WO2023277138A1 - ポリテトラフルオロエチレン粒子の製造方法 - Google Patents

ポリテトラフルオロエチレン粒子の製造方法 Download PDF

Info

Publication number
WO2023277138A1
WO2023277138A1 PCT/JP2022/026258 JP2022026258W WO2023277138A1 WO 2023277138 A1 WO2023277138 A1 WO 2023277138A1 JP 2022026258 W JP2022026258 W JP 2022026258W WO 2023277138 A1 WO2023277138 A1 WO 2023277138A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
polytetrafluoroethylene
production method
pulverized
polytetrafluoroethylene particles
Prior art date
Application number
PCT/JP2022/026258
Other languages
English (en)
French (fr)
Inventor
孝之 田中
政佳 宮本
智貴 南山
岳樹 楠
隆博 平良
拓也 山部
裕俊 吉田
丈人 加藤
拓 山中
充郎 塚本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP22833284.7A priority Critical patent/EP4365223A1/en
Priority to CN202280045155.XA priority patent/CN117545796A/zh
Priority to JP2023532058A priority patent/JPWO2023277138A1/ja
Publication of WO2023277138A1 publication Critical patent/WO2023277138A1/ja
Priority to US18/400,039 priority patent/US20240150533A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/008Treatment of solid polymer wetted by water or organic solvents, e.g. coagulum, filter cakes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present disclosure relates to a method for manufacturing polytetrafluoroethylene particles, a method for manufacturing polytetrafluoroethylene molded articles, and a method for manufacturing polytetrafluoroethylene compression-molded articles.
  • Emulsion polymerization and suspension polymerization are known methods for producing polytetrafluoroethylene.
  • tetrafluoroethylene is usually polymerized in an aqueous medium in the presence of a fluorine-containing surfactant to form an aqueous dispersion in which primary particles of polytetrafluoroethylene are stably dispersed in the aqueous medium. obtain.
  • Polytetrafluoroethylene fine powder is obtained by coagulating and drying the primary particles in the resulting aqueous dispersion.
  • tetrafluoroethylene is usually polymerized in an aqueous medium without using a fluorine-containing surfactant or with a small amount of a fluorine-containing surfactant to obtain suspension polymerized particles.
  • to generate Polytetrafluoroethylene molding powder is obtained by collecting and drying the resulting suspension polymer particles.
  • Patent Document 1 discloses that a monomer containing 99.8% by mass or more of tetrafluoroethylene is subjected to suspension polymerization in an aqueous medium to produce a granular polymer. a step of producing coalesced particles; and a step of pulverizing the granular polymer particles, wherein the aqueous medium contains a compound represented by the following formula (1) at a concentration of 0.5 to 2000 ppm.
  • a process for making polytetrafluoroethylene molding powders is described.
  • R F OCF(X 1 ) CF 2 ) k ⁇ 1 OCF(X 2 ) COO ⁇ M + (1)
  • R F is a monovalent perfluorinated organic group having 1 to 10 carbon atoms
  • X 1 and X 2 are each independently a fluorine atom or a trifluoromethyl group
  • k is 1 or more.
  • M + is a hydrogen ion, an ammonium ion, an alkyl-substituted ammonium ion or an alkali metal ion.
  • An object of the present disclosure is to provide a production method for producing polytetrafluoroethylene particles with reduced acid odor.
  • suspension polymerized particles of polytetrafluoroethylene are prepared by suspension polymerizing tetrafluoroethylene in an aqueous medium, and the suspension polymerized particles are washed and then pulverized, or Pulverized particles are produced by pulverizing the suspension polymerized particles while washing, and pulverized particles having a water content of 40% by mass or less are produced by dehydrating the pulverized particles.
  • a method for producing polytetrafluoroethylene particles in which polytetrafluoroethylene particles are produced by heat-treating at room temperature.
  • the heat treatment temperature is preferably 200° C. or higher.
  • the heat treatment is preferably performed using a conductive heat receiving dryer.
  • the heat treatment is preferably performed using a material stirring dryer or a material conveying dryer.
  • the polytetrafluoroethylene particles are produced by separating the solid-gas mixture into the polytetrafluoroethylene particles and the gas, and recovering the polytetrafluoroethylene particles.
  • the pulverized particles have an average particle size of 100 to 800 ⁇ m.
  • the polytetrafluoroethylene particles are further pulverized so that the average particle diameter is 200 ⁇ m or less. It is preferred to produce polytetrafluoroethylene particles.
  • the polytetrafluoroethylene particles have a standard specific gravity of 2.200 or less.
  • the polytetrafluoroethylene particles have a specific surface area of 5.0 m 2 /g or less.
  • the polytetrafluoroethylene particles substantially do not contain the compound represented by the following general formula (2).
  • suspension polymerization is preferably performed in the presence or absence of a surfactant, and the amount of the surfactant is preferably 2000 mass ppm or less with respect to the aqueous medium.
  • a method for producing a polytetrafluoroethylene molded article in which the polytetrafluoroethylene particles are produced by the above production method, and then the polytetrafluoroethylene particles are molded to obtain a molded article. be done.
  • production of a polytetrafluoroethylene compression-molded product is obtained by producing the polytetrafluoroethylene particles by the above-described production method and then compression-molding the polytetrafluoroethylene particles to obtain a compression-molded product.
  • a method is provided.
  • polytetrafluoroethylene particles obtained by the above production method are provided.
  • the production method of the present disclosure relates to a method for producing polytetrafluoroethylene using a suspension polymerization method.
  • polytetrafluoroethylene molding powder is produced by polymerizing tetrafluoroethylene (TFE) as in the production method described in Patent Document 1, the obtained polytetrafluoroethylene molding powder has a problem of generating an acid odor.
  • a sour odor is a "sour" odor of acidic substances such as formic acid and acetic acid, and is an odor accompanied by strong trigeminal stimulation.
  • suspension-polymerized particles of polytetrafluoroethylene are produced by a suspension polymerization method, the obtained suspension-polymerized particles are pulverized, and the pulverized particles are dehydrated. , the pulverized particles are heat-treated to produce polytetrafluoroethylene particles. Since the method for producing polytetrafluoroethylene particles of the present disclosure has such a configuration, it is possible to produce polytetrafluoroethylene particles with reduced acid odor.
  • suspension-polymerized particles of polytetrafluoroethylene are prepared by suspension-polymerizing TFE in an aqueous medium.
  • Suspension polymerization particles of polytetrafluoroethylene are obtained by suspension polymerization of TFE. Suspension polymerized particles cannot exist in a dispersed state in an aqueous medium. In contrast, when polytetrafluoroethylene is produced by emulsion polymerization of TFE, the obtained polytetrafluoroethylene is obtained in the form of primary particles (emulsion polymerized particles) dispersed in an aqueous medium.
  • Suspension-polymerized particles usually have a larger average particle size than emulsion-polymerized particles.
  • the average particle size of the suspension polymerized particles is preferably 200 ⁇ m or more, more preferably 400 ⁇ m or more, still more preferably 800 ⁇ m or more, particularly preferably 1 mm or more, and preferably 100 mm or less.
  • the polytetrafluoroethylene obtained by suspension polymerization is preferably non-melt-processable high-molecular-weight polytetrafluoroethylene.
  • Non-melt processability means the property that the melt flow rate cannot be measured above the crystallization melting point according to ASTM D 1238 and D 2116.
  • Polytetrafluoroethylene preferably has a standard specific gravity (SSG) of 2.130 to 2.280. Standard specific gravity can be measured according to ASTM D4894. In the present disclosure, when the standard specific gravity (SSG) of polytetrafluoroethylene is within the above range, it means that the polytetrafluoroethylene is high molecular weight polytetrafluoroethylene.
  • SSG standard specific gravity
  • Polytetrafluoroethylene preferably has a peak temperature of 333 to 347°C, more preferably 335 to 347°C.
  • the peak temperature is obtained by using a TG/DTA (simultaneous differential thermogravimetric analyzer) to raise the temperature of polytetrafluoroethylene that has not been heated to a temperature of 300° C. or higher at a rate of 10° C./min. It can be identified as the temperature corresponding to the maximum appearing on the differential thermal (DTA) curve.
  • TG/DTA differential thermogravimetric analyzer
  • Polytetrafluoroethylene has a heat of fusion curve of 333 when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC] for polytetrafluoroethylene that has no history of heating to a temperature of 300 ° C. or higher. At least one or more endothermic peaks appear in the range of ⁇ 347°C, and the heat of fusion at 290 to 350°C calculated from the heat of fusion curve is preferably 52 mJ/mg or more.
  • the heat of fusion of polytetrafluoroethylene is more preferably 55 mJ/mg or more, still more preferably 58 mJ/mg or more.
  • polytetrafluoroethylene may be homopolytetrafluoroethylene containing only TFE units, or modified polytetrafluoroethylene containing modified monomer units based on modified monomers copolymerizable with TFE units and TFE. It may be ethylene.
  • the amount of the modifying monomer added when polymerizing TFE is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably It is 0.03% by mass or more, particularly preferably 0.05% by mass or more, preferably 1.0% by mass or less, more preferably 0.8% by mass or less, and still more preferably 0.5% by mass. % by mass or less, and particularly preferably 0.3% by mass or less.
  • the modifying monomer is not particularly limited as long as it can be copolymerized with TFE, and includes fluoromonomers and non-fluoromonomers.
  • One type of modified monomer may be used, or a plurality of types may be used.
  • Non-fluoromonomers include, for example, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate butyl acrylate, butyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, vinyl methacrylate, vinyl acetate, acrylic acid, methacrylic acid, acrylonitrile. , methacrylonitrile, ethyl vinyl ether, cyclohexyl vinyl ether, and the like.
  • butyl methacrylate, vinyl acetate and acrylic acid are preferred.
  • fluoromonomers examples include perfluoroolefins such as hexafluoropropylene [HFP]; hydrogen-containing fluoroolefins such as trifluoroethylene and vinylidene fluoride [VDF]; perhaloolefins such as chlorotrifluoroethylene; perfluoroalkyl)ethylene; perfluoroallyl ether and the like.
  • HFP hexafluoropropylene
  • VDF vinylidene fluoride
  • perhaloolefins such as chlorotrifluoroethylene; perfluoroalkyl)ethylene; perfluoroallyl ether and the like.
  • Rf represents a perfluoro organic group
  • the "perfluoro organic group” means an organic group in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms.
  • the perfluoro organic group may have an ether oxygen.
  • perfluorovinyl ether examples include perfluoro(alkyl vinyl ether) [PAVE] in which Rf is a perfluoroalkyl group having 1 to 10 carbon atoms in the general formula (A).
  • the perfluoroalkyl group preferably has 1 to 5 carbon atoms.
  • Examples of the perfluoroalkyl group in PAVE include perfluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, and perfluorohexyl group.
  • Rf is a perfluoro(alkoxyalkyl) group having 4 to 9 carbon atoms, and Rf is the following formula:
  • Rf is the following formula: CF 3 CF 2 CF 2 —(O—CF(CF 3 )—CF 2 ) n — (wherein n represents an integer of 1 to 4).
  • the (perfluoroalkyl)ethylene (PFAE) is not particularly limited, and examples thereof include (perfluorobutyl)ethylene (PFBE), (perfluorohexyl)ethylene, and the like.
  • Rf in the above general formula is the same as Rf in general formula (A).
  • Rf is preferably a perfluoroalkyl group having 1 to 10 carbon atoms or a perfluoroalkoxyalkyl group having 1 to 10 carbon atoms.
  • the modifying monomer is preferably at least one selected from the group consisting of hexafluoropropylene, chlorotrifluoroethylene, vinylidene fluoride, perfluoro(alkyl vinyl ether), (perfluoroalkyl) ethylene and ethylene, and perfluoro ( alkyl vinyl ether) are more preferred.
  • the modifying monomer is preferably at least one selected from the group consisting of hexafluoropropylene, perfluoro(alkyl vinyl ether) and (perfluoroalkyl) ethylene.
  • (methyl vinyl ether), perfluoro (propyl vinyl ether), (perfluorobutyl) ethylene, (perfluorohexyl) ethylene, and (perfluorooctyl) at least one selected from the group consisting of ethylene is more preferred, and perfluoro At least one selected from the group consisting of (methyl vinyl ether) and perfluoro(propyl vinyl ether) is more preferable.
  • Suspension polymerization is carried out, for example, by charging a reactor with a monomer such as TFE, an aqueous medium and optionally other additives, stirring the contents of the reactor, and maintaining the reactor at a predetermined polymerization temperature. Then, a predetermined amount of polymerization initiator is added to initiate the polymerization reaction. After initiation of the polymerization reaction, a monomer such as TFE, a polymerization initiator, a chain transfer agent, and the like may be additionally added depending on the purpose.
  • a monomer such as TFE, a polymerization initiator, a chain transfer agent, and the like may be additionally added depending on the purpose.
  • Suspension polymerization can be carried out in the presence of a polymerization initiator.
  • the polymerization initiator is not particularly limited as long as it can generate radicals within the polymerization temperature range, and known oil-soluble and/or water-soluble polymerization initiators can be used. Furthermore, it can be combined with a reducing agent or the like to initiate polymerization as a redox.
  • concentration of the polymerization initiator is appropriately determined according to the type of monomer, the desired molecular weight of polytetrafluoroethylene, and the reaction rate.
  • a water-soluble radical polymerization initiator can be used as the polymerization initiator.
  • water-soluble radical polymerization initiators include persulfates such as ammonium persulfate, potassium persulfate and alkali metal persulfates, and ionic radical initiators such as permanganates. Further, these radical polymerization initiators are used as oxidizing components, and for example, hydrazine, diimine, iron (II) sulfate, copper (II) sulfate, oxalates, sulfites, etc. are combined as reducing components to form redox initiators. may be Compounds capable of forming hydrates, such as iron (II) sulfate and copper (II) sulfate, may be either anhydrides or hydrates.
  • Redox initiators include ammonium persulfate/copper (II) sulfate, ammonium persulfate/iron sulfate (II), ammonium persulfate/sodium sulfite/iron sulfate (II), ammonium persulfate/azodicarbonamide/copper sulfate (II) , ammonium persulfate/sodium azodicarboxylate/copper (II) sulfate, ammonium carbamate/copper (II) sulfate, ammonium persulfate/ammonium carbamate/copper (II) sulfate, potassium permanganate/ammonium oxalate, etc. .
  • the amount of radical polymerization initiator used is adjusted so that the reaction rate can be well controlled.
  • ammonium persulfate it is preferably 1-100 ppm, more preferably 1-50 ppm, and most preferably 1-10 ppm, relative to the aqueous medium.
  • Suspension polymerization is carried out by polymerizing TFE in an aqueous medium while stirring.
  • Aqueous medium means a liquid containing water.
  • the aqueous medium is not particularly limited as long as it contains water.
  • Suspension polymerization can be carried out in the presence or absence of a surfactant.
  • the amount of the surfactant is preferably 2000 mass ppm or less, more preferably 1000 mass ppm or less, still more preferably 500 mass ppm or less, particularly preferably 200 mass ppm or less, relative to the aqueous medium. Yes, most preferably 100 mass ppm or less.
  • the amount of surfactant may be 0 mass ppm.
  • a fluorine-containing surfactant is preferable as the surfactant used for suspension polymerization.
  • fluorine-containing surfactants include anionic fluorine-containing surfactants.
  • the anionic fluorine-containing surfactant may be, for example, a surfactant containing fluorine atoms having a total carbon number of 20 or less in the portion excluding the anionic group.
  • a fluorine-containing surfactant having an anionic moiety with a molecular weight of 1000 or less, preferably 800 or less can be used.
  • the "anionic portion” means the portion of the fluorine-containing surfactant excluding cations. For example, in the case of F(CF 2 ) n1 COOM represented by formula (I) described later, it is the “F(CF 2 ) n1 COO” portion.
  • the fluorine-containing surfactant also includes a fluorine-containing surfactant having a LogPOW of 3.5 or less.
  • the LogPOW of the fluorine-containing surfactant is preferably 3.4 or less.
  • the above LogPOW is the partition coefficient between 1-octanol and water, and LogP [wherein P is the octanol/water (1:1) mixture containing the fluorine-containing surfactant during phase separation. represents the concentration ratio of the fluorine-containing surfactant/the concentration of the fluorine-containing surfactant in water].
  • fluorine-containing surfactant examples include US Patent Application Publication No. 2007/0015864, US Patent Application Publication No. 2007/0015865, US Patent Application Publication No. 2007/0015866, and US Patent US2007/0276103, US2007/0117914, US2007/142541, US2008/0015319, US3250808 Specification, US Patent No. 3271341, JP 2003-119204, WO 2005/042593, WO 2008/060461, WO 2007/046377, JP 2007-119526 Publication, International Publication No. 2007/046482, International Publication No. 2007/046345, US Patent Application Publication No. 2014/0228531, International Publication No. 2013/189824, International Publication No. 2013/189826, etc. mentioned.
  • anionic fluorine-containing surfactant As the anionic fluorine-containing surfactant, the following general formula (N 0 ): X n0 ⁇ Rf n0 ⁇ Y 0 (N 0 ) (In the formula, X n0 is H, Cl or and F. Rf n0 has 3 to 20 carbon atoms and is chain, branched or cyclic, and some or all of H is replaced by F. The alkylene group may contain one or more ether bonds, and some H may be substituted with Cl. Y 0 is an anionic group.) Compound represented by is mentioned. The anionic group of Y 0 may be -COOM, -SO 2 M, or -SO 3 M, and may be -COOM or -SO 3 M.
  • M is H, a metal atom, NR 74 , optionally substituted imidazolium, optionally substituted pyridinium or optionally substituted phosphonium ; is H or an organic group.
  • the metal atom include alkali metals (group 1) and alkaline earth metals (group 2), such as Na, K, and Li.
  • R 7 may be H or a C 1-10 organic group, may be H or a C 1-4 organic group, or may be H or a C 1-4 alkyl group.
  • M may be H, a metal atom or NR 7 4 , may be H, an alkali metal (group 1), an alkaline earth metal (group 2) or NR 7 4 , H, Na, K, Li or NH4 .
  • Rf n0 50% or more of H may be substituted with fluorine.
  • N 1 As the compound represented by the general formula (N 0 ), the following general formula (N 1 ): X n0 ⁇ (CF 2 ) m1 ⁇ Y 0 (N 1 ) (Wherein, X n0 are H, Cl and F, m1 is an integer of 3 to 15, and Y 0 is as defined above.)
  • Rf n5 is a linear or branched partially or fully fluorinated alkylene group that may contain an ether bond of 1 to 3 carbon atoms, and L is a linking group; , Y 0 are as defined above, provided that the total number of carbon atoms of X n2 , X n3 , X n4 and Rf n5 is 18 or less.
  • the compounds represented by the general formula (N 0 ) include perfluorocarboxylic acids (I) represented by the following general formula (I), ⁇ -H represented by the following general formula (II) Perfluorocarboxylic acid (II), perfluoroethercarboxylic acid (III) represented by the following general formula (III), perfluoroalkylalkylenecarboxylic acid (IV) represented by the following general formula (IV), the following general formula Perfluoroalkoxyfluorocarboxylic acid (V) represented by (V), perfluoroalkylsulfonic acid (VI) represented by the following general formula (VI), ⁇ -H perm represented by the following general formula (VII) fluorosulfonic acid (VII), perfluoroalkylalkylenesulfonic acid (VIII) represented by the following general formula (VIII), alkylalkylenecarboxylic acid (IX) represented by the following general formula (IX), the following general formula (X ), the
  • the perfluorocarboxylic acid (I) has the following general formula (I) F( CF2 ) n1COOM (I) (Wherein, n1 is an integer of 3 to 14 , M is H, a metal atom, NR 74 , imidazolium optionally having substituents, pyridinium optionally having substituents or It is a phosphonium which may have a substituent, and R 7 is H or an organic group.).
  • the ⁇ -H perfluorocarboxylic acid (II) has the following general formula (II) H(CF2) n2COOM ( II ) (wherein n2 is an integer of 4 to 15, and M is as defined above).
  • the perfluoroether carboxylic acid (III) has the following general formula (III) Rf 1 -O-(CF(CF 3 )CF 2 O) n3 CF(CF 3 )COOM (III) (Wherein, Rf 1 is a perfluoroalkyl group having 1 to 5 carbon atoms, n3 is an integer of 0 to 3, and M is as defined above.) .
  • the perfluoroalkylalkylenecarboxylic acid (IV) has the following general formula (IV) Rf2(CH2)n4Rf3COOM ( IV ) (wherein Rf 2 is a perfluoroalkyl group having 1 to 5 carbon atoms, Rf 3 is a linear or branched perfluoroalkylene group having 1 to 3 carbon atoms, n4 is a is an integer, and M is as defined above.
  • the alkoxyfluorocarboxylic acid (V) has the following general formula (V) Rf4 - O - CY1Y2CF2 - COOM (V) (Wherein, Rf 4 is a linear or branched partially or fully fluorinated alkyl group which may contain an ether bond and/or a chlorine atom having 1 to 12 carbon atoms, and Y 1 and Y 2 are the same or different and are H or F, and M is as defined above.
  • the perfluoroalkylsulfonic acid (VI) has the following general formula (VI) F( CF2)n5SO3M ( VI ) (wherein n5 is an integer of 3 to 14, and M is as defined above).
  • the ⁇ -H perfluorosulfonic acid (VII) has the following general formula (VII) H( CF2)n6SO3M ( VII ) (wherein n6 is an integer of 4 to 14, and M is as defined above).
  • the perfluoroalkylalkylene sulfonic acid (VIII) has the following general formula (VIII) Rf5 ( CH2 ) n7SO3M ( VIII) (Wherein, Rf 5 is a perfluoroalkyl group having 1 to 13 carbon atoms, n7 is an integer of 1 to 3, and M is as defined above.) .
  • the alkylalkylenecarboxylic acid (IX) has the following general formula (IX) Rf6 ( CH2 ) n8COOM (IX) (wherein Rf 6 is a linear or branched partially or fully fluorinated alkyl group which may contain an ether bond with 1 to 13 carbon atoms, n8 is an integer of 1 to 3, M is defined above.).
  • the fluorocarboxylic acid (X) has the following general formula (X) Rf7 - O - Rf8 - O-CF2-COOM(X) (Wherein, Rf 7 is a linear or branched partially or fully fluorinated alkyl group that may contain an ether bond and/or a chlorine atom having 1 to 6 carbon atoms, and Rf 8 is a carbon A linear or branched, partially or fully fluorinated alkyl group of numbers 1 to 6, wherein M is as defined above.).
  • the alkoxyfluorosulfonic acid (XI) has the following general formula (XI) Rf9 -O - CY1Y2CF2 - SO3M (XI) (Wherein, Rf 9 is a linear or branched chain that may contain an ether bond of 1 to 12 carbon atoms, and may contain chlorine, and is a partially or fully fluorinated alkyl group; 1 and Y 2 are the same or different and are H or F, and M is as defined above.
  • the above compound (XII) has the following general formula (XII): (Wherein, X 1 , X 2 and X 3 may be the same or different, and may contain H, F and an ether bond having 1 to 6 carbon atoms, a linear or branched partially or fully fluorinated Rf 10 is a perfluoroalkylene group having 1 to 3 carbon atoms, L is a linking group, and Y 0 is an anionic group.). Y 0 can be -COOM, -SO 2 M, or -SO 3 M, and can be -SO 3 M, or COOM, where M is as defined above. Examples of L include a single bond, a partially fluorinated alkylene group which may contain an ether bond having 1 to 10 carbon atoms, and a fully fluorinated alkylene group.
  • the above compound (XIII) has the following general formula (XIII): Rf 11 —O—(CF 2 CF(CF 3 )O) n9 (CF 2 O) n10 CF 2 COOM (XIII) (wherein Rf 11 is a chlorine-containing fluoroalkyl group having 1 to 5 carbon atoms, n9 is an integer of 0 to 3, n10 is an integer of 0 to 3, and M is the above-defined It is represented by Compound (XIII) includes CF2ClO ( CF2CF ( CF3 )O) n9 ( CF2O ) n10CF2COONH4 ( a mixture with an average molecular weight of 750, where n9 and n10 are as defined above). There is.)
  • anionic fluorine-containing surfactants examples include carboxylic acid-based surfactants, sulfonic acid-based surfactants, and the like.
  • the fluorine-containing surfactant may be one type of fluorine-containing surfactant, or may be a mixture containing two or more types of fluorine-containing surfactants.
  • fluorine-containing surfactants include compounds represented by the following formulas.
  • a fluorine-containing surfactant may be a mixture of these compounds.
  • the suspension-polymerized particles obtained by suspension polymerization in the presence of a fluorine-containing surfactant usually contain a fluorine-containing surfactant in addition to polytetrafluoroethylene.
  • Suspension-polymerized particles obtained by polymerizing monomers such as TFE and modified monomers may contain fluorine-containing compounds produced by polymerization of monomers in addition to polytetrafluoroethylene.
  • the fluorine-containing compound is a compound that is not added during suspension polymerization, and includes, for example, compounds having a structure similar to that of the fluorine-containing surfactant but having a different number of carbon atoms.
  • polytetrafluoroethylene particles in which the content of fluorine-containing compounds produced by polymerization of monomers is reduced. Further, according to the production method of the present disclosure, polytetrafluoroethylene particles with a reduced content of the fluorine-containing surfactant can be obtained even when the suspension polymerization is performed in the presence of the fluorine-containing surfactant. can be manufactured.
  • a typical fluorine-containing compound in the suspension polymerized particles is a fluorine-containing compound having a hydrophilic group with a molecular weight of 1000 or less, preferably 800 g/mol or less.
  • the content of a fluorine-containing compound having a hydrophilic group with a molecular weight of 1000 or less, preferably 800 g/mol or less in suspension polymerized particles obtained by polymerization of a monomer such as TFE is reduced. Tetrafluoroethylene particles can be produced.
  • the hydrophilic group possessed by the fluorine - containing compound is preferably an anionic group such as an acid group.
  • M represents a cation).
  • --SO 3 M or --COOM is preferable, and --COOM is more preferable.
  • One embodiment of the suspension polymerized particles contains a compound represented by the following general formula (1) as a fluorine-containing compound having a hydrophilic group.
  • General formula (1) [X-Rf-A - ] i M i+ (wherein X is H, Cl, Br, F or I, Rf is a linear or branched, partially fluorinated or fully fluorinated aliphatic group, or interrupted by at least one oxygen atom A linear or branched, partially fluorinated or fully fluorinated aliphatic group, A ⁇ is an acid group, M i+ is a cation having a valence i, i represents an integer of 1 to 3)
  • One embodiment of the suspension polymerized particles contains a compound represented by the following general formula (2) as a fluorine-containing compound having a hydrophilic group.
  • General formula (2) [C n ⁇ 1 F 2n ⁇ 1 COO ⁇ ]M + (In the formula, n is an integer of 9 to 12, and M + represents a cation.)
  • the compound (perfluoroalkanoic acid) represented by the general formula (2) is known to be formed during polymerization when perfluoroalkyl vinyl ether or the like is used as a modifying monomer (International Publication No. 2019/ 161153).
  • One embodiment of the suspension polymerized particles contains a compound represented by the following general formula (3) as a fluorine-containing compound having a hydrophilic group.
  • General formula (3) [R 1 -OL-CO 2 - ]M + (wherein R 1 is a linear or branched partially fluorinated or fully fluorinated aliphatic group, or a linear or branched partially fluorinated or fully fluorinated aliphatic group interrupted by at least one oxygen atom).
  • fluorinated aliphatic group, L is a linear or branched non-fluorinated, partially fluorinated or fully fluorinated alkylene group, M + represents a cation.
  • One embodiment of the suspension polymerized particles contains a compound represented by the general formula (4) as a fluorine-containing compound having a hydrophilic group.
  • General formula (4) [H-(CF 2 ) m CO 2 ⁇ ]M + (Wherein, m is an integer of 3 to 19, and M + represents a cation.)
  • ground particles are then produced by grinding the obtained suspension polymer particles after washing, or by grinding the obtained suspension polymer particles while washing them. .
  • Suspension-polymerized particles obtained by suspension polymerization are usually obtained in a wet state.
  • the wet suspension polymer particles may be pulverized, or the wet suspension polymer particles may be dried and then pulverized.
  • the pulverization may be wet pulverization or dry pulverization.
  • Examples of the method of pulverizing the suspension polymer particles include a method of pulverizing using a pulverizer.
  • Pulverizers include impact-type pulverizers such as hammer mills, pin mills, high-speed rotating mills and jet mills, cutter mills that pulverize by shearing force generated by rotating blades and peripheral stators (fixed blades), feather mills, colloid mills, etc.
  • a grinding-type pulverizer and the like can be mentioned.
  • a plurality of pulverizers may be used in combination.
  • the temperature for pulverization is preferably -200 to 50°C, more preferably 1°C or higher, more preferably 40°C or lower, and even more preferably 30°C or lower.
  • Examples of the method of pulverizing the suspension polymer particles while washing them include a method of pulverizing the suspension polymer particles in water or an organic solvent.
  • a method of pulverizing the suspension polymer particles in water or an organic solvent may be simultaneously supplied to a grinding-type pulverizer such as a cutter mill to pulverize the suspension polymer particles, or water or an organic solvent and suspension polymer particles may be pulverized.
  • the suspension polymerized particles may be ground by premixing and feeding the mixture to a grinder.
  • the suspension polymer particles may be washed before pulverizing the suspension polymer particles. Water or an organic solvent can be used for washing the suspension polymer particles. Washing may be performed once or multiple times.
  • Organic solvents used for washing include ethers, halogenated hydrocarbons, aromatic hydrocarbons, pyridine, nitriles, nitrogen-containing polar organic compounds, dimethylsulfoxide, and alcohols.
  • the pulverization may be performed once or repeatedly until pulverized particles having the desired average particle size or desired particle size distribution are produced.
  • the pulverized particles obtained by pulverization are usually obtained in a wet state. After pulverization, the water content of the pulverized particles before dehydration is, for example, more than 40% by mass.
  • the wet pulverized particles are dehydrated and then subjected to the heat treatment described below. Examples of the method for dehydrating the wet pulverized particles include a method of dehydrating using a dehydrator.
  • the dehydrator includes a vibration dehydrator, a filtration dehydrator, a centrifugal dehydrator, and the like. Dehydration is preferably carried out below 50°C.
  • the dehydration temperature is the temperature of the atmosphere surrounding the ground particles.
  • the wet pulverized particles may be dehydrated, dried, and then subjected to the heat treatment described later. Drying is performed for the purpose of removing moisture from the pulverized particles obtained by pulverization.
  • a method for drying wet pulverized particles for example, there is a method of drying using a dryer.
  • Dryers include hot air heat receiving dryers, conduction heat receiving dryers, radiation heat transfer dryers, and high frequency heat transfer dryers.
  • Examples of the dryer include stationary material dryers, material transfer dryers, material stirring dryers, material transfer dryers, and the like.
  • Examples of the hot air heat receiving type stationary material dryer and material transfer type dryer include a box dryer, a tunnel dryer, a band dryer, a vertical turbo dryer, a vertical dryer, and a belt dryer.
  • Examples of the hot air heat receiving type material agitating dryer include a fluidized bed dryer, aeration rotary dryer, a groove agitating dryer, and a multi-stage disk dryer.
  • Examples of the hot-air heat-receiving material-conveying dryer include a flash dryer and a spray dryer (ejection stream dryer, spray dryer).
  • Examples of stationary heat-receiving material dryers and material transfer dryers include vacuum box dryers, cylinder dryers, vibration dryers, vacuum heat treatment dryers, freeze dryers, and drum dryers.
  • Examples of conductive heat-receiving material stirring dryers include cylindrical dryers, groove dryers, inverted cone dryers, extrusion dryers, steam-heated tube bundle rotary dryers, and the like.
  • Infrared dryers can be cited as radiant heat transfer type stationary material dryers and material transfer dryers.
  • High-frequency heat transfer type stationary material dryers and material transfer type dryers include high-frequency dryers and microwave dryers.
  • the pulverized particles are dried by airflow drying. Flash drying can be performed using a flash dryer.
  • a solid-gas mixture containing the dried pulverized particles and gas may be separated into pulverized particles and gas using a cyclone or the like to recover the pulverized particles.
  • the temperature for drying the ground particles is preferably less than 300°C, more preferably less than 280°C, even more preferably less than 250°C, still more preferably less than 200°C, and particularly preferably less than 180°C. , most preferably less than 160° C., preferably 50° C. or higher, more preferably 100° C. or higher.
  • the drying temperature is the temperature of the atmosphere around the pulverized particles, and when hot air is used for drying, it can be specified by measuring the temperature of the hot air.
  • the temperature of the hot air can be measured at the supply port for supplying hot air to the dryer or at the exhaust port for discharging hot air from the dryer, but is preferably measured at the exhaust port.
  • the water content of the pulverized particles is preferably 40% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less, and the lower limit is not particularly limited, but is 0.01% by mass or more. It's okay.
  • the water content of the pulverized particles can be adjusted, for example, by dehydrating or drying the pulverized particles.
  • the water content of the pulverized particles can be calculated, for example, by heating the pulverized particles at 150° C. for 3 hours to sufficiently dry them, measuring the mass of the pulverized particles before and after heating, and using the following formula.
  • Moisture content (% by mass) [(mass of pulverized particles before heating (g)) - (mass of pulverized particles after heating (g))] / (mass of pulverized particles after heating (g)) x 100
  • the resulting pulverized particles may be classified by a known method such as air classification. Classification removes fine particles with an extremely small particle size and coarse particles with an extremely large particle size to obtain pulverized particles having a desired average particle size or a desired particle size distribution.
  • the average particle size of the pulverized particles is preferably 800 ⁇ m or less, more preferably 600 ⁇ m or less, still more preferably 400 ⁇ m or less, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and still more preferably 10 ⁇ m. more preferably 100 ⁇ m or more, particularly preferably 150 ⁇ m or more, and most preferably more than 200 ⁇ m.
  • Heat treatment In the production method of the present disclosure, polytetrafluoroethylene particles are then produced by heat-treating the obtained pulverized particles. The heat treatment is performed for the purpose of removing the sour odor from the pulverized particles obtained by pulverization.
  • the heat treatment for the pulverized particles may be a batch heat treatment or a continuous heat treatment.
  • the temperature of the heat treatment is preferably 160° C. or higher, more preferably 180° C. or higher, still more preferably 200° C. or higher, preferably 340° C. or lower, more preferably 310° C. or lower, and still more preferably. is below 300°C.
  • the heat treatment time is preferably 1 second or longer, more preferably 2 seconds or longer, still more preferably 1 minute or longer, particularly preferably 3 minutes or longer, preferably 24 hours or shorter, and more preferably. is 2 hours or less, more preferably 1 hour or less.
  • the heat treatment can be performed, for example, in air or in an inert gas.
  • the heat treatment can be performed, for example, in a gas containing no active gas such as fluorine gas.
  • the heat treatment can also be carried out under normal pressure or reduced pressure.
  • Heat treatment can be performed using a dryer.
  • Dryers include hot air heat receiving dryers, conductive heat receiving dryers, radiation heat receiving dryers, and high frequency heat receiving dryers.
  • Examples of the dryer include stationary material dryers, material transfer dryers, material stirring dryers, material transfer dryers, and the like.
  • Examples of the hot air heat receiving type stationary material dryer and material transfer type dryer include a box dryer, a tunnel dryer, a band dryer, a vertical turbo dryer, a vertical dryer, and a belt dryer.
  • Examples of the hot air heat receiving type material agitating dryer include a fluidized bed dryer, aeration rotary dryer, a groove agitating dryer, and a multi-stage disk dryer.
  • Examples of the hot-air heat-receiving material-conveying dryer include a flash dryer and a spray dryer (ejection stream dryer, spray dryer).
  • Examples of stationary heat-receiving material dryers and material transfer dryers include vacuum box dryers, cylinder dryers, vibration dryers, vacuum heat treatment dryers, freeze dryers, and drum dryers.
  • Examples of conductive heat-receiving material stirring dryers include cylindrical dryers, groove dryers, inverted cone dryers, extrusion dryers, steam-heated tube bundle rotary dryers, and the like.
  • Infrared dryers can be cited as radiation heat receiving type material stationary dryers and material transfer type dryers.
  • High-frequency heat-receiving material stationary dryers and material transfer dryers include high-frequency dryers and microwave dryers.
  • the heat treatment of the pulverized particles may be performed by fluidizing (stirring, conveying) the pulverized particles, or may be performed with the pulverized particles standing still.
  • a method of heat-treating the pulverized particles a method of fluidizing the pulverized particles and heat-treating them is particularly preferable because the efficiency of the heat treatment increases.
  • the method of fluidizing and heat-treating the pulverized particles can be carried out using a material stirring dryer or a material conveying dryer.
  • the method of heat-treating the pulverized particles in a stationary state can be carried out using a stationary material drier or a material transfer drier.
  • the heat treatment of the pulverized particles may be performed by applying hot air to the pulverized particles (hot air heat receiving type), or by contacting the pulverized particles with a heat transfer medium other than hot air.
  • hot air heat receiving type hot air heat receiving type
  • the method of contacting the pulverized particles with a heat transfer medium other than hot air is preferable because of its high thermal efficiency.
  • the method of bringing the pulverized particles into contact with a heat transfer medium other than hot air can be carried out using a conductive heat-receiving dryer.
  • Polytetrafluoroethylene particles are obtained by heat-treating the pulverized particles and cooling them if desired.
  • the resulting particles can be transported using gas from the dryer to equipment for further processing.
  • a solid-gas mixture containing pulverized particles (polytetrafluoroethylene particles) and gas is formed.
  • the formed solid-gas mixture may be separated into pulverized particles (polytetrafluoroethylene particles) and gas using a cyclone or the like, and the pulverized particles (polytetrafluoroethylene particles) may be recovered.
  • the particle size of the polytetrafluoroethylene particles may be adjusted by further pulverizing the obtained polytetrafluoroethylene particles.
  • the pulverization when the polytetrafluoroethylene particles are further pulverized may be wet pulverization or dry pulverization.
  • Examples of the method of pulverizing particles include a method of pulverizing using a pulverizer.
  • Pulverizers include impact-type pulverizers such as hammer mills, pin mills, high-speed rotating mills and jet mills, cutter mills that pulverize by shearing force generated by rotating blades and peripheral stators (fixed blades), feather mills, colloid mills, etc.
  • a grinding-type pulverizer and the like can be mentioned.
  • the temperature for pulverization is preferably -200 to 50°C, more preferably 1°C or higher, more preferably 40°C or lower, and even more preferably 30°C or lower.
  • the obtained polytetrafluoroethylene particles may be classified by a known method such as airflow classification. Classification removes fine particles with a very small particle size and coarse particles with a very large particle size to obtain polytetrafluoroethylene particles having a desired average particle size or a desired particle size distribution.
  • the polytetrafluoroethylene particles are preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably less than 100 ⁇ m, even more preferably 70 ⁇ m or less, particularly preferably 50 ⁇ m or less, most preferably 30 ⁇ m or less, and preferably 1 ⁇ m or more. more preferably 5 ⁇ m or more, and still more preferably 10 ⁇ m or more.
  • the average particle size of the polytetrafluoroethylene particles is too large, the moldability of the polytetrafluoroethylene particles is deteriorated, and molding defects tend to occur in molded articles. If the average particle size of the polytetrafluoroethylene particles is too small, the handleability tends to be poor.
  • the average particle size of polytetrafluoroethylene particles is the 50% cumulative particle size measured by laser diffraction.
  • the average particle size of other particles such as suspension polymerized particles is also the 50% cumulative particle size measured by the laser diffraction method.
  • the content of high-temperature volatiles in the polytetrafluoroethylene particles is preferably 0.050% by mass or less, more preferably 0.030% by mass or less, and still more preferably, based on the mass of the polytetrafluoroethylene particles. is 0.020% by mass or less, preferably 0.001% by mass or more, more preferably 0.003% by mass or more, and still more preferably 0.005% by mass or more.
  • the content of high-temperature volatile matter in the polytetrafluoroethylene particles can be calculated according to JIS K 6891 by measuring the mass after heating the polytetrafluoroethylene particles at 370° C. for 2 hours and using the following formula. can.
  • High-temperature volatiles (% by mass) [(mass of polytetrafluoroethylene particles before heating (g)) - (mass of polytetrafluoroethylene particles after heating (g))]/(polytetrafluoroethylene before heating Mass of particles (g)) ⁇ 100
  • the standard specific gravity of the polytetrafluoroethylene particles may be 2.130 to 2.280, preferably 2.200 or less, more preferably 2.135 or more.
  • the standard specific gravity of polytetrafluoroethylene particles can be measured according to ASTM D4894.
  • the specific surface area of the polytetrafluoroethylene particles is preferably 5.0 m 2 /g or less, more preferably 4.5 m 2 /g or less, still more preferably 4.0 m 2 /g or less, preferably It is 0.1 m 2 /g or more, more preferably 1.0 m 2 /g or more.
  • the specific surface area of polytetrafluoroethylene particles can be measured according to JIS Z8830 by the BET method, using a mixed gas of 30% nitrogen and 70% helium as a carrier gas, cooling with liquid nitrogen.
  • the apparent density of the polytetrafluoroethylene particles is preferably 0.55 g/cm 3 or less, more preferably 0.50 g/cm 3 or less, still more preferably 0.45 g/cm 3 or less, preferably It is 0.15 g/cm 3 or more, more preferably 0.20 g/cm 3 or more, and still more preferably 0.25 g/cm 3 or more.
  • the apparent density of polytetrafluoroethylene particles can be measured according to JIS K 6891.
  • the polytetrafluoroethylene contained in the polytetrafluoroethylene particles may be homopolytetrafluoroethylene containing only TFE units, or may contain modified monomer units based on modified monomers copolymerizable with TFE units and TFE. Modified polytetrafluoroethylene may be used.
  • Modified monomers that form modified monomer units include modified monomers used in the production method of the present disclosure, and the same modified monomers as those used in the production method of the present disclosure are preferred.
  • the content of modified monomer units in polytetrafluoroethylene is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, relative to all polymerized units constituting polytetrafluoroethylene. , More preferably 0.03% by mass or more, particularly preferably 0.05% by mass or more, preferably 1.0% by mass or less, more preferably 0.8% by mass or less, and still more preferably is 0.5% by mass or less, particularly preferably 0.3% by mass or less.
  • each monomer unit constituting polytetrafluoroethylene can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis depending on the type of monomer.
  • the content of each monomer unit constituting polytetrafluoroethylene can also be obtained by calculation from the added amount of the modifying monomer used in the polymerization.
  • One embodiment of the polytetrafluoroethylene particles contains a fluorine-containing compound.
  • the polytetrafluoroethylene particles contain substantially no fluorine-containing compounds.
  • the fluorine-containing compound is a compound that is not added during suspension polymerization, as described above.
  • a typical fluorine-containing compound is a fluorine-containing compound having a hydrophilic group with a molecular weight of 1000 or less, preferably 800 g/mol or less.
  • One embodiment of the polytetrafluoroethylene particles does not substantially contain a compound represented by the following general formula (1) as a fluorine-containing compound having a hydrophilic group.
  • General formula (1) [X-Rf-A - ] i M i+ (wherein X is H, Cl, Br, F or I, Rf is a linear or branched, partially fluorinated or fully fluorinated aliphatic group, or interrupted by at least one oxygen atom A linear or branched, partially fluorinated or fully fluorinated aliphatic group, A ⁇ is an acid group, M i+ is a cation having a valence i, i represents an integer of 1 to 3)
  • polytetrafluoroethylene particles does not substantially contain a compound represented by the following general formula (2) as a fluorine-containing compound having a hydrophilic group.
  • General formula (2) [C n ⁇ 1 F 2n ⁇ 1 COO ⁇ ]M + (In the formula, n is an integer of 9 to 12, and M + represents a cation.)
  • the compound (perfluoroalkanoic acid) represented by the general formula (2) is known to be formed during polymerization when perfluoroalkyl vinyl ether or the like is used as a modifying monomer (International Publication No. 2019/ 161153).
  • One embodiment of the polytetrafluoroethylene particles does not substantially contain a compound represented by the following general formula (3) as a fluorine-containing compound having a hydrophilic group.
  • General formula (3) [R 1 -OL-CO 2 - ]M + (wherein R 1 is a linear or branched partially fluorinated or fully fluorinated aliphatic group, or a linear or branched partially fluorinated or fully fluorinated aliphatic group interrupted by at least one oxygen atom).
  • fluorinated aliphatic group, L is a linear or branched non-fluorinated, partially fluorinated or fully fluorinated alkylene group, M + represents a cation.
  • polytetrafluoroethylene particles does not substantially contain the compound represented by the general formula (4) as the fluorine-containing compound having a hydrophilic group.
  • General formula (4) [H-(CF 2 ) m CO 2 ⁇ ]M + (Wherein, m is an integer of 3 to 19, and M + represents a cation.)
  • substantially does not contain a fluorine-containing compound means that the polytetrafluoroethylene particles contain a fluorine-containing compound (a fluorine-containing compound generated by polymerization of a monomer). It means that the amount is 1 mass ppm or less relative to polytetrafluoroethylene.
  • the content of the fluorine-containing compound (fluorine-containing compound having a hydrophilic group) in the polytetrafluoroethylene particles is preferably 100 mass ppb or less, more preferably 50 mass ppb or less, and still more preferably 10 mass ppb or less. , still more preferably 5 mass ppb or less, particularly preferably 1 mass ppb or less, most preferably measured by liquid chromatography-mass spectrometry (LC/MS), the fluorine-containing surfactant is Below the limit of detection.
  • LC/MS liquid chromatography-mass spectrometry
  • the content of the fluorine-containing compound can be quantified by a known method. For example, it can be quantified by LC/MS analysis. First, methanol is added to the polytetrafluoroethylene particles for extraction, and the obtained extract is subjected to LC/MS analysis. In order to further increase the extraction efficiency, a treatment such as Soxhlet extraction, ultrasonic treatment, or the like may be performed. Molecular weight information is extracted from the obtained LC/MS spectrum, and conformity with the structural formula of the candidate fluorine-containing compound (fluorine-containing compound having a hydrophilic group) is confirmed.
  • LC/MS analysis First, methanol is added to the polytetrafluoroethylene particles for extraction, and the obtained extract is subjected to LC/MS analysis. In order to further increase the extraction efficiency, a treatment such as Soxhlet extraction, ultrasonic treatment, or the like may be performed. Molecular weight information is extracted from the obtained LC/MS spectrum, and conformity with the structural formula of the candidate fluor
  • polytetrafluoroethylene particles contains a fluorine-containing surfactant.
  • polytetrafluoroethylene particles contains a fluorine-containing compound and a fluorine-containing surfactant.
  • substantially no fluorine-containing surfactant is contained.
  • substantially free of fluorine-containing surfactant means that the content of fluorine-containing surfactant in the polytetrafluoroethylene particles is 1 mass ppm or less.
  • the content of the fluorine-containing surfactant in the polytetrafluoroethylene particles is preferably 100 mass ppb or less, more preferably 50 mass ppb or less, still more preferably 10 mass ppb or less, still more preferably It is 5 mass ppb or less, particularly preferably 1 mass ppb or less, and most preferably less than the detection limit of the fluorine-containing surfactant as measured by liquid chromatography-mass spectrometry (LC/MS).
  • LC/MS liquid chromatography-mass spectrometry
  • the content of the fluorine-containing surfactant can be quantified by a known method. For example, it can be quantified by LC/MS analysis. First, methanol is added to the polytetrafluoroethylene particles for extraction, and the obtained extract is subjected to LC/MS analysis. In order to further increase the extraction efficiency, a treatment such as Soxhlet extraction, ultrasonic treatment, or the like may be performed. Molecular weight information is extracted from the obtained LC/MS spectrum, and conformity with the structural formula of the candidate fluorine-containing surfactant is confirmed.
  • LC/MS analysis First, methanol is added to the polytetrafluoroethylene particles for extraction, and the obtained extract is subjected to LC/MS analysis. In order to further increase the extraction efficiency, a treatment such as Soxhlet extraction, ultrasonic treatment, or the like may be performed. Molecular weight information is extracted from the obtained LC/MS spectrum, and conformity with the structural formula of the candidate fluorine-containing surfactant is confirmed.
  • aqueous solutions with 5 or more levels of content of the confirmed fluorine-containing surfactant were prepared, and the aqueous solutions with each content were analyzed by LC/MS to determine the content and the relationship between the area area and the content. Plot and draw a standard curve. Then, using the calibration curve, the area area of the LC/MS chromatogram of the fluorine-containing surfactant in the extract can be converted to the content of the fluorine-containing surfactant.
  • the present disclosure also relates to polytetrafluoroethylene particles obtained by the manufacturing method described above.
  • Polytetrafluoroethylene particles obtained by the above production method are usually obtained as a powder containing a plurality of polytetrafluoroethylene particles.
  • a polytetrafluoroethylene molded article can be obtained by molding the polytetrafluoroethylene particles obtained by the production method of the present disclosure. Since the polytetrafluoroethylene particles obtained by the production method of the present disclosure have reduced acid odor, the use of these polytetrafluoroethylene particles can greatly improve the working environment during molding.
  • Examples of methods for molding polytetrafluoroethylene particles include compression molding, ram extrusion molding, and isostatic compression molding. Compression molding is particularly preferable as the molding method.
  • a polytetrafluoroethylene compression-molded article is obtained by compression-molding the polytetrafluoroethylene particles.
  • a mold In compression molding, generally, a mold is filled with polytetrafluoroethylene particles and compressed to prepare a preform, and the obtained preform is placed in a furnace for sintering and cooling. A compression molded product is obtained.
  • polytetrafluoroethylene particles are filled in a mold, the polytetrafluoroethylene particles are compressed at 1 to 100 MPa, and the preform obtained by compression is heated to 345 to 400 ° C. It can be done by sintering.
  • the polytetrafluoroethylene molded article may be processed to produce a molded article having a desired shape.
  • a polytetrafluoroethylene sheet can be obtained by cutting a polytetrafluoroethylene molded article.
  • the obtained polytetrafluoroethylene sheet can be used as lining sheets, packings, gaskets and diaphragm valves.
  • the obtained polytetrafluoroethylene sheet can be used for heat-resistant wires, heat-resistant insulating tapes for vehicle motors and generators, release sheets, and the like.
  • Polytetrafluoroethylene molded products can also be used for sealing materials, casings, sleeves, bellows, hoses, piston rings, butterfly valves, square tanks, wafer carriers, and the like.
  • the polytetrafluoroethylene particles obtained by the production method of the present disclosure and the polytetrafluoroethylene particles of the present disclosure can also be used as raw materials for granulation and compounds.
  • the polytetrafluoroethylene particles obtained by the production method of the present disclosure and the polytetrafluoroethylene particles of the present disclosure may be granulated by a known granulation method.
  • a filler may be appropriately blended with the polytetrafluoroethylene particles obtained by the production method of the present disclosure and the polytetrafluoroethylene particles of the present disclosure.
  • the molding powder containing the filler may be granulated by a known granulation method. The resulting granules and molding material can be molded in the same manner as for molding polytetrafluoroethylene particles.
  • Moisture content (% by mass) [(mass of pulverized particles before heating (g)) - (mass of pulverized particles after heating (g))] / (mass of pulverized particles after heating (g)) x 100
  • the specific surface area of the polytetrafluoroethylene particles was determined by the BET method (flow method, one-point method) based on JIS Z8830 using a mixed gas of 30% nitrogen and 70% helium as a carrier gas and liquid nitrogen for cooling. Measured by As an apparatus, Macsorb HM Model-1210 was used.
  • PPVE content ⁇ Perfluoro(propyl vinyl ether) (PPVE) content>
  • the PPVE content in polytetrafluoroethylene is obtained by press - molding polytetrafluoroethylene particles to create a thin film disk, and measuring the infrared absorbance of the thin film disk by FT - IR. It was obtained by multiplying the absorbance ratio by 0.14.
  • Tetrafluoroethylene was polymerized by the method described in Production Example 3 of WO 2003/035724.
  • the charged amount of PPVE was 85 g, and no surfactant was used.
  • the obtained polytetrafluoroethylene suspension polymerization particles were taken out and washed twice with pure water. Simultaneously with washing, the powder was pulverized to an average particle size of 350 ⁇ m with a high-speed rotating mill to obtain pulverized particles.
  • the obtained pulverized particles were subjected to vibration dehydration to reduce the water content to 5% by mass to obtain dehydrated pulverized particles.
  • Example 1 After forming a solid-gas mixture containing the pulverized particles obtained in Production Example 1 and gas, the mixture was pulverized with an air jet mill to separate the pulverized particles and the gas to obtain polytetrafluoroethylene particles.
  • the average particle size of the obtained polytetrafluoroethylene particles was 26 ⁇ m.
  • a sour odor was felt, and the hydrogen fluoride concentration was 4.8 mass ppm.
  • the standard specific gravity was 2.171.
  • the specific surface area was 3.5 m 2 /g.
  • the PPVE content in polytetrafluoroethylene was 0.062% by mass.
  • Example 2 The pulverized particles obtained in Production Example 1 were supplied to a vibration dryer, which is a conductive heat receiving type material conveying dryer, and subjected to heat treatment at 250° C. for 12 minutes. Thereafter, after forming a solid-gas mixture containing pulverized particles and gas, pulverization was performed with an air jet mill to separate the pulverized particles and gas to obtain polytetrafluoroethylene particles. The average particle size of the obtained polytetrafluoroethylene particles was 30 ⁇ m. No sour odor was detected.
  • the hydrogen fluoride concentration was 1.0 mass ppm.
  • the standard specific gravity was 2.171.
  • the specific surface area was 3.4 m 2 /g.
  • Example 3 The pulverized particles obtained in Production Example 1 were supplied to an inverted conical dryer, which is a conductive heat-receiving material stirring dryer, and subjected to heat treatment at 250° C. for 6 hours. Thereafter, after forming a solid-gas mixture containing pulverized particles and gas, pulverization was performed with a feather mill to separate the pulverized particles and gas to obtain polytetrafluoroethylene particles. The average particle size of the obtained polytetrafluoroethylene particles was 29 ⁇ m. No acid odor was felt, and the hydrogen fluoride concentration was 0.3 mass ppm. The standard specific gravity was 2.171. The specific surface area was 3.7 m 2 /g.
  • Example 4 The pulverized particles obtained in Production Example 1 were supplied to a fluidized bed dryer, which is a hot air heat receiving type material agitating dryer, and subjected to heat treatment at 250° C. for 1.5 hours. Thereafter, after forming a solid-gas mixture containing pulverized particles and gas, pulverization was performed with an air jet mill to separate the pulverized particles and gas to obtain polytetrafluoroethylene particles. The average particle size of the obtained polytetrafluoroethylene particles was 26 ⁇ m. No acid odor was felt, and the hydrogen fluoride concentration was 0.5 mass ppm. The standard specific gravity was 2.171. The specific surface area was 3.7 m 2 /g.
  • Example 5 Tetrafluoroethylene was polymerized by the method described in Production Example 3 of WO 2003/035724. In the polymerization, the charged amount of PPVE was 85 g, and no surfactant was used. The polytetrafluoroethylene suspension-polymerized particles thus obtained were taken out, washed, pulverized with a high-speed rotating mill, and further pulverized with a colloid mill to an average particle size of 300 ⁇ m to obtain pulverized particles. The obtained pulverized particles were subjected to vibration dehydration to reduce the water content to 5% by mass to obtain dehydrated pulverized particles.
  • a vibration dryer which is a conductive heat receiving type material conveying dryer, and subjected to heat treatment at 250° C. for 15 minutes. Thereafter, after forming a solid-gas mixture containing pulverized particles and gas, pulverization was performed with an air jet mill to separate the pulverized particles and gas to obtain polytetrafluoroethylene particles. The average particle size of the obtained polytetrafluoroethylene particles was 21 ⁇ m. No sour odor was detected.
  • the hydrogen fluoride concentration was 0 mass ppm.
  • the standard specific gravity was 2.171.
  • the specific surface area was 3.6 m 2 /g.
  • the PPVE content in polytetrafluoroethylene was 0.062% by mass.
  • Example 6 The pulverized particles obtained in Production Example 1 were supplied to a vibration dryer, which is a conductive heat receiving type material conveying dryer, and subjected to heat treatment at 260° C. for 10 minutes. At that time, hot air at 260° C. was accompanied. Thereafter, after forming a solid-gas mixture containing pulverized particles and gas, pulverization was performed with an air jet mill to separate the pulverized particles and gas to obtain polytetrafluoroethylene particles. The average particle size of the obtained polytetrafluoroethylene particles was 23 ⁇ m. No sour odor was detected. The hydrogen fluoride concentration was 0.3 mass ppm. The standard specific gravity was 2.171. The specific surface area was 3.4 m 2 /g.
  • Table 3 shows the content of the compound represented by the general formula (2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

テトラフルオロエチレンを水性媒体中で懸濁重合することにより、ポリテトラフルオロエチレンの懸濁重合粒子を作製し、前記懸濁重合粒子を洗浄した後に粉砕することにより、または、前記懸濁重合粒子を洗浄しながら粉砕することにより、粉砕粒子を作製し、前記粉砕粒子を脱水することにより、含水率が40質量%以下の粉砕粒子を作製し、脱水した前記粉砕粒子に対して熱処理をすることにより、ポリテトラフルオロエチレン粒子を製造するポリテトラフルオロエチレン粒子の製造方法を提供する。

Description

ポリテトラフルオロエチレン粒子の製造方法
 本開示は、ポリテトラフルオロエチレン粒子の製造方法、ポリテトラフルオロエチレン成形品の製造方法およびポリテトラフルオロエチレン圧縮成形品の製造方法に関する。
 ポリテトラフルオロエチレンの製造方法として、乳化重合法、懸濁重合法などが知られている。
 乳化重合法では、通常、含フッ素界面活性剤の存在下に水性媒体中でテトラフルオロエチレンを重合することによって、ポリテトラフルオロエチレンの一次粒子が水性媒体中で安定して分散した水性分散液を得る。得られた水性分散液中の一次粒子を、凝析および乾燥させることにより、ポリテトラフルオロエチレンファインパウダーが得られる。
 一方、懸濁重合法では、通常、含フッ素界面活性剤を用いることなく、あるいは、少量の含フッ素界面活性剤を用いて、水性媒体中でテトラフルオロエチレンを重合することによって、懸濁重合粒子を生成させる。得られた懸濁重合粒子を回収し、乾燥させることにより、ポリテトラフルオロエチレンモールディングパウダーが得られる。
 懸濁重合法によりポリテトラフルオロエチレンを製造する方法として、たとえば、特許文献1には、テトラフルオロエチレンを99.8質量%以上含む単量体を水性媒体中で懸濁重合し、顆粒状重合体粒子を製造する工程と、前記顆粒状重合体粒子を粉砕する工程とを有し、前記水性媒体は、下記式(1)で表される化合物を0.5~2000ppmの濃度で含むことを特徴とする、ポリテトラフルオロエチレンモールディングパウダーの製造方法が記載されている。
   R(OCF(X)CFk-1OCF(X)COO   …(1)
(式中、Rは炭素数1~10のペルフルオロ化された1価の有機基であり、XおよびXは、それぞれ独立に、フッ素原子またはトリフルオロメチル基であり、kは1以上の整数であり、Mは水素イオン、アンモニウムイオン、アルキル置換アンモニウムイオンまたはアルカリ金属イオンである。)
国際公開第2014/123075号
 本開示では、酸臭が低減されたポリテトラフルオロエチレン粒子を製造するための製造方法を提供することを目的とする。
 本開示によれば、テトラフルオロエチレンを水性媒体中で懸濁重合することにより、ポリテトラフルオロエチレンの懸濁重合粒子を作製し、前記懸濁重合粒子を洗浄した後に粉砕することにより、または、前記懸濁重合粒子を洗浄しながら粉砕することにより、粉砕粒子を作製し、前記粉砕粒子を脱水することにより、含水率が40質量%以下の粉砕粒子を作製し、脱水した前記粉砕粒子に対して熱処理をすることにより、ポリテトラフルオロエチレン粒子を製造するポリテトラフルオロエチレン粒子の製造方法が提供される。
 本開示の製造方法において、前記粉砕粒子を脱水した後、前記粉砕粒子をさらに乾燥させることが好ましい。
 本開示の製造方法において、前記粉砕粒子を気流乾燥により乾燥させることが好ましい。
 本開示の製造方法において、前記熱処理の温度が200℃以上であることが好ましい。
 本開示の製造方法において、伝導受熱型乾燥機を用いて前記熱処理を行うことが好ましい。
 本開示の製造方法において、材料撹拌型乾燥機または材料搬送型乾燥機を用いて前記熱処理を行うことが好ましい。
 本開示の製造方法においては、前記熱処理において、または、前記熱処理後に前記ポリテトラフルオロエチレン粒子を移送する際に、前記熱処理により生じる前記ポリテトラフルオロエチレン粒子および気体を含有する固気混合物を形成させ、前記固気混合物を、前記ポリテトラフルオロエチレン粒子と気体とに分離させ、前記ポリテトラフルオロエチレン粒子を回収することにより、前記ポリテトラフルオロエチレン粒子を製造することが好ましい。
 本開示の製造方法において、前記粉砕粒子の平均粒子径が100~800μmであることが好ましい。
 本開示の製造方法において、前記粉砕粒子に対して前記熱処理を行うことにより前記ポリテトラフルオロエチレン粒子を製造した後、前記ポリテトラフルオロエチレン粒子をさらに粉砕することにより、平均粒子径が200μm以下のポリテトラフルオロエチレン粒子を製造することが好ましい。
 本開示の製造方法において、テトラフルオロエチレンおよび変性モノマーを懸濁重合することが好ましい。
 本開示の製造方法において、前記ポリテトラフルオロエチレン粒子の標準比重が、2.200以下であることが好ましい。
 本開示の製造方法において、前記ポリテトラフルオロエチレン粒子の比表面積が、5.0m/g以下であることが好ましい。
 本開示の製造方法において、前記ポリテトラフルオロエチレン粒子が、下記の一般式(2)で表される化合物を実質的に含有しないことが好ましい。
   一般式(2):[Cn-12n-1COO]M
(式中、nは9~12の整数、Mはカチオンを表す。)
 本開示の製造方法において、界面活性剤の存在下または非存在下に懸濁重合し、前記界面活性剤の量が、前記水性媒体に対して、2000質量ppm以下であることが好ましい。
 また、本開示によれば、上記の製造方法により前記ポリテトラフルオロエチレン粒子を製造した後、前記ポリテトラフルオロエチレン粒子を成形することにより成形品を得るポリテトラフルオロエチレン成形品の製造方法が提供される。
 また、本開示によれば、上記の製造方法により前記ポリテトラフルオロエチレン粒子を製造した後、前記ポリテトラフルオロエチレン粒子を圧縮成形することにより圧縮成形品を得るポリテトラフルオロエチレン圧縮成形品の製造方法が提供される。
 また、本開示によれば、上記の製造方法により得られるポリテトラフルオロエチレン粒子が提供される。
 本開示によれば、酸臭が低減されたポリテトラフルオロエチレン粒子を製造するための製造方法を提供することができる。
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。
 本開示の製造方法は、懸濁重合法を用いたポリテトラフルオロエチレンの製造方法に関する。
 特許文献1に記載の製造方法のように、テトラフルオロエチレン(TFE)を重合することによりポリテトラフルオロエチレンモールディングパウダーを製造すると、得られるポリテトラフルオロエチレンモールディングパウダーからは、酸臭が発生する問題がある。酸臭とは、ギ酸、酢酸などの酸性物質の「すっぱい」においであり、三叉神経性の強い刺激性を伴う臭気である。
 本開示のポリテトラフルオロエチレン粒子の製造方法においては、懸濁重合法により、ポリテトラフルオロエチレンの懸濁重合粒子を作製した後、得られた懸濁重合粒子を粉砕し、粉砕粒子を脱水し、粉砕粒子に対して熱処理を行い、ポリテトラフルオロエチレン粒子を製造する。本開示のポリテトラフルオロエチレン粒子の製造方法は、このような構成を備えることから、酸臭が低減されたポリテトラフルオロエチレン粒子を製造することができる。
 次に、本開示の製造方法における各工程について、詳細に説明する。
(重合)
 本開示の製造方法においては、まず、TFEを水性媒体中で懸濁重合することにより、ポリテトラフルオロエチレンの懸濁重合粒子を作製する。
 TFEを懸濁重合することにより、ポリテトラフルオロエチレンの懸濁重合粒子が得られる。懸濁重合粒子は、水性媒体中に分散した状態で存在することができない。これに対して、TFEを乳化重合することによりポリテトラフルオロエチレンを作製した場合、得られるポリテトラフルオロエチレンは水性媒体中に分散した一次粒子(乳化重合粒子)の形態で得られる。
 懸濁重合粒子は、乳化重合粒子よりも大きい平均粒子径を有することが通常である。懸濁重合粒子の平均粒子径は、好ましくは200μm以上であり、より好ましくは400μm以上であり、さらに好ましくは800μm以上であり、特に好ましくは1mm以上であり、好ましくは100mm以下である。
 懸濁重合により得られるポリテトラフルオロエチレンは、非溶融加工性を有する高分子量ポリテトラフルオロエチレンであることが好ましい。非溶融加工性とは、ASTM D 1238及びD 2116に準拠して、結晶化融点より高い温度でメルトフローレートを測定できない性質を意味する。
 ポリテトラフルオロエチレンは、標準比重(SSG)が2.130~2.280であることが好ましい。標準比重は、ASTM D4894に準拠して測定することができる。本開示において、ポリテトラフルオロエチレンの標準比重(SSG)が上記範囲内にある場合、ポリテトラフルオロエチレンが高分子量ポリテトラフルオロエチレンであることを意味する。
 ポリテトラフルオロエチレンは、ピーク温度が333~347℃であることが好ましく、335~347℃であることがより好ましい。ピーク温度は、TG/DTA(示差熱熱重量同時測定装置)を用いて、300℃以上の温度に加熱した履歴のないポリテトラフルオロエチレンを10℃/分の条件で昇温させることにより得られる示差熱(DTA)曲線に現れる極大値に対応する温度として、特定できる。本開示において、ポリテトラフルオロエチレンのピーク温度が上記範囲内にある場合、ポリテトラフルオロエチレンが高分子量ポリテトラフルオロエチレンであることを意味する。
 ポリテトラフルオロエチレンは、300℃以上の温度に加熱した履歴がないポリテトラフルオロエチレンについて示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解熱曲線において、333~347℃の範囲に少なくとも1つ以上の吸熱ピークが現れ、上記融解熱曲線から算出される290~350℃の融解熱量が52mJ/mg以上であることが好ましい。ポリテトラフルオロエチレンの融解熱量は、より好ましくは55mJ/mg以上であり、さらに好ましくは58mJ/mg以上である。
 本開示の製造方法においては、TFEおよび変性モノマーを懸濁重合することも好ましい。すなわち、ポリテトラフルオロエチレンとしては、TFE単位のみを含有するホモポリテトラフルオロエチレンであってもよいし、TFE単位およびTFEと共重合可能な変性モノマーに基づく変性モノマー単位を含有する変性ポリテトラフルオロエチレンであってもよい。
 TFEを重合する際に添加する変性モノマーの量は、得られるポリテトラフルオロエチレンに対して、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上であり、さらに好ましくは0.03質量%以上であり、特に好ましくは0.05質量%以上であり、好ましくは1.0質量%以下であり、より好ましくは0.8質量%以下であり、さらに好ましくは0.5質量%以下であり、特に好ましくは0.3質量%以下である。
 上記変性モノマーとしては、TFEとの共重合が可能なものであれば特に限定されず、フルオロモノマーおよび非フルオロモノマーが挙げられる。用いる変性モノマーは1種であってもよいし、複数種であってもよい。
 非フルオロモノマーとしては、特に限定されず、一般式:
CH=CRQ1-LRQ2
(式中、RQ1は、水素原子またはアルキル基を表す。Lは、単結合、-CO-O-*、-O-CO-*または-O-を表す。*はRQ2との結合位置を表す。RQ2は、水素原子、アルキル基またはニトリル基を表す。)で表されるモノマーが挙げられる。
 非フルオロモノマーとしては、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、プロピルアクリレート、プロピルメタクリレートブチルアクリレート、ブチルメタクリレート、ヘキシルメタクリレート、シクロヘキシルメタクリレート、ビニルメタクリレート、酢酸ビニル、アクリル酸、メタクリル酸、アクリロニトリル、メタクリロニトリル、エチルビニルエーテル、シクロヘキシルビニルエーテルなどが挙げられる。非フルオロモノマーとしては、なかでも、ブチルメタクリレート、酢酸ビニル、アクリル酸が好ましい。
 フルオロモノマーとして、例えば、ヘキサフルオロプロピレン〔HFP〕等のパーフルオロオレフィン;トリフルオロエチレン、フッ化ビニリデン〔VDF〕等の水素含有フルオロオレフィン;クロロトリフルオロエチレン等のパーハロオレフィン;パーフルオロビニルエーテル;(パーフルオロアルキル)エチレン;パーフルオロアリルエーテル等が挙げられる。
 上記パーフルオロビニルエーテルとしては特に限定されず、例えば、一般式(A):
   CF=CF-ORf    (A)
(式中、Rfは、パーフルオロ有機基を表す。)で表されるパーフルオロ不飽和化合物等が挙げられる。本開示において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル酸素を有していてもよい。
 上記パーフルオロビニルエーテルとしては、例えば、一般式(A)において、Rfが炭素数1~10のパーフルオロアルキル基であるパーフルオロ(アルキルビニルエーテル)〔PAVE〕が挙げられる。上記パーフルオロアルキル基の炭素数は、好ましくは1~5である。
 上記PAVEにおけるパーフルオロアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられる。
 上記パーフルオロビニルエーテルとしては、更に、一般式(A)において、Rfが炭素数4~9のパーフルオロ(アルコキシアルキル)基であるもの、Rfが下記式:
Figure JPOXMLDOC01-appb-C000001
(式中、mは、0又は1~4の整数を表す。)で表される基であるもの、Rfが下記式:
CFCFCF-(O-CF(CF)-CF
(式中、nは、1~4の整数を表す。)で表される基であるもの等が挙げられる。
 水素含有フルオロオレフィンとしては、CH=CF、CHF=CH、CHF=CF、CH=CFCF、CH=CHCF、CHF=CHCF(E体)、CHF=CHCF(Z体)などが挙げられる。
 (パーフルオロアルキル)エチレン(PFAE)としては特に限定されず、例えば、(パーフルオロブチル)エチレン(PFBE)、(パーフルオロヘキシル)エチレン等が挙げられる。
 パーフルオロアリルエーテルとしては、例えば、
   一般式:CF=CF-CF-ORf
(式中、Rfは、パーフルオロ有機基を表す。)で表されるフルオロモノマーが挙げられる。
 上記一般式のRfは、一般式(A)のRfと同じである。Rfとしては、炭素数1~10のパーフルオロアルキル基または炭素数1~10のパーフルオロアルコキシアルキル基が好ましい。パーフルオロアリルエーテルとしては、CF=CF-CF-O-CF、CF=CF-CF-O-C、CF=CF-CF-O-C、及び、CF=CF-CF-O-Cからなる群より選択される少なくとも1種が好ましく、CF=CF-CF-O-C、CF=CF-CF-O-C、及び、CF=CF-CF-O-Cからなる群より選択される少なくとも1種がより好ましく、CF=CF-CF-O-CFCFCFがさらに好ましい。
 上記変性モノマーとしては、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、フッ化ビニリデン、パーフルオロ(アルキルビニルエーテル)、(パーフルオロアルキル)エチレンおよびエチレンからなる群より選択される少なくとも1種が好ましく、パーフルオロ(アルキルビニルエーテル)がより好ましい。
 変性モノマーとしては、TFEとの反応性の観点から、ヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)および(パーフルオロアルキル)エチレンからなる群より選択される少なくとも1種が好ましく、ヘキサフルオロプロピレン、パーフルオロ(メチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)、(パーフルオロブチル)エチレン、(パーフルオロヘキシル)エチレン、および、(パーフルオロオクチル)エチレンからなる群より選択される少なくとも1種がより好ましく、パーフルオロ(メチルビニルエーテル)およびパーフルオロ(プロピルビニルエーテル)からなる群より選択される少なくとも1種がさらに好ましい。
 懸濁重合は、たとえば、反応器に、TFEなどのモノマー、水性媒体および必要に応じて他の添加剤を仕込み、反応器の内容物を撹拌し、そして反応器を所定の重合温度に保持し、次に所定量の重合開始剤を加え、重合反応を開始することにより行うことができる。重合反応開始後に、目的に応じて、TFEなどのモノマー、重合開始剤、連鎖移動剤などを追加添加してもよい。
 懸濁重合は、重合開始剤の存在下に行うことができる。重合開始剤としては、重合温度範囲でラジカルを発生しうるものであれば特に限定されず、公知の油溶性および/または水溶性の重合開始剤を使用することができる。更に、還元剤等と組み合わせてレドックスとして重合を開始することもできる。上記重合開始剤の濃度は、モノマーの種類、目的とするポリテトラフルオロエチレンの分子量、反応速度によって適宜決定される。
 上記重合開始剤としては、水溶性ラジカル重合開始剤を使用できる。
 水溶性ラジカル重合開始剤としては、過硫酸アンモニウム、過硫酸カリウム、アルカリ金属過硫酸塩などの過硫酸塩、過マンガン酸塩類等のイオン性ラジカル開始剤が挙げられる。また、これらのラジカル重合開始剤を酸化性成分とし、例えばヒドラジン、ジイミン、硫酸鉄(II)、硫酸銅(II)、シュウ酸塩類、亜硫酸塩類等を還元性成分として組み合わせて酸化還元系開始剤としてもよい。硫酸鉄(II)、硫酸銅(II)などの水和物を形成できる化合物は、無水物であってもよいし、水和物であってもよい。
 酸化還元系開始剤としては、過硫酸アンモニウム/硫酸銅(II)、過硫酸アンモニウム/硫酸鉄(II)、過硫酸アンモニウム/亜硫酸ナトリウム/硫酸鉄(II)、過硫酸アンモニウム/アゾジカルボンアミド/硫酸銅(II)、過硫酸アンモニウム/アゾジカルボン酸ナトリウム/硫酸銅(II)、カルバミン酸アンモニウム/硫酸銅(II)、過硫酸アンモニウム/カルバミン酸アンモニウム/硫酸銅(II)、過マンガン酸カリウム/シュウ酸アンモニウムなどが挙げられる。
 このような酸化還元系開始剤の組み合わせの場合、いずれか一方をあらかじめ重合槽へ仕込み、ついで重合を行いながら、他方を間欠的または連続的に添加することが好ましい。
 ラジカル重合開始剤の使用量は、反応速度を良好に制御できるように調整される。例えば、過硫酸アンモニウムの場合、水性媒体に対して1~100ppmが好ましく、1~50ppmがより好ましく、1~10ppmが最も好ましい。
 懸濁重合は、撹拌下に、水性媒体中でTFEを重合することにより行う。水性媒体は、水を含む液体を意味する。水性媒体は、水を含むものであれば特に限定されない。
 懸濁重合は、界面活性剤の存在下または非存在下に行うことができる。界面活性剤の量は、水性媒体に対して、好ましくは2000質量ppm以下であり、より好ましくは1000質量ppm以下であり、さらに好ましくは500質量ppm以下であり、特に好ましくは200質量ppm以下であり、最も好ましくは100質量ppm以下である。界面活性剤の量は、0質量ppmであってもよい。
 懸濁重合に用いる界面活性剤としては、含フッ素界面活性剤が好ましい。含フッ素界面活性剤としては、アニオン性含フッ素界面活性剤等が挙げられる。アニオン性含フッ素界面活性剤は、たとえば、アニオン性基を除く部分の総炭素数が20以下のフッ素原子を含む界面活性剤であってよい。
 上記含フッ素界面活性剤としては、アニオン性部分の分子量が1000以下、好ましくは800以下のフッ素を含む界面活性剤を用いることもできる。上記「アニオン性部分」は、上記含フッ素界面活性剤のカチオンを除く部分を意味する。たとえば、後述する式(I)で表されるF(CFn1COOMの場合には、「F(CFn1COO」の部分である。
 上記含フッ素界面活性剤としてはまた、LogPOWが3.5以下の含フッ素界面活性剤が挙げられる。含フッ素界面活性剤のLogPOWは、好ましくは3.4以下である。上記LogPOWは、1-オクタノールと水との分配係数であり、LogP[式中、Pは、含フッ素界面活性剤を含有するオクタノール/水(1:1)混合液が相分離した際のオクタノール中の含フッ素界面活性剤濃度/水中の含フッ素界面活性剤濃度比を表す]で表されるものである。
 上記LogPOWは、カラム;TOSOH ODS-120Tカラム(φ4.6mm×250mm、東ソー(株)製)、溶離液;アセトニトリル/0.6質量%HClO水=1/1(vol/vol%)、流速;1.0ml/分、サンプル量;300μL、カラム温度;40℃、検出光;UV210nmの条件で、既知のオクタノール/水分配係数を有する標準物質(ヘプタン酸、オクタン酸、ノナン酸及びデカン酸)についてHPLCを行い、各溶出時間と既知のオクタノール/水分配係数との検量線を作成し、この検量線に基づき、試料液におけるHPLCの溶出時間から算出する。
 上記含フッ素界面活性剤として具体的には、米国特許出願公開第2007/0015864号明細書、米国特許出願公開第2007/0015865号明細書、米国特許出願公開第2007/0015866号明細書、米国特許出願公開第2007/0276103号明細書、米国特許出願公開第2007/0117914号明細書、米国特許出願公開第2007/142541号明細書、米国特許出願公開第2008/0015319号明細書、米国特許第3250808号明細書、米国特許第3271341号明細書、特開2003-119204号公報、国際公開第2005/042593号、国際公開第2008/060461号、国際公開第2007/046377号、特開2007-119526号公報、国際公開第2007/046482号、国際公開第2007/046345号、米国特許出願公開第2014/0228531号、国際公開第2013/189824号、国際公開第2013/189826号に記載されたもの等が挙げられる。
 上記アニオン性含フッ素界面活性剤としては、下記一般式(N):
n0-Rfn0-Y   (N
(式中、Xn0は、H、Cl又は及びFである。Rfn0は、炭素数3~20で、鎖状、分枝鎖状または環状で、一部または全てのHがFにより置換されたアルキレン基であり、該アルキレン基は1つ以上のエーテル結合を含んでもよく、一部のHがClにより置換されていてもよい。Yはアニオン性基である。)で表される化合物が挙げられる。
 Yのアニオン性基は、-COOM、-SOM、又は、-SOMであってよく、-COOM、又は、-SOMであってよい。
 Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであり、Rは、H又は有機基である。
 上記金属原子としては、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、たとえば、Na、K又はLiである。
 Rとしては、H又はC1-10の有機基であってよく、H又はC1-4の有機基であってよく、H又はC1-4のアルキル基であってよい。
 Mは、H、金属原子又はNR であってよく、H、アルカリ金属(1族)、アルカリ土類金属(2族)又はNR であってよく、H、Na、K、Li又はNHであってよい。
 上記Rfn0は、Hの50%以上がフッ素に置換されているものであってよい。
 上記一般式(N)で表される化合物としては、下記一般式(N):
   Xn0-(CFm1-Y   (N
(式中、Xn0は、H、Cl及びFであり、m1は3~15の整数であり、Yは、上記定義したものである。)で表される化合物、下記一般式(N):
   Rfn1-O-(CF(CF)CFO)m2CFXn1-Y   (N
(式中、Rfn1は、炭素数1~5のパーフルオロアルキル基であり、m2は、0~3の整数であり、Xn1は、F又はCFであり、Yは、上記定義したものである。)で表される化合物、下記一般式(N):
   Rfn2(CHm3-(Rfn3-Y  (N
(式中、Rfn2は、炭素数1~13のエーテル結合及び/又は塩素原子を含み得る、部分または完全フッ素化されたアルキル基であり、m3は、1~3の整数であり、Rfn3は、直鎖状又は分岐状の炭素数1~3のパーフルオロアルキレン基であり、qは0又は1であり、Yは、上記定義したものである。)で表される化合物、下記一般式(N):
   Rfn4-O-(CYn1n2CF-Y   (N
(式中、Rfn4は、炭素数1~12のエーテル結合を含み得る直鎖状または分枝鎖状の部分または完全フッ素化されたアルキル基であり、Yn1及びYn2は、同一若しくは異なって、H又はFであり、pは0又は1であり、Yは、上記定義したものである。)で表される化合物、及び、一般式(N):
Figure JPOXMLDOC01-appb-C000002
(式中、Xn2、Xn3及びXn4は、同一若しくは異なってもよく、H、F、又は、炭素数1~6のエーテル結合を含んでよい直鎖状または分岐鎖状の部分または完全フッ素化されたアルキル基である。Rfn5は、炭素数1~3のエーテル結合を含み得る直鎖状または分岐鎖状の部分または完全フッ素化されたアルキレン基であり、Lは連結基であり、Yは、上記定義したものである。但し、Xn2、Xn3、Xn4及びRfn5の合計炭素数は18以下である。)で表される化合物が挙げられる。
 上記一般式(N)で表される化合物としてより具体的には、下記一般式(I)で表されるパーフルオロカルボン酸(I)、下記一般式(II)で表されるω-Hパーフルオロカルボン酸(II)、下記一般式(III)で表されるパーフルオロエーテルカルボン酸(III)、下記一般式(IV)で表されるパーフルオロアルキルアルキレンカルボン酸(IV)、下記一般式(V)で表されるパーフルオロアルコキシフルオロカルボン酸(V)、下記一般式(VI)で表されるパーフルオロアルキルスルホン酸(VI)、下記一般式(VII)で表されるω-Hパーフルオロスルホン酸(VII)、下記一般式(VIII)で表されるパーフルオロアルキルアルキレンスルホン酸(VIII)、下記一般式(IX)で表されるアルキルアルキレンカルボン酸(IX)、下記一般式(X)で表されるフルオロカルボン酸(X)、下記一般式(XI)で表されるアルコキシフルオロスルホン酸(XI)、下記一般式(XII)で表される化合物(XII)、下記一般式(XIII)で表される化合物(XIII)などが挙げられる。
 上記パーフルオロカルボン酸(I)は、下記一般式(I)
   F(CFn1COOM    (I)
(式中、n1は、3~14の整数であり、Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであり、Rは、H又は有機基である。)で表されるものである。
 上記ω-Hパーフルオロカルボン酸(II)は、下記一般式(II)
   H(CFn2COOM    (II)
(式中、n2は、4~15の整数であり、Mは、上記定義したものである。)で表されるものである。
 上記パーフルオロエーテルカルボン酸(III)は、下記一般式(III)
   Rf-O-(CF(CF)CFO)n3CF(CF)COOM    (III)
(式中、Rfは、炭素数1~5のパーフルオロアルキル基であり、n3は、0~3の整数であり、Mは、上記定義したものである。)で表されるものである。
 上記パーフルオロアルキルアルキレンカルボン酸(IV)は、下記一般式(IV)
   Rf(CHn4RfCOOM        (IV)
(式中、Rfは、炭素数1~5のパーフルオロアルキル基であり、Rfは、直鎖状又は分岐状の炭素数1~3のパーフルオロアルキレン基、n4は、1~3の整数であり、Mは、上記定義したものである。)で表されるものである。
 上記アルコキシフルオロカルボン酸(V)は、下記一般式(V)
   Rf-O-CYCF-COOM    (V)
(式中、Rfは、炭素数1~12のエーテル結合及び/又は塩素原子を含み得る直鎖状または分枝鎖状の部分または完全フッ素化されたアルキル基であり、Y及びYは、同一若しくは異なって、H又はFであり、Mは、上記定義したものである。)で表されるものである。
 上記パーフルオロアルキルスルホン酸(VI)は、下記一般式(VI)
   F(CFn5SOM        (VI)
(式中、n5は、3~14の整数であり、Mは、上記定義したものである。)で表されるものである。
 上記ω-Hパーフルオロスルホン酸(VII)は、下記一般式(VII)
   H(CFn6SOM    (VII)
(式中、n6は、4~14の整数であり、Mは、上記定義したものである。)で表されるものである。
 上記パーフルオロアルキルアルキレンスルホン酸(VIII)は、下記一般式(VIII)
   Rf(CHn7SOM      (VIII)
(式中、Rfは、炭素数1~13のパーフルオロアルキル基であり、n7は、1~3の整数であり、Mは、上記定義したものである。)で表されるものである。
 上記アルキルアルキレンカルボン酸(IX)は、下記一般式(IX)
   Rf(CHn8COOM      (IX)
(式中、Rfは、炭素数1~13のエーテル結合を含み得る直鎖状または分岐鎖状の部分または完全フッ素化されたアルキル基であり、n8は、1~3の整数であり、Mは、上記定義したものである。)で表されるものである。
 上記フルオロカルボン酸(X)は、下記一般式(X)
   Rf-O-Rf-O-CF-COOM    (X)
(式中、Rfは、炭素数1~6のエーテル結合及び/又は塩素原子を含み得る直鎖状または分枝鎖状の部分または完全フッ素化されたアルキル基であり、Rfは、炭素数1~6の直鎖状または分枝鎖状の部分または完全フッ素化されたアルキル基であり、Mは、上記定義したものである。)で表されるものである。
 上記アルコキシフルオロスルホン酸(XI)は、下記一般式(XI)
   Rf-O-CYCF-SOM    (XI)
(式中、Rfは、炭素数1~12のエーテル結合を含み得る直鎖状または分枝鎖状であって、塩素を含んでもよい、部分または完全フッ素化されたアルキル基であり、Y及びYは、同一若しくは異なって、H又はFであり、Mは、上記定義したものである。)で表されるものである。
 上記化合物(XII)は、下記一般式(XII):
Figure JPOXMLDOC01-appb-C000003
(式中、X、X及びXは、同一若しくは異なってもよく、H、F及び炭素数1~6のエーテル結合を含み得る直鎖状または分岐鎖状の部分または完全フッ素化されたアルキル基であり、Rf10は、炭素数1~3のパーフルオロアルキレン基であり、Lは連結基であり、Yはアニオン性基である。)で表されるものである。
 Yは、-COOM、-SOM、又は、-SOMであってよく、-SOM、又は、COOMであってよい(式中、Mは上記定義したものである。)。
 Lとしては、たとえば、単結合、炭素数1~10のエーテル結合を含みうる部分又は完全フッ素化されたアルキレン基が挙げられる。
 上記化合物(XIII)は、下記一般式(XIII):
   Rf11-O-(CFCF(CF)O)n9(CFO)n10CFCOOM   (XIII)
(式中、Rf11は、塩素を含む炭素数1~5のフルオロアルキル基であり、n9は、0~3の整数であり、n10は、0~3の整数であり、Mは、上記定義したものである。)で表されるものである。化合物(XIII)としては、CFClO(CFCF(CF)O)n9(CFO)n10CFCOONH(平均分子量750の混合物、式中、n9およびn10は上記定義したものである。)が挙げられる。
 このように上記アニオン性含フッ素界面活性剤としては、カルボン酸系界面活性剤、スルホン酸系界面活性剤等が挙げられる。
 含フッ素界面活性剤は、1種の含フッ素界面活性剤であってもよいし、2種以上の含フッ素界面活性剤を含有する混合物であってもよい。
 含フッ素界面活性剤としては、以下の式で表される化合物が挙げられる。含フッ素界面活性剤は、これらの化合物の混合物であってよい。
F(CFCOOM、
F(CFCOOM、
H(CFCOOM、
H(CF7COOM、
CFO(CFOCHFCFCOOM、
OCF(CF)CFOCF(CF)COOM、
CFCFCFOCF(CF)COOM、
CFCFOCFCFOCFCOOM、
OCF(CF)CFOCF(CF)COOM、
CFOCF(CF)CFOCF(CF)COOM、
CFClCFCFOCF(CF)CFOCFCOOM、
CFClCFCFOCFCF(CF)OCFCOOM、
CFClCF(CF)OCF(CF)CFOCFCOOM、
CFClCF(CF)OCFCF(CF)OCFCOOM、
Figure JPOXMLDOC01-appb-C000004
(各式中、Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムである。Rは、H又は有機基である。)
 含フッ素界面活性剤の存在下で行う懸濁重合により得られる懸濁重合粒子には、ポリテトラフルオロエチレン以外に、含フッ素界面活性剤が含まれることが通常である。また、TFE、変性モノマーなどのモノマーを重合することにより得られる懸濁重合粒子には、ポリテトラフルオロエチレン以外に、モノマーの重合により生じた含フッ素化合物が含まれることがある。本開示において、含フッ素化合物は、懸濁重合の際に添加されていない化合物であり、たとえば、含フッ素界面活性剤と近似する構造を有するが、炭素数が異なる化合物などが含まれる。
 本開示の製造方法によれば、モノマーの重合により生じた含フッ素化合物の含有量が低減されたポリテトラフルオロエチレン粒子を製造することができる。また、本開示の製造方法によれば、含フッ素界面活性剤の存在下に懸濁重合を行った場合であっても、含フッ素界面活性剤の含有量が低減されたポリテトラフルオロエチレン粒子を製造することができる。
 懸濁重合粒子中の含フッ素化合物として、典型的な化合物は、分子量1000以下、好ましくは800g/mol以下の親水基を有する含フッ素化合物である。本開示の製造方法によれば、TFEなどのモノマーの重合により得られる懸濁重合粒子中の分子量1000以下、好ましくは800g/mol以下の親水基を有する含フッ素化合物の含有量が低減されたポリテトラフルオロエチレン粒子を製造することができる。
 含フッ素化合物が有する親水基としては、酸基などのアニオン性基が好ましく、例えば、-NH、-POM、-OPOM、-SOM、-OSOM、-COOM(各式において、Mはカチオンを表す)が挙げられる。上記親水基としては、なかでも、-SOM又は-COOMが好ましく、-COOMがより好ましい。
 懸濁重合粒子の一実施形態においては、親水基を有する含フッ素化合物として、下記の一般式(1)で表される化合物を含有する。
  一般式(1):[X-Rf-Ai+
(式中、Xは、H、Cl、Br、FまたはI、Rfは、直鎖若しくは分枝鎖の部分フッ素化若しくは完全フッ素化脂肪族基、または、少なくとも1個の酸素原子により中断された直鎖若しくは分枝鎖の部分フッ素化若しくは完全フッ素化脂肪族基、Aは酸基、Mi+は価数iを有するカチオン、iは1~3の整数を表す)
 懸濁重合粒子の一実施形態においては、親水基を有する含フッ素化合物として、下記の一般式(2)で表される化合物を含有する。
   一般式(2):[Cn-12n-1COO]M
(式中、nは9~12の整数、Mはカチオンを表す。)
 一般式(2)で表される化合物(パーフルオロアルカン酸)は、パーフルオロアルキルビニルエーテルなどを変性モノマーとして用いた場合に、重合中に形成されることが知られている(国際公開第2019/161153号参照)。
 懸濁重合粒子の一実施形態においては、親水基を有する含フッ素化合物として、下記の一般式(3)で表される化合物を含有する。
   一般式(3):[R-O-L-CO ]M
(式中、Rは、直鎖若しくは分枝鎖の部分フッ素化若しくは完全フッ素化脂肪族基、または、少なくとも1個の酸素原子により中断された直鎖若しくは分枝鎖の部分フッ素化若しくは完全フッ素化脂肪族基、Lは、直鎖若しくは分枝鎖の非フッ素化、部分フッ素化または完全フッ素化アルキレン基、Mはカチオンを表す。)
 懸濁重合粒子の一実施形態においては、親水基を有する含フッ素化合物として、一般式(4)で示される化合物を含有する。
   一般式(4):[H-(CFCO ]M
(式中、mは3~19の整数、Mはカチオンを表す。)
(粉砕)
 本開示の製造方法においては、次に、得られた懸濁重合粒子を洗浄した後に粉砕することにより、または、得られた懸濁重合粒子を洗浄しながら粉砕することにより、粉砕粒子を作製する。
 懸濁重合により得られる懸濁重合粒子は、通常、湿った状態で得られる。本開示の製造方法においては、湿った状態の懸濁重合粒子を粉砕してもよいし、湿った状態の懸濁重合粒子を乾燥してから粉砕してもよい。粉砕は、湿式粉砕であってもよいし、乾式粉砕であってもよい。
 懸濁重合粒子を粉砕する方法としては、たとえば、粉砕機を用いて粉砕する方法が挙げられる。粉砕機としては、ハンマーミル、ピンミル、高速回転ミル、ジェットミルなどの衝撃式の粉砕機、回転刃および外周ステーター(固定刃)により生じる剪断力によって粉砕するカッターミル、フェザーミル、コロイドミルなどの摩砕式の粉砕機などが挙げられる。粉砕では、複数の粉砕装置を組み合わせて用いてもよい。
 粉砕処理を行う温度は、好ましくは-200~50℃であり、より好ましくは1℃以上であり、より好ましくは40℃以下であり、さらに好ましくは30℃以下である。
 懸濁重合粒子を洗浄しながら粉砕する方法としては、水中または有機溶媒中で懸濁重合粒子を粉砕する方法が挙げられる。たとえば、カッターミルなどの摩砕式の粉砕機に、水または有機溶媒および懸濁重合粒子を同時に供給し、懸濁重合粒子を粉砕してもよいし、水または有機溶媒および懸濁重合粒子を予め混合し、混合物を粉砕機に供給し、懸濁重合粒子を粉砕してもよい。
 懸濁重合粒子を粉砕する前に、懸濁重合粒子を洗浄してもよい。懸濁重合粒子の洗浄には、水または有機溶媒を用いることができる。洗浄は、1回または複数回行ってよい。
 洗浄に用いる有機溶媒としては、エーテル、ハロゲン化炭化水素、芳香族炭化水素、ピリジン、ニトリル、含窒素極性有機化合物、ジメチルスルホキシド、アルコール等が挙げられる。
 粉砕は、1回行ってもよいし、所望の平均粒子径または所望の粒度分布を有する粉砕粒子が作製できるまで、繰り返し行ってもよい。
 粉砕により得られる粉砕粒子は、通常、湿った状態で得られる。粉砕後、脱水する前の粉砕粒子の含水率は、たとえば40質量%超である。本開示の製造方法においては、湿った粉砕粒子を脱水した後、後述する熱処理に供する。湿った粉砕粒子を脱水する方法としては、たとえば、脱水機を用いて脱水する方法が挙げられる。脱水機としては、振動脱水機、ろ過脱水機、遠心脱水機などが挙げられる。脱水は、好ましくは50℃未満で行われる。脱水温度は、粉砕粒子の周囲の雰囲気の温度である。
 湿った粉砕粒子を脱水し、さらに乾燥させた後、後述する熱処理に供してもよい。乾燥は、粉砕により得られる粉砕粒子から水分を除去する目的で行われる。湿った粉砕粒子を乾燥する方法としては、たとえば、乾燥機を用いて乾燥する方法が挙げられる。
 乾燥機としては、熱風受熱型乾燥機、伝導受熱型乾燥機、ふく射伝熱型乾燥機、高周波伝熱型乾燥機などが挙げられる。また、乾燥機としては、材料静置型乾燥機、材料移送型乾燥機、材料撹拌型乾燥機、材料搬送型乾燥機などが挙げられる。
 熱風受熱型の材料静置型乾燥機および材料移送型乾燥機としては、箱型乾燥機、トンネル乾燥機、バンド乾燥機、ターボ縦型乾燥機、縦型乾燥機、ベルト乾燥機などが挙げられる。
 熱風受熱型の材料撹拌型乾燥機としては、流動層乾燥機、通気回転乾燥機、溝型撹拌乾燥機、多段円盤乾燥機などが挙げられる。
 熱風受熱型の材料搬送型乾燥機としては、気流乾燥機、噴霧乾燥機(噴出流乾燥機、スプレードライヤー)などが挙げられる。
 伝導受熱型の材料静置型乾燥機および材料移送型乾燥機としては、真空箱型乾燥機、円筒乾燥機、振動乾燥機、真空熱処理乾燥機、凍結乾燥機、ドラム乾燥機が挙げられる。
 伝導受熱型の材料撹拌型乾燥機としては、円筒型乾燥機、溝型乾燥機、逆円錐型乾燥機、押出し乾燥機、水蒸気加熱管束回転乾燥機などが挙げられる。
 ふく射伝熱型の材料静置型乾燥機および材料移送型乾燥機としては、赤外線乾燥機、過熱水蒸気乾燥機などが挙げられる。
 高周波伝熱型の材料静置型乾燥機および材料移送型乾燥機としては、高周波乾燥機、マイクロウェーブ乾燥機などが挙げられる。
 本開示の製造方法の一実施形態においては、粉砕粒子を気流乾燥により乾燥させる。気流乾燥は、気流乾燥機を用いて行うことができる。
 粉砕粒子を気流乾燥により乾燥させた後、乾燥した粉砕粒子および気体を含有する固気混合物を、サイクロンなどを用いて、粉砕粒子と気体とに分離させ、粉砕粒子を回収してもよい。
 粉砕粒子を乾燥させる温度は、好ましくは300℃未満であり、より好ましくは280℃以下であり、さらに好ましくは250℃以下であり、尚さらに好ましくは200℃未満であり、特に好ましくは180℃未満であり、最も好ましくは160℃未満であり、好ましくは50℃以上であり、より好ましくは100℃以上である。乾燥温度は、粉砕粒子の周囲の雰囲気の温度であり、乾燥に熱風を用いる場合には、熱風の温度を測定することにより、特定することができる。熱風の温度は、乾燥機に熱風を供給する供給口または乾燥機から熱風を排気する排気口で測定することができるが、好ましくは排気口で測定される。
 粉砕粒子の含水率は、好ましくは40質量%以下であり、より好ましくは20質量%以下であり、さらに好ましくは10質量%以下であり、下限は特に限定されないが、0.01質量%以上であってよい。粉砕粒子の含水率は、たとえば、粉砕粒子に対して、脱水または乾燥を行うことにより、調整することができる。粉砕粒子の含水率は、たとえば、粉砕粒子を150℃、3時間加熱することにより十分に乾燥させ、加熱の前後の粉砕粒子の質量を測定し、下記の式に従って算出できる。
   含水率(質量%)=[(加熱前の粉砕粒子の質量(g))-(加熱後の粉砕粒子の質量(g))]/(加熱後の粉砕粒子の質量(g))×100
 懸濁重合粒子を粉砕した後、得られた粉砕粒子を、気流分級などの公知の方法により分級してもよい。分級することにより、非常に粒子径の小さい微粒子や非常に粒子径の大きい粗粒子を除去して、所望の平均粒子径または所望の粒度分布を有する粉砕粒子を得ることができる。
 粉砕粒子の平均粒子径は、好ましくは800μm以下であり、より好ましくは600μm以下であり、さらに好ましくは400μm以下であり、好ましくは1μm以上であり、より好ましくは5μm以上であり、さらに好ましくは10μm以上であり、尚さらに好ましくは100μm以上であり、特に好ましくは150μm以上であり、最も好ましくは200μm超である。
(熱処理)
 本開示の製造方法においては、次に、得られた粉砕粒子に対して熱処理を行うことによりポリテトラフルオロエチレン粒子を製造する。熱処理は、粉砕により得られる粉砕粒子から酸臭を除去する目的で行われる。
 粉砕粒子に対する熱処理は、バッチ式熱処理であっても、連続式熱処理であってもよい。
 熱処理の温度は、好ましくは160℃以上であり、より好ましくは180℃以上であり、さらに好ましくは200℃以上であり、好ましくは340℃以下であり、より好ましくは310℃以下であり、さらに好ましくは300℃以下である。
 熱処理の時間は、好ましくは1秒以上であり、より好ましくは2秒以上であり、さらに好ましくは1分以上であり、特に好ましくは3分以上であり、好ましくは24時間以下であり、より好ましくは2時間以下であり、さらに好ましくは1時間以下である。
 熱処理は、たとえば、空気中、不活性ガス中で行うことができる。熱処理は、たとえば、フッ素ガスなどの活性ガスを含まない気体中で行うことができる。熱処理は、また、常圧下または減圧下で行うことができる。
 熱処理は、乾燥機を用いて行うことができる。
 乾燥機としては、熱風受熱型乾燥機、伝導受熱型乾燥機、ふく射受熱型乾燥機、高周波受熱型乾燥機などが挙げられる。また、乾燥機としては、材料静置型乾燥機、材料移送型乾燥機、材料撹拌型乾燥機、材料搬送型乾燥機などが挙げられる。
 熱風受熱型の材料静置型乾燥機および材料移送型乾燥機としては、箱型乾燥機、トンネル乾燥機、バンド乾燥機、ターボ縦型乾燥機、縦型乾燥機、ベルト乾燥機などが挙げられる。
 熱風受熱型の材料撹拌型乾燥機としては、流動層乾燥機、通気回転乾燥機、溝型撹拌乾燥機、多段円盤乾燥機などが挙げられる。
 熱風受熱型の材料搬送型乾燥機としては、気流乾燥機、噴霧乾燥機(噴出流乾燥機、スプレードライヤー)などが挙げられる。
 伝導受熱型の材料静置型乾燥機および材料移送型乾燥機としては、真空箱型乾燥機、円筒乾燥機、振動乾燥機、真空熱処理乾燥機、凍結乾燥機、ドラム乾燥機が挙げられる。
 伝導受熱型の材料撹拌型乾燥機としては、円筒型乾燥機、溝型乾燥機、逆円錐型乾燥機、押出し乾燥機、水蒸気加熱管束回転乾燥機などが挙げられる。
 ふく射受熱型の材料静置型乾燥機および材料移送型乾燥機としては、赤外線乾燥機、過熱水蒸気乾燥機などが挙げられる。
 高周波受熱型の材料静置型乾燥機および材料移送型乾燥機としては、高周波乾燥機、マイクロウェーブ乾燥機などが挙げられる。
 粉砕粒子に対する熱処理は、粉砕粒子を流動化(撹拌、搬送)させて行ってもよいし、粉砕粒子を静置させた状態で行ってもよい。粉砕粒子に対して熱処理をする方法としては、なかでも、熱処理の効率が高まることから、粉砕粒子を流動化させて熱処理をする方法が好ましい。粉砕粒子を流動化させて熱処理をする方法は、材料撹拌型乾燥機または材料搬送型乾燥機を用いて行うことができる。粉砕粒子を静置させた状態で熱処理する方法は、材料静置型乾燥機または材料移送型乾燥機を用いて行うことができる。
 粉砕粒子に対する熱処理は、粉砕粒子に熱風を作用(熱風受熱型)させて行なってもよいし、粉砕粒子を熱風以外の伝熱媒体に接触させてもよい。なかでも、熱効率が良いことから、粉砕粒子を熱風以外の伝熱媒体に接触させる方法が好ましい。粉砕粒子を熱風以外の伝熱媒体に接触させる方法は、伝導受熱型乾燥機を用いて行うことができる。
 粉砕粒子に対して熱処理をして、所望により冷却することにより、ポリテトラフルオロエチレン粒子が得られる。得られた粒子は、乾燥機から次の工程を行う装置まで、気体を用いて移送することができる。
 熱風を用いて熱処理を行った場合、気体を用いて粉砕粒子(ポリテトラフルオロエチレン粒子)を移送する場合などにおいては、粉砕粒子(ポリテトラフルオロエチレン粒子)および気体を含有する固気混合物が形成され得る。形成された固気混合物を、サイクロンなどを用いて、粉砕粒子(ポリテトラフルオロエチレン粒子)と気体とに分離させ、粉砕粒子(ポリテトラフルオロエチレン粒子)を回収してもよい。
 得られたポリテトラフルオロエチレン粒子を、さらに粉砕することにより、ポリテトラフルオロエチレン粒子の粒子径を調整してもよい。
 ポリテトラフルオロエチレン粒子をさらに粉砕する場合の粉砕は、湿式粉砕であってもよいし、乾式粉砕であってもよい。粒子を粉砕する方法としては、たとえば、粉砕機を用いて粉砕する方法が挙げられる。粉砕機としては、ハンマーミル、ピンミル、高速回転ミル、ジェットミルなどの衝撃式の粉砕機、回転刃および外周ステーター(固定刃)により生じる剪断力によって粉砕するカッターミル、フェザーミル、コロイドミルなどの摩砕式の粉砕機などが挙げられる。
 粉砕を行う温度は、好ましくは-200~50℃であり、より好ましくは1℃以上であり、より好ましくは40℃以下であり、さらに好ましくは30℃以下である。
 得られたポリテトラフルオロエチレン粒子を、気流分級などの公知の方法により分級してもよい。分級することにより、非常に粒子径の小さい微粒子や非常に粒子径の大きい粗粒子を除去して、所望の平均粒子径または所望の粒度分布を有するポリテトラフルオロエチレン粒子を得ることができる。
 ポリテトラフルオロエチレン粒子は、好ましくは200μm以下、より好ましくは100μm以下、さらに好ましくは100μm未満、尚さらに好ましくは70μm以下、特に好ましくは50μm以下、最も好ましくは30μm以下であり、好ましくは1μm以上であり、より好ましくは5μm以上であり、さらに好ましくは10μm以上である。ポリテトラフルオロエチレン粒子の平均粒子径が大きすぎると、ポリテトラフルオロエチレン粒子の成形性が悪化し、成形品に成形不良が発生しやすくなる。ポリテトラフルオロエチレン粒子の平均粒子径が小さすぎると、取り扱い性に劣る傾向がある。
 ポリテトラフルオロエチレン粒子の平均粒子径は、レーザー回折法により測定される50%積算粒子径である。また、本開示において、懸濁重合粒子などの他の粒子の平均粒子径についても、レーザー回折法により測定される50%積算粒子径である。
 ポリテトラフルオロエチレン粒子の高温揮発分の含有量は、ポリテトラフルオロエチレン粒子の質量に対して、好ましくは0.050質量%以下であり、より好ましくは0.030質量%以下であり、さらに好ましくは0.020質量%以下であり、好ましくは0.001質量%以上であり、より好ましくは0.003質量%以上であり、さらに好ましくは0.005質量%以上である。
 ポリテトラフルオロエチレン粒子の高温揮発分の含有量は、JIS K 6891に準拠して、ポリテトラフルオロエチレン粒子を370℃で2時間加熱した後の質量を測定し、以下の式によって算出することができる。
   高温揮発分(質量%)=[(加熱前のポリテトラフルオロエチレン粒子の質量(g))-(加熱後のポリテトラフルオロエチレン粒子の質量(g))]/(加熱前のポリテトラフルオロエチレン粒子の質量(g))×100
 ポリテトラフルオロエチレン粒子の標準比重は、2.130~2.280であってよいが、好ましくは2.200以下であり、より好ましくは2.135以上である。
 ポリテトラフルオロエチレン粒子の標準比重は、ASTM D4894に準拠して測定することができる。
 ポリテトラフルオロエチレン粒子の比表面積は、好ましくは5.0m/g以下であり、より好ましくは4.5m/g以下であり、さらに好ましくは4.0m/g以下であり、好ましくは0.1m/g以上であり、より好ましくは1.0m/g以上である。
 ポリテトラフルオロエチレン粒子の比表面積は、BET法により、キャリアガスとして、窒素30%、ヘリウム70%の混合ガスを用い、液体窒素を用いて冷却し、JIS Z8830に基づいて測定することができる。
 ポリテトラフルオロエチレン粒子の見掛け密度は、好ましくは0.55g/cm以下であり、より好ましくは0.50g/cm以下であり、さらに好ましくは0.45g/cm以下であり、好ましくは0.15g/cm以上であり、より好ましくは0.20g/cm以上であり、さらに好ましくは0.25g/cm以上である。
 ポリテトラフルオロエチレン粒子の見掛け密度は、JIS K 6891に準拠して、測定することができる。
 ポリテトラフルオロエチレン粒子に含まれるポリテトラフルオロエチレンは、TFE単位のみを含有するホモポリテトラフルオロエチレンであってもよいし、TFE単位およびTFEと共重合可能な変性モノマーに基づく変性モノマー単位を含有する変性ポリテトラフルオロエチレンであってもよい。
 変性モノマー単位を形成する変性モノマーとしては、本開示の製造方法において用いる変性モノマーが挙げられ、本開示の製造方法において用いる変性モノマーと同様のものが好ましい。
 ポリテトラフルオロエチレン中の変性モノマー単位の含有量は、ポリテトラフルオロエチレンを構成する全重合単位に対して、好ましくは0.001質量%以上であり、より好ましくは0.01質量%以上であり、さらに好ましくは0.03質量%以上であり、特に好ましくは0.05質量%以上であり、好ましくは1.0質量%以下であり、より好ましくは0.8質量%以下であり、さらに好ましくは0.5質量%以下であり、特に好ましくは0.3質量%以下である。
 本開示において、ポリテトラフルオロエチレンを構成する各単量体単位の含有量は、NMR、FT-IR、元素分析、蛍光X線分析を単量体の種類によって適宜組み合わせることで算出できる。また、ポリテトラフルオロエチレンを構成する各単量体単位の含有量は、重合に用いた変性モノマーの添加量から計算により求めることもできる。
 ポリテトラフルオロエチレン粒子の一実施形態においては、含フッ素化合物を含有する。
 ポリテトラフルオロエチレン粒子の一実施形態においては、実質的に含フッ素化合物を含有しない。含フッ素化合物は、上述したとおり、懸濁重合の際に添加されていない化合物である。含フッ素化合物として、典型的な化合物は、分子量1000以下、好ましくは800g/mol以下の親水基を有する含フッ素化合物である。
 ポリテトラフルオロエチレン粒子の一実施形態においては、親水基を有する含フッ素化合物として、下記の一般式(1)で表される化合物を実質的に含有しない。
  一般式(1):[X-Rf-Ai+
(式中、Xは、H、Cl、Br、FまたはI、Rfは、直鎖若しくは分枝鎖の部分フッ素化若しくは完全フッ素化脂肪族基、または、少なくとも1個の酸素原子により中断された直鎖若しくは分枝鎖の部分フッ素化若しくは完全フッ素化脂肪族基、Aは酸基、Mi+は価数iを有するカチオン、iは1~3の整数を表す)
 ポリテトラフルオロエチレン粒子の一実施形態においては、親水基を有する含フッ素化合物として、下記の一般式(2)で表される化合物を実質的に含有しない。
   一般式(2):[Cn-12n-1COO]M
(式中、nは9~12の整数、Mはカチオンを表す。)
 一般式(2)で表される化合物(パーフルオロアルカン酸)は、パーフルオロアルキルビニルエーテルなどを変性モノマーとして用いた場合に、重合中に形成されることが知られている(国際公開第2019/161153号参照)。
 ポリテトラフルオロエチレン粒子の一実施形態においては、親水基を有する含フッ素化合物として、下記の一般式(3)で表される化合物を実質的に含有しない。
   一般式(3):[R-O-L-CO ]M
(式中、Rは、直鎖若しくは分枝鎖の部分フッ素化若しくは完全フッ素化脂肪族基、または、少なくとも1個の酸素原子により中断された直鎖若しくは分枝鎖の部分フッ素化若しくは完全フッ素化脂肪族基、Lは、直鎖若しくは分枝鎖の非フッ素化、部分フッ素化または完全フッ素化アルキレン基、Mはカチオンを表す。)
 ポリテトラフルオロエチレン粒子の一実施形態においては、親水基を有する含フッ素化合物として、一般式(4)で示される化合物を実質的に含有しない。
   一般式(4):[H-(CFCO ]M
(式中、mは3~19の整数、Mはカチオンを表す。)
 本開示において、「実質的に含フッ素化合物(親水基を有する含フッ素化合物)を含有しない」とは、ポリテトラフルオロエチレン粒子中の含フッ素化合物(モノマーの重合により生じた含フッ素化合物)の含有量が、ポリテトラフルオロエチレンに対して、1質量ppm以下であることを意味する。ポリテトラフルオロエチレン粒子中の含フッ素化合物(親水基を有する含フッ素化合物)の含有量は、好ましくは100質量ppb以下であり、より好ましくは50質量ppb以下であり、更に好ましくは10質量ppb以下であり、更により好ましくは5質量ppb以下であり、特に好ましくは1質量ppb以下であり、最も好ましくは、液体クロマトグラフィー-質量分析法(LC/MS)による測定による、含フッ素界面活性剤が検出限界未満である。
 含フッ素化合物(親水基を有する含フッ素化合物)の含有量は、公知な方法で定量できる。例えば、LC/MS分析にて定量することができる。
 まず、ポリテトラフルオロエチレン粒子にメタノールを加え、抽出を行ない、得られた抽出液をLC/MS分析する。さらに抽出効率を高めるために、ソックスレー抽出、超音波処理等による処理を行ってもよい。
 得られたLC/MSスペクトルから、分子量情報を抜出し、候補となる含フッ素化合物(親水基を有する含フッ素化合物)の構造式との一致を確認する。
 その後、確認された含フッ素化合物(親水基を有する含フッ素化合物)の5水準以上の含有量の水溶液を作製し、それぞれの含有量の水溶液のLC/MS分析を行ない、含有量と、その含有量に対するエリア面積と関係をプロットし、検量線を描く。
 そして、検量線を用いて、抽出液中の含フッ素化合物(親水基を有する含フッ素化合物)のLC/MSクロマトグラムのエリア面積を、含フッ素化合物(親水基を有する含フッ素化合物)の含有量に換算することができる。
 ポリテトラフルオロエチレン粒子の一実施形態においては、含フッ素界面活性剤を含有する。ポリテトラフルオロエチレン粒子の一実施形態においては、含フッ素化合物および含フッ素界面活性剤を含有する。
 ポリテトラフルオロエチレン粒子の一実施形態においては、実質的に含フッ素界面活性剤を含有しない。
 本開示において、「実質的に含フッ素界面活性剤を含有しない」とは、ポリテトラフルオロエチレン粒子中の含フッ素界面活性剤の含有量が、1質量ppm以下であることを意味する。ポリテトラフルオロエチレン粒子中の含フッ素界面活性剤の含有量は、好ましくは100質量ppb以下であり、より好ましくは50質量ppb以下であり、更に好ましくは10質量ppb以下であり、更により好ましくは5質量ppb以下であり、特に好ましくは1質量ppb以下であり、最も好ましくは、液体クロマトグラフィー-質量分析法(LC/MS)による測定による、含フッ素界面活性剤が検出限界未満である。
 含フッ素界面活性剤の含有量は、公知な方法で定量できる。例えば、LC/MS分析にて定量することができる。
 まず、ポリテトラフルオロエチレン粒子にメタノールを加え、抽出を行ない、得られた抽出液をLC/MS分析する。さらに抽出効率を高めるために、ソックスレー抽出、超音波処理等による処理を行ってもよい。
 得られたLC/MSスペクトルから、分子量情報を抜出し、候補となる含フッ素界面活性剤の構造式との一致を確認する。
 その後、確認された含フッ素界面活性剤の5水準以上の含有量の水溶液を作製し、それぞれの含有量の水溶液のLC/MS分析を行ない、含有量と、その含有量に対するエリア面積と関係をプロットし、検量線を描く。
 そして、検量線を用いて、抽出液中の含フッ素界面活性剤のLC/MSクロマトグラムのエリア面積を、含フッ素界面活性剤の含有量に換算することができる。
(成形)
 本開示は、上記の製造方法により得られるポリテトラフルオロエチレン粒子にも関する。上記の製造方法により得られるポリテトラフルオロエチレン粒子は、通常、複数のポリテトラフルオロエチレン粒子を含むパウダーとして得られる。
 本開示の製造方法により得られるポリテトラフルオロエチレン粒子を成形することにより、ポリテトラフルオロエチレン成形品を得ることができる。本開示の製造方法により得られるポリテトラフルオロエチレン粒子は、酸臭が低減されていることから、このポリテトラフルオロエチレン粒子を用いることにより、成形時の作業環境を大幅に改善することができる。
 ポリテトラフルオロエチレン粒子を成形する方法としては、たとえば、圧縮成形、ラム押出成形、等圧圧縮成形などが挙げられる。成形方法としては、なかでも、圧縮成形が好ましい。ポリテトラフルオロエチレン粒子を圧縮成形することにより、ポリテトラフルオロエチレン圧縮成形品が得られる。
 圧縮成形においては、一般に、金型にポリテトラフルオロエチレン粒子を充填し、圧縮することにより予備成形体を作製し、得られた予備成形体を炉に入れて焼結し、冷却することにより、圧縮成形品を得る。
 圧縮成形は、たとえば、ポリテトラフルオロエチレン粒子を金型に充填し、ポリテトラフルオロエチレン粒子を、1~100MPaで圧縮し、圧縮して得られた予備成形体を345~400℃に加熱して焼結させることにより、行うことができる。
 切削加工などの機械加工することにより、ポリテトラフルオロエチレン成形品を加工して、所望の形状を有する成形品を作製してもよい。たとえば、ポリテトラフルオロエチレン成形品を切削加工することにより、ポリテトラフルオロエチレンシートを得ることができる。得られるポリテトラフルオロエチレンシートは、ライニングシート、パッキン、ガスケット、ダイヤフラム弁として用いることができる。また、得られるポリテトラフルオロエチレンシートは、耐熱電線、車両モータ・発電機などの耐熱絶縁テープ、離型シートなどに用いることができる。
 ポリテトラフルオロエチレン成形品は、また、シール材、ケーシング、スリーブ、ベロース、ホース、ピストンリング、バタフライバルブ、角槽、ウェハーキャリアなどにも用いることができる。
 また、本開示の製造方法により得られるポリテトラフルオロエチレン粒子および本開示のポリテトラフルオロエチレン粒子を、造粒の原料、コンパウンドの原料としても用いることができる。本開示の製造方法により得られるポリテトラフルオロエチレン粒子および本開示のポリテトラフルオロエチレン粒子を、公知の造粒法により造粒してもよい。また、本開示の製造方法により得られるポリテトラフルオロエチレン粒子および本開示のポリテトラフルオロエチレン粒子に対して、フィラーを適宜配合してもよい。さらに、フィラーを配合した成形用粉末を、公知の造粒法により造粒してもよい。得られる造粒物や成形用材料は、ポリテトラフルオロエチレン粒子を成形する方法と同様にして、成形することができる。
 以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。
 実施例の各数値は以下の方法により測定した
<含水率>
 ポリテトラフルオロエチレン粉砕粒子を150℃、3時間加熱することにより十分に乾燥させ、加熱の前後の粉砕粒子の質量を測定し、下記の式に従って算出した。
   含水率(質量%)=[(加熱前の粉砕粒子の質量(g))-(加熱後の粉砕粒子の質量(g))]/(加熱後の粉砕粒子の質量(g))×100
<平均粒子径(50%積算粒子径)>
 平均粒子径は、次のレーザー回折法により求めた。HELOS&RODOSシステム(商品名、SYMPATEC社製)を用いて、乾式にて行う。分散圧力2barの圧縮空気により分散された被測定粉末を、レーザーにより映し出された被測定粉末の影を測定センサー部が感知する事で、被測定粉末の粒度分布を演算し、体積基準にて平均粒子径(50%積算粒子径)d50の値を求めた。d50は、粒度分布積算の50%に対応する粒子径に等しいとした。
<フッ化水素濃度>
 ポリテトラフルオロエチレン粒子10kgを、容積60LのPET構成のポリ袋に入れ、室温、冷暗所に10日間静置した。フッ化水素用検知管を用い、メーカー指定の方法にしたがって袋内部のガスを吸引し、指示値から袋内部のフッ化水素濃度を求めた。検出限界は、0.05質量ppmである。
<標準比重(SSG)>
 ASTM D4894に準拠して成形されたサンプルを用い、ASTM D792に準拠した水置換法により測定した。
<比表面積>
 ポリテトラフルオロエチレン粒子の比表面積は、キャリアガスとして窒素30%とヘリウム70%の混合ガスを用い、冷却は液体窒素を用いて、JIS Z8830に基づいて、BET法(流動法、1点法)により測定した。装置としては、Macsorb HM Model-1210を用いた。
<パーフルオロ(プロピルビニルエーテル)(PPVE)含有量>
 ポリテトラフルオロエチレン中のPPVE含有量は、ポリテトラフルオロエチレン粒子をプレス成形することで薄膜ディスクを作成し、薄膜ディスクをFT-IR測定した赤外線吸光度から、995cm-1における吸光度/935cm-1における吸光度の比に0.14を乗じて求めた。
<親水基を有する含フッ素化合物の測定>
〔一般式(2)で示される化合物の含有量測定方法〕
ポリテトラフルオロエチレン粒子からの抽出
 ポリテトラフルオロエチレン粒子0.30gにメタノール10mLを加え、60℃に加温しながら、120分間の超音波処理を行い、一般式(2)で示される化合物を含む上澄み液を抽出した。
   一般式(2):[Cn-12n-1COO]M
(式中、nは9~12の整数、Mはカチオンを表す。)
抽出液に含まれる一般式(2)で示される化合物の含有量測定
検量線
 濃度既知のパーフルオロノナン酸(PFNA)、パーフルオロデカン酸(PFDA)、パーフルオロウンデカン酸(PFUnDA)、パーフルオロドデカン酸(PFDoDA)のメタノール標準溶液を0.03~0.5ng/mL、0.5~5ng/mL、5~50ng/mLのそれぞれの濃度範囲で5水準調製し、液体クロマトグラフ質量分析計を用いて測定を行った。それぞれのサンプル濃度とピークの積分値から一次近似を用い、検量線を作成した。定量下限は、1ppb/polymerである。
測定機器構成とLC-MS測定条件
Figure JPOXMLDOC01-appb-T000005
SRM測定パラメータ
Figure JPOXMLDOC01-appb-T000006
抽出液に含まれる一般式(2)で示される化合物の含有量
 液体クロマトグラフ質量分析計を用い、一般式(2)で示される化合物を測定した。抽出した液相について、SRM法により各炭素数の一般式(2)で示される化合物のピーク面積を求め、ポリテトラフルオロエチレン粒子中に含まれる一般式(2)で示される化合物の含有量を求めた。
製造例1
 国際公開第2003/035724号の製造例3に記載された方法にて、テトラフルオロエチレンの重合を行なった。重合にあたって、PPVEの仕込み量を85gとし、界面活性剤を使用しなかった。得られたポリテトラフルオロエチレン懸濁重合粒子を取り出し、純水で洗浄を2回行なった。洗浄と同時に高速回転ミルにて、平均粒子径350μmまで粉砕し、粉砕粒子を得た。得られた粉砕粒子を振動脱水によって、含水率を5質量%にして、脱水された粉砕粒子を得た。その後、粉砕粒子と気体とを含む固気混合物を形成した後に、熱風の排気口で測定する温度が130℃となるように温度を調整しながら気流乾燥し、粉砕粒子と気体とに分離し、乾燥された粉砕粒子を得た。得られた粉砕粒子の平均粒子径は350μmであった。
実施例1
 製造例1で得られた粉砕粒子と気体とを含む固気混合物を形成した後に、エアジェットミルにて粉砕を行ない、粉砕粒子と気体とに分離し、ポリテトラフルオロエチレン粒子を得た。得られたポリテトラフルオロエチレン粒子の平均粒子径は26μmであった。酸臭が感じられ、フッ化水素濃度は4.8質量ppmであった。標準比重は、2.171であった。比表面積は、3.5m/gであった。ポリテトラフルオロエチレン中のPPVE含有量は、0.062質量%であった。
実施例2
 製造例1で得られた粉砕粒子を、伝導受熱型の材料搬送型乾燥機である振動乾燥機に供給し、250℃、12分間の熱処理を行なった。その後、粉砕粒子と気体とを含む固気混合物を形成した後に、エアジェットミルにて粉砕を行ない、粉砕粒子と気体とに分離し、ポリテトラフルオロエチレン粒子を得た。得られたポリテトラフルオロエチレン粒子の平均粒子径は30μmであった。酸臭が感じられなかった。フッ化水素濃度は1.0質量ppmであった。標準比重は、2.171であった。比表面積は、3.4m/gであった。
実施例3
 製造例1で得られた粉砕粒子を、伝導受熱型の材料撹拌型乾燥機である逆円錐型乾燥機に供給し、250℃、6時間の熱処理を行なった。その後、粉砕粒子と気体とを含む固気混合物を形成した後に、フェザーミルにて粉砕を行ない、粉砕粒子と気体とに分離し、ポリテトラフルオロエチレン粒子を得た。得られたポリテトラフルオロエチレン粒子の平均粒子径は29μmであった。酸臭が感じられず、フッ化水素濃度は0.3質量ppmであった。標準比重は、2.171であった。比表面積は、3.7m/gであった。
実施例4
 製造例1で得られた粉砕粒子を、熱風受熱型の材料撹拌型乾燥機である流動層乾燥機に供給し、250℃、1.5時間の熱処理を行なった。その後、粉砕粒子と気体とを含む固気混合物を形成した後に、エアジェットミルにて粉砕を行ない、粉砕粒子と気体とに分離し、ポリテトラフルオロエチレン粒子を得た。得られたポリテトラフルオロエチレン粒子の平均粒子径は26μmであった。酸臭が感じられず、フッ化水素濃度は0.5質量ppmであった。標準比重は、2.171であった。比表面積は、3.7m/gであった。
実施例5
 国際公開第2003/035724号の製造例3に記載された方法にて、テトラフルオロエチレンの重合を行なった。重合にあたって、PPVEの仕込み量を85gとし、界面活性剤を使用しなかった。得られたポリテトラフルオロエチレン懸濁重合粒子を取り出し、洗浄と同時に高速回転ミルにて粉砕し、さらにコロイドミルで粉砕して、平均粒子径300μmまで粉砕し、粉砕粒子を得た。得られた粉砕粒子を振動脱水によって、含水率を5質量%にして、脱水された粉砕粒子を得た。伝導受熱型の材料搬送型乾燥機である振動乾燥機に供給し、250℃、15分間の熱処理を行なった。その後、粉砕粒子と気体とを含む固気混合物を形成した後に、エアジェットミルにて粉砕を行ない、粉砕粒子と気体とに分離し、ポリテトラフルオロエチレン粒子を得た。得られたポリテトラフルオロエチレン粒子の平均粒子径は21μmであった。酸臭が感じられなかった。フッ化水素濃度は0質量ppmであった。標準比重は、2.171であった。比表面積は、3.6m/gであった。ポリテトラフルオロエチレン中のPPVE含有量は、0.062質量%であった。
実施例6
 製造例1で得られた粉砕粒子を、伝導受熱型の材料搬送型乾燥機である振動乾燥機に供給し、260℃、10分間の熱処理を行なった。その際、260℃の熱風を同伴させた。その後、粉砕粒子と気体とを含む固気混合物を形成した後に、エアジェットミルにて粉砕を行ない、粉砕粒子と気体とに分離し、ポリテトラフルオロエチレン粒子を得た。得られたポリテトラフルオロエチレン粒子の平均粒子径は23μmであった。酸臭が感じられなかった。フッ化水素濃度は0.3質量ppmであった。標準比重は、2.171であった。比表面積は、3.4m/gであった。
 一般式(2)で示される化合物の含有量を表3に示す。
Figure JPOXMLDOC01-appb-T000007

Claims (17)

  1.  テトラフルオロエチレンを水性媒体中で懸濁重合することにより、ポリテトラフルオロエチレンの懸濁重合粒子を作製し、
     前記懸濁重合粒子を洗浄した後に粉砕することにより、または、前記懸濁重合粒子を洗浄しながら粉砕することにより、粉砕粒子を作製し、
     前記粉砕粒子を脱水することにより、含水率が40質量%以下の粉砕粒子を作製し、
     脱水した前記粉砕粒子に対して熱処理をすることにより、ポリテトラフルオロエチレン粒子を製造する
    ポリテトラフルオロエチレン粒子の製造方法。
  2.  前記粉砕粒子を脱水した後、前記粉砕粒子をさらに乾燥させる請求項1に記載の製造方法。
  3.  前記粉砕粒子を気流乾燥により乾燥させる請求項2に記載の製造方法。
  4.  前記熱処理の温度が200℃以上である請求項1~3のいずれかに記載の製造方法。
  5.  伝導受熱型乾燥機を用いて前記熱処理を行う請求項1~4のいずれかに記載の製造方法。
  6.  材料撹拌型乾燥機または材料搬送型乾燥機を用いて前記熱処理を行う請求項1~4のいずれかに記載の製造方法。
  7.  前記熱処理において、または、前記熱処理後に前記ポリテトラフルオロエチレン粒子を移送する際に、前記熱処理により生じる前記ポリテトラフルオロエチレン粒子および気体を含有する固気混合物を形成させ、前記固気混合物を、前記ポリテトラフルオロエチレン粒子と気体とに分離させ、前記ポリテトラフルオロエチレン粒子を回収することにより、前記ポリテトラフルオロエチレン粒子を製造する請求項1~6のいずれかに記載の製造方法。
  8.  前記粉砕粒子の平均粒子径が100~800μmである請求項1~7のいずれかに記載の製造方法。
  9.  前記粉砕粒子に対して前記熱処理を行うことにより前記ポリテトラフルオロエチレン粒子を製造した後、前記ポリテトラフルオロエチレン粒子をさらに粉砕することにより、平均粒子径が200μm以下のポリテトラフルオロエチレン粒子を製造する請求項1~8のいずれかに記載の製造方法。
  10.  テトラフルオロエチレンおよび変性モノマーを懸濁重合する請求項1~9のいずれかに記載の製造方法。
  11.  前記ポリテトラフルオロエチレン粒子の標準比重が、2.200以下である請求項1~10のいずれかに記載の製造方法。
  12.  前記ポリテトラフルオロエチレン粒子の比表面積が、5.0m/g以下である請求項1~11のいずれかに記載の製造方法。
  13.  前記ポリテトラフルオロエチレン粒子が、下記の一般式(2)で表される化合物を実質的に含有しない請求項1~12のいずれかに記載の製造方法。
       一般式(2):[Cn-12n-1COO]M
    (式中、nは9~12の整数、Mはカチオンを表す。)
  14.  界面活性剤の存在下または非存在下に懸濁重合し、前記界面活性剤の量が、前記水性媒体に対して、2000質量ppm以下である請求項1~13のいずれかに記載の製造方法。
  15.  請求項1~14のいずれかに記載の製造方法により前記ポリテトラフルオロエチレン粒子を製造した後、前記ポリテトラフルオロエチレン粒子を成形することにより成形品を得るポリテトラフルオロエチレン成形品の製造方法。
  16.  請求項1~14のいずれかに記載の製造方法により前記ポリテトラフルオロエチレン粒子を製造した後、前記ポリテトラフルオロエチレン粒子を圧縮成形することにより圧縮成形品を得るポリテトラフルオロエチレン圧縮成形品の製造方法。
  17.  請求項1~14のいずれかに記載の製造方法により得られるポリテトラフルオロエチレン粒子。
PCT/JP2022/026258 2021-06-30 2022-06-30 ポリテトラフルオロエチレン粒子の製造方法 WO2023277138A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22833284.7A EP4365223A1 (en) 2021-06-30 2022-06-30 Method for producing polytetrafluoroethylene particles
CN202280045155.XA CN117545796A (zh) 2021-06-30 2022-06-30 聚四氟乙烯颗粒的制造方法
JP2023532058A JPWO2023277138A1 (ja) 2021-06-30 2022-06-30
US18/400,039 US20240150533A1 (en) 2021-06-30 2023-12-29 Production method of polytetrafluoroethylene particle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-109115 2021-06-30
JP2021109115 2021-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/400,039 Continuation US20240150533A1 (en) 2021-06-30 2023-12-29 Production method of polytetrafluoroethylene particle

Publications (1)

Publication Number Publication Date
WO2023277138A1 true WO2023277138A1 (ja) 2023-01-05

Family

ID=84692774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026258 WO2023277138A1 (ja) 2021-06-30 2022-06-30 ポリテトラフルオロエチレン粒子の製造方法

Country Status (5)

Country Link
US (1) US20240150533A1 (ja)
EP (1) EP4365223A1 (ja)
JP (1) JPWO2023277138A1 (ja)
CN (1) CN117545796A (ja)
WO (1) WO2023277138A1 (ja)

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3085083A (en) * 1959-05-05 1963-04-09 Du Pont Stabilized tetrafluoroethylene-fluoro-olefin copolymers having-cf2h end groups
US3250808A (en) 1963-10-31 1966-05-10 Du Pont Fluorocarbon ethers derived from hexafluoropropylene epoxide
US3271341A (en) 1961-08-07 1966-09-06 Du Pont Aqueous colloidal dispersions of polymer
JPS63159438A (ja) * 1986-12-22 1988-07-02 Daikin Ind Ltd テトラフルオロエチレン系共重合体粉末の製法
WO1996028498A1 (en) * 1995-03-15 1996-09-19 Daikin Industries, Ltd. Process for producing polytetrafluoroethylene molding powder
JP2003119204A (ja) 2001-10-05 2003-04-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
WO2003035724A1 (fr) 2001-10-24 2003-05-01 Daikin Industries, Ltd. Poudre de ptfe, et procede de fabrication correspondant, aux fins de moulage
WO2005042593A1 (ja) 2003-10-31 2005-05-12 Daikin Industries, Ltd. 含フッ素重合体水性分散体の製造方法及び含フッ素重合体水性分散体
US20070015865A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant
US20070015866A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
US20070015864A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Method of making fluoropolymer dispersion
WO2007046345A1 (ja) 2005-10-17 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性乳化液、それから得られるポリテトラフルオロエチレンファインパウダーおよび多孔体
WO2007046377A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited 溶融成形可能なフッ素樹脂の製造方法
WO2007046482A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性分散液およびその製品
JP2007119526A (ja) 2005-10-25 2007-05-17 Asahi Glass Co Ltd 含フッ素重合体の製造方法
US20070117914A1 (en) 2005-11-24 2007-05-24 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
US20070142541A1 (en) 2005-12-21 2007-06-21 3M Innovative Properties Company Fluorinated surfactants for making fluoropolymers
US20070276103A1 (en) 2006-05-25 2007-11-29 3M Innovative Properties Company Fluorinated Surfactants
US20080015319A1 (en) 2006-07-13 2008-01-17 Klaus Hintzer Explosion taming surfactants for the production of perfluoropolymers
WO2008060461A1 (en) 2006-11-09 2008-05-22 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant
WO2013005743A1 (ja) * 2011-07-05 2013-01-10 旭硝子株式会社 フッ素樹脂ペレットの処理方法
WO2013189826A1 (en) 2012-06-20 2013-12-27 Solvay Specialty Polymers Italy S.P.A. Tetrafluoroethylene copolymers
WO2013189824A1 (en) 2012-06-20 2013-12-27 Solvay Specialty Polymers Italy S.P.A. Tetrafluoroethylene copolymers
WO2014123075A1 (ja) 2013-02-05 2014-08-14 旭硝子株式会社 ポリテトラフルオロエチレンモールディングパウダーの製造方法およびポリテトラフルオロエチレン造粒物の製造方法
US20140228531A1 (en) 2008-07-08 2014-08-14 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
WO2019156071A1 (ja) * 2018-02-07 2019-08-15 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレンを含む組成物の製造方法
WO2019161153A1 (en) 2018-02-15 2019-08-22 3M Innovative Properties Company Fluoropolymers, fluoropolymer compositions and fluoropolymer dispersions
JP2019527644A (ja) * 2016-06-10 2019-10-03 イー−ビーム・サービシーズ・インコーポレイテッド 熱媒液を用いた照射済み材料固体の熱処理

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3085083A (en) * 1959-05-05 1963-04-09 Du Pont Stabilized tetrafluoroethylene-fluoro-olefin copolymers having-cf2h end groups
US3271341A (en) 1961-08-07 1966-09-06 Du Pont Aqueous colloidal dispersions of polymer
US3250808A (en) 1963-10-31 1966-05-10 Du Pont Fluorocarbon ethers derived from hexafluoropropylene epoxide
JPS63159438A (ja) * 1986-12-22 1988-07-02 Daikin Ind Ltd テトラフルオロエチレン系共重合体粉末の製法
WO1996028498A1 (en) * 1995-03-15 1996-09-19 Daikin Industries, Ltd. Process for producing polytetrafluoroethylene molding powder
JP2003119204A (ja) 2001-10-05 2003-04-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
WO2003035724A1 (fr) 2001-10-24 2003-05-01 Daikin Industries, Ltd. Poudre de ptfe, et procede de fabrication correspondant, aux fins de moulage
WO2005042593A1 (ja) 2003-10-31 2005-05-12 Daikin Industries, Ltd. 含フッ素重合体水性分散体の製造方法及び含フッ素重合体水性分散体
US20070015865A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant
US20070015866A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
US20070015864A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Method of making fluoropolymer dispersion
WO2007046345A1 (ja) 2005-10-17 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性乳化液、それから得られるポリテトラフルオロエチレンファインパウダーおよび多孔体
WO2007046377A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited 溶融成形可能なフッ素樹脂の製造方法
WO2007046482A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性分散液およびその製品
JP2007119526A (ja) 2005-10-25 2007-05-17 Asahi Glass Co Ltd 含フッ素重合体の製造方法
US20070117914A1 (en) 2005-11-24 2007-05-24 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
US20070142541A1 (en) 2005-12-21 2007-06-21 3M Innovative Properties Company Fluorinated surfactants for making fluoropolymers
US20070276103A1 (en) 2006-05-25 2007-11-29 3M Innovative Properties Company Fluorinated Surfactants
US20080015319A1 (en) 2006-07-13 2008-01-17 Klaus Hintzer Explosion taming surfactants for the production of perfluoropolymers
WO2008060461A1 (en) 2006-11-09 2008-05-22 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant
US20140228531A1 (en) 2008-07-08 2014-08-14 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
WO2013005743A1 (ja) * 2011-07-05 2013-01-10 旭硝子株式会社 フッ素樹脂ペレットの処理方法
WO2013189826A1 (en) 2012-06-20 2013-12-27 Solvay Specialty Polymers Italy S.P.A. Tetrafluoroethylene copolymers
WO2013189824A1 (en) 2012-06-20 2013-12-27 Solvay Specialty Polymers Italy S.P.A. Tetrafluoroethylene copolymers
WO2014123075A1 (ja) 2013-02-05 2014-08-14 旭硝子株式会社 ポリテトラフルオロエチレンモールディングパウダーの製造方法およびポリテトラフルオロエチレン造粒物の製造方法
JP2019527644A (ja) * 2016-06-10 2019-10-03 イー−ビーム・サービシーズ・インコーポレイテッド 熱媒液を用いた照射済み材料固体の熱処理
WO2019156071A1 (ja) * 2018-02-07 2019-08-15 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレンを含む組成物の製造方法
WO2019161153A1 (en) 2018-02-15 2019-08-22 3M Innovative Properties Company Fluoropolymers, fluoropolymer compositions and fluoropolymer dispersions

Also Published As

Publication number Publication date
EP4365223A1 (en) 2024-05-08
JPWO2023277138A1 (ja) 2023-01-05
CN117545796A (zh) 2024-02-09
US20240150533A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
JP5778028B2 (ja) フルオロポリマー樹脂の製造に使用するフルオロエーテルカルボン酸またはその塩の削減
JP2018204036A (ja) 低分子量ポリテトラフルオロエチレンの製造方法、低分子量ポリテトラフルオロエチレン及び粉末
EP2415788B1 (en) Low molecular weight polytetrafluoroethylene powder and preparation method therefor
JP7406126B2 (ja) 低分子量ポリテトラフルオロエチレンを含む組成物の製造方法
JP2014237842A (ja) フッ素ポリマー分散液からのフルオロエーテルカルボン酸または塩の熱減量
JP6958640B2 (ja) 低分子量ポリテトラフルオロエチレンを含む組成物の製造方法
WO2014123075A1 (ja) ポリテトラフルオロエチレンモールディングパウダーの製造方法およびポリテトラフルオロエチレン造粒物の製造方法
WO2023277138A1 (ja) ポリテトラフルオロエチレン粒子の製造方法
JP7261422B2 (ja) 低分子量ポリテトラフルオロエチレンの製造方法、及び、粉末
US20240026141A1 (en) Fluororesin composition and molded body
JP6939915B2 (ja) 低分子量ポリテトラフルオロエチレンを含む組成物の製造方法
WO2023277137A1 (ja) ポリテトラフルオロエチレンパウダーの製造方法およびポリテトラフルオロエチレンパウダー
JPWO2014112592A1 (ja) エチレン−テトラフルオロエチレン共重合体乾燥物、ペレットおよび成形物の製造方法
EP4069755A1 (en) Dispersible particles of perfluorosulfonic acid ionomer
WO2022211067A1 (ja) フッ素樹脂組成物、及び、成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833284

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532058

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280045155.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022833284

Country of ref document: EP

Ref document number: 2024102073

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022833284

Country of ref document: EP

Effective date: 20240130