WO2023277073A1 - 車両用ガラスモジュール - Google Patents

車両用ガラスモジュール Download PDF

Info

Publication number
WO2023277073A1
WO2023277073A1 PCT/JP2022/025994 JP2022025994W WO2023277073A1 WO 2023277073 A1 WO2023277073 A1 WO 2023277073A1 JP 2022025994 W JP2022025994 W JP 2022025994W WO 2023277073 A1 WO2023277073 A1 WO 2023277073A1
Authority
WO
WIPO (PCT)
Prior art keywords
information acquisition
area
acquisition area
transparent conductive
glass
Prior art date
Application number
PCT/JP2022/025994
Other languages
English (en)
French (fr)
Inventor
千葉和喜
小川永史
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to CN202280047407.2A priority Critical patent/CN117616871A/zh
Priority to JP2023532023A priority patent/JPWO2023277073A1/ja
Priority to EP22833219.3A priority patent/EP4366466A1/en
Priority to US18/573,908 priority patent/US20240286464A1/en
Publication of WO2023277073A1 publication Critical patent/WO2023277073A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/20Accessories, e.g. wind deflectors, blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/02Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/22Display screens
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • H05B3/86Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields the heating conductors being embedded in the transparent or reflecting material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/02Heaters specially designed for de-icing or protection against icing

Definitions

  • the present invention relates to a vehicle glass module.
  • Patent Literature 1 proposes disposing a bus bar and a heating wire inside a glass panel of a windshield to generate heat to eliminate fogging and freezing.
  • a windshield of a vehicle to which an information acquisition device is attached is provided with a heater in an information acquisition region to prevent fogging or freezing of the information acquisition region from which information is acquired by the information acquisition device.
  • Windshields as described in US Pat. No. 5,400,002, typically consist of a laminated glass with two sheets of glass and an interlayer disposed therebetween.
  • a vehicle glass module is characterized by a vehicle glass module that supports an information acquisition device capable of receiving light from outside the vehicle inside the vehicle, the information acquisition device facing the information acquisition device and through which the light passes.
  • a glass panel having an acquisition area, and a heating unit that heats at least the information acquisition area of the glass panel, the glass panel facing the first glass plate on the outside of the vehicle. and an intermediate film made of a thermoplastic resin disposed between the first glass plate and the second glass plate, wherein the heating unit is provided on the glass panel and a heater disposed along the plate surface of the glass panel in the information acquisition area and receiving power from the power supply unit to generate heat, wherein the heater is at least the information acquisition unit. It is characterized by having a uniform heating mechanism capable of heating the entire area and uniformly heating the information acquisition area.
  • the heater that generates heat by being supplied with power from the power supply unit has a uniform heating mechanism that uniformly heats the information acquisition area. As a result, the heater can uniformly heat the information acquisition area by the uniform heating mechanism, so that temperature unevenness in the intermediate film can be suppressed.
  • uniform heating of the information acquisition region by the uniform heating mechanism means that the maximum temperature gradient of the information acquisition region is, for example, a predetermined value or less while the information acquisition region is heated.
  • the maximum temperature gradient is preferably 3.0 [°C/mm] or less, more preferably 2.0 [°C/mm] or less.
  • Another characteristic configuration is that the uniform heating mechanism is configured so that the resistance value of the heater in the information acquisition area and the current density flowing through the heater in the information acquisition area are uniform.
  • uniformity of the resistance value of the heater means, for example, that the fluctuation range of the sheet resistance of the heater is within ⁇ 15% of a predetermined value. More preferably, the fluctuation width of the sheet resistance of the heater is within ⁇ 10% of the predetermined value.
  • the uniform heating mechanism has a transparent conductive film and a pair of bus bars that supply power to the transparent conductive film, and the transparent conductive film covers the entire information acquisition area. and a second area contiguous to the first area and arranged outside the information acquisition area, wherein the pair of bus bars divides the first area and the second area into The entirety of the first region and the second region are formed in a virtual region formed by connecting both ends of portions of the pair of bus bars where the bus bars and the transparent conductive film are in contact with each other. and at least a part thereof.
  • the information acquisition area facing the information acquisition device and through which light passes is formed, for example, in a trapezoidal shape in which the length of the upper base is 1/10 or less of the length of the lower base.
  • the edge portion of the heater dissipates heat to the surrounding area where the heater is not arranged. Therefore, the edge portion of the heater has a larger temperature gradient than other portions. Therefore, it is desirable that the shape of the heater is similar to the information acquisition area and larger than the information acquisition area.
  • the transparent conductive film that constitutes the heater covers the entire information acquisition region in a virtual region formed by connecting both ends of the portions of the pair of bus bars where the bus bar and the transparent conductive film are in contact with each other. It includes a first area and a second area outside the information acquisition area. As a result, the distance between the pair of busbars becomes nearly equal, and the heater can make the potential gradient of the first region covering the information acquisition region uniform. As a result, the heater can generate heat uniformly in the information acquisition area, so that the heater can uniformly heat the information acquisition area.
  • the information acquisition area can be uniformly heated by expanding the virtual area of the heater to the outside of the information acquisition area. Furthermore, in this configuration, by making the virtual area as close to the shape of the trapezoidal information acquisition area as possible, it is possible to suppress the power consumption of the heater and suppress the occurrence of optical distortion due to the intermediate film in the information acquisition area.
  • Another characteristic configuration is that, of two sets of two opposite sides among the four sides forming the virtual area, the two sides having a smaller ratio of the short side to the long side of the two sides are defined as the short side as the first side, Assuming that the long side is the second side, the length of the first side is A, and the length of the second side is B, a perpendicular line to the second side is each of both ends of the first side and the With respect to two line segments connecting the second side at the shortest distance, the shorter line segment is the first perpendicular line, the longer line segment is the second perpendicular line, and the length of the first perpendicular line is C. Assuming that the length of the second perpendicular is D, the point satisfies the following formula (1). [Number 1] (A/B) ⁇ (C/D) ⁇ 0.2
  • the virtual area is formed in a trapezoidal or rectangular shape with an upper base of a predetermined length.
  • an upper base of a predetermined length is secured in the virtual area by satisfying Equation 1 above.
  • the heater can make the potential gradient of the first area covering the information acquisition area uniform.
  • the heater can generate heat uniformly in the information acquisition area, so that the heater can uniformly heat the information acquisition area.
  • Another characteristic configuration is that the pair of busbars are arranged on two sides with a short distance between the two sides, out of two sets of two sides that face each other among the four sides that form the virtual area.
  • the sheet resistance of the transparent conductive film can be increased as the distance between the pair of bus bars becomes shorter. Therefore, by arranging a pair of busbars on two opposite sides of the virtual area with a short distance as in this configuration, the transparent conductive film can easily secure a predetermined sheet resistance, and the film thickness of the transparent conductive film can be reduced. You can also As a result, the transmittance of the virtual area including the information acquisition area can be increased.
  • Another characteristic configuration is that the transparent conductive film is formed in a rectangular shape along the plate surface of the glass panel.
  • the transparent conductive film has a rectangular shape along the plate surface of the glass panel as in this configuration, the potential gradient can be made uniform in the central portion of the rectangular transparent conductive film. Therefore, by arranging the central portion of the transparent conductive film so as to correspond to the information acquisition area, the transparent conductive film can uniformly generate heat in the information acquisition area. As a result, the heater can uniformly heat the information acquisition area by the uniform heating mechanism.
  • the uniform heating mechanism has a transparent conductive film and a pair of bus bars for supplying power to the transparent conductive film
  • the transparent conductive film is a rectangular shape covering at least the information acquisition area. an area, and a pair of widening areas outside the information acquisition area that extend continuously along both side portions of the rectangular area, the width of which increases along the side portions as the distance from the side portions increases.
  • the pair of busbars has first portions arranged in parallel to face each other across the rectangular region, and second portions extending from both ends of the first portions; The two parts are curved so that the shortest distances to the sides of the rectangular area are equal.
  • the width of the transparent conductive film (enlarged region) outside the information acquisition region is larger than the width of the rectangular transparent conductive film (rectangular region) covering the information acquisition region.
  • the area heated by the heater is expanded to the periphery of the information acquisition area, so heat radiation from the information acquisition area is suppressed.
  • the intermediate film arranged in the information acquisition area can suppress temperature unevenness due to heat radiation from the periphery thereof.
  • the second portions of the pair of bus bars are curved so that the shortest distances to the sides of the rectangular area are equal, the second portions can evenly heat the vicinity of the sides of the rectangular area.
  • Another characteristic configuration is that a transparent substrate having a coefficient of linear thermal expansion smaller than that of the intermediate film is laminated on one surface of the transparent conductive film, and the heater is provided between the first glass plate and the second glass plate.
  • one of the transparent conductive film and the transparent substrate is arranged on the side of the first glass plate or the second glass plate, and the other is arranged on the side of the intermediate film at the point.
  • the transparent substrate laminated on one side of the transparent conductive film has a smaller coefficient of linear thermal expansion than the intermediate film, a difference in refractive index due to uneven heating is less likely to occur than the intermediate film.
  • the transparent base material which makes it difficult for the refractive index difference to occur
  • the transparent base material is preferentially heated while maintaining its original shape. It becomes difficult to be heated by the conductive film. Thereby, temperature unevenness can be suppressed in the intermediate film, and optical distortion can be prevented.
  • Another characteristic configuration is that the transparent conductive film is attached to the first glass plate or the second glass plate.
  • the first glass plate or the second glass can be efficiently heated by the transparent conductive film.
  • the glass plate has a smaller coefficient of thermal expansion and a higher thermal conductivity than the intermediate film made of resin or the like. Therefore, the heat generated by the transparent conductive film can be effectively transmitted over the entire information acquisition area through the glass plate, so that temperature unevenness in the information acquisition area can be reduced.
  • Another characteristic configuration is that the heater is arranged between the first glass plate and the second glass plate and is in contact with the intermediate film.
  • the intermediate film placed between the first glass plate and the second glass plate in the vehicle glass module is made of a thermoplastic resin, so the refractive index is likely to change as the temperature changes.
  • the heater since the heater has a uniform heating mechanism, the intermediate film in contact with the heater is uniformly heated by the heater, and temperature unevenness can be suppressed.
  • the heater has a heating wire
  • the uniform heating mechanism includes a heat diffusion layer disposed between the heating wire and the intermediate film and having a higher thermal conductivity than the intermediate film. Further, the heat diffusion layer is arranged so as to cover at least the entire information acquisition area.
  • the heater When the heater is configured with a heating wire, a temperature difference occurs between the area where the heating wire exists and the area where the heating wire does not exist.
  • the temperature distribution in the information acquisition area can be made uniform.
  • the temperature distribution is made uniform even in the intermediate film, so that optical distortion caused by the intermediate film can be suppressed.
  • thermal diffusion layer has a smaller volume expansion coefficient than the intermediate film.
  • the thermal diffusion layer has a smaller volume expansion coefficient than the intermediate film as in this configuration, the thermal diffusion layer can be stably arranged between the first glass plate and the second glass plate.
  • heating wire is attached to the first glass plate or the second glass plate.
  • the first glass plate or the second glass plate can be efficiently heated by the heating wire.
  • the glass plate has a smaller coefficient of thermal expansion and a higher thermal conductivity than the intermediate film made of thermoplastic resin. Therefore, the heat generated by the heating wire can be effectively transmitted over the entire information acquisition area through the glass plate, so that temperature unevenness in the information acquisition area can be reduced.
  • a shielding layer is disposed in a peripheral area of the glass panel and has an opening at a position corresponding to the information acquisition area, and the power supply section is covered with the shielding layer.
  • the shielding layer is arranged in the peripheral region of the glass panel and has an opening at a position corresponding to the information acquisition region.
  • FIG. 1 is a partial cross-sectional view of a vehicle glass module according to a first embodiment
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is a principal part schematic diagram of the glass module for vehicles of 1st Embodiment.
  • FIG. 3 is a schematic diagram of a main part of a vehicle glass module of a comparative example; It is a temperature distribution diagram in a heater (transparent conductive film) of a comparative example (trapezoidal). 4 is a temperature distribution diagram in the heater (transparent conductive film) of the first embodiment;
  • FIG. 3 is a schematic diagram of a main part of a vehicle glass module of a comparative example
  • It is a temperature distribution diagram in a heater (transparent conductive film) of a comparative example (trapezoidal).
  • 4 is a temperature distribution diagram in the heater (transparent conductive film) of the first embodiment
  • FIG. 10 is a schematic diagram of a main part of a vehicle glass module according to a second embodiment; It is a principal part schematic diagram of the modification 1 of 2nd Embodiment. It is a principal part schematic diagram of the modification 2 of 2nd Embodiment.
  • FIG. 10 is a schematic diagram of a main part of a vehicle glass module according to a third embodiment; It is a principal part schematic diagram of the glass module for vehicles of 4th Embodiment. It is a table
  • FIG. 10 is a diagram showing an image captured by Sample 1 (without energization); FIG.
  • FIG. 10 is a diagram showing an image captured by Sample 1 (at the time of energization); FIG. 10 is a diagram showing a photographed image (at the time of energization) by Sample 5;
  • FIG. 11 is a schematic diagram of a main part of a vehicle glass module according to a fifth embodiment;
  • FIG. 11 is a partial cross-sectional view of a vehicle glass module according to a sixth embodiment;
  • FIG. 11 is a schematic diagram of a main part of a vehicle glass module according to a seventh embodiment;
  • FIG. 11 is a partial cross-sectional view of a vehicle glass module according to a seventh embodiment;
  • FIG. 10 is a partial cross-sectional view of a vehicle glass module according to another embodiment;
  • a vehicle glass module 1 (hereinafter referred to as “glass module 1 ”) according to this embodiment includes a glass panel 10 and a heating unit 30 .
  • the glass panel 10 is configured by arranging a first glass plate 11 on the outside of the vehicle and a second glass plate 12 on the inside of the vehicle so as to face each other.
  • the glass panel 10 is laminated glass in which a first glass plate 11 and a second glass plate 12 are joined together by an intermediate film 13 .
  • the intermediate film 13 is composed of an adhesive layer including a conductive wire 32 and a heating region of a heater 33, which will be described later.
  • the heating unit 30 is for heating an information acquisition area 15 provided on the glass panel 10, which will be described later.
  • the first glass plate 11 that constitutes the glass panel 10 includes a first surface 21 on the outside of the vehicle and a second surface 22 provided on the back side of the first surface 21 .
  • the second glass plate 12 constituting the glass panel 10 includes a third surface 23 facing the second surface 22 and a fourth surface 24 provided behind the third surface 23 .
  • the first glass plate 11 and the second glass plate 12 are formed in a trapezoidal shape in a plan view, having substantially the same convex shape on the outside (on the side of the first surface 21).
  • the glass panel 10 has an upper side 10a, a lower side 10b, a left side 10c, and a right side 10d when viewed from the inside of the vehicle, and the upper side 10a is shorter than the lower side 10b (see FIG. 1).
  • the first glass plate 11 and the second glass plate 12 may be rectangular.
  • a known glass plate can be used for the glass plates 11 and 12 .
  • the glass plates 11 and 12 may be heat-absorbing glass, clear glass, green glass, UV green glass, or the like.
  • the glass plates 11 and 12 are configured to achieve a visible light transmittance that meets the safety standards of the country in which the automobile is used.
  • a shielding layer 3 is provided along the periphery of the glass panel 10 to shield the view from outside the vehicle.
  • the shielding layer 3 is arranged in the peripheral area of the glass panel 10 . It has an opening at a position corresponding to the information acquisition area 15 .
  • a power feeding portion 31, which will be described later, is covered with the shielding layer 3 in plan view.
  • the shielding layer 3 is formed in an annular shape.
  • a photographing device 8 an example of an information acquisition device capable of receiving light from outside the vehicle is mounted via a bracket (not shown) or the like inside the vehicle to which the glass panel 10 is attached.
  • the photographing device 8 is arranged so that the substantially central region near the upper side 10a (an example of the side portion) of the glass panel 10 falls within the angle of view.
  • the glass panel 10 has an information acquisition area 15 that faces the photographing device 8 and through which light passes. Specifically, the information acquisition area 15 is arranged below the substantially central area of the upper side 10a. In this way, the photographing device 8 arranged inside the vehicle than the glass panel 10 photographs the situation outside the vehicle via the information acquisition area 15 .
  • the information acquisition area 15 is rectangular and has an upper side 15a along the upper side 10a of the glass panel 10, a lower side 15b parallel to the upper side 15a, a left side 15c, and a right side 15d.
  • the information acquisition area 15 is arranged at a position close to the upper side 10a of the glass panel 10 as in the present embodiment, the information acquisition area 15 will not be visible when the glass module 1 is used for the windshield of a vehicle. It does not obstruct the view of the person. Thereby, in the glass panel 10, the visibility of the driver can be satisfactorily secured. Further, for example, when an information acquisition device such as a camera (photographing device 8) is arranged to face the information acquisition area 15, the front of the vehicle is unlikely to become a blind spot due to the bonnet or the like in the information acquisition device. It becomes easier to secure the field of vision.
  • an information acquisition device such as a camera (photographing device 8)
  • the planar dimension of the information acquisition area 15 is appropriately set according to the imaging device 8 placed inside the vehicle.
  • the information acquisition area 15 is merely an area through which light emitted and/or received by the imaging device 8 passes, the planar dimension of the information acquisition region 15 is relatively large regardless of the type of the imaging device 8. set small.
  • the planar dimension of the information acquisition area 15 is too small, a high mounting accuracy of the imaging device 8 is required.
  • the distortion of the glass panel 10 has a large effect on the image acquired by the photographing device 8 .
  • the planar dimension of the information acquisition area 15 is too large, the driver's visual field range will be narrowed.
  • the planar dimension of the information acquisition area 15 is preferably set in the range of 20 mm (vertical) x 20 mm (horizontal) to 250 mm (vertical) x 500 mm (horizontal). ) to 150 mm (length) ⁇ 400 mm (width).
  • the heating unit 30 heats at least part of the information acquisition area 15 of the glass panel 10 to remove fogging and/or ice from the information acquisition area 15 .
  • the heating section 30 is provided at a position adjacent to the intermediate film 13 .
  • the heating unit 30 may be arranged inside the intermediate film 13 .
  • the intermediate film 13 is sandwiched between the first glass plate 11 and the second glass plate 12 to join the two glass plates 11 and 12 together.
  • This intermediate film 13 is made of a thermoplastic resin.
  • the intermediate film 13 can have, for example, a three-layer structure in which a soft core layer is sandwiched between a pair of harder outer layers.
  • the intermediate film 13 By forming the intermediate film 13 with a plurality of soft layers and hard layers in this manner, the breakage resistance and sound insulation performance of the glass substrate can be enhanced.
  • polyvinyl butyral resin PVB
  • This polyvinyl butyral resin (PVB) is preferable as a material for the outer layer because it has excellent adhesiveness and penetration resistance.
  • EVA ethylene vinyl acetate resin
  • polyvinyl acetal resin which is softer than the polyvinyl butyral resin used for the outer layer, can be used.
  • the heating unit 30 will be described in detail based on FIG.
  • the heating unit 30 has a power supply unit 31 , a heater 33 , and a conductor 32 connecting the power supply unit 31 and the heater 33 .
  • the power supply unit 31 is configured by a pair of power supply units 31a and 31b.
  • the power supply portions 31a and 31b are arranged side by side in the extending direction of the upper side 10a, that is, in the left-right direction. Further, the power supply parts 31a and 31b are arranged inside the notch (not shown) formed in the upper side 10a of the second glass plate 12 in the plane direction so as not to be exposed, and , are arranged to be included in the shielding layer 3 (see FIG. 1). Note that the shielding layer 3 is omitted in FIG.
  • a heater 33 is connected in series to a pair of power supply units 31a and 31b.
  • the conducting wire 32 has a first conducting wire 32a between the power feeding portion 31a and the heater 33, and a second conducting wire 32b between the heater 33 and the feeding portion 31b.
  • the heater 33 is arranged along the plate surface of the glass panel 10 in the information acquisition area 15 and receives power supply from the power supply unit 31 to generate heat. As a result, the information acquisition area 15 receives heat from the heater 33 to remove fogging, ice, and the like.
  • the heater 33 includes a transparent conductive film 37 covering the information acquisition area 15 and a pair of bus bars 38 and 39, and is configured to be able to heat at least the entire information acquisition area 15. .
  • the transparent conductive film 37 is laminated over the entire surface of the base film and generates heat when a voltage is applied to both bus bars 38 and 39 .
  • Examples of the material of the transparent conductive film 37 include TCO (Transparent Conductive Oxide) such as ITO, SnO 2 doped with Sb or F, zinc oxide doped with Al or Ga, TiO 2 doped with Nb, and tungsten oxide. and a continuous film made of silver, but not limited to these.
  • a pair of bus bars 38 and 39 are arranged outside the information acquisition area 15 and face each other so as to supply power to the transparent conductive film 37 .
  • the first bus bar 38 extends vertically from the upper side 10a toward the lower side 10b
  • the second bus bar 39 is arranged on the opposite side of the transparent conductive film 37 from the first bus bar 38. It is
  • the transparent conductive film 37 has a rectangular overall shape that overlaps the trapezoidal information acquisition area 15 and is wider than the trapezoidal information acquisition area 15 in the vertical and horizontal directions.
  • the heater 33 that generates heat by being supplied with power from the power supply unit 31 has a uniform heating mechanism H that uniformly heats the information acquisition area 15 .
  • the uniform heating mechanism H is composed of a transparent conductive film 37 and a pair of bus bars 38 and 39 .
  • uniform heating of the information acquisition region 15 by the uniform heating mechanism H means that, for example, the maximum temperature gradient of the information acquisition region 15 is equal to or less than a predetermined value when the information acquisition region 15 is heated by the uniform heating mechanism H.
  • the maximum temperature gradient is preferably 3.0 [°C/mm] or less, more preferably 2.0 [°C/mm] or less.
  • the transparent conductive film 37 is arranged so as to cover the entire information acquisition area 15 , and is arranged outside the information acquisition area 15 so as to be continuous with both ends (left side 41 a and right side 41 b ) of the first area 41 . and a pair of second regions 42 , 42 .
  • the transparent conductive film 37 has a pair of second regions 42 , 42 on the left and right sides of the first region 41 .
  • the pair of busbars 38 and 39 are arranged facing each other with the first region 41 and the pair of second regions 42 and 42 interposed therebetween.
  • the pair of busbars 38 and 39 are arranged substantially parallel to each other.
  • the pair of busbars 38 and 39 being substantially parallel includes not only the case where the pair of busbars 38 and 39 are parallel, but also the case where the pair of busbars 38 and 39 are inclined within a range of ⁇ 5 degrees.
  • a virtual area is defined as a region connecting both ends of the portions where the busbars 38 and 39 and the transparent conductive film 37 are in contact (both ends 38a and 38b of the busbar 38 and both ends 39a and 39b of the busbar 39).
  • V The virtual region V is arranged so as to include all of the first region 41 and at least part of the second region 42 of the transparent conductive film 37 .
  • the pair of second regions 42 , 42 also extends above and below the first region 41 .
  • the pair of second regions 42 , 42 may not extend above and below the first region 41 .
  • the virtual area V has an upper side Va (an example of the third side), a lower side Vb (an example of the fourth side), and a right side Vd (an example of the first side) and a left side Vc (an example of the second side).
  • a right side Vd and a left side Vc are formed by a pair of bus bars 38 and 39 . That is, in the virtual area V, the right side Vd is the first bus bar 38 and the left side Vc is the second bus bar 39 .
  • the rectangular information acquisition area 15 has four sides (upper side 15a, lower side 15b, left side 15c, right side 15d) facing each side of the virtual area V (upper side Va, lower side Vb, left side Vc, right side Vd).
  • FIG. 5 shows the temperature distribution in the trapezoidal transparent conductive film 37A as a comparative example
  • FIG. 6 shows the temperature distribution in the rectangular transparent conductive film 37 of this embodiment.
  • the temperature distribution of the transparent conductive film 37A in FIG. 5 was calculated by simulation, and the temperature distribution of the transparent conductive film 37 in FIG. 6 was measured.
  • FIG. 4 shows a heater 33A (heating section 30A) having a transparent conductive film 37A of a comparative example.
  • the transparent conductive film 37A has a trapezoidal shape that is substantially the same as the information acquisition area 15, and the pair of bus bars 38A and 39A face each other at positions close to the upper side 15a and the lower side 15b of the information acquisition area 15. doing.
  • the lengths of the pair of bus bars 38A and 39A are set to be the same as the lengths of the upper side 15a and the lower side 15b of the information acquisition area 15, respectively. 5 and 6, the temperature distribution in the transparent conductive film 37A and the transparent conductive film 37 is shown by the shades of black, and the darker the black, the higher the temperature.
  • the temperature is highest in the portion near the upper side (upper base) 37Aa, and the temperature gradually decreases as it approaches the lower side (lower base) 37Ab. Therefore, there is a large temperature difference between the portion near the upper side (upper base) 37Aa, the lower side (lower base) 37Ab, and the portions near the lower portions of the left side 37Ac and the right side 37Ad. Therefore, it is highly possible that the trapezoidal transparent conductive film 37A cannot heat the information acquisition area 15 uniformly.
  • the transparent conductive film 37 of the present embodiment (rectangular shape) shown in FIG. 6, the temperature is highest in the central portion, and the temperature gradually decreases toward the upper side 37a, the lower side 37b, the left side 37c, and the right side 37d.
  • the area of the central portion where the temperature difference is high and small is large.
  • the transparent conductive film 37 and the pair of bus bars 38 and 39 function as the uniform heating mechanism H in this embodiment.
  • the information acquisition area 15 facing the photographing device 8 and through which light passes is formed, for example, in a trapezoidal shape in which the length of the upper base is 1/10 or less of the length of the lower base.
  • the edge portion of the heater 33 radiates heat to the surrounding area where the heater 33 is not arranged. Therefore, the edge portion of the heater 33 has a larger temperature gradient than other portions.
  • the shape of the heater 33 is similar to the information acquisition area 15 and larger than the information acquisition area 15 .
  • the intermediate film 13 arranged in the information acquisition area 15 may have temperature unevenness and the refractive index of the intermediate film 13 may locally change.
  • the transparent conductive film 37 of the uniform heating mechanism H is provided at both ends of the portion of the pair of bus bars 38, 39 where the bus bars 38, 39 and the transparent conductive film 37 are in contact.
  • a virtual area V is formed by connecting them.
  • the virtual area V includes a first area 41 covering the information acquisition area 15 and a second area 42 outside the information acquisition area 15 .
  • the heater 33 can make the potential gradient of the first region 41 uniform.
  • the transparent conductive film 37 has a rectangular shape along the plate surface of the glass panel 10 , the potential gradient can be made uniform in the central portion of the rectangular transparent conductive film 37 .
  • the transparent conductive film 37 can uniformly generate heat with respect to the information acquisition area 15 .
  • the heater 33 can uniformly heat the information acquisition area 15 by the uniform heating mechanism H.
  • the transparent conductive film 37 is attached to the first glass plate 11 or the second glass plate 12 .
  • the transparent conductive film 37 is attached to the first glass plate 11, and the first glass plate 11 is to be heated.
  • the transparent conductive film 37 since the intermediate film 13 does not exist between the first glass plate 11 and the transparent conductive film 37 , the first glass plate 11 can be efficiently heated by the transparent conductive film 37 .
  • the glass plates 11 and 12 have a smaller thermal expansion coefficient and a higher thermal conductivity than the intermediate film 13 made of resin or the like. Therefore, the heat generated by the transparent conductive film 37 can be effectively transmitted over the entire information acquisition area 15 via the glass plates 11 and 12, so that temperature unevenness in the information acquisition area 15 can be reduced.
  • the heater 33 is arranged between the first glass plate 11 and the second glass plate 12 and is in contact with the intermediate film 13 . Since the intermediate film 13 arranged between the first glass plate 11 and the second glass plate 12 in the glass module 1 is made of a thermoplastic resin, its refractive index easily changes with temperature changes. However, since the heater 33 has the above-described uniform heating mechanism H, the intermediate film 13 in contact with the heater 33 is uniformly heated by the heater 33, and temperature unevenness can be suppressed.
  • a lower side Vb is formed between the ends (lower ends) 38b, 39b of the pair of busbars 38, 39.
  • the information acquisition area 15 has a left side 15c and a right side 15d (an example of both sides) extending from both ends of the lower side 15b.
  • the angle formed by the pair of busbars 38 and 39 and the lower side Vb in the virtual area V is larger than the angle formed by the lower side 15b and the left side 15c and right side 15d in the information acquisition area 15, and is 90 degrees.
  • the glass panel 10 protrudes outward from the upper end and the photographing device 8 is arranged horizontally, so the information acquisition area 15 has a trapezoidal shape.
  • the busbars 38 and 39 and the lower side Vb in the virtual area V and the lower side 15b, the left side 15c and the right side 15d in the information acquisition area 15 satisfy the above equations (1) and (2). 39 intervals are equivalent. This makes it easier to dispose the first area 41 covering the entire information acquisition area 15 in the transparent conductive film 37 toward the center of the virtual area V. FIG. Therefore, the uniform heating mechanism H that uniformly heats the information acquisition area 15 can be properly configured by the transparent conductive film 37 and the pair of bus bars 38 and 39 .
  • the uniform heating mechanism H includes a transparent conductive film 37 covering the information acquisition area 15 and a pair of bus bars 38 arranged facing each other with the virtual area V interposed therebetween. 39 and
  • the information acquisition area 15 has an upper side 15a that is longer in the horizontal direction than in the first embodiment, and is formed in a trapezoidal shape that is wider in the horizontal direction.
  • the virtual area V has a trapezoidal shape in which the upper side Va is shorter than the lower side Vb.
  • a pair of bus bars 38 and 39 are arranged along the left side 15 c and right side 15 d of the information acquisition area 15 .
  • the virtual area V is formed in a trapezoidal shape by the upper side (upper base) Va, the lower side (lower base) Vb, the first bus bar 38 as the right side Vd, and the second bus bar 39 as the left side Vc.
  • the virtual area V is trapezoidal instead of rectangular, but the angles ⁇ 1 and ⁇ 2 formed by the lower side Vb (lower base), the left side Vc (leg) and the right side Vd (leg) are 55°. degree or more and less than 90 degrees. Therefore, the virtual area V has a shape that approximates a rectangle, and the distance between the pair of bus bars 38 and 39 in the virtual area V tends to be equal. Also, the first area 41 covering the entire information acquisition area 15 in the transparent conductive film 37 can be easily arranged near the center of the virtual area V. FIG. Therefore, the uniform heating mechanism H that uniformly heats the information acquisition area 15 can be properly configured by the transparent conductive film 37 and the pair of bus bars 38 and 39 .
  • the information acquisition area 15 can be heated uniformly by extending the virtual area V by the heater 33 to the outside of the information acquisition area 15 . Furthermore, in the present embodiment, by making the virtual region V as close to the shape of the trapezoidal information acquisition region 15 as possible, heat radiation loss and power consumption by the heater 33 are suppressed, and the intermediate film 13 in the information acquisition region 15 Occurrence of optical distortion can be suppressed.
  • the uniform heating mechanism H in the second embodiment includes a transparent conductive film 37 covering the information acquisition area 15 and a pair of bus bars 38 and 39 arranged above and below the transparent conductive film 37. It is configured.
  • a pair of bus bars 38 and 39 are arranged outside the information acquisition area 15 and face each other so as to supply power to the transparent conductive film 37 .
  • the pair of bus bars 38 and 39 are arranged above and below the information acquisition area 15, respectively.
  • the virtual area V has an upper side Va (an example of the first side), a lower side Vb (an example of the second side), and a right side Vd (an example of the third side) and a left side Vc (an example of the fourth side).
  • the upper side Va and the lower side Vb are formed by a pair of busbars 38 and 39 . That is, in the present embodiment, in the virtual area V, the upper side Va is the first busbar 38 and the lower side Vb is the second busbar 39 . Other configurations are the same as those of the first embodiment.
  • the overall shape of the transparent conductive film 37 is a rectangular shape that overlaps the trapezoidal information acquisition area 15 and is wider than the trapezoidal information acquisition area 15 in the vertical and horizontal directions.
  • the transparent conductive film 37 is arranged so as to cover the entire information acquisition area 15 , the first area 41 , and both ends (upper side 41 c and lower side 41 d ) of the first area 41 and arranged outside the information acquisition area 15 . and a pair of second regions 42 , 42 .
  • the transparent conductive film 37 has a pair of second regions 42 , 42 above and below the first region 41 .
  • the pair of busbars 38 and 39 are arranged facing each other with the first region 41 and the pair of second regions 42 and 42 interposed therebetween.
  • the pair of busbars 38 and 39 are arranged substantially parallel to each other. Further, the virtual area V is arranged so as to include all of the first area 41 and at least part of the second area 42 . In this embodiment, the pair of second regions 42 , 42 also extends to the left and right of the first region 41 . The pair of second regions 42 , 42 may not extend to the left and right of the first region 41 .
  • the transparent conductive film 37 of the uniform heating mechanism H has a first region 41 covering the information acquisition region 15 and a pair of second regions outside the information acquisition region 15 in the virtual region V. regions 42, 42; Thereby, the heater 33 can make the potential gradient of the first region 41 uniform. Further, since the transparent conductive film 37 has a rectangular shape along the plate surface of the glass panel 10 , the potential gradient can be made uniform in the central portion of the rectangular transparent conductive film 37 . Therefore, by arranging the transparent conductive film 37 so that the central portion thereof corresponds to the information acquisition area 15 , the transparent conductive film 37 can uniformly generate heat with respect to the information acquisition area 15 . As a result, the heater 33 can uniformly heat the information acquisition area 15 by the uniform heating mechanism H. FIG.
  • the first bus bar 38 is longer than the upper side 15a of the information acquisition area 15 and extends along the upper side 15a.
  • the second bus bar 39 is longer than the lower side 15 b of the information acquisition area 15 and is arranged on the side opposite to the first bus bar 38 .
  • the ratio of the length of the upper side Va formed by the first busbars 38 to the length of the lower side Vb formed by the second busbars 39 is the upper side 15a to the length of the lower side 15b in the information acquisition area 15. is greater than the ratio of the lengths of and less than or equal to 1.
  • the first area 41 covering the entire information acquisition area 15 in the transparent conductive film 37 can be easily arranged near the center of the virtual area V.
  • the distance between the ends 38a and 39a of the pair of bus bars 38 and 39 or the distance between the ends 38b and 39b and the distance between the central portions become equal, and the potential in the first region 41 covering the information acquisition region 15 becomes equal. Gradient uniformity is achieved. Therefore, the uniform heating mechanism H that uniformly heats the information acquisition area 15 can be properly configured by the transparent conductive film 37 and the pair of bus bars 38 and 39 .
  • the uniform heating mechanism H includes a transparent conductive film 37 covering the information acquisition area 15, and a pair of bus bars 38 and 39 arranged above and below the transparent conductive film 37.
  • this modified example 1 differs from the second embodiment in the following points.
  • the left side Vc and right side Vd of the virtual area V are arranged along the left side 15 c and right side 15 d of the information acquisition area 15 .
  • the virtual area V is formed in a trapezoidal shape by the first bus bar 38 as the upper side (upper base) Va, the second bus bar 39 as the lower side (lower base) Vb, the left side Vc and the right side Vd. .
  • angles ⁇ 1 and ⁇ 2 in the virtual region V are angles formed by the bus bar 39 corresponding to the lower side Vb and the left side Vc and the right side Vd.
  • Angles ⁇ 1 and ⁇ 2 are angles formed by the lower side 15b of the information acquisition area 15 and the left side 15c and right side 15d (an example of both sides) of the information acquisition area 15 extending from both ends of the lower side 15b.
  • 55 (degrees) ⁇ ⁇ 2 ⁇ 2 ⁇ 90 (degrees) (4)
  • the first area 41 covering the entire information acquisition area 15 in the transparent conductive film 37 can be easily arranged near the center of the virtual area V.
  • the distance between the ends 38a and 39a of the pair of bus bars 38 and 39 or the distance between the ends 38b and 39b and the distance between the central portions become equal, and the potential in the first region 41 covering the information acquisition region 15 becomes equal. Gradient uniformity is achieved. Therefore, the uniform heating mechanism H that uniformly heats the information acquisition area 15 can be properly configured by the transparent conductive film 37 and the pair of bus bars 38 and 39 .
  • the uniform heating mechanism H includes a transparent conductive film 37 covering the information acquisition area 15 and a pair of heating elements arranged above and below the transparent conductive film 37 . It is composed of bus bars 38 and 39 .
  • Modification 2 differs from Modification 1 in the following points. That is, the left side Vc and the right side Vd of the virtual area V are not parallel to the left side 15c and the right side 15d of the information acquisition area 15 .
  • the overall shape of the transparent conductive film 37 is a rectangular shape that overlaps the trapezoidal information acquisition area 15 and is wider than the trapezoidal information acquisition area 15 in the vertical and horizontal directions.
  • the transparent conductive film 37 is arranged so as to cover the entire information acquisition area 15 , the first area 41 , and both ends (upper side 41 c and lower side 41 d ) of the first area 41 and arranged outside the information acquisition area 15 . and a pair of second regions 42 , 42 .
  • the transparent conductive film 37 has a pair of second regions 42 , 42 above and below the first region 41 .
  • the pair of busbars 38 and 39 are arranged substantially parallel to each other while facing the upper side 42c and the lower side 42d, which are the outer edges of the pair of second regions 42 and 42, respectively.
  • the entirety of the first region 41 and at least part of the pair of second regions 42, 42 are arranged in a virtual region V connecting the ends 38a, 39a, 38b, 39b of the pair of bus bars 38, 39. It is
  • angles ⁇ 1 and ⁇ 2 in the virtual region V are angles formed by the bus bar 39 corresponding to the lower side Vb and the left side Vc and the right side Vd.
  • Angles ⁇ 1 and ⁇ 2 are angles formed by the lower side 15b of the information acquisition area 15 and the left side 15c and right side 15d (an example of both sides) of the information acquisition area 15 extending from both ends of the lower side 15b.
  • the angles ⁇ 1 and ⁇ 2 are set larger than the angles ⁇ 1 and ⁇ 2 and between 55 degrees and 90 degrees. That is, in the second modification, the settings are made so as to satisfy all of the following equations (9) to (12).
  • the first bus bar 38 is longer than the upper side 15a of the information acquisition area 15 and extends along the upper side 15a.
  • the second bus bar 39 is longer than the lower side 15 b of the information acquisition area 15 and is arranged on the side opposite to the first bus bar 38 .
  • the ratio of the length of the upper side Va formed by the first bus bar 38 to the length of the lower side Vb formed by the second bus bar 39 is the information acquisition area to the length of the lower side 15b of the information acquisition area 15.
  • 15 is larger than the ratio of the length of the upper side 15a of 15 and is 1 or less.
  • the first area 41 covering the entire information acquisition area 15 in the transparent conductive film 37 can be easily arranged near the center of the virtual area V.
  • the distance between the ends 38a and 39a of the pair of bus bars 38 and 39 or the distance between the ends 38b and 39b and the distance between the central portions become equal, and the potential in the first region 41 covering the information acquisition region 15 becomes equal. Gradient uniformity is achieved. Therefore, the uniform heating mechanism H that uniformly heats the information acquisition area 15 can be properly configured by the transparent conductive film 37 and the pair of bus bars 38 and 39 . Other configurations are the same as those of the first embodiment.
  • a pair of busbars 38 and 39 are arranged above and below the information acquisition area 15, and the first busbar 38 arranged above the information acquisition area 15 is an information acquisition area. It is configured to be longer than the upper side 15 a of the region 15 . Therefore, the transparent conductive film 37 has the first region 41 in the virtual region V and the second regions 42 on both sides of the first region 41 .
  • the first bus bar 38 extends on both end sides of the upper side 15 a of the information acquisition area 15 .
  • the first bus bar 38 may extend only on one side (right side or left side) of both ends of the upper side 15 a of the information acquisition area 15 .
  • the long side of the two sides As shown in FIG. 12, in the fourth embodiment, of the two sets of two opposing sides (upper side Va and lower side Vb, left side Vc and right side Vd) of the four sides forming the virtual area V, the long side of the two sides With regard to the two sides (upper side Va and lower side Vb) having a smaller ratio of the shorter side to , the shorter side (upper side Va) is the first side, and the longer side (lower side Vb) is the second side.
  • the virtual area V is formed in a trapezoidal or rectangular shape.
  • the heater 33 can make the potential gradient of the first region 41 covering the information acquisition region 15 uniform, so that the heater 33 can uniformly generate heat in the information acquisition region 15 .
  • the information acquisition area 15 can be uniformly heated by the heater 33 .
  • the pair of busbars 38 and 39 are arranged between two sets of two opposing sides (upper side Va and lower side Vb, left side Vc and right side Vd) of the four sides forming the virtual area V. are arranged on two sides with a short distance between
  • the upper side Va and the lower side Vb are non-parallel to the left side Vc and the right side Vd. Therefore, in the left side Vc and the right side Vd, the line segment Vg with the minimum length and the line segment Vh with the maximum length, which are perpendicular to the right side Vd and directed to the left side Vc, and the first perpendicular line (line segment Ve ) and the second perpendicular (line segment Vf).
  • the average lengths of the line segments Vg and Vh are compared with the average lengths of the line segments Ve and Vf.
  • the busbars 38 and 39 are arranged on the upper side Va and the lower side Vb in the virtual area V. It is
  • the sheet resistance of the transparent conductive film 37 can be increased as the distance between the pair of bus bars 38 and 39 becomes shorter. Therefore, in the present embodiment, a pair of busbars 38 and 39 are arranged on two opposite sides Va and Vb in the virtual area V that are short in distance. As a result, a predetermined sheet resistance can be easily secured in the transparent conductive film 37, and the film thickness of the transparent conductive film 37 can be reduced. As a result, the transmittance of the virtual area V including the information acquisition area 15 can be increased.
  • the information acquisition area 15 can be uniformly heated by extending the virtual area V by the heater 33 to the outside of the information acquisition area 15. Furthermore, by making the virtual region V as close as possible to the shape of the trapezoidal information acquisition region 15, heat radiation loss and power consumption by the heater 33 are suppressed, and optical distortion caused by the intermediate film 13 in the information acquisition region 15 is suppressed. can be suppressed. It should be noted that the above equation (2) is also satisfied in the glass modules 1 of the above-described first to third embodiments.
  • the heater 33 composed of the transparent conductive film 37 and the pair of bus bars 38 and 39 was positioned between the first glass plate 11 and the second glass plate 12 in samples 1 to 9. It is arranged inside the intermediate film 13 . Also, the heater 33 is arranged on the third surface 23 of the second glass plate 12 in the sample 10 , and is arranged on the fourth surface 24 of the second glass plate 12 in the sample 11 .
  • the heater 33 is a film heater, and in samples 10 and 11, the heater 33 is composed of a fluorine-doped tin oxide film (Low-E film).
  • the glass panel 10 is composed of a first glass plate 11 and a second glass plate 12, and each of the glass plates 11 and 12 is float glass with a thickness of 2 mm.
  • a pair of bus bars 38 and 39 are arranged on the upper side Va and the lower side Vb of the virtual region V of the transparent conductive film 37, as in the second embodiment (for example, the form shown in FIG. 8). .
  • a pair of bus bars 38 and 39 are arranged on the left side Vc and the right side Vd of the virtual region V of the transparent conductive film 37, like the first embodiment (for example, the form shown in FIG. 3).
  • the angles ⁇ 1 and ⁇ 2 in the virtual region V of the heater 33 shown in FIG. 7, the lengths of each line segment (“A”, “B”, “ C", "D"), etc. are as shown in the table of FIG.
  • the maximum temperature gradients of samples 1 to 11 were calculated based on the surface temperature of the samples measured using a thermography camera.
  • the distance between the thermography camera and each sample was set to 850 mm, and the mounting angle of the samples was set to 80 degrees from the horizontal.
  • the maximum temperature gradient of each of Samples 1 to 11 was calculated by selecting the portion of the temperature profile (temperature curve) of a predetermined length on a straight line including the position of the maximum temperature in each sample, where the gradient is maximum.
  • the camera samples 1 to 11, and the visually recognized target were arranged on a straight line.
  • a target a plate material having a lattice pattern on the surface shown in FIG. 14A was prepared.
  • the distance between camera and sample was set to 600 mm and the distance between sample and target was set to 4000 mm.
  • the sample and target were arranged perpendicular to the horizontal direction, and after the sample was energized, the focused target was photographed with a camera.
  • a current was passed between the pair of bus bars 38 and 39 so that the output per unit area was about 1000 W/m 2 .
  • FIG. 14B shows the photographed image of sample 1 (judgment “ ⁇ ”) during energization
  • FIG. 14C shows the photographed image of sample 5 (judgment “x”) during energization.
  • the virtual area V includes the information acquisition area 15 .
  • the uniform heating mechanism H of the heater 33 uniformly heats the information acquisition region 15 when the maximum temperature gradient of the virtual region V is 3.0 [° C./mm] or less while the information acquisition region 15 is heated. It can be said that it is heated. Further, the uniform heating mechanism H preferably has a maximum temperature gradient of 2.0 [° C./mm] or less in the information acquisition area 15 in order to acquire a photographed image with less perspective distortion from the information acquisition area 15 .
  • the uniform heating mechanism H in the fifth embodiment comprises a transparent conductive film 37 including a rectangular area 43 and a pair of widened areas 44, 44, and a pair of bus bars 38, 39. .
  • a rectangular area 43 of the transparent conductive film 37 covers at least the information acquisition area 15 .
  • the widened area 44 is arranged around the information acquisition area 15 including the information acquisition area 15 .
  • the pair of widened areas 44, 44 extend in a direction away from the information acquisition area 15 continuously to the left side 43a and the right side 43b of the rectangular area 43 outside the information acquisition area 15, and extend from the left side 43a or the right side 43b.
  • the width in the direction along the left side 43a or the right side 43b increases as the distance increases.
  • the pair of busbars 38 and 39 are composed of first portions 51 and 52 arranged parallel to each other with a rectangular region 43 interposed therebetween, and second portions 53 and 53 extending from both ends of the first portions 51 and 52 . 54 and .
  • the second portions 53 and 54 are curved so that the shortest distances to the sides (the left side 43a or the right side 43b) of the rectangular area 43 are the same.
  • the pair of widened regions 44, 44 are formed in a trapezoidal shape with the left side 43a or right side 43b of the rectangular region 43 as the upper base and the left side 44a or right side 44b of the widened regions 44, 44 as the lower base. Other configurations are the same as those of the first embodiment.
  • the width of the transparent conductive film 37 (enlarged regions 44, 44) outside the information acquisition region 15 is wider than the width of the rectangular transparent conductive film 37 (rectangular region 43) covering the information acquisition region 15. big.
  • the area heated by the heater 33 is expanded to the periphery of the information acquisition area 15, so heat radiation from the information acquisition area 15 is suppressed.
  • the intermediate film 13 arranged in the information acquisition area 15 can suppress temperature unevenness due to heat radiation from the periphery thereof.
  • the second portions 53 and 54 of the pair of bus bars 38 and 39 are curved so that the shortest distances to the left side 43a or the right side 43b of the rectangular area 43 are equal, the second portions 53 and 54 provide the rectangular area 43 with the same shortest distance. can be uniformly heated near the left side 43a and the right side 43b.
  • the uniform heating mechanism H in the sixth embodiment is constructed by laminating a transparent substrate 46 having a smaller linear thermal expansion coefficient than the intermediate film 13 on one surface of the transparent conductive film 37 .
  • the transparent base material 46 can be made of, for example, polyethylene terephthalate, polymethyl methacrylate resin, or polycarbonate resin.
  • An adhesive layer is arranged between the transparent conductive film 37 and the transparent substrate 46, and polyvinyl butyral (PVB), for example, is used for the adhesive layer.
  • PVB polyvinyl butyral
  • the adhesion layer using PVB can be made, for example, 50 ⁇ m or less.
  • the heater 33 is arranged between the first glass plate 11 and the second glass plate 12, and one of the transparent conductive film 37 and the transparent substrate 46 is connected to the first glass plate 11 or the second glass plate 12. , and the other is arranged on the intermediate film 13 side.
  • the transparent conductive film 37 is arranged on the first glass plate 11 side
  • the transparent substrate 46 is arranged on the intermediate film 13 side.
  • Other configurations are the same as those of the first embodiment.
  • the transparent base material 46 laminated on one side of the transparent conductive film 37 has a smaller coefficient of linear thermal expansion than the intermediate film 13 , so that the difference in refractive index due to uneven heating is smaller than that of the intermediate film 13 .
  • Hard to come by By interposing the transparent base material 46, which hardly causes a refractive index difference, between the transparent conductive film 37 and the glass plates 11, 12 or the intermediate film 13, the transparent base material 46 is preferentially heated while maintaining its original shape. Therefore, it becomes difficult for the intermediate film 13 to be heated by the transparent conductive film 37 . Thereby, temperature unevenness can be suppressed in the intermediate film 13 and optical distortion can be prevented.
  • the heater 33 has heating wires 34 as shown in FIGS.
  • the uniform heating mechanism H is composed of a heating wire 34 and a thermal diffusion layer 48 arranged between the heating wire 34 and the intermediate film 13 and having a higher thermal conductivity than the intermediate film 13 .
  • the heat spreading layer 48 can be made of polyethylene, for example.
  • the thermal diffusion layer 48 is formed by providing a metal layer on the opposite side of the heating wire 34, mixing a filler with good thermal diffusion into the base material, coating the heating wire 34 with epoxy resin, or the like. can enhance sexuality.
  • the thermal diffusion layer 48 is arranged so as to cover at least the entire information acquisition area 15 . In this embodiment, the thermal diffusion layer 48 is formed in a rectangular shape in plan view.
  • the heat diffusion layer 48 may have a shape other than a rectangle as long as it covers the entire information acquisition area 15 . Also, the thermal diffusion layer 48 preferably has a smaller volumetric expansion coefficient than the intermediate film 13 . Other configurations are the same as those of the first embodiment.
  • the heating wire 34 (heater 33) is folded back at a plurality of points at intervals and formed to pass through the information acquisition area 15 and its periphery.
  • the heating wire 34 in this embodiment includes a plurality of first heating wires 35 extending in parallel within the information acquisition region 15 and a plurality of first heating wires 35 outside the information acquisition region 15. and a connecting second heating wire 36 .
  • the plurality of first heating wires 35 are arranged so as to be parallel to the upper side 10a of the glass panel 10 .
  • the line width of the second heating wire 36 is larger than the line width of the first heating wire 35 .
  • the first heating line 35 is four horizontal line portions 35 a, 35 b, 35 c, and 35 d linearly extending in the left-right direction within the information acquisition area 15 .
  • the first horizontal wire portion 35a is connected to the first conductor wire 32a led out from the feeding portion 31a, and the second horizontal wire portion 35b, the third horizontal wire portion 35c, and the fourth horizontal wire portion 35d are arranged in order toward the upper side 10a.
  • the second heating wire 36 is arranged between the first vertical wire portion 36a arranged between the first horizontal wire portion 35a and the second horizontal wire portion 35b, and between the second horizontal wire portion 35b and the third horizontal wire portion 35c.
  • the heating wire 34 of the heater 33 includes a portion of the first conductor 32a extending along the first horizontal wire portion 35a and a portion of the second conductor 32b extending along the fourth horizontal wire portion 35d.
  • the heater 33 is composed of the heating wire 34
  • a temperature difference occurs between the area where the heating wire 34 exists and the area where the heating wire 34 does not exist.
  • the thermal diffusion layer 48 which is arranged between the heating wire 34 and the intermediate film 13 and has a higher thermal conductivity than the intermediate film 13
  • the temperature distribution in the information acquisition area 15 can be made uniform.
  • the temperature distribution is made uniform in the intermediate film 13 as well, so that optical distortion caused by the intermediate film 13 can be suppressed.
  • the thermal diffusion layer 48 has a smaller volume expansion coefficient than the intermediate film 13 , the thermal diffusion layer 48 can be stably arranged between the first glass plate 11 and the second glass plate 12 .
  • the heating wire 34 (first heating wire 35) is attached to the first glass plate 11 or the second glass plate 12.
  • the heating wire 34 (first heating wire 35 ) is attached to the first glass plate 11 .
  • the intermediate film 13 does not exist between the first glass plate 11 to be heated and the heating wire 34 , so the first glass plate 11 can be efficiently heated by the heating wire 34 .
  • the glass plates 11 and 12 have a smaller coefficient of thermal expansion and a higher thermal conductivity than the intermediate film 13 made of thermoplastic resin. Therefore, the heat generated by the heating wire 34 can be effectively transmitted over the entire information acquisition area 15 via the glass plates 11 and 12, so that temperature unevenness in the information acquisition area 15 can be reduced.
  • the heating wire 34 is configured such that the wire width of the first heating wire 35 is smaller than the wire width of the second heating wire 36 .
  • the resistance of the second heating wire 36 itself becomes smaller than the resistance of the first heating wire 35 itself when the entire heating wire 34 is made of the same conductive material.
  • the amount of heat generated by the second heating wire 36 can be suppressed more than the amount of heat generated by the first heating wire 35 , so that the information acquisition area 15 can be efficiently heated by the heating wire 34 and the thermal diffusion layer 48 .
  • the width of the second heating wire 36 may be the same as that of the first heating wire 35 in the heating wire 34 .
  • the glass module 1 is used for the windshield of the vehicle in the above embodiment, the glass module 1 may be used for the rear glass or side glass of the vehicle.
  • the uniform heating mechanism H is preferably configured so that the resistance value of the heater 33 in the information acquisition area 15 and the current density flowing through the heater 33 in the information acquisition area 15 are uniform.
  • the potential gradient of the information acquisition region 15 becomes uniform, so that the heater 33 can uniformly generate heat in the information acquisition region 15.
  • the information acquisition area 15 can be uniformly heated by the heater 33 .
  • uniformity of the resistance value of the heater 33 means, for example, that the variation width of the sheet resistance of the heater 33 is within ⁇ 15% of a predetermined value. In order to make the resistance value of the heater 33 uniform, it is more preferable that the fluctuation width of the sheet resistance of the heater 33 is within ⁇ 10% of the predetermined value.
  • the information acquisition area 15 of the glass module 1 is arranged at a position close to the upper side 10 a of the glass panel 10 .
  • the information acquisition area 15 has a trapezoidal shape with the upper side 15a as the upper base and the lower side 15b as the lower base.
  • ⁇ 1 and ⁇ 2 are larger than the angles ⁇ 1 and ⁇ 2 formed by the lower side 15b and the left side 15c and right side 15d of the information acquisition area 15 and are 90 degrees or less.
  • the information acquisition area 15 may have an inverted trapezoidal shape in which the upper side 15a is longer than the lower side 15b. In that case, the angles ⁇ 1 and ⁇ 2 may be smaller than the angles ⁇ 1 and ⁇ 2 and may be set to 90 degrees or more. Even with this configuration, the distance between the pair of bus bars 38 and 39 becomes more equal, and the first region 41 covering the entire information acquisition region 15 in the transparent conductive film 37 can be easily arranged near the center of the virtual region V. Become.
  • the information acquisition area 15 has a trapezoidal shape with the upper side 15a as the upper base and the lower side 15b as the lower base.
  • the ratio of the length L1 of the upper side Va formed by the first bus bar 38 to the length L2 is greater than the ratio of the length W1 of the upper side 15a to the length W2 of the lower side 15b in the information acquisition area 15, and is 1 or less. I gave an example.
  • the information acquisition area 15 may have an inverted trapezoidal shape in which the upper side 15a is longer than the lower side 15b.
  • the ratio of the length L2 of the lower side vb to the length L1 of the upper side Va in the virtual area V is the ratio of the length W2 of the lower side 15b of the information acquisition area 15 to the length W1 of the upper side 15a of the information acquisition area 15.
  • the shape of the information acquisition area 15 and the shape of the heater 33 are trapezoidal. Other shapes, such as elliptical, are also possible.
  • the heater 33 of the unit 30 may be configured to be connected to the harness 61 .
  • One end of the harness 61 is connected to the transparent conductive film 37 , and the other end is drawn out of the glass panel 10 via between the intermediate film 13 and the second glass plate 12 .
  • the heater 33 of the heating unit 30 is composed of the transparent conductive film 37, and illustration of the first bus bar 38 and the second bus bar 39 is omitted.
  • the heater 33 may be configured by a heating wire 34 .
  • the heater 33 may be arranged on the third surface 23 of the second glass plate 12 . pulled outwards.
  • the heater 33 for heating the information acquisition area 15 is arranged on the second surface 22 of the glass panel 10, but the heater 33 is placed on the third surface 23 or fourth surface 24. may be placed.
  • a bracket (not shown, hereinafter abbreviated as “bracket”) for holding the photographing device 8 is separately fixed to the fourth surface 24 .
  • the bracket it is preferable that the bracket be fixed at a position that does not overlap the heater 33 as much as possible.
  • the brackets may be fixed at positions that do not overlap the busbars 38 and 39 in the heater 33 or at positions that do not overlap the transparent conductive film 37 .
  • the bracket can also be arranged on the outer peripheral side of the heater 33 . In this case, the heater 33 can be easily arranged in the information acquisition area 15 , so that the heater 33 can effectively heat the information acquisition area 15 .
  • the heater 33 is composed of the transparent conductive film 37 and the pair of bus bars 38, 39.
  • the pair of bus bars 38 and 39 may be made of the same material as the heating wire (lead wire).
  • each of the pair of busbars 38 and 39 is composed of one continuous busbar.
  • a configuration in which one is divided along a side portion arranged in the virtual area V may be used.
  • the busbars 38 and 39 are formed linearly. It may be curved with a convex curvature in the direction.
  • the present invention can be widely used in vehicle glass modules having a heating section that heats an information acquisition area.
  • vehicle glass module 8 imaging device (information acquisition device) 10: glass panel 11: first glass plate 12: second glass plate 13: intermediate film 15: information acquisition area 21: first surface 22: second surface 23: third surface 24: fourth surface 30: heating unit 31 : Power supply part 32 : Lead wire 33 : Heater 34 : Heating wire 35 : First heating wire 36 : Second heating wire 37 : Transparent conductive film 38 : First bus bar 39 : Second bus bar 41 : First region 42 : Second region 43: Rectangular area 44: Expanded area 46: Transparent substrate 48: Thermal diffusion layers 51, 52: First parts 53, 54: Second part 61: Harness H: Uniform heating mechanism V: Virtual area Va: Upper side Vb: Lower side Vc: Left side Vd: Right side ⁇ 1, ⁇ 2: Interior angles of information acquisition region ⁇ 1, ⁇ 2: Interior angles of virtual region

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Surface Heating Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

車両用ガラスモジュールは、情報取得装置と対向し光が通過する情報取得領域(15)を有するガラスパネル(10)と、ガラスパネル(10)のうち、少なくとも情報取得領域(15)を加熱する加熱部(30)と、を備え、ガラスパネル(10)は、第1ガラス板と、第2ガラス板と、第1ガラス板と第2ガラス板との間に配置され、熱可塑性樹脂からなる中間膜と、を有し、加熱部(30)は、ガラスパネル(10)に配置される給電部(31)と、情報取得領域(15)においてガラスパネル(10)の板面に沿って配置され、給電部(31)から電力供給を受けて発熱するヒーター(33)と、を有し、ヒーター(33)は、少なくとも情報取得領域(15)の全体を加熱可能に構成されており、情報取得領域(15)を均一に加熱する均一加熱機構(H)を有する。

Description

車両用ガラスモジュール
 本発明は、車両用ガラスモジュールに関する。
 自動車のウインドシールド(フロントガラスとしての車両用ガラスモジュール)は、外気温が低くなると、車内と車外との温度差により曇りが生じたり凍結したりすることがある。そうなると、ウインドシールドからの視界が遮られるため、自動車の運転に支障を来すおそれがある。そのため、ウインドシールドの曇りや凍結を解消するべく様々な方法が提案されている。例えば、特許文献1には、ウインドシールドが有するガラスパネルの内部に、バスバー及び加熱線を配置し、その発熱によって曇りや凍結を解消することが提案されている。また、情報取得装置が取り付けられる車両のウインドシールドでは、情報取得装置が情報を取得する情報取得領域に曇りや凍結が発生しないように、情報取得領域にヒーターを設けることが知られている。
特開2017-216193号公報
 ウインドシールドにおいて加熱線を備えるヒーターによって情報取得領域を加熱した場合、情報取得領域において加熱線からその周囲に向けて熱が伝達される。このため、情報取得領域のうち、加熱線が配置された領域の温度が高く、加熱線が配置されていない領域では加熱線から離れるにしたがって温度が低下する。したがって、情報取得領域では、加熱線が配置された領域と加熱線から離れた領域との間に温度ムラが生じ易い。特許文献1に記載されるように、ウインドシールドは、通常2枚のガラス板とその間に配置される中間膜を有する合わせガラスで構成される。ここで、情報取得領域に温度ムラが生じると、情報取得領域に配置される中間膜にも同様の温度ムラが生じるため、中間膜において屈折率が局所的に変化する。また、中間膜において温度差が大きくなると屈折率の差も大きくなる。このため、中間膜に生じる屈折率の差によって情報取得領域から取得される車外画像に光学歪が付加されることがある。車外画像に中間膜による光学歪が付加されると、情報取得装置において情報取得領域から正確な車外画像を取得できない。
 そこで、ヒーターによって加熱された際の情報取得領域における温度ムラを低減できる車両用ガラスモジュールが望まれている。
 本発明に係る車両用ガラスモジュールの特徴構成は、車外の光を受光可能な情報取得装置を車内側で支持する車両用ガラスモジュールであって、前記情報取得装置と対向し前記光が通過する情報取得領域を有するガラスパネルと、前記ガラスパネルのうち、少なくとも前記情報取得領域を加熱する加熱部と、を備え、前記ガラスパネルは、車外側の第1ガラス板と、前記第1ガラス板と対向する車内側の第2ガラス板と、前記第1ガラス板と前記第2ガラス板との間に配置され、熱可塑性樹脂からなる中間膜と、を有し、前記加熱部は、前記ガラスパネルに配置される給電部と、前記情報取得領域において前記ガラスパネルの板面に沿って配置され、前記給電部から電力供給を受けて発熱するヒーターと、を有し、前記ヒーターは、少なくとも前記情報取得領域の全体を加熱可能に構成されており、前記情報取得領域を均一に加熱する均一加熱機構を有する点にある。
 車両用ガラスモジュールでは、ガラスパネルの情報取得領域においてヒーターによって加熱する際に温度ムラが存在すると、情報取得領域に配置される中間膜にも同様の温度ムラが生じる。中間膜における温度ムラは、中間膜の屈折率を局所的に変化させるので、中間膜を通過して情報取得装置に取得される車外画像に光学歪が付加されるおそれがある。そこで、本構成では、給電部から電力供給を受けて発熱するヒーターが、情報取得領域を均一に加熱する均一加熱機構を有する。これにより、ヒーターは均一加熱機構によって情報取得領域を均一に加熱できるので、中間膜における温度ムラを抑制できる。その結果、ガラスパネルの情報取得領域は、中間膜による光学歪の発生を抑制できる。このように、本構成は、ヒーターによって加熱された際の情報取得領域の温度ムラを低減できる車両用ガラスモジュールとなっている。ここで、均一加熱機構が情報取得領域を均一に加熱するとは、情報取得領域を加熱した状態において、例えば、情報取得領域の最大温度勾配が所定値以下であることをいう。当該最大温度勾配は、3.0〔℃/mm〕以下が好ましく、2.0〔℃/mm〕以下であるとより好ましい。
 他の特徴構成は、前記均一加熱機構は、前記情報取得領域における前記ヒーターの抵抗値、及び、前記情報取得領域における前記ヒーターに流れる電流密度が均一になるように構成されている点にある。
 本構成のように、情報取得領域におけるヒーターの抵抗値及びヒーターに流れる電流密度を均一にすることで、情報取得領域の電位勾配が均一になる。これにより、情報取得領域においてヒーターは均一に発熱できる。その結果、ヒーターは均一加熱機構によって情報取得領域を均一に加熱できる。均一加熱機構において、ヒーターの抵抗値が均一とは、例えば、ヒーターのシート抵抗の変動幅が所定値の±15%以内であることをいう。ヒーターのシート抵抗の変動幅が所定値の±10%以内であるとより好ましい。
 他の特徴構成は、前記均一加熱機構は、透明導電膜と、前記透明導電膜に電力を供給する一対のバスバーとを有しており、前記透明導電膜は、前記情報取得領域の全体を覆うように配置される第1領域と、前記第1領域に連続し前記情報取得領域外に配置される第2領域と、を含み、一対の前記バスバーは、前記第1領域及び前記第2領域を挟んで対向した状態で夫々が配置され、且つ、一対の当該バスバーにおいて当該バスバーと前記透明導電膜とが接する部位の両端同士を結んだ仮想領域に前記第1領域の全部と前記第2領域の少なくとも一部とが含まれるように配置されている点にある。
 車両用ガラスモジュールにおいて、情報取得装置と対向し光が通過する情報取得領域は、例えば、上底長さが下底長さの10分の1以下の台形状に形成される。こうした情報取得領域において曇りや凍結が発生しないようにするには、少なくとも情報取得領域を覆いつつできるだけ狭い領域にヒーターを配置した方が望ましい。その理由は、ヒーターが情報取得領域を加熱する際の消費電力を抑制できるためである。ただし、ヒーターが情報取得領域を加熱する際に、ヒーターのエッジ部分はヒーターが配置されない周囲領域に放熱する。このため、ヒーターはエッジ部分において他の部位よりも大きな温度勾配が生じる。したがって、ヒーターの形状は、情報取得領域の相似形状であって情報取得領域よりも大きいことが望ましい。しかし、ヒーターが上記形状であっても、情報取得領域に配置される中間膜に温度ムラが生じて中間膜において屈折率が局所的に変化することがある。そこで、本構成では、ヒーターを構成する透明導電膜は、一対の当該バスバーにおいて当該バスバーと透明導電膜とが接する部位の両端同士を結ぶことで形成される仮想領域に情報取得領域の全体を覆う第1領域と情報取得領域外の第2領域とを含む。これにより、一対のバスバー同士の間隔が同等に近づくようになり、ヒーターは、情報取得領域を覆う第1領域の電位勾配を均一にできる。その結果、情報取得領域においてヒーターを均一に発熱させることができるので、ヒーターが情報取得領域を均一に加熱できる。このように、本構成によると、車両用ガラスモジュールにおいて、ヒーターによる仮想領域を情報取得領域外まで拡張することで、情報取得領域を均一に加熱できる。さらに、本構成では、仮想領域を台形状の情報取得領域の形状に可能な限り近づけることで、ヒーターによる消費電力を抑制しつつ、情報取得領域における中間膜による光学歪の発生を抑制できる。
 他の特徴構成は、前記仮想領域を形成する四辺において対向する2組の二辺のうち、二辺における長辺に対する短辺の比率が小さい方の二辺について、短辺を第1辺とし、長辺を第2辺とし、前記第1辺の長さをA、前記第2辺の長さをBと仮定し、前記第2辺に対する垂線であって前記第1辺の両端の夫々と前記第2辺とを最短距離で結ぶ2つの線分について、線分の長さが短い方を第1垂線、線分の長さが長い方を第2垂線とし、前記第1垂線の長さをC、前記第2垂線の長さをDと仮定したときに、下記数1式を満たす点にある。
〔数1〕
(A/B)×(C/D)≧0.2
 本構成によれば、仮想領域が所定長さの上底を有する台形状または矩形状に形成される。仮想領域が台形状である場合、上記の数1式を満たすことで仮想領域において所定長さの上底が確保される。これにより、ヒーターは、情報取得領域を覆う第1領域の電位勾配を均一にできる。その結果、情報取得領域においてヒーターを均一に発熱させることができるので、ヒーターが情報取得領域を均一に加熱できる。
 他の特徴構成は、一対のバスバーは、前記仮想領域を形成する四辺において対向する2組の二辺のうち、二辺間の距離が短い二辺に配置されている点にある。
 ヒーターの透明導電膜に形成される仮想領域に一定電圧を負荷して加熱した場合、一対のバスバー間の距離が短いほど透明導電膜のシート抵抗を高くできる。したがって、本構成のように、仮想領域において距離が短い対向する二辺に一対のバスバーを配置することで、透明導電膜は所定のシート抵抗を確保しやすくなり、透明導電膜の膜厚を薄くすることもできる。その結果、情報取得領域を含む仮想領域の透過率を高くできる。
 他の特徴構成は、前記透明導電膜は、前記ガラスパネルの板面に沿った矩形状に形成されている点にある。
 本構成のように、透明導電膜がガラスパネルの板面に沿った矩形状であると、矩形状の透明導電膜の中央部分において電位勾配を均一にできる。したがって、透明導電膜の中央部分を情報取得領域に対応させて配置することで、透明導電膜は情報取得領域に対して均一に発熱できる。その結果、ヒーターは均一加熱機構によって情報取得領域を均一に加熱できる。
 他の特徴構成は、前記均一加熱機構は、透明導電膜と、前記透明導電膜に電力を供給する一対のバスバーとを有しており、前記透明導電膜は、少なくとも前記情報取得領域を覆う矩形領域と、前記情報取得領域外において、前記矩形領域の両側の辺部に連続して延設されて、前記辺部から離れるほど当該辺部の沿う方向の幅が拡がる一対の拡幅領域と、を含み、一対の前記バスバーは、前記矩形領域を挟んで対向した状態で夫々が平行に配置される第1部分と、前記第1部分の両端から延在した第2部分とを有し、前記第2部分は、前記矩形領域の前記辺部との最短距離が等しくなるように湾曲している点にある。
 本構成によれば、情報取得領域外における透明導電膜(拡幅領域)の幅が、情報取得領域を覆う矩形状の透明導電膜(矩形領域)の幅よりも大きい。これにより、ヒーターによる加熱領域が情報取得領域の周囲にまで拡張されるので、情報取得領域からの放熱が抑制される。その結果、情報取得領域に配置される中間膜はその周縁からの放熱による温度ムラを抑制できる。また、一対のバスバーの第2部分が矩形領域の辺部との最短距離が等しくなるように湾曲しているので、第2部分によって矩形領域の辺部近くを均等に加熱できる。
 他の特徴構成は、前記透明導電膜の一方面に前記中間膜より線熱膨張率が小さい透明基材が積層されており、前記ヒーターは、前記第1ガラス板と前記第2ガラス板との間に配置されるとともに、前記透明導電膜及び前記透明基材のうち、一方が前記第1ガラス板または前記第2ガラス板の側に配置され、他方が前記中間膜の側に配置されている点にある。
 本構成によれば、透明導電膜の一方面に積層された透明基材は、中間膜より線熱膨張率が小さいため、中間膜よりも不均一加熱による屈折率の差が生じ難い。この屈折率差が生じ難い透明基材を透明導電膜とガラス板または中間膜との間に介在させることで、透明基材は原形を保持したまま優先的に加熱されるので、中間膜は透明導電膜によって加熱され難くなる。これにより、中間膜において温度ムラを抑制して光学歪を防止できる。
 他の特徴構成は、前記透明導電膜は、前記第1ガラス板または前記第2ガラス板に貼り付けられている点にある。
 本構成によれば、加熱対象のガラス板と透明導電膜との間に中間膜が存在しなくなるため、透明導電膜によって第1ガラス板または第2ガラスを効率よく加熱できる。また、ガラス板は、樹脂等で構成される中間膜に比べて、熱膨張率が小さく熱伝導率が高い。したがって、透明導電膜による発熱がガラス板を介して情報取得領域の全体に亘って効果的に伝達できるので、情報取得領域の温度ムラを低減できる。
 他の特徴構成は、前記ヒーターは、前記第1ガラス板と前記第2ガラス板との間に配置されて前記中間膜に接している点にある。
 車両用ガラスモジュールにおいて第1ガラス板と第2ガラス板との間に配置される中間膜は、熱可塑性樹脂で構成されることから、温度変化に伴い屈折率も変化し易い。しかし、ヒーターが均一加熱機構を有するため、ヒーターに接する中間膜はヒーターによって均一に加熱されて温度ムラを抑制できる。
 他の特徴構成は、前記ヒーターは加熱線を有しており、前記均一加熱機構は、前記加熱線と前記中間膜との間に配置されて前記中間膜より熱伝導率の高い熱拡散層を更に有しており、前記熱拡散層は、少なくとも前記情報取得領域の全体を覆うように配置されている点にある。
 ヒーターを加熱線によって構成した場合、加熱線が存在する領域と、加熱線が存在しない領域との間で温度差が生じる。ここで、本構成のように、加熱線と中間膜との間に配置されて中間膜より熱伝導率の高い熱拡散層を設けることで、情報取得領域の温度分布を均一化できる。これにより、中間膜においても温度分布が均一化されるので、中間膜によって発生する光学歪を抑制できる。
 他の特徴構成は、前記熱拡散層は、前記中間膜よりも体積膨張率が小さい点にある。
 本構成のように、熱拡散層が中間膜よりも体積膨張率が小さいと、熱拡散層は第1ガラス板と第2ガラス板との間で安定的に配置できる。
 他の特徴構成は、前記加熱線は、前記第1ガラス板または前記第2ガラス板に貼り付けられている点にある。
 本構成によれば、加熱対象のガラス板と加熱線との間に中間膜が存在しなくなるため、加熱線によって第1ガラス板または第2ガラス板を効率よく加熱できる。また、ガラス板は、熱可塑性樹脂で構成される中間膜に比べて、熱膨張率が小さく熱伝導率が高い。したがって、加熱線による発熱がガラス板を介して情報取得領域の全体に亘って効果的に伝達できるので、情報取得領域の温度ムラを低減できる。
 他の特徴構成は、前記ガラスパネルの周縁領域に配置され、前記情報取得領域に対応する位置に開口部を有する遮蔽層をさらに備え、前記給電部が前記遮蔽層によって覆われている点にある。
 本構成によれば、ガラスパネルの周縁領域に配置され、情報取得領域に対応する位置に開口部を有する遮蔽層によって給電部を隠蔽した状態で見栄え良く配置できる。
第1実施形態の車両用ガラスモジュールの平面図である。 第1実施形態の車両用ガラスモジュールの部分断面図である。 第1実施形態の車両用ガラスモジュールの要部模式図である。 比較例の車両用ガラスモジュールの要部模式図である。 比較例(台形状)のヒーター(透明導電膜)における温度分布図である。 第1実施形態のヒーター(透明導電膜)における温度分布図である。 第1実施形態の変形例の要部模式図である。 第2実施形態の車両用ガラスモジュールの要部模式図である。 第2実施形態の変形例1の要部模式図である。 第2実施形態の変形例2の要部模式図である。 第3実施形態の車両用ガラスモジュールの要部模式図である。 第4実施形態の車両用ガラスモジュールの要部模式図である。 実験例及び試験結果を示す表である。 サンプル1による撮影画像(通電なし)を示す図である。 サンプル1による撮影画像(通電時)を示す図である。 サンプル5による撮影画像(通電時)を示す図である。 第5実施形態の車両用ガラスモジュールの要部模式図である。 第6実施形態の車両用ガラスモジュールの部分断面図である。 第7実施形態の車両用ガラスモジュールの要部模式図である。 第7実施形態の車両用ガラスモジュールの部分断面図である。 別実施形態の車両用ガラスモジュールの部分断面図である。
 以下に、本発明に係る車両用ガラスモジュールの実施形態について、図面に基づいて説明する。ただし、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。
〔第1実施形態〕
 図1に示されるように、本実施形態に係る車両用ガラスモジュール1(以下、「ガラスモジュール1」と称する。)は、ガラスパネル10及び加熱部30を備える。図2に示されるように、ガラスパネル10は、車外側の第1ガラス板11と車内側の第2ガラス板12とが対向して配置されて構成されている。ガラスパネル10は、第1ガラス板11及び第2ガラス板12が中間膜13により接合された合わせガラスである。中間膜13は、後述の導線32及びヒーター33の発熱領域を含む接着層によって構成されている。加熱部30は、ガラスパネル10に設けられる後述の情報取得領域15を加熱するためのものである。
 図2に示されるように、ガラスパネル10を構成する、第1ガラス板11は、車外側の第1面21と、第1面21の裏側に設けられる第2面22と、を含む。また、ガラスパネル10を構成する、第2ガラス板12は、第2面22に対向する第3面23と、第3面23の裏側に設けられる第4面24と、を含む。第1ガラス板11及び第2ガラス板12は、外側(第1面21の側)に凸状のほぼ同形であって平面視において台形状に形成されている。ガラスパネル10は、車内側から見て、上辺10a、下辺10b、左辺10c、及び右辺10dを有し、上辺10aが下辺10bよりも短い(図1参照)。ガラスパネル10は、第1ガラス板11及び第2ガラス板12が矩形状であってもよい。
 ガラス板11,12には、公知のガラス板を用いることができる。例えば、ガラス板11,12は、熱線吸収ガラス、クリアガラス、グリーンガラス、UVグリーンガラス等であってよい。ただし、ガラス板11,12は、自動車の使用される国の安全規格に沿った可視光線透過率を実現するように構成される。
 ガラスパネル10の周縁部に沿って、車外からの視野を遮蔽する遮蔽層3が設けられている。遮蔽層3は、ガラスパネル10の周縁領域に配置され。情報取得領域15に対応する位置に開口部を有する。後述の給電部31は平面視において遮蔽層3に覆われている。本実施形態では、図1に示されるように、遮蔽層3は環状に形成されている。図2に示されるように、ガラスパネル10が取り付けられる自動車の車内には、ブラケット(不図示)等を介して車外の光を受光可能な撮影装置8(情報取得装置の一例)が取り付けられている。撮影装置8は、ガラスパネル10の上辺10a(辺部の一例)近くの略中央の領域が画角に入るように配置される。ガラスパネル10は、撮影装置8と対向し光が通過する情報取得領域15を有し、情報取得領域15はガラスパネル10の上辺10aに近接する位置に配置される。具体的には、情報取得領域15は上辺10aの略中央の領域の下方に配置されている。こうして、ガラスパネル10よりも車内側に配置される撮影装置8は、情報取得領域15を介して車外の状況を撮影する。図3に示されるように、情報取得領域15は、四角形状であって、ガラスパネル10の上辺10aに沿う上辺15aと、上辺15aに平行な下辺15bと、左辺15c、及び右辺15dを有する。
 本実施形態のように、情報取得領域15がガラスパネル10の上辺10aに近接する位置に配置されていると、ガラスモジュール1が車両のフロントガラスに用いられた場合において、情報取得領域15が運転者の視界の妨げになり難い。これにより、ガラスパネル10において、運転者の視界を良好に確保できる。また、例えばカメラ(撮影装置8)等の情報取得装置が情報取得領域15に対向して配置された場合に、情報取得装置において車両の前方がボンネット等によって死角になり難くいため、情報取得装置の視野を確保し易くなる。
 情報取得領域15の平面寸法は、車内に配置する撮影装置8に応じて適宜設定される。ただし、情報取得領域15は、撮影装置8が照射する及び/又は受光する光が通過する領域に過ぎないため、撮影装置8の種類に問わず、情報取得領域15の平面寸法は、比較的に小さく設定される。ここで、情報取得領域15の平面寸法が小さ過ぎると、撮影装置8の高い取付精度が要求されることになる。また、撮影装置8により取得した画像内で、ガラスパネル10の歪みによる影響が大きく現れてしまう。他方、情報取得領域15の平面寸法が大き過ぎると、運転手の視野範囲が狭くなってしまう。また、ヒーター33で加熱する範囲が広くなってしまい、自動車のエネルギーの消費が大きくなってしまう。この観点から、情報取得領域15の平面寸法は、20mm(縦)×20mm(横)~250mm(縦)×500mm(横)の範囲で設定されるのが好ましく、50mm(縦)×50mm(横)~150mm(縦)×400mm(横)の範囲で設定されるのが更に好ましい。
 加熱部30は、ガラスパネル10のうち、少なくとも情報取得領域15の一部を加熱し、当該情報取得領域15の曇り及び/又は氷を除去する。本実施形態では、図2に示されるように、加熱部30が中間膜13に隣接する位置に設けられている。図示しないが、加熱部30は中間膜13の内部に配置されていてもよい。中間膜13は、第1ガラス板11と第2ガラス板12との間に挟持され、両ガラス板11,12を接合する。この中間膜13は、熱可塑性樹脂によって構成されている。中間膜13は例えば、軟質のコア層を、これよりも硬質の一対のアウター層で挟持した3層構造で構成できる。中間膜13をこのように軟質の層及び硬質の層の複数層で構成することによって、ガラス基材の耐破損性能及び遮音性能を高めることができる。中間膜13を上記のように硬さの異なる複数の層で構成する場合、硬質のアウター層には、ポリビニルブチラール樹脂(PVB)を用いることができる。このポリビニルブチラール樹脂(PVB)は接着性及び耐貫通性に優れるため、アウター層の材料として好ましい。また、軟質のコア層には、エチレンビニルアセテート樹脂(EVA)、又はアウター層に利用するポリビニルブチラール樹脂よりも軟質のポリビニルアセタール樹脂を用いることができる。
 図3に基づいて加熱部30を詳述する。加熱部30は、給電部31、ヒーター33、給電部31とヒーター33とを接続する導線32と、を有する。給電部31は、一対の給電部31a,31bによって構成されている。給電部31a,31bは、上辺10aの延出方向、すなわち、左右方向に並んで配置されている。更に、給電部31a,31bは、第2ガラス板12の上辺10aに形成された切り欠き(不図示)から露出しないように、切り欠きよりも面方向内側に配置され、車内からの視野方向において、遮蔽層3(図1参照)に含まれるように配置されている。なお、図3では遮蔽層3は省略されている。
 加熱部30は、一対の給電部31a,31bに直列にヒーター33が連結されている。導線32は、給電部31aとヒーター33との間の第1導線32a,ヒーター33と給電部31bとの間の第2導線32bと、を有する。ヒーター33は、情報取得領域15においてガラスパネル10の板面に沿って配置され、給電部31から電力供給を受けて発熱する。これによって、情報取得領域15は、ヒーター33からの発熱を受けて曇りや氷等を除去できるようになっている。
 図3に示されるように、ヒーター33は、情報取得領域15を覆う透明導電膜37と、一対のバスバー38,39と、を備え、少なくとも情報取得領域15の全体を加熱可能に構成されている。透明導電膜37は、基材フィルムの全面に亘って積層され、両バスバー38,39に電圧が印加されたときに発熱する。透明導電膜37の材料としては、例えば、ITO、Sb又はFがドープされたSnO、Al又はGaがドープされた酸化亜鉛、NbがドープされたTiO2、酸化タングステン等のTCO(Transparent Conductive Oxide)や銀からなる連続膜などを挙げることができるが、これらに限定されない。
 一対のバスバー38,39は、情報取得領域15外に配置され、透明導電膜37に電力を供給するように対向して配置されている。本実施形態では、第1バスバー38が上辺10aの側から下辺10bに向けて上下方向に延設され、第2バスバー39が透明導電膜37に対して第1バスバー38とは反対の側に配置されている。透明導電膜37は、全体形状が、台形状の情報取得領域15に重畳しかつ、台形状の情報取得領域15よりも上下左右に幅広の矩形状である。
 ガラスモジュール1では、ガラスパネル10の情報取得領域15においてヒーター33によって加熱する際に温度ムラが存在すると、情報取得領域15に配置される中間膜13にも同様の温度ムラが生じる。中間膜13における温度ムラは、中間膜13の屈折率を局所的に変化させるので、中間膜13を通過して情報取得装置としての撮影装置8に取得される車外画像に光学歪が付加されるおそれがある。そこで、給電部31から電力供給を受けては発熱するヒーター33は、情報取得領域15を均一に加熱する均一加熱機構Hを有する。均一加熱機構Hは、透明導電膜37と一対のバスバー38,39とによって構成されている。情報取得領域15は、ヒーター33の均一加熱機構Hによって均一に加熱されることで、中間膜13における温度ムラを抑制できる。その結果、中間膜13による光学歪の発生を抑制できる。ここで、均一加熱機構Hが情報取得領域15を均一に加熱するとは、均一加熱機構Hが情報取得領域15を加熱した状態において、例えば、情報取得領域15の最大温度勾配が所定値以下であることをいう。当該最大温度勾配は、3.0〔℃/mm〕以下が好ましく、2.0〔℃/mm〕以下であるとより好ましい。
 透明導電膜37は、情報取得領域15の全体を覆うように配置される第1領域41と、第1領域41の両端(左辺41a、右辺41b)に連続し情報取得領域15外に配置される一対の第2領域42、42と、を含む。本実施形態では、透明導電膜37は、一対の第2領域42,42を第1領域41の左右側方に有している。一対のバスバー38,39は、第1領域41及び一対の第2領域42,42を挟んで対向した状態で夫々が配置されている。本実施形態では、一対のバスバー38,39は夫々が略平行に配置される。一対のバスバー38,39が略平行とは、一対のバスバー38,39が平行である場合に加え、一対のバスバー38,39が±5度の範囲内で傾斜している場合も含まれる。ここで、一対のバスバー38,39においてバスバー38,39と透明導電膜37とが接する部位の両端(バスバー38の両端38a,38b及びバスバー39の両端39a,39b)同士を結んだ領域を仮想領域Vとする。仮想領域Vは、透明導電膜37のうち第1領域41の全部と第2領域42の少なくとも一部とが含まれるように配置されている。本実施形態では、一対の第2領域42,42は、第1領域41の上方及び下方にも延設されている。一対の第2領域42,42は、第1領域41の上方及び下方に延設されていなくてもよい。
 仮想領域Vは、上辺Va(第3辺の一例)及び下辺Vb(第4辺の一例)と、右辺Vd(第1辺の一例)及び左辺Vc(第2辺の一例)と、を有する。右辺Vd及び左辺Vcは、一対のバスバー38,39によって形成される。すなわち、仮想領域Vにおいて、右辺Vdが第1バスバー38であり、左辺Vcが第2バスバー39である。四角形状の情報取得領域15は、仮想領域Vの各辺(上辺Va,下辺Vb,左辺Vc,右辺Vd)に対向する四辺(上辺15a、下辺15b、左辺15c、右辺15d)を有する。
 図5に比較例として台形状の透明導電膜37Aにおける温度分布を示し、図6に本実施形態の矩形状の透明導電膜37における温度分布を示す。図5の透明導電膜37Aの温度分布はシミュレーションによって算出したものであり、図6の透明導電膜37の温度分布は実測によるものである。比較例の透明導電膜37Aを有するヒーター33A(加熱部30A)を図4に示す。図4に示されるように、透明導電膜37Aは情報取得領域15とほぼ同形の台形状であり、一対のバスバー38A,39Aは、情報取得領域15の上辺15a及び下辺15bに近接した位置で対向している。一対のバスバー38A,39Aの長さは、情報取得領域15の上辺15a及び下辺15bの夫々の長さと同じになるように設定されている。図5及び図6では、透明導電膜37A及び透明導電膜37における温度分布を、黒色の濃淡で示しており、黒色が濃いほど温度が高い。
 図5に示される比較例(台形状)の透明導電膜37Aでは、上辺(上底)37Aaに近い部分の温度が最も高く、下辺(下底)37Abに近づくにつれて温度が徐々に低下する。したがって、上辺(上底)37Aaに近い部分と、下辺(下底)37Abと、左辺37Ac及び右辺37Adの下部に近い部分とでは、温度差が大きくなる。したがって、台形状の透明導電膜37Aでは、情報取得領域15を均一に加熱できない可能性が高い。
 一方、図6に示される本実施形態(矩形状)の透明導電膜37では、中央部分の温度が最も高く、上辺37a、下辺37b、左辺37c及び右辺37dに近づくにつれて温度が徐々に低下する。ここで、矩形状の透明導電膜37では、高温で温度差の小さい中央部分の領域が大きい。本実施形態では、矩形状の透明導電膜37の中央部分が情報取得領域15に対応する位置であるので、情報取得領域15は均一に加熱できる。したがって、本実施形態では、透明導電膜37及び一対のバスバー38,39が均一加熱機構Hとして機能することになる。
 ガラスモジュール1において、撮影装置8と対向し光が通過する情報取得領域15は、例えば、上底長さが下底長さの10分の1以下の台形状に形成される。こうした情報取得領域15において曇りや凍結が発生しないようにするには、少なくとも情報取得領域15を覆いつつできるだけ狭い領域にヒーター33を配置した方が望ましい。その理由は、ヒーター33が情報取得領域15を加熱する際の消費電力を抑制できるためである。ただし、ヒーター33が情報取得領域15を加熱する際に、ヒーター33のエッジ部分はヒーター33が配置されない周囲領域に放熱する。このため、ヒーター33はエッジ部分において他の部位よりも大きな温度勾配が生じる。したがって、ヒーター33の形状は、情報取得領域15の相似形状であって情報取得領域15よりも大きいことが望ましい。しかし、ヒーター33が上記形状であっても、情報取得領域15に配置される中間膜13に温度ムラが生じて中間膜13において屈折率が局所的に変化することがある。
 これに対し、本実施形態では、図3に示されるように、均一加熱機構Hの透明導電膜37は、一対のバスバー38,39においてバスバー38,39と透明導電膜37とが接する部位の両端同士を結ぶことで仮想領域Vが形成される。当該仮想領域Vは、情報取得領域15を覆う第1領域41と情報取得領域15外の第2領域42とを含む。これにより、一対のバスバー38,39同士の間隔が同等に近づくようになり、ヒーター33は、第1領域41の電位勾配を均一にできる。また、透明導電膜37がガラスパネル10の板面に沿った矩形状であることで、矩形状の透明導電膜37の中央部分において電位勾配を均一にできる。したがって、透明導電膜37の中央部分を情報取得領域15に対応させて配置することで、透明導電膜37は情報取得領域15に対して均一に発熱できる。その結果、ヒーター33は均一加熱機構Hによって情報取得領域15を均一に加熱できる。
 透明導電膜37は、第1ガラス板11または第2ガラス板12に貼り付けられている。本実施形態では、図2及び図3に示されるように、透明導電膜37は、第1ガラス板11に貼り付けられており、第1ガラス板11が加熱対象となる。この場合、第1ガラス板11と透明導電膜37との間に中間膜13が存在しなくなるため、透明導電膜37によって第1ガラス板11を効率よく加熱できる。また、ガラス板11,12は、樹脂等で構成される中間膜13に比べて、熱膨張率が小さく熱伝導率が高い。したがって、透明導電膜37の発熱がガラス板11,12を介して情報取得領域15の全体に亘って効果的に伝達できるので、情報取得領域15において温度ムラを低減できる。
 ヒーター33は、第1ガラス板11と第2ガラス板12との間に配置されて中間膜13に接している。ガラスモジュール1において第1ガラス板11と第2ガラス板12との間に配置される中間膜13は、熱可塑性樹脂で構成されることから、温度変化に伴い屈折率も変化し易い。しかし、ヒーター33が上述の均一加熱機構Hを有するため、ヒーター33に接する中間膜13はヒーター33によって均一に加熱されて温度ムラを抑制できる。
 図3に示されるように、仮想領域Vにおいて、一対のバスバー38,39の端部(下端)38b、39b同士の間に下辺Vbが形成されている。また、情報取得領域15は、下辺15bの両端から左辺15c及び右辺15d(両側辺の一例)が延出されている。ここで、仮想領域Vにおける一対のバスバー38,39と下辺Vbとによってなす角は、情報取得領域15における下辺15bと左辺15c及び右辺15dとによってなす角よりも大きく、且つ90度である。すなわち、情報取得領域15における下辺15bと左辺15cとによってなす角をα1とし、仮想領域Vにおける下辺Vbと第2バスバー39とによってなす角をβ1とした場合、以下の式(1)を満たすように設定されている。
α1<β1=90(度)   ・・・(1)
 同様に、仮想領域Vにおける下辺Vbと第1バスバー38とによってなす角β2についても、以下の式(2)に示されるように、情報取得領域15における下辺15bと右辺15dとによってなす角α2よりも大きく、且つ90度に設定されている。
α2<β2=90(度)   ・・・(2)
 上述したようにウインドシールドにおいては、ガラスパネル10が上端から下方に向かって膨らむように外側に凸状で撮影装置8が水平に配置されるため、情報取得領域15が台形形状となる。仮想領域Vにおける、バスバー38,39及び下辺Vbと、情報取得領域15における、下辺15bと左辺15c及び右辺15dとが、上記の式(1)(2)を満たすことで、一対のバスバー38,39の間隔が同等となる。これにより、透明導電膜37において情報取得領域15の全体を覆う第1領域41を、仮想領域Vの中央寄りに配置させ易くなる。したがって、透明導電膜37及び一対のバスバー38,39によって情報取得領域15を均一に加熱する均一加熱機構Hを適正に構成できる。
〔第1実施形態の変形例〕
 図7に示されるように、本変形例においても、均一加熱機構Hは、情報取得領域15を覆う透明導電膜37と、仮想領域Vを挟んで対向した状態で配置された一対のバスバー38,39と、によって構成されている。ただし、本変形例では、以下の点で第1実施形態とは異なる。情報取得領域15は、第1実施形態よりも左右方向に長い上辺15aを有して左右方向に幅広の台形状に形成されている。仮想領域Vは、上辺Vaが下辺Vbよりも短い台形状である。一対のバスバー38,39は、情報取得領域15の左辺15c及び右辺15dに沿うように配置されている。こうして、仮想領域Vは、上辺(上底)Va及び下辺(下底)Vbと、右辺Vdとしての第1バスバー38と、左辺Vcとして第2バスバー39と、によって台形状に形成されている。
 図7に示されるように、本変形例では、仮想領域Vにおいて、一対のバスバー38,39によって構成される左辺Vc及び右辺Vdと、下辺Vbとによってなす角(内角)β1、β2は、55度以上90度未満に設定されている。すなわち、本変形例では、以下の式(3)(4)を満たすように設定されている。
55(度)≦α1=β1<90(度)   ・・・(3)
55(度)≦α2=β2<90(度)   ・・・(4)
 本変形例では、仮想領域Vが矩形状でなく台形状ではあるが、仮想領域Vは下辺Vb(下底)と左辺Vc(脚)及び右辺Vd(脚)とによってなす角β1、β2が55度以上90度未満である。したがって、仮想領域Vは矩形に近似した形状になり、仮想領域Vにおいて一対のバスバー38,39の間隔の同等になり易くなる。また、透明導電膜37において情報取得領域15の全体を覆う第1領域41を、仮想領域Vの中央寄りに配置させ易くなる。したがって、透明導電膜37及び一対のバスバー38,39によって情報取得領域15を均一に加熱する均一加熱機構Hを適正に構成できる。このように、本実施形態によると、ガラスモジュール1において、ヒーター33による仮想領域Vを情報取得領域15外まで拡張することで、情報取得領域15を均一に加熱できる。さらに、本実施形態では、仮想領域Vを台形状の情報取得領域15の形状に可能な限り近づけることで、ヒーター33による放熱ロス及び消費電力を抑制しつつ、情報取得領域15における中間膜13による光学歪の発生を抑制できる。
〔第2実施形態〕
 図8に示されるように、第2実施形態における均一加熱機構Hは、情報取得領域15を覆う透明導電膜37と、透明導電膜37の上下に配置された一対のバスバー38,39と、によって構成されている。一対のバスバー38,39は、情報取得領域15外に配置され、透明導電膜37に電力を供給するように対向して配置されている。本実施形態では、一対のバスバー38,39は、情報取得領域15の上方及び下方に夫々配置されている。仮想領域Vは、上辺Va(第1辺の一例)及び下辺Vb(第2辺の一例)と、右辺Vd(第3辺の一例)及び左辺Vc(第4辺の一例)と、を有する。上辺Va及び下辺Vbは、一対のバスバー38,39によって形成される。すなわち、本実施形態では、仮想領域Vにおいて、上辺Vaが第1バスバー38であり、下辺Vbが第2バスバー39である。他の構成は第1実施形態と同じである。
 透明導電膜37は、全体形状が、台形状の情報取得領域15に重畳しかつ、台形状の情報取得領域15よりも上下左右に幅広の矩形状である。透明導電膜37は、情報取得領域15の全体を覆うように配置される第1領域41と、第1領域41の両端(上辺41c、下辺41d)に連続し情報取得領域15外に配置される一対の第2領域42、42と、を含む。本実施形態では、透明導電膜37は、一対の第2領域42,42を第1領域41の上方及び下方に有している。一対のバスバー38,39は、第1領域41及び一対の第2領域42,42を挟んで対向した状態で夫々が配置されている。本実施形態では、一対のバスバー38,39は夫々が略平行に配置される。また、仮想領域Vに第1領域41の全部と第2領域42の少なくとも一部とが含まれるように配置されている。本実施形態では、一対の第2領域42,42は、第1領域41の左方及び右方にも延設されている。一対の第2領域42,42は、第1領域41の左方及び右方に延設されていなくてもよい。
 本実施形態においても、図8に示されるように、均一加熱機構Hの透明導電膜37は、仮想領域Vに情報取得領域15を覆う第1領域41と情報取得領域15外の一対の第2領域42、42とを含む。これにより、ヒーター33は、第1領域41の電位勾配を均一にできる。また、透明導電膜37がガラスパネル10の板面に沿った矩形状であることで、矩形状の透明導電膜37の中央部分において電位勾配を均一にできる。したがって、透明導電膜37の中央部分を情報取得領域15に対応させて配置することで、透明導電膜37は情報取得領域15に対して均一に発熱できる。その結果、ヒーター33は均一加熱機構Hによって情報取得領域15を均一に加熱できる。
 図8に示されるように、仮想領域Vにおいて、下辺Vbに相当するバスバー39と、左辺Vc及び右辺Vdとによってなす角β1,β2は、情報取得領域15において、下辺15bと当該下辺15bの両端から延出される左辺15c及び右辺15d(両側辺の一例)とによってなす角(内角)α1、α2よりも大きく、90度である。すなわち、第2実施形態では、以下の式(1)(2)を満たすように設定されている。
α1<β1=90(度)   ・・・(1)
α2<β2=90(度)   ・・・(2)
 また、第1バスバー38は、情報取得領域15の上辺15aよりも長く、上辺15aに沿って延設されている。第2バスバー39は、情報取得領域15の下辺15bよりも長く、第1バスバー38とは反対の側に配置されている。仮想領域Vにおいて、第2バスバー39によって形成される下辺Vbの長さに対する第1バスバー38によって形成される上辺Vaの長さの比率は、情報取得領域15において、下辺15bの長さに対する上辺15aの長さの比率よりも大きく、且つ1以下である。すなわち、情報取得領域15における、上辺15aの長さをW1、下辺15bの長さをW2,第1バスバー38の長さをL1、第2バスバー39の長さをL2としたとき、以下の式(5)(6)(7)を満たすように設定されている。
W1<L1   ・・・(5)
W2<L2   ・・・(6)
(W1/W2)<(L1/L2)=1   ・・・(7)
 一対のバスバー38,39の長さL1、L2と、情報取得領域15の上辺15a及び下辺15bの長さW1,W2とが、上記の式(5)(6)(7)を満たすことで、透明導電膜37において情報取得領域15の全体を覆う第1領域41が、仮想領域Vの中央寄りに配置され易くなる。また、一対のバスバー38,39の端部38a,39a同士の距離又は端部38b,39b同士の距離と中央部分同士の距離とが同等となって情報取得領域15を覆う第1領域41における電位勾配の均一化が図られる。したがって、透明導電膜37及び一対のバスバー38,39によって情報取得領域15を均一に加熱する均一加熱機構Hを適正に構成できる。
〔第2実施形態の変形例1〕
 図9に示されるように、本変形例1においても、均一加熱機構Hは、情報取得領域15を覆う透明導電膜37と、透明導電膜37の上下に配置された一対のバスバー38,39と、によって構成されている。ただし、本変形例1では、以下の点で第2実施形態とは異なる。仮想領域Vの左辺Vc及び右辺Vdは、情報取得領域15の左辺15c及び右辺15dに沿うように配置されている。こうして、仮想領域Vは、上辺(上底)Vaとしての第1バスバー38、下辺(下底)Vbしての第2バスバー39と、左辺Vc及び右辺Vdと、によって台形状に形成されている。
 図9に示されるように、本変形例1では、仮想領域Vにおいて、角β1,β2は、下辺Vbに相当するバスバー39と、左辺Vc及び右辺Vdとによってなす角である。また、角α1、α2は、情報取得領域15の下辺15bと当該下辺15bの両端から延出される情報取得領域15の左辺15c及び右辺15d(両側辺の一例)とによってなす角である。ここで、角β1,β2は、角α1、α2と同じ角度であって、55度以上90度未満である。すなわち、本変形例1では、以下の式(3)(4)を満たすように設定されている。
55(度)≦α1=β1<90(度)   ・・・(3)
55(度)≦α2=β2<90(度)   ・・・(4)
 さらに、仮想領域Vにおいて、第2バスバー39によって形成される下辺Vbの長さに対する第1バスバー38によって形成される上辺Vaの長さの比率は、情報取得領域15において、下辺15bの長さに対する上辺15aの長さの比率と同じである。すなわち、情報取得領域15における、上辺15aの長さをW1、下辺15bの長さをW2,第1バスバー38の長さをL1、第2バスバー39の長さをL2としたとき、以下の式(5)(6)(8)を満たすように設定されている。
W1<L1   ・・・(5)
W2<L2   ・・・(6)
(W1/W2)=(L1/L2)<1   ・・・(8)
 一対のバスバー38,39の長さL1、L2と、情報取得領域15の上辺15a及び下辺15bの長さW1,W2とが、上記の式(5)(6)(8)を満たすことで、透明導電膜37において情報取得領域15の全体を覆う第1領域41が、仮想領域Vの中央寄りに配置され易くなる。また、一対のバスバー38,39の端部38a,39a同士の距離又は端部38b,39b同士の距離と中央部分同士の距離とが同等となって情報取得領域15を覆う第1領域41における電位勾配の均一化が図られる。したがって、透明導電膜37及び一対のバスバー38,39によって情報取得領域15を均一に加熱する均一加熱機構Hを適正に構成できる。
〔第2実施形態の変形例2〕
 図10に示されるように、本変形例2においても変形例1と同じく、均一加熱機構Hは、情報取得領域15を覆う透明導電膜37と、透明導電膜37の上下に配置された一対のバスバー38,39と、によって構成されている。ただし、本変形例2では、以下の点で変形例1とは異なる。すなわち、仮想領域Vの左辺Vc及び右辺Vdは、情報取得領域15の左辺15c及び右辺15dとは非平行である。
 透明導電膜37は、全体形状が、台形状の情報取得領域15に重畳しかつ、台形状の情報取得領域15よりも上下左右に幅広の矩形状である。透明導電膜37は、情報取得領域15の全体を覆うように配置される第1領域41と、第1領域41の両端(上辺41c及び下辺41d)に連続し情報取得領域15外に配置される一対の第2領域42、42と、を含む。本変形例2では、透明導電膜37は、一対の第2領域42,42を第1領域41の上方及び下方に有している。一対のバスバー38,39は、一対の第2領域42,42の外縁である上辺42c、下辺42dに対向した状態で夫々が略平行に配置される。また、一対のバスバー38,39の両端38a,39a,38b,39bを結んだ仮想領域Vに第1領域41の全部と一対の第2領域42、42の少なくとも一部とが含まれるように配置されている。
 図10に示されるように、変形例2では、仮想領域Vにおいて、角β1,β2は、下辺Vbに相当するバスバー39と、左辺Vc及び右辺Vdとによってなす角である。また、角α1、α2は、情報取得領域15の下辺15bと当該下辺15bの両端から延出される情報取得領域15の左辺15c及び右辺15d(両側辺の一例)とによってなす角である。ここで、角β1、β2は、角α1、α2よりも大きく、且つ、55度以上90度未満に設定されている。すなわち、本変形例2では、以下の式(9)~(12)を全て満たすように設定されている。図示しないが、以下の式(9)及び(11)のうち一方のみを満たす構成でもよい。
α1<β1   ・・・(9)
55(度)≦β1<90(度)   ・・・(10)
α2<β2   ・・・(11)
55(度)≦β2<90(度)   ・・・(12)
 第1バスバー38は、情報取得領域15の上辺15aよりも長く、上辺15aに沿って延設されている。第2バスバー39は、情報取得領域15の下辺15bよりも長く、第1バスバー38とは反対の側に配置されている。仮想領域Vにおいて、第2バスバー39によって形成される下辺Vbの長さに対する第1バスバー38によって形成される上辺Vaの長さの比率は、情報取得領域15の下辺15bの長さに対する情報取得領域15の上辺15aの長さの比率よりも大きく、且つ1以下である。すなわち、情報取得領域15の上辺15aの長さをW1、情報取得領域15の下辺15bの長さをW2,第1バスバー38の長さをL1、第2バスバー39の長さをL2としたとき、以下の式(5)(6)(13)を満たすように設定されている。
W1<L1   ・・・(5)
W2<L2   ・・・(6)
(W1/W2)<(L1/L2)≦1   ・・・(13)
 一対のバスバー38,39の長さL1,L2と、情報取得領域15の上辺15a及び下辺15bの長さW1,W2とが、上記の式(5)(6)(13)を満たすことで、透明導電膜37において情報取得領域15の全体を覆う第1領域41が、仮想領域Vの中央寄りに配置され易くなる。また、一対のバスバー38,39の端部38a,39a同士の距離又は端部38b,39b同士の距離と中央部分同士の距離とが同等となって情報取得領域15を覆う第1領域41における電位勾配の均一化が図られる。したがって、透明導電膜37及び一対のバスバー38,39によって情報取得領域15を均一に加熱する均一加熱機構Hを適正に構成できる。他の構成は第1実施形態と同じである。
〔第2実施形態の他の変形例〕
 図示しないが、第2実施形態の変形例1及び2において、一対のバスバー38,39は、情報取得領域15の左辺15c及び右辺15dに沿うように、仮想領域Vの左辺Vc及び右辺Vdに配置されていてもよい。
〔第3実施形態〕
 図11に示されるように、第3実施形態では、一対のバスバー38,39が情報取得領域15の上下に配置されるとともに、情報取得領域15の上方に配置される第1バスバー38が情報取得領域15の上辺15aよりも長くなるように構成されている。したがって、透明導電膜37は、仮想領域Vに、第1領域41と、第1領域41の両側に第2領域42と、を有する。
 図11に示す例では、第1バスバー38は、情報取得領域15の上辺15aの両端側が延長されている。第1バスバー38は、情報取得領域15の上辺15aの両端の一方側(右側または左側)のみが延長されていてもよい。
〔第4実施形態〕
 図12に示されるように、第4実施形態では、仮想領域Vを形成する四辺において対向する2組の二辺(上辺Va及び下辺Vb、左辺Vc及び右辺Vd)のうち、二辺における長辺に対する短辺の比率が小さい方の二辺(上辺Va及び下辺Vb)について、短辺(上辺Va)を第1辺とし、長辺(下辺Vb)を第2辺とする。また、第1辺(上辺Va)の長さをA、第2辺(下辺Vb)の長さをBと仮定し、第2辺(下辺Vb)に対する垂線であって第1辺(上辺Va)の両端の夫々と第2辺(下辺Vb)とを最短距離で結ぶ2つの線分(線分Ve,Vf)について、線分の長さが短い方(線分Ve)を第1垂線、線分の長さが長い方(線分Vf)を第2垂線とする。そして、第1垂線(線分Ve)の長さをC、第2垂線(線分Vf)の長さをDと仮定したときに、第1辺(上辺Va)の長さA及び第2辺(下辺Vb)の長さBと、第1垂線(線分Ve)の長さC及び第2垂線(線分Vf)の長さDと、は、下記数2式を満たすように仮想領域Vが形成されている。
〔数2〕
(A/B)×(C/D)≧0.20
 本実施形態によれば、仮想領域Vが台形状または矩形状に形成される。ここで、仮想領域Vは、台形状であっても、上記の数2式を満たすことで台形状の仮想領域Vの上底に相当する上辺Vaは所定長さを確保できる。これにより、ヒーター33は、情報取得領域15を覆う第1領域41の電位勾配を均一にできるので、情報取得領域15においてヒーター33を均一に発熱させることができる。その結果、ヒーター33によって情報取得領域15を均一に加熱できる。
 加えて、本実施形態では、一対のバスバー38,39は、仮想領域Vを形成する四辺において対向する2組の二辺(上辺Va及び下辺Vb、左辺Vc及び右辺Vd)のうち、二辺間の距離が短い二辺に配置されている。図12に示す例では、上辺Va及び下辺Vbと、左辺Vc及び右辺Vdとが、いずれも非平行である。したがって、左辺Vc及び右辺Vdにおいて、右辺Vdに対する垂線であって左辺Vcに向かう最小長さの線分Vg及び最大長さの線分Vhと、上辺Va及び下辺Vbの第1垂線(線分Ve)及び第2垂線(線分Vf)とを比較する。例えば、線分Vg及び線分Vhの平均長さと、線分Ve及び線分Vfの平均長さを比較する。図12の例では、線分Ve及び線分Vfの平均長さが、線分Vg及び線分Vhの平均長さよりも短いため、仮想領域Vにおいて上辺Va及び下辺Vbにバスバー38,39が配置されている。
 ヒーター33の透明導電膜37に形成される仮想領域Vに一定電圧を負荷して加熱した場合、一対のバスバー38,39の間の距離が短いほど透明導電膜37のシート抵抗を高くできる。したがって、本実施形態では、仮想領域Vにおいて距離が短い対向する二辺Va,Vbに一対のバスバー38,39を配置する。これにより、透明導電膜37において所定のシート抵抗を確保しやすくなり、透明導電膜37の膜厚を薄くできる。その結果、情報取得領域15を含む仮想領域Vの透過率を高くできる。
 本実施形態においても、ガラスモジュール1において、ヒーター33による仮想領域Vを情報取得領域15外まで拡張することで、情報取得領域15を均一に加熱できる。さらに、仮想領域Vを台形状の情報取得領域15の形状に可能な限り近づけることで、ヒーター33による放熱ロス及び消費電力を抑制しつつ、情報取得領域15における中間膜13による光学歪の発生を抑制できる。なお、上記数2式は、上記の第1実施形態から第3実施形態のガラスモジュール1においても充足する。
〔実験例〕
 図13の表に示されるサンプル1~11について、電力密度、最大温度勾配を算出し、図14Aに示すターゲットをカメラ(撮影装置8)によって撮影した際の撮影画像における透視歪(光学歪)の影響を確認した。図13の表に示される通り、透明導電膜37と一対のバスバー38,39とによって構成されるヒーター33は、サンプル1~9では第1ガラス板11と第2ガラス板12との間に位置する中間膜13の内部に配置されている。また、ヒーター33は、サンプル10では第2ガラス板12の第3面23に配置され、サンプル11では第2ガラス板12の第4面24に配置されている。また、サンプル1~9では、ヒーター33がフィルムヒーターであり、サンプル10,11では、ヒーター33がフッ素ドープ酸化スズ膜(Low-E膜)によって構成されている。ガラスパネル10は第1ガラス板11及び第2ガラス板12によって構成されており、ガラス板11,12は夫々の厚みが2mmのフロートガラスである。
 サンプル1~5、10~11は、第2実施形態(例えば図8に示される形態)と同じく、一対のバスバー38,39を透明導電膜37の仮想領域Vの上辺Va及び下辺Vbに配置した。サンプル6~9は、第1実施形態(例えば図3に示される形態)と同じく、一対のバスバー38,39を透明導電膜37の仮想領域Vの左辺Vc及び右辺Vdに配置した。サンプル1~11において、図7に示されるヒーター33の仮想領域Vにおける角β1,β2の角度、図12に示されるヒーター33の仮想領域Vにおける各線分の長さ(「A」「B」「C」「D」)等は、図13の表に示す通りである。
 サンプル1~11の最大温度勾配は、サーモグラフィーカメラを用いて計測したサンプルの表面温度に基づいて算出した。サーモグラフィーカメラによるサンプルの表面温度の計測に際し、サーモグラフィーカメラと各サンプルとの間の距離は850mmとし、サンプルの取付け角度を水平から80度に設定した。各サンプルにおける最大温度の位置を含む直線上の所定長さの温度プロファイル(温度曲線)において、勾配が最大となる部分を選択してサンプル1~11の夫々の最大温度勾配を算出した。
 カメラによる撮影画像における透視歪の影響確認に際し、カメラと、サンプル1~11と、視認するターゲットとを直線上に配置した。ターゲットとして、図14Aに示す、表面に格子模様が付された板材を用意した。カメラとサンプルとの間の距離は600mm、サンプルとターゲットとの間の距離は4000mmに設定した。サンプル及びターゲットは水平方向に対して垂直になるように配置し、サンプルに通電後にカメラで焦点を合わせたターゲットを撮影した。サンプル1~11には、単位面積当たりの出力が約1000W/m前後になるように一対のバスバー38,39の間に電流を流した。透視歪の影響確認は、撮影画像に透視歪がほとんど確認されない場合は「〇」、撮影画像に透視歪がわずかに確認される場合は「△」、撮影画像に透視歪が強く確認された場合は「×」としてサンプル1~11に対して夫々判定した。図14Bにサンプル1の通電時における撮影画像(判定「〇」)を示し、図14Cにサンプル5の通電時における撮影画像(判定「×」)を示す。
 図13の表に示される結果によると、ヒーター33が中間膜13の内部に配置されたサンプル1~9では、矩形状のヒーター33(透明導電膜37)であるサンプル1(サンプル6)は、矩形状でないヒーター33(透明導電膜37)であるサンプル2~5(サンプル7~9)よりも最大温度勾配が小さい。サンプル2~5(サンプル7~9)においては、「(A/B)×(C/D)」が大きいほど最大温度勾配が小さい。
 サンプル1~5では、「(A/B)×(C/D)」が最も小さいサンプル5において、透明導電膜37の通電時において撮影画像に透視歪の影響が強く確認された。サンプル4では、撮影画像に透視歪がわずかに確認されたが撮影画像としては許容できるレベルであった。他のサンプル1~3では撮影画像に透視歪が確認されなかった。サンプル6~9では、「(A/B)×(C/D)」が最も小さいサンプル9において、撮影画像に透視歪の影響が強く確認された。サンプル8では、撮影画像に透視歪がわずかに確認されたが撮影画像としては許容できるレベルであった。他のサンプル6,7では撮影画像に透視歪が確認されなかった。また、サンプル10,11については、いずれも撮影画像に透視歪が確認されなかった。
 本実験例における、サンプル1-4,6-8,10-11の結果から、ヒーター33における仮想領域Vが矩形状以外であっても、「(A/B)×(C/D)」が0.2以上の四角形状であれば、ガラスモジュール1において透視歪の少ない撮影画像の取得が可能であることが確認された。また、第2ガラス板12の第3面23または第4面24にヒーター33としてLow-E膜を配置した場合(サンプル10,11)には、中間膜13の内部に同形状のヒーター33を配置する場合(サンプル4,8)よりも、最大温度勾配が低下し、撮影画像の透視歪の影響が小さいことが確認された。
 また、本実験例における、サンプル1-4,6-8,10-11の結果から、仮想領域Vを加熱した状態において、仮想領域Vの最大温度勾配が3.0〔℃/mm〕以下であれば、ガラスモジュール1において透視歪の少ない撮影画像の取得が可能であることが確認された。また、サンプル1-3,6-7,10-11の結果から、仮想領域Vの最大温度勾配が2.0〔℃/mm〕以下であると、撮影画像において透視歪がほとんど確認されなかった。ここで、仮想領域Vには情報取得領域15が含まれる。したがって、ヒーター33が有する均一加熱機構Hは、情報取得領域15を加熱した状態において、仮想領域Vの最大温度勾配が3.0〔℃/mm〕以下であると、情報取得領域15を均一に加熱したといえる。また、均一加熱機構Hは、情報取得領域15から透視歪の少ない撮影画像の取得するうえで、情報取得領域15の最大温度勾配が2.0〔℃/mm〕以下であるとより好ましい。
〔第5実施形態〕
 図15に示されるように、第5実施形態における均一加熱機構Hは、矩形領域43及び一対の拡幅領域44,44を含む透明導電膜37と、一対のバスバー38,39とによって構成されている。透明導電膜37の矩形領域43は、少なくとも情報取得領域15を覆う。拡幅領域44は、本実施形態では、矩形領域43は情報取得領域15を含み情報取得領域15の周囲全てに亘って配置されている。一対の拡幅領域44,44は、情報取得領域15の外方において、矩形領域43の左辺43a及び右辺43bに連続して情報取得領域15から離れる方向に延設されて、左辺43a又は右辺43bから離れるほど左辺43a又は右辺43bに沿う方向の幅が拡がる。一対のバスバー38,39は、矩形領域43を挟んで対向した状態で夫々が平行に配置される第1部分51,52と、第1部分51,52の両端から延在した第2部分53,54と、を有する。第2部分53,54は、矩形領域43の辺部(左辺43aまたは右辺43b)との最短距離が等しくなるように湾曲している。一対の拡幅領域44,44は、矩形領域43の左辺43aまたは右辺43bを上底とし、拡幅領域44,44の左辺44a又は右辺44bを下底とする台形状に形成されている。他の構成は第1実施形態と同じである。
 本実施形態によれば、情報取得領域15外における透明導電膜37(拡幅領域44,44)の幅が、情報取得領域15を覆う矩形状の透明導電膜37(矩形領域43)の幅よりも大きい。これにより、ヒーター33による加熱領域が情報取得領域15の周囲にまで拡張されるので、情報取得領域15からの放熱が抑制される。その結果、情報取得領域15に配置される中間膜13はその周縁からの放熱による温度ムラを抑制できる。
また、一対のバスバー38,39の第2部分53,54が矩形領域43の左辺43a又は右辺43bとの最短距離が等しくなるように湾曲しているので、第2部分53,54によって矩形領域43の左辺43a及び右辺43b近くを均等に加熱できる。
〔第6実施形態〕
 図16に示されるように、第6実施形態における均一加熱機構Hは、透明導電膜37の一方面に中間膜13より線熱膨張率が小さい透明基材46が積層されて構成されている。透明基材46は、例えばポリエチレンテレフタレート、ポリメタクリル酸メチル樹脂、ポリカーボネイト樹脂によって構成できる。透明導電膜37と透明基材46の間には接着層が配置され、接着層には例えばポリビニルブチラール(PVB)が用いられる。PVBを用いた接着層は例えば50μm以下にできる。このように、接着層の厚みが薄いことから、接着層は熱伝導の妨げになり難く、接着層において屈折率の変化も生じ難い。ヒーター33は、第1ガラス板11と第2ガラス板12との間に配置されるとともに、透明導電膜37及び透明基材46のうち、一方が第1ガラス板11または第2ガラス板12の側に配置され、他方が中間膜13の側に配置されている。図16の例では、透明導電膜37が第1ガラス板11の側に配置され、透明基材46が中間膜13の側に配置されている。他の構成は第1実施形態と同じである。
 本実施形態によれば、透明導電膜37は一方面に積層された透明基材46は、中間膜13より線熱膨張率が小さいため、中間膜13よりも不均一加熱による屈折率の差が生じ難い。この屈折率差が生じ難い透明基材46を透明導電膜37とガラス板11,12または中間膜13との間に介在させることで、透明基材46は原形を保持したまま優先的に加熱されるので、中間膜13は透明導電膜37によって加熱され難くなる。これにより、中間膜13において温度ムラを抑制して光学歪を防止できる。
〔第7実施形態〕
 第7実施形態では、図17及び図18に示されるように、ヒーター33が加熱線34を有している。均一加熱機構Hは、加熱線34と、加熱線34と中間膜13との間に配置されて中間膜13より熱伝導率の高い熱拡散層48とによって構成されている。熱拡散層48は、例えばポリエチレンによって構成できる。熱拡散層48は、加熱線34の反対側に金属層を設けたり、基材に熱拡散性の良いフィラーを混入させたり、エポキシ樹脂で加熱線34を被覆したり等することで、熱伝導性を高めることができる。熱拡散層48は、少なくとも情報取得領域15の全体を覆うように配置されている。本実施形態では、平面視において熱拡散層48が矩形状に形成されている。熱拡散層48は情報取得領域15の全体を覆う形状であれば、矩形以外の形状でもよい。また、熱拡散層48は、中間膜13よりも体積膨張率が小さい方が好ましい。他の構成は第1実施形態と同じである。
 加熱線34(ヒーター33)は、間隔を空けて複数の箇所で折り返されて、情報取得領域15及びその周辺を通過するように形成される。その形状の一例として、本実施形態における加熱線34は、情報取得領域15内において平行に延在する複数の第一加熱線35と、情報取得領域15外において複数の第一加熱線35同士を接続する第二加熱線36と、を含む。本実施形態では、複数の第一加熱線35は、ガラスパネル10の上辺10aと平行になるように配置されている。また、第二加熱線36の線幅が第一加熱線35の線幅よりも大きい。第一加熱線35は、情報取得領域15内において左右方向に直線状に延びる4つの横線部35a,35b,35c,35dである。第1横線部35aが給電部31aから導出される第1導線32aに連設されており、第2横線部35b、第3横線部35c、第4横線部35dが上辺10aに向けて順に配置されている。第二加熱線36は、第1横線部35aと第2横線部35bとの間に配設される第1縦線部36a、第2横線部35bと第3横線部35cとの間に配設される第2縦線部36b、第3横線部35cと第4横線部35dとの間に配設される第3縦線部36cである。ヒーター33の加熱線34には、第1横線部35aに沿って延びる第1導線32aの一部、及び、第4横線部35dに沿って延びる第2導線32bの一部も含まれる。
 ヒーター33を加熱線34によって構成した場合、加熱線34が存在する領域と、加熱線34が存在しない領域との間で温度差が生じる。しかし、本実施形態のように、加熱線34と中間膜13との間に配置されて中間膜13より熱伝導率の高い熱拡散層48を設けることで、情報取得領域15の温度分布を均一化できる。これにより、中間膜13においても温度分布が均一化されるので、中間膜13によって発生する光学歪を抑制できる。
 また、熱拡散層48は、中間膜13よりも体積膨張率が小さいので、熱拡散層48は第1ガラス板11と第2ガラス板12との間で安定的に配置できる。
 図18に示すように、加熱線34(第一加熱線35)は、第1ガラス板11または第2ガラス板12に貼り付けられており、本実施形態では加熱線34(第一加熱線35)は第1ガラス板11に貼り付けられている。このように構成すれば、加熱対象の第1ガラス板11と加熱線34との間に中間膜13が存在しなくなるため、加熱線34によって第1ガラス板11を効率よく加熱できる。また、ガラス板11,12は、熱可塑性樹脂で構成される中間膜13に比べて、熱膨張率が小さく熱伝導率が高い。したがって、加熱線34による発熱がガラス板11,12を介して情報取得領域15の全体に亘って効果的に伝達できるので、情報取得領域15の温度ムラを低減できる。
 さらに、図17に示すように、本実施形態では、加熱線34は第一加熱線35の線幅が第二加熱線36の線幅よりも小さくなるように構成されている。こうすると、加熱線34全体を同じ導電材料で構成した場合に第二加熱線36自体の抵抗は第一加熱線35自体の抵抗よりも小さくなる。これにより、第二加熱線36の発熱量を第一加熱線35の発熱量よりも抑制できるので、加熱線34及び熱拡散層48によって情報取得領域15を効率よく加熱できる。情報取得領域15の周囲における放熱を考慮して、加熱線34において第二加熱線36の線幅を第一加熱線35の線幅と同じにしてもよい。
〔別実施形態〕
(1)上記の実施形態では、ガラスモジュール1を車両のフロントガラスに用いる例を示したが、ガラスモジュール1は車両のリアガラスやサイドガラスに用いてもよい。
(2)均一加熱機構Hは、情報取得領域15におけるヒーター33の抵抗値、及び、情報取得領域15におけるヒーター33に流れる電流密度が均一になるように構成されていると好適である。情報取得領域15におけるヒーター33の抵抗値及びヒーター33を流れる電流密度を均一にすることで、情報取得領域15の電位勾配が均一になるので、情報取得領域15においてヒーター33を均一に発熱できる。これにより、ヒーター33によって情報取得領域15を均一に加熱できる。均一加熱機構Hにおいて、ヒーター33の抵抗値が均一とは、例えば、ヒーター33のシート抵抗の変動幅が所定値の±15%以内であることをいう。ヒーター33の抵抗値を均一にするうえで、ヒーター33のシート抵抗の変動幅が所定値の±10%以内であるとより好ましい。
(3)上記の実施形態では、ガラスモジュール1の情報取得領域15がガラスパネル10の上辺10aに近接する位置に配置される例を示したが、ガラスモジュール1の情報取得領域15はガラスパネル10の上辺10a以外(例えば、下辺10b、左辺10c、右辺10d)に近接する位置に配置されていてもよい。
(4)第1実施形態では、情報取得領域15が上辺15aを上底とし下辺15bを下底とする台形状である構成において、仮想領域Vにおける下辺Vbと左辺Vc及び右辺Vdとによってなす角β1、β2が、情報取得領域15における下辺15bと左辺15c及び右辺15dとによってなす角α1、α2よりも大きく、90度以下である例を示した。情報取得領域15は、下辺15bを上辺15aが長い逆台形状でもよい。その場合は、角β1、β2は、角α1、α2よりも小さく、90度以上に設定してもよい。このように構成しても、一対のバスバー38,39の間隔がより同等となり、透明導電膜37において情報取得領域15の全体を覆う第1領域41を、仮想領域Vの中央寄りに配置させ易くなる。
(5)第2実施形態では、情報取得領域15が上辺15aを上底とし下辺15bを下底とする台形状である構成において、仮想領域Vにおける第2バスバー39によって形成される下辺Vbの長さL2に対する第1バスバー38によって形成される上辺Vaの長さL1の比率は、情報取得領域15における下辺15bの長さW2に対する上辺15aの長さW1の比率よりも大きく、且つ1以下である例を示した。情報取得領域15は、下辺15bを上辺15aが長い逆台形状でもよい。その場合は、仮想領域Vにおける上辺Vaの長さL1に対する下辺vbの長さL2の比率は、情報取得領域15の上辺15aの長さW1に対する情報取得領域15の下辺15bの長さW2の比率よりも大きく、且つ1以下に設定してもよい。このように構成しても、一対のバスバー38,39の間隔がより同等となり、透明導電膜37において情報取得領域15の全体を覆う第1領域41を、仮想領域Vの中央寄りに配置させ易くなる。
(6)上記の実施形態では、情報取得領域15の形状及びヒーター33の形状が台形である例を示したが、情報取得領域15及びヒーター33の形状は台形に限定されず、矩形、円形、楕円形等、他の形状であってもよい。
(7)上記の実施形態では、加熱部30において給電部31が第1ガラス板11と第2ガラス板12との間に配置される例を示したが、図19に示されるように、加熱部30のヒーター33はハーネス61に接続される構成でもよい。ハーネス61は、一端が透明導電膜37に接続され、他端が中間膜13と第2ガラス板12との間を経由してガラスパネル10の外方に引き出される。図19の例では、加熱部30のヒーター33が透明導電膜37によって構成されており、第1バスバー38及び第2バスバー39の図示は省略されている。なお、ヒーター33は加熱線34によって構成されてもよい。また、本別実施形態においても、ヒーター33は第2ガラス板12の第3面23に配置されていてもよく、その場合には、ハーネス61は第2ガラス板12に沿いつつガラスパネル10の外方に引き出される。
(8)上記の実施形態では、情報取得領域15を加熱するヒーター33がガラスパネル10の第2面22に配置される例を示したが、ヒーター33は第3面23または第4面24に配置されてもよい。なお、第4面24には撮影装置8を保持するブラケット(不図示、以下、「ブラケット」と略称する。)が別途固着される。このため、ヒーター33が第2ガラス板12の第4面24に配置される場合には、第4面24においてブラケットがヒーター33の一部に重なって配置される可能性がある。このため、第4面24において、ブラケットはヒーター33にできるだけ重複しない位置に固着される方が好ましい。したがって、第4面24において、ブラケットは、ヒーター33内のバスバー38,39の重複しない位置に固着されてもよいし、透明導電膜37に重複しない位置に固着されてもよい。第4面24において、ブラケットはヒーター33の外周側に配置することもできる。この場合には、ヒーター33が情報取得領域15に配置され易くなるので、ヒーター33が情報取得領域15を効果的に加熱できる。
(9)第1~第6実施形態では、ヒーター33が透明導電膜37と一対のバスバー38,39によって構成される例を示したが、透明導電膜37に代えて加熱線(導線)を用いてもよく、一対のバスバー38,39が加熱線(導線)と同一部材で形成されていてもよい。
(10)第1~第6実施形態(変形例を含む)では、一対のバスバー38,39の夫々が連続する1つのバスバーで構成される例を示したが、一対のバスバー38,39は少なくとも一方が仮想領域Vにおいて配置される辺部に沿って分割される構成でもよい。
(11)第1~第5実施形態(変形例を含む)では、バスバー38,39が直線状に形成される例を示したが、バスバー38,39は、直線状とは限らず、例えば一方向に凸の曲率を有する曲線状であってもよい。
 本発明は、情報取得領域を加熱する加熱部を有する車両用ガラスモジュールに広く利用可能である。
1    :車両用ガラスモジュール
8    :撮影装置(情報取得装置)
10   :ガラスパネル
11   :第1ガラス板
12   :第2ガラス板
13   :中間膜
15   :情報取得領域
21   :第1面
22   :第2面
23   :第3面
24   :第4面
30   :加熱部
31   :給電部
32   :導線
33   :ヒーター
34   :加熱線
35   :第一加熱線
36   :第二加熱線
37   :透明導電膜
38   :第1バスバー
39   :第2バスバー
41   :第1領域
42   :第2領域
43   :矩形領域
44   :拡幅領域
46   :透明基材
48   :熱拡散層
51,52:第1部分
53,54:第2部分
61   :ハーネス
H    :均一加熱機構
V    :仮想領域
Va   :上辺
Vb   :下辺
Vc   :左辺
Vd   :右辺
α1,α2:情報取得領域の内角
β1,β2:仮想領域の内角

Claims (14)

  1.  車外の光を受光可能な情報取得装置を車内側で支持する車両用ガラスモジュールであって、
     前記情報取得装置と対向し前記光が通過する情報取得領域を有するガラスパネルと、
     前記ガラスパネルのうち、少なくとも前記情報取得領域を加熱する加熱部と、を備え、
     前記ガラスパネルは、車外側の第1ガラス板と、前記第1ガラス板と対向する車内側の第2ガラス板と、前記第1ガラス板と前記第2ガラス板との間に配置され、熱可塑性樹脂からなる中間膜と、を有し、
     前記加熱部は、前記ガラスパネルに配置される給電部と、前記情報取得領域において前記ガラスパネルの板面に沿って配置され、前記給電部から電力供給を受けて発熱するヒーターと、を有し、
     前記ヒーターは、少なくとも前記情報取得領域の全体を加熱可能に構成されており、前記情報取得領域を均一に加熱する均一加熱機構を有する車両用ガラスモジュール。
  2.  前記均一加熱機構は、前記情報取得領域における前記ヒーターの抵抗値、及び、前記情報取得領域における前記ヒーターに流れる電流密度が均一になるように構成されている請求項1に記載の車両用ガラスモジュール。
  3.  前記均一加熱機構は、透明導電膜と、前記透明導電膜に電力を供給する一対のバスバーを有しており、
     前記透明導電膜は、前記情報取得領域の全体を覆うように配置される第1領域と、前記第1領域に連続し前記情報取得領域外に配置される第2領域と、を含み、
     一対の前記バスバーは、前記第1領域及び前記第2領域を挟んで対向した状態で夫々が配置され、且つ、一対の当該バスバーにおいて前記透明導電膜と接する部位の両端同士を結んだ仮想領域に前記第1領域の全部と前記第2領域の少なくとも一部とが含まれるように配置されている請求項1又は2に記載の車両用ガラスモジュール。
  4.  前記仮想領域を形成する四辺において対向する2組の二辺のうち、二辺における長辺に対する短辺の比率が小さい方の二辺について、短辺を第1辺とし、長辺を第2辺とし、前記第1辺の長さをA、前記第2辺の長さをBと仮定し、前記第2辺に対する垂線であって前記第1辺の両端の夫々と前記第2辺とを最短距離で結ぶ2つの線分について、線分の長さが短い方を第1垂線、線分の長さが長い方を第2垂線とし、前記第1垂線の長さをC、前記第2垂線の長さをDと仮定したときに、下記式を満たす、請求項3に記載の車両用ガラスモジュール。
    〔数1〕
    (A/B)×(C/D)≧0.20
  5.  一対の前記バスバーは、前記仮想領域を形成する四辺において対向する2組の二辺のうち、二辺間の距離が短い二辺に配置されている請求項3又は4に記載の車両用ガラスモジュール。
  6.  前記透明導電膜は、前記ガラスパネルの板面に沿った矩形状に形成されている請求項3から5のいずれか一項に記載の車両用ガラスモジュール。
  7.  前記均一加熱機構は、透明導電膜と、前記透明導電膜に電力を供給する一対のバスバーとを有しており、
     前記透明導電膜は、少なくとも前記情報取得領域を覆う矩形領域と、前記情報取得領域外において、前記矩形領域の両側の辺部に連続して延設されて、前記辺部から離れるほど当該辺部の沿う方向の幅が拡がる一対の拡幅領域と、を含み、
     一対の前記バスバーは、前記矩形領域を挟んで対向した状態で夫々が平行に配置される第1部分と、前記第1部分の両端から延在した第2部分とを有し、前記第2部分は、前記矩形領域の前記辺部との最短距離が等しくなるように湾曲している請求項1又は2に記載の車両用ガラスモジュール。
  8.  前記透明導電膜の一方面に前記中間膜より線熱膨張率が小さい透明基材が積層されており、
     前記ヒーターは、前記第1ガラス板と前記第2ガラス板との間に配置されるとともに、前記透明導電膜及び前記透明基材のうち、一方が前記第1ガラス板または前記第2ガラス板の側に配置され、他方が前記中間膜の側に配置されている請求項3から7のいずれか一項に記載の車両用ガラスモジュール。
  9.  前記透明導電膜は、前記第1ガラス板または前記第2ガラス板に貼り付けられている請求項3から8のいずれか一項に記載の車両用ガラスモジュール。
  10.  前記ヒーターは、前記第1ガラス板と前記第2ガラス板との間に配置されて前記中間膜に接している請求項1から9のいずれか一項に記載の車両用ガラスモジュール。
  11.  前記ヒーターは加熱線を有しており、
     前記均一加熱機構は、前記加熱線と前記中間膜との間に配置されて前記中間膜より熱伝導率の高い熱拡散層を更に有しており、
     前記熱拡散層は、少なくとも前記情報取得領域の全体を覆うように配置されている請求項1又は2に記載の車両用ガラスモジュール。
  12.  前記熱拡散層は、前記中間膜よりも体積膨張率が小さい請求項11に記載の車両用ガラスモジュール。
  13.  前記加熱線は、前記第1ガラス板または前記第2ガラス板に貼り付けられている請求項11または12に記載の車両用ガラスモジュール。
  14.  前記ガラスパネルの周縁領域に配置され、前記情報取得領域に対応する位置に開口部を有する遮蔽層をさらに備え、
     前記給電部が前記遮蔽層によって覆われている請求項1から13のいずれか一項に記載の車両用ガラスモジュール。
PCT/JP2022/025994 2021-06-30 2022-06-29 車両用ガラスモジュール WO2023277073A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280047407.2A CN117616871A (zh) 2021-06-30 2022-06-29 车辆用玻璃模块
JP2023532023A JPWO2023277073A1 (ja) 2021-06-30 2022-06-29
EP22833219.3A EP4366466A1 (en) 2021-06-30 2022-06-29 Vehicle glass module
US18/573,908 US20240286464A1 (en) 2021-06-30 2022-06-29 Vehicular glass module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-109363 2021-06-30
JP2021109363 2021-06-30
JP2021-129309 2021-08-05
JP2021129309 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023277073A1 true WO2023277073A1 (ja) 2023-01-05

Family

ID=84691840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025994 WO2023277073A1 (ja) 2021-06-30 2022-06-29 車両用ガラスモジュール

Country Status (4)

Country Link
US (1) US20240286464A1 (ja)
EP (1) EP4366466A1 (ja)
JP (1) JPWO2023277073A1 (ja)
WO (1) WO2023277073A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091889A (ja) * 2015-11-12 2017-05-25 イビデン株式会社 面状発熱体及び面状発熱体の製造方法
JP2017216193A (ja) 2016-06-02 2017-12-07 日本板硝子株式会社 ウインドシールド
WO2018230358A1 (ja) * 2017-06-13 2018-12-20 株式会社デンソー 電磁波利用システム
WO2020129420A1 (ja) * 2018-12-21 2020-06-25 Agc株式会社 合わせガラス
WO2021106365A1 (ja) * 2019-11-26 2021-06-03 Agc株式会社 電熱線付きガラス板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091889A (ja) * 2015-11-12 2017-05-25 イビデン株式会社 面状発熱体及び面状発熱体の製造方法
JP2017216193A (ja) 2016-06-02 2017-12-07 日本板硝子株式会社 ウインドシールド
WO2018230358A1 (ja) * 2017-06-13 2018-12-20 株式会社デンソー 電磁波利用システム
WO2020129420A1 (ja) * 2018-12-21 2020-06-25 Agc株式会社 合わせガラス
WO2021106365A1 (ja) * 2019-11-26 2021-06-03 Agc株式会社 電熱線付きガラス板

Also Published As

Publication number Publication date
EP4366466A1 (en) 2024-05-08
US20240286464A1 (en) 2024-08-29
JPWO2023277073A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
US11548354B2 (en) Windshield
US11654658B2 (en) Laminated glass
JP7192862B2 (ja) ガラス
US20210059022A1 (en) Laminated glass
US20210282235A1 (en) Heating electrode device, electrical heating glass, heat-generating plate, vehicle, window for building, sheet with conductor, conductive pattern sheet, conductive heat-generating body, laminated glass, and manufacturing method for conductive heat-generating body
JP6905831B2 (ja) 合わせガラス
BR112018009806B1 (pt) Sistema head-up display, método e uso de tal sistema e veículo a motor
BRPI0516580B1 (pt) vidraça transparente munida de um revestimento aquecedor resistivo
RU2683074C1 (ru) Нагреваемое ламинированное стекло транспортного средства с улучшенным распределением тепла
BRPI0707182B1 (pt) vidraça transparente munida de um revestimento aquecedor resistivo e processo de aquecimento de uma vidraça
JP7173429B2 (ja) 合わせガラス
JP7196922B2 (ja) 合わせガラス
JP6736448B2 (ja) 合わせガラス
CN114728847A (zh) 带电热线的玻璃板
WO2023277073A1 (ja) 車両用ガラスモジュール
CN117616871A (zh) 车辆用玻璃模块
JP7392571B2 (ja) 窓ガラス
WO2023277007A1 (ja) 車両用ガラスモジュール
JP6597574B2 (ja) 透明発熱板、乗り物及び建築物用窓
CN110603236A (zh) 夹层玻璃
JP7356640B2 (ja) 発熱用導電体、発熱板、移動体
JP6740715B2 (ja) パターン導電体、発熱用導電体、導電体付きシート、発熱板、乗り物および建築物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833219

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18573908

Country of ref document: US

Ref document number: 2023532023

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280047407.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022833219

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022833219

Country of ref document: EP

Effective date: 20240130