WO2023276783A1 - 工作機械のクーラント供給装置及び工作機械のクーラント供給方法 - Google Patents

工作機械のクーラント供給装置及び工作機械のクーラント供給方法 Download PDF

Info

Publication number
WO2023276783A1
WO2023276783A1 PCT/JP2022/024717 JP2022024717W WO2023276783A1 WO 2023276783 A1 WO2023276783 A1 WO 2023276783A1 JP 2022024717 W JP2022024717 W JP 2022024717W WO 2023276783 A1 WO2023276783 A1 WO 2023276783A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
supply
specific
machining
machine tool
Prior art date
Application number
PCT/JP2022/024717
Other languages
English (en)
French (fr)
Inventor
幸佑 山本
元気 船越
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Publication of WO2023276783A1 publication Critical patent/WO2023276783A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a coolant supply device for machine tools and a coolant supply method for machine tools.
  • Patent Document 1 discloses a high-pressure coolant supply device that can detect an abnormal state without providing a special sensor.
  • the high-pressure coolant supply device is configured such that a motor drives a fixed capacity pump to supply coolant from a tank to the attachment, and an on-load valve controls the supply of discharged coolant to the attachment.
  • Control means for controlling the motor with a command value and a feedback value as inputs and controlling an on-load valve;
  • An abnormal state detection means is provided for detecting an abnormal state on the condition that the load torque is less than the minimum load torque when the on-load valve is turned on.
  • the present invention provides a coolant supply apparatus for a machine tool comprising: a pump for supplying coolant from a coolant tank; a supply pipe for supplying the coolant discharged from the pump; and a discharge side of the pump.
  • a first pressure sensor installed in the first pressure sensor, a plurality of branch pipes branching from the liquid supply pipe downstream from the installation position of the first pressure sensor, and supplying coolant to a plurality of supply destinations including a processing part of a work
  • a valve mechanism installed in each branch pipe for supplying or stopping coolant to each supply destination, and a control circuit for controlling the pump and each valve mechanism, wherein the control circuit controls at least the workpiece among the valve mechanisms.
  • the value of the first pressure sensor is set in advance in a specific supply state in which a specific valve mechanism installed in a specific branch pipe to which the processing section is the supply destination is opened and at least one of the other valve mechanisms is closed. It is characterized by outputting a stop signal for immediately stopping the machining of the workpiece when the pressure deviates downward from the allowable pressure range.
  • the control circuit determines that an abnormality has occurred in one of the valve mechanisms provided for each liquid supply pipe. can. At that time, if the value of the first pressure sensor deviates downward from the preset first allowable pressure range, it is determined that the abnormality has a high degree of urgency, and the workpiece is not processed. By immediately outputting a stop signal to stop, it is possible to prevent damage to the workpiece or tool that is not supplied with the required amount of coolant to the machining portion of the workpiece.
  • coolant is supplied from a coolant tank to a coolant supply pipe via a pump, and the coolant is supplied to the coolant supply pipe through a plurality of branch pipes branched and connected to the coolant supply pipe and provided with a valve mechanism.
  • a coolant supply method for a machine tool that selectively supplies coolant to a plurality of supply destinations including a machining portion of a workpiece, wherein the valve mechanism is installed in a specific branch pipe whose supply destination is at least the machining portion of the workpiece.
  • a coolant supply apparatus for a machine tool and a coolant supply method for a machine tool are capable of appropriately coping with the degree of urgency of an abnormality that has occurred.
  • FIG. 1(a) is an explanatory diagram of a front view of a machine tool installed in a machining space covered with a cover
  • FIG. 1(b) is an explanatory diagram of a setup station adjacent to the machine tool.
  • FIG. 2 is an explanatory diagram of the piping of the coolant supply device.
  • FIG. 3 is an explanatory diagram of a control circuit provided in the coolant supply device.
  • FIG. 4 is an explanatory diagram of the operating points of the pump when selectively supplying coolant to each branch pipe.
  • FIG. 5 is a flow chart explaining a coolant supply method.
  • FIG. 1(a) shows a machine tool 200 installed in a machining space partitioned by a cover member 300 for machining a workpiece W.
  • FIG. A machine tool 200 includes a bed 201, a table 202 that moves in the Z-axis direction along a guide surface on the bed 201, a pallet 203 that rotates about the B-axis in a vertical posture on the table 202, and a pallet 203 that is vertically installed on the bed 201. It is composed of a horizontal machining center provided with a column 204 mounted on the column 204 and a spindle head 205 moving along the guide surface of the column 204 in the X-axis and Y-axis directions. As indicated by broken lines, the periphery of machine tool 200 is covered with cover member 300, and cover member 300 is provided with a door (not shown) that can be opened and closed.
  • a tool 207 is held by a tool holder 206 provided on the spindle head 205, and when the servo motor MS1 is driven, the tool 207 rotates around the horizontal axis.
  • a jig such as an angle plate provided on the pallet 203 holds a workpiece W, which is a workpiece to be processed. Rotate around an axis.
  • the workpiece W and the tool 207 are moved relative to each other by the NC device driving the servo motors described above based on a preset NC program, and the workpiece W is machined into a desired shape.
  • a setup station 250 is installed adjacent to the side wall located on the right side of the machine tool 200 shown in FIG. 1(a). As shown in FIG. 1(b), the setup station 250 is provided with a storage unit for storing the workpiece W before machining and the workpiece W after machining. Post-processing such as cleaning is performed.
  • the setup station 250 is partitioned by a cover member 350 adjacent to the cover member 300, and an open/close shutter is provided between the cover members 300 and 350 for transferring the work W between the regions. Also, the setup station 250 is provided with an APC (Auto Pallet Changer) unit for carrying a workpiece W before machining into the machining space and carrying out a workpiece W after machining from the machining space.
  • APC Auto Pallet Changer
  • the spindle head 205 is provided with a coolant nozzle 220 that discharges coolant toward a portion of the workpiece W to be machined.
  • a coolant which is a cooling and cleaning fluid, is jetted toward the work site.
  • coolant is discharged toward the inner wall of the cover member 300 or the table 202 or toward the work W or the like accommodated in the setup station 250 in order to collect chips scattered by machining.
  • a plurality of coolant delivery nozzles are provided for each.
  • a coolant recovery unit 208 for recovering coolant is installed below the table 202, and is configured so that chips generated during machining are recovered in the coolant recovery unit 208 together with the coolant.
  • a chip conveyor 209 is disposed at the bottom of the coolant recovery section 208 , and chips recovered by the coolant recovery section 208 are carried out of the machine by the chip conveyor 209 and recovered in a recovery container 212 .
  • the coolant recovered by the coolant recovery unit 208 is circulated and supplied to the large-capacity coolant tank 1 (see FIG. 2) after foreign matter such as chips are removed through the drum filter 208F.
  • FIG. 2 shows a piping route diagram of the coolant supply device 100 incorporated in the machine tool 200 described above.
  • the coolant supply device 100 includes a coolant tank 1, a liquid supply pipe 2, a first liquid supply pump P1 that discharges the coolant filled in the coolant tank 1 to the liquid supply pipe 2, and the first liquid supply pump P1. It is provided with branch pipes 6 to 14 for branching and supplying coolant to a plurality of coolant supply destinations, a control circuit 30 (see FIG. 3), and the like.
  • a branch pipe 6 is a first liquid supply path for showering toward a side wall or the like inside the machine
  • a branch pipe 7 is a liquid supply path whose supply destination is a coolant nozzle 220 arranged in a processing portion of a workpiece.
  • a pipe 8 is a liquid supply path for supplying liquid to the setup station 250 for jig cleaning and the like.
  • a branch pipe 9 is a second liquid supply route for showering toward the side wall of the machine
  • a branch pipe 10 is a liquid supply route for the protector built-in coolant
  • a branch pipe 11 is for the oil pan of the setup station.
  • a branch pipe 12 is a liquid supply route to the table side XY protector
  • a branch pipe 13 is a preliminary liquid supply route
  • a branch pipe 14 is a liquid supply route to the coolant gun.
  • the branch pipes 10, 11, and 12 are each branched from one branch pipe branched from the header pipe 4 into three.
  • the branch pipes 6 to 14 are provided with valve mechanisms V6 to V12 made up of electromagnetic valves on the header pipe 4 side.
  • the valve mechanisms V6-V12 are controlled to be opened or closed by a control circuit 30, which will be described later, so that the supply of coolant to each of the branch pipes 6-12 is permitted or stopped.
  • the coolant supplied from each of the branch pipes 6 to 14 is finally recovered in the coolant recovery section 208, and foreign matter such as chips are removed through the drum filter 208F. be fed.
  • a first pressure sensor SE1 is arranged in the liquid supply pipe 2 on the downstream side of the first liquid supply pump P1, and a second pressure sensor SE2 is arranged in the branch pipe 7 on the downstream side of the valve mechanism V7.
  • the control circuit 30 is composed of a control board on which a CPU, a memory storing a liquid supply control program executed by the CPU, an input/output circuit, a communication circuit, and the like are mounted.
  • a plurality of output driver circuits included in the input/output circuit provided in the control circuit 30 are connected to the above-described valve mechanisms V6 to V12 and the liquid supply pumps P1, P2, and P3.
  • An input circuit made up of an A/D converter included in the input/output circuit receives the values of the first pressure sensor SE1 and the second pressure sensor SE2, and inputs the A/D converted values to the CPU.
  • the control circuit 30 and the operation panel 50 of the machine tool 200 are connected by a communication line
  • the operation panel 50 and the NC device 70 are connected by a communication line.
  • the NC device 70 and the control circuit 30 are activated through the operation of the operation panel 50 by the operator.
  • the machine tool is sequentially controlled via the NC unit 70 according to a preprogrammed procedure, and the supply of coolant to the necessary parts is controlled via the control circuit 30 .
  • a memory provided in the control circuit 30 stores data defining a plurality of operation modes for coolant supply.
  • the control circuit 30 controls the first liquid supply pump P1 and the valve mechanisms V6 to V12 according to each operation mode instructed from the control panel 50 operated by the operator, and measures the first pressure sensor SE1 or Whether or not there is an abnormality is diagnosed based on the value of the second pressure sensor SE2.
  • the control circuit 30 transmits the diagnosed abnormal state to the operation panel 50, and the operation panel 50 outputs a stop signal to the NC unit 70 when it is necessary to immediately stop the machine tool 200 according to the received abnormal state, If it is not necessary to stop immediately, an alert is sounded or displayed on the operation screen of the operation panel 50.
  • Fig. 4 shows the operating points of the first liquid supply pump P1, with the horizontal axis representing the flow rate and the vertical axis representing the required pump head.
  • Operating point 1 is a mode in which the chip conveyor is operated, and is set at a flow rate of 150 L/min and a lift of 31 m.
  • the operating point 2 is a mode in which coolant is supplied to the machining section to operate the spindle, and the flow rate is set to 400 L/min and the lift is set to 27 m.
  • the operating point 3 is a mode that improves the economic efficiency of the operating point 3, and is set to a flow rate of 400 L/min and a lift of 26 m.
  • the operating point 4 is set at a flow rate of 150 L/min and a lift of 13 m, and the operating point 5 is set at a flow rate of 200 L/min and a lift of 30 m.
  • the coolant discharge pressure and the liquid supply amount are set in advance according to the combination of opening and closing of each valve mechanism provided in each branch pipe, and are detected according to each combination.
  • Table data defining the allowable pressure range of the pressure sensors SE1 and S2 is stored, and the control circuit 30 controls the discharge pressure and the liquid supply amount of the first liquid supply pump P1 based on the table data, and operates each valve mechanism. It is configured to control opening and closing.
  • each operation mode, flow rate, and required head mentioned above are examples, and are not limited to these values.
  • the control circuit 30 determines based on the start command which of the plurality of operating points shown in FIG. 4 is the operating mode to be controlled. (S1), the liquid supply pump is controlled according to the corresponding operation mode, and among the valve mechanisms V6 to V12, the necessary valve mechanisms are opened, and the unnecessary valve mechanisms are kept closed (S2). . Furthermore, the values of the first pressure sensor SE1 and the second pressure sensor SE2 are read (S3).
  • the appropriate range of the first pressure sensor SE1, that is, the first allowable pressure range is predetermined according to each operation mode.
  • the control circuit 30 determines whether the value of the first pressure sensor SE1 is abnormally low pressure below the lower limit of the first allowable pressure range for each operation mode, abnormally high pressure exceeding the upper limit, or within a normal range within an appropriate range. determine if there is
  • control panel 50 When the control panel 50 receives the status signal, it outputs a stop signal to the NC device 70 to make the machine tool 200 stop urgently (S6).
  • a stop signal to the NC device 70 to make the machine tool 200 stop urgently (S6).
  • at least one of the other valve mechanisms is closed in the mode of supplying the coolant to the machining portion.
  • the valve V8 provided in the branch pipe 8 is closed.
  • a status signal is sent to the control panel 50 indicating that the low voltage is abnormal.
  • the control panel 50 displays an alert on the display unit without causing the NC unit 70 to stop the machine tool 200 in an emergency, and sounds a buzzer to alert the operator (S7).
  • step S4 if the low voltage is not abnormal (S4, N), it is determined whether the high voltage is abnormal (S8, Y), the alert process of step S7 is executed. (S8, N), the processing after step S8 is executed.
  • the machine tool 200 If there is a low pressure abnormality in the mode of supplying coolant to the machining part, the machine tool 200 is urgently stopped because there is a risk of damage to the work and tools.
  • a high pressure abnormality occurs in the mode in which coolant is supplied to the processing part, the coolant is properly supplied to the processing part and the workpiece can be processed properly, but the coolant is not supplied to other supply destinations. It judges that it has not been done, and issues an alert to the operator to call attention while avoiding a decrease in machining efficiency.
  • step S9 the state is determined based only on the value of the first pressure sensor SE1, but the state may be determined by adding the value of the second pressure sensor SE2. .
  • the process of step S6 is performed. configure it to run. It goes without saying that the appropriate range of the second pressure sensor SE2, that is, the second allowable pressure range is also preset.
  • a position sensor is provided to detect the operating state of the valve body of the electromagnetic valve that is the valve mechanism V7, and when an open command is output to the valve mechanism V7, the valve body It may be confirmed by the value of the position sensor whether or not it is switched to the open position. That is, when the first pressure sensor SE1 indicates a high pressure abnormality and the position sensor indicates the closed position in step S9, it is determined that the branch pipe 7 is not supplied with liquid, and the process of step S6 is executed. Configure.
  • the valve mechanism V7 normally uses a normally closed electromagnetic valve that is closed when no drive signal is input from the control circuit 30, but is opened when no drive signal is input from the control circuit 30. Adopting a normally open type electromagnetic valve makes it possible to supply coolant to the machined part even if the control signal line is disconnected.
  • the coolant supply device 100 for a machine tool to which the present invention is applied includes the first liquid supply pump P1 that supplies the coolant from the coolant tank 1 and the coolant discharged from the first liquid supply pump P1.
  • a first pressure sensor SE1 installed on the discharge side of the first liquid supply pump P1;
  • the control circuit 30 opens the specific valve mechanism V7 installed in the specific branch pipe 7 whose supply destination is at least the workpiece processing section among the valve mechanisms V6 to V12, and closes at least one of the other valve mechanisms.
  • a stop signal for immediately stopping the machining of the workpiece is output.
  • control circuit 30 and the NC device 70 are configured separately, but the control circuit 30 may be incorporated into the NC device 70 and integrated.
  • the control circuit 30 is configured to output an alarm signal without outputting a stop signal when the value of the first pressure sensor SE1 deviates upward from the first allowable pressure range in a specific supply state. . It is judged that the coolant is properly supplied to the machining portion through the specific branch pipe 7, and the machining operation is continued.
  • control circuit 30 immediately detects that the specific valve mechanism V7 is in the closed state. It is configured to output a stop signal for stopping the machining of.
  • a second pressure sensor SE2 is provided on the downstream side of the specific valve mechanism V7 installed in the specific branch pipe 7, and the control circuit 30 controls the specific valve mechanism V7 when the value of the second pressure sensor SE2 deviates downward from the second allowable pressure range. is configured to detect that the is blocked.
  • control circuit 30 When the control circuit 30 outputs the alarm signal, it outputs a stop signal for stopping the machining of the workpiece at least when the series of machining processes for the workpiece is completed.
  • control circuit 30 includes table data that defines a coolant discharge pressure and a liquid supply amount that are set in advance according to the combination of opening and closing of each valve mechanism provided in each branch pipe. It is configured to control the pressure and the amount of liquid supplied, and to control the opening and closing of each valve mechanism.
  • the method for supplying coolant to a machine tool supplies coolant from a coolant tank to a coolant supply pipe via a pump, and a plurality of branch pipes branched and connected to the coolant supply pipe and provided with a valve mechanism.
  • a coolant supply method for a machine tool that selectively supplies coolant to a plurality of supply destinations, including a machining part of a workpiece, through a coolant supply mechanism, which is installed in a specific branch pipe of a valve mechanism whose supply destination is at least the machining part of a workpiece.
  • a stop signal is output to stop machining the workpiece.
  • coolant tank 2 liquid supply pipe 4: header pipes 6 to 14: branch pipe 30: control circuit 100: coolant supply device P1; first liquid supply pump P2: second liquid supply pump P3: third liquid supply pump SE1 : First pressure sensor SE2: Second pressure sensor V6 to V12: Valve mechanism

Abstract

クーラントタンクからクーラントを供給するポンプと、第1圧力センサと、クーラントをワークの加工部を含む複数の供給先に供給する複数の分岐管及びバルブ機構と、前記ワークの加工部を供給先とする特定分岐管に設置した特定バルブ機構を開き、かつ、他のバルブ機構の少なくとも一つを閉じた特定供給状態で前記第1圧力センサの値が予め設定された第1許容圧力範囲から下方に逸脱した場合に、直ちに前記ワークの加工を停止する停止信号を出力する制御回路を備える。

Description

工作機械のクーラント供給装置及び工作機械のクーラント供給方法
 本発明は、工作機械のクーラント供給装置及び工作機械のクーラント供給方法に関する。
 特許文献1には、特別なセンサを設けることなく、異常状態を検出することができる高圧クーラント供給装置が開示されている。当該高圧クーラント供給装置はモータにより固定容量ポンプを駆動してタンクからクーラントをアタッチメントに供給するとともに、オンロード弁によって吐出クーラントのアタッチメントへの供給を制御するように構成されている。
 そして、指令値およびフィードバック値を入力として前記モータを制御するとともに、オンロード弁を制御する制御手段と、指令値およびフィードバック値を入力とし、モータの回転数が最低回転数と最高回転数との間の回転数であり、かつオンロード弁がオンされている状態において、負荷トルクが最低負荷トルクを下回ることを条件として異常状態を検出する異常状態検出手段を備えている。
 当該異常検出手段を備えることにより、空運転、アタッチメントの取付けの忘れ、配管破裂などを異常状態として検出することができる。
特開2004-160617号公報
 しかし、タンクに充填されたクーラントを、主軸クーラントや切屑流しクーラント、チップコンベヤの逆洗浄等の複数の供給先に給液する場合には、給液先に応じてモータの負荷トルクが異なるため、一律にモータの負荷トルクに基づいて異常を検出することは困難であった。
 また、給液先が加工精度に直接的な影響を及ぼす主軸クーラントでは、異常が発生すると直ちに機械を停止する必要があるが、加工精度に直接的な影響を及ぼさないチップコンベヤの逆洗浄などが給液先である場合には、生産性の低下を回避するために、異常が発生しても直ちに機械を停止したくない場合もある。
 本発明の目的は、タンクから複数の供給先にクーラントを給液する場合に、発生した異常に対する緊急度合に応じて適切に対処することができる工作機械のクーラント供給装置及び工作機械のクーラント供給方法を提供する点にある。
 この目的を達成するために本発明による工作機械のクーラント供給装置は、クーラントタンクからクーラントを給液するポンプと、前記ポンプから吐出されたクーラントを供給する給液管と、前記ポンプの吐出し側に設置した第1圧力センサと、前記第1圧力センサの設置位置より下流側で前記給液管から分岐し、ワークの加工部を含む複数の供給先にクーラントを供給する複数の分岐管と、各分岐管に設置され各供給先にクーラントを供給または停止するバルブ機構と、前記ポンプおよび各バルブ機構を制御する制御回路と、を備え、前記制御回路は、前記バルブ機構のうち少なくとも前記ワークの加工部を供給先とする特定分岐管に設置した特定バルブ機構を開き、かつ、他のバルブ機構の少なくとも一つを閉じた特定供給状態で前記第1圧力センサの値が予め設定された第1許容圧力範囲から下方に逸脱した場合に、直ちに前記ワークの加工を停止する停止信号を出力するように構成されていることを特徴とする。
 制御回路は、上述した特定供給状態で第1圧力センサの値が予め設定された第1許容圧力範囲から逸脱すると、各給液管に備えた何れかのバルブ機構に異常が生じていると判断できる。その際に、第1圧力センサの値が予め設定された第1許容圧力範囲から下方に逸脱していると、緊急度合が高い異常であると判断して、と判断して、ワークの加工を停止する停止信号を直ちに出力することで、ワークの加工部に必要量のクーラントが供給されないワークや工具の損傷を未然に防止する。
 また、本発明による工作機械のクーラント供給方法は、クーラントタンクからポンプを介して給液管にクーラントを給液し、前記給液管に分岐接続されバルブ機構を備えた複数の分岐管を介してワークの加工部を含む複数の供給先に選択的にクーラントを供給する工作機械のクーラント供給方法であって、前記バルブ機構のうち少なくとも前記ワークの加工部を供給先とする特定分岐管に設置した特定バルブ機構を開き、かつ、他のバルブ機構の少なくとも一つを閉じた特定供給状態で前記ポンプの吐出し側の圧力が予め設定された第1許容圧力範囲から下方に逸脱した場合に、直ちにワークの加工を停止することを特徴とする。
 本発明によれば、タンクから複数の供給先にクーラントを給液する場合に、発生した異常に対する緊急度合に応じて適切に対処することができる工作機械のクーラント供給装置及び工作機械のクーラント供給方法を提供することができるようになる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
図1(a)は、カバー体で覆われた加工空間に設置された工作機械の正面視の説明図、図1(b)は工作機械に隣接される段取ステーションの説明図である。 図2は、クーラント供給装置の配管説明図である。 図3は、クーラント供給装置に備えた制御回路の説明図である。 図4は、各分岐管に選択的にクーラントを供給する場合のポンプの動作点の説明図である。 図5は、クーラント供給方法を説明するフローチャートである。
 以下、図面に基づいて工作機械のクーラント供給装置及びクーラント供給方法を説明する。
 図1(a)には、カバー部材300で仕切られワークWを加工する加工空間に設置された工作機械200が示されている。工作機械200は、ベッド201と、ベッド201上の案内面に沿ってZ軸方向に移動するテーブル202と、テーブル202上で垂直姿勢のB軸周りに回転するパレット203と、ベッド201に垂設されたコラム204と、コラム204の案内面に沿ってX軸及びY軸方向に移動する主軸頭205とを備えた横形のマシニングセンタで構成されている。破線で示されているように、工作機械200の周囲がカバー部材300で被覆され、カバー部材300には開閉可能な扉(図示せず)が設けられている。
 サーボモータMZが駆動されるとベッド201上でテーブル202がZ軸方向の直動駆動軸に沿って移動し、サーボモータMBが駆動されるとテーブル202上でパレット203がB軸周りに回転し、サーボモータMXが駆動されるとコラム204上で主軸頭205がX軸方向の直動駆動軸に沿って移動し、サーボモータMYが駆動されるとコラム204上で主軸頭205がY軸方向の直動駆動軸に沿って移動する。
 主軸頭205に設けられた工具ホルダ206によって工具207が保持され、サーボモータMS1が駆動されると工具207が水平軸心周りに回転する。パレット203に設けたイケール等の治具により被加工物であるワークWが保持され、サーボモータMBが駆動されるとイケール等の治具によって保持されたワークWがパレット203とともにB軸に沿う垂直軸心周りに回転する。
 予め設定されたNCプログラムに基づいてNC装置が上述した各サーボモータを駆動することにより、ワークWと工具207が相対移動されてワークWが所望の形状に機械加工される。
 図1(a)に示す工作機械200の右側に位置する側壁に隣接して、段取ステーション250が設置されている。図1(b)に示すように、段取ステーション250では加工前のワークWや加工後のワークを収容する収容部が設けられ、加工前のワークWに対する前処理や、加工後のワークWに対する洗浄などの後処理が実行される。
 段取ステーション250は、カバー部材300に隣接したカバー部材350で仕切られ、カバー部材300,350の間には、各領域間でワークWを受け渡すための開閉シャッターが設けられている。また、段取ステーション250には、加工前のワークWを加工空間に搬入し、加工後のワークを加工空間から搬出するためのAPC(オートパレットチェンジャ)ユニットが設置されている。
 主軸頭205には、ワークWの加工部位に向けてクーラントを吐出するクーラントノズル220が設けられている。工具207によってワークWが機械加工される際の切削負荷を低減させるとともに、加工部位に生じる切削熱による温度上昇を抑制し、さらには加工部位に付着した切屑を除去することで高い加工精度を確保するべく、冷却及び洗浄用の流体であるクーラントが加工部位に向けて噴射される。
 図1には示していないが、加工により飛散した切屑を回収するために、カバー部材300の内壁やテーブル202に向けて、或いは段取ステーション250に収容されたワークWなどに向けてクーラントを吐出する複数のクーラント供給ノズルが設けられている。
 テーブル202の下方にはクーラントを回収するクーラント回収部208が設置され、機械加工に伴って発生する切屑がクーラントとともにクーラント回収部208に回収されるように構成されている。クーラント回収部208の底部にはチップコンベア209が配設され、クーラント回収部208に回収された切屑はチップコンベア209により機外に搬出されて回収容器212に回収される。
 クーラント回収部208に回収されたクーラントは、ドラムフィルタ208Fを介して切屑などの異物が除去された後に大容量のクーラントタンク1(図2参照。)に循環供給される。
 図2には、上述した工作機械200に組み込まれたクーラント供給装置100の配管経路図が示されている。
 クーラント供給装置100は、クーラントタンク1と、給液管2と、クーラントタンク1に充填されたクーラントを給液管2に吐出する第1給液ポンプP1と、第1給液ポンプP1で吐出されたクーラントを複数のクーラント供給先に分岐して供給する分岐管6~14、制御回路30(図3参照。)などを備えている。
 給液管2に供給されたクーラントは、ヘッダー管4を介して分岐管6~12に給液される。分岐管6は機内の側壁などに向けてシャワーリングする第1の給液経路であり、分岐管7はワークの加工部に配されたクーラントノズル220を供給先とする給液経路であり、分岐管8は治具洗浄などのために段取ステーション250へ給液する給液経路である。
 分岐管9は機内の側壁などに向けてシャワーリングする第2の給液経路であり、分岐管10はプロテクタービルトインクーラントへの給液経路であり、分岐管11は段取ステーションのオイルパンへの給液経路であり、分岐管12はテーブル横XYプロテクターへの給液経路であり、分岐管13は予備の給液経路であり、分岐管14はクーラントガンへの給液経路である。なお、分岐管10,11,12はヘッダー管4から分岐した1本の分岐管が3本に分岐されている。
 分岐管6~14には、ヘッダー管4側に電磁バルブでなるバルブ機構V6~V12が介装されている。バルブ機構V6~V12は後述の制御回路30により開閉制御されることで、各分岐管6~12へのクーラントの給液が許容または停止制御される。
 各分岐管6~14から給液されたクーラントは、最終的にクーラント回収部208に回収され、ドラムフィルタ208Fを介して切屑などの異物が除去された後に、給液ポンプP3によってクーラントタンク1に給液される。
 クーラントタンク1に給液されたクーラントの底部にはドラムフィルタ208Fで除去仕切れなかった異物が沈降するが、給液管2はクーラントタンク1の側壁で底部より上方位置に接続されているため、底部に沈降した異物が直ちに給液管2に吐出されることはない。
 クーラントタンク1の底部に沈降した異物は定期的または不定期に駆動される給液ポンプP2によってクーラントと共に循環路15を介して湿式サイクロンフィルタ22に供給され、異物が除去された後にクーラントタンク1に循環される。なお、湿式サイクロンフィルタ22で異物が除去されたクーラントは、クーラントタンク1とは異なる他のクーラントタンクに戻すように構成してもよい。
 給液管2には第1給液ポンプP1の下流側に第1圧力センサSE1が配置され、分岐管7にはバルブ機構V7の下流側に第2圧力センサSE2が配置されている。
 図3には、クーラント供給装置100に備えた制御回路30の回路図が示されている。制御回路30はCPU、CPUで実行される給液制御プログラムが記憶されたメモリ、入出力回路、通信回路などが搭載された制御基板で構成されている。
 制御回路30に備えた入出力回路に含まれる複数の出力ドライバ回路は、上述したバルブ機構V6からV12及び各給液ポンプP1,P2,P3が接続されている。また、入出力回路に含まれるA/Dコンバータでなる入力回路は、第1圧力センサSE1、第2圧力センサSE2の値が入力され、A/D変換された値がCPUに入力される。さらに、制御回路30と工作機械200の操作盤50とが通信線で接続され、操作盤50とNC装置70とが通信線で接続されている。
 オペレータによる操作盤50の操作を介してNC装置70及び制御回路30が起動される。予めプログラムされた手順に従ってNC装置70を介して工作機械がシーケンシャルに制御されるとともに、制御回路30を介して必要部位にクーラントが給液制御される。
 制御回路30に備えたメモリには、クーラントの給液に対する複数の動作モードを規定するデータが記憶されている。制御回路30は、オペレータが操作する制御盤50から指示される各動作モードに応じて第1給液ポンプP1やバルブ機構V6~V12を制御し、各制御状態で測定した第1圧力センサSE1または第2圧力センサSE2の値に基づいて異常であるか否かを診断する。
 制御回路30は診断した異常状態を操作盤50に送信し、操作盤50は受信した異常状態に応じて工作機械200を直ちに停止する必要がある場合にはNC装置70に停止信号を出力し、直ちに停止する必要がない場合にはアラートを鳴動させ、或いは操作盤50の操作画面にアラートを表示する。
 図4には、流量を横軸、必要揚程を縦軸に表わした第1給液ポンプP1の動作点が示されている。動作点1はチップコンベアを稼働させるモードで、流量150L/min、揚程31mに設定されている。動作点2は加工部にクーラントを供給して主軸を動作させるモードで、流量400L/min、揚程27mに設定されている。
 動作点3は動作点3の経済性を向上させるモードで、流量400L/min、揚程26mに設定されている。また、動作点4は流量150L/min、揚程13mに設定され、動作点5は流量200L/min、揚程30mに設定されている。
 つまり、制御回路30のメモリには、各分岐管に備えた各バルブ機構の開閉の組合せに応じて予め設定したクーラントの吐出圧力および給液量を規定するとともに、各組み合わせに応じて検出される圧力センサSE1,S2の許容圧力範囲を規定したテーブルデータが記憶され、制御回路30は、当該テーブルデータに基づいて第1給液ポンプP1の吐出圧力および給液量を制御するとともに各バルブ機構を開閉制御するように構成されている。なお、上述した各動作モード、流量、必要揚程は例示であり、これらの値に限るものではない。
 図5に示すように、制御盤50から起動指令を受けると、制御回路30は図4に示した複数の動作点の何れの動作点で制御する動作モードであるのかを起動指令に基づいて判定し(S1)、該当する動作モードに応じて給液ポンプを制御するとともに、バルブ機構V6~V12のうち、必要なバルブ機構が開放され、不要なバルブ機構は閉塞状態が維持される(S2)。さらに、第1圧力センサSE1、第2圧力センサSE2の値が読み込まれる(S3)。
 各動作モードに応じて第1圧力センサSE1の適性範囲、つまり第1許容圧力範囲が予め定められている。制御回路30は、第1圧力センサSE1の値が各動作モードに対して第1許容圧力範囲の下限を下回る低圧異常であるか、上限を上回る高圧異常であるか、適正範囲に収まる正常範囲であるかを判別する。
 低圧異常と判別され(S4,Y)、動作点が3または4、つまり加工部にクーラントを供給するモードである場合には(S5,Y)、何れかの経路で漏れが生じているため、圧力異常が検知され、機械を停止させなければならない時は、センサから圧力異常に関する信号が制御回路30に送信され、制御回路30が機械を停止させる。機械を停止させる時に、制御回路30からの信号によって各バルブV6~V12が閉塞される。なお、ノーマルクローズのバルブを使用する場合には、当該バルブへの電源遮断により自動閉塞させることも可能である。
 制御盤50は当該状態信号を受信すると、NC装置70に工作機械200を緊急停止させるべく停止信号を出力する(S6)。本実施形態では、加工部にクーラントを供給するモードである場合で少なくとも他のバルブ機構の少なくとも一つは閉塞されている。例えば、分岐管8に備えたバルブV8が閉塞されている。
 動作点が3または4以外である場合には(S5,N)、低圧異常である旨の状態信号を制御盤50に送信する。制御盤50は当該状態信号を受信すると、NC装置70に工作機械200を緊急停止させることなく表示部にアラートを表示するとともに、ブザーを鳴動させ、オペレータに注意を喚起する(S7)。
 その状態でワークの加工を継続し、所定の加工処理が終了して、ワークから工具が離れた状態になると(S8,Y)、制御回路30から停止信号が出力され、制御盤50は工作機械200を停止させる(S9)。また、所定の加工処理が終了するまでの間は(S8,N)、ステップS1に戻って同様の処理を繰り返す。所定の加工処理が終了とは、当該ワークに対する全ての加工プロセスの終了、または現在実行中の加工プロセスの終了の何れかを意味する。
 ステップS4で、低圧異常でなければ(S4,N)、高圧異常であるか否かを判定し、高圧異常であれば(S8,Y)、ステップS7のアラート処理を実行し、正常であれば(S8,N)、ステップS8以降の処理を実行する。
 加工部にクーラントを供給するモードで低圧異常となると、ワークや工具に損傷を来す虞があるために、工作機械200を緊急停止するのである。また、加工部にクーラントを供給するモードで高圧異常となる場合には、加工部にクーラントが適正に供給され、ワークの加工は適切に行える状態であるものの、他の給液先にクーラントが供給されていない状態と判断し、加工効率の低下を回避しながら、オペレータにアラートを発して注意を喚起するのである。
 なお、図5の説明ではステップS9で、第1圧力センサSE1の値のみに基づいて状態を判別する例を説明したが、第2圧力センサSE2の値を加味して状態を判別してもよい。具体的に、ステップS9で第1圧力センサSE1が第1許容圧力範囲を上回る高圧異常を示し、第2圧力センサSE2が第2許容圧力範囲よりも低い低圧異常を示すと、ステップS6の処理を実行するように構成するのである。第2圧力センサSE2の適性範囲つまり第2許容圧力範囲も予め設定されていることは言うまでもない。
 第2圧力センサSE2の値を参照する以外に、バルブ機構V7である電磁バルブの弁体の作動状態を検知する位置センサを備え、バルブ機構V7に対して開放指令を出力した場合に弁体が開放位置に切替わっているか否かを位置センサの値で確認してもよい。つまり、ステップS9で第1圧力センサSE1が高圧異常を示し、位置センサが閉塞位置を示している場合に、分岐管7に給液されていないと判断してステップS6の処理を実行するように構成するのである。
 バルブ機構V7は、通常、制御回路30からの駆動信号が入力されない状態で閉塞状態となるノーマルクローズ型の電磁バルブが用いられるが、制御回路30からの駆動信号が入力されない状態で開放状態となるノーマルオープン型の電磁バルブを採用すると、仮に制御信号線が断線したような場合でも加工部にクーラントを供給することができるようになる。
 以上説明したように、本発明を適用した工作機械のクーラント供給装置100は、クーラントタンク1からクーラントを給液する第1給液ポンプP1と、第1給液ポンプP1から吐出されたクーラントを供給する給液管2と、第1給液ポンプP1の吐出し側に設置した第1圧力センサSE1と、第1圧力センサSE1の設置位置より下流側で給液管2から分岐し、ワークの加工部を含む複数の供給先にクーラントを供給する複数の分岐管5~14と、各分岐管5~14に設置され各供給先にクーラントを供給または停止するバルブ機構V6~V12と、第1給液ポンプP1および各バルブ機構V6~V12を制御する制御回路30と、とを備えている。
 そして、制御回路30は、バルブ機構V6~V12のうち少なくともワークの加工部を供給先とする特定分岐管7に設置した特定バルブ機構V7を開き、かつ、他のバルブ機構の少なくとも一つを閉じた特定供給状態で第1圧力センサSE1の値が予め設定された第1許容圧力範囲から下方に逸脱した場合に、直ちにワークの加工を停止する停止信号を出力するように構成されている。
 なお、上述した例では、制御回路30とNC装置70とが別体で構成されているが、制御回路30がNC装置70に組み込まれて一体に構成されていてもよい。
 そして、制御回路30は、特定供給状態で第1圧力センサSE1の値が第1許容圧力範囲から上方に逸脱した場合に、停止信号を出力することなく警報信号を出力するように構成されている。特定分岐管7を介して加工部に適正にクーラントが供給されていると判断して、加工動作を継続するのである。
 さらに、制御回路30は、特定供給状態で第1圧力センサSE1の値が第1許容圧力範囲から上方に逸脱した場合であっても特定バルブ機構V7が閉塞状態であることを検知すると、直ちにワークの加工を停止する停止信号を出力するように構成されている。
 特定分岐管7に設置した特定バルブ機構V7の下流側に第2圧力センサSE2を備え、制御回路30は、第2圧力センサSE2の値が第2許容圧力範囲から下方に逸脱すると特定バルブ機構V7が閉塞状態であると検知するように構成されている。
 制御回路30は、警報信号を出力すると、少なくともワークに対する一連の加工プロセスの終了時にワークの加工を停止する停止信号を出力する。
 さらに、制御回路30は、各分岐管に備えた各バルブ機構の開閉の組合せに応じて予め設定したクーラントの吐出圧力および給液量を規定するテーブルデータを備え、テーブルデータに基づいてポンプの吐出圧力および給液量を制御するとともに各バルブ機構を開閉制御するように構成されている。
 以上説明したように、本発明による工作機械のクーラント供給方法は、クーラントタンクからポンプを介して給液管にクーラントを給液し、給液管に分岐接続されバルブ機構を備えた複数の分岐管を介してワークの加工部を含む複数の供給先に選択的にクーラントを供給する工作機械のクーラント供給方法であって、バルブ機構のうち少なくともワークの加工部を供給先とする特定分岐管に設置した特定バルブ機構を開き、かつ、他のバルブ機構の少なくとも一つを閉じた特定供給状態で前記ポンプの吐出し側の圧力が予め設定された第1許容圧力範囲から下方に逸脱した場合に、直ちにワークの加工を停止するように構成されている。
 また、特定供給状態でポンプの吐出し側の圧力が予め設定された第1許容圧力範囲から上方に逸脱した場合に、ワークの加工を停止することなく警報する。
 さらに、特定供給状態で第1許容圧力範囲から上方に逸脱した場合であっても、特定バルブ機構が閉塞状態であることを検知するとワークの加工を停止する。
 さらに、少なくともワークに対する一連の加工プロセスの終了時にワークの加工を停止する停止信号を出力する。
 以上、本発明の実施の形態、実施の態様を説明したが、開示内容は構成の細部において変化してもよく、実施の形態、実施の態様における要素の組合せや順序の変化等は請求された本発明の範囲および思想を逸脱することなく実現し得るものである。
 以上に説明したように、本発明により、発生した異常に対する緊急度合に応じて適切に対処することができる工作機械のクーラント供給装置が実現できる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
1:クーラントタンク
2:給液管
4:ヘッダー管
6~14:分岐管
30:制御回路
100:クーラント供給装置
P1;第1給液ポンプ
P2:第2給液ポンプ
P3:第3給液ポンプ
SE1:第1圧力センサ
SE2:第2圧力センサ
V6~V12:バルブ機構 

Claims (6)

  1.  クーラントタンクからクーラントを給液するポンプと、
     前記ポンプから吐出されたクーラントを供給する給液管と、
     前記ポンプの吐出し側に設置した第1圧力センサと、
     前記第1圧力センサの設置位置より下流側で前記給液管から分岐し、ワークの加工部を含む複数の供給先にクーラントを供給する複数の分岐管と、
     各分岐管に設置され各供給先にクーラントを供給または停止するバルブ機構と、
     前記ポンプおよび各バルブ機構を制御する制御回路と、
    を備え、
     前記制御回路は、前記バルブ機構のうち少なくとも前記ワークの加工部を供給先とする特定分岐管に設置した特定バルブ機構を開き、かつ、他のバルブ機構の少なくとも一つを閉じた特定供給状態で前記第1圧力センサの値が予め設定された第1許容圧力範囲から下方に逸脱した場合に、直ちに前記ワークの加工を停止する停止信号を出力し、前記特定供給状態で前記第1圧力センサの値が前記第1許容圧力範囲から上方に逸脱した場合に、前記停止信号を出力することなく警報信号を出力するように構成され、前記警報信号を出力すると、少なくとも前記ワークに対する一連の加工プロセスの終了時に前記ワークの加工を停止する停止信号を出力するように構成されている工作機械のクーラント供給装置。
  2.  前記制御回路は、前記特定供給状態で前記第1圧力センサの値が前記第1許容圧力範囲から上方に逸脱した場合であっても前記特定バルブ機構が閉塞状態であることを検知すると、直ちに前記ワークの加工を停止する停止信号を出力するように構成されている請求項1記載の工作機械のクーラント供給装置。
  3.  前記特定分岐管に設置した前記特定バルブ機構の下流側に第2圧力センサを備え、前記制御回路は、前記第2圧力センサの値が第2許容圧力範囲から下方に逸脱すると前記特定バルブ機構が閉塞状態であると検知するように構成されている請求項2記載の工作機械のクーラント供給装置。
  4.  前記制御回路は、各分岐管に備えた各バルブ機構の開閉の組合せに応じて予め設定したクーラントの吐出圧力および給液量を規定するテーブルデータを備え、前記テーブルデータに基づいて前記ポンプの吐出圧力および給液量を制御するとともに各バルブ機構を開閉制御するように構成されている請求項1から3の何れか1項に記載の工作機械のクーラント供給装置。
  5.  クーラントタンクからポンプを介して給液管にクーラントを給液し、前記給液管に分岐接続されバルブ機構を備えた複数の分岐管を介してワークの加工部を含む複数の供給先に選択的にクーラントを供給する工作機械のクーラント供給方法であって、
     前記バルブ機構のうち少なくとも前記ワークの加工部を供給先とする特定分岐管に設置した特定バルブ機構を開き、かつ、他のバルブ機構の少なくとも一つを閉じた特定供給状態で前記ポンプの吐出し側の圧力が予め設定された第1許容圧力範囲から下方に逸脱した場合に、直ちにワークの加工を停止し、前記特定供給状態で前記ポンプの吐出し側の圧力が予め設定された前記第1許容圧力範囲から上方に逸脱した場合に、前記ワークの加工を停止することなく警報し、少なくとも前記ワークに対する一連の加工プロセスの終了時に前記ワークの加工を停止する停止信号を出力する工作機械のクーラント供給方法。
  6.  前記特定供給状態で前記第1許容圧力範囲から上方に逸脱した場合であっても、前記特定バルブ機構が閉塞状態であることを検知すると前記ワークの加工を停止する請求項5記載の工作機械のクーラント供給方法。 
PCT/JP2022/024717 2021-06-29 2022-06-21 工作機械のクーラント供給装置及び工作機械のクーラント供給方法 WO2023276783A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021108150A JP7022243B1 (ja) 2021-06-29 2021-06-29 工作機械のクーラント供給装置及び工作機械のクーラント供給方法
JP2021-108150 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023276783A1 true WO2023276783A1 (ja) 2023-01-05

Family

ID=80997564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024717 WO2023276783A1 (ja) 2021-06-29 2022-06-21 工作機械のクーラント供給装置及び工作機械のクーラント供給方法

Country Status (2)

Country Link
JP (1) JP7022243B1 (ja)
WO (1) WO2023276783A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986943U (ja) * 1982-12-01 1984-06-12 リユ−ベ株式会社 液体噴射供給装置
JPS62130149A (ja) * 1985-11-28 1987-06-12 Okuma Mach Works Ltd ク−ラント及びエアブロ−の管理機能を有する工作機械
JPH0373249A (ja) * 1989-08-11 1991-03-28 Mitsui Seiki Kogyo Co Ltd 切削油圧力チェック回路構造
JPH1029132A (ja) * 1996-07-11 1998-02-03 Kayaba Ind Co Ltd 水溶性切削液の供給システム
JP2012200862A (ja) * 2011-03-23 2012-10-22 Messier-Bugatti-Dowty 工作機械用冷却装置の制御方法
JP2013193175A (ja) * 2012-03-21 2013-09-30 Mitsubishi Heavy Ind Ltd 冷却装置、加工装置、および、冷却油流量決定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986943U (ja) * 1982-12-01 1984-06-12 リユ−ベ株式会社 液体噴射供給装置
JPS62130149A (ja) * 1985-11-28 1987-06-12 Okuma Mach Works Ltd ク−ラント及びエアブロ−の管理機能を有する工作機械
JPH0373249A (ja) * 1989-08-11 1991-03-28 Mitsui Seiki Kogyo Co Ltd 切削油圧力チェック回路構造
JPH1029132A (ja) * 1996-07-11 1998-02-03 Kayaba Ind Co Ltd 水溶性切削液の供給システム
JP2012200862A (ja) * 2011-03-23 2012-10-22 Messier-Bugatti-Dowty 工作機械用冷却装置の制御方法
JP2013193175A (ja) * 2012-03-21 2013-09-30 Mitsubishi Heavy Ind Ltd 冷却装置、加工装置、および、冷却油流量決定方法

Also Published As

Publication number Publication date
JP7022243B1 (ja) 2022-02-17
JP2023005897A (ja) 2023-01-18

Similar Documents

Publication Publication Date Title
EP2070626B1 (en) Wire-cut electric discharge machine having water level abnormality detection function and water level abnormality alarm generation cause specifying method
CN112672849B (zh) 智能冷却剂泵
CN105436986A (zh) 一种设有冷却液装置及冷却液加热装置的数控机床
JP2009245007A (ja) 工作機械の制御装置及び方法
CN111451837A (zh) 机床的预防性维护系统
CN101633133B (zh) 机床和机床的气压切换方法
US9004991B2 (en) Temperature control apparatus of working machine
WO2023276783A1 (ja) 工作機械のクーラント供給装置及び工作機械のクーラント供給方法
JP2011148047A (ja) 工作機械の工具洗浄装置
JPS62130149A (ja) ク−ラント及びエアブロ−の管理機能を有する工作機械
US20240075574A1 (en) Machine Tool, Machine Tool Control Method, and Machine Tool Control Program
WO2023276859A1 (ja) 工作機械のクーラント予熱装置及び工作機械のクーラント予熱方法
JP2008284615A (ja) 工作機械におけるワーク冷却装置
US20230286096A1 (en) Machine tool and machine tool control system
WO2024029004A1 (ja) クーラント監視システム
WO2023021699A1 (ja) クーラント処理装置
WO2023100340A1 (ja) 工作液供給システム
KR20230140042A (ko) 공작기계용 쿨런트 칠러의 필터링 장치 및 필터링 방법
CN117980107A (en) Coolant treatment device and machine tool
WO2023218590A1 (ja) 制御装置、工作機械および制御方法
JP5982978B2 (ja) 工具折損検知装置、及び工作機械
WO2023021698A1 (ja) クーラント処理装置
KR20210123514A (ko) 공작기계의 쿨런트 공급 개선장치
JP4344419B2 (ja) 工作機械のクーラント装置
KR20230137165A (ko) 공작기계의 절삭유 분사 각도 제어장치 및 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE