WO2023279483A1 - 一种超弹耐疲劳发泡材料及其制备方法和应用 - Google Patents

一种超弹耐疲劳发泡材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023279483A1
WO2023279483A1 PCT/CN2021/112925 CN2021112925W WO2023279483A1 WO 2023279483 A1 WO2023279483 A1 WO 2023279483A1 CN 2021112925 W CN2021112925 W CN 2021112925W WO 2023279483 A1 WO2023279483 A1 WO 2023279483A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
thermoplastic elastomer
based alloys
fatigue
super
Prior art date
Application number
PCT/CN2021/112925
Other languages
English (en)
French (fr)
Inventor
熊祖江
董斌
张细祥
Original Assignee
安踏(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安踏(中国)有限公司 filed Critical 安踏(中国)有限公司
Publication of WO2023279483A1 publication Critical patent/WO2023279483A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/187Resiliency achieved by the features of the material, e.g. foam, non liquid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/62Thigh-rests
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters

Definitions

  • the invention belongs to the technical field of foam manufacture, and in particular relates to a superelastic fatigue-resistant foam material and its preparation method and application.
  • thermoplastic elastomer foam material mainly involves ethylene vinyl acetate polymer, polyolefin elastomer, thermoplastic polyurethane, thermoplastic elastomer polyester, thermoplastic nylon elastomer, etc.
  • Thermoplastic elastomer materials tend to have better resilience properties after foaming and expansion.
  • Patent CN201610150971.3 discloses an ultra-light and high-elastic environmentally friendly shoe sole and its preparation method. It uses thermoplastic elastomer materials such as EVA and polyolefin block copolymer (OBC) as the main matrix, and performs supercritical foaming after crosslinking to obtain micro Cellular foam midsole.
  • EVA polyolefin block copolymer
  • thermoplastic elastomer materials have viscoelasticity, and when deformation occurs, it is not completely elastic deformation, but accompanied by plastic deformation.
  • plastic deformation occurs, energy is consumed due to slippage between molecules or crystal planes, frictional heat generation, etc., so the original added energy cannot be completely stored as deformation energy and released during the recovery process. That part of the energy lost is energy loss, so the elasticity of thermoplastic elastomer materials has a limit value.
  • the rebound rate of the current thermoplastic nylon elastomer foam material can reach more than 65%, which is higher than other elastomer shoe materials, and the density of the material is lower than 0.1g/cm 3 .
  • polymer materials have limitations in energy return rate due to the heat generated by the slippage of molecular chains.
  • Inorganic materials are mainly used as fillers to improve the wear resistance, deformation resistance, tear resistance or tensile strength of the composite.
  • CN201710152004.5 provides a graphene/polymer lightweight high-elasticity soft composite foam material and its preparation method. By introducing graphene, the mechanical properties of the composite material can be effectively reinforced, so that the composite foam material can achieve light weight, wear resistance, deformation resistance, and tear resistance.
  • the patent with the application number CN201811186084.7 discloses a highly elastic and wear-resistant foam rubber and its preparation method.
  • a variety of high elastic rubber is the main matrix.
  • fiber reinforcing fillers are also used in the raw material formula to further improve the foaming performance. Elasticity and tensile strength of rubber.
  • the object of the present invention is to provide a superelastic fatigue-resistant material and a preparation method thereof, the superelastic fatigue-resistant material has ultra-high rebound properties and good compression resistance.
  • the invention provides a superelastic fatigue-resistant foaming material, which comprises the following components in parts by weight:
  • thermoplastic elastomer resin 100 parts of thermoplastic elastomer resin, 0.5-50 parts of amorphous metal powder, 0.2-1 part of antioxidant, 0-1.5 parts of stearic acid and 0-1 part of cell stabilizer.
  • the amorphous metal powder is selected from iron-based alloys, nickel-based alloys, aluminum-based alloys, zirconium-based alloys, cobalt-based alloys, copper-based alloys, titanium-based alloys, magnesium-based alloys, calcium-based alloys, platinum-based alloys , palladium-based alloy, gold-based alloy, hafnium-based alloy and rare earth-based alloy powder or one or more.
  • the thermoplastic elastomer resin is selected from thermoplastic polyurethane, nylon elastomer, thermoplastic polyester elastomer, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block Copolymer, Styrene-Butadiene-Butene-Styrene Block Copolymer, Styrene-Ethylene/Propylene-Styrene Block Copolymer, Ethylene-Octene Block Copolymer, Ethylene-Octene Random Copolymer ethylene vinyl acetate, thermoplastic vulcanizate, trans-1,4-polyisoprene rubber, syndiotactic 1,2 polybutadiene, polyvinyl chloride, thermoplastic chlorinated polyethylene, polydimethyl One or more of siloxane and organic fluorine thermoplastic elastomer.
  • the present invention provides a method for preparing the superelastic fatigue-resistant foaming material described in the above technical solution, comprising the following steps:
  • thermoplastic elastomer resin 100 parts, thermoplastic elastomer resin, 0.5 to 50 parts of amorphous metal powder, 0.2 to 1 part of antioxidant, 0 to 1.5 parts of stearic acid and 0 to 1 part of cell stabilizer, melt mixing Refining, pelletizing after extrusion to obtain thermoplastic elastomer composite particles;
  • thermoplastic elastomer composite particles obtained in step a) into a mold to close the mold, place it in an airtight container, and feed gas into the container, heat up, so that the gas that reaches the supercritical state is
  • the thermoplastic elastomer composite particles are impregnated and saturated, and finally the pressure is quickly released and the mold is opened to obtain a super-elastic fatigue-resistant foaming material;
  • thermoplastic elastomer composite particles obtained in step a) into a sheet or inject a special-shaped part with a 3D structure; impregnate the sheet or special-shaped part under a high-pressure fluid atmosphere to equilibrium, and then quickly The pressure is released to obtain a super-elastic fatigue-resistant foaming material.
  • the melting and kneading temperature in step a) is 130-210° C., and the time is 1-10 min.
  • the extrusion or injection screw temperature in step b) is 100-200°C.
  • the impregnation saturation temperature in the step b) is 80-90° C.
  • the pressure is 5-50 MPa
  • the time is 10-120 min.
  • the pressure relief rate of the rapid pressure relief in the step b) is 5-30 MPa/s.
  • the present invention provides a super-elastic fatigue-resistant foam material described in the above-mentioned technical solution or the super-elastic fatigue-resistant foam material prepared by the preparation method described in the above-mentioned technical solution can be used in the midsole of sports shoes, car mats or shock absorbing pads of sports equipment in the application.
  • the invention provides a super-elastic fatigue-resistant foaming material, which comprises the following components in parts by weight: 100 parts of thermoplastic elastomer resin, 0.5-50 parts of amorphous metal powder, 0.2-1 part of antioxidant, hard 0-1.5 parts of fatty acid and 0-1 part of cell stabilizer.
  • the super-elastic fatigue-resistant foaming material provided by the present invention adopts specific materials and content components to achieve better interaction; the product has light density, ultra-high resilience characteristics and excellent compression resistance
  • the deformation characteristics greatly improve the elasticity of sports shoes, and at the same time, they have durable comfort and long-lasting shock absorption functions, giving the wearer a good wearing and running experience.
  • Fig. 1 is the top view photograph of the superelastic fatigue-resistant foaming material that the embodiment of the present invention 1 provides;
  • Fig. 2 is the cell structure figure of the material prepared by embodiment 1 and comparative example 1;
  • Fig. 3 is the cross-sectional photograph of the superelastic fatigue-resistant foaming material that the embodiment of the present invention 2 provides;
  • Fig. 4 is the cross-sectional photograph of the superelastic fatigue-resistant foam material that the embodiment of the present invention 3 provides;
  • Fig. 5 is the cross-sectional photograph of the superelastic fatigue-resistant foaming material that the embodiment of the present invention 4 provides;
  • Fig. 6 is a cross-sectional photo of the superelastic fatigue-resistant foam material provided by Example 5 of the present invention.
  • the invention provides a superelastic fatigue-resistant foaming material, which comprises the following components in parts by weight:
  • thermoplastic elastomer resin 100 parts of thermoplastic elastomer resin, 0.5-50 parts of amorphous metal powder, 0.2-1 part of antioxidant, 0-1.5 parts of stearic acid and 0-1 part of cell stabilizer.
  • the superelastic fatigue-resistant material provided by the present invention adopts specific content components to achieve better interaction; the product has ultra-high resilience characteristics and good compression deformation resistance, thereby significantly increasing energy Feedback at the same time, it also has long-lasting cushioning function.
  • the superelastic fatigue-resistant foaming material comprises 100 parts of thermoplastic elastomer resin;
  • the thermoplastic elastomer resin is preferably selected from thermoplastic polyurethane (TPU), nylon elastomer (TPAE), thermoplastic polyester elastomer (TPEE), styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-butadiene-butylene-styrene block copolymer (SBBS), styrene-ethylene/propylene-styrene block copolymer (SEPS), ethylene-octene block copolymer (OBC), ethylene-octene random copolymer (POE), ethylene Vinyl acetate (EVA), thermoplastic vulcanizate (TPV), trans-1,4-polyisoprene rubber (TPI),
  • thermoplastic elastomer resin there is no special limitation on the source of the thermoplastic elastomer resin, and the above-mentioned thermoplastic elastomer resins well-known to those skilled in the art can be used, which can be commercially available or prepared by themselves.
  • the present invention adopts the above-mentioned thermoplastic elastomer resin as the main raw material, the hardness of the thermoplastic elastomer resin is preferably Shore 50A to Shore 55D, more preferably Shore 70A to Shore 90A, and the melt index is preferably 1g/10min to 30g /10min (190°C/2.16kg), the Vicat softening temperature is preferably 40°C to 150°C, and the elongation at break is preferably >200%; the thermoplastic elastomer resin has higher mechanical properties, better elasticity and good fatigue resistance properties.
  • the superelastic fatigue-resistant foaming material includes 0.5-50 parts of amorphous metal powder, preferably 1-6 parts.
  • the amorphous metal powder is selected from iron (Fe)-based alloys, nickel (Ni)-based alloys, aluminum (Al)-based alloys, zirconium (Zr)-based alloys, cobalt (Co)-based alloys, copper (Cu)-based alloys, Titanium (Ti)-based alloys, magnesium (Mg)-based alloys, calcium (Ca)-based alloys, platinum (Pb)-based alloys, palladium (Pb)-based alloys, gold (Au)-based alloys, hafnium (Hr)-based alloys and rare earths
  • base alloy such as La, Nd, Ce
  • the amorphous metal powder is selected from a nickel-titanium alloy with a mass content ratio of 1:1; or an iron-based alloy, and the iron-based alloy includes Fe 60%, Ni 15%, Cr 18%, B 4%, Other 3%; or aluminum base alloy, the Ni of 8wt% in the described aluminum base alloy, the Y of 6wt%, the Co of 5wt%, the La of 3wt%, all the other are Al 78wt%.
  • the amorphous metal powder is mainly used as a filler, and being dispersed in the matrix is beneficial to nucleation and crystallization, improving the strength of the resin, and increasing the elasticity of the resin.
  • the amorphous metal powder preferably adopts a micro-nano nucleating agent.
  • the energy barrier between the micro-nano nucleating agent particles and the polymer melt interface is low, and the nucleation of cells is easy to occur around the particles, which promotes the formation of Nucleation process, thereby greatly reducing cell size and increasing cell density;
  • the size of the micro-nano nucleating agent is preferably lower than 50 ⁇ m, more preferably lower than 20 ⁇ m.
  • the superelastic fatigue-resistant foam material includes 0.2-1 part of antioxidant, preferably 0.2-0.8 part, more preferably 0.3 part.
  • the antioxidant is selected from hindered phenolic antioxidants, more preferably from AT-10 and/or AT-3114; in a preferred embodiment of the present invention, the antioxidant is AT-10.
  • the source of the antioxidant there is no special limitation on the source of the antioxidant, and commercially available products of the aforementioned hindered phenolic antioxidant well known to those skilled in the art can be used.
  • the thermoplastic elastomer composite material includes 0-1.5 parts of stearic acid, preferably 0.4-0.7 parts, more preferably 0.5 parts.
  • the present invention has no special limitation on the stearic acid, and commercially available products well known to those skilled in the art can be used.
  • the thermoplastic elastomer composite material includes 0-1 part of cell stabilizer, preferably 0.1-0.7 part, more preferably 0.3-0.5 part.
  • the cell stabilizer is preferably an acrylic substance, more preferably polyisobutyl methacrylate and/or polybutyl methacrylate; in a preferred embodiment of the present invention, the cell The stabilizer is polyisobutyl methacrylate.
  • there is no special limitation on the source of the cell stabilizer and commercially available acrylic substances known to those skilled in the art can be used.
  • the addition of the above-mentioned antioxidant, stearic acid and cell stabilizer is beneficial to molding processing and improving product performance; wherein, the addition of antioxidant and stearic acid can improve the processing stability of the composite material;
  • the addition of the cell stabilizer can inhibit the shrinkage of the thermoplastic elastomer resin foaming material and increase the expansion ratio of the material, thereby ensuring that the prepared material has better resistance to compression set.
  • the super-elastic fatigue-resistant material provided by the present invention adopts the above-mentioned specific content components without adding a cross-linking agent, and the prepared foam material can be recycled and reused, and achieve better interaction; the product has ultra-high resilience characteristics and good resistance to compression deformation, so that while greatly improving energy feedback, it also has a durable cushioning function.
  • the present invention provides a method for preparing the superelastic fatigue-resistant foaming material described in the above technical solution, comprising the following steps:
  • thermoplastic elastomer resin 100 parts, thermoplastic elastomer resin, 0.5 to 50 parts of amorphous metal powder, 0.2 to 1 part of antioxidant, 0 to 1.5 parts of stearic acid and 0 to 1 part of cell stabilizer, melt mixing Refining, pelletizing after extrusion to obtain thermoplastic elastomer composite particles;
  • thermoplastic elastomer composite particles obtained in step a) into a mold to close the mold, place it in an airtight container, and feed gas into the container, heat up, so that the gas that reaches the supercritical state is
  • the thermoplastic elastomer composite particles are impregnated and saturated, and finally the pressure is quickly released and the mold is opened to obtain a super-elastic fatigue-resistant foaming material;
  • thermoplastic elastomer composite particles obtained in step a) into a sheet or inject a special-shaped part with a 3D structure; impregnate the sheet or special-shaped part under a high-pressure fluid atmosphere to equilibrium, and then quickly The pressure is released to obtain a super-elastic fatigue-resistant foaming material.
  • the method provided by the invention is simple, mild in condition, short in process and high in efficiency, and is suitable for large-scale industrial production.
  • thermoplastic elastomer composite material the components in the thermoplastic elastomer composite material are premixed firstly, then melted and kneaded, extruded and then pelletized to obtain thermoplastic elastomer composite particles.
  • thermoplastic elastomer composite material is the same as that in the above technical solution, and will not be repeated here.
  • the melt kneading and extruding device is preferably an extruder, which is not particularly limited in the present invention.
  • the melt-kneading temperature is preferably 130°C-210°C, more preferably 190°C-200°C; the melt-kneading time is preferably 1 min-10 min, more preferably 1 min-5 min.
  • the granulation method is preferably underwater granulation; the temperature of the water in the underwater granulation process is preferably 15°C-35°C, more preferably 25°C.
  • the present invention preheats the obtained thermoplastic elastomer composite particles and puts them into a mold to close the molds, places them in an airtight container, and feeds gas into the container to raise the temperature to reach super
  • the gas in a critical state impregnates and saturates the thermoplastic elastomer composite particles, and finally releases the pressure quickly and opens a mold to obtain a superelastic fatigue-resistant foaming material.
  • the preheating temperature is preferably 40°C to 130°C, more preferably 80°C to 120°C.
  • thermoplastic elastomer composite granule into mould preferably also comprise:
  • the mold is preheated to the temperature at which the thermoplastic elastomer compound particles are preheated.
  • the airtight container is preferably an autoclave; the present invention is not particularly limited thereto.
  • the gas is preferably carbon dioxide gas or nitrogen gas, more preferably carbon dioxide gas.
  • the impregnation saturation refers to immersion in a high-pressure fluid atmosphere until the high-pressure fluid and the blank reach a dissolution equilibrium.
  • the temperature of the impregnation saturation is preferably 80°C to 190°C, more preferably 130°C to 160°C;
  • the pressure of the impregnation saturation is preferably 5MPa to 50MPa, more preferably 10MPa to 40MPa, most preferably 15MPa ⁇ 20MPa;
  • the soaking saturation time is preferably 3min ⁇ 50min, more preferably 5min ⁇ 40min.
  • the pressure relief rate of the rapid pressure relief is preferably 5MPa/s-30MPa/s, more preferably 8MPa/s-25MPa/s, most preferably 15MPa/s.
  • thermoplastic elastomer composite particles are impregnated in a high-pressure fluid atmosphere by using a supercritical fluid autoclave method until the high-pressure fluid and the resin reach a dissolution equilibrium, and the resin rapidly expands to a predetermined density through rapid pressure relief to obtain a 3D structure of ultra-light high-elastic foam material.
  • supercritical fluid still pressure foaming by injecting carbon dioxide or nitrogen into the still with elastomer composite material, after reaching a certain temperature and pressure, make it reach a supercritical state, maintain this state for a certain period of time, the The supercritical fluid penetrates into the raw material of the elastomer composite to form a polymer/gas homogeneous system.
  • the equilibrium state of the polymer/gas homogeneous system inside the material is destroyed, and bubble nuclei are formed inside the material and grow up and set , to obtain a foamed material; among them, increasing the gas pressure can increase the solubility of the gas in the polymer, and then the number of bubble nucleation increases, and the cell density increases; the pressure drop increases, the faster the rate of bubble nucleation, and the number of bubble nuclei The more the more; the gas concentration gradient inside and outside the bubble or the pressure difference between the inside and outside are the driving force behind cell growth, and the pressure relief rate directly reflects the acceleration of cell growth. Increase in pore density; above the glass transition temperature, the lower the saturation temperature, the higher the solubility of carbon dioxide in the polymer, the higher the nucleation rate and the greater the nucleation density.
  • the present invention adopts the above preparation method, and the thermoplastic elastomer composite particles are subjected to a supercritical fluid foaming molding process (one-step preparation of rapid pressure relief and foaming after supercritical fluid impregnation) to prepare a superelastic fatigue-resistant foaming material.
  • the foam material is a polymer foam material with a 3D structure, and its density is lower than 0.2g/cm 3 , which can be applied to the midsole of sports shoes, making the shoes lighter in weight, and its rebound rate is above 70%.
  • the resilience is high and has excellent fatigue resistance, which can give the shoe wearer a better comfort experience; at the same time, the preparation method has simple process, mild conditions, short production process and high efficiency, and is suitable for large-scale industrial production.
  • the traditional ETPU foam shoe material production process includes the preparation of ETPU beads and steam molding, and the foamed particles are compressed into the mold to obtain the midsole.
  • This method is difficult to achieve the light weight of the midsole.
  • the advantage of this method is that the particles can be freely foamed, the expansion ratio is higher, and the midsole product is obtained after filling the mold after expansion, which can realize the lightweight of the midsole; in addition, the prepared by the preparation method provided by the invention
  • the super elastic fatigue-resistant foam material has the advantages of equivalent hardness, non-cross-linked recyclability, high resilience, and low compression permanent deformation.
  • the traditional water vapor forming ETPU foam shoe material It has the advantages of high efficiency, light weight, high rebound, low compression set, and has long-lasting comfort and long-lasting shock absorption functions, giving runners a good running experience.
  • the above-mentioned super-elastic and fatigue-resistant foaming material provided by the present invention can be applied in fields such as midsoles of sports shoes, automobile seat cushions, and cushions for sports equipment.
  • thermoplastic polyurethane (TPU) used in the following examples of the present invention has a hardness of Shore 85A, a melt flow rate of 15g/10min (200°C/3.8kg), a Vicat softening temperature of 72°C, and an elongation at break of 600%.
  • thermoplastic polyester elastomer (TPEE) used has a hardness of Shore 40D, a melt flow rate of 5g/10min (190°C/2.16kg), a Vicat softening temperature ⁇ 105°C, and an elongation at break > 400%
  • the nylon elastomer (TPAE) used has a hardness of Shore 40D, a melt flow rate of 4g/10min (190°C/2.16kg), a Vicat softening temperature ⁇ 125°C, and an elongation at break > 200%;
  • EVA ethylene used Vinyl acetate
  • hardness Shore 83A melt flow rate 3g/10min (190°C/2.16kg), Vicat softening temperature 46°C, elongation at break ⁇ 800%;
  • the cells used are stable
  • the viscosity of the agent is 0.6Pa ⁇ s ⁇ 1.2Pa ⁇ s; the size of the amorphous metal alloy powder used is less than 20 ⁇ m.
  • thermoplastic elastomer composite material (1) The composition of the thermoplastic elastomer composite material:
  • TPU Thermoplastic polyurethane
  • Amorphous metal alloy powder 5 parts by weight
  • Antioxidant 0.3 parts by weight
  • Stearic acid 0.5 parts by weight
  • the amorphous metal alloy powder is nickel-titanium alloy (nickel and titanium each account for 50%); the antioxidant is AT-10; the cell stabilizer is polyisobutyl methacrylate.
  • thermoplastic elastomer composite material weigh each component of the above-mentioned thermoplastic elastomer composite material in parts by weight as a raw material; pre-mix the weighed raw materials, melt and knead them at 200°C for 5 minutes through an extruder, and heat them in water at 25°C after extrusion.
  • thermoplastic elastomer composite particles Down-cut pelletizing to obtain thermoplastic elastomer composite particles; then preheat the obtained thermoplastic elastomer composite particles to 100°C, pour them into a mold that is also preheated to 100°C, close the molds, put them into an airtight container, and Introduce nitrogen into the container, raise the temperature to 140°C (pressure is 15MPa), make the gas that reaches the supercritical state impregnate and saturate the thermoplastic elastomer composite particles for 30min, and then quickly release the pressure (pressure release rate: 15MPa/s) And open the mold to get super-elastic fatigue-resistant materials;
  • Fig. 1 is a top view photo of the superelastic fatigue-resistant foam material provided by Example 1 of the present invention.
  • the internal cell structure of the material is shown in Figure 2, wherein the upper side is the internal cell structure diagram of the material prepared in Comparative Example 1, and the lower side is the internal cell structure diagram of the material prepared in Example 1.
  • thermoplastic elastomer composite material (1) The composition of the thermoplastic elastomer composite material:
  • thermoplastic polyester elastomer 100 parts by weight
  • Amorphous metal alloy powder 5 parts by weight
  • Antioxidant 0.3 parts by weight
  • Stearic acid 0.5 parts by weight
  • the amorphous metal alloy powder is an iron-based alloy (Fe 60%, Ni15%, Cr 18%, B 4%, other 3%); the antioxidant is AT-10; the nucleating agent is nano-titanium dioxide; the cells are stable The agent is polyisobutyl methacrylate.
  • thermoplastic elastomer composite material weigh each component of the above-mentioned thermoplastic elastomer composite material in parts by weight as a raw material; pre-mix the weighed raw materials, melt and knead them at 195°C for 5 minutes through an extruder, and heat them in water at 25°C after extrusion.
  • thermoplastic elastomer composite particles Down-cut pelletizing to obtain thermoplastic elastomer composite particles; then preheat the obtained thermoplastic elastomer composite particles to 120°C, pour them into a midsole mold that is also preheated to 120°C, close the mold, and place them in an airtight container , and nitrogen gas is passed into the container, the temperature is raised to 160°C (pressure is 15MPa), and the gas reaching the supercritical state is impregnated and saturated with the thermoplastic elastomer composite particles for 25min, and then the pressure is released rapidly (pressure release rate 15MPa /s) and open the mold to obtain a superelastic fatigue-resistant material; see Figure 3.
  • thermoplastic elastomer composite material (1) The composition of the thermoplastic elastomer composite material:
  • TPU Thermoplastic polyurethane
  • Amorphous metal alloy powder 5 parts by weight
  • Antioxidant 0.3 parts by weight
  • Stearic acid 0.5 parts by weight
  • the amorphous alloy powder is an aluminum base alloy (Ni of 8wt%, Y of 6wt%, the Co of 5wt%, the La of 3wt%, all the other are Al 78wt%);
  • Antioxidant is AT-10;
  • Cell stabilizer It is polyisobutyl methacrylate.
  • thermoplastic elastomer composite material weigh each component of the above-mentioned thermoplastic elastomer composite material in parts by weight as a raw material; pre-mix the weighed raw materials, melt and knead them at 190°C for 5 minutes through an extruder, and heat them in water at 25°C after extrusion.
  • thermoplastic elastomer composite pellets Down pelletizing to obtain thermoplastic elastomer composite pellets; then add the obtained thermoplastic elastomer composite pellets to a twin-screw at 190°C to extrude into a sheet, put the sheet into the autoclave, and pass into the autoclave Nitrogen gas is heated to 140°C (pressure is 15MPa), so that the gas that has reached the supercritical state impregnates and saturates the thermoplastic elastomer compound for 90min, and then quickly releases the pressure (pressure release rate 15MPa/s) and opens the kettle to obtain Hyperelastic fatigue resistant material; see Figure 4.
  • thermoplastic elastomer composite material (1) The composition of the thermoplastic elastomer composite material:
  • Nylon elastomer 100 parts by weight
  • Amorphous metal alloy powder 5 parts by weight
  • Antioxidant 0.3 parts by weight
  • Stearic acid 0.5 parts by weight
  • the amorphous metal alloy powder is nickel-titanium alloy (nickel and titanium account for 50% each); the antioxidant is AT-10; the cell stabilizer is polyisobutyl methacrylate.
  • thermoplastic elastomer composite material weigh each component of the above-mentioned thermoplastic elastomer composite material in parts by weight as a raw material; pre-mix the weighed raw materials, melt and knead them at 200°C for 5 minutes through an extruder, and heat them in water at 25°C after extrusion.
  • thermoplastic elastomer composite particles Down-cut pelletizing to obtain thermoplastic elastomer composite particles; then preheat the obtained thermoplastic elastomer composite particles to 120°C, pour them into a midsole mold that is also preheated to 120°C, close the mold, and place them in an airtight container , and nitrogen gas is passed into the container, and the temperature is raised to 140°C (pressure is 27MPa), so that the gas reaching the supercritical state impregnates and saturates the thermoplastic elastomer composite particles for 25min, and then quickly releases the pressure (pressure release rate 15MPa /s) and open the mold to obtain a superelastic fatigue-resistant material; see Figure 5.
  • thermoplastic elastomer composite material (1) The composition of the thermoplastic elastomer composite material:
  • Thermoplastic polyurethane (TPU) 60 parts by weight;
  • EVA Ethylene vinyl acetate
  • Amorphous metal alloy powder 5 parts by weight
  • Antioxidant 0.3 parts by weight
  • Stearic acid 0.5 parts by weight
  • the amorphous metal alloy powder is an iron-based alloy (Fe 60%, Ni15%, Cr 18%, B 4%, other 3%); the antioxidant is AT-10; the cell stabilizer is polymethacrylic acid butyl ester.
  • thermoplastic elastomer composite material weigh each component of the above-mentioned thermoplastic elastomer composite material in parts by weight as a raw material; pre-mix the weighed raw materials, melt and knead them at 190°C for 5 minutes through an extruder, and heat them in water at 25°C after extrusion.
  • thermoplastic elastomer compound particles Down-cut pelletizing to obtain thermoplastic elastomer compound particles; then add the obtained thermoplastic elastomer compound particles to a twin-screw at 190°C and inject them into a mold to obtain a special-shaped part with a 3D structure, and put the special-shaped part into an autoclave and nitrogen gas is passed into the kettle, and the temperature is raised to 140°C (pressure is 15MPa), so that the gas reaching the supercritical state impregnates and saturates the thermoplastic elastomer compound for 90min, and then quickly releases the pressure (pressure release rate 15MPa /s) and open the kettle to obtain the superelastic fatigue-resistant material; referring to shown in Figure 6.
  • thermoplastic elastomer composite material (1) The composition of the thermoplastic elastomer composite material:
  • TPU Thermoplastic polyurethane
  • Antioxidant 0.3 parts by weight
  • Stearic acid 0.5 parts by weight
  • the antioxidant is AT-10; the cell stabilizer is polyisobutyl methacrylate.
  • thermoplastic elastomer composite material weigh each component of the above-mentioned thermoplastic elastomer composite material in parts by weight as a raw material; pre-mix the weighed raw materials, melt and knead them at 200°C for 5 minutes through an extruder, and heat them in water at 25°C after extrusion.
  • thermoplastic elastomer composite particles Down-cut pelletizing to obtain thermoplastic elastomer composite particles; then preheat the obtained thermoplastic elastomer composite particles to 100°C, pour them into a mold that is also preheated to 100°C, close the molds, put them into an airtight container, and Introduce nitrogen into the container, raise the temperature to 140°C (pressure is 15MPa), make the gas that reaches the supercritical state impregnate and saturate the thermoplastic elastomer composite particles for 30min, and then quickly release the pressure (pressure release rate: 15MPa/s) And open the mold to obtain the superelastic fatigue-resistant material; see the left figure in Fig. 2.
  • the present invention carries out performance test to the hyperelastic fatigue-resistant foaming material prepared by Examples 1 ⁇ 5 and Comparative Example 1, and the results are shown in Table 1:
  • the superelastic fatigue-resistant materials provided by Examples 1 to 5 of the present invention have ultra-high resilience properties, good compression deformation resistance, and excellent mechanical properties. While possessing ultra-high energy feedback, It also has a durable cushioning function; in addition, comparing Examples 1 to 5, different resins can obtain materials with different densities, and Example 4 has the lowest density and the highest rebound rate; comparing Examples 1 and 2, it can be seen that, Compared with pure TPU resin foaming, the blended TPEE resin can obtain materials with lower density and higher resilience; comparing Example 1 and Example 5, it can be seen that the blended EVA resin is more flexible than the pure TPU resin foamed.
  • Example 1 can obtain better feel (lower hardness) material; Comparing Example 1 and Comparative Example 1, it can be seen that the blending of amorphous metal alloy powder can significantly improve the resilience performance, fatigue resistance and tensile strength of the material, and the hardness of the material.
  • the present invention provides a superelastic fatigue-resistant foaming material, comprising the following components in parts by weight: 100 parts of thermoplastic elastomer resin, 0.5 to 50 parts of amorphous metal powder, antioxidant 0.2 to 1 part, 0 to 1.5 parts of stearic acid and 0 to 1 part of cell stabilizer.
  • the super-elastic fatigue-resistant foaming material provided by the present invention adopts specific materials and content components to achieve better interaction; the product has light density, ultra-high resilience characteristics and excellent compression resistance The deformation characteristics greatly improve the elasticity of sports shoes, and at the same time, they have durable comfort and long-lasting shock absorption functions, giving the wearer a good wearing and running experience.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Emergency Medicine (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

一种超弹耐疲劳发泡材料及其制备方法和应用,以重量份数计,材料包括以下组分:热塑性弹性体树脂100份,非晶金属粉末0.5~50份,抗氧剂0.2~1份,硬脂酸0~1.5份和泡孔稳定剂0~1份。与现有技术相比,该超弹耐疲劳发泡材料采用特定材料以及含量组分,实现较好的相互作用;产品具有轻的密度、超高的回弹特性及优异的耐压缩变形特性,从而在大大提升运动鞋弹性同时,兼具持久舒适和持久减震功能,给予穿着者良好的穿着和跑步体验。

Description

一种超弹耐疲劳发泡材料及其制备方法和应用
本申请要求于2021年07月08日提交中国专利局、申请号为202110774221.4、发明名称为“一种超弹耐疲劳发泡材料及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于泡沫制造技术领域,尤其涉及一种超弹耐疲劳发泡材料及其制备方法和应用。
背景技术
高弹性发泡材料具有广泛的应用,尤其是在体育用品行业,如运动鞋中底材料,其作为鞋子的核心科技所在,具有减少落地时的冲击、提供向前推进力、安全防护和舒适性作用,通常为热塑性弹性体的泡沫材料,主要涉及乙烯醋酸乙烯酯聚合物、聚烯烃弹性体、热塑性聚氨酯、热塑性弹性体聚酯、热塑性尼龙弹性体等。热塑性弹性体材料在经过发泡膨胀后,往往具有更佳的回弹性能。专利CN201610150971.3公开了一种超轻高弹环保鞋底及其制备方法,以EVA、聚烯烃嵌段共聚物(OBC)等热塑性弹性体材料为主基体,交联后进行超临界发泡得到微孔发泡鞋中底。
然而高分子材料是具有黏弹性,发生变形时不是完全的弹性变形,而伴随着发生塑性变形。在发生塑性变形时,由于分子间或晶面间的滑移,摩擦生热等耗去了能量,因此不能使原加的能量完全以形变能贮存,并在恢复过程中释放。失去的那部分能量就属于能量损耗,因此热塑性弹性体材料的弹性具有极限值。当前热塑性尼龙弹性体发泡材料的回弹率可以达到65%以上,高于其他的弹性体鞋材,同时该材料的密度低于0.1g/cm 3,如专利CN201810534118.0公开了一种聚醚嵌段酰胺为基体的离子/共价交联发泡高弹耐磨超轻运动鞋底材料及其制备方法,通过化学发泡剂进行发泡,实现了交联发泡鞋底材料的超轻化,同时满足了高弹性、缓冲减震和耐磨的要求。但是其耐疲劳性能却并不理想。
当前要获得超高的回弹,高分子材料因为分子链的滑移生热,因而具有能量回归率的局限性。无机材料则主要是作为填料,来提升复合物的耐磨、抗形 变、耐撕裂或者拉伸强度。
CN201710152004.5提供了一种石墨烯/聚合物轻质高弹柔软复合发泡材料及其制备方法。通过引入石墨烯,有效对复合材料的力学性能进行补强,使复合发泡材料达到轻质、耐磨、抗变形、耐撕裂。
申请号为CN201811186084.7的专利公开了一种高弹性耐磨发泡橡胶及其制备方法,多种高弹性橡胶为主基体,同时原料配方中还使用了纤维补强填料,进一步提高了发泡橡胶的弹性、抗拉强度。
发明内容
有鉴于此,本发明的目的在于提供一种超弹耐疲劳材料及其制备方法,所述超弹耐疲劳材料具有超高的回弹特性及良好的耐压缩性能。
本发明提供了一种超弹耐疲劳发泡材料,以重量份数计,包括以下组分:
热塑性弹性体树脂100份,非晶金属粉末0.5~50份,抗氧剂0.2~1份,硬脂酸0~1.5份和泡孔稳定剂0~1份。
优选地,所述非晶金属粉末选自铁基合金、镍基合金、铝基合金、锆基合金、钴基合金、铜基合金、钛基合金、镁基合金、钙基合金、铂基合金、钯基合金、金基合金、铪基合金和稀土基合金粉体中的一种或多种。
优选地,所述热塑性弹性体树脂选自热塑性聚氨酯、尼龙弹性体、热塑性聚酯弹性体、苯乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-异戊二烯-苯乙烯嵌段共聚物、苯乙烯-丁二烯-丁烯-苯乙烯嵌段共聚物、苯乙烯-乙烯/丙烯-苯乙烯嵌段共聚物、乙烯-辛烯嵌段共聚物、乙烯-辛烯无规共聚物、乙烯醋酸乙烯酯、热塑性硫化弹性体、反式-1,4-聚异戊二烯橡胶、间同1,2聚丁二烯、聚氯乙烯、热塑性氯化聚乙烯、聚二甲基硅氧烷和有机氟类热塑性弹性体中的一种或多种。
本发明提供了一种上述技术方案所述超弹耐疲劳发泡材料的制备方法,包括以下步骤:
a)将热塑性弹性体树脂100份,非晶金属粉末0.5~50份,抗氧剂0.2~1份,硬脂酸0~1.5份和泡孔稳定剂0~1份预混后,进行熔融混炼,挤出后切粒,得到热塑性弹性体复合物颗粒;
b)将所述步骤a)得到的热塑性弹性体复合物颗粒预热后装入模具合模,置于密闭容器内,并向容器中通入气体,升温,使达到超临界状态的气体对所述热塑性弹性体复合物颗粒进行浸渍饱和,最后快速泄压并开模,得到超弹耐疲劳发泡材料;
或将所述步骤a)得到的热塑性弹性体复合物颗粒经双螺杆挤出成板材或者射出成3D结构的异形部件;将所述片材或异形部件在高压流体氛围下浸渍至平衡,然后快速泄压,得到超弹耐疲劳发泡材料。
优选地,所述步骤a)中熔融混炼的温度为130~210℃,时间为1~10min。
优选地,所述步骤b)中挤出或射出的螺杆温度为100~200℃。
优选地,所述步骤b)中浸渍饱和的温度为80~90℃,压力为5~50MPa,时间为10~120min。
优选地,所述步骤b)中快速泄压的泄压速率为5~30MPa/s。
本发明提供了一种上述技术方案所述超弹耐疲劳发泡材料或上述技术方案所述制备方法制备的超弹耐疲劳发泡材料在运动鞋底中底、汽车车垫或运动器材减震垫中的应用。
本发明提供了一种超弹耐疲劳发泡材料,以重量份数计,包括以下组分:热塑性弹性体树脂100份,非晶金属粉末0.5~50份,抗氧剂0.2~1份,硬脂酸0~1.5份和泡孔稳定剂0~1份。与现有技术相比,本发明提供的超弹耐疲劳发泡材料采用特定材料以及含量组分,实现较好的相互作用;产品具有轻的密度、超高的回弹特性及优异的耐压缩变形特性,从而在大大提升运动鞋弹性同时,兼具持久舒适和持久减震功能,给予穿着者良好的穿着和跑步体验。
附图说明
图1为本发明实施例1提供的超弹耐疲劳发泡材料的俯视照片;
图2为实施例1和对比例1制备的材料的泡孔结构图;
图3为本发明实施例2提供的超弹耐疲劳发泡材料的横截面照片;
图4为本发明实施例3提供的超弹耐疲劳发泡材料的横截面照片;
图5为本发明实施例4提供的超弹耐疲劳发泡材料的横截面照片;
图6为本发明实施例5提供的超弹耐疲劳发泡材料的横截面照片。
具体实施方式
本发明提供了一种超弹耐疲劳发泡材料,以重量份数计,包括以下组分:
热塑性弹性体树脂100份,非晶金属粉末0.5~50份,抗氧剂0.2~1份,硬脂酸0~1.5份和泡孔稳定剂0~1份。
与现有技术相比,本发明提供的超弹耐疲劳材料采用特定含量组分,实现较好的相互作用;产品具有超高的回弹特性及良好的耐压缩变形特性,从而在显著提高能量回馈同时,兼具持久缓震功能。
在本发明中,所述超弹耐疲劳发泡材料包括热塑性弹性体树脂100份;所述热塑性弹性体树脂优选选自热塑性聚氨酯(TPU)、尼龙弹性体(TPAE)、热塑性聚酯弹性体(TPEE)、苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS)、苯乙烯-丁二烯-丁烯-苯乙烯嵌段共聚物(SBBS)、苯乙烯-乙烯/丙烯-苯乙烯嵌段共聚物(SEPS)、乙烯-辛烯嵌段共聚物(OBC)、乙烯-辛烯无规共聚物(POE)、乙烯醋酸乙烯酯(EVA)、热塑性硫化弹性体(TPV)、反式-1,4-聚异戊二烯橡胶(TPI)、间同1,2聚丁二烯(TBI)、聚氯乙烯(PVC)、热塑性氯化聚乙烯(TCPE)、聚二甲基硅氧烷(PDMS)和有机氟类热塑性弹性体(TPF)中的一种或多种,更优选为热塑性聚氨酯(TPU)、尼龙弹性体(TPAE)、热塑性聚酯弹性体(TPEE)和乙烯醋酸乙烯酯(EVA)中的一种或两种。本发明对所述热塑性弹性体树脂的来源没有特殊限制,采用本领域技术人员熟知的上述种类的热塑性弹性体树脂即可,可以采用其市售商品,也可以自行制备。本发明采用上述热塑性弹性体树脂为主原料,所述热塑性弹性体树脂的硬度优选为邵氏50A~邵氏55D,更优选为邵氏70A~邵氏90A,熔融指数优选为1g/10min~30g/10min(190℃/2.16kg),维卡软化温度优选为40℃~150℃,断裂伸长率优选>200%;所述热塑性弹性体树脂具有较高的力学性能、较佳的弹性和良好的耐疲劳特性。
在本发明中,所述超弹耐疲劳发泡材料包括非晶金属粉末0.5~50份,优选为1~6份。所述非晶金属粉末选自铁(Fe)基合金、镍(Ni)基合金、铝(Al)基合金、锆(Zr)基合金、钴(Co)基合金、铜(Cu)基合金、钛(Ti)基合金、镁(Mg)基合金、钙(Ca)基合金、铂(Pb)基合金、钯(Pb)基合 金、金(Au)基合金、铪(Hr)基合金和稀土基合金(如La、Nd、Ce)粉体中的一种或多种。具体实施例中,所述非晶金属粉末选自质量含量比1:1的镍钛合金;或铁基合金,所述铁基合金包括Fe 60%,Ni15%,Cr 18%,B 4%,其它3%;或铝基合金,所述铝基合金中8wt%的Ni,6wt%的Y,5wt%的Co,3wt%的La,其余为Al 78wt%。在本发明中,所述非晶金属粉末主要作为填料,分散在基体中有利于成核结晶和提高树脂的强度,以及增加树脂的弹性。在本发明中,所述非晶金属粉末优选采用微纳米成核剂,微纳米成核剂粒子与聚合物熔体界面之间的能垒较低,粒子周围容易发生泡孔成核,促进成核过程,从而大大降低泡孔尺寸,提高泡孔密度;所述微纳米成核剂的尺寸优选低于50μm,更优选低于20μm。
在本发明中,所述超弹耐疲劳发泡材料包括抗氧剂0.2~1份,优选为0.2~0.8份,更优选为0.3份。所述抗氧剂选自受阻酚类抗氧剂,更优选自AT-10和/或AT-3114;在本发明优选的实施例中,所述抗氧剂为AT-10。本发明对所述抗氧剂的来源没有特殊限制,采用本领域技术人员熟知的上述受阻酚类抗氧剂的市售商品即可。
在本发明中,所述热塑性弹性体复合物料包括0~1.5份的硬脂酸,优选为0.4~0.7份,更优选为0.5份。本发明对所述硬脂酸没有特殊限制,采用本领域技术人员熟知的市售商品即可。
所述热塑性弹性体复合物料包括泡孔稳定剂0~1份,优选为0.1~0.7份,更优选为0.3~0.5份。在本发明中,所述泡孔稳定剂优选为丙烯酸类物质,更优选为聚甲基丙烯酸异丁酯和/或聚甲基丙烯酸丁酯;在本发明优选的实施例中,所述泡孔稳定剂为聚甲基丙烯酸异丁酯。本发明对所述泡孔稳定剂的来源没有特殊限制,采用本领域技术人员熟知的上述丙烯酸类物质的市售商品即可。
在本发明中,上述抗氧剂、硬脂酸及泡孔稳定剂的加入,利于成型加工、提高产品性能;其中,抗氧剂和硬脂酸的加入,可以改善复合物料的加工稳定性;泡孔稳定剂的加入,可以抑制热塑性弹性体树脂发泡材料的收缩,提高材料的膨胀倍率,从而保证所制得的材料具有较好的抗压缩永久形变性能。
本发明提供的超弹耐疲劳材料,采用上述特定含量组分,无需添加交联剂, 可实现制备的发泡材料能够回收再利用,并且实现较好的相互作用;产品具有超高的回弹特性及良好的耐压缩变形特性,从而在大大提高能量反馈的同时,兼具持久缓震功能。
本发明提供了一种上述技术方案所述超弹耐疲劳发泡材料的制备方法,包括以下步骤:
a)将热塑性弹性体树脂100份,非晶金属粉末0.5~50份,抗氧剂0.2~1份,硬脂酸0~1.5份和泡孔稳定剂0~1份预混后,进行熔融混炼,挤出后切粒,得到热塑性弹性体复合物颗粒;
b)将所述步骤a)得到的热塑性弹性体复合物颗粒预热后装入模具合模,置于密闭容器内,并向容器中通入气体,升温,使达到超临界状态的气体对所述热塑性弹性体复合物颗粒进行浸渍饱和,最后快速泄压并开模,得到超弹耐疲劳发泡材料;
或将所述步骤a)得到的热塑性弹性体复合物颗粒经双螺杆挤出成板材或者射出成3D结构的异形部件;将所述片材或异形部件在高压流体氛围下浸渍至平衡,然后快速泄压,得到超弹耐疲劳发泡材料。
本发明提供的方法简单,条件温和,流程短,效率高,适合大规模工业生产。
本发明首先将热塑性弹性体复合物料中各组分进行预混后,进行熔融混炼,挤出后再切粒,得到热塑性弹性体复合物颗粒。在本发明中,所述热塑性弹性体复合物料与上述技术方案中的相同,在此不再赘述。
在本发明中,所述熔融混炼及挤出的装置优选为挤出机,本发明对此没有特殊限制。在本发明中,所述熔融混炼的温度优选为130℃~210℃,更优选为190℃~200℃;所述熔融混炼的时间优选为1min~10min,更优选为1min~5min。
在本发明中,所述切粒的方式优选为水下切粒;所述水下切粒过程中的水的温度优选为15℃~35℃,更优选为25℃。
得到所述热塑性弹性体复合物颗粒后,本发明将得到的热塑性弹性体复合物颗粒预热后装入模具合模,置于密闭容器内,并向容器中通入气体,升温,使达到超临界状态的气体对所述热塑性弹性体复合物颗粒进行浸渍饱和,最后快速泄压并开模,得到超弹耐疲劳发泡材料。在本发明中,所述预热的温度优 选为40℃~130℃,更优选为80℃~120℃。
在本发明中,本发明对模具没有特殊限制。本发明将得到的热塑性弹性体复合物颗粒装入模具前,优选还包括:
将所述模具预热至所述热塑性弹性体复合物颗粒预热的温度。
在本发明中,所述密闭容器优选为高压釜;本发明对此没有特殊限制。
在本发明中,所述气体优选为二氧化碳气体或氮气,更优选为二氧化碳气体。在本发明中,所述浸渍饱和是指在具有高压流体氛围下浸渍至高压流体和坯件达到溶解平衡。在本发明中,所述浸渍饱和的温度优选为80℃~190℃,更优选为130℃~160℃;所述浸渍饱和的压力优选为5MPa~50MPa,更优选为10MPa~40MPa,最优选为15MPa~20MPa;所述浸渍饱和的时间优选为3min~50min,更优选为5min~40min。
在本发明中,所述快速泄压的泄压速率优选为5MPa/s~30MPa/s,更优选为8MPa/s~25MPa/s,最优选为15MPa/s。
本发明利用超临界流体釜压法,将所述热塑性弹性体复合物颗粒在高压流体氛围下浸渍,直至高压流体和树脂达到溶解平衡,通过快速泄压使树脂迅速膨胀至预定密度,制得具有3D结构的超轻高弹发泡材料。在本发明中,超临界流体釜压法发泡,通过将二氧化碳或氮气注入放有弹性体复合物料的釜内,达到一定温度和压力后使其达到超临界状态,维持此状态一定时间,将超临界流体渗透到弹性体复合物原材料内部,形成聚合物/气体均相体系,利用快速降压法,破坏材料内部聚合物/气体均相体系的平衡状态,材料内部形成气泡核并长大定型,得到发泡材料;其中,增加气体压力可提升气体在聚合物中的溶解度,进而气泡成核数量增加,泡孔密度增大;压力降增大,气泡成核的速率越快,气泡核数量就越多;气泡内外的气体浓度梯度或者内外的压力差是驱动泡孔长大的原动力,泄压速率直接反映的是泡孔生长的加速度,增加泄压速率有利于泡孔直径的减少和泡孔密度的增加;玻璃化转变温度之上,饱和温度越低,二氧化碳在聚合物中的溶解度越高,成核速率越高且成核密度也越大。
本发明采用上述制备方法,将热塑性弹性体复合物颗粒经超临界流体发泡成型工艺(超临界流体浸渍后快速泄压发泡一步制得),制备得到超弹耐疲劳发泡材料,该发泡材料为具有3D结构的聚合物泡沫材料,其密度较低,低于 0.2g/cm 3,可应用于运动鞋中底,使鞋具有较轻的重量,其回弹率在70%以上,回弹性高且具有优异的耐疲劳特性,可给予鞋穿着者较好的舒适性体验;同时,该制备方法工艺简单、条件温和,生产流程短、效率高,适合大规模工业生产。
与现有技术相比,传统的ETPU发泡鞋材制作流程包括ETPU珠粒制备和水蒸气成型,将发泡后的粒子压缩进模具以得到中底,该方法较难实现中底的轻质化;而本方法的优势是粒子可实现自由发泡,膨胀倍率更高,膨胀后填充模具后得到中底制品,可实现中底的轻质化;另外,本发明提供的制备方法制备得到的超弹耐疲劳发泡材料,相对于现有EVA发泡鞋材具有硬度相当、非交联可回收、高回弹、低压缩永久形变的优势,相对于传统的水蒸气成型ETPU发泡鞋材具有高效率、轻的重量、高回弹、低压缩永久形变的优势,并且具有持久舒适和持久减震功能,赋予跑者良好的跑步体验。
本发明提供的上述超弹耐疲劳发泡材料可以应用于运动鞋底中底、汽车坐垫和运动器材减缓垫等领域中。
为了进一步说明本发明,下面结合实施例对本发明提供的一种超弹耐疲劳发泡材料及其制备方法和应用进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
本发明以下实施例所用的热塑性聚氨酯(TPU),硬度为邵氏85A,熔体流动速率为15g/10min(200℃/3.8kg),维卡软化温度为72℃,断裂伸长率为600%;所用的热塑性聚酯弹性体(TPEE),硬度为邵氏40D,熔体流动速率为5g/10min(190℃/2.16kg),维卡软化温度≥105℃,断裂伸长率>400%;所用的尼龙弹性体(TPAE),硬度为邵氏40D,熔体流动速率为4g/10min(190℃/2.16kg),维卡软化温度≥125℃,断裂伸长率>200%;所用的乙烯醋酸乙烯酯(EVA),硬度为邵氏83A,熔体流动速率为3g/10min(190℃/2.16kg),维卡软化温度为46℃,断裂伸长率≥800%;所用的泡孔稳定剂的粘度为0.6Pa·s~1.2Pa·s;所用的非晶金属合金粉末的尺寸低于20μm。
实施例1
(1)热塑性弹性体复合物料的配方组成:
热塑性聚氨酯(TPU):100重量份;
非晶金属合金粉末:5重量份;
抗氧剂:0.3重量份;
硬脂酸:0.5重量份;
泡孔稳定剂:0.5重量份;
其中,非晶金属合金粉末为镍钛合金(镍和钛各占50%);抗氧剂为AT-10;泡孔稳定剂为聚甲基丙烯酸异丁酯。
(2)制备方法:
按重量份数称取上述热塑性弹性体复合物料中各组分作为原料;将称取好的各原料进行预混后经挤出机在200℃下熔融混炼5min,挤出后在25℃水下切粒,得到热塑性弹性体复合物颗粒;然后将得到的热塑性弹性体复合物颗粒预热到100℃,倒入同样预热到100℃的模具中,合模后,置入密闭容器内,并向容器中通入氮气,升温至140℃(压力为15MPa),使达到超临界状态的气体对所述热塑性弹性体复合物颗粒进行浸渍饱和30min,然后快速泄压(泄压速率15MPa/s)并开模,得到超弹耐疲劳材料;
图1为本发明实施例1提供的超弹耐疲劳发泡材料的俯视照片。
材料的内部泡孔结构参见图2所示,其中,上侧为对比例1制备的材料的内部泡孔结构图,下侧为实施例1制备的材料的内部泡孔结构图。
实施例2
(1)热塑性弹性体复合物料的配方组成:
热塑性聚酯弹性体(TPEE):100重量份;
非晶金属合金粉末:5重量份;
抗氧剂:0.3重量份;
硬脂酸:0.5重量份;
泡孔稳定剂:0.5重量份;
其中,非晶金属合金粉末为铁基合金(Fe 60%,Ni15%,Cr 18%,B 4%,其它3%);抗氧剂为AT-10;成核剂为纳米二氧化钛;泡孔稳定剂为聚甲基丙烯酸异丁酯。
(2)制备方法:
按重量份数称取上述热塑性弹性体复合物料中各组分作为原料;将称取好的各原料进行预混后经挤出机在195℃下熔融混炼5min,挤出后在25℃水下切粒,得到热塑性弹性体复合物颗粒;然后将得到的热塑性弹性体复合物颗粒 预热到120℃,倒入同样预热到120℃的中底模具中,合模后,置入密闭容器内,并向容器中通入氮气气体,升温至160℃(压力为15MPa),使达到超临界状态的气体对所述热塑性弹性体复合物颗粒进行浸渍饱和25min,然后快速泄压(泄压速率15MPa/s)并开模,得到超弹耐疲劳材料;参见图3所示。
实施例3
(1)热塑性弹性体复合物料的配方组成:
热塑性聚氨酯(TPU):100重量份;
非晶金属合金粉末:5重量份;
抗氧剂:0.3重量份;
硬脂酸:0.5重量份;
泡孔稳定剂:0.5重量份;
其中,非晶合金粉末为铝基合金(8wt%的Ni,6wt%的Y,5wt%的Co,3wt%的La,其余为Al 78wt%);抗氧剂为AT-10;泡孔稳定剂为聚甲基丙烯酸异丁酯。
(2)制备方法:
按重量份数称取上述热塑性弹性体复合物料中各组分作为原料;将称取好的各原料进行预混后经挤出机在190℃下熔融混炼5min,挤出后在25℃水下切粒,得到热塑性弹性体复合物颗粒;然后将得到的热塑性弹性体复合物颗加入到190℃双螺杆中挤出成片材,将片材放入到压力釜内,并向釜内通入氮气气体,升温至140℃(压力为15MPa),使达到超临界状态的气体对所述热塑性弹性体复合物进行浸渍饱和90min,然后快速泄压(泄压速率15MPa/s)并开釜,得到超弹耐疲劳材料;参见图4所示。
实施例4
(1)热塑性弹性体复合物料的配方组成:
尼龙弹性体(TPAE):100重量份;
非晶金属合金粉末:5重量份;
抗氧剂:0.3重量份;
硬脂酸:0.5重量份;
泡孔稳定剂:0.3重量份;
其中,非晶金属合金粉末为镍钛合金(镍和钛各占50%);抗氧剂为AT-10; 泡孔稳定剂为聚甲基丙烯酸异丁酯。
(2)制备方法:
按重量份数称取上述热塑性弹性体复合物料中各组分作为原料;将称取好的各原料进行预混后经挤出机在200℃下熔融混炼5min,挤出后在25℃水下切粒,得到热塑性弹性体复合物颗粒;然后将得到的热塑性弹性体复合物颗粒预热到120℃,倒入同样预热到120℃的中底模具中,合模后,置入密闭容器内,并向容器中通入氮气气体,升温至140℃(压力为27MPa),使达到超临界状态的气体对所述热塑性弹性体复合物颗粒进行浸渍饱和25min,然后快速泄压(泄压速率15MPa/s)并开模,得到超弹耐疲劳材料;参见图5所示。
实施例5
(1)热塑性弹性体复合物料的配方组成:
热塑性聚氨酯(TPU):60重量份;
乙烯醋酸乙烯酯(EVA):40重量份;
非晶金属合金粉末:5重量份
抗氧剂:0.3重量份;
硬脂酸:0.5重量份;
泡孔稳定剂:0.5重量份;
其中,非晶金属合金粉末为铁基合金(Fe 60%,Ni15%,Cr 18%,B 4%,其他3%);抗氧剂为AT-10;泡孔稳定剂为聚甲基丙烯酸异丁酯。
(2)制备方法:
按重量份数称取上述热塑性弹性体复合物料中各组分作为原料;将称取好的各原料进行预混后经挤出机在190℃下熔融混炼5min,挤出后在25℃水下切粒,得到热塑性弹性体复合物颗粒;然后将得到的热塑性弹性体复合物颗粒加入到190℃的双螺杆中,射入模具中,得到3D结构的异形部件,将异形部件放入到压力釜内,并向釜内通入氮气气体,升温至140℃(压力为15MPa),使达到超临界状态的气体对所述热塑性弹性体复合物进行浸渍饱和90min,然后快速泄压(泄压速率15MPa/s)并开釜,得到超弹耐疲劳材料;参见图6所示。
对比例1
(1)热塑性弹性体复合物料的配方组成:
热塑性聚氨酯(TPU):100重量份;
抗氧剂:0.3重量份;
硬脂酸:0.5重量份;
泡孔稳定剂:0.5重量份;
其中,抗氧剂为AT-10;泡孔稳定剂为聚甲基丙烯酸异丁酯。
(2)制备方法:
按重量份数称取上述热塑性弹性体复合物料中各组分作为原料;将称取好的各原料进行预混后经挤出机在200℃下熔融混炼5min,挤出后在25℃水下切粒,得到热塑性弹性体复合物颗粒;然后将得到的热塑性弹性体复合物颗粒预热到100℃,倒入同样预热到100℃的模具中,合模后,置入密闭容器内,并向容器中通入氮气,升温至140℃(压力为15MPa),使达到超临界状态的气体对所述热塑性弹性体复合物颗粒进行浸渍饱和30min,然后快速泄压(泄压速率15MPa/s)并开模,得到超弹耐疲劳材料;参见图2中左图所示。
本发明对实施例1~5和对比例1制备的超弹耐疲劳发泡材料进行性能测试,结果见表1:
表1实施例1~5和对比例1制备的材料的性能测试结果
Figure PCTCN2021112925-appb-000001
由表1可知,本发明实施例1~5提供的超弹耐疲劳材料具有超高的回弹特性及良好的耐压缩变形特性,以及优秀的力学性能,在具备超高的能量回馈的同时,兼具持久缓震功能;此外,比较实施例1~5可知,不同的树脂可获得密度不同的材料,其中实施例4的密度最低、回弹率最高;比较实施例1和实施例2可知,共混TPEE树脂相对于纯TPU树脂发泡而言,可获得密度更低、回弹更高的材料;比较实施例1和实施例5可知,共混EVA树脂相对于纯TPU树脂发泡而言,可获得更好的手感(更低的硬度)的材料;比较实施例1和对比例1可知,共混非晶金属合金粉末能够显著提高材料的回弹性能、耐疲劳性和拉伸强度,以及材料的硬度。
由以上实施例可知,本发明提供了一种超弹耐疲劳发泡材料,以重量份数计,包括以下组分:热塑性弹性体树脂100份,非晶金属粉末0.5~50份,抗氧剂0.2~1份,硬脂酸0~1.5份和泡孔稳定剂0~1份。与现有技术相比,本发明提供的超弹耐疲劳发泡材料采用特定材料以及含量组分,实现较好的相互作用;产品具有轻的密度、超高的回弹特性及优异的耐压缩变形特性,从而在大大提升运动鞋弹性同时,兼具持久舒适和持久减震功能,给予穿着者良好的穿着和跑步体验。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种超弹耐疲劳发泡材料,以重量份数计,包括以下组分:
    热塑性弹性体树脂100份,非晶金属粉末0.5~50份,抗氧剂0.2~1份,硬脂酸0~1.5份和泡孔稳定剂0~1份。
  2. 根据权利要求1所述的超弹耐疲劳发泡材料,其特征在于,所述非晶金属粉末选自铁基合金、镍基合金、铝基合金、锆基合金、钴基合金、铜基合金、钛基合金、镁基合金、钙基合金、铂基合金、钯基合金、金基合金、铪基合金和稀土基合金粉体中的一种或多种。
  3. 根据权利要求1所述的超弹耐疲劳发泡材料,其特征在于,所述热塑性弹性体树脂选自热塑性聚氨酯、尼龙弹性体、热塑性聚酯弹性体、苯乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-异戊二烯-苯乙烯嵌段共聚物、苯乙烯-丁二烯-丁烯-苯乙烯嵌段共聚物、苯乙烯-乙烯/丙烯-苯乙烯嵌段共聚物、乙烯-辛烯嵌段共聚物、乙烯-辛烯无规共聚物、乙烯醋酸乙烯酯、热塑性硫化弹性体、反式-1,4-聚异戊二烯橡胶、间同1,2聚丁二烯、聚氯乙烯、热塑性氯化聚乙烯、聚二甲基硅氧烷和有机氟类热塑性弹性体中的一种或多种。
  4. 一种权利要求1~3任一项所述超弹耐疲劳发泡材料的制备方法,包括以下步骤:
    a)将热塑性弹性体树脂100份,非晶金属粉末0.5~50份,抗氧剂0.2~1份,硬脂酸0~1.5份和泡孔稳定剂0~1份预混后,进行熔融混炼,挤出后切粒,得到热塑性弹性体复合物颗粒;
    b)将所述步骤a)得到的热塑性弹性体复合物颗粒预热后装入模具合模,置于密闭容器内,并向容器中通入气体,升温,使达到超临界状态的气体对所述热塑性弹性体复合物颗粒进行浸渍饱和,最后快速泄压并开模,得到超弹耐疲劳发泡材料;
    或将所述步骤a)得到的热塑性弹性体复合物颗粒经双螺杆挤出成板材或者射出成3D结构的异形部件;将所述片材或异形部件在高压流体氛围下浸渍至平衡,然后快速泄压,得到超弹耐疲劳发泡材料。
  5. 根据权利要求4所述的制备方法,其特征在于,所述步骤a)中熔融 混炼的温度为130~210℃,时间为1~10min。
  6. 根据权利要求4所述的制备方法,其特征在于,所述步骤b)中挤出或射出的螺杆温度为100~200℃。
  7. 根据权利要求4所述的制备方法,其特征在于,所述步骤b)中浸渍饱和的温度为80~90℃,压力为5~50MPa,时间为10~120min。
  8. 根据权利要求4所述的制备方法,其特征在于,所述步骤b)中快速泄压的泄压速率为5~30MPa/s。
  9. 一种权利要求1~3任一项所述超弹耐疲劳发泡材料或权利要求4~8任一项所述制备方法制备的超弹耐疲劳发泡材料在运动鞋底中底、汽车车垫或运动器材减震垫中的应用。
PCT/CN2021/112925 2021-07-08 2021-08-17 一种超弹耐疲劳发泡材料及其制备方法和应用 WO2023279483A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110774221.4A CN113402876B (zh) 2021-07-08 2021-07-08 一种超弹耐疲劳发泡材料及其制备方法和应用
CN202110774221.4 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023279483A1 true WO2023279483A1 (zh) 2023-01-12

Family

ID=77685625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112925 WO2023279483A1 (zh) 2021-07-08 2021-08-17 一种超弹耐疲劳发泡材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113402876B (zh)
WO (1) WO2023279483A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115895094A (zh) * 2022-10-27 2023-04-04 泉州匹克鞋业有限公司 一种超轻弹性鞋底用的组合物及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030087975A1 (en) * 2001-11-05 2003-05-08 Alcatel Microcellular foam dielectric for use in transmission lines
JP2007276321A (ja) * 2006-04-10 2007-10-25 Japan Steel Works Ltd:The タンデム型押出発泡成形方法
CN109096593A (zh) * 2018-09-01 2018-12-28 成都市水泷头化工科技有限公司 一种用作鞋底的eva橡塑复合发泡材料及制备方法
CN111393830A (zh) * 2020-05-20 2020-07-10 安踏(中国)有限公司 一种彩色高弹发泡鞋中底材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250301A (zh) * 2008-01-15 2008-08-27 林彬 一种磁性发泡塑料
CN109503990A (zh) * 2018-11-20 2019-03-22 内蒙古佳运通智能环保新材料有限公司 一种稀土硅铁合金灰基复合材料、一种物流托盘及其制备方法
CN110885539A (zh) * 2019-12-20 2020-03-17 山东一诺威聚氨酯股份有限公司 形状记忆微孔复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030087975A1 (en) * 2001-11-05 2003-05-08 Alcatel Microcellular foam dielectric for use in transmission lines
JP2007276321A (ja) * 2006-04-10 2007-10-25 Japan Steel Works Ltd:The タンデム型押出発泡成形方法
CN109096593A (zh) * 2018-09-01 2018-12-28 成都市水泷头化工科技有限公司 一种用作鞋底的eva橡塑复合发泡材料及制备方法
CN111393830A (zh) * 2020-05-20 2020-07-10 安踏(中国)有限公司 一种彩色高弹发泡鞋中底材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"FORMATION OF MICROCELLULAR FOAMS", 31 March 1992, CHEMICAL INDUSTRY PRESS, CN, ISBN: 7-5025-0961-5, article WU SHUNYING, XU JINGYI: "Nucleating Agents", pages: 59, XP009543303 *

Also Published As

Publication number Publication date
CN113402876A (zh) 2021-09-17
CN113402876B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
CN109385097B (zh) 一种鞋用泡沫材料、其制备方法及其应用
CN111440423B (zh) 一种生物可降解发泡鞋中底材料及其制备方法
CN111393830A (zh) 一种彩色高弹发泡鞋中底材料及其制备方法
TW593471B (en) Urethane thermoplastic elastomer composition foam and a process for producing thereof
CN101550215B (zh) 马来酰亚胺改性聚甲基丙烯酰亚胺泡沫及其制备方法
WO2023279483A1 (zh) 一种超弹耐疲劳发泡材料及其制备方法和应用
JP2007516320A5 (zh)
TW200909494A (en) Polypropylene resin foam particle and molding thereof
CN110003644B (zh) 一种热塑性聚酰胺弹性体物理化学联合发泡材料及其制备方法
CN110724375A (zh) 一种tpu/eva超临界发泡复合材料及其制备方法
RU2682581C1 (ru) Формованное изделие из вспененной смолы и способ его изготовления
CN104072880B (zh) 一种tpo发泡微球的制备方法以及应用
CN104385479A (zh) 一种连续挤出发泡制备tpu发泡珠粒的方法
CN111073264B (zh) 一种自行车坐垫及其成型工艺
CN102311575A (zh) 一种pp发泡复合添加剂
CN109627527B (zh) 一种高收缩稳定性、高硬度橡胶基复合发泡材料及其制备方法
JP3560238B2 (ja) ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子及びポリプロピレン系樹脂型内発泡成形体
WO1996025281A1 (en) Polymeric foam preparation
TW201704315A (zh) 纖維強化熱可塑性樹脂組成物
CN114213848A (zh) 可体温/室温下塑形的形状记忆多孔材料及其制备方法
CN106700209B (zh) 一种含纳米碳纤维的复合发泡材料及其制备
CN110746634B (zh) 一种具有透水吸音功能的开闭孔发泡材料的制备方法
CN111655063B (zh) 鞋底用构件和鞋
JP4128850B2 (ja) ポリプロピレン系樹脂発泡粒子の型内発泡成形体の製造方法
JPH10292064A (ja) 変性プロピレン系樹脂発泡粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE