. 2 is a structural schematic diagram 2 of a compressor of the present invention according to an example The piston mechanism in Figure 2 is in the maximum forward position.
  • FIG. 3 is an enlarged view of part A of FIG. 1;
  • FIG. 4 is an enlarged view of part B of FIG. 2.
  • the present invention provides a compressor.
  • the compressor includes a body.
  • the body includes a casing 1 and a driving module provided inside the casing 1.
  • the driving module is used to drive the piston mechanism along the cylinder 3.
  • the reciprocating compression movement is performed in the axial direction;
  • the driving module includes a stator 22 and a mover 21, and a cylinder 3 is formed on the center axis of the stator 22 and the mover 21, and a piston mechanism for reciprocating compression movement in the axial direction of the cylinder 3 is provided in the cylinder 3
  • One end of the cylinder 3 is an exhaust end.
  • the exhaust end is provided with an exhaust valve disc 31 that can be opened and closed. The gas compressed by the piston mechanism can be discharged through the exhaust end when the exhaust valve disc 31 is opened.
  • the compressor of the present invention further includes an oil storage portion 5 for storing the lubricating fluid; in the figure, the bottom space of the inner cavity of the casing 1 of the compressor is the oil storage portion 5 for storing the lubricating fluid; here,
  • the lubricating fluid includes, but is not limited to, conventional lubricating media such as lubricating oil, and the present invention does not limit the specific type of the lubricating fluid.
  • the inner wall of the cylinder 3 is provided with a first oil storage tank 61.
  • the first oil storage tank 61 is recessed from the inner wall of the cylinder 3, and the groove edges of the first oil storage tank 61 are along the circumferential direction and the axial direction of the cylinder 3, respectively.
  • the first oil storage tank 61 can contact the piston mechanism with the largest slot area, so that as much lubrication fluid as possible can flow into the gap between the piston mechanism and the cylinder 3, and between the cylinder 3 and the piston mechanism can be There is a sufficient amount of lubricating fluid to lubricate, ensuring the lubrication effect on the piston mechanism and the cylinder 3.
  • An elastically deformable oil suction valve plate 63 is provided in the first oil storage tank 61.
  • the oil suction valve plate 63 is a thin film structure and is disposed close to the bottom of the first oil storage tank 61. One end is fixed to the bottom of the tank, and the other end The part is a free end, which can be elastically lifted and reset under the action of external force.
  • the machine body is also provided with an oil suction line 7, the oil suction end 71 of the oil suction line 7 communicates with the oil storage part 5, the oil discharge end 72 communicates with the first oil storage tank 61, and the conduction or resistance is controlled by the elastic deformation of the oil suction valve plate 63
  • the free end of the suction valve plate 63 is elastically lifted, the lubrication flow path between the suction pipe 7 and the first oil storage tank 61 is in a conductive state; when the free end of the suction valve plate 63 is reset, the oil suction The lubrication flow path between the pipeline 7 and the first oil storage tank 61 is in a blocked state.
  • the air flow flows between the piston mechanism and the cylinder 3 along with the airflow; and the fixed end of the suction valve plate 63 is set away from the exhaust end and is free The end is arranged near the exhaust end.
  • the flow direction of the air flow brought by the piston mechanism is consistent with the backward direction of the piston mechanism, so the air flow can elastically lift up the suction valve plate 63.
  • the suction line The lubrication flow path between 7 and the first oil storage tank 61 is in a conductive state; at the same time, the rapid flow of air will also reduce the air pressure in the first oil storage tank 61.
  • the lubricating fluid in the oil storage unit 5 will enter the first oil storage tank 61 through the oil suction pipe 7 and the oil suction valve plate 63 under the negative pressure, and can contact and adhere to the piston.
  • the lubricating fluid is carried into the gap between the piston mechanism and the cylinder 3, thereby lubricating the two.
  • the oil discharge end 72 of the oil suction line 7 communicates with the bottom of the groove of the first oil storage tank 61, and the free end of the oil suction valve plate 63 corresponds to the position of the oil discharge end 72 of the oil suction line 7 and passes through itself.
  • the elastic lifting and resetting under the action of the external force of the air pressure makes it possible to automatically switch on or off the oil discharge end 72.
  • the piston mechanism includes a piston head 41 and a piston rod 42; optionally, an outer wall of the piston rod 42 is provided with a second oil storage groove 62; when the piston mechanism performs a reciprocating compression movement in the axial direction of the cylinder 3, the first oil storage groove 61 and the first
  • the two oil storage tanks 62 can be switched between the connected state and the separated state. As shown in FIG. 1, the two are in a connected state, and as shown in FIG. 2, the two are in a separated state.
  • the second oil storage tank 62 and the outer wall of the piston rod 42 are an integrated structure, the second oil storage tank 62 will also reciprocate with the piston rod 42.
  • the piston rod 42 moves back to FIG. 1
  • the first oil storage tank 61 and the second oil storage tank 62 communicate with each other.
  • the volume of the oil storage space formed by the two increases, and the change in the volume of the space also reduces the air pressure in the oil storage space.
  • the pressure difference between the first oil storage tank 61 and the oil storage unit 5 can be increased, so that the lubricating fluid in the oil storage unit 5 can be more easily sucked into the first oil storage tank 61 and the second oil storage tank 62 by negative pressure; After that, when the first oil storage tank 61 continues to move forward with the piston rod 42, the communication area between the first oil storage tank 61 and the second oil storage tank 62 gradually decreases until the two are separated, and a part of the lubricating fluid in the first oil storage tank 61 is squeezed. Into the gap between the cylinder 3 and the piston rod 42 to lubricate the two.
  • the second oil storage tank 62 is an annular groove opened in the circumferential direction of the piston rod 42.
  • the lubricating fluid entering the second oil storage tank 62 through the first oil storage tank 61 can be along the second oil storage tank 62.
  • the annular flow allows the lubricating fluid to flow from the entire circumferential direction of the second oil storage tank 62 to the gap between the cylinder 3 and the piston rod 42, ensuring the uniformity of the lubricating fluid in the gap between the cylinder 3 and the piston rod 42. To improve the lubrication effect.
  • the first oil storage tank 61 in order to avoid the problem that the lubricating fluid leaks from the first oil storage tank 61 into the compression space between the piston head 41 and the exhaust valve disc 31 when the piston mechanism is retracted, the first oil storage tank 61 is in The opening position on the outer wall of the cylinder 3 should meet the distance between the first oil storage tank 61 and the exhaust end of the compressor, not less than the distance between the piston head 41 and the exhaust end when the piston mechanism moves to the maximum retracted position; The compression space between the first oil storage tank 61, the piston head 41, and the exhaust valve disc 31 is never in contact, and the problem of leakage of the lubricating fluid can be effectively prevented.
  • the machine body is further provided with an oil drain line 8, the oil inlet end of the oil drain line 8 communicates with the inner wall of the cylinder 3, and the oil outlet end of the oil drain line 8 is connected to the oil storage portion 5, so that after lubrication, The lubricating fluid is transported back to the oil storage unit 5, and a circulation circuit of the lubricating fluid is formed between the oil storage unit 5, the oil suction pipe 7, the cylinder 3, and the exhaust pipe, thereby realizing the reuse of the lubricating fluid.
  • the communication state and the separation state of the second oil storage tank 62 and the oil inlet end of the oil discharge pipe 8 can be switched between the two. Specifically, when the piston mechanism moves to the position shown in FIG. 2 (the piston mechanism moves to the maximum forward position), the oil inlet end is in communication with the second oil storage tank 62. At this time, the second oil storage tank 62 and the oil discharge pipeline The oil inlet end of 8 is in a connected state; when the piston mechanism moves to the position shown in FIG. 1, the second oil storage tank 62 and the oil inlet end of the oil discharge line 8 are in a separated state.
  • the distance between the opening position of the oil inlet end of the oil discharge line 8 and the first oil storage tank 61 should satisfy the axial distance between the edge of the side of the first oil storage tank 61 adjacent to the oil inlet end and the oil inlet end in the axial direction of the cylinder 3, It is larger than the requirement of the groove width of the second oil storage tank 62 in the axial direction of the cylinder 3.
  • the oil inlet end of the oil discharge line 8 is opened at a position close to the exhaust valve plate 31, and the first oil storage tank 61 is opened at a position far from the exhaust valve plate 31.
  • the oil inlet end of the oil discharge line 8 should also meet the The distance between the oil inlet and the exhaust end of the compressor is not less than the requirement of the distance between the piston head 41 and the exhaust end when the piston mechanism moves to the maximum retracted position.
  • the groove space volume of the first oil storage tank 61 is not greater than the groove space volume of the second oil storage tank 62.
  • the second oil storage tank 62 can have a large negative pressure environment because the groove space of the second oil storage tank 62 is large.
  • the pressure difference can be effectively increased, so that the first oil storage tank 61 has sufficient negative pressure to raise the oil suction valve plate 63 and suck the lubricating fluid from the oil storage unit 5.
  • a refrigeration equipment there is also provided a refrigeration equipment, and the refrigeration equipment is applied to any one of the compressors provided in the foregoing embodiments.
  • the refrigeration equipment includes, but is not limited to, an air conditioner, a refrigerator, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

一种压缩机及制冷设备,压缩机包括机体,机体内设有气缸(3)、设于气缸(3)内的活塞机构和储油部(5),储油部(5)用于储存润滑流体;气缸(3)的内壁开设有第一储油槽(61),第一储油槽(61)内设置有可弹性形变的吸油阀片(63);机体还设置有吸油管路(7),吸油管路(7)的吸油端(71)与储油部(5)相连通,排油端(72)连通至第一储油槽(61)且由吸油阀片(63)的弹性形变控制导通或阻断。该压缩机在运行时可以利用其往复运动产生的负压自动抽取润滑流体对活塞机构进行润滑,无需额外配置油泵装置就可以实现自动供油操作,简化了压缩机的内部结构,提高了压缩机运行的稳定性。

Description

一种压缩机及制冷设备
本申请基于申请号为201810890147.0、申请日为2018年08月07日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及压缩机技术领域,特别是涉及一种压缩机及制冷设备。
背景技术
线性压缩机是目前机械领域一种比较常用的压缩机机型,其机体的组成部分主要包括外壳、供油装置及电磁铁组件等,具体零部件又包括电机组件、气缸、活塞、排气阀片、动子、弹簧支撑组件及马达等等;线性压缩机具有压缩效率高、整体体积小等优点。
线性压缩机一般是采用活塞机构的往复运动进行压缩作业,因此,利于润滑油等润滑流体对活塞机构进行润滑是线性压缩机能够长期可靠工作的重要保证。现有线性压缩机主要通过独立的油泵装置作为润滑油的供油动力,这种供油方式的缺点主要有以下几方面:1、元件多、成本高、生产工艺及组装性差;2、压缩机体积大,油泵装置占用了压缩机额外的高度空间,利用率低;3、可靠性差,由于增设了油泵装置,可能会导致压缩机运行不稳定的问题。
发明内容
本发明提供了一种压缩机及制冷设备,旨在解决现有压缩机采用油泵装置供油所存在的上述弊端。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明的第一个方面,提供了一种压缩机,压缩机包括机体,机体内设有气缸、驱动模块、设于气缸内的活塞机构和储油部,驱动模块用于驱动活塞机构沿气缸的轴向进行往复压缩运动,储油部用于储存润滑流体;
气缸的内壁开设有第一储油槽,第一储油槽内设置有可弹性形变的吸油阀片;
机体还设置有吸油管路,吸油管路的吸油端与储油部相连通,排油端连通至第一储油槽且由吸油阀片的弹性形变控制导通或阻断。
在一种可选的实施方式中,吸油管路的排油端连通至第一储油槽的槽底部,吸油阀片贴靠于槽底部设置;
吸油阀片的一端部与槽底部固定;另一端部与排油端位置对应,且能够弹性翘起和复位,以导通或阻断排油端。
在一种可选的实施方式中,活塞机构包括活塞头和活塞杆,活塞杆的外壁开设有第二储油槽;在活塞机构沿气缸的轴向进行往复压缩运动时,第一储油槽和第二储油槽之间能够在两者连通状态和分离状态切换。
在一种可选的实施方式中,第一储油槽与压缩机的排气端部的间距,不小于活塞机构运动至最大后退位置时其活塞头与排气端部的间距。
在一种可选的实施方式中,第二储油槽为沿活塞杆的周向开设的环形槽;
机体还设置有排油管路,排油管路的入油端连通至气缸的内壁,且在活塞机构沿气缸的轴向进行往复压缩运动时,第二储油槽和排油管路的入油端之间能够在两者连通状态和分离状态切换。
在一种可选的实施方式中,第一储油槽的邻近入油端的一侧边沿与入油端之间沿气缸的轴向的间距,大于第二储油槽的沿气缸的轴向的槽宽度。
在一种可选的实施方式中,排油管路的入油端与压缩机的排气端部的间距,不小于活塞机构运动至最大后退位置时其活塞头与排气端部的间距。
在一种可选的实施方式中,在活塞机构运动至最大前进位置时,入油端与第二储油槽相连通。
在一种可选的实施方式中,第一储油槽的槽空间体积不大于第二储油槽的槽空间体积。
根据本发明的第二个方面,还提供了一种制冷设备,制冷设备应用如前述第一方面提供的任一种的压缩机。
本发明采用上述技术方案所具有的有益效果是:
本发明提供的压缩机通过在气缸的内壁设置储油槽以及连通该储油槽的吸油管路,使得压缩机在运行时可以利用其往复运动产生的负压自动抽取润滑流体对活塞机构进行润滑,无需额外配置油泵装置就可以实现自动供油操作,简化了压缩机的内部结构,提高了压缩机运行的稳定性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性所示出的本发明压缩机的结构示意图一;
图2是根据一示例性所示出的本发明压缩机的结构示意图二;
图3是图1的A部放大图;
图4是图2的B部放大图;
其中,其中,1、外壳;21、动子;22、定子;3、气缸;31、排气阀片;41、活塞头;42、活塞杆;5、储油部;61、第一储油槽;62、第二储油槽;63、吸油阀片;7、吸油管路;71、吸油端;72、排油端;8、排油管路。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可 以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法、产品等而言,由于其与实施例公开的方法部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
图1是根据一示例性所示出的本发明压缩机的结构示意图一,图1中的活塞机构处于最大后退位置;图2是根据一示例性所示出的本发明压缩机的结构示意图二,图2中的活塞机构处于最大前进位置。图3是图1的A部放大图;图4是图2的B部放大图。
如图1-图4所示,本发明提供了一种压缩机,压缩机包括机体,其中,机体包括外壳1、设于外壳1内部的驱动模块,驱动模块用于驱动活塞机构沿气缸3的轴向进行往复压缩运动;驱动模块包括定子22和动子21,定子22和动子21的中轴线上形成有气缸3,气缸3内设置有沿气缸3的轴向进行往复压缩运动的活塞机构,气缸3的一端部为排气端部,排气端部设置有可开闭的排气阀片31,活塞机构压缩的气体可在排气阀片31打开时经由该排气端部排出。
本发明的压缩机还包括储油部5,储油部5用于储存润滑流体;图示中,压缩机的外壳1的内腔的底部空间是作为储存润滑流体的储油部5;这里,润滑流体包括但不限于润滑油等常规润滑介质,本发明对润滑流体的具体类型不作限制。
气缸3的内壁开设有第一储油槽61,在本实施例中,第一储油槽61内凹于气缸3的内壁,第一储油槽61的槽边沿分别是沿气缸3的周向和轴向延伸成型,这样,第一储油槽61能够以最大的槽口面积与活塞机构相接触,以使尽量多的润滑流体能够流入活塞机构与气缸3之间的间隙,气缸3和活塞机构之间可以有足量的润滑流体进行润滑,保证了对活塞机构和气缸3的润滑效果。
第一储油槽61内设置有可弹性形变的吸油阀片63;具体的,吸油阀片63为薄片结构,贴靠第一储油槽61的槽底部设置,其中一端部与槽底部固定,另一端部为自由端,能够在外力作用下弹性翘起和复位。
机体还设置有吸油管路7,吸油管路7的吸油端71与储油部5相连通,排油端72连通至第一储油槽61且由吸油阀片63的弹性形变控制导通或阻断;这里,在吸油阀片63的自由端弹性翘起时,吸油管路7和第一储油槽61之间的润滑流路为导通状态;在吸油阀片63的自由端复位时,吸油管路7和第一储油槽61之间的润滑流路为阻断状态。
在本实施例中,活塞机构在气缸3内作往复压缩运行时,会伴随着气流在活塞机构和 气缸3之间的流动;且吸油阀片63的固定的一端远离排气端部设置,自由端靠近排气端部设置。当活塞机构进行远离排气阀片31的后退运动时,活塞机构的带来的气流的流向与活塞机构的后退方向一致,因此气流能够使吸油阀片63弹性翘起,此时,吸油管路7和第一储油槽61之间的润滑流路为导通状态;与此同时,气流的快速流动还会使第一储油槽61内的气压变小,当第一储油槽61内的气压小于储油部5的气压时,储油部5内的润滑流体就会在负压作用下依次经由吸油管路7、吸油阀片63进入第一储油槽61内,并可以接触并粘附在活塞机构上,进而随着活塞机构的往复运动,将润滑流体携带至活塞机构和气缸3之间的间隙内,从而对两者进行润滑。
在本实施例中,吸油管路7的排油端72连通至第一储油槽61的槽底部,吸油阀片63的自由端与吸油管路7的排油端72位置对应,且通过其自身在气流气压的外力作用下的弹性翘起和复位,实现对排油端72的导通或阻断的自动切换控制。
活塞机构包括活塞头41和活塞杆42;可选的,活塞杆42的外壁开设有第二储油槽62;在活塞机构沿气缸3的轴向进行往复压缩运动时,第一储油槽61和第二储油槽62之间能够在两者连通状态和分离状态切换,如图1中示出的为两者处于连通状态,图2中示出的为两者处于分离状态。
在本实施例中,由于第二储油槽62和活塞杆42的外壁为一体结构,因此第二储油槽62也会随活塞杆42进行往复运动,这里,当活塞杆42后退运动至图1中所处的位置时,第一储油槽61和第二储油槽62相连通,两者共同构成的储油空间的体积增大,空间体积的变化也会使得该储油空间内的气压降低,从而可以增大第一储油槽61与储油部5之间的压差,使得储油部5内的润滑流体可以更加方便的被负压吸取至第一储油槽61和第二储油槽62内;之后,第一储油槽61继续随活塞杆42前进运动时,第一储油槽61和第二储油槽62之间的连通面积逐渐缩小至两者分离,第一储油槽61内的部分润滑流体挤入气缸3和活塞杆42之间的间隙内,以对两者进行润滑。
在本实施例中,第二储油槽62为沿活塞杆42的周向开设的环形凹槽,这样,经由第一储油槽61进入第二储油槽62内的润滑流体可以沿第二储油槽62的环形流动,使得润滑流体可以从第二储油槽62的整个周向向气缸3和活塞杆42之间的间隙流动,保证了润滑流体在气缸3和活塞杆42之间的间隙内的均匀性,提高了润滑效果。
在本实施例中,为避免活塞机构后退时润滑流体从第一储油槽61泄露至活塞头41和排气阀片31之间的压缩空间内、污染压缩介质的问题,第一储油槽61在气缸3外壁上的开设位置应满足第一储油槽61与压缩机的排气端部的间距,不小于活塞机构运动至最大后退位置时其活塞头41与排气端部的间距的要求;这样,第一储油槽61和活塞头41和排气阀片31之间的压缩空间始终是不会接触贯通的,能够有效防止润滑流体泄露的问题的出现。
在本实施例中,机体还设置有排油管路8,排油管路8的入油端连通至气缸3的内壁,排油管路8的出油端连接至储油部5,从而可以将润滑之后的润滑流体重新输送回储油部5,储油部5、吸油管路7、气缸3和排气管路之间形成润滑流体的循环回路,实现了润滑流体的重复利用。
在活塞机构沿气缸3的轴向进行往复压缩运动时,第二储油槽62和排油管路8的入油端之间能够在两者连通状态和分离状态切换。具体的,当活塞机构运动至图2所示的位 置(在活塞机构运动至最大前进位置)时,入油端与第二储油槽62相连通,此时,第二储油槽62和排油管路8的入油端处于连通状态;当活塞机构运动至图1所示的位置时,第二储油槽62和排油管路8的入油端处于分离状态。
这样,当活塞机构运动至图1所示的位置时,第二储油槽62和第一储油槽61为连通状态,第二储油槽62和排油管路8的入油端处于分离状态;而当活塞机构运动至图2所示的位置时,第二储油槽62和第一储油槽61为分离状态,第二储油槽62和排油管路8的入油端处于连通状态。可以使得第一储油槽61和排油管路8之间始终不会构成一相互连通的流路,既可以保证第二储油槽62能够与第一储油槽61之间形成足够的负压环境,又可以避免由第一储油槽61进入的润滑流体尚未润滑就从排油管路8流回储油部5的问题。
因此,排油管路8的入油端的开设位置与第一储油槽61之间应满足第一储油槽61的邻近入油端的一侧边沿与入油端之间沿气缸3的轴向的间距,大于第二储油槽62的沿气缸3的轴向的槽宽度的要求。
在本实施例中,排油管路8的入油端开设于靠近排气阀片31的位置,第一储油槽61开设于远离排气阀片31的位置。
同时,为避免活塞头41和排气阀片31之间的压缩空间的压缩介质经由排油管路8的入油端泄露的问题,排油管路8的入油端还应满足排油管路8的入油端与压缩机的排气端部的间距,不小于活塞机构运动至最大后退位置时其活塞头41与排气端部的间距的要求。
可选的,第一储油槽61的槽空间体积不大于第二储油槽62的槽空间体积。这样,在第二储油槽62内的润滑流体流动至气缸3与活塞杆42的间隙之后,由于第二储油槽62的槽空间较大,因此第二储油槽62可以形成较大的负压环境,在第一储油槽61和第二储油槽62连通之后,能够有效提高压差,使得第一储油槽61有足够的负压使吸油阀片63翘起并从储油部5吸取润滑流体。
根据本发明的第二个方面,还提供了一种制冷设备,制冷设备应用如前述实施例提供的任一种的压缩机。
可选的,制冷设备包括但不限于空调器、冰箱等。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种压缩机,所述压缩机包括机体,所述机体内设有气缸、驱动模块、设于所述气缸内的活塞机构和储油部,所述驱动模块用于驱动所述活塞机构沿所述气缸的轴向进行往复压缩运动,所述储油部用于储存润滑流体;其特征在于,
    所述气缸的内壁开设有第一储油槽,所述第一储油槽内设置有可弹性形变的吸油阀片;
    所述机体还设置有吸油管路,所述吸油管路的吸油端与所述储油部相连通,排油端连通至所述第一储油槽且由所述吸油阀片的弹性形变控制导通或阻断。
  2. 根据权利要求1所述的压缩机,其特征在于,所述吸油管路的所述排油端连通至所述第一储油槽的槽底部,所述吸油阀片贴靠于所述槽底部设置;
    所述吸油阀片的一端部与所述槽底部固定;另一端部与所述排油端位置对应,且能够弹性翘起和复位,以导通或阻断所述排油端。
  3. 根据权利要求1或2所述的压缩机,其特征在于,所述活塞机构包括活塞头和活塞杆,所述活塞杆的外壁开设有第二储油槽;在所述活塞机构沿所述气缸的轴向进行往复压缩运动时,所述第一储油槽和第二储油槽之间能够在两者连通状态和分离状态切换。
  4. 根据权利要求3所述的压缩机,其特征在于,所述第一储油槽与所述压缩机的排气端部的间距,不小于所述活塞机构运动至最大后退位置时其活塞头与所述排气端部的间距。
  5. 根据权利要求3所述的压缩机,其特征在于,所述第二储油槽为沿所述活塞杆的周向开设的环形槽;
    所述机体还设置有排油管路,所述排油管路的入油端连通至所述气缸的内壁,且在所述活塞机构沿所述气缸的轴向进行往复压缩运动时,所述第二储油槽和所述排油管路的入油端之间能够在两者连通状态和分离状态切换。
  6. 根据权利要求5所述的压缩机,其特征在于,所述第一储油槽的邻近所述入油端的一侧边沿与所述入油端之间沿所述气缸的轴向的间距,大于所述第二储油槽的沿所述气缸的轴向的槽宽度。
  7. 根据权利要求5所述的压缩机,其特征在于,所述排油管路的所述入油端与所述压缩机的排气端部的间距,不小于所述活塞机构运动至最大后退位置时其活塞头与所述排气端部的间距。
  8. 根据权利要求5或7所述的压缩机,其特征在于,在所述活塞机构运动至最大前进位置时,所述入油端与所述第二储油槽相连通。
  9. 根据权利要求3所述的压缩机,其特征在于,所述第一储油槽的槽空间体积不大于所述第二储油槽的槽空间体积。
  10. 一种制冷设备,其特征在于,所述制冷设备应用如权利要求1-9的任一项所述的压缩机。
PCT/CN2019/073422 2018-08-07 2019-01-28 一种压缩机及制冷设备 WO2020029562A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810890147.0 2018-08-07
CN201810890147.0A CN109058078B (zh) 2018-08-07 2018-08-07 一种压缩机及制冷设备

Publications (1)

Publication Number Publication Date
WO2020029562A1 true WO2020029562A1 (zh) 2020-02-13

Family

ID=64832168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073422 WO2020029562A1 (zh) 2018-08-07 2019-01-28 一种压缩机及制冷设备

Country Status (2)

Country Link
CN (1) CN109058078B (zh)
WO (1) WO2020029562A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109162898B (zh) * 2018-08-07 2020-11-24 青岛海尔智能技术研发有限公司 一种压缩机及制冷设备
CN109058078B (zh) * 2018-08-07 2021-03-23 青岛海尔智能技术研发有限公司 一种压缩机及制冷设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050029397A (ko) * 2003-09-22 2005-03-28 엘지전자 주식회사 왕복동식 압축기의 실린더 냉각 구조
KR20050029417A (ko) * 2003-09-22 2005-03-28 엘지전자 주식회사 왕복동식 압축기의 윤활유 공급장치
CN104033353A (zh) * 2013-03-04 2014-09-10 海尔集团公司 线性压缩机及其供油润滑方法
CN104251198A (zh) * 2013-06-25 2014-12-31 海尔集团公司 直线压缩机的润滑结构
CN104454445A (zh) * 2013-09-16 2015-03-25 Lg电子株式会社 往复式压缩机
CN109058078A (zh) * 2018-08-07 2018-12-21 青岛海尔智能技术研发有限公司 一种压缩机及制冷设备
CN109162898A (zh) * 2018-08-07 2019-01-08 青岛海尔智能技术研发有限公司 一种压缩机及制冷设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1289546B1 (it) * 1995-12-29 1998-10-15 Lg Electronics Inc Dispositivo di alimentazione e scarico di olio per compressore
CN100359174C (zh) * 2003-05-20 2008-01-02 乐金电子(天津)电器有限公司 往复式压缩机的供油装置
KR100712916B1 (ko) * 2005-11-10 2007-05-02 엘지전자 주식회사 리니어 압축기
CN202157935U (zh) * 2011-07-25 2012-03-07 北京普发兴业动力科技发展有限责任公司 一种压缩机润滑装置
CN104110360B (zh) * 2013-04-22 2016-09-28 青岛海尔智能技术研发有限公司 一种直线压缩机及其润滑方法
CN204877859U (zh) * 2015-08-18 2015-12-16 珠海凌达压缩机有限公司 卧式压缩机及其上油组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050029397A (ko) * 2003-09-22 2005-03-28 엘지전자 주식회사 왕복동식 압축기의 실린더 냉각 구조
KR20050029417A (ko) * 2003-09-22 2005-03-28 엘지전자 주식회사 왕복동식 압축기의 윤활유 공급장치
CN104033353A (zh) * 2013-03-04 2014-09-10 海尔集团公司 线性压缩机及其供油润滑方法
CN104251198A (zh) * 2013-06-25 2014-12-31 海尔集团公司 直线压缩机的润滑结构
CN104454445A (zh) * 2013-09-16 2015-03-25 Lg电子株式会社 往复式压缩机
CN109058078A (zh) * 2018-08-07 2018-12-21 青岛海尔智能技术研发有限公司 一种压缩机及制冷设备
CN109162898A (zh) * 2018-08-07 2019-01-08 青岛海尔智能技术研发有限公司 一种压缩机及制冷设备

Also Published As

Publication number Publication date
CN109058078A (zh) 2018-12-21
CN109058078B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
CN103502654B (zh) 带有热释放的往复泵阀组件
WO2020029562A1 (zh) 一种压缩机及制冷设备
EP3392507A1 (en) Sliding vane control structure for variable-capacity air cylinder, variable-capacity air cylinder and variable-capacity compressor
WO2020029561A1 (zh) 一种压缩机及制冷设备
CN103470473A (zh) 液压气体真空泵
WO2014175429A1 (ja) 多気筒回転圧縮機及びこの多気筒回転圧縮機を備えた蒸気圧縮式冷凍サイクル装置
CN103375384B (zh) 密闭型压缩机
KR100383826B1 (ko) 플런저 펌프의 밸브구조
CN111207052B (zh) 一种油泵组件
CN209761679U (zh) 无离合内控变排量压缩机
CN111396313A (zh) 空调器、压缩机组件、压缩机及其泵体单元
WO2019232918A1 (zh) 高可靠性低温制冷机
CN203453066U (zh) 一种卧式压缩机
KR101559807B1 (ko) 공기압축기의 밸브장치
KR101960441B1 (ko) 압축기용 체크밸브
WO2023279506A1 (zh) 一种气体压缩装置及其实现方法
KR20120102904A (ko) 가스압축기
CN112444012A (zh) 储液器、压缩机组件和制冷系统
CN105986990B (zh) 直线式压缩机及润滑油供油方法
CN212318295U (zh) 空调器、压缩机组件、压缩机及其泵体单元
CN217302454U (zh) 吸排脂器
CN112963351B (zh) 压缩机变容结构及压缩机
CN203500007U (zh) 旋转压缩机和冷冻循环装置
CN201661463U (zh) 一种卧式转子式压缩机
KR100292515B1 (ko) 압축기의가스역류방지장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846048

Country of ref document: EP

Kind code of ref document: A1