WO2023277356A1 - 폴리아믹산 수용액 조성물 및 폴리이미드 분말의 제조방법 - Google Patents

폴리아믹산 수용액 조성물 및 폴리이미드 분말의 제조방법 Download PDF

Info

Publication number
WO2023277356A1
WO2023277356A1 PCT/KR2022/007606 KR2022007606W WO2023277356A1 WO 2023277356 A1 WO2023277356 A1 WO 2023277356A1 KR 2022007606 W KR2022007606 W KR 2022007606W WO 2023277356 A1 WO2023277356 A1 WO 2023277356A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyamic acid
carbon atoms
polyimide
range
Prior art date
Application number
PCT/KR2022/007606
Other languages
English (en)
French (fr)
Inventor
원종찬
김윤호
박노균
소유진
김진수
박종민
유성미
강이영
박현진
하유미
정지윤
임현태
서은별
이지원
안현정
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210084720A external-priority patent/KR102644737B1/ko
Priority claimed from KR1020210084726A external-priority patent/KR102644738B1/ko
Priority claimed from KR1020210084721A external-priority patent/KR102621023B1/ko
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2023277356A1 publication Critical patent/WO2023277356A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present application relates to a polyamic acid aqueous solution composition, a polyamic acid manufacturing method, a polyimide manufacturing method, and a polyimide powder manufacturing method.
  • Polyimide is a polymer with high thermal stability. It has excellent mechanical strength, chemical resistance, weather resistance, and heat resistance as a material, and has physical property stability in a wide range of temperatures (-273 °C ⁇ 400 °C). In particular, it has electrical insulation, flexibility, and incombustibility, so its use in the electronic and optical fields is increasing.
  • polyimide synthesis is obtained by dehydration of polyamic acid obtained by condensation polymerization of aromatic dianhydride and aromatic diamine in an organic solvent.
  • This synthesis process may not be easy to synthesize due to the hydrolysis of aromatic dianhydride, which is vulnerable to moisture, during condensation polymerization in a solvent.
  • the main problems of polyamic acid synthesized in an organic system are controlling molecular weight and crosslinking reaction by initial rapid reaction, and the contamination problem of the organic solvent used and the expensive treatment cost problem to solve it are still problems to be solved. .
  • polyimide is accompanied by high-temperature heat treatment of 250 ° C. or more for sufficient drying and curing, which has caused another problem that limits the application of products vulnerable to heat.
  • the present application provides a polyamic acid aqueous solution composition capable of polymerizing polyamic acid in water rather than an organic solvent and capable of low-temperature curing, solving the problem of contamination with organic solvents and being applicable to products vulnerable to heat.
  • the present application provides a polyimide film that realizes a high imidation rate even when polyamic acid polymerized in water rather than an organic solvent is cured at a low temperature.
  • the present application also provides a method for producing polyimide powder, which is a one-pot process based on water-based polymerization and capable of controlling the particle size of the powder.
  • This application relates to a polyamic acid aqueous solution composition. More specifically, the present application relates to an aqueous polyamic acid composition that can be polymerized in water (water-based polymerization) and realizes a high imidation rate through low-temperature curing (also referred to as low-temperature imidation).
  • low-temperature curing means curing performed at a temperature relatively lower than a general curing temperature. For example, in this application, low-temperature curing is 250 It means curing below °C.
  • An exemplary aqueous polyamic acid composition may include a polyamic acid containing a diamine monomer and a dianhydride monomer as polymerized units; and an aqueous catalyst which is a pyridine derivative compound having at least one electron donor group.
  • an aqueous solution composition means a composition containing water as a solvent, and other solvents are not allowed.
  • Another exemplary polyamic acid aqueous solution composition is a polyamic acid containing a diamine monomer and a dianhydride monomer as polymerized units; and a water-based catalyst which is a pyridine derivative compound, and may have an imidation rate in the range of 70 to 99.9% upon thermal curing at 200°C.
  • the aqueous polyamic acid composition of the present application uses a pyridine derivative compound having at least one electron donor group as a water-based catalyst, enabling uniform polymerization of polyamic acid in water.
  • the electron-donating group may include an electron-donating element such as oxygen, nitrogen, sulfur, or phosphorus.
  • the electron donor group may be an oxygen anion (-O-), an alcohol (-OH), an ether (-OR), an amine group (-NH 2 , -NHR, or -NR 2 where R is an alkyl group) or an alkyl group. Including, but not limited to.
  • the water-based catalyst can form a salt with a carboxyl group of polyamic acid
  • polymerization of polyamic acid can be performed directly in water without an organic solvent, and high imidation rate can be exhibited during low-temperature curing.
  • the polyimide film according to the present application may have a lower limit of the imidization rate of 70% or more, 75% or more, 80% or more, 85% or more, 87% or more, 88% or more, 89% or more, or 90% or more.
  • the upper limit may be 99.9% or less, 99.5% or less, 99.4% or less, 99.3% or less, 99% or less, 98% or less, 97% or less, 96% or less, or 95% or less.
  • the imidization rate was analyzed by the Attenuated Total Reflectance (ATR) method of Bruker ALPHA-P Infrared Spectrometer (IR).
  • ATR Attenuated Total Reflectance
  • IR Infrared Spectrometer
  • the intensity of the imide bond calculated through IR analysis was expressed as a percentage, and the CN stretching (1375 cm -1 ) intensity of the fully imidized polyimide at 400 ° C. was used as a reference value, and the polyamic acid aqueous solution was heat-treated to 200 ° C.
  • the ratio of the prepared polyimide film to the CN stretching strength was expressed as a percentage.
  • the imidation rate can be calculated using Equation 1 below.
  • Imidization rate (%) ⁇ (1375 cm -1 ) 200 °C / (1510 cm -1 ) 200 °C ⁇ / ⁇ (1375 cm -1 ) 400 °C / (1510 cm -1 ) 400 °C ⁇
  • the boiling point of the water-based catalyst may be in the range of 50 °C to 500 °C.
  • the lower limit of the boiling point may be 55°C or higher, 60°C or higher, 65°C or higher, 70°C or higher, or 75°C or higher
  • the upper limit of the boiling point may be 450°C or lower, 400°C or lower, or 350°C or lower.
  • the pKa of the water-based catalyst varies depending on the type of electron donor, and for example, the pKa of the water-based catalyst may be in the range of pKa 0.01 to 100.
  • the lower pKa limit may be 0.05 or more, 0.1 or more, 0.3 or more, 0.5 or more, or 0.7 or more
  • the pKa upper limit may be 90 or less, 80 or less, 70 or less, 60 or less, 50 or less, 40 or less, 30 or less, 20 It may be less than or equal to 15.
  • the water-based catalyst may satisfy Formula 1 below.
  • R 1 to R 3 is an alkylamine group, a hydroxy group, an alkoxy group, a thiol group, a thiol ether group, an alkyl group, or a heterocyclic group.
  • the number of carbon atoms in the substituent is not particularly limited, but for example, an alkylamine group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a thiol ether group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms may be used.
  • the others may represent hydrogen.
  • Examples of the aqueous catalyst satisfying Formula 1 include 4-(methylamino)pyridine, 4-(dimethylamino)pyridine, 2-hydroxypyridine, 4-hydroxypyridine, 4-methoxypyridine, and 2-methoxypyridine. , 2,6-dimethoxypyridine, 2-ethoxypyridine, 4-mercaptopyridine, 2-mercaptopyridine, 4-(methylthio)pyridine, 2-(methylthio)pyridine), 4-methylpyridine, 2 -may be methylpyridine, 4-ethylpyridine, 2-ethylpyridine, 4-propylpyridine, 2,4,6-trimethylpyridine, 4-piperidinopyridine, 4-morpholinopyridine or 4-pyrrolidinopyridine there is.
  • the water-based catalyst may satisfy Chemical Formula 2 below.
  • R 4 and R 5 are a monoalkylamino group having 1 to 4 carbon atoms, a dialkylamino group having 1 to 4 carbon atoms, a hydroxy group, an alkoxy group having 1 to 4 carbon atoms, a thiol group, and a thiol having 1 to 4 carbon atoms.
  • An ether group, an alkyl group having 1 to 4 carbon atoms, a piperidino group, a morpholino group, or a pyrrolidino group preferably a monoalkylamino group having 1 to 4 carbon atoms, a dialkylamino group having 1 to 4 carbon atoms, a piperidino group, It is a morpholino group or a pyrrolidino group.
  • examples of the aqueous catalyst satisfying Formula 2 include 4-dimethylaminopyridine, 2-dimethylaminopyridine, 4-methylaminopyridine, 4-piperidinopyridine, 4-morpholinopyridine or 4-pyrrolidinopyridine.
  • composition of the present application may be subjected to aqueous polymerization and low-temperature curing through an aqueous catalyst satisfying Formula 1 and/or 2.
  • the water-based catalyst may be within the range of 0.5 to 5 times the equivalent of 1 equivalent of the carboxyl group in the polyamic acid.
  • the water-based catalyst is 0.55-fold equivalent or more, 0.6-fold equivalent or more, 0.7-fold equivalent or more, 0.8-fold equivalent or more, 0.9-fold equivalent or more, 1-fold equivalent or more, 1.5-fold equivalent relative to 1 equivalent of the carboxyl group in the polyamic acid. It may be more than or 2 times equivalent, and the upper limit may be 4.8 times equivalent or less, 4.6 times equivalent or less, 4.4 times equivalent or less, 4 times equivalent or less, or 3.5 times equivalent or less.
  • equivalent to carboxyl group in polyamic acid which defines the amount of the water-based catalyst, may mean the number (number of moles) of the water-based catalyst used for one carboxyl group in polyamic acid.
  • the polyamic acid composition may include 1 to 30% by weight or 2 to 20% by weight of the solid content based on the total weight.
  • the solid content of the polyamic acid composition it is possible to prevent an increase in manufacturing cost and process time in which a large amount of solvent must be removed during a curing process while controlling an increase in viscosity.
  • the aqueous polyamic acid composition of the present application is a composition subjected to water-based polymerization, and may not substantially contain an organic solvent.
  • substantially not included may mean that the organic solvent is included in less than 5% by weight, less than 3% by weight, less than 1% by weight, or 0% to 0.5% by weight.
  • a water-based polymerizable polyamic acid composition may be advantageous in terms of process and environment.
  • polyamic acid composition polyamic acid solution, polyamic acid aqueous solution composition, and polyimide precursor composition may be used in the same meaning.
  • curing and imidization may be used in the same meaning.
  • the dianhydride monomer that can be used for preparing the polyamic acid solution may be an aromatic tetracarboxylic dianhydride.
  • the dianhydride monomer includes at least one compound represented by Formula 3 below.
  • X is a substituted or unsubstituted tetravalent aliphatic ring group, a substituted or unsubstituted tetravalent heteroaliphatic ring group, a substituted or unsubstituted tetravalent aromatic ring group, or a substituted or unsubstituted tetravalent heteroaromatic ring group, and ,
  • the aliphatic ring group, the heteroaliphatic ring group, the aromatic ring group, or the heteroaromatic ring group exists alone;
  • a specific example of the compound represented by Formula 3 is a compound represented by Formula 4 below.
  • M in Formula 4 may be an alkylene group or an alkylidene group having at least one fluorine-substituted alkyl group as a substituent.
  • an alkyl group having 1 to 6 carbon atoms substituted with at least one fluorine may be a perfluoroalkyl group, specifically, a perfluoromethyl group.
  • the dianhydride monomer component may include at least one dianhydride monomer substituted with at least one fluorine.
  • aliphatic ring group may refer to an aliphatic ring group having 3 to 30 carbon atoms, 4 to 25 carbon atoms, 5 to 20 carbon atoms, and 6 to 16 carbon atoms, unless otherwise specified.
  • Specific examples of the tetravalent aliphatic ring group include, for example, a cyclohexane ring, a cycloheptane ring, a cyclodecane ring, a cyclododecane ring, a norbornane ring, an isobornane ring, an adamantane ring, and a cyclododecane ring. and a group obtained by removing 4 hydrogen atoms from a ring such as a ring or a dicyclopentane ring.
  • aromatic ring group may refer to an aromatic ring group having 4 to 30 carbon atoms, 5 to 25 carbon atoms, 6 to 20 carbon atoms, and 6 to 16 carbon atoms, unless otherwise specified. may be a single ring or a condensed ring.
  • tetravalent aromatic hydrocarbon ring group include groups obtained by removing four hydrogen atoms from a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, or a pyrene ring.
  • arylene group may mean a divalent organic group derived from the aromatic ring group.
  • heterocyclic group includes a heteroaliphatic ring group and a heteroaromatic ring group.
  • heteroaliphatic ring group may refer to a ring group in which at least one of the carbon atoms of the aliphatic ring group is replaced with one or more heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur, and phosphorus.
  • heteromatic ring group refers to a ring group in which at least one of the carbon atoms of the aromatic ring group is replaced with one or more heteroatoms selected from the group consisting of nitrogen, oxygen, sulfur, and phosphorus, unless otherwise specified. can mean
  • the heteroaromatic ring group may be a monocyclic ring or a condensed ring.
  • the aliphatic ring group, the heteroaliphatic ring group, the aromatic ring group, or the heteroaromatic ring group is each independently a halogen, a hydroxyl group, a carboxy group, a halogen-substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and a carbon number 1 It may be substituted with one or more substituents selected from the group consisting of 4 to 4 alkoxy groups.
  • single bond may mean a bond connecting both atoms without any atoms.
  • both aromatic rings may be directly connected to each other.
  • alkyl group has 1 to 30 carbon atoms, 1 to 25 carbon atoms, 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms. It may mean an alkyl group of.
  • the alkyl group may have a straight-chain, branched-chain or cyclic structure, and may be optionally substituted with one or more substituents.
  • the substituent may be, for example, one or more polar substituents composed of a halogen, a hydroxy group, an alkoxy group, a thiol group, or a thiol ether group.
  • alkenyl group has 2 to 30 carbon atoms, 2 to 25 carbon atoms, 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 8 carbon atoms.
  • 4 may mean an alkenyl group.
  • the alkenyl group may have a straight-chain, branched-chain or cyclic structure, and may be optionally substituted with one or more substituents.
  • the substituent may be, for example, one or more polar substituents composed of a halogen, a hydroxy group, an alkoxy group, a thiol group, or a thiol ether group.
  • alkynyl group has 2 to 30 carbon atoms, 2 to 25 carbon atoms, 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 8 carbon atoms.
  • 4 may mean an alkynyl group.
  • the alkynyl group may have a straight-chain, branched-chain or cyclic structure, and may be optionally substituted with one or more substituents.
  • the substituent may be, for example, one or more polar substituents composed of a halogen, a hydroxy group, an alkoxy group, a thiol group, or a thiol ether group.
  • alkylene group has 2 to 30 carbon atoms, 2 to 25 carbon atoms, 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 10 carbon atoms, or 2 to 10 carbon atoms It may mean an alkylene group of 2 to 8.
  • the alkylene group is a divalent organic group in which two hydrogens are removed from different carbon atoms, and may have a straight-chain, branched-chain, or cyclic structure, and may be optionally substituted with one or more substituents.
  • the substituent may be, for example, one or more polar substituents composed of a halogen, a hydroxy group, an alkoxy group, a thiol group, or a thiol ether group.
  • alkylidene group has 1 to 30 carbon atoms, 1 to 25 carbon atoms, 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 10 carbon atoms, or It may mean an alkylidene group having 1 to 8 carbon atoms.
  • the alkylidene group is a divalent organic group in which two hydrogens are removed from one carbon atom, and may have a straight-chain, branched-chain, or cyclic structure, and may be optionally substituted with one or more substituents.
  • the substituent may be, for example, one or more polar substituents composed of a halogen, a hydroxy group, an alkoxy group, a thiol group, or a thiol ether group.
  • alkoxy group has 1 to 30 carbon atoms, 1 to 25 carbon atoms, 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 8 carbon atoms.
  • 4 may mean an alkoxy group.
  • the alkoxy group may have a linear, branched or cyclic alkyl group, and the alkyl group may be optionally substituted with one or more substituents.
  • the substituent may be, for example, one or more polar substituents composed of a halogen, a hydroxy group, an alkoxy group, a thiol group, or a thiol ether group.
  • alkylamine group includes monoalkylamine (-NHR) or dialkylamine (-NR 2 ), where each R independently has 1 to 30 carbon atoms and 30 carbon atoms, unless otherwise specified. It may mean an alkyl group having 1 to 25 carbon atoms, 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkyl group may have a linear, branched or cyclic alkyl group, and may be optionally substituted with one or more substituents.
  • the substituent may be, for example, one or more polar substituents composed of a halogen, a hydroxy group, an alkoxy group, a thiol group, or a thiol ether group.
  • thiol ether group or “sulfide” means -SR, unless otherwise specified, where R each independently has 1 to 30 carbon atoms, 1 to 25 carbon atoms, 1 to 20 carbon atoms, and 1 to 20 carbon atoms. It may mean an alkyl group having 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkyl group may have a linear, branched or cyclic alkyl group, and may be optionally substituted with one or more substituents.
  • the substituent may be, for example, one or more substituents composed of a halogen, a hydroxy group, an alkoxy group, a thiol group, or a thiol ether group.
  • the aromatic tetracarboxylic dianhydride satisfying Formula 3 is pyromellitic dianhydride (or PMDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (or s- BPDA), 2,3,3',4'-biphenyltetracarboxylic dianhydride (or a-BPDA), oxydiphthalic dianhydride (or ODPA), diphenylsulfone-3,4,3' ,4'-tetracarboxylic dianhydride (or DSDA), bis(3,4-dicarboxyphenyl)sulfide dianhydride, 2,2-bis(3,4-dicarboxyphenyl)-1,1, 1,3,3,3-hexafluoropropane dianhydride, 2,3,3',4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-benzophenone tetra Carboxylic
  • the dianhydride monomers may be used alone or in combination of two or more, if necessary, but the present application considers bond dissociation energy, for example, pyromellitic dianhydride (PMDA), 3,3' , 4,4'-biphenyltetracarboxylic dianhydride (s-BPDA) or 2,3,3', 4'-biphenyltetracarboxylic dianhydride (a-BPDA) may be included. .
  • PMDA pyromellitic dianhydride
  • s-BPDA 4,4'-biphenyltetracarboxylic dianhydride
  • a-BPDA 2,3,3', 4'-biphenyltetracarboxylic dianhydride
  • diamine monomers that can be used in preparing the polyamic acid solution are aromatic diamines, and can be classified and exemplified as follows.
  • 1,4-diaminobenzene or para-phenylenediamine, PDA
  • 1,3-diaminobenzene 2,4-diaminotoluene
  • 2,6-diaminotoluene 3,5-diaminobenzo diamines having a relatively rigid structure as diamines having one benzene nucleus in structure, such as acid acid (or DABA);
  • 4,4'-diaminodiphenyl ether (or oxydianiline, ODA), diaminodiphenyl ether such as 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane (methylenediamine), 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl) ) -4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane , 3,3',5,5'-tetramethyl-4,4'-diaminodiphenylmethane, bis(4-aminophenyl)sulfide, 4,4'-diamino
  • the said diamine monomer can be used individually or in combination of 2 or more types as needed.
  • the polyamic acid composition of the present application may be a composition having low viscosity.
  • the polyamic acid composition of the present application may have a viscosity of 20,000 cps or less, 10,000 cps or less, or 6,000 cps or less, measured under conditions of a temperature of 25° C. and a shear rate of 30 s -1 .
  • the lower limit is not particularly limited, but may be 10 cps or more, 15 cps or more, 30 cps or more, 100 cps or more, 300 cps or more, 500 cps or more, or 1000 cps or more.
  • the viscosity may be measured using, for example, Haake's VT-550, and may be measured under conditions of a shear rate of 30/s, a temperature of 25°C, and a plate gap of 1 mm.
  • the present application can provide a precursor composition having excellent processability by adjusting the above viscosity range.
  • the polyamic acid composition may have a logarithmic viscosity of 0.1 or more or 0.2 or more measured at a temperature of 30° C. and a concentration of 0.5 g/100 mL (dissolved in water) based on its solid content concentration.
  • the upper limit is not particularly limited, but may be 5 or less, 3 or less, or 2.5 or less.
  • an appropriate amount of polyamic acid molecular weight can be controlled and fairness can be secured.
  • the polyamic acid composition of the present application has a weight average molecular weight after curing of 10,000 to 200,000 g/mol, 15,000 to 80,000 g/mol, 18,000 to 70,000 g/mol, 20,000 to 60,000 g/mol, 25,000 to 55,000 g /mol or within the range of 30,000 to 50,000 g/mol.
  • weight average molecular weight means a value in terms of standard polystyrene measured by GPC (Gel Permeation Chromatograph).
  • the cured product When the aqueous polyamic acid composition of the present application is prepared as a cured product, the cured product may exhibit excellent physical properties such as mechanical strength and heat resistance by satisfying various physical properties described below.
  • the cured product of the polyamic acid aqueous solution composition means polyimide.
  • the cured product of the polyamic acid aqueous solution composition may have a tensile strength in the range of 50 to 400 MPa according to ASTM D882. As the tensile strength of the cured product is adjusted within the above range, it exhibits excellent mechanical properties.
  • the cured product of the polyamic acid aqueous solution composition may have a 5% thermal decomposition temperature (Td) in the range of 400 to 700 °C or 450 to 650 °C measured using a thermogravimetric analyzer (TGA, TA instrument, Q5000, USA). there is. It does not decompose within such a range of thermal decomposition temperature and has excellent heat resistance properties.
  • Td thermal decomposition temperature
  • the method for preparing the aqueous polyamic acid composition may include preparing polyamic acid using a water-based catalyst that is a pyridine derivative compound.
  • the production method of the present application can prepare a polyamic acid capable of water-based polymerization and low-temperature curing by using the water-based catalyst. A detailed description of the water-based catalyst is omitted because it overlaps with the above description.
  • the method for producing polyimide includes preparing polyamic acid using a water-based catalyst which is a pyridine derivative compound; and preparing polyimide by thermally curing the polyamic acid at 250° C. or less.
  • the step may be thermally cured at less than 250°C, less than 230°C, or less than 210°C.
  • water-based catalyst forms a salt with a carboxyl group of polyamic acid
  • polyimide can be provided with a high imidation rate even when curing is performed at a low temperature.
  • the polyimide may be derived from the above-described polyamic acid aqueous solution composition.
  • the polyimide can be applied to various electric and electronic materials, and can be used, for example, as a binder for electrodes of the lithium battery.
  • a positive electrode plate and a negative electrode plate in a lithium battery are manufactured by mixing an active material, a conductive material, and a binder in a wet method.
  • the dry state must be excellent to facilitate the generation of electrical energy.
  • impurities such as moisture, oil, or gas are contained in the electrode plates, the action of polarity is irregular or poor depending on the content of moisture, oil, or impurities, so that rated energy cannot be generated.
  • drying of the electrode plate is a very important manufacturing process that influences the life of the battery.
  • polyimide of the present application is prepared by low-temperature imidation through the above-described polyamic acid aqueous solution composition, it is possible to solve the above problems that may appear at high temperatures.
  • the present application also provides a method for producing polyimide powder capable of controlling the particle size of the powder by a one-pot method based on aqueous polymerization.
  • An exemplary method for producing a polyimide powder includes preparing a polyamic acid by polymerizing a diamine monomer and a dianhydride monomer in an aqueous solution containing an aqueous catalyst which is a pyridine derivative compound; and preparing polyimide powder by chemically imidizing the prepared polyamic acid.
  • a water-based catalyst which is a pyridine derivative compound, serves as a catalyst for polyamic acid polymerization and chemical imidation, so that polyimide powder can be produced in a one-pot process.
  • the aqueous solution includes water as a solvent, and may contain substantially no organic solvent or less than 5% by weight of the organic solvent.
  • the chemical imidization reaction may be performed by reacting polyamic acid with a dehydrating agent.
  • the polyamic acid may be precipitated in the form of polyimide powder through a chemical imidization reaction with a dehydrating agent.
  • a dehydrating agent Various known materials may be used as the dehydrating agent, and for example, anhydrides such as acetic anhydride, propionic anhydride, n-butyric anhydride or benzoic anhydride may be used.
  • the content of the dehydrating agent may be within the range of 0.5 to 3 times the equivalent with respect to 1 equivalent of the carboxyl group in the polyamic acid.
  • the content of the dehydrating agent may be 0.55-fold equivalent or more, 0.6-fold equivalent or more, 0.7-fold equivalent or more, 0.8-fold equivalent or more, 0.83-fold equivalent or more, or 0.93-fold equivalent or more with respect to 1 equivalent of the carboxyl group in the polyamic acid
  • the upper limit may be 2.8-fold equivalent or less, 2.6-fold equivalent or less, 2.4-fold equivalent or less, 2.2-fold equivalent or less, 2.0-fold equivalent or less, 1.8-fold equivalent or less, 1.6-fold equivalent or less, or 1.4-fold equivalent or less.
  • “equivalent weight for carboxyl groups in polyamic acid” defining the amount of dehydrating agent may mean the number (number of moles) of dehydrating agents used for one carboxyl group in polyamic acid.
  • Preparing the polyimide powder may include refluxing a chemical imidation reaction product of polyamic acid in a temperature range of 100 to 150° C. for 1 to 5 hours; and thermally imidizing and drying the refluxed product at less than 500°C, for example, at 300 to 490°C.
  • the chemical imidation reaction of polyamic acid is refluxed for 1 to 4 hours, 1 to 3 hours, or 1.5 to 2.5 hours within a temperature range of 100 to 140 ° C, 100 to 130 ° C, or 110 to 125 ° C. can do.
  • the refluxing step is a step of preventing vaporization of the solvent and controlling the temperature, and through this step, the imidization rate can be adjusted.
  • polyimide powder as a final product may be provided by sequentially performing the reflux, thermal imidization, and drying.
  • the present application may include controlling the particle size of the polyimide powder by adjusting the content of the aqueous catalyst and/or the polymerization reaction temperature.
  • the particle size of the polyimide powder can be controlled to be large by adjusting the content of the water-based catalyst to a low level, and conversely, the particle size of the polyimide powder can be controlled to be small by adjusting the content of the water-based catalyst to a high level.
  • the particle size of the polyimide powder can be controlled to be small by adjusting the polymerization reaction temperature to be high, and conversely, the particle size of the polyimide powder can be controlled to be large by adjusting the polymerization reaction temperature to be low.
  • the step may be appropriately adjusted within the range of the content of the aqueous catalyst and polymerization reaction temperature described below to obtain a desired particle size.
  • the content of the water-based catalyst may be within the range of 0.5 to 5.0 times the equivalent with respect to 1 equivalent of dianhydride in the polyamic acid.
  • the water-based catalyst may be 0.55-fold equivalent or more, 0.6-fold equivalent or more, 0.7-fold equivalent or more, 0.8-fold equivalent or more, 0.83-fold equivalent or more, or 0.93-fold equivalent or more with respect to 1 equivalent of dianhydride in the polyamic acid.
  • the upper limit may be 4.8-fold equivalent or less, 4.6-fold equivalent or less, 4.4-fold equivalent or less, 4.2-fold equivalent or less, or 4.0-fold equivalent or less.
  • equivalent to dianhydride in polyamic acid defining the amount of the aqueous catalyst may mean the number (number of moles) of the aqueous catalyst used for one dianhydride in the polyamic acid.
  • the average particle diameter of the polyimide powder finally obtained in the present application may be in the range of 10 to 1000 ⁇ m.
  • the lower limit of the average particle diameter may be, for example, 100 ⁇ m or more, 300 ⁇ m or more, or 400 ⁇ m or more, and the upper limit may be 900 ⁇ m or less, 800 ⁇ m or less, or 700 ⁇ m.
  • the water-based catalyst may use the compound of Formula 1 or Formula 2 above.
  • Detailed descriptions related to Chemical Formula 1 or Chemical Formula 2 will be omitted below because they overlap with the above description.
  • the water-based catalyst satisfying Formula 1 and/or 2 may simultaneously perform a polymerization reaction catalyst and an imidation catalyst of polyamic acid, and thus, the manufacturing method of the present application provides polyimide powder in a one-pot process.
  • a dianhydride monomer that can be used in the preparation of polyamic acid may be an aromatic tetracarboxylic dianhydride.
  • the dianhydride monomer includes at least one compound represented by Chemical Formula 3 or Chemical Formula 4. Detailed descriptions related to Chemical Formula 3 or Chemical Formula 4 will be omitted below because they overlap with those described above.
  • the diamine monomer that can be used in preparing the polyamic acid solution is an aromatic diamine, and specific examples of the aromatic diamine containing 1 to 4 benzene nuclei are as described above.
  • the manufacturing method may include manufacturing a polyimide molded article by processing the polyimide powder manufactured by the above-described method. For example, the processing may be performed by heating and/or pressurizing.
  • the present application is a first heating step of putting the polyimide powder in a mold and heating it for 5 minutes to 30 minutes within a temperature range of 200 to 600 ° C, a temperature of 300 to 500 ° C, or a temperature of 350 to 450 ° C; a pressurization step of pressurizing at 1 to 100 MPa, 5 to 50 MPa, or 10 to 20 MPa for 1 to 10 minutes or 1 to 5 minutes; and a second heating step of heating within a temperature range of 300 to 1000°C, 350 to 800°C, or 400 to 600°C for 1 to 10 minutes in sequence to process the polyimide powder.
  • the polyimide powder may have an average particle diameter in the range of 1 to 1000 ⁇ m, 5 to 800 ⁇ m, or 10 to 500 ⁇ m.
  • the polyimide powder may have a 5% thermal decomposition temperature (Td) in the range of 400 to 700 °C or 450 to 650 °C as measured using a thermogravimetric analyzer (TGA, TA instrument Q5000, USA).
  • the present application relates to a polyimide molded article manufactured according to the method for manufacturing a polyimide molded article described above.
  • the molded article exhibits excellent physical properties such as mechanical strength and heat resistance, and may specifically satisfy the following physical properties.
  • the 5% thermal decomposition temperature (Td) measured using a thermogravimetric analyzer may be in the range of 400 to 700 °C, or 450 to 650 °C.
  • the coefficient of thermal expansion (CTE) measured using a mechanical analysis method may be within the range of 10 to 100 ppm / ° C, 20 to 90 ppm / ° C, or 30 to 80 ppm / ° C.
  • the tensile strength according to ASTM D1708 may be within the range of 1 to 100 MPa, 5 to 80 MPa, or 10 to 60 MPa.
  • the molded article exhibits excellent mechanical properties as the tensile strength is adjusted within the above range.
  • the present application provides an aqueous solution composition of polyamic acid capable of polymerizing polyamic acid in water instead of an organic solvent and curing at a low temperature with a high imidation rate.
  • the method for producing polyimide powder according to the present application is based on water-based polymerization, it solves the contamination problem of organic solvents and increases process convenience as it is performed in a one-pot process, and also, It has the advantage of being able to control the particle size of the powder.
  • 1 is a graph showing the results of an imidization rate experiment according to an embodiment of the present application.
  • Figure 2 is a graph showing the relationship between the content of the aqueous catalyst and the particle size.
  • 3 is a graph showing the relationship between polymerization reaction temperature and particle size.
  • Example 1A Polyamic acid aqueous solution composition
  • the obtained polyamic acid was cast on a glass substrate with a bar coater, and after defoaming and drying for 2 hours at 25 ° C. in a vacuum oven, 80 ° C. for 30 minutes, 120 ° C. for 30 minutes, 180 ° C. for 30 minutes, 200 ° C. For 30 minutes, stepwise thermal imidization was performed to prepare a polyimide film having a thickness of 25 ⁇ m.
  • polyamic acid aqueous solution compositions and polyimide films of various Examples and Comparative Examples were prepared in the same manner as in Example 1A according to the compositions shown in Table 1 (provided that the amount of the aqueous catalyst added in Examples and Comparative Examples differs from the carboxyl group). It was 2.5 equivalents compared to).
  • Comparative Example 1A is an example in which polyamic acid was polymerized in an organic solvent, and in the case of Comparative Example 3A, polyamic acid was polymerized in water, but the imidation rate at 200 ° C was low. And, Comparative Example 2A did not polymerize into polyamic acid in water.
  • Examples 2A to 21A were water-based polyamic acid polymerization, and as a result of heat-curing the polymerized polyamic acid at 200 ° C., it was confirmed that polyimide was obtained with a high imidation rate.
  • the polyamic acid compositions prepared in Examples and Comparative Examples were diluted to a concentration of 0.5 g/dl (solvent: water) based on the solid content concentration.
  • the flow time (T1) of the diluent was determined using a Cannon-Fenske viscometer No. 30 at 30°C. It was measured using 100.
  • the logarithmic viscosity was calculated by the following formula using the flow time (T 0 ) of the blank water, and the results are shown in Table 1 above.
  • Imidation rates of some examples and comparative examples were analyzed by the Attenuated Total Reflectance (ATR) method of Bruker ALPHA-P Infrared Spectrometer (IR).
  • ATR Attenuated Total Reflectance
  • IR Infrared Spectrometer
  • the intensity of the imide bond calculated through IR analysis was expressed as a percentage, and the CN stretching (1375 cm -1 ) intensity of the fully imidized polyimide at 400 ° C was used as a reference value, and the polyamic acid aqueous solution of each Example or Comparative Example
  • the ratio with the CN stretching strength of the polyimide prepared by heat treatment at 200 °C was expressed as a percentage.
  • the imidation rate was calculated using the following formula, and the results are shown in FIG. 1 and Table 2.
  • Imidization rate (%) ⁇ (1375 cm -1 ) 200 °C / (1510 cm -1 ) 200 °C ⁇ / ⁇ (1375 cm -1 ) 400 °C / (1510 cm -1 ) 400 °C ⁇
  • Example 1 is a graph of imidation rate results of Example 1. It was confirmed from FIG. 1 that the polyamic acid aqueous solution composition according to Example 1 stably exhibits a high imidation rate at low temperature curing.
  • modulus and tensile strength were measured by the ASTM D-882 method using Instron 5564 UTM equipment.
  • the cross head speed at this time was measured under the condition of 50 mm/min, and the results are shown in Table 2 below.
  • thermogravimetric analysis Q5000 model was used, and polyimide films (molded articles) of some examples and comparative examples were heated up to 800 ° C at a rate of 10 ° C / min under a nitrogen atmosphere, resulting in a 5% weight loss. The temperature was measured, and the results are shown in Table 2 below.
  • the polyimide powder was washed, imidized and dried at 400 °C.
  • the dried polyimide powder was placed in a mold and heated at 300° C. for 10 minutes, then pressure was applied at 20 MPa for 2 minutes and heated at 450° C. for 5 minutes to obtain a molded polyimide product.
  • polyimide powder and polyimide molded articles of various Examples and Comparative Examples were prepared in the same manner as in Example 1B according to the composition and reaction temperature conditions shown in Table 3.
  • the solid content of the polyamic acid composition prepared in Examples and Comparative Examples was 10wt%, and the physical properties of these were evaluated by an experimental example of the method described below.
  • thermogravimetric analysis Q5000 model was used, and the polyimide molded article was heated up to 800 °C at a rate of 10 °C/min under a nitrogen atmosphere to measure the temperature at which 5% weight loss occurs.
  • the results are as follows. Table 4 shows.
  • thermomechanical analysis method TMA, TA instrument, Q400
  • the measurement temperature range was 280 °C
  • the temperature increase rate was 10 °C / min
  • the force to pull the molded product at this time was set to 0.05 N, and the result is shown in Table 4 below.
  • modulus and tensile strength were measured by the ASTM D-1708 method using Instron 5564 UTM equipment.
  • the cross head speed at this time was measured under the condition of 5 mm/min, and the results are shown in Table 4 below.
  • FIG. 2 is a graph showing the relationship between the content of the aqueous catalyst and the particle size
  • FIG. 3 is a graph showing the relationship between the polymerization reaction temperature and the particle size.
  • A is Example 1B
  • B is Example 2B
  • C is Example 3B
  • D is Example 4B
  • E is Example 5B
  • F is Example 6B
  • G is Example 7B
  • H is the result of Example 8B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 출원은 유기 용매가 아닌 물에서 폴리아믹산 중합 가능할 뿐 아니라, 저온 경화 시 높은 이미드화율을 구현하는 폴리아믹산 수용액 조성물을 제공한다.

Description

폴리아믹산 수용액 조성물 및 폴리이미드 분말의 제조방법
관련 출원들과의 상호 인용
본 출원은 2021년 06월 29일자 한국 특허 출원 제10-2021-0084720호, 2021년 06월 29일자 한국 특허 출원 제10-2021-0084721호 및 2021년 06월 29일자 한국 특허 출원 제10-2021-0084726호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 출원은 폴리아믹산 수용액 조성물, 폴리아믹산 제조 방법, 폴리이미드 제조 방법 및 폴리이미드 분말의 제조방법에 관한 것이다.
5G 이동통신과 사물인터넷 (IoT)시대의 도래로 다기능, 소형화, 고집적 기능성 소재가 요구됨에 따라 전기전자용 고내열 소재로서 폴리이미드 고분자가 주목받고 있다.
폴리이미드는 높은 열적 안정성을 가진 고분자로 물질로 우수한 기계적 강도, 내화학성, 내후성, 내열성을 가지고 있으며 광범위한 온도 (-273℃ ~ 400℃)에서의 물성 안정성을 갖는다. 특히 전기절연성, 유연성, 불연성을 가지고 있어 전자 및 광학 분야에 그 활용이 증가하고 있다.
통상적으로 폴리이미드 합성은 유기 용매하에서 방향족 이무수물(dianhydride)과 방향족 디아민(diamine)을 축중합시켜 얻어진 폴리아믹산의 탈수화에 의해 얻어진다. 이 합성 공정은 용매 하에서 축중합 시, 수분에 취약한 방향족 이무수물의 가수분해 의해 합성이 용이 하지 않을 수 있다. 이로 인해 유기계에서 합성된 폴리아믹산은 분자량 제어와 초기 빠른 반응에 의한 가교 반응을 제어하는 것이 주요 문제이고, 사용한 유기 용매가 갖는 오염 문제 및 이를 해결하기 위한 비싼 처리 비용 문제는 여전히 해결해야 하는 과제이다.
또한, 폴리이미드는 충분한 건조 및 경화를 위하여 250℃ 이상의 고온 열처리가 수반되는데, 이는 열에 취약한 제품 적용을 제한하는 또 다른 문제를 야기하였다.
본 출원은 유기 용매가 아닌 물에서 폴리아믹산 중합 가능할 뿐 아니라, 저온 경화가 가능함에 따라, 유기 용매가 갖는 오염 문제를 해결하고, 열에 취약한 제품 적용이 가능한 폴리아믹산 수용액 조성물을 제공한다.
본 출원은 유기 용매가 아닌 물에서 중합된 폴리아믹산을 저온 경화시킴에도 높은 이미드화율을 구현하는 폴리이미드 필름을 제공한다.
본 출원은 또한 수계 중합을 기반으로 한 원-포트(one-pot) 공정이고, 분말의 입경 제어가 가능한 폴리이미드 분말의 제조 방법을 제공한다.
A. 폴리아믹산 수용액 조성물
본 출원은 폴리아믹산 수용액 조성물에 관한 것이다. 보다 상세하게 본 출원은 물에서 중합 (수계 중합) 가능하고, 저온 경화(또는 저온 이미드화라고도 함)로 높은 이미드화율을 구현하는 폴리아믹산 수용액 조성물에 관한 것이다. 일반적으로 알려진 폴리이미드의 경화는 250℃ 초과하는 온도에서 수행하며, 본 출원에서 저온 경화는 일반적인 경화 온도보다 상대적으로 낮은 온도에서 수행하는 경화를 의미하며, 예를 들어, 본 출원에서 저온 경화는 250℃ 이하에서 경화를 의미한다.
예시적인 폴리아믹산 수용액 조성물은 디아민 단량체 및 디안하이드라이드 단량체를 중합 단위로 포함하는 폴리아믹산; 및 적어도 하나의 전자 주게 그룹을 갖는 피리딘 유도체 화합물인 수계 촉매를 포함한다. 또한, 본 출원에서 수용액 조성물은 용매로서 물을 포함하는 조성물을 의미하며, 이외 다른 용매는 허용하지 않는다.
다른 예시적인 폴리아믹산 수용액 조성물은 디아민 단량체 및 디안하이드라이드 단량체를 중합 단위로 포함하는 폴리아믹산; 및 피리딘 유도체 화합물인 수계 촉매를 포함하고, 200℃에서 열경화 시 이미드화율이 70 내지 99.9%의 범위 내일 수 있다.
본 출원의 폴리아믹산 수용액 조성물은 상기와 같이 적어도 하나의 전자 주게 그룹을 갖는 피리딘 유도체 화합물을 수계 촉매로 사용함에 따라, 물에서 폴리아믹산의 균일한 중합이 가능하다. 상기에서 전자 주게 그룹은 산소, 질소, 황, 인 등의 전자 주게가 가능한 원소를 포함할 수 있다. 예를 들어 전자 주게 그룹은 산소 음이온(-O-), 알코올(-OH), 에테르(-OR), 아민기(-NH2, -NHR, 또는 -NR2이되, 여기서 R은 알킬기) 또는 알킬기를 포함하나 이에 제한되지 않는다.
또한 상기 수계 촉매가 폴리아믹산의 카르복실기와 염을 형성할 수 있어, 유기 용매 없이 물에서 직접 폴리아믹산의 중합이 가능할 뿐 아니라, 저온 경화 시 높은 이미드화율을 나타낼 수 있다. 예를 들어, 본 출원에 따른 폴리이미드 필름은 이미드화율의 하한이 70% 이상, 75% 이상, 80% 이상, 85% 이상, 87% 이상, 88% 이상, 89% 이상 또는 90% 이상일 수 있고, 상한은 99.9% 이하, 99.5% 이하, 99.4% 이하, 99.3% 이하, 99% 이하, 98% 이하, 97% 이하, 96% 이하, 또는 95% 이하일 수 있다.
상기 이미드화율은 Bruker ALPHA-P Infrared Spectrometer (IR)의 Attenuated Total Reflectance (ATR) 방법으로 분석하였다. IR 분석을 통해 계산된 이미드 결합의 세기를 백분율로 나타내었으며, 400 ℃에서 완전 이미드화된 폴리이미드의 C-N 스트레칭 (1375 cm-1) 세기를 기준값으로 하고, 폴리아믹산 수용액을 200℃까지 열처리하여 제조된 폴리이미드 필름의 C-N 스트레칭 세기와의 비를 백분율로 나타내었다. 구체적으로, 상기 이미드화율은 하기의 식 1을 이용해 계산할 수 있다.
[식 1]
이미드화율(%) = {(1375cm-1)200℃/(1510cm-1)200℃}/{(1375cm-1)400℃/(1510 cm-1)400℃}
하나의 예시에서, 상기 수계 촉매의 비점은 50℃ 내지 500℃의 범위 내일 수 있다. 예를 들어, 상기 비점의 하한은 55℃ 이상, 60℃ 이상, 65℃ 이상, 70℃ 이상, 또는 75℃ 이상일 수 있고, 상기 비점의 상한은 450℃ 이하, 400℃ 이하, 또는 350℃ 이하일 수 있다. 상기 비점을 만족하는 수계 촉매는 저온에서 우수한 촉매 활성을 나타낸다.
일 구체예에서, 상기 수계 촉매의 pKa는 전자 주게의 종류에 따라 다양하게 나타나며, 예를 들어, 상기 수계 촉매의 pKa는 pKa 0.01 내지 100의 범위 내일 수 있다. 예를 들면, 상기 pKa 하한은 0.05 이상, 0.1 이상, 0.3 이상, 0.5 이상 또는 0.7 이상일 수 잇고, pKa 상한은 90 이하, 80 이하, 70 이하, 60 이하, 50 이하, 40 이하, 30 이하, 20 이하 또는 15 이하일 수 있다.
하나의 예시에서, 상기 수계 촉매는 하기 화학식 1을 만족할 수 있다.
[화학식 1]
Figure PCTKR2022007606-appb-img-000001
상기 화학식 1에서, 상기 R1 내지 R3 중 적어도 하나는 알킬아민기, 히드록시기, 알콕시기, 티올기, 티올에테르기, 알킬기 또는 헤테로 고리기이다. 상기 치환기의 탄소수는 특별히 제한되지 않으나, 예를 들어 탄소수 1 내지 4의 알킬아민기, 탄소수 1 내지 4의 알콕시기, 탄소수 1 내지 4의 티올에테르기, 또는 탄소수 1 내지 4의 알킬기를 사용할 수 있다. 또한 R1 내지 R3 중 1개 또는 2개가 상기 정의된 치환기의 경우 나머지는 수소를 나타낼 수 있다.
상기 화학식 1을 만족하는 수계 촉매의 예로는 4-(메틸아미노)피리딘, 4-(디메틸아미노)피리딘, 2-히드록시피리딘, 4-히드록시피리딘, 4-메톡시피리딘, 2-메톡시피리딘, 2,6-디메톡시피리딘, 2-에톡시피리딘, 4-머캅토피리딘, 2-머캅토피리딘, 4-(메틸티오)피리딘, 2-(메틸티오)피리딘), 4-메틸피리딘, 2-메틸피리딘, 4-에틸피리딘, 2-에틸피리딘, 4-프로필피리딘, 2,4,6-트리메틸피리딘, 4-피페리디노피리딘, 4-모르폴리노피리딘 또는 4-피롤리디노피리딘일 수 있다.
또 하나의 예시에서, 상기 수계 촉매는 하기 화학식 2를 만족할 수 있다.
[화학식 2]
Figure PCTKR2022007606-appb-img-000002
상기 화학식 2에서, R4 및 R5 중 적어도 하나는 탄소수 1 내지 4의 모노알킬아미노기, 탄소수 1 내지 4의 디알킬아미노기, 히드록시기, 탄소수 1 내지 4의 알콕시, 티올기, 탄소수 1 내지 4의 티올에테르기, 탄소수 1 내지 4의 알킬기, 피페리디노기, 모르폴리노기, 또는 피롤리디노기이고, 바람직하게는 탄소수 1 내지 4의 모노알킬아미노기, 탄소수 1 내지 4의 디알킬아미노기, 피페리디노기, 모르폴리노기, 또는 피롤리디노기이다.
본 출원의 구체예에서, 상기 화학식 2를 만족하는 수계 촉매의 예로는 4-디메틸아미노피리딘, 2-디메틸아미노피리딘, 4-메틸아미노피리딘, 4-피페리디노피리딘, 4-모르폴리노피리딘 또는 4-피롤리디노피리딘일 수 있다.
본 출원의 조성물은 상기와 같이 화학식 1 및/또는 2를 만족하는 수계 촉매를 통해 수계 중합 및 저온 경화가 가능할 수 있다.
본 출원의 구체예에서, 상기 수계 촉매는 폴리아믹산 내의 카르복실기 1 당량에 대해 0.5 내지 5배 당량 범위 내일 수 있다. 하나의 예시에서, 상기 수계 촉매는 상기 폴리아믹산 내의 카르복실기 1 당량에 대해 0.55배 당량 이상, 0.6배 당량 이상, 0.7배 당량 이상, 0.8배 당량 이상, 0.9배 당량 이상 1배 당량 이상, 1.5배 당량 이상 또는 2배 당량 이상일 수 있고, 또한, 상한은 4.8배 당량 이하, 4.6배 당량 이하, 4.4배 당량 이하, 4배 당량 이하 또는 3. 5배 당량 이하일 수 있다.
본 명세서에서, 수계 촉매의 양을 규정하는 "폴리아믹산 내의 카르복실기에 대한 당량" 이란, 폴리아믹산 내의 카르복실기 1 개에 대해 사용된 수계 촉매의 개수 (몰수)를 의미할 수 있다.
하나의 구체적인 예에서, 상기 폴리아믹산 조성물은 전체 중량을 기준으로 고형분을 1 내지 30 중량% 또는 2 내지 20 중량% 포함할 수 있다. 본 출원은 상기 폴리아믹산 조성물의 고형분 함량을 조절함으로써, 점도 상승을 제어하면서 경화 과정에서 다량의 용매를 제거해야 하는 제조 비용과 공정 시간 증가를 방지할 수 있다.
본 출원의 폴리아믹산 수용액 조성물은 수계 중합되는 조성물로서, 유기 용매를 실질적으로 포함하지 않을 수 있다. 본 명세서에서 실질적으로 포함하지 않는다는 의미는 유기 용매가 5 중량% 미만, 3 중량% 미만, 1 중량% 미만 또는 0 중량% 내지 0.5 중량%으로 포함됨을 의미할 수 있다. 수계 중합 가능한 폴리아믹산 조성물은 공정 측면 및 환경적인 측면에서 유리할 수 있다.
본 명세서에서 용어 폴리아믹산 조성물과 폴리아믹산 용액, 폴리아믹산 수용액 조성물 및 폴리이미드 전구체 조성물은 동일한 의미로 사용될 수 있다. 또한 본 명세서에서 용어 경화와 이미드화는 동일한 의미로 사용될 수 있다.
폴리아믹산 용액의 제조에 사용될 수 있는 디안하이드라이드 단량체는 방향족 테트라카르복실릭 디안하이드라이드일 수 있다. 예를 들면, 상기 디안하이드라이드 단량체는 하기 화학식 3으로 표시되는 화합물을 적어도 하나 이상 포함한다.
[화학식 3]
Figure PCTKR2022007606-appb-img-000003
상기 X는 치환 또는 비치환된 4가의 지방족 고리기, 치환 또는 비치환된 4가의 헤테로 지방족 고리기, 치환 또는 비치환된 4가의 방향족 고리기, 또는 치환 또는 비치환된 4가의 헤테로 방향족 고리기이고,
상기 지방족 고리기, 상기 헤테로 지방족 고리기, 상기 방향족 고리기 또는 상기 헤테로 방향족 고리기는 단독으로 존재하거나;
서로 접합되어 축합고리를 형성하거나; 또는
단일결합, 치환 또는 비치환된 알킬렌기, 치환 또는 비치환된 알킬리덴기, 치환 또는 비치환된 알케닐렌기, 치환 또는 비치환된 알키닐렌기, 치환 또는 비치환된 아릴렌기, -O-, -S-, -C(=O)-, -S(=O)2- 및 -Si(Ra)2-로 이루어진 군에서 선택된 2가의 치환기를 하나 이상 포함하는 연결기에 의해 연결되어 있고, 여기서 Ra는 수소 또는 알킬기이다.
상기 화학식 3의 화합물의 구체 예는 하기 화학식 4로 표시되는 화합물이다.
[화학식 4]
Figure PCTKR2022007606-appb-img-000004
상기 M은 단일결합, 알킬렌기, 알킬리덴기, -O-, -S-, -C(=O)-, 및 -S(=O)2-를 포함하는 군 중에서 적어도 하나 이상을 포함하고, 상기 M은 불소 및 알킬기를 포함하는 적어도 하나 이상의 치환기로 치환되거나 비치환된다. 화학식 4의 M은 적어도 하나 이상의 불소로 치환된 알킬기를 치환기로 갖는 알킬렌기 또는 알킬리덴기일 수 있다. 일 예로서, 적어도 하나 이상의 불소로 치환된 탄소수 1 내지 6의 알킬기는 퍼플루오르알킬기일 수 있으며, 구체적으로, 퍼플루오르메틸기일 수 있다. 또 다른 예시에서, 디안하이드라이드 단량체 성분은 적어도 하나 이상의 불소로 치환된 디안하이드라이드 단량체를 적어도 하나 이상 포함할 수 있다.
본 명세서에서 용어 「지방족 고리기」는, 특별히 달리 규정하지 않는 한, 탄소수 3 내지 30, 탄소수 4 내지 25, 탄소수 5 내지 20, 탄소수 6 내지 16의 지방족 고리기를 의미할 수 있다. 4가의 지방족 고리기의 구체예로는, 예를 들어, 시클로헥산 고리, 시클로헵탄 고리, 시클로데칸 고리, 시클로도데칸 고리, 노르보르난 고리, 이소보르난 고리, 아다만탄 고리, 시클로도데칸 고리, 디시클로펜탄 고리 등의 고리로부터 수소 원자를 4 개 제거한 기를 들 수 있다.
본 명세서에서 용어 「방향족 고리기」는, 특별히 달리 규정하지 않는 한, 탄소수 4 내지 30, 탄소수 5 내지 25, 탄소수 6 내지 20, 탄소수 6 내지 16의 방향족 고리기를 의미할 수 있다, 상기 방향족 고리로는, 단고리여도 되고 축합 고리여도 된다. 4 가의 방향족 탄화수소 고리기로는, 예를 들어, 벤젠 고리, 나프탈렌 고리, 안트라센 고리, 페난트렌 고리, 페릴렌 고리, 테트라센 고리, 또는 피렌 고리로부터 수소원자를 4 개 제거한 기를 들 수 있다.
본 명세서에서 용어 「아릴렌기」는, 상기 방향족 고리기로부터 유도된 2가의 유기기를 의미할 수 있다.
본 명세서에서 용어 「헤테로 고리기」는 헤테로 지방족 고리기 및 헤테로 방향족 고리기를 포함한다.
본 명세서에서 용어 「헤테로 지방족 고리기」는 상기 지방족 고리기의 탄소원자 중 적어도 하나가 질소, 산소, 황 및 인으로 이루어진 군에서 선택된 하나 이상의 헤테로원자로 대체된 고리기를 의미할 수 있다.
본 명세서에서 용어 「헤테로 방향족 고리기」는, 특별히 달리 규정하지 않는 한, 상기 방향족 고리기의 탄소원자 중 적어도 하나가 질소, 산소, 황 및 인으로 이루어진 군에서 선택된 하나 이상의 헤테로원자로 대체된 고리기를 의미할 수 있다. 상기 헤테로 방향족 고리기로는, 단고리여도 되고 축합 고리여도 된다.
상기 지방족 고리기, 상기 헤테로 지방족 고리기, 상기 방향족 고리기 또는 상기 헤테로 방향족 고리기는, 각각 독립적으로 할로겐, 하이드록시기, 카르복시기, 할로겐으로 치환되거나 비치환된 탄소수 1 내지 4의 알킬기, 및 탄소수 1 내지 4의 알콕시기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환될 수 있다.
본 명세서에서 용어 「단일 결합」은, 어떠한 원자 없이 양쪽 원자를 잇는 결합을 의미할 수 있다. 예를 들면, 상기 화학식 4에서 M이 단일 결합인 경우, 양쪽 방향족 고리가 서로 직접 연결될 수 있다.
본 명세서에서 용어 「알킬기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 30, 탄소수 1 내지 25, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 상기 알킬기는 직쇄형, 분지쇄형 또는 고리형 구조를 가질 수 있으며, 임의적으로 하나 이상의 치환기에 의해서 치환되어 있을 수 있다. 상기 치환기는 예를 들어, 할로겐, 히드록시기, 알콕시기, 티올기, 또는 티올에테르기로 이루어진 하나 이상의 극성 치환기 등이 예시될 수 있다.
본 명세서에서 용어 「알케닐기」는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 30, 탄소수 2 내지 25, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기를 의미할 수 있다. 상기 알케닐기는 직쇄형, 분지쇄형 또는 고리형 구조를 가질 수 있으며, 임의적으로 하나 이상의 치환기에 의해서 치환되어 있을 수 있다. 상기 치환기는 예를 들어, 할로겐, 히드록시기, 알콕시기, 티올기, 또는 티올에테르기로 이루어진 하나 이상의 극성 치환기 등이 예시될 수 있다.
본 명세서에서 용어 「알키닐기」는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 30, 탄소수 2 내지 25, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알키닐기를 의미할 수 있다. 상기 알키닐기는 직쇄형, 분지쇄형 또는 고리형 구조를 가질 수 있으며, 임의적으로 하나 이상의 치환기에 의해서 치환되어 있을 수 있다. 상기 치환기는 예를 들어, 할로겐, 히드록시기, 알콕시기, 티올기, 또는 티올에테르기로 이루어진 하나 이상의 극성 치환기등이 예시될 수 있다.
본 명세서에서 용어 「알킬렌기」는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 30, 탄소수, 2 내지 25, 탄소수, 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 10 또는 탄소수 2 내지 8의 알킬렌기를 의미할 수 있다. 상기 알킬렌기는 상이한 탄소 원자로부터 2개의 수소가 제거된 2가의 유기기로서 직쇄형, 분지쇄형 또는 고리형 구조를 가질 수 있으며, 임의적으로 하나 이상의 치환기에 의해서 치환되어 있을 수 있다. 상기 치환기는 예를 들어, 할로겐, 히드록시기, 알콕시기, 티올기, 또는 티올에테르기로 이루어진 하나 이상의 극성 치환기 등이 예시될 수 있다.
본 명세서에서 용어 「알킬리덴기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 30, 탄소수, 1 내지 25, 탄소수, 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 10 또는 탄소수 1 내지 8의 알킬리덴기를 의미할 수 있다. 상기 알킬리덴기는 하나의 탄소 원자로부터 2개의 수소가 제거된 2가의 유기기로서 직쇄형, 분지쇄형 또는 고리형 구조를 가질 수 있으며, 임의적으로 하나 이상의 치환기에 의해서 치환되어 있을 수 있다. 상기 치환기는 예를 들어, 할로겐, 히드록시기, 알콕시기, 티올기, 또는 티올에테르기로 이루어진 하나 이상의 극성 치환기 등이 예시될 수 있다.
본 명세서에서 용어 「알콕시기」는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 30, 탄소수 1 내지 25, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기를 의미할 수 있다. 상기 알콕시기는 직쇄형, 분지쇄형 또는 고리형 구조의 알킬기를 가질 수 있으며, 상기 알킬기는 임의적으로 하나 이상의 치환기에 의해서 치환되어 있을 수 있다. 상기 치환기는 예를 들어, 할로겐, 히드록시기, 알콕시기, 티올기, 또는 티올에테르기로 이루어진 하나 이상의 극성 치환기 등이 예시될 수 있다.
본 명세서에서 용어 「알킬아민기」는, 특별히 달리 규정하지 않는 한, 모노알킬아민(-NHR) 또는 디알킬아민(-NR2)을 포함하고, 여기서 R은 각각 독립적으로 탄소수 1 내지 30, 탄소수 1 내지 25, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 여기서 상기 알킬기는 직쇄형, 분지쇄형 또는 고리형 구조의 알킬기를 가질 수 있으며, 임의적으로 하나 이상의 치환기에 의해서 치환되어 있을 수 있다. 상기 치환기는 예를 들어, 할로겐, 히드록시기, 알콕시기, 티올기, 또는 티올에테르기로 이루어진 하나 이상의 극성 치환기 등이 예시될 수 있다.
본 명세서에서 용어 「티올에테르기」 또는 「설파이드」는, 특별히 달리 규정하지 않는 한, -SR을 의미하고, 여기서 R은 각각 독립적으로 탄소수 1 내지 30, 탄소수 1 내지 25, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 여기서 상기 알킬기는 직쇄형, 분지쇄형 또는 고리형 구조의 알킬기를 가질 수 있으며, 임의적으로 하나 이상의 치환기에 의해서 치환되어 있을 수 있다. 상기 치환기는 예를 들어, 할로겐, 히드록시기, 알콕시기, 티올기, 또는 티올에테르기로 이루어진 하나 이상의 치환기 등이 예시될 수 있다.
상기 화학식 3을 만족하는 상기 방향족 테트라카르복실릭 디안하이드라이드는 피로멜리틱 디안하이드라이드(또는 PMDA), 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(또는 s-BPDA), 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(또는 a-BPDA), 옥시디프탈릭 디안하이드라이드(또는 ODPA), 디페닐설폰-3,4,3',4'-테트라카르복실릭 디안하이드라이드(또는 DSDA), 비스(3,4-디카르복시페닐)설파이드 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)-1,1,1,3,3,3-헥사플루오로프로페인 디안하이드라이드, 2,3,3',4'- 벤조페논테트라카르복실릭 디안하이드라이드, 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드(또는 BTDA), 비스(3,4-디카르복시페닐)메테인 디안하이드라이드, 2,2-비스(3,4-디카르복시페닐)프로페인 디안하이드라이드, p-페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), p-바이페닐렌비스(트라이멜리틱 모노에스터 애시드 안하이드라이드), m-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, p-터페닐-3,4,3',4'-테트라카르복실릭 디안하이드라이드, 1,3-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)벤젠 디안하이드라이드, 1,4-비스(3,4-디카르복시페녹시)바이페닐 디안하이드라이드, 2,2-비스〔(3,4-디카르복시 페녹시)페닐〕프로페인 디안하이드라이드(BPADA), 2,3,6,7-나프탈렌테트라카복실산 디안하이드라이드, 1,4,5,8-나프탈렌테트라카르복실릭 디안하이드라이드, 4,4'-(2,2-헥사플루오로아이소프로필리덴)디프탈산 디안하이드라이드(6-FDA) 등을 예로 들 수 있다.
상기 디안하이드라이드 단량체는 필요에 따라, 단독 또는 2 종 이상을 조합하여 이용할 수 있지만, 본 출원은 결합 해리에너지를 고려하여, 예를 들면, 피로멜리틱 디안하이드라이드(PMDA), 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드(s-BPDA) 또는 2,3,3',4'-바이페닐테트라카르복실릭 디안하이드라이드(a-BPDA)를 포함할 수 있다.
또한, 폴리아믹산 용액 제조에 사용될 수 있는 디아민 단량체는 방향족 디아민으로서, 이하와 같이 분류하여 예를 들 수 있다.
1) 1,4-디아미노벤젠(또는 파라페닐렌디아민, PDA), 1,3-디아미노벤젠, 2,4-디아미노톨루엔, 2,6-디아미노톨루엔, 3,5-디아미노벤조익 애시드(또는 DABA) 등과 같이, 구조 상 벤젠 핵 1개를 갖는 디아민으로서, 상대적으로 강직한 구조의 디아민;
2) 4,4'-디아미노디페닐에테르(또는 옥시디아닐린, ODA), 3,4'-디아미노디페닐에테르 등의 디아미노디페닐에테르, 4,4'-디아미노디페닐메테인(메틸렌디아민), 3,3'-디메틸-4,4'-디아미노바이페닐, 2,2'-디메틸-4,4'-디아미노바이페닐, 2,2'-비스(트라이플루오로메틸)-4,4'-디아미노바이페닐, 3,3'-디메틸-4,4'-디아미노디페닐메테인, 3,3'-디카복시-4,4'-디아미노디페닐메테인, 3,3',5,5'-테트라메틸-4,4'-디아미노디페닐메테인, 비스(4-아미노페닐)설파이드, 4,4'-디아미노벤즈아닐라이드, 3,3'-디클로로벤지딘, 3,3'-디메틸벤지딘(또는 o-톨리딘), 2,2'-디메틸벤지딘(또는 m-톨리딘), 3,3'-디메톡시벤지딘, 2,2'-디메톡시벤지딘, 3,3'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐설파이드, 3,4'-디아미노디페닐설파이드, 4,4'-디아미노디페닐설파이드, 3,3'-디아미노디페닐설폰, 3,4'-디아미노디페닐설폰, 4,4'-디아미노디페닐설폰, 3,3'-디아미노벤조페논, 4,4'-디아미노벤조페논, 3,3'-디아미노-4,4'-디클로로벤조페논, 3,3'-디아미노-4,4'-디메톡시벤조페논, 3,3'-디아미노디페닐메테인, 3,4'-디아미노디페닐메테인, 4,4'-디아미노디페닐메테인, 2,2-비스(3-아미노페닐)프로페인, 2,2-비스(4-아미노페닐)프로페인, 2,2-비스(3-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스(4-아미노페닐)-1,1,1,3,3,3-헥사플루오로프로페인, 3,3'-디아미노디페닐설폭사이드, 3,4'-디아미노디페닐설폭사이드, 4,4'-디아미노디페닐설폭사이드 등과 같이, 구조 상 벤젠 핵 2개를 갖는 디아민;
3) 1,3-비스(3-아미노페닐)벤젠, 1,3-비스(4-아미노페닐)벤젠, 1,4-비스(3-아미노페닐)벤젠, 1,4-비스(4-아미노 페닐)벤젠, 1,3-비스(4-아미노페녹시)벤젠, 1,4-비스(3-아미노페녹시)벤젠(또는 TPE-Q), 1,4-비스(4-아미노페녹시)벤젠(또는 TPE-Q), 1,3-비스(3-아미노페녹시)-4-트라이플루오로메틸벤젠, 3,3'-디아미노-4-(4-페닐)페녹시벤조페논, 3,3'-디아미노-4,4'-디(4-페닐페녹시)벤조페논, 1,3-비스(3-아미노페닐설파이드)벤젠, 1,3-비스(4-아미노페닐설파이드)벤젠, 1,4-비스(4-아미노페닐설파이드)벤젠, 1,3-비스(3-아미노페닐설폰)벤젠, 1,3-비스(4-아미노페닐설폰)벤젠, 1,4-비스(4-아미노페닐설폰)벤젠, 1,3-비스〔2-(4-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(3-아미노페닐)아이소프로필〕벤젠, 1,4-비스〔2-(4-아미노페닐)아이소프로필〕벤젠 등과 같이, 구조 상 벤젠 핵 3개를 갖는 디아민;
4) 3,3'-비스(3-아미노페녹시)바이페닐, 3,3'-비스(4-아미노페녹시)바이페닐, 4,4'-비스(3-아미노페녹시)바이페닐, 4,4'-비스(4-아미노페녹시)바이페닐, 비스〔3-(3-아미노페녹시)페닐〕에테르, 비스〔3-(4-아미노페녹시)페닐〕에테르, 비스〔4-(3-아미노페녹시)페닐〕에테르, 비스〔4-(4-아미노페녹시)페닐〕에테르, 비스〔3-(3-아미노페녹시)페닐〕케톤, 비스〔3-(4-아미노페녹시)페닐〕케톤, 비스〔4-(3-아미노페녹시)페닐〕케톤, 비스〔4-(4-아미노 페녹시)페닐〕케톤, 비스〔3-(3-아미노페녹시)페닐〕설파이드, 비스〔3-(4-아미노페녹시)페닐〕설파이드, 비스 〔4-(3-아미노페녹시)페닐〕설파이드, 비스〔4-(4-아미노페녹시)페닐〕설파이드, 비스〔3-(3-아미노페녹시)페닐〕설폰, 비스〔3-(4-아미노페녹시)페닐〕설폰, 비스〔4-(3-아미노페녹시)페닐〕설폰, 비스〔4-(4-아미노페녹시)페닐〕설폰, 비스〔3-(3-아미노페녹시)페닐〕메테인, 비스〔3-(4-아미노페녹시)페닐〕메테인, 비스〔4-(3-아미노페녹시)페닐〕메테인, 비스〔4-(4-아미노페녹시)페닐〕메테인, 2,2-비스〔3-(3-아미노페녹시)페닐〕프로페인, 2,2-비스〔3-(4-아미노페녹시)페닐〕프로페인, 2,2-비스〔4-(3-아미노페녹시)페닐〕프로페인, 2,2-비스〔4-(4-아미노페녹시)페닐〕프로페인(BAPP), 2,2-비스〔3-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔3-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔4-(3-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인, 2,2-비스〔4-(4-아미노페녹시)페닐〕-1,1,1,3,3,3-헥사플루오로프로페인 등과 같이, 구조 상 벤젠 핵 4개를 갖는 디아민.
상기 디아민 단량체는 필요에 따라, 단독 또는 2 종 이상을 조합하여 이용할 수 있다.
본 출원의 폴리아믹산 조성물은 저점도 특성을 갖는 조성물일 수 있다. 본 출원의 폴리아믹산 조성물은 25℃ 온도 및 30s-1의 전단속도 조건으로 측정한 점도가 20,000cps 이하, 10,000 cps 이하, 6,000 cps 이하일 수 있다. 그 하한은 특별히 한정되지 않으나, 10 cps 이상, 15 cps 이상, 30 cps 이상, 100 cps 이상, 300 cps 이상, 500 cps 이상 또는 1000 cps 이상일 수 있다. 상기 점도는 예를 들어, Haake 사의 VT-550을 사용하여 측정한 것일 수 있고 30/s의 전단 속도, 25℃ 온도 및 1 mm 플레이트 갭 조건에서 측정한 것일 수 있다. 본 출원은 상기 점도 범위를 조절함으로써, 우수한 공정성을 갖는 전구체 조성물을 제공할 수 있다.
하나의 예시에서, 상기 폴리아믹산 조성물은 그의 고형분 농도에 기초하여 온도 30℃ 및 농도 0.5 g/100 mL (물에 용해)에서 측정한 대수 점도가 0.1 이상 또는 0.2 이상일 수 있다. 상한은 특별히 제한되지 않으나, 5 이하, 3 이하 또는 2.5 이하일 수 있다. 본 출원은 상기 대수 점도를 조절함으로써, 적정량의 폴리아믹산 분자량을 조절하고, 공정성을 확보할 수 있다.
일 구체예에서, 본 출원의 폴리아믹산 조성물은 경화 후 중량평균분자량이 10,000 내지 200,000g/mol, 15,000 내지 80,000 g/mol, 18,000 내지 70,000 g/mol, 20,000 내지 60,000 g/mol, 25,000 내지 55,000 g/mol 또는 30,000 내지 50,000 g/mol의 범위 내일 수 있다. 본 출원에서 용어 중량평균분자량은, GPC(Gel Permeation Chromatograph)로 측정한 표준 폴리스티렌에 대한 환산 수치를 의미한다.
본 출원의 폴리아믹산 수용액 조성물은 경화물로 제조되는 경우, 상기 경화물은 이하에서 설명하는 다양한 물성을 만족하여 기계적 강도, 내열성 등 우수한 물성을 나타낼 수 있다. 본 출원에서 상기 폴리아믹산 수용액 조성물의 경화물은 폴리이미드를 의미한다.
하나의 예시에서, 폴리아믹산 수용액 조성물의 경화물은 ASTM D882에 따른 인장 강도가 50 내지 400MPa의 범위 내일 수 있다. 경화물은 인장 강도가 상기 범위로 조절됨에 따라, 우수한 기계적 물성을 나타낸다.
또한, 상기 폴리아믹산 수용액 조성물의 경화물은 열중량분석기 (TGA, TA instrument, Q5000, USA)를 이용하여 측정한 5% 열분해 온도(Td)가 400 내지 700 ℃ 또는 450 내지 650 ℃의 범위 내일 수 있다. 이와 같은 열분해 온도의 범위 내에서 분해되지 않고 우수한 내열 특성을 갖는다.
본 출원은 또한, 폴리아믹산의 제조 방법에 관한 것이다. 일 예시에서, 상기 폴리아믹산 수용액 조성물의 제조 방법은 피리딘 유도체 화합물인 수계 촉매를 사용하여 폴리아믹산을 제조하는 단계를 포함할 수 있다. 본 출원의 제조 방법은 상기 수계 촉매를 사용함에 따라 수계 중합 및 저온 경화가 가능한 폴리아믹산을 제조할 수 있다. 상기 수계 촉매와 관련된 자세한 설명은 전술한 내용과 중복되므로 이하에서 생략하기로 한다.
본 출원은 폴리이미드 제조 방법에 관한 것이다. 상기 폴리이미드 제조 방법은 피리딘 유도체 화합물인 수계 촉매를 사용하여 폴리아믹산을 제조하는 단계; 및 상기 폴리아믹산을 250℃ 이하에서 열 경화하여 폴리이미드를 제조하는 단계를 포함한다. 예를 들어, 상기 단계는 250℃ 미만, 230℃ 미만, 210℃ 미만에서 열 경화할 수 있다. 본 출원은 전술한 수계 촉매가 폴리아믹산의 카르복실기와 염을 형성함에 따라, 저온 경화를 수행하더라도 높은 이미드화율로 폴리이미드를 제공할 수 있다.
본 출원은 또한 폴리이미드에 관한 것이다. 상기 폴리이미드는 전술한 폴리아믹산 수용액 조성물로부터 유래된 것일 수 있다. 상기 폴리이미드는 다양한 전기전자용 소재에 적용될 수 있으며, 예를 들어, 상기 리튬 전지의 전극용 바인더로 사용될 수 있다.
일반적으로 리튬 전지에서 양극판 및 음극판은 활물질, 도전재 및 바인더를 습식 방법으로 혼합함으로써 제조된다. 전기적 에너지를 발생시키는 상기 양, 음극의 극판들은 제조할 때 그 건조 상태가 우수하게 되어야만, 전기적 에너지의 발생을 원활하게 할 수 있다. 상기 극판들에 수분이나 오일, 가스 등의 불순물이 함유될 경우에는 수분이나 오일 및 불순물의 함유량에 따라 극성의 작용이 불규칙하거나, 불량하게 되어 정격 에너지를 발생시키지 못하게 된다. 또 상기 수분이나 오일 및 불순물에 의하여 재충전상태가 불량하게 되어 전지 수명이 현저하게 짧게 되는 폐단이 있기 때문에 극판의 건조는 전지의 수명을 좌우하게 되는 매우 중요한 제조 공정이다.
그러나, 충분한 건조를 위하여 건조 온도를 올리는 경우 극판의 열변형에 의한 뒤틀림이 발생하거나 바인더가 부분 용해되어 집전체가 활물질간의 접착력이 감소하는 문제가 있었다. 또한, 기존 폴리이미드 전구체는 250℃ 초과하는 높은 이미드화 온도를 필요로 하기 때문에 건조 과정에서 이미드화를 동반할 시 극판의 변형이 발생하며, 구리의 경우 산화가 일어날 가능성이 높다. 또한, 고온의 건조로 활물질, 도전재, 바인더가 집전체로부터 박리가 일어나는 문제가 있었다.
그러나, 본 출원의 폴리이미드는 전술한 폴리아믹산 수용액 조성물을 통해 저온 이미드화로 제조됨에 따라, 고온으로 나타날 수 있는 상기 문제들을 해결할 수 있다.
B. 폴리이미드 분말
본 출원은 또한 수계 중합을 기반으로 원-포트(one-pot) 방법으로 분말의 입경 제어가 가능한 폴리이미드 분말의 제조 방법을 제공한다.
예시적인 폴리이미드 분말의 제조 방법은 피리딘 유도체 화합물인 수계 촉매를 포함하는 수용액에서 디아민 단량체 및 디안하이드라이드 단량체를 중합 반응시켜 폴리아믹산을 제조하는 단계; 및 상기 제조된 폴리아믹산을 화학적 이미드화 반응시켜 폴리이미드 분말을 제조하는 단계를 포함한다.
본 출원은 피리딘 유도체 화합물인 수계 촉매가 폴리아믹산 중합 반응의 촉매이면서 화학적 이미드화의 촉매로 작용함에 따라, 원-포트 공정으로 폴리이미드 분말의 제조가 가능하다. 본 명세서에서 수용액은 용매로 물을 포함하며, 유기 용매를 실질적으로 포함하지 않거나 유기 용매가 5 중량% 미만으로 포함될 수 있다.
일 구체예에서, 상기 화학적 이미드화 반응은 폴리아믹산과 탈수제를 반응시키는 것에 의해 수행될 수 있다. 상기 폴리아믹산은 탈수제와 화학적 이미드화 반응을 통해 폴리이미드 분말 형태로 석출될 수 있다. 상기 탈수제는 다양한 공지된 물질을 사용할 수 있으며, 예를 들어, 아세트산 무수물, 프로피오닉 무수물, n-부티릭 무수물 또는 벤조익 무수물 등의 무수물일 수 있다.
하나의 예시에서, 상기 탈수제의 함량은 폴리아믹산 내의 카르복실기 1 당량에 대해 0.5 내지 3 배 당량 범위 내일 수 있다. 예를 들면, 상기 탈수제의 함량은 상기 폴리아믹산 내의 카르복실기 1 당량에 대해 0.55배 당량 이상, 0.6배 당량 이상, 0.7배 당량 이상, 0.8배 당량 이상, 0.83배 당량 이상 또는 0.93 배 당량 이상일 수 있고, 또한, 상한은 2.8 배 당량 이하, 2.6 배 당량 이하, 2.4 배 당량 이하, 2.2 배 당량 이하, 2.0 배 당량 이하, 1.8 배 당량 이하, 1.6 배 당량 이하 또는 1.4 배 당량 이하일 수 있다.
본 명세서에서, 탈수제의 양을 규정하는 "폴리아믹산 내의 카르복실기에 대한 당량" 이란, 폴리아믹산 내의 카르복실기 1 개에 대해 사용된 탈수제의 개수 (몰수)를 의미할 수 있다.
폴리이미드 분말을 제조하는 단계는 폴리아믹산의 화학적 이미드화 반응물을 100 내지 150℃ 온도 범위 내에서 1 내지 5시간 동안 환류하는 단계; 및 상기 환류된 결과물을 500℃ 미만, 예를 들어 300 내지 490℃에서 열적 이미드화 및 건조하는 단계를 포함할 수 있다. 예를 들어, 상기 환류하는 단계는 폴리아믹산의 화학적 이미드화 반응물을 100 내지 140℃, 100 내지 130℃ 또는 110 내지 125℃ 온도 범위 내에서 1 내지 4시간 1 내지 3시간 또는 1.5 내지 2.5시간 동안 환류할 수 있다. 상기 환류하는 단계는 용매의 기화를 방지하고, 온도를 제어하는 단계이고, 상기 단계를 통해 이미드화 속도를 조절할 수 있다. 본 출원은 상기 환류, 열적 이미드화 및 건조를 순차로 진행하여 최종 제품인 폴리이미드 분말을 제공할 수 있다.
본 출원은 수계 촉매의 함량 및/또는 중합 반응 온도를 조절하여 폴리이미드 분말의 입경을 제어하는 단계를 포함할 수 있다.
예를 들어, 상기 단계는 수계 촉매의 함량을 낮게 조절함으로써, 폴리이미드 분말의 입경은 크게 제어할 수 있고, 반대로 수계 촉매의 함량을 높게 조절함으로써, 폴리이미드 분말의 입경은 작게 제어할 수 있다.
또한, 상기 단계는 중합 반응 온도를 높게 조절함으로써, 폴리이미드 분말의 입경을 작게 제어할 수 있고, 반대로 중합 반응 온도를 낮게 조절함으로써, 폴리이미드 분말의 입경을 크게 제어할 수 있다.
상기 단계는 이하에서 설명하는 수계 촉매의 함량 및 중합 반응 온도 범위 내에서 적절히 조절하여 원하는 입경을 얻을 수 있다.
하나의 예시에서, 상기 수계 촉매의 함량은 폴리아믹산 내의 디안하이드라이드 1 당량에 대해 0.5 내지 5.0배 당량 범위 내일 수 있다. 예를 들면, 상기 수계 촉매는 상기 폴리아믹산 내의 디안하이드라이드 1 당량에 대해 0.55배 당량 이상, 0.6배 당량 이상, 0.7배 당량 이상, 0.8배 당량 이상, 0.83배 당량 이상 또는 0.93 배 당량 이상일 수 있고, 또한, 상한은 4.8 배 당량 이하, 4.6 배 당량 이하, 4.4 배 당량 이하, 4.2 배 당량 이하 또는 4.0 배 당량 이하일 수 있다.
본 명세서에서, 수계 촉매의 양을 규정하는 "폴리아믹산 내의 디안하이드라이드에 대한 당량" 이란, 폴리아믹산 내의 디안하이드라이드 1 개에 대해 사용된 수계 촉매의 개수 (몰수)를 의미할 수 있다.
상기 수계 촉매의 함량과 중합 반응 온도를 상기 범위 내에서 적절히 조절됨에 따라, 본 출원에서 최종 얻어지는 폴리이미드 분말의 평균 입경은 10 내지 1000㎛의 범위 내일 수 있다. 평균 입경의 하한은 예를 들어 100㎛ 이상, 300㎛ 이상, 또는 400㎛ 이상일 수 있고, 상한은 900㎛ 이하, 800㎛ 이하, 또는 700㎛일 수 있다.
하나의 예시에서, 상기 수계 촉매는 상기 화학식 1 또는 화학식 2의 화합물을 사용할 수 있다. 상기 화학식 1 또는 화학식 2와 관련된 자세한 설명은 전술한 내용과 중복되므로 이하에서 생략하기로 한다.
상기 화학식 1 및/또는 2를 만족하는 수계 촉매는 폴리아믹산의 중합 반응 촉매와 이미드화 촉매를 동시에 수행할 수 있고, 이에 따라, 본 출원의 제조 방법은 원-포트 공정으로 폴리이미드 분말을 제공할 수 있다.
폴리아믹산의 제조에 사용될 수 있는 디안하이드라이드 단량체는 방향족 테트라카르복실릭 디안하이드라이드일 수 있다. 예를 들면, 상기 디안하이드라이드 단량체는 상기 화학식 3 또는 화화학식 4로 표시되는 화합물을 적어도 하나 이상 포함한다. 상기 화학식 3 또는 화학식 4와 관련된 자세한 설명은 전술한 내용과 중복되므로 이하에서 생략하기로 한다.
또한, 폴리아믹산 용액 제조에 사용될 수 있는 디아민 단량체는 방향족 디아민으로서, 벤젠핵을 1 내지 4개 포함하는 방향족 디아민의 구체적인 예는 상술한 바와 같다.
본 출원은 또한, 폴리이미드 성형품의 제조 방법에 관한 것이다. 상기 제조 방법은 전술한 방법으로 제조된 폴리이미드 분말을 가공하여 폴리이미드 성형품을 제조하는 단계를 포함할 수 있다. 예를 들어, 상기 가공은 가열 및/또는 가압하는 것으로 수행될 수 있다. 구체적으로, 본 출원은 폴리이미드 분말을 몰드에 넣고 200 내지 600℃, 온도 300 내지 500℃ 온도, 또는 350 내지 450℃ 온도 범위 내에서 5분 내지 30분 동안 가열하는 제1 가열 단계; 1 내지 100MPa, 5 내지 50MPa, 또는 10 내지 20MPa에서 1 내지 10분 또는 1 내지 5분 동안 가압하는 가압 단계; 및 300 내지 1000℃, 350 내지 800℃, 또는 400 내지 600℃ 온도 범위 내에서 1 내지 10 분 동안 가열하는 제2 가열 단계를 순차로 수행하여 폴리이미드 분말을 가공할 수 있다.
본 출원은 또한 전술한 폴리이미드 분말의 제조 방법에 따라 원-포트 공정으로 제조된 폴리이미드 분말에 관한 것이다. 상기 폴리이미드 분말은 평균 입경이 1 내지 1000㎛, 5 내지 800㎛, 또는 10 내지 500㎛의 범위 내일 수 있다. 또한, 상기 폴리이미드 분말은 열중량분석기 (TGA, TA instrument Q5000, USA)를 이용하여 측정한 5% 열분해 온도(Td)가 400 내지 700 ℃, 또는 450 내지 650℃의 범위 내일 수 있다.
또한, 본 출원은 전술한 폴리이미드 성형품의 제조 방법에 따라 제조된 폴리이미드 성형품에 관한 것이다. 상기 성형품은 기계적 강도, 내열성 등 우수한 물성을 나타내며, 구체적으로 아래와 같은 물성을 만족할 수 있다.
하나의 예시에서, 열중량분석기 (TGA, TA instrument Q5000, USA)를 이용하여 측정한 5% 열분해 온도(Td)가 400 내지 700 ℃, 또는 450 내지 650 ℃의 범위 내일 수 있다.
또한, 기계분석법(TMA, TA instrument 사, Q400)을 이용하여 측정한 열팽창계수(CTE)가 10 내지 100 ppm/℃, 20 내지 90 ppm/℃또는 30 내지 80 ppm/℃의 범위 내일 수 있다.
그리고, ASTM D1708에 따른 인장 강도가 1 내지 100MPa, 5 내지 80MPa, 또는 10 내지 60MPa의 범위 내일 수 있다. 성형품은 인장 강도가 상기 범위로 조절됨에 따라, 우수한 기계적 물성을 나타낸다.
본 출원은 유기 용매가 아닌 물에서 폴리아믹산 중합 가능할 뿐 아니라, 높은 이미드화율로 저온 경화가 가능한 폴리아믹산 수용액 조성물을 제공한다.
본 출원에 따른 폴리이미드 분말의 제조 방법은 수계 중합을 기반으로 함에 따라, 유기 용매가 갖는 오염 문제를 해결하고, 원-포트(one-pot) 공정으로 수행함에 따라 공정 편의성이 증대되며, 또한, 분말의 입경 제어가 가능한 장점을 갖는다.
도 1은 본 출원의 실시예에 따른 이미드화율 실험 결과를 나타내는 그래프이다.
도 2는 수계 촉매 함량과 입자 크기의 관계를 나타낸 그래프이다.
도 3은 중합 반응 온도와 입자 크기의 관계를 나타낸 그래프이다.
이하, 본 출원에 따른 실시예를 통해 본 출원을 보다 상세히 설명하지만, 본 출원의 범위가 하기 제시될 실시예에 제한되는 것은 아니다.
실시예 1A : 폴리아믹산 수용액 조성물
온도조절기를 구비하고 질소로 충전된 반응기에 용매로 증류수 63.7 g을 넣었다. 여기에 p-페닐렌디아민 (pPDA) 1.0814 g (0.0094 mol), 4-디메틸아미노피리딘을 카르복실기 대비 2.5 당량 첨가한 후, 25℃에서 1시간 동안 기계식 교반기를 이용하여 혼합물을 용해시켰다. 그 후, 3,3',4,4'-바이페닐테트라카르복실릭 다이안하이드라이드 (s-BPDA) 2.9422 g (0.01 mol) 을 첨가하고, 혼합물을 70 ℃에서 18 시간 동안 교반하며 중합반응을 진행하여 수용성 폴리아믹산을 제조하였다.
이 후, 얻어진 폴리아믹산을 유리기판에 바 코터로 캐스팅하고, 진공상태 오븐의 25 ℃에서 2 시간 탈포 및 건조 후에, 80 ℃에서 30 분간, 120 ℃에서 30 분간, 180 ℃에서 30 분간, 200 ℃에서 30분간 단계적으로 열적 이미드화하여 두께가 25μm 의 폴리이미드 필름을 제조하였다.
이하, 표 1에 나타난 조성에 따라 실시예 1A와 동일한 방법으로 다양한 실시예 및 비교예의 폴리아믹산 수용액 조성물 및 폴리이미드 필름을 제조하였다 (단, 실시예 및 비교예에 첨가된 수계 촉매의 함량은 카르복실기 대비 2.5 당량이였다.).
디안하이드라이드 디아민 수계 촉매 고형분 함량
(wt%)
용액 점도
(cps)
대수 점도
실시예 1A BPDA pPDA 4-(methylamino)pyridine 10 873 0.67
실시예 2A BPDA pPDA 4-(dimethylamino)pyridine 20 19303 0.90
실시예 3A BPDA pPDA 2-(dimethylamino)pyridine 10 8426 0.87
실시예 4A BPDA ODA 4-(dimethylamino)pyridine 8 1834 0.52
실시예 5A BPDA ODA 2-(dimethylamino)pyridine 8 1650 0.46
실시예 6A OPDA pPDA 4-(dimethylamino)pyridine 2 508 0.45
실시예 7A BPDA ODA 4-hydroxypyridine 8 2767 0.70
실시예 8A BPDA ODA 2-hydroxypyridine 8 1021 0.63
실시예 9A BTDA pPDA 4-methoxypyridine 10 1423 0.39
실시예 10A BTDA pPDA 2-ethoxypyridine 10 1753 0.42
실시예 11A BPDA pPDA 4-mercaptopyridine 10 2369 0.86
실시예 12A BPDA pPDA 2-mercaptopyridine 10 2559 0.79
실시예 13A 6FDA pPDA 4-(methylthio)pyridine 10 567 0.36
실시예 14A 6FDA pPDA 2-(methylthio)pyridine 10 992 0.46
실시예 15A BPDA m-TB 4-methylpyridine 7 1810 0.36
실시예 16A BPDA m-TB 2-ethylpyridine 4 756 0.55
실시예 17A BPDA m-TB 4-propylpyridine 7 980 0.45
실시예 18A BPDA m-TB 2,4,6-trimethylpyridine 7 6508 0.95
실시예 19A BPDA ABIZ 4-piperidinopyridine 9 1352 0.77
실시예 20A BPDA pPDA 4-morpholinopyridine 15 17567 0.87
실시예 21A BPDA pPDA 4-pyrrolidinopyridine 9 5142 0.74
비교예 1A BPDA pPDA NMP (유기용매) 10 20000 2.01
비교예 2A BPDA pPDA Pyridine 중합 X
비교예 3A BPDA pPDA 1,2-dimethylimidazole 10 2369 0.96
-BPDA: 3,3',4,4'-바이페닐테트라카르복실릭 디안하이드라이드
-BTDA: 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드
-pPDA: p-페닐렌디아민
-ODA: 4,4'-디아미노디페닐에테르
-m-TB: 2, 2-디메틸벤지딘
-ABIZ: 2-(p-아미노페닐)-5-아미노벤즈이미다졸
비교예 1A는 유기 용매 하에서 폴리아믹산 중합한 예이고, 비교예 3A의 경우 물에서 폴리아믹산 중합 되었으나 200℃에서의 이미드화율이 낮게 나타났다. 그리고, 비교예 2A는 물에서 폴리아믹산으로 중합되지 않았다.
반면, 실시예 2A 내지 21A는 폴리아믹산 수계 중합되었고, 중합된 폴리아믹산을 200℃에서 열 경화한 결과, 높은 이미드화율로 폴리이미드된 것을 확인할 수 있었다.
1A. 용액 점도 측정
실시예 및 비교예에서 제조된 폴리아믹산 조성물에 대해, Haake 사의 VT-550을 사용하여 30/s의 전단 속도, 25℃ 온도 및 1 mm 플레이트 갭 조건에서 측정하였고, 그 결과는 상기 표 1에 나타내었다.
2A. 대수 점도
실시예 및 비교예에서 제조된 폴리아믹산 조성물을 고형분 농도에 기초하여 농도 0.5 g/dl (용매: 물) 가 되도록 희석하였다. 상기 희석액의 유하 시간 (T1)을 30℃에서 Cannon-Fenske 점도계 No. 100을 이용해 측정하였다. 대수 점도는 블랭크 물의 유하 시간 (T0)을 이용해 이하의 식으로 산출하였고, 그 결과는 상기 표 1에 나타내었다.
대수 점도 = {ln(T1/T0)}/0.5
3A. 이미드화율 측정
몇몇 실시예 및 비교예의 이미드화율은 Bruker ALPHA-P Infrared Spectrometer (IR)의 Attenuated Total Reflectance (ATR) 방법으로 분석하였다. IR 분석을 통해 계산된 이미드 결합의 세기를 백분율로 나타내었으며, 400 ℃에서 완전 이미드화된 폴리이미드의 C-N 스트레칭 (1375 cm-1) 세기를 기준값으로 하고, 각 실시예 또는 비교예의 폴리아믹산 수용액에서 200 ℃까지 열처리하여 제조된 폴리이미드의 C-N 스트레칭 세기와의 비를 백분율로 나타내었다. 이미드화율은 하기의 식을 이용해 계산하였고, 그 결과를 도 1 및 표 2에 나타내었다.
[식]
이미드화율(%) = {(1375cm-1)200℃/(1510cm-1)200℃}/{(1375cm-1)400℃/(1510 cm-1)400℃}
도 1은 실시예 1의 이미드화율 결과 그래프이다. 도 1로부터 실시예 1에 따른 폴리아믹산 수용액 조성물은 저온 경화에서 안정적으로 높은 이미드화율을 나타내는 것을 확인할 수 있었다.
4A. 인장 강도
몇몇 실시예 및 비교예의 폴리이미드 필름을 폭 10 mm, 길이 40 mm로 자른 후 인스트론(Instron)사의 Instron5564 UTM 장비를 사용하여 ASTM D-882 방법으로 모듈러스 및 인장강도를 측정하였다. 이때의 Cross Head Speed는 50 mm/min의 조건으로 측정하였고 그 결과는 하기 표 2에 나타내었다.
5A. 5% 열분해 온도
TA사 열중량 분석(thermogravimetric analysis) Q5000 모델을 사용하였으며, 몇몇 실시예 및 비교예의 폴리이미드 필름(성형품)을 질소 분위기하에서 10℃/분의 속도로 800℃까지 승온 하여 5% 중량 감소가 발생하는 온도를 측정하였고, 그 결과는 하기 표 2에 나타내었다.
디안하이드라이드 디아민 수계 촉매 200℃ 이미드화율(%) 인장
강도
Td 5%
실시예 1A BPDA pPDA 4-(methylamino)pyridine 99.2 378 604
실시예 2A BPDA pPDA 4-(dimethylamino)pyridine 97.4 255 591
실시예 7A BPDA ODA 4-hydroxypyridine 91.8 299 553
실시예 9A BTDA pPDA 4-methoxypyridine 98.4 167 550
실시예 11A BPDA pPDA 4-mercaptopyridine 95.3 234 587
실시예 13A 6FDA pPDA 4-(methylthio)pyridine 92.5 150 516
실시예 18A BPDA m-TB 2,4,6-trimethylpyridine 98.6 312 576
실시예 19A BPDA ABIZ 4-piperidinopyridine 90.1 240 559
비교예 1A BPDA pPDA NMP (유기용매) 73.4 352 616
비교예 3A BPDA pPDA 1,2-dimethylimidazole 88.6 275 589
실시예 1B: 폴리이미드 분말
온도조절기, 환류 냉각기를 구비하고 질소로 충전된 1 L의 원형 플라스크에 용매로 증류수 446g, 4-디메틸아미노피리딘 21.3798g (카르복실기 대비 1.25 당량)을 넣어 25 ℃에서 기계식 교반기를 이용하여 혼합물을 용해시켰다. 이어서 p-페닐렌디아민 (pPDA) 7.5698 g (0.07 mol)을 용해시킨 후, 비페닐테트라카복실릭 디안하이드라이드 (BPDA) 20.5954 g (0.07 mol)을 첨가하여 25 ℃에서 18 시간 동안 교반하여 중합 반응을 진행하였다. 그 후, 아세트산무수물 16.54 mL (카르복실기 대비 1.25 당량)을 넣고 20 분 동안 교반하여 화학적 이미드화 반응을 통해 폴리이미드 분말을 석출시켰고, 이를 120 ℃에서 2 시간 동안 환류시켜 폴리이미드 분말을 제조하였다.
상기 폴리이미드 분말을 세척하고 400 ℃에서 이미드화 및 건조시켰다. 건조된 폴리이미드 분말을 몰드에 넣고 300 ℃에서 10분 동안 가열 후, 20MPa에서 2분 동안 압력을 가하고 450 ℃에서 5분 동안 가열하여 폴리이미드 성형품을 얻었다.
이하, 표 3에 나타난 조성 및 반응 온도 조건에 따라 실시예 1B와 동일한 방법으로 다양한 실시예 및 비교예의 폴리이미드 분말 및 폴리이미드 성형품을 제조하였다.
디안하이드라이드 디아민 수계 촉매 반응
온도(℃)
실시예 1B BPDA pPDA 4-디메틸아미노피리딘 (2.5 당량) 120
실시예 2B BPDA pPDA 4-디메틸아미노피리딘 (2.0 당량) 120
실시예 3B BPDA pPDA 4-디메틸아미노피리딘 (3.0 당량) 120
실시예 4B BPDA pPDA 4-디메틸아미노피리딘 (3.5 당량) 120
실시예 5B BPDA pPDA 4-디메틸아미노피리딘 (4.0 당량) 120
실시예 6B BPDA pPDA 4-디메틸아미노피리딘 (2.5 당량) 80
실시예 7B BPDA pPDA 4-디메틸아미노피리딘 (2.5 당량) 100
실시예 8B BPDA pPDA 4-디메틸아미노피리딘 (2.5 당량) 140
실시예 9B PMDA pPDA 4-디메틸아미노피리딘 (2.5 당량) 120
실시예 10B OPDA pPDA 4-디메틸아미노피리딘 (2.5 당량) 120
실시예 11B BTDA pPDA 4-디메틸아미노피리딘 (2.5 당량) 120
비교예B BPDA pPDA 디메틸이미다졸 (2.5 당량) 120
-BPDA: 비페닐테트라카복실릭 디안하이드라이드
-BTDA: 3,3',4,4'-벤조페논테트라카르복실릭 디안하이드라이드
-pPDA: p-페닐렌디아민
-PMDA: 피로멜리틱 디안하이드라이드
또한, 상기 실시예 및 비교예에서 제조된 폴리아믹산 조성물의 고형분은 10wt%이였고, 이들에 대해, 하기의 방법의 실험예로 물성을 평가하였다.
1B. 평균 입경
입도분포 장비 Microtrac S3000 모델을 사용하여, 실시예 및 비교예에서 제조된 분말을 D.I water에 분산시킨 상태로 입자 크기를 측정하였고, 그 결과는 아래 표 4에 나타내었다.
2B. 5% 열분해 온도
TA사 열중량 분석(thermogravimetric analysis) Q5000 모델을 사용하였으며, 폴리이미드 성형품을 질소 분위기하에서 10 ℃/분의 속도로 800 ℃까지 승온하여 5% 중량 감소가 발생하는 온도를 측정하였고, 그 결과는 하기 표 4에 나타내었다.
3B. 열팽창 계수
열기계분석법 (TMA, TA instrument 사, Q400)를 이용하여 측정하였으며, 측정 온도 범위는 280 ℃이고, 승온 속도는 10 ℃/min이며, 이 때 성형품을 당기는 힘을 0.05 N으로 설정하였고, 그 결과는 하기 표 4에 나타내었다.
4B. 인장 강도
폴리이미드 성형품을 dog-bone 타입으로 폭 10 mm, 길이 40 mm로 자른 후 인스트론(Instron)사의 Instron5564 UTM 장비를 사용하여 ASTM D-1708 방법으로 모듈러스 및 인장강도를 측정하였다. 이때의 Cross Head Speed는 5 mm/min의 조건으로 측정하였고 그 결과는 하기 표 4에 나타내었다.
평균 입경(㎛) 5% 열분해 온
도(℃)
열팽창 계수
(ppm/℃)
인장강도(MPa)
실시예 1B 55.2 624 53.6 35.5
실시예 2B 89.3 603 51.7 32.2
실시예 3B 42.3 610 57.6 37.0
실시예 4B 25.6 609 56.8 38.7
실시예 5B 13.7 616 61.4 39.1
실시예 6B 417.5 583 62.0 15.3
실시예 7B 275.9 591 59.4 20.0
실시예 8B 14.1 620 52.8 34.4
실시예 9B 20.6 455 42.5 12.1
실시예 10B 46.0 548 66.1 23.4
실시예 11B 35.3 539 65.3 33.1
비교예 B - - - -
비교예 B의 경우, 균일한 크기의 폴리이미드 입자가 제조되지 않았다.
또한, 도 2는 수계 촉매 함량과 입자 크기의 관계를 나타낸 그래프이고, 도 3은 중합 반응 온도와 입자 크기의 관계를 나타낸 그래프이다. 구체적으로, 도 2 및 3에서, A는 실시예 1B, B는 실시예 2B, C는 실시예 3B, D는 실시예 4B, E는 실시예 5B, F는 실시예 6B, G는 실시예 7B, H는 실시예 8B의 결과이다.
도 2 및 3으로부터 수계 촉매 함량과 중합 반응 온도를 통해 입자 크기 제어가 가능함을 확인할 수 있었다.

Claims (20)

  1. 디아민 단량체 및 디안하이드라이드 단량체를 중합 단위로 포함하는 폴리아믹산; 및 적어도 하나의 전자 주게 그룹을 갖는 피리딘 유도체 화합물인 수계 촉매를 포함하는 폴리아믹산 수용액 조성물.
  2. 디아민 단량체 및 디안하이드라이드 단량체를 중합 단위로 포함하는 폴리아믹산; 및 피리딘 유도체 화합물인 수계 촉매를 포함하고,
    200℃에서 열 경화 시 이미드화율이 70 내지 99.9%의 범위 내인 폴리아믹산 수용액 조성물.
  3. 제 1 항 또는 제 2 항에 있어서, 상기 수계 촉매는 하기 화학식 1을 만족하는, 폴리아믹산 수용액 조성물:
    [화학식 1]
    Figure PCTKR2022007606-appb-img-000005
    상기 화학식 1에서, 상기 R1 내지 R3 중 적어도 하나는 알킬아민기, 히드록시기, 알콕시기, 티올기, 티올에테르기, 알킬기 또는 헤테로 고리기이다.
  4. 제 1 항 또는 제 2 항에 있어서, 상기 수계 촉매는 하기 화학식 2를 만족하는 폴리아믹산 수용액 조성물:
    [화학식 2]
    Figure PCTKR2022007606-appb-img-000006
    상기 화학식 2에서, R4 및 R5 중 적어도 하나는 탄소수 1 내지 4의 모노알킬아미노기, 탄소수 1 내지 4의 디알킬아미노기, 히드록시기, 탄소수 1 내지 4의 알콕시, 티올기, 탄소수 1 내지 4의 티올에테르기, 탄소수 1 내지 4의 알킬기, 피페리디노기, 모르폴리노기, 또는 피롤리디노기이다.
  5. 제 1 항 또는 제 2 항에 있어서, 상기 수계 촉매는 폴리아믹산 내의 카르복실기 1 당량에 대해 0.5 내지 5배 당량 범위 내인, 폴리아믹산 수용액 조성물.
  6. 제 1 항 또는 제 2 항에 있어서, 디안하이드라이드 단량체는 하기 화학식 3으로 표시되는 화합물을 적어도 하나 이상 포함하는 폴리아믹산 수용액 조성물:
    [화학식 3]
    Figure PCTKR2022007606-appb-img-000007
    상기 X는 치환 또는 비치환된 4가의 지방족 고리기, 치환 또는 비치환된 4가의 헤테로 지방족 고리기, 치환 또는 비치환된 4가의 방향족 고리기, 또는 치환 또는 비치환된 4가의 헤테로 방향족 고리기이고,
    상기 지방족 고리기, 상기 헤테로 지방족 고리기, 상기 방향족 고리기 또는 상기 헤테로 방향족 고리기는 단독으로 존재하거나;
    서로 접합되어 축합고리를 형성하거나; 또는
    단일결합, 치환 또는 비치환된 알킬렌기, 치환 또는 비치환된 알킬리덴기, 치환 또는 비치환된 알케닐렌기, 치환 또는 비치환된 알키닐렌기, 치환 또는 비치환된 아릴렌기, -O-, -S-, -C(=O)-, -S(=O)2- 및 -Si(Ra)2-로 이루어진 군에서 선택된 2가의 치환기를 하나 이상 포함하는 연결기에 의해 연결되어 있고, 여기서 Ra는 수소 또는 알킬기이다.
  7. 제 1 항 또는 제 2 항에 있어서, 고형분 함량은 1 내지 30중량%의 범위 내인, 폴리아믹산 수용액 조성물.
  8. 제 1 항 또는 제 2 항에 있어서, 폴리아믹산 수용액 조성물의 경화물은 ASTM D882에 따른 인장 강도가 50 내지 400MPa의 범위 내이거나, 열중량분석기 (TGA, TA instrument, Q5000, USA)를 이용하여 측정한 5% 열분해 온도(Td)가 400 내지 700℃의 범위 내인, 폴리아믹산 수용액 조성물.
  9. 피리딘 유도체 화합물인 수계 촉매를 사용하여 폴리아믹산을 제조하는 단계를 포함하는 폴리아믹산 제조 방법.
  10. 피리딘 유도체 화합물인 수계 촉매를 사용하여 폴리아믹산을 제조하는 단계; 및
    상기 폴리아믹산을 250 ℃이하에서 열 경화하여 폴리이미드를 제조하는 단계를 포함하는, 폴리이미드 제조 방법.
  11. 피리딘 유도체 화합물인 수계 촉매를 포함하는 수용액에서 디아민 단량체 및 디안하이드라이드 단량체를 중합 반응시켜 폴리아믹산을 제조하는 단계; 및
    상기 제조된 폴리아믹산을 화학적 이미드화 반응시켜 폴리이미드 분말을 제조하는 단계를 포함하는 폴리이미드 분말의 제조 방법.
  12. 제 11 항에 있어서, 상기 화학적 이미드화 반응은 폴리아믹산과 탈수제(Dehydrating agent)를 반응시키는 것에 의해 수행되는, 폴리이미드 분말 제조 방법.
  13. 제 12 항에 있어서, 상기 탈수제의 함량은 폴리아믹산 내의 카르복실기 1 당량에 대해 0.5 내지 3 배 당량 범위 내인, 폴리이미드 분말의 제조 방법.
  14. 제 1 항에 있어서, 폴리이미드 분말을 제조하는 단계는 폴리아믹산의 화학적 이미드화 반응물을 100 내지 150℃ 온도 범위 내에서 1 내지 5시간 동안 환류하는 단계; 및
    상기 환류된 결과물을 500℃ 미만에서 열적 이미드화 및 건조하는 단계를 포함하는, 폴리이미드 분말의 제조 방법.
  15. 제 9 항 내지 제11항 중 어느 한 항에 있어서, 상기 수계 촉매는 하기 화학식 1을 만족하는, 폴리이미드 분말의 제조 방법:
    [화학식 1]
    Figure PCTKR2022007606-appb-img-000008
    상기 화학식 1에서, 상기 R1 내지 R3 중 적어도 하나는 알킬아민기, 히드록시기, 알콕시기, 티올기, 티올에테르기, 알킬기 또는 헤테로사이클릭기이다.
  16. 제 11 항에 따른 제조 방법으로 제조된 폴리이미드 분말을 가공하여 폴리이미드 성형품을 제조하는 단계를 포함하는 폴리이미드 성형품의 제조 방법.
  17. 제 11 항에 따른 제조 방법으로 제조된 폴리이미드 분말.
  18. 제 17 항에 있어서, 평균 입경이 1 내지 1000μm의 범위 내이거나, 열중량분석기를 이용하여 측정한 5% 열분해 온도(Td)가 400 내지 700 ℃의 범위 내인 폴리이미드 분말.
  19. 제 16 항에 따른 제조 방법으로 제조된 폴리이미드 성형품.
  20. 제 19 항에 있어서, 열중량분석기를 이용하여 측정한 5% 열분해 온도(Td)가 400 내지 700 ℃의 범위 내이거나, 기계분석법을 이용하여 측정한 열팽창계수(CTE)가 10 내지 100 ppm/℃의 범위 내인, 폴리이미드 성형품.
PCT/KR2022/007606 2021-06-29 2022-05-27 폴리아믹산 수용액 조성물 및 폴리이미드 분말의 제조방법 WO2023277356A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2021-0084721 2021-06-29
KR1020210084720A KR102644737B1 (ko) 2021-06-29 2021-06-29 폴리아믹산 수용액 조성물
KR1020210084726A KR102644738B1 (ko) 2021-06-29 2021-06-29 폴리이미드 분말의 제조 방법
KR10-2021-0084720 2021-06-29
KR10-2021-0084726 2021-06-29
KR1020210084721A KR102621023B1 (ko) 2021-06-29 2021-06-29 폴리아믹산 수용액 조성물

Publications (1)

Publication Number Publication Date
WO2023277356A1 true WO2023277356A1 (ko) 2023-01-05

Family

ID=84692808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007606 WO2023277356A1 (ko) 2021-06-29 2022-05-27 폴리아믹산 수용액 조성물 및 폴리이미드 분말의 제조방법

Country Status (1)

Country Link
WO (1) WO2023277356A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080074558A (ko) * 2007-02-09 2008-08-13 주식회사 엘지화학 폴리이미드 제조방법 및 이에 의하여 제조된 폴리이미드
KR20160063715A (ko) * 2014-11-27 2016-06-07 연세대학교 원주산학협력단 수용성 폴리아믹산을 사용한 폴리이미드 블렌드 제조방법
KR20160073711A (ko) * 2014-12-17 2016-06-27 코오롱인더스트리 주식회사 포지티브형 감광성 수지 조성물, 이를 포함하는 절연막 및 유기발광소자
KR20190003328A (ko) * 2017-06-30 2019-01-09 에스케이씨코오롱피아이 주식회사 폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재
KR20210026496A (ko) * 2019-08-30 2021-03-10 연세대학교 원주산학협력단 고내상 에멀전을 이용한 다공성 폴리이미드의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080074558A (ko) * 2007-02-09 2008-08-13 주식회사 엘지화학 폴리이미드 제조방법 및 이에 의하여 제조된 폴리이미드
KR20160063715A (ko) * 2014-11-27 2016-06-07 연세대학교 원주산학협력단 수용성 폴리아믹산을 사용한 폴리이미드 블렌드 제조방법
KR20160073711A (ko) * 2014-12-17 2016-06-27 코오롱인더스트리 주식회사 포지티브형 감광성 수지 조성물, 이를 포함하는 절연막 및 유기발광소자
KR20190003328A (ko) * 2017-06-30 2019-01-09 에스케이씨코오롱피아이 주식회사 폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재
KR20210026496A (ko) * 2019-08-30 2021-03-10 연세대학교 원주산학협력단 고내상 에멀전을 이용한 다공성 폴리이미드의 제조방법

Similar Documents

Publication Publication Date Title
WO2014003451A1 (en) Polyimide and polyimide film comprising the same
WO2019088454A1 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2019093669A2 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2020096259A1 (ko) 치수 안정성이 향상된 초박막 폴리이미드 필름 및 이의 제조방법
WO2016175344A1 (ko) 폴리이미드 수지 및 이를 이용한 필름
WO2020091432A1 (ko) 폴리이미드 필름의 접착성을 향상시키기 위한 폴리이미드 전구체 조성물 및 이로부터 제조되는 폴리이미드 필름
WO2015099478A1 (ko) 투명 폴리아마이드-이미드 수지 및 이를 이용한 필름
WO2021095975A1 (ko) 저유전 폴리이미드 필름 및 이의 제조방법
WO2021096245A2 (ko) 치수 안정성이 향상된 폴리이미드 필름 및 이의 제조방법
WO2019160218A1 (ko) 저장 안정성이 향상된 폴리아믹산 조성물, 이를 이용한 폴리이미드 필름의 제조방법 및 이로 제조된 폴리이미드 필름
WO2021101324A2 (ko) 저유전 폴리이미드 복합 분말 및 그 제조방법
WO2020101225A1 (ko) 가교성 디안하이드라이드계 화합물 및 산화방지제를 포함하는 폴리이미드 전구체 조성물, 이로부터 제조된 폴리이미드 필름
WO2019143000A1 (ko) 2 종 이상의 필러를 포함하는 고열전도성 폴리이미드 필름
WO2020040527A1 (ko) 결정성 폴리이미드 수지 및 열전도성 필러를 포함하는 폴리이미드 필름 및 이의 제조방법
WO2023277356A1 (ko) 폴리아믹산 수용액 조성물 및 폴리이미드 분말의 제조방법
WO2023200191A1 (en) Manufacturing method of polyimide powder and polyimide powder manufactured by the same
WO2020071588A1 (ko) 폴리아미드이미드 필름의 제조방법 및 이로부터 제조되는 폴리아미드이미드 필름
WO2020017692A1 (ko) 점토 입자 및 카본 블랙을 포함하는 폴리이미드 필름 및 이의 제조방법
WO2023277357A1 (ko) 폴리아믹산 수용액 조성물
WO2020141708A1 (ko) 폴리아믹산 조성물, 및 이의 제조 방법
WO2022107966A1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
WO2020022564A1 (ko) 방향족 카르복실산을 포함하는 폴리이미드 전구체 조성물 및 이를 이용하여 제조되는 폴리이미드 필름
WO2019132185A1 (ko) 불소계 수지를 포함하는 블랙 폴리이미드 필름 및 이의 제조방법
WO2020241983A1 (ko) 고탄성 폴리이미드 필름 및 이를 포함하는 연성금속박적층판
WO2022114938A1 (ko) 높은 치수 안정성을 가지는 폴리이미드 필름 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE