WO2023277506A1 - 열가소성 수지 조성물 및 이로부터 형성된 성형품 - Google Patents

열가소성 수지 조성물 및 이로부터 형성된 성형품 Download PDF

Info

Publication number
WO2023277506A1
WO2023277506A1 PCT/KR2022/009194 KR2022009194W WO2023277506A1 WO 2023277506 A1 WO2023277506 A1 WO 2023277506A1 KR 2022009194 W KR2022009194 W KR 2022009194W WO 2023277506 A1 WO2023277506 A1 WO 2023277506A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
weight
parts
epoxy
Prior art date
Application number
PCT/KR2022/009194
Other languages
English (en)
French (fr)
Inventor
이상화
박찬무
장철훈
이봉재
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to CN202280044290.2A priority Critical patent/CN117545805A/zh
Publication of WO2023277506A1 publication Critical patent/WO2023277506A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides

Definitions

  • the present invention relates to a thermoplastic resin composition and a molded article formed therefrom. More specifically, the present invention relates to a thermoplastic resin composition having excellent impact resistance, flowability, appearance characteristics, etc., and low dielectric constant and dielectric loss factor, and a molded article formed therefrom.
  • thermoplastic resin composition containing a polycarbonate resin, etc. has a lower specific gravity than glass and metal, and has excellent physical properties such as formability and impact resistance, and is useful for electrical/electronic product housings, automobile interior/exterior materials, and building exterior materials.
  • thermoplastic resin composition when used for a housing of a mobile phone, communication performance is degraded due to its high dielectric constant.
  • the application of low permittivity and low dielectric loss factor materials as housing materials for mobile phones has become an essential requirement.
  • thermoplastic resin composition having excellent impact resistance, fluidity, appearance, and the like, and low dielectric constant and dielectric loss factor.
  • An object of the present invention is to provide a thermoplastic resin composition excellent in impact resistance, fluidity, appearance, and the like, and having a low dielectric constant and dielectric loss factor.
  • Another object of the present invention is to provide a molded article formed from the thermoplastic resin composition.
  • thermoplastic resin composition may include about 100 parts by weight of a polycarbonate resin; about 20 to about 80 parts by weight of polyphenylene ether resin; about 15 to about 70 parts by weight of glass fibers; about 1 to about 10 parts by weight of epoxy-modified polystyrene; about 1 to about 20 parts by weight of a styrene-ethylene/butylene-styrene copolymer; and about 0.2 to about 4 parts by weight of DOPO (dihydro-9-oxa-10-phosphaphenanthrene-10-oxide), wherein the epoxy-modified polystyrene and the styrene-ethylene/butylene-styrene copolymer It is characterized in that the weight ratio of about 1: 0.5 to about 1: 10.
  • the polyphenylene ether resin may include a repeating unit represented by Formula 1 below:
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • the epoxy-modified polystyrene is an epoxy compound containing at least one of glycidyl (meth)acrylate, allylglycidyl ether, and 2-methylallylglycidyl ether in polystyrene may be polymerized.
  • the epoxy-modified polystyrene may contain about 0.3 to about 3% by weight of the epoxy compound.
  • the epoxy-modified polystyrene may include glycidyl (meth)acrylate-modified polystyrene.
  • the styrene-ethylene/butylene-styrene copolymer has a melt-flow index (MI) measured at 200 ° C. and 5 kgf in accordance with ASTM D1238 of about 10 to about 50 g/10 min.
  • the weight ratio of the epoxy-modified polystyrene and the DOPO may be about 1:0.1 to about 1:0.8.
  • thermoplastic resin composition may have a notched Izod impact strength of about 10 to about 20 kgf ⁇ cm/cm of a 1/8′′ thick specimen measured according to ASTM D256.
  • thermoplastic resin composition has a melt-flow index (MI) of about 5 to about 10 g/10 measured at 300 ° C and 1.2 kgf according to ASTM D1238 can be minutes
  • thermoplastic resin composition may have a gloss of about 50 to about 70 GU as measured at a reflection angle of 75° using a gloss meter.
  • thermoplastic resin composition has a dielectric constant (Dk) of about 2.6 for a 2.5 mm ⁇ 50 mm ⁇ 90 mm size specimen measured at 3.1 GHz using a split post dielectric resonator (SPDR) method. to about 2.8.
  • Dk dielectric constant
  • the thermoplastic resin composition has a dielectric loss factor (Df) of a 2.5 mm ⁇ 50 mm ⁇ 90 mm size specimen measured at 3.1 GHz using a split post dielectric resonator (SPDR) method of about 0.004 to about 0.006.
  • Df dielectric loss factor
  • the molded article is characterized in that it is formed from the thermoplastic resin composition according to any one of 1 to 12 above.
  • the present invention has the effect of providing a thermoplastic resin composition having excellent impact resistance, fluidity, appearance characteristics, etc., and low permittivity, dielectric loss ratio, etc., and a molded article formed therefrom.
  • thermoplastic resin composition includes (A) a polycarbonate resin; (B) polyphenylene ether resin; (C) glass fibers; (D) epoxy-modified polystyrene; (E) styrene-ethylene/butylene-styrene copolymers; and (F) DOPO;
  • Polycarbonate resins used in conventional thermoplastic resin compositions may be used as the polycarbonate resin according to one embodiment of the present invention.
  • an aromatic polycarbonate resin produced by reacting diphenols (aromatic diol compounds) with precursors such as phosgene, halogen formate, and diester carbonate can be used.
  • the diphenols include 4,4'-biphenol, 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1 ,1-bis(4-hydroxyphenyl)cyclohexane, 2,2-bis(3-chloro-4-hydroxyphenyl)propane, 2,2-bis(3,5-dichloro-4-hydroxyphenyl) Propane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane and the like can be exemplified, but are not limited thereto. .
  • 2,2-bis(4-hydroxyphenyl)propane 2,2-bis(3,5-dichloro-4-hydroxyphenyl)propane, 2,2-bis(3,5-dimethyl- 4-hydroxyphenyl)propane or 1,1-bis(4-hydroxyphenyl)cyclohexane
  • 2,2-bis(4-hydroxyphenyl)propane called bisphenol-A 2,2-bis(4-hydroxyphenyl)propane called bisphenol-A can be used
  • the polycarbonate resin may be used having a branched chain, for example, about 0.05 to about 2 mol% of a trivalent or more multifunctional compound, specifically, based on the total amount of diphenols used in polymerization.
  • a branched polycarbonate resin prepared by adding a compound having a trivalent or higher phenolic group may also be used.
  • the polycarbonate resin may be used in the form of a homopolycarbonate resin, a copolycarbonate resin, or a blend thereof.
  • the polycarbonate resin may be partially or entirely replaced with an aromatic polyester-carbonate resin obtained by polymerization in the presence of an ester precursor, for example, a bifunctional carboxylic acid.
  • the polycarbonate resin may have a weight average molecular weight (Mw) of about 10,000 to about 50,000 g/mol, for example, about 15,000 to about 40,000 g/mol, as measured by gel permeation chromatography (GPC). Within the above range, the fluidity (processability) of the thermoplastic resin composition may be excellent.
  • Mw weight average molecular weight
  • the polyphenylene ether resin according to one embodiment of the present invention is capable of lowering the dielectric constant and dielectric loss rate of the thermoplastic resin composition by using the characteristics of lower dielectric constant and dielectric loss rate than polycarbonate resin, and is used in conventional thermoplastic resin compositions.
  • a polyphenylene ether resin may be used.
  • a polyphenylene ether resin including a repeating unit represented by Chemical Formula 1 may be used.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • the polyphenylene ether resin is poly(1,4-phenylene) ether, poly(2,6-dimethyl-1,4-phenylene) ether, poly(2,6-diethyl-1) ,4-phenylene) ether, poly(2,6-dipropyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, poly(2-methyl -6-propyl-1,4-phenylene) ether, poly(2-ethyl-6-propyl-1,4-phenylene) ether, poly(2,6-diphenyl-1,4-phenylene) ether , a copolymer of poly(2,6-dimethyl-1,4-phenylene) ether and poly(2,3,6-trimethyl-1,4-phenylene) ether, poly(2,6-dimethyl-1, Copolymers of 4-phenylene) ether and poly(2,3,5-triethyl-1,4
  • the polyphenylene ether resin may have a weight average molecular weight of about 10,000 to about 50,000 g/mol, for example about 20,000 to about 40,000 g/mol, as measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the polyphenylene ether resin may be included in an amount of about 20 to about 80 parts by weight, for example about 30 to about 78 parts by weight, based on about 100 parts by weight of the polycarbonate resin.
  • the content of the polyphenylene ether resin is less than about 20 parts by weight based on about 100 parts by weight of the polycarbonate resin, there is a concern that the dielectric constant and dielectric loss rate of the thermoplastic resin composition (molded article) may increase, and in excess of about 80 parts by weight In this case, there is a fear that the impact resistance, fluidity, appearance characteristics, etc. of the thermoplastic resin composition (molded article) may deteriorate.
  • the glass fiber according to one embodiment of the present invention is capable of improving mechanical properties such as stiffness and impact resistance of a thermoplastic resin composition and lowering its dielectric constant, and is a low-k glass used in conventional thermoplastic resin compositions with low dielectric properties. fibers can be used.
  • the glass fiber may be in the form of a fiber and may have cross sections of various shapes such as circular, elliptical, and rectangular.
  • cross sections of various shapes such as circular, elliptical, and rectangular.
  • the circular cross-section of the glass fiber may have a cross-sectional diameter of about 5 to about 20 ⁇ m and a length of about 2 to about 20 mm before processing
  • the rectangular cross-section of the glass fiber may have a cross-sectional aspect ratio (long diameter of the cross section /
  • the short diameter of the cross section may be about 1.5 to about 10, the short diameter may be about 2 to about 10 ⁇ m, and the length before processing may be about 2 to about 20 mm.
  • Stiffness, processability, etc. of the thermoplastic resin composition may be improved within the above range.
  • the glass fiber may be treated with a conventional surface treatment agent.
  • a silane-based compound, a urethane-based compound, an epoxy-based compound, etc. may be used as the surface treatment agent, but is not limited thereto.
  • the glass fiber may be included in about 15 to about 70 parts by weight, for example, about 20 to about 50 parts by weight, specifically about 25 to about 42 parts by weight, based on about 100 parts by weight of the polycarbonate resin. . If the content of the glass fiber is less than about 15 parts by weight based on about 100 parts by weight of the polycarbonate resin, the impact resistance and rigidity of the thermoplastic resin composition (molded article) may decrease and the molded article may be distorted or bent, and about 70 When it exceeds parts by weight, there is a fear that the fluidity (processability), appearance characteristics, etc. of the thermoplastic resin composition (molded article) may deteriorate.
  • Epoxy-modified polystyrene according to one embodiment of the present invention is applied together with a styrene-ethylene/butylene-styrene copolymer, DOPO, etc. to improve the impact resistance of a thermoplastic resin composition including a polycarbonate resin, a polyphenylene ether resin, and glass fibers. , fluidity, appearance characteristics, etc. can be improved, and permittivity, dielectric loss factor, etc. can be lowered.
  • the epoxy-modified polystyrene may be obtained by polymerizing polystyrene with an epoxy compound containing at least one of glycidyl (meth)acrylate, allylglycidyl ether, and 2-methylallylglycidyl ether. .
  • the epoxy-modified polystyrene may contain about 0.3 to about 3% by weight, for example, about 1 to about 2% by weight, based on 100% by weight of the total epoxy-modified polystyrene.
  • the thermoplastic resin composition may have excellent fluidity, appearance characteristics, impact resistance, and the like, and excellent compatibility between components.
  • the epoxy-modified polystyrene may include glycidyl (meth)acrylate-modified polystyrene.
  • the epoxy-modified polystyrene has a melt-flow index (MI) of about 25 to about 45 g/10 min, for example, about 30 to about 40 g/10 min.
  • MI melt-flow index
  • the thermoplastic resin composition may have excellent appearance characteristics, impact resistance, and the like, and excellent compatibility between components.
  • the epoxy-modified polystyrene may be included in an amount of about 1 to about 10 parts by weight, for example, about 2 to about 5 parts by weight, based on about 100 parts by weight of the polycarbonate resin.
  • the content of the epoxy-modified polystyrene is less than about 1 part by weight based on about 100 parts by weight of the polycarbonate resin, there is a concern that the impact resistance and appearance characteristics of the thermoplastic resin composition (molded article) may be deteriorated, and it exceeds about 10 parts by weight. In this case, there is a concern that the appearance characteristics, thermal stability, etc. of the thermoplastic resin composition (molded article) may deteriorate, and the dielectric loss factor or the like may increase.
  • the styrene-ethylene/butylene-styrene copolymer according to one embodiment of the present invention is applied together with epoxy-modified polystyrene, DOPO, etc. to improve the impact resistance of a thermoplastic resin composition including a polycarbonate resin, a polyphenylene ether resin, and glass fibers. , fluidity, appearance characteristics, etc. can be improved, and dielectric constant, dielectric loss factor, etc. can be lowered, and a styrene-ethylene/butylene-styrene copolymer applied to a conventional thermoplastic resin composition can be used.
  • the styrene-ethylene/butylene-styrene copolymer has a melt-flow index (MI) of about 10 to about 50 g / 10 minutes, for example about 12 to about 48 g/10 minutes.
  • MI melt-flow index
  • the thermoplastic resin composition may have excellent impact resistance, fluidity, appearance characteristics, moldability, and the like.
  • the styrene-ethylene/butylene-styrene copolymer may be included in an amount of about 1 to about 20 parts by weight, for example about 5 to about 10 parts by weight, based on about 100 parts by weight of the polycarbonate resin.
  • the content of the styrene-ethylene/butylene-styrene copolymer is less than about 1 part by weight based on about 100 parts by weight of the polycarbonate resin, the impact resistance and appearance characteristics of the thermoplastic resin composition (molded article) may deteriorate And, when it exceeds about 20 parts by weight, the fluidity (processability) of the thermoplastic resin composition (molded article), appearance characteristics, etc. may deteriorate, and the dielectric loss factor or the like may increase.
  • the weight ratio (D:E) of the epoxy-modified polystyrene (D) and the styrene-ethylene/butylene-styrene copolymer (E) is about 1:0.5 to about 1:10, for example about 1:1. 1 to about 1:4.
  • the weight ratio (D:E) is less than about 1:0.5, the impact resistance and appearance characteristics of the thermoplastic resin composition (molded article) may deteriorate, and when the weight ratio (D:E) exceeds about 1:10, the thermoplastic resin composition (molded article) There is a concern that the fluidity, appearance characteristics, compatibility, etc. of the product may be deteriorated, and the dielectric loss factor or the like may be increased.
  • DOPO (9,10-dihydro-9-oxa-10-phosphahenanthrene-10-oxide) is an epoxy It is applied together with modified polystyrene, styrene-ethylene/butylene-styrene copolymer, etc. to improve impact resistance, fluidity, appearance characteristics, etc. of a thermoplastic resin composition including polycarbonate resin, polyphenylene ether resin and glass fiber, and permittivity , dielectric loss factor, etc., can be applied to DOPO used in conventional thermoplastic resin compositions.
  • the DOPO may be included in an amount of about 0.2 to about 4 parts by weight, for example, about 1 to about 2 parts by weight, based on about 100 parts by weight of the polycarbonate resin. If the content of the DOPO is less than about 0.2 parts by weight based on about 100 parts by weight of the polycarbonate resin, there is a concern that the impact resistance, appearance characteristics, thermal stability, etc. of the thermoplastic resin composition (molded article) may deteriorate, and about 4 parts by weight If it exceeds, the impact resistance, flowability, appearance characteristics, etc. of the thermoplastic resin composition (molded article) may deteriorate, and the dielectric loss factor or the like may increase.
  • the weight ratio (D:F) of the epoxy-modified polystyrene (D) and the DOPO (F) is about 1:0.1 to about 1:0.8, for example about 1:0.2 to about 1:0.7, specifically It may be from about 1:0.3 to about 1:0.5.
  • the thermoplastic resin composition (molded article) may have better appearance properties, fluidity (moldability), and the like.
  • the thermoplastic resin composition according to one embodiment of the present invention may further include additives included in conventional thermoplastic resin compositions.
  • the additive include flame retardants, antioxidants, anti-drip agents, lubricants, release agents, nucleating agents, antistatic agents, stabilizers, pigments, dyes, mixtures thereof, and the like, but are not limited thereto.
  • the amount thereof may be about 0.001 to about 40 parts by weight, for example about 0.1 to about 10 parts by weight, based on about 100 parts by weight of the polycarbonate resin.
  • thermoplastic resin composition according to one embodiment of the present invention is obtained by mixing the above components and melt-extruding the pellets at about 200 to about 280 ° C., for example, about 220 to about 260 ° C. using a conventional twin-screw extruder. ) can be in the form of
  • the thermoplastic resin composition has a notched Izod impact strength of about 10 to about 20 kgf cm / cm, for example, about 13 to about 17 kgf cm It can be /cm.
  • the thermoplastic resin composition has a melt-flow index (MI) of about 5 to about 10 g/10 min, for example, about 7 to about 9 g/10 min.
  • MI melt-flow index
  • the thermoplastic resin composition may have a gloss of about 50 to about 70 GU, for example, about 55 to about 65 GU, measured using a gloss meter at a reflection angle of 75°.
  • thermoplastic resin composition is measured at 3.1 GHz using a split post dielectric resonator (SPDR) method (using DAK3.5-TL-P (200 MHz - 20 GHz) equipment and DAK1.2E-PL probe)
  • SPDR split post dielectric resonator
  • a dielectric constant (Dk) of a specimen having a size of 2.5 mm ⁇ 50 mm ⁇ 90 mm may be about 2.6 to about 2.8, for example, about 2.6 to about 2.7.
  • thermoplastic resin composition is measured at 3.1 GHz using a split post dielectric resonator (SPDR) method (using DAK3.5-TL-P (200 MHz - 20 GHz) equipment and DAK1.2E-PL probe)
  • SPDR split post dielectric resonator
  • a dielectric loss factor (Df) of a specimen having a size of 2.5 mm ⁇ 50 mm ⁇ 90 mm may be about 0.004 to about 0.006, for example about 0.0045 to about 0.0055.
  • a molded article according to the present invention is formed from the thermoplastic resin composition.
  • the thermoplastic resin composition may be manufactured in the form of pellets, and the manufactured pellets may be manufactured into various molded articles (products) through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding. Such a molding method is well known to those skilled in the art to which the present invention belongs.
  • the molded article has excellent impact resistance, fluidity, appearance characteristics, etc., and has low permittivity and dielectric loss ratio, so it is useful as a housing for electric and electronic products, a housing for portable devices such as smart phones, and the like.
  • a bisphenol-A polycarbonate resin (manufacturer: Lotte Chemical, weight average molecular weight: about 22,000 g/mol) was used.
  • a poly(1,4-phenylene) ether resin (manufacturer: Bluestar New Chemical Material Co., Ltd., product name: LXR-050C) was used.
  • Circular cross-section glass fibers (manufacturer: Chongqing Polycomp International Corp., product name: ECS303W-3-E) were used.
  • E2 A styrene-isobutylene/butylene-styrene copolymer (manufacturer: Kaneka Corp., product name: 073T) was used.
  • DOPO Dihydro-9-oxa-10-phosphaphenantrene-10-oxide
  • pellets were prepared by extruding at about 260 ° C.
  • Specimens were prepared by injection molding. The physical properties of the prepared specimens were evaluated by the following method, and the results are shown in Tables 1, 2, 3 and 4 below.
  • Dielectric loss factor 2.5 mm ⁇ 50 at 3.1 GHz using the split post dielectric resonator (SPDR) method (using DAK3.5-TL-P (200 MHz - 20 GHz) equipment and DAK1.2E-PL probe)
  • SPDR split post dielectric resonator
  • Df dielectric loss factor
  • Example One 2 3 4 5 (A) (parts by weight) 100 100 100 100 100 100 100 (B) (parts by weight) 30 45 78 45 45 (C) (parts by weight) 36 36 36 25 42 (D1) (parts by weight) 5 5 5 5 5 (D2) (parts by weight) - - - - - (E1) (parts by weight) 7 7 7 7 7 (E2) (parts by weight) - - - - - - (F) (parts by weight) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 Notched Izod Impact Strength 14 15 14 16 15 melt flow index 7.5 8 8.2 7.8 7.4 Glossiness 65 65 63 64 65 permittivity 2.65 2.64 2.64 2.65 2.68 dielectric loss factor 0.0045 0.0046 0.0051 0.0048 0.0049
  • Example 6 7 8 9 10 11 (A) (parts by weight) 100 100 100 100 100 100 100 100 100 (B) (parts by weight) 45 45 45 45 45 45 45 45 (C) (parts by weight) 36 36 36 36 36 36 (D1) (parts by weight) 2.1 4.8 5 5 5 5 (D2) (parts by weight) - - - - - - (E1) (parts by weight) 7 7 5 10 7 7 (E2) (parts by weight) - - - - - - (F) (parts by weight) 1.5 1.5 1.5 1.5 1.5 1.5
  • thermoplastic resin composition of the present invention is excellent in impact resistance, fluidity, appearance characteristics, etc., and has low dielectric constant and dielectric loss factor.
  • Comparative Example 5 In the case of Comparative Example 5 in which a small amount of epoxy-modified polystyrene was applied, it can be seen that impact resistance and appearance characteristics were deteriorated, and in the case of Comparative Example 6 in which an excessive amount of epoxy-modified polystyrene was applied, appearance characteristics were deteriorated and dielectric loss rate was high. It can be seen that, in the case of Comparative Example 7 in which polystyrene (D2) was applied instead of the epoxy-modified polystyrene of the present invention, it can be seen that impact resistance, appearance characteristics, etc. were reduced.
  • D2 polystyrene
  • the weight ratio (D:E) of the epoxy-modified polystyrene and the styrene-ethylene/butylene-styrene copolymer is 1 :
  • the weight ratio (D:E) of the epoxy-modified polystyrene and the styrene-ethylene/butylene-styrene copolymer is 1 :

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명의 열가소성 수지 조성물은 폴리카보네이트 수지 약 100 중량부; 폴리페닐렌에테르 수지 약 20 내지 약 80 중량부; 유리 섬유 약 15 내지 약 70 중량부; 에폭시 변성 폴리스티렌 약 1 내지 약 10 중량부; 스티렌-에틸렌/부틸렌-스티렌 공중합체 약 1 내지 약 20 중량부; 및 DOPO(디하이드로-9-옥사-10-포스파펜안트렌-10-옥시드) 약 0.2 내지 약 4 중량부;를 포함하며, 상기 에폭시 변성 폴리스티렌 및 상기 스티렌-에틸렌/부틸렌-스티렌 공중합체의 중량비가 약 1 : 0.5 내지 약 1 : 10인 것을 특징으로 한다. 상기 열가소성 수지 조성물은 내충격성, 유동성, 외관 특성 등이 우수하고, 유전율, 유전 손실률 등이 낮다.

Description

열가소성 수지 조성물 및 이로부터 형성된 성형품
본 발명은 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다. 보다 구체적으로 본 발명은 내충격성, 유동성, 외관 특성 등이 우수하고, 유전율, 유전 손실률 등이 낮은 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다.
폴리카보네이트 수지 등을 포함하는 열가소성 수지 조성물은 유리 및 금속에 비해 비중이 낮고, 성형성, 내충격성 등의 물성이 우수하여, 전기/전자 제품의 하우징, 자동차 내/외장재, 건축용 외장재 등에 유용하다.
그러나, 이러한 열가소성 수지 조성물이 휴대폰의 하우징 등의 용도로 사용될 경우, 유전율이 높아 통신 성능을 저하시키는 문제점이 있다. 최근, 휴대폰 통신망의 발달에 따라, (초)고주파 대역으로 주파수 영역이 변화되고 있으므로, 휴대폰 등의 하우징 소재로 저유전율 및 저유전 손실률 소재의 적용은 필수 요건이 되고 있다.
따라서, 내충격성, 유동성, 외관 특성 등이 우수하고, 유전율, 유전 손실률 등이 낮은 열가소성 수지 조성물의 개발이 필요한 실정이다.
본 발명의 배경기술은 일본 공표특허 특표2012-533645호 등에 개시되어 있다.
본 발명의 목적은 내충격성, 유동성, 외관 특성 등이 우수하고, 유전율, 유전 손실률 등이 낮은 열가소성 수지 조성물을 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 열가소성 수지 조성물로부터 형성된 성형품을 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
1. 본 발명의 하나의 관점은 열가소성 수지 조성물에 관한 것이다. 상기 열가소성 수지 조성물은 폴리카보네이트 수지 약 100 중량부; 폴리페닐렌에테르 수지 약 20 내지 약 80 중량부; 유리 섬유 약 15 내지 약 70 중량부; 에폭시 변성 폴리스티렌 약 1 내지 약 10 중량부; 스티렌-에틸렌/부틸렌-스티렌 공중합체 약 1 내지 약 20 중량부; 및 DOPO(디하이드로-9-옥사-10-포스파펜안트렌-10-옥시드) 약 0.2 내지 약 4 중량부;를 포함하며, 상기 에폭시 변성 폴리스티렌 및 상기 스티렌-에틸렌/부틸렌-스티렌 공중합체의 중량비가 약 1 : 0.5 내지 약 1 : 10인 것을 특징으로 한다.
2. 상기 1 구체예에서, 상기 폴리페닐렌에테르 수지는 하기 화학식 1로 표시되는 반복단위를 포함할 수 있다:
[화학식 1]
Figure PCTKR2022009194-appb-img-000001
상기 화학식 1에서, R1, R2, R3 및 R4는 각각 독립적으로 수소 원자, 할로겐 원자, 탄소수 1 내지 6의 알킬기 또는 탄소수 6 내지 12의 아릴기이다.
3. 상기 1 또는 2 구체예에서, 상기 에폭시 변성 폴리스티렌은 폴리스티렌에 글리시딜 (메타)아크릴레이트, 알릴글리시딜에테르, 및 2-메틸알릴글리시딜에테르 중 1종 이상을 포함하는 에폭시 화합물을 중합한 것일 수 있다.
4. 상기 1 내지 3 구체예에서, 상기 에폭시 변성 폴리스티렌은 상기 에폭시 화합물의 함량이 약 0.3 내지 약 3 중량%일 수 있다.
5. 상기 1 내지 4 구체예에서, 상기 에폭시 변성 폴리스티렌은 글리시딜 (메타)아크릴레이트 변성 폴리스티렌을 포함할 수 있다.
6. 상기 1 내지 5 구체예에서, 상기 스티렌-에틸렌/부틸렌-스티렌 공중합체는 ASTM D1238에 의거하여, 200℃, 5 kgf 조건에서 측정한 용융흐름지수(Melt-flow Index: MI)가 약 10 내지 약 50 g/10분일 수 있다.
7. 상기 1 내지 6 구체예에서, 상기 에폭시 변성 폴리스티렌 및 상기 DOPO의 중량비가 약 1 : 0.1 내지 약 1 : 0.8일 수 있다.
8. 상기 1 내지 7 구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 두께 1/8" 시편의 노치 아이조드 충격강도가 약 10 내지 약 20 kgf·cm/cm일 수 있다.
9. 상기 1 내지 8 구체예에서, 상기 열가소성 수지 조성물은 ASTM D1238에 의거하여, 300℃, 1.2 kgf 조건에서 측정한 용융흐름지수(Melt-flow Index: MI)가 약 5 내지 약 10 g/10분일 수 있다.
10. 상기 1 내지 9 구체예에서, 상기 열가소성 수지 조성물은 광택계를 사용하여, 반사각 75°에서 측정한 광택도가 약 50 내지 약 70 GU일 수 있다.
11. 상기 1 내지 10 구체예에서, 상기 열가소성 수지 조성물은 SPDR(split post dielectric resonator) 방법을 이용하여, 3.1 GHz에서 측정한 2.5 mm × 50 mm × 90 mm 크기 시편의 유전율(Dk)이 약 2.6 내지 약 2.8일 수 있다.
12. 상기 1 내지 11 구체예에서, 상기 열가소성 수지 조성물은 SPDR(split post dielectric resonator) 방법을 이용하여, 3.1 GHz에서 측정한 2.5 mm × 50 mm × 90 mm 크기 시편의 유전 손실률(Df)이 약 0.004 내지 약 0.006일 수 있다.
13. 본 발명의 다른 관점은 성형품에 관한 것이다. 상기 성형품은 상기 1 내지 12 중 어느 하나에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 한다.
본 발명은 내충격성, 유동성, 외관 특성 등이 우수하고, 유전율, 유전 손실률 등이 낮은 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하는 발명의 효과를 갖는다.
이하, 본 발명을 상세히 설명하면, 다음과 같다.
본 발명에 따른 열가소성 수지 조성물은 (A) 폴리카보네이트 수지; (B) 폴리페닐렌에테르 수지; (C) 유리 섬유; (D) 에폭시 변성 폴리스티렌; (E) 스티렌-에틸렌/부틸렌-스티렌 공중합체; 및 (F) DOPO;를 포함한다.
본 명세서에서, 수치범위를 나타내는 "a 내지 b"는 "≥a 이고 ≤b"으로 정의한다.
(A) 폴리카보네이트 수지
본 발명의 일 구체예에 따른 폴리카보네이트 수지로는 통상의 열가소성 수지 조성물에 사용되는 폴리카보네이트 수지를 사용할 수 있다. 예를 들면, 디페놀류(방향족 디올 화합물)를 포스겐, 할로겐 포르메이트, 탄산 디에스테르 등의 전구체와 반응시킴으로써 제조되는 방향족 폴리카보네이트 수지를 사용할 수 있다.
구체예에서, 상기 디페놀류로는 4,4'-비페놀, 2,2-비스(4-히드록시페닐)프로판, 2,4-비스(4-히드록시페닐)-2-메틸부탄, 1,1-비스(4-히드록시페닐)시클로헥산, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,2-비스(3-메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판 등을 예시할 수 있으나, 이에 제한되지 않는다. 예를 들면, 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판, 또는 1,1-비스(4-히드록시페닐)시클로헥산을 사용할 수 있고, 구체적으로, 비스페놀-A 라고 불리는 2,2-비스(4-히드록시페닐)프로판을 사용할 수 있다.
구체예에서, 상기 폴리카보네이트 수지는 분지쇄가 있는 것이 사용될 수 있으며, 예를 들면 중합에 사용되는 디페놀류 전체에 대하여, 약 0.05 내지 약 2 몰%의 3가 또는 그 이상의 다관능 화합물, 구체적으로, 3가 또는 그 이상의 페놀기를 가진 화합물을 첨가하여 제조한 분지형 폴리카보네이트 수지를 사용할 수도 있다.
구체예에서, 상기 폴리카보네이트 수지는 호모 폴리카보네이트 수지, 코폴리카보네이트 수지 또는 이들의 블렌드 형태로 사용할 수 있다. 또한, 상기 폴리카보네이트 수지는 에스테르 전구체(precursor), 예컨대 2관능 카르복실산의 존재 하에서 중합 반응시켜 얻어진 방향족 폴리에스테르-카보네이트 수지로 일부 또는 전량 대체하는 것도 가능하다.
구체예에서, 상기 폴리카보네이트 수지는 GPC(gel permeation chromatography)로 측정한 중량평균분자량(Mw)이 약 10,000 내지 약 50,000 g/mol, 예를 들면, 약 15,000 내지 약 40,000 g/mol일 수 있다. 상기 범위에서 열가소성 수지 조성물의 유동성(가공성) 등이 우수할 수 있다.
(B) 폴리페닐렌에테르 수지
본 발명의 일 구체예에 따른 폴리페닐렌에테르 수지는 폴리카보네이트 수지보다 유전율, 유전 손실률이 낮은 특성을 이용하여 열가소성 수지 조성물의 유전율, 유전 손실률 등을 낮출 수 있는 것으로서, 통상의 열가소성 수지 조성물에 사용되는 폴리페닐렌에테르 수지를 사용할 수 있다. 예를 들면, 하기 화학식 1로 표시되는 반복단위를 포함하는 폴리페닐렌에테르 수지를 사용할 수 있다.
[화학식 1]
Figure PCTKR2022009194-appb-img-000002
상기 화학식 1에서, R1, R2, R3 및 R4는 각각 독립적으로 수소 원자, 할로겐 원자, 탄소수 1 내지 6의 알킬기 또는 탄소수 6 내지 12의 아릴기이다.
구체예에서, 상기 폴리페닐렌에테르 수지로는 폴리(1,4-페닐렌)에테르, 폴리(2,6-디메틸-1,4-페닐렌)에테르, 폴리(2,6-디에틸-1,4-페닐렌)에테르, 폴리(2,6-디프로필-1,4-페닐렌)에테르, 폴리(2-메틸-6-에틸-1,4-페닐렌)에테르, 폴리(2-메틸-6-프로필-1,4-페닐렌)에테르, 폴리(2-에틸-6-프로필-1,4-페닐렌)에테르, 폴리(2,6-디페닐-1,4-페닐렌)에테르, 폴리(2,6-디메틸-1,4-페닐렌)에테르와 폴리(2,3,6-트리메틸-1,4-페닐렌)에테르의 공중합체, 폴리(2,6-디메틸-1,4-페닐렌)에테르와 폴리(2,3,5-트리에틸-1,4-페닐렌)에테르의 공중합체 등을 예시할 수 있다.
구체예에서, 상기 폴리페닐렌에테르 수지는 GPC(gel permeation chromatography)로 측정한 중량평균분자량이 약 10,000 내지 약 50,000 g/mol, 예를 들면 약 20,000 내지 약 40,000 g/mol일 수 있다.
구체예에서, 상기 폴리페닐렌에테르 수지는 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 20 내지 약 80 중량부, 예를 들면 약 30 내지 약 78 중량부로 포함될 수 있다. 상기 폴리페닐렌에테르 수지의 함량이 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 20 중량부 미만일 경우, 열가소성 수지 조성물(성형품)의 유전율, 유전 손실률 등이 높아질 우려가 있고, 약 80 중량부를 초과할 경우, 열가소성 수지 조성물(성형품)의 내충격성, 유동성, 외관 특성 등이 저하될 우려가 있다.
(C) 유리 섬유
본 발명의 일 구체예에 따른 유리 섬유는 열가소성 수지 조성물의 강성, 내충격성 등의 기계적 물성 등을 향상시키고, 유전율 등을 낮출 수 있는 것으로서, 통상의 저유전 특성 열가소성 수지 조성물에 사용되는 저유전 유리 섬유를 사용할 수 있다.
구체예에서, 상기 유리 섬유는 섬유 형태일 수 있고, 원형, 타원형, 직사각형 등의 다양한 형상의 단면을 가질 수 있다. 예를 들면, 원형 및/또는 직사각형 단면의 섬유형 유리 섬유를 사용하는 것이 기계적 물성 측면에서 바람직할 수 있다.
구체예에서, 상기 원형 단면의 유리 섬유는 단면 직경이 약 5 내지 약 20 ㎛, 가공 전 길이가 약 2 내지 약 20 mm일 수 있고, 상기 직사각형 단면의 유리 섬유는 단면의 종횡비(단면의 장경/단면의 단경)가 약 1.5 내지 약 10이고, 단경이 약 2 내지 약 10 ㎛일 수 있고, 가공 전 길이가 약 2 내지 약 20 mm일 수 있다. 상기 범위에서 열가소성 수지 조성물의 강성, 가공성 등이 향상될 수 있다.
구체예에서, 상기 유리 섬유는 통상의 표면 처리제로 처리된 것일 수 있다. 상기 표면 처리제로는 실란계 화합물, 우레탄계 화합물, 에폭시계 화합물 등을 사용할 수 있으나, 이에 제한되지 않는다.
구체예에서, 상기 유리 섬유는 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 15 내지 약 70 중량부, 예를 들면 약 20 내지 약 50 중량부, 구체적으로 약 25 내지 약 42 중량부로 포함될 수 있다. 상기 유리 섬유의 함량이 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 15 중량부 미만일 경우, 열가소성 수지 조성물(성형품)의 내충격성, 강성 등이 저하되고 성형품이 뒤틀리거나 휠 우려가 있고, 약 70 중량부를 초과할 경우, 열가소성 수지 조성물(성형품)의 유동성(가공성), 외관 특성 등이 저하될 우려가 있다.
(D) 에폭시 변성 폴리스티렌
본 발명의 일 구체예에 따른 에폭시 변성 폴리스티렌은 스티렌-에틸렌/부틸렌-스티렌 공중합체, DOPO 등과 함께 적용되어, 폴리카보네이트 수지, 폴리페닐렌에테르 수지 및 유리 섬유를 포함하는 열가소성 수지 조성물의 내충격성, 유동성, 외관 특성 등을 향상시키고, 유전율, 유전 손실률 등을 낮출 수 있는 것이다.
구체예에서, 상기 에폭시 변성 폴리스티렌은 폴리스티렌에 글리시딜 (메타)아크릴레이트, 알릴글리시딜에테르, 및 2-메틸알릴글리시딜에테르 중 1종 이상을 포함하는 에폭시 화합물을 중합한 것일 수 있다.
구체예에서, 상기 에폭시 변성 폴리스티렌은 상기 에폭시 화합물의 함량이 전체 에폭시 변성 폴리스티렌 100 중량% 중 약 0.3 내지 약 3 중량%, 예를 들면 약 1 내지 약 2 중량%일 수 있다. 상기 범위에서, 열가소성 수지 조성물의 유동성, 외관 특성, 내충격성 등이 우수하고, 구성 성분 간 상용성이 우수할 수 있다.
구체예에서, 상기 에폭시 변성 폴리스티렌은 글리시딜 (메타)아크릴레이트 변성 폴리스티렌을 포함할 수 있다.
구체예에서, 상기 에폭시 변성 폴리스티렌은 ASTM D1238에 의거하여, 190℃, 2.16 kgf 조건에서 측정한 유동흐름지수(Melt-flow index: MI)가 약 25 내지 약 45 g/10분, 예를 들면 약 30 내지 약 40 g/10분일 수 있다. 상기 범위에서, 열가소성 수지 조성물의 외관 특성, 내충격성 등이 우수하고, 구성 성분 간 상용성이 우수할 수 있다.
구체예에서, 상기 에폭시 변성 폴리스티렌은 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 1 내지 약 10 중량부, 예를 들면 약 2 내지 약 5 중량부로 포함될 수 있다. 상기 에폭시 변성 폴리스티렌의 함량이 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 1 중량부 미만일 경우, 열가소성 수지 조성물(성형품)의 내충격성, 외관 특성 등이 저하될 우려가 있고, 약 10 중량부를 초과할 경우, 열가소성 수지 조성물(성형품)의 외관 특성, 열안정성 등이 저하되고, 유전 손실률 등이 높아질 우려가 있다.
(E) 스티렌-에틸렌/부틸렌-스티렌 공중합체
본 발명의 일 구체예에 따른 스티렌-에틸렌/부틸렌-스티렌 공중합체는 에폭시 변성 폴리스티렌, DOPO 등과 함께 적용되어, 폴리카보네이트 수지, 폴리페닐렌에테르 수지 및 유리 섬유를 포함하는 열가소성 수지 조성물의 내충격성, 유동성, 외관 특성 등을 향상시키고, 유전율, 유전 손실률 등을 낮출 수 있는 것으로서, 통상의 열가소성 수지 조성물에 적용되는 스티렌-에틸렌/부틸렌-스티렌 공중합체를 사용할 수 있다.
구체예에서, 상기 스티렌-에틸렌/부틸렌-스티렌 공중합체는 ASTM D1238에 의거하여, 200℃, 5 kgf 조건에서 측정한 용융흐름지수(Melt-flow Index: MI)가 약 10 내지 약 50 g/10분, 예를 들면 약 12 내지 약 48 g/10분일 수 있다. 상기 범위에서 열가소성 수지 조성물의 내충격성, 유동성, 외관 특성, 성형성 등이 우수할 수 있다.
구체예에서, 상기 스티렌-에틸렌/부틸렌-스티렌 공중합체는 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 1 내지 약 20 중량부, 예를 들면 약 5 내지 약 10 중량부로 포함될 수 있다. 상기 스티렌-에틸렌/부틸렌-스티렌 공중합체의 함량이 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 1 중량부 미만일 경우, 열가소성 수지 조성물(성형품)의 내충격성, 외관 특성 등이 저하될 우려가 있고, 약 20 중량부를 초과할 경우, 열가소성 수지 조성물(성형품)의 유동성(가공성), 외관 특성 등이 저하되고, 유전 손실률 등이 높아질 우려가 있다.
구체예에서, 상기 에폭시 변성 폴리스티렌(D) 및 상기 스티렌-에틸렌/부틸렌-스티렌 공중합체(E)의 중량비(D:E)는 약 1 : 0.5 내지 약 1 : 10, 예를 들면 약 1 : 1 내지 약 1 : 4일 수 있다. 상기 중량비(D:E)가 약 1 : 0.5 미만일 경우, 열가소성 수지 조성물(성형품)의 내충격성, 외관 특성 등이 저하될 우려가 있고, 약 1 : 10을 초과할 경우, 열가소성 수지 조성물(성형품)의 유동성, 외관 특성, 상용성 등이 저하되고, 유전 손실률 등이 높아질 우려가 있다.
(F) DOPO
본 발명의 일 구체예에 따른 DOPO(디하이드로-9-옥사-10-포스파펜안트렌-10-옥시드(9,10-dihydro-9-oxa-10-phosphahenanthrene-10-oxide))는 에폭시 변성 폴리스티렌, 스티렌-에틸렌/부틸렌-스티렌 공중합체 등과 함께 적용되어, 폴리카보네이트 수지, 폴리페닐렌에테르 수지 및 유리 섬유를 포함하는 열가소성 수지 조성물의 내충격성, 유동성, 외관 특성 등을 향상시키고, 유전율, 유전 손실률 등을 낮출 수 있는 것으로서, 통상의 열가소성 수지 조성물에 사용되는 DOPO를 적용할 수 있다.
구체예에서, 상기 DOPO는 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 0.2 내지 약 4 중량부, 예를 들면 약 1 내지 약 2 중량부로 포함될 수 있다. 상기 DOPO의 함량이 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 0.2 중량부 미만일 경우, 열가소성 수지 조성물(성형품)의 내충격성, 외관 특성, 열안정성 등이 저하될 우려가 있고, 약 4 중량부를 초과할 경우, 열가소성 수지 조성물(성형품)의 내충격성, 유동성, 외관 특성 등이 저하되고, 유전 손실률 등이 높아질 우려가 있다.
구체예에서, 상기 에폭시 변성 폴리스티렌(D) 및 상기 DOPO(F)의 중량비(D:F)는 약 1 : 0.1 내지 약 1 : 0.8, 예를 들면 약 1 : 0.2 내지 약 1 : 0.7, 구체적으로 약 1 : 0.3 내지 약 1 : 0.5일 수 있다. 상기 범위에서, 열가소성 수지 조성물(성형품)의 외관 특성, 유동성(성형성) 등이 더 우수할 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 통상의 열가소성 수지 조성물에 포함되는 첨가제를 더욱 포함할 수 있다. 상기 첨가제로는 난연제, 산화 방지제, 적하 방지제, 활제, 이형제, 핵제, 대전방지제, 안정제, 안료, 염료, 이들의 혼합물 등을 예시할 수 있으나, 이에 제한되지 않는다. 상기 첨가제 사용 시, 그 함량은 상기 폴리카보네이트 수지 약 100 중량부에 대하여, 약 0.001 내지 약 40 중량부, 예를 들면 약 0.1 내지 약 10 중량부일 수 있다.
본 발명의 일 구체예에 따른 열가소성 수지 조성물은 상기 구성 성분을 혼합하고, 통상의 이축 압출기를 사용하여, 약 200 내지 약 280℃, 예를 들면 약 220 내지 약 260℃에서 용융 압출한 펠렛(Pellet) 형태일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 두께 1/8" 시편의 노치 아이조드 충격강도가 약 10 내지 약 20 kgf·cm/cm, 예를 들면 약 13 내지 약 17 kgf·cm/cm일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 ASTM D1238에 의거하여, 300℃, 1.2 kgf 조건에서 측정한 용융흐름지수(Melt-flow Index: MI)가 약 5 내지 약 10 g/10분, 예를 들면 약 7 내지 약 9 g/10분일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 광택계를 사용하여, 반사각 75°에서 측정한 광택도가 약 50 내지 약 70 GU, 예를 들면 약 55 내지 약 65 GU일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 SPDR(split post dielectric resonator) 방법을 이용하여(DAK3.5-TL-P(200 MHz - 20 GHz) 장비 및 DAK1.2E-PL probe 사용), 3.1 GHz에서 측정한 2.5 mm × 50 mm × 90 mm 크기 시편의 유전율(Dk)이 약 2.6 내지 약 2.8, 예를 들면 약 2.6 내지 약 2.7일 수 있다.
구체예에서, 상기 열가소성 수지 조성물은 SPDR(split post dielectric resonator) 방법을 이용하여(DAK3.5-TL-P(200 MHz - 20 GHz) 장비 및 DAK1.2E-PL probe 사용), 3.1 GHz에서 측정한 2.5 mm × 50 mm × 90 mm 크기 시편의 유전 손실률(Df)이 약 0.004 내지 약 0.006, 예를 들면 약 0.0045 내지 약 0.0055일 수 있다.
본 발명에 따른 성형품은 상기 열가소성 수지 조성물로부터 형성된다. 상기 열가소성 수지 조성물은 펠렛 형태로 제조될 수 있으며, 제조된 펠렛은 사출성형, 압출성형, 진공성형, 캐스팅성형 등의 다양한 성형방법을 통해 다양한 성형품(제품)으로 제조될 수 있다. 이러한 성형방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있다. 상기 성형품은 내충격성, 유동성, 외관 특성 등이 우수하고, 유전율, 유전 손실률 등이 낮아, 전기 전자 제품의 하우징, 스마트폰 등 휴대용 기기의 하우징 등으로 유용하다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
실시예
이하, 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다.
(A) 폴리카보네이트 수지
비스페놀-A계 폴리카보네이트 수지(제조사: 롯데케미칼, 중량평균분자량: 약 22,000 g/mol)를 사용하였다.
(B) 폴리페닐렌에테르 수지
폴리(1,4-페닐렌)에테르 수지(제조사: Bluestar New Chemical Material Co., Ltd., 제품명: LXR-050C)를 사용하였다.
(C) 유리 섬유
원형 단면 유리 섬유(제조사: Chongqing Polycomp International Corp., 제품명: ECS303W-3-E)를 사용하였다.
(D) 폴리스티렌
(D1) 에폭시 변성 폴리스티렌으로, 글리시딜 메타크릴레이트 함량이 약 2 중량%인 글리시딜 메타크릴레이트 변성 폴리스티렌(PS-g-GMA, 제조사: Fine-blend Polymer Co., Ltd., 제품명: SG-20)을 사용하였다.
(D2) 폴리스티렌(GPPS, 제조사: Formosa Chemicals & Fibre Corp., 제품명: TAIRIREX GP-5000)를 사용하였다.
(E) 비닐계 공중합체
(E1) 스티렌-에틸렌/부틸렌-스티렌 공중합체(제조사: Kraton Corp., 제품명: G1650)를 사용하였다.
(E2) 스티렌-아이소부틸렌/부틸렌-스티렌 공중합체(제조사: Kaneka Corp., 제품명: 073T)를 사용하였다.
(F) DOPO
디하이드로-9-옥사-10-포스파펜안트렌-10-옥시드(DOPO)(제조사: Shouguang Weidong Chemical Co., Ltd., 제품명: DOPO)를 사용하였다.
실시예 1 내지 11 및 비교예 1 내지 14
상기 각 구성 성분을 하기 표 1, 2, 3 및 4에 기재된 바와 같은 함량으로 첨가한 후, 약 260℃에서 압출하여 펠렛을 제조하였다. 압출은 L/D=44, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 약 80℃에서 4시간 이상 건조 후, 6 oz 사출기(성형 온도: 약 280℃, 금형 온도: 약 70℃)에서 사출 성형하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 1, 2, 3 및 4에 나타내었다.
물성 측정 방법
(1) 내충격성(단위: kgf·cm/cm): ASTM D256에 의거하여, 두께 1/8" 시편의 노치 아이조드 충격강도를 측정하였다.
(2) 유동성(단위: g/10분): ASTM D1238에 의거하여, 300℃, 1.2 kgf 조건에서 용융흐름지수(Melt-flow Index: MI)를 측정하였다.
(3) 외관 특성(단위: GU): 100 mm × 100 mm × 3.2 mm 크기의 사출성형 시편에 대하여, 광택계(제조사: BYK Instruments, 장치명: micro gloss)를 사용하여 반사각 75°에서 광택도를 측정하였다.
(4) 유전율: SPDR(split post dielectric resonator) 방법을 이용하여(DAK3.5-TL-P(200 MHz - 20 GHz) 장비 및 DAK1.2E-PL probe 사용), 3.1 GHz에서 2.5 mm × 50 mm × 90 mm 크기 시편의 유전율(Dk)을 측정하였다.
(5) 유전 손실률: SPDR(split post dielectric resonator) 방법을 이용하여(DAK3.5-TL-P(200 MHz - 20 GHz) 장비 및 DAK1.2E-PL probe 사용), 3.1 GHz에서 2.5 mm × 50 mm × 90 mm 크기 시편의 유전 손실률(Df)을 측정하였다.
실시예
1 2 3 4 5
(A) (중량부) 100 100 100 100 100
(B) (중량부) 30 45 78 45 45
(C) (중량부) 36 36 36 25 42
(D1) (중량부) 5 5 5 5 5
(D2) (중량부) - - - - -
(E1) (중량부) 7 7 7 7 7
(E2) (중량부) - - - - -
(F) (중량부) 1.5 1.5 1.5 1.5 1.5
노치 아이조드 충격강도 14 15 14 16 15
용융흐름지수 7.5 8 8.2 7.8 7.4
광택도 65 65 63 64 65
유전율 2.65 2.64 2.64 2.65 2.68
유전 손실률 0.0045 0.0046 0.0051 0.0048 0.0049
실시예
6 7 8 9 10 11
(A) (중량부) 100 100 100 100 100 100
(B) (중량부) 45 45 45 45 45 45
(C) (중량부) 36 36 36 36 36 36
(D1) (중량부) 2.1 4.8 5 5 5 5
(D2) (중량부) - - - - - -
(E1) (중량부) 7 7 5 10 7 7
(E2) (중량부) - - - - - -
(F) (중량부) 1.5 1.5 1.5 1.5 1 2
노치 아이조드 충격강도 15 14 16 14 15 16
용융흐름지수 8.0 8.1 7.5 7.8 8.1 7.9
광택도 64 64 63 65 64 65
유전율 2.60 2.61 2.61 2.63 2.64 2.62
유전 손실률 0.0051 0.0045 0.0048 0.0047 0.0050 0.0049
비교예
1 2 3 4 5 6 7
(A) (중량부) 100 100 100 100 100 100 100
(B) (중량부) 15 85 45 45 45 45 45
(C) (중량부) 36 36 10 75 36 36 36
(D1) (중량부) 5.5 5.5 5.5 5.5 0.5 15 -
(D2) (중량부) - - - - - - 5.5
(E1) (중량부) 7 7 7 7 7 7 7
(E2) (중량부) - - - - - - -
(F) (중량부) 1.5 1.5 1.5 1.5 1.5 1.5 1.5
노치 아이조드 충격강도 14 7 8 18 7 14 7
용융흐름지수 8 2 9 1.5 9 8 12
광택도 62 20 65 10 25 20 25
유전율 2.90 2.45 2.50 3.20 2.52 2.80 2.64
유전 손실률 0.0075 0.0041 0.0040 0.0087 0.0049 0.0065 0.0052
비교예
8 9 10 11 12 13 14
(A) (중량부) 100 100 100 100 100 100 100
(B) (중량부) 45 45 45 45 45 45 45
(C) (중량부) 36 36 36 36 36 36 36
(D1) (중량부) 5.5 5.5 5.5 5.5 5.5 10 1
(D2) (중량부) - - - - - - -
(E1) (중량부) 0.5 25 - 7 7 4 11
(E2) (중량부) - - 7 - - -
(F) (중량부) 1.5 1.5 1.5 0.1 6 1.5 1.5
노치 아이조드 충격강도 3 20 6 9 7 9 15
용융흐름지수 10 3 9 8 25 7 3
광택도 60 30 25 21 18 36 24
유전율 2.46 2.75 2.75 2.50 2.80 2.75 2.80
유전 손실률 0.0042 0.0061 0.0058 0.0048 0.0061 0.0058 0.0061
상기 결과로부터, 본 발명의 열가소성 수지 조성물은 내충격성, 유동성, 외관 특성 등이 모두 우수하고, 유전율, 유전 손실률 등이 낮음을 알 수 있다.
반면, 폴리페닐렌에테르 수지를 소량 적용한 비교예 1의 경우, 유전율, 유전 손실률 등이 높음을 알 수 있고, 폴리페닐렌에테르 수지를 과량 적용한 비교예 2의 경우, 내충격성, 유동성, 외관 특성 등이 저하되었음을 알 수 있으며, 유리 섬유를 소량 적용한 비교예 3의 경우, 내충격성 등이 저하되었음을 알 수 있고, 유리 섬유를 과량 적용한 비교예 4의 경우, 유동성, 외관 특성 등이 저하되고, 유전율, 유전 손실률 등이 높음을 알 수 있다. 에폭시 변성 폴리스티렌을 소량 적용한 비교예 5의 경우, 내충격성, 외관 특성 등이 저하되었음을 알 수 있고, 에폭시 변성 폴리스티렌을 과량 적용한 비교예 6의 경우, 외관 특성 등이 저하되고, 유전 손실률 등이 높음을 알 수 있으며, 본 발명의 에폭시 변성 폴리스티렌 대신에, 폴리스티렌 (D2)를 적용한 비교예 7의 경우, 내충격성, 외관 특성 등이 저하되었음을 알 수 있다. 스티렌-에틸렌/부틸렌-스티렌 공중합체를 소량 적용한 비교예 8의 경우, 내충격성 등이 저하되었음을 알 수 있고, 스티렌-에틸렌/부틸렌-스티렌 공중합체를 과량 적용한 비교예 9의 경우, 유동성, 외관 특성 등이 저하되고, 유전 손실률 등이 높음을 알 수 있으며, 본 발명의 스티렌-에틸렌/부틸렌-스티렌 공중합체 대신에, 스티렌-아이소부틸렌/부틸렌-스테렌 공중합체 (E2)를 적용한 비교예 10의 경우, 내충격성, 외관 특성 등이 저하되었음을 알 수 있다. DOPO를 소량 적용한 비교예 11의 경우, 내충격성, 외관 특성 등이 저하되었음을 알 수 알 수 있고, DOPO를 과량 적용한 비교예 12의 경우, 내충격성, 유동성, 외관 특성 등이 저하되고, 유전 손실률 등이 높음을 알 수 있다.
또한, 에폭시 변성 폴리스티렌 및 스티렌-에틸렌/부틸렌-스티렌 공중합체의 함량이 본 발명의 범위에 포함되더라도, 에폭시 변성 폴리스티렌 및 스티렌-에틸렌/부틸렌-스티렌 공중합체의 중량비(D:E)가 1 : 0.5 미만(1 : 0.4)일 경우(비교예 13), 내충격성, 외관 특성 등이 저하되었음을 알 수 있고, 1 : 10을 초과(1 : 11)할 경우(비교예 14), 유동성, 외관 특성 등이 저하되고, 유전 손실률 등이 높음을 알 수 있다.
이제까지 본 발명에 대하여 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (13)

  1. 폴리카보네이트 수지 약 100 중량부;
    폴리페닐렌에테르 수지 약 20 내지 약 80 중량부;
    유리 섬유 약 15 내지 약 70 중량부;
    에폭시 변성 폴리스티렌 약 1 내지 약 10 중량부;
    스티렌-에틸렌/부틸렌-스티렌 공중합체 약 1 내지 약 20 중량부; 및
    DOPO(디하이드로-9-옥사-10-포스파펜안트렌-10-옥시드) 약 0.2 내지 약 4 중량부;를 포함하며,
    상기 에폭시 변성 폴리스티렌 및 상기 스티렌-에틸렌/부틸렌-스티렌 공중합체의 중량비가 약 1 : 0.5 내지 약 1 : 10인 것을 특징으로 하는 열가소성 수지 조성물.
  2. 제1항에 있어서, 상기 폴리페닐렌에테르 수지는 하기 화학식 1로 표시되는 반복단위를 포함하는 것을 특징으로 하는 열가소성 수지 조성물:
    [화학식 1]
    Figure PCTKR2022009194-appb-img-000003
    상기 화학식 1에서, R1, R2, R3 및 R4는 각각 독립적으로 수소 원자, 할로겐 원자, 탄소수 1 내지 6의 알킬기 또는 탄소수 6 내지 12의 아릴기이다.
  3. 제1항 또는 제2항에 있어서, 상기 에폭시 변성 폴리스티렌은 폴리스티렌에 글리시딜 (메타)아크릴레이트, 알릴글리시딜에테르, 및 2-메틸알릴글리시딜에테르 중 1종 이상을 포함하는 에폭시 화합물을 중합한 것을 특징으로 하는 열가소성 수지 조성물.
  4. 제3항에 있어서, 상기 에폭시 변성 폴리스티렌은 상기 에폭시 화합물의 함량이 0.5 내지 3 중량%인 것을 특징으로 하는 열가소성 수지 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 에폭시 변성 폴리스티렌은 글리시딜 (메타)아크릴레이트 변성 폴리스티렌을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 스티렌-에틸렌/부틸렌-스티렌 공중합체는 ASTM D1238에 의거하여, 200℃, 5 kgf 조건에서 측정한 용융흐름지수(Melt-flow Index: MI)가 약 10 내지 약 50 g/10분인 것을 특징으로 하는 열가소성 수지 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 에폭시 변성 폴리스티렌 및 상기 DOPO의 중량비가 약 1 : 0.1 내지 약 1 : 0.8인 것을 특징으로 하는 열가소성 수지 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ASTM D256에 의거하여 측정한 두께 1/8" 시편의 노치 아이조드 충격강도가 약 10 내지 약 20 kgf·cm/cm인 것을 특징으로 하는 열가소성 수지 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 ASTM D1238에 의거하여, 300℃, 1.2 kgf 조건에서 측정한 용융흐름지수(Melt-flow Index: MI)가 약 5 내지 약 10 g/10분인 것을 특징으로 하는 열가소성 수지 조성물.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 광택계를 사용하여, 반사각 75°에서 측정한 광택도가 약 50 내지 약 70 GU인 것을 특징으로 하는 열가소성 수지 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 SPDR(split post dielectric resonator) 방법을 이용하여, 3.1 GHz에서 측정한 2.5 mm × 50 mm × 90 mm 크기 시편의 유전율(Dk)이 약 2.6 내지 약 2.8인 것을 특징으로 하는 열가소성 수지 조성물.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 열가소성 수지 조성물은 SPDR(split post dielectric resonator) 방법을 이용하여, 3.1 GHz에서 측정한 2.5 mm × 50 mm × 90 mm 크기 시편의 유전 손실률(Df)이 약 0.004 내지 약 0.006인 것을 특징으로 하는 열가소성 수지 조성물.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 형성되는 것을 특징으로 하는 성형품.
PCT/KR2022/009194 2021-06-30 2022-06-28 열가소성 수지 조성물 및 이로부터 형성된 성형품 WO2023277506A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280044290.2A CN117545805A (zh) 2021-06-30 2022-06-28 热塑性树脂组合物以及由其形成的模制品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210085781A KR20230004024A (ko) 2021-06-30 2021-06-30 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR10-2021-0085781 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023277506A1 true WO2023277506A1 (ko) 2023-01-05

Family

ID=84691950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009194 WO2023277506A1 (ko) 2021-06-30 2022-06-28 열가소성 수지 조성물 및 이로부터 형성된 성형품

Country Status (3)

Country Link
KR (1) KR20230004024A (ko)
CN (1) CN117545805A (ko)
WO (1) WO2023277506A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080061813A (ko) * 2006-12-28 2008-07-03 제일모직주식회사 폴리카보네이트계 열가소성 수지 조성물
JP2012224754A (ja) * 2011-04-20 2012-11-15 Rikkyo Gakuin ポリフェニレンエーテルを含む樹脂組成物およびその製造方法
KR20140014372A (ko) * 2009-05-19 2014-02-06 알베마를 코포레이션 Dopo 유도체 난연제
KR20150078277A (ko) * 2013-12-30 2015-07-08 제일모직주식회사 난연성 열가소성 수지 조성물 및 이를 포함하는 성형품
KR20180136559A (ko) * 2016-05-26 2018-12-24 사빅 글로벌 테크놀러지스 비.브이. 전자 또는 전기통신 용도를 위한 열가소성 조성물 및 그에 따른 성형품

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080061813A (ko) * 2006-12-28 2008-07-03 제일모직주식회사 폴리카보네이트계 열가소성 수지 조성물
KR20140014372A (ko) * 2009-05-19 2014-02-06 알베마를 코포레이션 Dopo 유도체 난연제
JP2012224754A (ja) * 2011-04-20 2012-11-15 Rikkyo Gakuin ポリフェニレンエーテルを含む樹脂組成物およびその製造方法
KR20150078277A (ko) * 2013-12-30 2015-07-08 제일모직주식회사 난연성 열가소성 수지 조성물 및 이를 포함하는 성형품
KR20180136559A (ko) * 2016-05-26 2018-12-24 사빅 글로벌 테크놀러지스 비.브이. 전자 또는 전기통신 용도를 위한 열가소성 조성물 및 그에 따른 성형품

Also Published As

Publication number Publication date
KR20230004024A (ko) 2023-01-06
CN117545805A (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
WO2013115538A1 (ko) 비할로겐 난연 고강성 폴리카보네이트 수지 조성물
WO2013089500A1 (ko) 저경도 열가소성 고무 조성물 및 이를 포함하는 다이아프램
KR100771181B1 (ko) 폴리페닐렌 설파이드계 수지 조성물 및 플라스틱 성형품
WO2020197132A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2017116043A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2016108539A1 (ko) 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2023277506A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2013100288A1 (ko) 분지상 폴리카보네이트-폴리실록산 공중합체 및 그 제조방법
WO2023008769A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2014104484A1 (ko) 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품
WO2016195312A1 (ko) 폴리카보네이트 수지 및 이의 제조방법
WO2018117438A1 (ko) 수지 조성물 및 이로부터 제조된 성형품
WO2020138772A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2019107919A1 (ko) 수지 조성물 및 이로부터 제조된 성형품
KR100513976B1 (ko) 폴리페닐렌 설파이드 열가소성 수지 조성물
WO2021261718A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2022182013A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2018124817A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2019212222A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2021085841A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2019132591A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2014104743A1 (ko) 수지 조성물 및 이를 포함하는 금속박 적층체
WO2022124566A1 (ko) 폴리에테르케톤케톤을 포함하는 모바일 기기용 하우징 소재 및 이로 이루어진 모바일 기기용 하우징
WO2020004997A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2021125673A1 (ko) 경통 부재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833562

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280044290.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE