WO2023276757A1 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
WO2023276757A1
WO2023276757A1 PCT/JP2022/024524 JP2022024524W WO2023276757A1 WO 2023276757 A1 WO2023276757 A1 WO 2023276757A1 JP 2022024524 W JP2022024524 W JP 2022024524W WO 2023276757 A1 WO2023276757 A1 WO 2023276757A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
current collector
lithium
positive electrode
electrode current
Prior art date
Application number
PCT/JP2022/024524
Other languages
English (en)
French (fr)
Inventor
洋平 内山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023531820A priority Critical patent/JPWO2023276757A1/ja
Priority to US18/574,244 priority patent/US20240322217A1/en
Priority to EP22832905.8A priority patent/EP4366017A1/en
Priority to CN202280045419.1A priority patent/CN117561627A/zh
Publication of WO2023276757A1 publication Critical patent/WO2023276757A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to lithium secondary batteries.
  • Non-aqueous electrolyte secondary batteries are used for applications such as ICT such as personal computers and smartphones, vehicles, and power storage. In such applications, the non-aqueous electrolyte secondary battery is required to have a higher capacity.
  • Lithium ion batteries are known as high-capacity non-aqueous electrolyte secondary batteries.
  • a high capacity lithium ion battery can be achieved by using, for example, graphite and an alloy active material such as a silicon compound together as a negative electrode active material.
  • increasing the capacity of lithium-ion batteries is reaching its limit.
  • a lithium secondary battery (lithium metal secondary battery) is promising as a high-capacity non-aqueous electrolyte secondary battery that exceeds that of lithium-ion batteries.
  • lithium metal is deposited on the negative electrode during charging, and this lithium metal dissolves in the non-aqueous electrolyte during discharging.
  • Patent Document 1 a positive electrode having a positive electrode active material made of a lithium-containing transition metal oxide, a negative electrode current collector, and a negative electrode on which lithium metal is deposited on the negative electrode current collector during charging, and between the positive electrode and the negative electrode
  • a non-aqueous electrolyte secondary battery comprising a separator arranged in a non-aqueous electrolyte, wherein the molar ratio of the total amount of lithium in the positive electrode and the negative electrode to the amount of transition metal contained in the positive electrode is 1.1 or less
  • There is a space layer between the negative electrode and the separator in a discharged state and the positive electrode capacity ⁇ (mAh/cm 2 ) per unit area of the positive electrode and the average thickness X ( ⁇ m) of the space layer
  • a non-aqueous electrolyte secondary battery has been proposed that satisfies 0.05 ⁇ /X ⁇ 0.2.
  • the negative electrode current collector breaks during charging and discharging, and the cycle characteristics deteriorate.
  • One aspect of the present disclosure includes a positive electrode including a positive electrode active material capable of intercalating and deintercalating lithium ions, a negative electrode including a negative electrode current collector, a separator disposed between the positive electrode and the negative electrode, and a lithium ion conductive material.
  • a non-aqueous electrolyte having a specific property wherein the negative electrode deposits lithium metal during charging, and the lithium metal dissolves during discharging, and the negative electrode current collector contains austenitic stainless steel.
  • FIG. 1 is a vertical cross-sectional view schematically showing a lithium secondary battery according to an embodiment of the present disclosure
  • FIG. 2 is an enlarged cross-sectional view of region II in FIG. 1
  • FIG. 2 is an enlarged cross-sectional view of region III in FIG. 1;
  • An embodiment of the present disclosure relates to a lithium secondary battery (lithium metal secondary battery) using lithium metal as a negative electrode active material. That is, the lithium secondary battery according to the embodiment of the present disclosure is arranged between a positive electrode including a positive electrode active material capable of intercalating and deintercalating lithium ions, a negative electrode including a negative electrode current collector, and the positive electrode and the negative electrode. It comprises a separator and a non-aqueous electrolyte having lithium ion conductivity. In the negative electrode, lithium metal is deposited during charging, and the lithium metal is dissolved during discharging.
  • the negative electrode of the lithium secondary battery according to the present disclosure is different from the negative electrode in which electron movement in the negative electrode during charging and discharging is mainly due to the absorption and release of lithium ions by the negative electrode active material (such as graphite).
  • the negative electrode of the lithium secondary battery according to the present disclosure may not contain a negative electrode active material (such as graphite) that absorbs and releases lithium ions.
  • the open circuit voltage (OCV: Open Circuit Voltage) of the negative electrode when fully charged is, for example, 70 mV or less with respect to lithium metal (lithium dissolution deposition potential).
  • a fully charged state is a state in which the battery is charged to a state of charge (SOC) of, for example, 0.98 ⁇ C or more, where C is the rated capacity of the battery.
  • SOC state of charge
  • the open circuit potential (OCV) of the negative electrode when fully charged can be measured by disassembling a fully charged battery in an argon atmosphere, taking out the negative electrode, and assembling a cell using lithium metal as a counter electrode.
  • the non-aqueous electrolyte of the cell may be of the same composition as the non-aqueous electrolyte in the disassembled battery.
  • “swelling of the negative electrode” means an increase in the total volume of the volume of the negative electrode and the volume of the deposited lithium metal.
  • the amount of expansion is further increased. As a result, stress is likely to occur in the negative electrode.
  • the inventors diligently studied the factors that cause the negative electrode current collector to rupture during charging and discharging. As a result, the inventors obtained new knowledge that the negative electrode current collector becomes embrittled with repeated charging and discharging, and that the stress generated in the negative electrode and the embrittlement of the negative electrode current collector are the factors that cause the negative electrode current collector to fracture. According to SEM observation, at the fractured portion of the negative electrode current collector, deformation in the ductile direction of the crystal grains when the negative electrode current collector is stretched and fractured and almost no tapering deformation of the negative electrode current collector are observed, and brittle fracture is exhibited. It became clear for the first time that
  • the inventors of the present invention further conducted extensive studies focusing on the crystal structure of stainless steel (ferrite, austenite, and martensite with different slip planes, etc.), and found that austenite has the effect of suppressing the embrittlement of the negative electrode current collector. We newly found that .
  • the negative electrode current collector contains austenitic stainless steel. In this case, embrittlement of the negative electrode current collector is suppressed, the negative electrode current collector has appropriate strength and flexibility, and a negative electrode current collector having excellent resistance to stress generated in the negative electrode can be obtained. As a result, it is possible to suppress the occurrence of fracture of the negative electrode current collector during charging and discharging and the accompanying decrease in cycle characteristics.
  • the above "austenitic stainless steel” means stainless steel with an austenite rate of 50% or more.
  • the austenite ratio means the ratio (mass ratio) of the austenite phase in the stainless steel.
  • the austenite ratio is calculated by ⁇ x/(x+y+z) ⁇ 100, where x, y, and z are the contents of the austenite phase, ferrite phase, and martensite phase in the stainless steel.
  • the austenite structure has a face-centered cubic lattice structure (FCC structure), and the ferrite structure and martensite structure have a body-centered cubic lattice structure (BCC structure).
  • the austenite rate may be 70% or more, 90% or more, or 100%.
  • the austenite rate can be obtained by the following method. Prepare a negative electrode current collector (stainless steel foil) sample (for example, size: 25 mm square), perform X-ray diffraction (XRD) measurement using a two-dimensional detection function for the sample, and obtain an XRD pattern (vertical axis: X-ray Diffraction intensity, horizontal axis: diffraction angle 2 ⁇ ) are obtained.
  • the size of the measurement area (minute portion) is, for example, 15 mm square.
  • Desirable XRD measurement conditions are shown below.
  • Tube Co Monochromatic: Use a monochromator (CoK ⁇ ) Tube output: 40kV-30mA
  • the XRD pattern may have diffraction peaks corresponding to at least one of the austenite, ferrite, and martensite phases.
  • the analysis can be performed using software attached to the analyzer. Through the analysis, the ratio (mass ratio) of the austenite phase to the total of the austenite phase, ferrite phase, and martensite phase is determined as the austenite ratio. Several measurement regions are arbitrarily selected from the sample, the austenite ratio in each measurement region is determined, and the average value thereof is calculated.
  • the negative electrode current collector preferably has a breaking strength of 850 MPa or less and a breaking elongation of 3% or more. In this case, it is easy to obtain a negative electrode current collector that has good strength and flexibility and is excellent in resistance to stress generated in the negative electrode.
  • an austenitic stainless steel foil may be heat treated to obtain a breaking strength and breaking elongation within the above ranges. In general, heat treatment tends to increase grain size due to recrystallization, reduce strength, and improve elongation at break.
  • the breaking strength of the negative electrode current collector may be 700 MPa or less, or 650 MPa or less. From the viewpoint of improving the reliability of battery production, the breaking strength of the negative electrode current collector may be 400 MPa or more.
  • the range of the breaking strength may be a range in which the above upper limit and lower limit are arbitrarily combined.
  • the breaking elongation of the negative electrode current collector may be 5% or more, or may be 10% or more. From the viewpoint of improving the reliability of battery production, the elongation at break of the negative electrode current collector may be 60% or less.
  • the range of elongation at break may be a range in which the above upper limit and lower limit are arbitrarily combined.
  • breaking strength tensile strength
  • breaking elongation are obtained in accordance with JIS Z 2241 (metal material tensile test method).
  • JIS Z 2241 metal material tensile test method.
  • the measurement of elongation at break requires a skillful technique, and it is desirable that the measurement be performed at an institution with a proven track record.
  • the ratio of the thickness Y of the separator to the thickness X of the negative electrode current collector may be 2.5 or more, 3 or more, or 4 or more.
  • Y/X is, for example, 5 or less.
  • the range of Y/X may be a range in which the above upper limit and lower limit are arbitrarily combined.
  • the thickness Y of the separator refers to the thickness of the separator before forming the electrode group (before housing the electrode group in the battery case).
  • Y is the sum of the thicknesses of the plurality of materials.
  • Y is the maximum value of the thickness.
  • the region where the separator has thickness Y (maximum value) has an area of, for example, 20% to 80% of the total area of the separator facing the negative electrode.
  • the thickness X of the negative electrode current collector is, for example, 5 ⁇ m or more and 30 ⁇ m or less.
  • the cycle characteristics are greatly improved.
  • Y/X satisfies 2.5 or more (when the separator has a thickness of 2.5 times or more the thickness of the negative electrode current collector)
  • the expansion of the negative electrode (expansion of dendrites) during charging is buffered by the separator.
  • the stress generated in the negative electrode (negative electrode current collector) is relaxed.
  • Austenitic stainless steel suppresses embrittlement of the negative electrode current collector, improves resistance to stress generated in the negative electrode, and relieves stress generated in the negative electrode (negative electrode current collector) when Y/X is 2.5 or more. Together with this, the effect of improving the cycle characteristics can be obtained remarkably. If the austenite ratio is less than 50%, the negative electrode current collector is more likely to be ruptured, and if Y/X is 2.5 or more, the effect of relaxing the stress generated in the negative electrode is less likely to be exhibited.
  • the thickness X of the negative electrode current collector is obtained by measuring the thickness of the negative electrode current collector at arbitrary 10 points using a scanning electron microscope (SEM) and calculating the average value thereof.
  • the thickness Y of the separator is similarly obtained. When the separator has a plurality of regions with different thicknesses, the thickness of ten arbitrary points in the region having the maximum thickness may be measured, and the average value thereof may be calculated.
  • the negative electrode has a negative electrode current collector.
  • lithium metal deposits on the surface of the negative electrode during charging. More specifically, lithium ions contained in the non-aqueous electrolyte receive electrons on the negative electrode current collector during charging to become lithium metal, which is deposited on the surface of the negative electrode current collector. Lithium metal deposited on the surface of the negative electrode current collector dissolves as lithium ions in the non-aqueous electrolyte due to discharge.
  • the lithium ions contained in the non-aqueous electrolyte may be derived from the lithium salt added to the non-aqueous electrolyte, or may be supplied from the positive electrode active material during charging. There may be.
  • the negative electrode current collector is usually an austenitic stainless steel foil (sheet).
  • Austenitic stainless steel may contain, for example, C, Si, Mn, P, S, Ni, Cr, Mn, Mo, Cu, N, etc., as components other than Fe.
  • the stainless steel may be a low-carbon, ultra-low-carbon, or nitrogen-added stainless steel, or may be a duplex stainless steel containing austenite.
  • austenitic stainless steel examples include SUS301, SUS302, SUS303, SUS304, SUS305, SUS309, SUS310, SUS312, SUS315, SUS316L, SUS317, SUS321, and SUS347. Among them, SUS304 and SUS316L are preferable.
  • the austenite fraction can be measured by the XRD method, but can also be estimated by Schaeffler's organization chart, which shows the relationship between ferrite-stabilizing elements, austenite-stabilizing elements, and the organization.
  • the structure chart shows the structure ratio with the ferrite stabilizing element and the austenite stabilizing element on both axes.
  • the vertical axis of the organization chart indicates the Ni equivalent, and the horizontal axis indicates the Cr equivalent.
  • a lithium metal sheet may be placed in advance on the surface of the negative electrode current collector before the initial charge.
  • the lithium metal sheet is formed, for example, by attaching lithium metal to the surface of the negative electrode current collector and then electrodepositing or vapor-depositing the same.
  • a negative electrode mixture layer may be formed on the surface of the negative electrode current collector. In this case, the negative electrode mixture layer is formed so thin that lithium metal can be deposited on the negative electrode during charging.
  • the negative electrode mixture layer is formed by applying a negative electrode mixture slurry containing a negative electrode active material such as graphite onto the surface of the negative electrode current collector.
  • the thickness of the lithium metal sheet (or negative electrode mixture layer) is not particularly limited, and is, for example, 3 to 300 ⁇ m.
  • the lithium metal sheet (negative electrode mixture layer) may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces of the negative electrode current collector.
  • the surface of the negative electrode current collector may be smooth. This facilitates uniform deposition of lithium metal derived from the positive electrode on the negative electrode current collector during charging.
  • Smooth means that the maximum height roughness Rz of the negative electrode current collector is 20 ⁇ m or less.
  • the maximum height roughness Rz of the negative electrode current collector may be 10 ⁇ m or less.
  • the maximum height roughness Rz is measured according to JIS B 0601:2013.
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode mixture layer supported by the positive electrode current collector.
  • the positive electrode mixture layer includes, for example, a positive electrode active material, a conductive material, and a binder.
  • the positive electrode mixture layer may be formed only on one side of the positive electrode current collector, or may be formed on both sides.
  • the positive electrode is obtained, for example, by applying a positive electrode mixture slurry containing a positive electrode active material, a conductive material, and a binder on both sides of a positive electrode current collector, drying the coating film, and then rolling.
  • a positive electrode active material is a material that absorbs and releases lithium ions.
  • positive electrode active materials include lithium-containing transition metal oxides, transition metal fluorides, polyanions, fluorinated polyanions, and transition metal sulfides. Among them, lithium-containing transition metal oxides are preferable in terms of low production cost and high average discharge voltage.
  • the transition metal elements contained in the lithium-containing transition metal oxide include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, W, and the like.
  • the lithium-containing transition metal oxide may contain one or more transition metal elements.
  • the transition metal elements may be Co, Ni and/or Mn.
  • the lithium-containing transition metal oxide may contain one or more main group elements as needed. Typical elements include Mg, Al, Ca, Zn, Ga, Ge, Sn, Sb, Pb, and Bi. A typical element may be Al or the like.
  • the conductive material is, for example, a carbon material.
  • carbon materials include carbon black, acetylene black, ketjen black, carbon nanotubes, and graphite.
  • binders include fluorine resins, polyacrylonitrile, polyimide resins, acrylic resins, polyolefin resins, and rubber-like polymers.
  • fluororesins include polytetrafluoroethylene and polyvinylidene fluoride.
  • Foil, film, etc. are used for the positive electrode current collector.
  • a carbon material may be applied to the surface of the positive electrode current collector.
  • Examples of the material of the positive electrode current collector include metal materials containing Al, Ti, Fe, and the like.
  • the metal material may be Al, Al alloy, Ti, Ti alloy, Fe alloy, or the like.
  • the Fe alloy may be stainless steel (SUS).
  • the thickness of the positive electrode current collector is not particularly limited, and is, for example, 5 ⁇ m or more and 30 ⁇ m or less.
  • a porous sheet having ion permeability and insulation is used for the separator.
  • porous sheets include thin films, woven fabrics, and non-woven fabrics having microporosity.
  • the material of the separator is not particularly limited, but may be a polymer material.
  • polymeric materials include olefin resins, polyamide resins, and cellulose.
  • olefin resins include polyethylene, polypropylene, and copolymers of ethylene and propylene.
  • a separator may also contain an additive as needed. An inorganic filler etc. are mentioned as an additive.
  • the separator may be composed of multiple layers that differ in morphology and/or composition.
  • a non-aqueous electrolyte having lithium ion conductivity includes, for example, a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte may be liquid or gel.
  • a liquid non-aqueous electrolyte is prepared by dissolving a lithium salt in a non-aqueous solvent. Lithium ions and anions are generated by dissolving the lithium salt in the non-aqueous solvent.
  • a gel-like non-aqueous electrolyte contains a lithium salt and a matrix polymer, or a lithium salt, a non-aqueous solvent and a matrix polymer.
  • the matrix polymer for example, a polymer material that gels by absorbing a non-aqueous solvent is used. Examples of polymer materials include fluorine resins, acrylic resins, polyether resins, and the like.
  • lithium salt or anion known ones used for non-aqueous electrolytes of lithium secondary batteries can be used. Specific examples include BF 4 ⁇ , ClO 4 ⁇ , PF 6 ⁇ , CF 3 SO 3 ⁇ , CF 3 CO 2 ⁇ , anions of imides, and anions of oxalate complexes.
  • the anion of the oxalate complex may contain boron and/or phosphorus.
  • the anion of the oxalate complex includes bisoxalate borate anion, BF 2 (C 2 O 4 ) ⁇ , PF 4 (C 2 O 4 ) ⁇ , PF 2 (C 2 O 4 ) 2 ⁇ and the like.
  • the non-aqueous electrolyte may contain these anions singly or in combination of two or more.
  • the non-aqueous electrolyte preferably contains at least an anion of an oxalate complex. Due to the interaction between the anion of the oxalate complex and lithium, the lithium metal is easily precipitated uniformly in the form of fine particles. Therefore, it becomes easier to suppress local deposition of lithium metal. You may combine the anion of an oxalate complex with another anion. Other anions may be PF 6 - and/or imide class anions.
  • non-aqueous solvents examples include ester compounds, ether compounds, nitrile compounds, and amide compounds. These compounds include halogen-substituted compounds and the like. Fluoride etc. are mentioned as a halogen substitution body.
  • the non-aqueous electrolyte may contain one of these non-aqueous solvents, or two or more of them.
  • the non-aqueous solvent may contain an ether compound as a main component.
  • the term "main component" as used herein means that the content of the ether compound in the non-aqueous solvent is 50% by mass or more, and may be 80% by mass or more. Moreover, the content of the ether compound in the non-aqueous solvent may be 95% by mass or less, or may be 100% by mass or less.
  • the range of the content of the ether compound in the non-aqueous solvent may be a range in which the above upper limit and lower limit are arbitrarily combined.
  • the ether compound has excellent stability (especially resistance to reduction), suppresses the formation of decomposition products on the surface of the negative electrode current collector, and has little effect on the negative electrode current collector.
  • a non-aqueous electrolyte containing an ether compound as a main component is used for a negative electrode current collector containing austenitic stainless steel, the embrittlement suppression of the negative electrode current collector can significantly improve cycle characteristics. If the austenite ratio is less than 50%, the negative electrode current collector is more likely to be fractured, and the effect of the ether compound is less likely to be exhibited.
  • Ether compounds include cyclic ethers and chain ethers.
  • Cyclic ethers include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran and the like.
  • Chain ethers include 1,2-dimethoxyethane, diethyl ether, ethyl vinyl ether, methylphenyl ether, benzyl ethyl ether, diphenyl ether, dibenzyl ether, 1,2-diethoxyethane, diethylene glycol dimethyl ether, 1,1,2, 2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether and the like.
  • 1,2-dimethoxyethane and 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether are preferable from the viewpoint of suppressing embrittlement of the negative electrode current collector.
  • ester compounds include carbonic acid esters and carboxylic acid esters.
  • cyclic carbonates include ethylene carbonate and propylene carbonate.
  • Chain carbonic acid esters include dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate and the like.
  • Cyclic carboxylic acid esters include ⁇ -butyrolactone, ⁇ -valerolactone and the like.
  • chain carboxylic acid esters include ethyl acetate, methyl propionate, and methyl fluoropropionate.
  • the concentration of the lithium salt in the non-aqueous electrolyte is, for example, 0.5 mol/L or more and 3.5 mol/L or less.
  • the anion concentration in the non-aqueous electrolyte may be 0.5 mol/L or more and 3.5 mol/L or less.
  • the concentration of the anion of the oxalate complex in the non-aqueous electrolyte may be 0.05 mol/L or more and 1 mol/L or less.
  • the non-aqueous electrolyte may contain additives.
  • the additive may form a film on the negative electrode. Formation of the film derived from the additive on the negative electrode facilitates suppression of the formation of dendrites.
  • examples of such additives include vinylene carbonate, fluoroethylene carbonate (FEC), vinyl ethyl carbonate (VEC), and the like.
  • lithium secondary battery lithium secondary battery
  • the configuration of the lithium secondary battery according to the present disclosure will be described with reference to the drawings, taking a cylindrical battery including a wound electrode group as an example.
  • the present disclosure is not limited to the following configurations.
  • FIG. 1 is a vertical cross-sectional view schematically showing an example of a lithium secondary battery according to an embodiment of the present disclosure.
  • FIG. 2 is an enlarged view of a portion (a portion including the positive electrode) surrounded by region II in FIG.
  • FIG. 3 is an enlarged view of a portion (part including the negative electrode) surrounded by region III in FIG.
  • each figure is shown schematically, and the ratio of the dimension (for example, thickness) of each component may be different from the actual one.
  • the lithium secondary battery 10 includes a cylindrical battery case, a wound electrode group 14 housed in the battery case, and a non-aqueous electrolyte (not shown).
  • the electrode group 14 is configured by winding a strip-shaped positive electrode 11 and a strip-shaped negative electrode 12 with a separator 13 interposed between the positive electrode 11 and the negative electrode 12 .
  • the negative electrode 12 is composed of a negative electrode current collector.
  • the negative electrode 12 (negative electrode current collector) has a thickness X and faces the separator 13 having a thickness Y. Note that the thickness Y in FIG. 3 indicates the thickness of the separator 13 before housing the electrode group 14 in the case body 15 .
  • the negative electrode 12 is composed only of the negative electrode current collector.
  • the negative electrode may be configured by supporting the negative electrode mixture layer on the surface of the electric body.
  • the negative electrode 12 is electrically connected via a negative electrode lead 20 to a case body 15 that also serves as a negative electrode terminal.
  • One end of the negative electrode lead 20 is connected to, for example, a longitudinal end of the negative electrode 12 , and the other end is welded to the inner bottom surface of the case body 15 .
  • the positive electrode 11 includes a positive electrode current collector 30 and a positive electrode mixture layer 31, and is electrically connected via a positive electrode lead 19 to a cap 26 that also serves as a positive electrode terminal.
  • One end of the positive electrode lead 19 is connected, for example, near the center of the positive electrode 11 in the longitudinal direction.
  • a positive electrode lead 19 extending from the positive electrode 11 extends to the filter 22 through a through hole (not shown) formed in the insulating plate 17 .
  • the other end of the positive electrode lead 19 is welded to the surface of the filter 22 on the electrode group 14 side.
  • the battery case is composed of a case body 15 which is a bottomed cylindrical metal container and a sealing member 16 which seals the opening of the case body 15 .
  • a gasket 27 is arranged between the case main body 15 and the sealing member 16 to ensure the airtightness of the battery case.
  • Insulating plates 17 and 18 are arranged at both ends of the electrode group 14 in the winding axis direction in the case main body 15 .
  • the case body 15 has, for example, a stepped portion 21 formed by partially pressing the side wall of the case body 15 from the outside.
  • the stepped portion 21 may be annularly formed on the side wall of the case body 15 along the circumferential direction of the case body 15 .
  • the sealing member 16 is supported by the surface of the stepped portion 21 on the opening side.
  • the sealing body 16 includes a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25 and a cap 26. In the sealing member 16, these members are laminated in this order.
  • the sealing member 16 is attached to the opening of the case body 15 so that the cap 26 is positioned outside the case body 15 and the filter 22 is positioned inside the case body 15 .
  • Each of the members constituting the sealing member 16 is, for example, disk-shaped or ring-shaped.
  • the lower valve body 23 and the upper valve body 25 are connected to each other at their central portions, and an insulating member 24 is interposed between their peripheral edge portions.
  • the filter 22 and the lower valve body 23 are connected to each other at their peripheral edges.
  • the upper valve body 25 and the cap 26 are connected to each other at their peripheral edge portions. That is, each member except the insulating member 24 is electrically connected to each other.
  • a ventilation hole (not shown) is formed in the lower valve body 23 . Therefore, when the internal pressure of the battery case rises due to abnormal heat generation or the like, the upper valve body 25 swells toward the cap 26 side and separates from the lower valve body 23 . Thereby, the electrical connection between the lower valve body 23 and the upper valve body 25 is cut off. When the internal pressure further increases, the upper valve body 25 is broken, and gas is discharged from an opening (not shown) formed in the cap 26 .
  • a cylindrical lithium secondary battery has been described, but the present embodiment can be applied without being limited to this case.
  • the shape of the lithium secondary battery can be appropriately selected from various shapes such as a cylindrical shape, a coin shape, a rectangular shape, a sheet shape, a flat shape, etc., depending on the application.
  • a wound electrode group configured by winding a positive electrode and a negative electrode with a separator interposed therebetween is shown. It may also be a stacked electrode group configured by stacking via layers.
  • known ones can be used without particular limitation.
  • NCA positive electrode Lithium-containing transition metal oxide containing Li, Ni, Co and Al
  • AB positive electrode active material
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the obtained positive electrode mixture slurry was applied to both surfaces of an Al foil functioning as a positive electrode current collector, dried, and a coating film of the positive electrode mixture was rolled using a roller. Finally, the obtained laminate of the positive electrode current collector and the positive electrode mixture was cut into a predetermined electrode size to prepare a positive electrode having positive electrode mixture layers on both sides of the positive electrode current collector.
  • E1 SUS304 modified 2 (Ni content: 5% by mass)
  • E2 SUS304 modified 1 (Ni content: 6.5% by mass)
  • E3 SUS304
  • E4 SUS316
  • SUS316L SUS316L
  • Non-Aqueous Electrolyte LiPF 6 and LiBF 2 (C 2 O 4 ) were dissolved to 1 mol/L and 0.1 mol/L of LiBF 2 (C 2 O 4 ), respectively, in a non-aqueous solvent to form a liquid non-aqueous electrolyte.
  • a water electrolyte was prepared.
  • Table 1 in the ether-based non-aqueous electrolyte, 1,2-dimethoxyethane and 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether were used as non-aqueous solvents.
  • dimethyl carbonate was used as the non-aqueous solvent.
  • Table 1 shows the evaluation results.
  • the discharge capacity at 100 cycles of each battery is shown as a relative value when the discharge capacity at 100 cycles of E1 is 100.
  • E1 to E6 with an austenite rate of 50% or more had a higher discharge capacity at 100 cycles and improved cycle characteristics than C1 to C4 with an austenite rate of less than 50%.
  • E4 using an ether-based non-aqueous electrolyte has further improved cycle characteristics compared to E3 using a carbonate-based non-aqueous electrolyte.
  • C2 to C3 with an austenite rate of less than 50% are compared
  • C3 using an ether-based non-aqueous electrolyte shows no improvement in cycle characteristics compared to C2 using a carbonate-based non-aqueous electrolyte. I didn't. From the above, it was shown that when an ether-based non-aqueous electrolyte is used for a negative electrode current collector having an austenite ratio of 50% or more, the effect of improving cycle characteristics is significantly obtained.
  • the lithium secondary battery of the present disclosure can be used for electronic devices such as mobile phones, smartphones, and tablet terminals, electric vehicles including hybrids and plug-in hybrids, household storage batteries combined with solar cells, and the like. While the invention has been described in terms of presently preferred embodiments, such disclosure is not to be construed in a limiting sense. Various alterations and modifications will no doubt become apparent to those skilled in the art to which the invention pertains after reading the above disclosure. Therefore, the appended claims are to be interpreted as covering all variations and modifications without departing from the true spirit and scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

開示されるリチウム二次電池(10)は、リチウムイオンを吸蔵および放出可能な正極活物質を含む正極(11)と、負極集電体を備える負極(12)と、正極(11)と負極(12)との間に配置されるセパレータ(13)と、リチウムイオン伝導性を有する非水電解質と、を備える。負極では、充電時にリチウム金属が析出し、放電時に当該リチウム金属が溶解する。負極集電体は、オーステナイト系ステンレス鋼を含む。

Description

リチウム二次電池
 本開示は、リチウム二次電池に関する。
 非水電解質二次電池は、パソコンおよびスマートフォン等のICT用、車載用、ならびに蓄電用等の用途に用いられている。このような用途において、非水電解質二次電池には、さらなる高容量化が求められる。高容量の非水電解質二次電池としては、リチウムイオン電池が知られている。リチウムイオン電池の高容量化は、負極活物質として、例えば、黒鉛とケイ素化合物等の合金活物質とを併用することにより達成され得る。しかし、リチウムイオン電池の高容量化は限界に達しつつある。
 リチウムイオン電池を超える高容量の非水電解質二次電池としては、リチウム二次電池(リチウム金属二次電池)が有望である。リチウム二次電池では、充電時に、負極にリチウム金属が析出し、このリチウム金属が放電時に非水電解質中に溶解する。
 特許文献1では、リチウム含有遷移金属酸化物からなる正極活物質を有する正極と、負極集電体を有し、充電時に負極集電体上にリチウム金属が析出する負極と、正極及び負極の間に配置されたセパレータと、非水電解質と、を備える非水電解質二次電池であって、正極及び負極が有するリチウムの総量の、正極に含まれる遷移金属量に対するモル比が1.1以下であり、放電状態において、負極とセパレータとの間に空間層を有し、且つ、正極の単位面積当たりの正極容量α(mAh/cm)と、空間層の厚さの平均値X(μm)とが、0.05≦α/X≦0.2を満たす、非水電解質二次電池が提案されている。
国際公開第2019/087709号パンフレット
 充放電時に負極集電体に断裂が生じ、サイクル特性が低下する。
 本開示の一側面は、リチウムイオンを吸蔵および放出可能な正極活物質を含む正極と、負極集電体を備える負極と、前記正極と前記負極との間に配置されるセパレータと、リチウムイオン伝導性を有する非水電解質と、を備え、前記負極では、充電時にリチウム金属が析出し、放電時に前記リチウム金属が溶解し、前記負極集電体は、オーステナイト系ステンレス鋼を含む、リチウム二次電池に関する。
 本開示によれば、リチウム二次電池のサイクル特性の低下を抑制することができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示の一実施形態に係るリチウム二次電池を模式的に示す縦断面図である。 図1中の領域IIの拡大断面図である。 図1中の領域IIIの拡大断面図である。
 本開示の実施形態は、リチウム金属を負極活物質として用いるリチウム二次電池(リチウム金属二次電池)に関する。すなわち、本開示の実施形態に係るリチウム二次電池は、リチウムイオンを吸蔵および放出可能な正極活物質を含む正極と、負極集電体を備える負極と、正極と負極との間に配置されるセパレータと、リチウムイオン伝導性を有する非水電解質と、を備える。負極では、充電時にリチウム金属が析出し、放電時に当該リチウム金属が溶解する。
 リチウム二次電池では、定格容量の例えば70%以上がリチウム金属の析出と溶解により発現する。充電時および放電時の負極における電子の移動は、主に負極におけるリチウム金属の析出および溶解による。具体的には、充電時および放電時の負極における電子の移動(別の観点では電流)の70~100%(例えば80~100%や90~100%)がリチウム金属の析出および溶解による。すなわち、本開示に係るリチウム二次電池の負極は、充電時および放電時の負極における電子の移動が主に負極活物質(黒鉛など)によるリチウムイオンの吸蔵および放出による負極とは異なる。例えば、本開示に係るリチウム二次電池の負極は、リチウムイオンを吸蔵および放出する負極活物質(黒鉛など)を含まなくてもよい。
 充電時に負極においてリチウム金属を析出させる電池では、満充電時における負極の開回路電位(OCV:Open Circuit Voltage)は、リチウム金属(リチウムの溶解析出電位)に対して、例えば70mV以下である。満充電時とは、電池の定格容量をCとするとき、例えば0.98×C以上の充電状態(SOC:State of Charge)となるまで電池を充電した状態である。満充電時における負極の開回路電位(OCV)は、満充電状態の電池をアルゴン雰囲気下で分解して負極を取り出し、リチウム金属を対極としてセルを組み立てて測定すればよい。セルの非水電解質は、分解した電池中の非水電解質と同じ組成でもよい。
 リチウム二次電池は、充電時、負極にリチウム金属が析出するため、負極の膨張量が大きくなり易い。ここで、「負極の膨張」とは、負極の体積と析出したリチウム金属の体積との合計の体積が増えることである。特に、リチウム金属がデンドライト状に析出する場合、膨張量はさらに大きくなる。これにより負極に応力が生じ易い。
 本発明者らは、充放電時の負極集電体の断裂発生の要因について鋭意検討した。その結果、充放電の繰り返しに伴い負極集電体が脆化し、負極で生じる応力とともに負極集電体の脆化が負極集電体の断裂発生の要因であることを新たな知見として得た。SEM観察により、負極集電体の断裂部分では、負極集電体が伸びて破断する際の結晶粒の延性方向の変形、負極集電体の先細り変形は殆ど見られず、脆性破壊を呈していることが初めて明らかとなった。
 さらに、負極集電体の脆化には、負極で発生する何らかの物質が影響していることが示唆された。そこで、本発明者らは、ステンレス鋼の結晶組織(すべり面などの異なるフェライト、オーステナイト、マルテンサイト)に着目して鋭意検討を更に行ったところ、オーステナイトは負極集電体の脆化抑制の作用が大きいことを新たに見出した。
 本開示に係るリチウム二次電池では、負極集電体は、オーステナイト系ステンレス鋼を含む。この場合、負極集電体の脆化が抑制され、かつ、負極集電体は適度な強度および柔軟性を有し、負極で生じる応力に対する耐性に優れた負極集電体が得られる。その結果、充放電時の負極集電体の断裂発生およびそれに伴うサイクル特性の低下が抑制される。
 なお、上記の「オーステナイト系ステンレス鋼」とは、オーステナイト率が50%以上であるステンレス鋼を意味する。オーステナイト率とは、ステンレス鋼に占めるオーステナイト相の割合(質量比)を意味する。ステンレス鋼中のオーステナイト相、フェライト相、およびマルテンサイト相の含有量を、それぞれ、x、y、およびzとするとき、オーステナイト率は、{x/(x+y+z)}×100で算出される。オーステナイト組織は面心立方格子構造(FCC構造)であり、フェライト組織およびマルテンサイト組織は体心立方格子構造(BCC構造)である。
 オーステナイト率は、70%以上であってもよく、90%以上であってもよく、100%であってもよい。
 オーステナイト率は、以下の方法により求めることができる。
 負極集電体(ステンレス鋼箔)の試料(例えば、サイズ:25mm角)を準備し、当該試料について2次元検出機能を用いるX線回折(XRD)測定を行い、XRDパターン(縦軸:X線回折強度、横軸:回折角2θ)を得る。測定領域(微小部)の大きさは、例えば、15mm角である。
 以下、望ましいXRDの測定条件を示す。
 <分析装置>
 2次元微小部X線回折装置((株)リガク製、RINT-RAPID II)
 <分析条件>
  管球:Co
  単色化:モノクロメータを使用(CoKα)
  管球出力:40kV-30mA
  検出器:イメージングプレート(2次元)
 (反射法)
  コリメータ:Φ300μm
  ω角:25°~35°(2°/sec)
  Φ角:360°回転(1°/sec)
  測定時間(露光):30分
 得られたXRDパターンについて、標準データベースを利用して最小二乗法によりフィッティングを行い、次に、リートベルト解析による定量分析を行う。XRDパターンは、オーステナイト相、フェライト相、およびマルテンサイト相のうちの少なくとも1つの相に対応する回折ピークを有し得る。当該解析は、分析装置に付属のソフトウェアを用いて行うことができる。当該解析により、オーステナイト相、フェライト相、およびマルテンサイト相の合計に対するオーステナイト相の割合(質量比)をオーステナイト率として求める。上記試料において測定領域を任意に数点選出し、各測定領域におけるオーステナイト率を求め、それらの平均値を算出する。
 負極集電体は、850MPa以下の破断強度と、3%以上の破断伸びと、を有することが好ましい。この場合、良好な強度および柔軟性を有し、負極で生じる応力に対する耐性に優れた負極集電体が得られ易い。例えば、オーステナイト系ステンレス鋼箔を熱処理して、上記範囲の破断強度および破断伸びを得てもよい。一般的に、熱処理することで結晶粒径は再結晶により粗大化し強度は低下し、破断伸びは向上する傾向が認められる。
 負極集電体の破断強度は、700MPa以下であってもよく、650MPa以下であってもよい。電池の製造に対する信頼性向上の観点から、負極集電体の破断強度は、400MPa以上であってもよい。当該破断強度の範囲については、上記の上限と下限とを任意に組み合わせた範囲でもよい。
 負極集電体の破断伸びは、5%以上であってもよく、10%以上であってもよい。電池の製造に対する信頼性向上の観点から、負極集電体の破断伸びは、60%以下であってもよい。当該破断伸びの範囲については、上記の上限と下限とを任意に組み合わせた範囲でもよい。
 上記の破断強度(引張強度)および破断伸びは、JIS Z 2241(金属材料引張試験方法)に準拠して求められる。但し、負極集電体は低強度でかつ薄い箔であるため、破断伸びの測定には熟練の技術が必要であり、当該測定は実績のある機関で行うことが望ましい。
 サイクル特性の向上の観点から、負極集電体の厚みXに対するセパレータの厚みYの比:Y/Xは、2.5以上であってもよく、3以上であってもよく、4以上であってもよい。電池容量の観点から、Y/Xは、例えば、5以下である。Y/Xの範囲については、上記の上限と下限とを任意に組み合わせた範囲でもよい。
 なお、セパレータの厚みYとは、電極群の構成前(電極群を電池ケース内に収容する前)のセパレータの厚みを指す。セパレータが複数の薄膜(フィルム)状の材料を重ね合わせて構成される場合、Yは、当該複数の材料の厚みの合計値とする。また、セパレータが場所によって異なる厚みを有する場合、Yは、当該厚みの最大値とする。セパレータが厚みが異なる複数の領域を有する場合、セパレータが厚みY(最大値)を有する領域は、例えば、セパレータが負極と対向する総面積の20%~80%の面積を有する。負極集電体の厚みXは、例えば、5μm以上、30μm以下である。
 オーステナイト系ステンレス鋼を含む負極集電体に対して、Y/Xが2.5以上を満たす場合、サイクル特性が大幅に向上する。Y/Xが2.5以上を満たす場合(セパレータが負極集電体の厚みの2.5倍以上の厚みを有する場合)、当該セパレータにより充電時の負極の膨張(デンドライトの膨化)が緩衝され、負極(負極集電体)で生じる応力が緩和される。オーステナイト系ステンレス鋼による負極集電体の脆化抑制および負極で生じる応力に対する耐性改善の作用と、Y/Xが2.5以上である場合の負極(負極集電体)で生じる応力の緩和作用とが相俟って、サイクル特性の向上効果が顕著に得られる。オーステナイト率が50%未満である場合、負極集電体の断裂発生の影響が大きくなり、Y/Xが2.5以上である場合の負極で生じる応力の緩和による効果は発揮されにくい。
 なお、負極集電体の厚みXは、走査型電子顕微鏡(SEM)を用いて、負極集電体の任意の10点の厚みを測定し、それらの平均値を算出することにより求められる。セパレータの厚みYも同様にして求められる。セパレータが厚みが異なる複数の領域を有する場合、厚みが最大の領域において任意の10点の厚みを測定し、それらの平均値を算出すればよい。
 (負極)
 負極は、負極集電体を備える。リチウム二次電池では、充電時に負極の表面にリチウム金属が析出する。より具体的には、非水電解質に含まれるリチウムイオンが、充電により、負極集電体上で電子を受け取ってリチウム金属になり、負極集電体の表面に析出する。負極集電体の表面に析出したリチウム金属は、放電により非水電解質中にリチウムイオンとして溶解する。なお、非水電解質に含まれるリチウムイオンは、非水電解質に添加したリチウム塩に由来するものであってもよく、充電により正極活物質から供給されるものであってもよく、これらの双方であってもよい。
 負極集電体は、通常、オーステナイト系ステンレス鋼の箔(シート)である。オーステナイト系ステンレス鋼は、Fe以外の成分として、例えば、C、Si、Mn、P、S、Ni、Cr、Mn、Mo、Cu、N等を含み得る。当該ステンレス鋼は、低炭素系、極低炭素系、または窒素添加系のステンレス鋼であってもよく、オーステナイトを含む2相ステンレス鋼であってもよい。
 オーステナイト系ステンレス鋼の例としては、SUS301、SUS302、SUS303、SUS304、SUS305、SUS309、SUS310、SUS312、SUS315、SUS316L、SUS317、SUS321、SUS347等が挙げられる。中でも、SUS304、SUS316Lが好ましい。
 オーステナイト率は、XRD法により測定可能であるが、フェライト安定化元素およびオーステナイト安定化元素と組織との関係を示すシェフラ(Schaeffler)の組織図によっても推定できる。当該組織図は、フェライト安定化元素とオーステナイト安定化元素を両軸にとって、組織比率を示したものである。当該組織図の縦軸はNi当量を示し、横軸はCr当量を示す。Cr当量は、フェライト安定化元素の度合いをクロム量に換算した値であり、Cr当量=%Cr+%Mo+1.5×%Si+0.5×%Nbの式で表すことができる。Ni当量は、オーステナイト安定化元素の度合いをニッケル量に換算した値であり、Ni当量=%Ni+30×%C+0.5×%Mnの式で表すことができる。
 JIS G 0321に準拠して、ステンレス鋼の成分分析を行うことができ、オーステナイト安定化元素(Ni、Mn、C等)、フェライト安定化元素(Cr、Mo、Si、Nb)について定量分析を行うことができる。
 正極の不可逆容量分を補う観点から、初回充電前に、負極集電体の表面にリチウム金属シートが予め配置されていてもよい。リチウム金属シートは、例えば、負極集電体の表面にリチウム金属を貼付け、電析または蒸着することにより形成される。また、負極集電体の表面に負極合材層が形成されてもよい。この場合、負極合剤層は、充電時に負極でリチウム金属が析出し得る程度に薄く形成される。負極合材層は、黒鉛等の負極活物質を含む負極合材スラリーを負極集電体の表面に塗布することにより形成される。リチウム金属シート(もしくは負極合材層)の厚みは特に限定されず、例えば、3~300μmである。リチウム金属シート(負極合材層)は、負極集電体の一方の表面に形成されてもよいし、負極集電体の両面に形成されてもよい。
 負極集電体の表面は平滑であってもよい。これにより、充電の際、正極由来のリチウム金属が、負極集電体上に均等に析出し易くなる。平滑とは、負極集電体の最大高さ粗さRzが20μm以下であることをいう。負極集電体の最大高さ粗さRzは10μm以下であってもよい。最大高さ粗さRzは、JIS B 0601:2013に準じて測定される。
 (正極)
 正極は、例えば、正極集電体と、正極集電体に担持された正極合材層とを備える。正極合材層は、例えば、正極活物質と導電材と結着材とを含む。正極合材層は、正極集電体の片面のみに形成されてもよく、両面に形成されてもよい。正極は、例えば、正極集電体の両面に正極活物質と導電材と結着材とを含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧延することにより得られる。
 正極活物質は、リチウムイオンを吸蔵および放出する材料である。正極活物質としては、例えば、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン、フッ素化ポリアニオン、遷移金属硫化物等が挙げられる。中でも、製造コストが安く、平均放電電圧が高い点で、リチウム含有遷移金属酸化物が好ましい。
 リチウム含有遷移金属酸化物に含まれる遷移金属元素としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、W等が挙げられる。リチウム含有遷移金属酸化物は、遷移金属元素を一種含んでもよく、二種以上含んでいてもよい。遷移金属元素は、Co、Niおよび/またはMnであってもよい。リチウム含有遷移金属酸化物は、必要に応じて1種以上の典型元素を含み得る。典型元素としては、Mg、Al、Ca、Zn、Ga、Ge、Sn、Sb、Pb、Bi等が挙げられる。典型元素はAl等であってもよい。
 導電材は、例えば、炭素材料である。炭素材料としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、および黒鉛等が挙げられる。
 結着材としては、例えば、フッ素樹脂、ポリアクリロニトリル、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂、ゴム状重合体等が挙げられる。フッ素樹脂としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等が挙げられる。
 正極集電体には、箔、フィルム等が用いられる。正極集電体の表面には、炭素材料が塗布されていてもよい。正極集電体の材質としては、例えば、Al、Ti、Fe等を含む金属材料が挙げられる。金属材料は、Al、Al合金、Ti、Ti合金、Fe合金等であってもよい。Fe合金は、ステンレス鋼(SUS)であってもよい。正極集電体の厚みは、特に制限されず、例えば5μm以上、30μm以下である。
 (セパレータ)
 セパレータには、イオン透過性および絶縁性を有する多孔性シートが用いられる。多孔性シートとしては、例えば、微多孔を有する薄膜、織布、不織布等が挙げられる。セパレータの材質は特に限定されないが、高分子材料であってもよい。高分子材料としては、オレフィン樹脂、ポリアミド樹脂、セルロース等が挙げられる。オレフィン樹脂としては、ポリエチレン、ポリプロピレンおよびエチレンとプロピレンとの共重合体等が挙げられる。セパレータは、必要に応じて、添加剤を含んでもよい。添加剤としては、無機フィラー等が挙げられる。セパレータは、形態および/または組成が異なる複数の層で構成されていてもよい。
 (非水電解質)
 リチウムイオン伝導性を有する非水電解質は、例えば、非水溶媒と、非水溶媒に溶解するリチウム塩と、を含む。非水電解質は、液状でもよいし、ゲル状でもよい。液状の非水電解質は、リチウム塩を非水溶媒に溶解させることにより調製される。リチウム塩が非水溶媒中に溶解することにより、リチウムイオンおよびアニオンが生成する。
 ゲル状の非水電解質は、リチウム塩とマトリックスポリマー、あるいは、リチウム塩と非水溶媒とマトリックスポリマーとを含む。マトリックスポリマーとしては、例えば、非水溶媒を吸収してゲル化するポリマー材料が使用される。ポリマー材料としては、フッ素樹脂、アクリル樹脂、ポリエーテル樹脂等が挙げられる。
 リチウム塩またはアニオンとしては、リチウム二次電池の非水電解質に利用される公知のものが使用できる。具体的には、BF 、ClO 、PF 、CFSO 、CFCO 、イミド類のアニオン、オキサレート錯体のアニオン等が挙げられる。イミド類のアニオンとしては、N(SOCF 、N(C2m+1SO(C2n+1SO (mおよびnは、それぞれ独立して0または1以上の整数であり、xおよびyは、それぞれ独立して0、1または2であり、x+y=2を満たす。)等が挙げられる。オキサレート錯体のアニオンは、ホウ素および/またはリンを含有してもよい。オキサレート錯体のアニオンとしては、ビスオキサレートボレートアニオン、BF(C、PF(C、PF(C 等が挙げられる。非水電解質は、これらのアニオンを単独で含んでもよく、2種以上含んでもよい。
 リチウム金属がデンドライト状に析出するのを抑制する観点から、非水電解質は、少なくともオキサレート錯体のアニオンを含むことが好ましい。オキサレート錯体のアニオンとリチウムとの相互作用により、リチウム金属が細かい粒子状で均一に析出し易くなる。そのため、リチウム金属の局所的な析出を抑制しやすくなる。オキサレート錯体のアニオンと他のアニオンとを組み合わせてもよい。他のアニオンは、PF および/またはイミド類のアニオンであってもよい。
 非水溶媒としては、エステル化合物、エーテル化合物、ニトリル化合物、アミド化合物等が挙げられる。これらの化合物は、ハロゲン置換体等を含む。ハロゲン置換体としては、フッ化物等が挙げられる。非水電解質は、これらの非水溶媒を単独で含んでもよく、2種以上含んでもよい。
 中でも、負極集電体の脆化抑制の観点から、非水溶媒はエーテル化合物を主成分として含んでもよい。なお、ここでいう主成分とは、非水溶媒中のエーテル化合物の含有量が、50質量%以上であることを意味し、80質量%以上であってもよい。また、非水溶媒中のエーテル化合物の含有量は、95質量%以下であってもよく、100質量%以下であってもよい。非水溶媒中のエーテル化合物の含有量の範囲については、上記の上限と下限とを任意に組み合わせた範囲であってもよい。
 エーテル化合物は安定性(特に耐還元性)に優れ、負極集電体表面での分解物の生成が抑制され、負極集電体への影響が小さいものと推測される。オーステナイト系ステンレス鋼を含む負極集電体に対して、エーテル化合物を主成分とする非水電解質を用いる場合、負極集電体の脆化抑制によるサイクル特性の向上効果が顕著に得られる。オーステナイト率が50%未満である場合、負極集電体の断裂発生の影響が大きくなり、エーテル化合物による効果は発揮されにくい。
 エーテル化合物としては、環状エーテルおよび鎖状エーテルが挙げられる。環状エーテルとしては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン等が挙げられる。鎖状エーテルとしては、1,2-ジメトキシエタン、ジエチルエーテル、エチルビニルエーテル、メチルフェニルエーテル、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、1,2-ジエトキシエタン、ジエチレングリコールジメチルエーテル、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル等が挙げられる。負極集電体の脆化抑制の観点から、中でも、1,2-ジメトキシエタン、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテルが好ましい。
 エステル化合物としては、例えば、炭酸エステル、カルボン酸エステル等が挙げられる。環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート等が挙げられる。鎖状炭酸エステルとしては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン、γ-バレロラクトン等が挙げられる。鎖状カルボン酸エステルとしては、酢酸エチル、プロピオン酸メチル、フルオロプロピオン酸メチル等が挙げられる。
 非水電解質中のリチウム塩の濃度は、例えば、0.5mol/L以上、3.5mol/L以下である。非水電解質中のアニオンの濃度を、0.5mol/L以上、3.5mol/L以下としてもよい。また、非水電解質中のオキサレート錯体のアニオンの濃度を、0.05mol/L以上、1mol/L以下としてもよい。
 非水電解質は、添加剤を含んでもよい。添加剤は、負極上に被膜を形成するものであってもよい。添加剤に由来する被膜が負極上に形成されることにより、デンドライトの生成が抑制され易くなる。このような添加剤としては、例えば、ビニレンカーボネート、フルオロエチレンカーボネート(FEC)、ビニルエチルカーボネート(VEC)等が挙げられる。
 (リチウム二次電池)
 以下、本開示に係るリチウム二次電池の構成を、巻回型の電極群を備える円筒形電池を例にして、図面を参照しながら説明する。ただし、本開示は以下の構成に限定されるものではない。
 図1は、本開示の実施形態に係るリチウム二次電池の一例を模式的に示す縦断面図である。図2は、図1の領域IIで囲まれる部分(正極を含む一部)を拡大した図である。図3は、図1の領域IIIで囲まれる部分(負極を含む一部)を拡大した図である。なお、各図は模式的に示すものであり、各構成部材の寸法(例えば、厚み)の比率等は実際とは異なる場合がある。
 リチウム二次電池10は、円筒形の電池ケースと、電池ケース内に収容された巻回式の電極群14および図示しない非水電解質と、を備える。電極群14は、帯状の正極11と、帯状の負極12とを、正極11と負極12との間にセパレータ13を介在させて、巻回することにより構成されている。
 負極12は、負極集電体により構成される。負極12(負極集電体)は厚みXを有し、厚みYを有するセパレータ13と対向する。なお、図3中の厚みYは、電極群14をケース本体15に収容する前のセパレータ13の厚みを指す。
 なお、本実施形態では、負極12は負極集電体のみで構成されるが、初回充電前に負極集電体の表面に予めリチウム金属シートを配置して負極を構成してもよく、負極集電体の表面に負極合材層を担持させて負極を構成してもよい。
 負極12は、負極リード20を介して負極端子を兼ねるケース本体15と電気的に接続されている。負極リード20の一端部は、例えば、負極12の長手方向の端部に接続されており、他端部は、ケース本体15の内底面に溶接されている。
 正極11は、正極集電体30および正極合材層31を備え、正極リード19を介して、正極端子を兼ねるキャップ26と電気的に接続されている。正極リード19の一端部は、例えば、正極11の長手方向の中央付近に接続されている。正極11から延出した正極リード19は、絶縁板17に形成された図示しない貫通孔を通って、フィルタ22まで延びている。正極リード19の他端部は、フィルタ22の電極群14側の面に溶接されている。
 電池ケースは、有底円筒形の金属製容器であるケース本体15と、ケース本体15の開口部を封口する封口体16とで構成される。ケース本体15と封口体16との間には、ガスケット27が配置されており、これにより電池ケースの密閉性が確保されている。ケース本体15内において、電極群14の巻回軸方向の両端部には、絶縁板17、18がそれぞれ配置されている。
 ケース本体15は、例えば、ケース本体15の側壁を部分的に外側からプレスして形成された段部21を有する。段部21は、ケース本体15の側壁に、ケース本体15の周方向に沿って環状に形成されていてもよい。この場合、段部21の開口部側の面で封口体16が支持される。
 封口体16は、フィルタ22、下弁体23、絶縁部材24、上弁体25およびキャップ26を備えている。封口体16では、これらの部材がこの順序で積層されている。封口体16は、キャップ26がケース本体15の外側に位置し、フィルタ22がケース本体15の内側に位置するように、ケース本体15の開口部に装着される。封口体16を構成する上記の各部材は、例えば、円板形状またはリング形状である。下弁体23と上弁体25とは、各々の中央部で互いに接続されるとともに、各々の周縁部の間には絶縁部材24が介在している。フィルタ22と下弁体23とは、各々の周縁部で互いに接続している。上弁体25とキャップ26とは、各々の周縁部で互いに接続している。つまり、絶縁部材24を除く各部材は、互いに電気的に接続している。
 下弁体23には、図示しない通気孔が形成されている。そのため、異常発熱等により電池ケースの内圧が上昇すると、上弁体25がキャップ26側に膨れて、下弁体23から離間する。これにより、下弁体23と上弁体25との電気的接続が遮断される。さらに内圧が上昇すると、上弁体25が破断し、キャップ26に形成された図示しない開口部からガスが排出される。
 図示例では、円筒形のリチウム二次電池について説明したが、この場合に限らず、本実施形態は適用できる。リチウム二次電池の形状は、その用途等に応じて、円筒形の他に、コイン型、角型、シート型、扁平型等の各種形状から適宜選択することができる。また、図示例では、正極と負極とをセパレータを介して巻回することで構成される巻回型の電極群を示すが、電極群の形態も特に限定されず、正極と負極とをセパレータを介して積層することで構成される積層型の電極群であってもよい。また、リチウム二次電池の電極群および非水電解質以外の構成については、公知のものを特に制限なく利用できる。
[実施例]
 以下、本開示に係るリチウム二次電池を実施例および比較例に基づいて具体的に説明する。本開示は以下の実施例に限定されるものではない。
《実施例1~6および比較例1~4》
(1)正極の作製
 Li、Ni、CoおよびAlを含有するリチウム含有遷移金属酸化物(NCA;正極活物質)と、アセチレンブラック(AB;導電材)と、ポリフッ化ビニリデン(PVdF;結着材)とを、NCA:AB:PVdF=95:2.5:2.5の質量比で混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて撹拌して、正極合材スラリーを調製した。次に、得られた正極合材スラリーを、正極集電体として機能するAl箔の両面に塗布した後、乾燥して、ローラーを用いて正極合材の塗膜を圧延した。最後に、得られた正極集電体と正極合材との積層体を所定の電極サイズに切断し、正極集電体の両面に正極合材層を備える正極を作製した。
(2)負極の作製
 オーステナイト率、破断強度、および破断伸びが、それぞれ表1に示す値である矩形のステンレス鋼の箔(厚みX:10μm)を負極集電体として準備した。不活性ガス雰囲気中で、当該ステンレス鋼箔にリチウム合金箔(厚み25μm)を圧着させた。このようにして負極を作製した。
 表1中、E1~E6に対して、それぞれ、以下のステンレス鋼箔を用いた。
 E1:SUS304改2(Ni含有量:5質量%)
 E2:SUS304改1(Ni含有量:6.5質量%)
 E3:SUS304
 E4:SUS316
 E5:SUS316L
 E6:SUS316L
 表1中、C1~C4に対して、それぞれ、以下のステンレス鋼箔を用いた。
 C1:SUS304改3(Ni含有量:3.5質量%)
 C2:SUS304改4(Ni含有量:2質量%)
 C3:SUS444
 C4:SUS444
 E2、E1、C1、およびC2では、この順に、SUS304をベースにNi量を減らしてフェライト量を増やした(オーステナイト率を小さくした)ステンレス鋼を用いた。
(3)非水電解質の調製
 非水溶媒に、LiPFを1モル/Lと、LiBF(C)を0.1モル/Lと、なるようにそれぞれ溶解させて、液体の非水電解質を調製した。表1中、エーテル系の非水電解質では、非水溶媒に1,2-ジメトキシエタンと1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテルを用いた。カーボネート系の非水電解質では、非水溶媒にジメチルカーボネートを用いた。
(4)電池の作製
 上記で得られた正極に、Al製のタブを取り付けた。上記で得られた負極に、Ni製のタブを取り付けた。不活性ガス雰囲気中で、正極と負極との間にセパレータを介在させて、正極と負極とを渦巻状に巻回し、巻回型の電極群を作製した。セパレータにはポリエチレン薄膜を用い、セパレータの厚みYは表1に示す値とした。得られた電極群を、Al層を備えるラミネートシートで形成される袋状の外装体に収容し、電極群を収容した外装体に上記非水電解質を注入した後、外装体を封止してリチウム二次電池を作製した。表1中、E1~E6は、実施例1~6の電池であり、C1~C4は、比較例1~4の電池である。
[評価]
 得られた各電池について、25℃の環境下で充放電サイクル試験を行った。充放電は、以下の条件で行った。充電と放電との間は、20分間の休止を行った。
(充電)
 電圧が4.1Vになるまで10mAで定電流充電を行い、その後、電流が1mAになるまで4.1Vで定電圧充電を行った。
(放電)
 電圧が3Vになるまで10mAで定電流放電を行った。
 充放電を100サイクルまで繰り返し行い、100サイクル時の放電容量を測定した。評価結果を表1に示す。なお、表1中、各電池の100サイクル時の放電容量は、E1の100サイクル時の放電容量を100とするときの相対値として示す。
Figure JPOXMLDOC01-appb-T000001
 
 オーステナイト率が50%以上であるE1~E6では、オーステナイト率が50%未満であるC1~C4に比べて、100サイクル時の放電容量が高く、サイクル特性が向上した。100サイクル後の各電池を分解して、負極集電体についてSEM観察を行ったところ、E1~E6では負極集電体での断裂発生が抑制されており、表層にクラックが発生していないことが確認された。一方、C1~C4では負極集電体に断裂が生じ、C1~C4のいずれも、断裂部分に伸び変形はほとんど見られず、脆性破壊であることが確認された。
 オーステナイト率が50%以上であるE3~E4を比較すると、エーテル系の非水電解質を用いたE4では、カーボネート系の非水電解質を用いたE3に対して、サイクル特性が更に向上した。一方、オーステナイト率が50%未満であるC2~C3を比較すると、エーテル系の非水電解質を用いたC3では、カーボネート系の非水電解質を用いたC2に対して、サイクル特性の改善は見られなかった。
 以上のことから、オーステナイト率が50%以上の負極集電体に対して、エーテル系の非水電解質を用いる場合、サイクル特性の向上効果が顕著に得られることが示された。
 オーステナイト率が100%であるE4~E6を比較すると、Y/Xが2.5以上であるE5~E6では、Y/Xが2.5未満であるE4に対して、サイクル特性が更に向上した。一方、オーステナイト率が50%未満であるC2、C4を比較すると、Y/Xが2.5以上であるC4では、Y/Xが2.5未満であるC2に対して、サイクル特性の改善は見られなかった。
 以上のことから、オーステナイト率が50%以上の負極集電体に対して、Y/Xが2.5以上である場合、サイクル特性の向上効果が顕著に得られることが示された。
 本開示のリチウム二次電池は、携帯電話、スマートフォン、タブレット端末のような電子機器、ハイブリッド、プラグインハイブリッドを含む電気自動車、太陽電池と組み合わせた家庭用蓄電池等に用いることができる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 10 リチウム二次電池
 11 正極
 12 負極
 13 セパレータ
 14 電極群
 15 ケース本体
 16 封口体
 17、18 絶縁板
 19 正極リード
 20 負極リード
 21 段部
 22 フィルタ
 23 下弁体
 24 絶縁部材
 25 上弁体
 26 キャップ
 27 ガスケット
 30 正極集電体
 31 正極合材層
 

Claims (4)

  1.  リチウムイオンを吸蔵および放出可能な正極活物質を含む正極と、
     負極集電体を備える負極と、
     前記正極と前記負極との間に配置されるセパレータと、
     リチウムイオン伝導性を有する非水電解質と、を備え、
     前記負極では、充電時にリチウム金属が析出し、放電時に前記リチウム金属が溶解し、
     前記負極集電体は、オーステナイト系ステンレス鋼を含む、リチウム二次電池。
  2.  前記負極集電体は、850MPa以下の破断強度と、3%以上の破断伸びと、を有する、請求項1に記載のリチウム二次電池。
  3.  前記非水電解質は、非水溶媒と、前記非水溶媒中に溶解するリチウム塩と、を含み、
     前記非水溶媒は、エーテル化合物を80質量%以上含む、請求項1または2に記載のリチウム二次電池。
  4.  前記負極集電体の厚みXに対する前記セパレータの厚みYの比:Y/Xは、2.5以上である、請求項1~3のいずれか1項に記載のリチウム二次電池。
     
PCT/JP2022/024524 2021-06-30 2022-06-20 リチウム二次電池 WO2023276757A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023531820A JPWO2023276757A1 (ja) 2021-06-30 2022-06-20
US18/574,244 US20240322217A1 (en) 2021-06-30 2022-06-20 Lithium secondary battery
EP22832905.8A EP4366017A1 (en) 2021-06-30 2022-06-20 Lithium secondary battery
CN202280045419.1A CN117561627A (zh) 2021-06-30 2022-06-20 锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021109588 2021-06-30
JP2021-109588 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276757A1 true WO2023276757A1 (ja) 2023-01-05

Family

ID=84691740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024524 WO2023276757A1 (ja) 2021-06-30 2022-06-20 リチウム二次電池

Country Status (5)

Country Link
US (1) US20240322217A1 (ja)
EP (1) EP4366017A1 (ja)
JP (1) JPWO2023276757A1 (ja)
CN (1) CN117561627A (ja)
WO (1) WO2023276757A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182650A (ja) * 1991-12-27 1993-07-23 Yuasa Corp 薄形電池
JPH06111820A (ja) * 1992-09-25 1994-04-22 Sanyo Electric Co Ltd 非水系電池
JPH07161382A (ja) * 1993-12-13 1995-06-23 Toshiba Battery Co Ltd 非水電解液二次電池
JPH08130036A (ja) * 1994-09-08 1996-05-21 Fuji Photo Film Co Ltd 非水二次電池
JP2001035537A (ja) * 1998-07-10 2001-02-09 Hitachi Maxell Ltd 非水二次電池
JP2005063731A (ja) * 2003-08-08 2005-03-10 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
WO2013080988A1 (ja) * 2011-11-29 2013-06-06 古河電気工業株式会社 電極用集電体、非水電解質二次電池用電極、非水電解質二次電池
JP2013114825A (ja) * 2011-11-25 2013-06-10 Nisshin Steel Co Ltd 電極積層体およびそれを用いたリチウムイオン二次電池
JP2016184572A (ja) * 2015-03-26 2016-10-20 パナソニック株式会社 電気化学エネルギー蓄積デバイス
JP2016219255A (ja) * 2015-05-20 2016-12-22 日産自動車株式会社 電池、電池モジュールおよび電池の設計方法
JP2018206541A (ja) * 2017-05-31 2018-12-27 日本碍子株式会社 電池要素の封止方法及びそれを用いたフィルム外装電池の製造方法
WO2019017331A1 (ja) * 2017-07-18 2019-01-24 株式会社Gsユアサ 電極、蓄電素子、及び電極の製造方法
WO2019087709A1 (ja) 2017-10-30 2019-05-09 パナソニックIpマネジメント株式会社 非水電解質二次電池及びその製造方法
JP2020024877A (ja) * 2018-08-08 2020-02-13 Fdk株式会社 蓄電素子

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182650A (ja) * 1991-12-27 1993-07-23 Yuasa Corp 薄形電池
JPH06111820A (ja) * 1992-09-25 1994-04-22 Sanyo Electric Co Ltd 非水系電池
JPH07161382A (ja) * 1993-12-13 1995-06-23 Toshiba Battery Co Ltd 非水電解液二次電池
JPH08130036A (ja) * 1994-09-08 1996-05-21 Fuji Photo Film Co Ltd 非水二次電池
JP2001035537A (ja) * 1998-07-10 2001-02-09 Hitachi Maxell Ltd 非水二次電池
JP2005063731A (ja) * 2003-08-08 2005-03-10 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
JP2013114825A (ja) * 2011-11-25 2013-06-10 Nisshin Steel Co Ltd 電極積層体およびそれを用いたリチウムイオン二次電池
WO2013080988A1 (ja) * 2011-11-29 2013-06-06 古河電気工業株式会社 電極用集電体、非水電解質二次電池用電極、非水電解質二次電池
JP2016184572A (ja) * 2015-03-26 2016-10-20 パナソニック株式会社 電気化学エネルギー蓄積デバイス
JP2016219255A (ja) * 2015-05-20 2016-12-22 日産自動車株式会社 電池、電池モジュールおよび電池の設計方法
JP2018206541A (ja) * 2017-05-31 2018-12-27 日本碍子株式会社 電池要素の封止方法及びそれを用いたフィルム外装電池の製造方法
WO2019017331A1 (ja) * 2017-07-18 2019-01-24 株式会社Gsユアサ 電極、蓄電素子、及び電極の製造方法
WO2019087709A1 (ja) 2017-10-30 2019-05-09 パナソニックIpマネジメント株式会社 非水電解質二次電池及びその製造方法
JP2020024877A (ja) * 2018-08-08 2020-02-13 Fdk株式会社 蓄電素子

Also Published As

Publication number Publication date
JPWO2023276757A1 (ja) 2023-01-05
EP4366017A1 (en) 2024-05-08
CN117561627A (zh) 2024-02-13
US20240322217A1 (en) 2024-09-26

Similar Documents

Publication Publication Date Title
US20180006322A1 (en) Electrode plate and secondary battery
JP5748193B2 (ja) 二次電池
JP6024457B2 (ja) 二次電池およびそれに用いる二次電池用電解液
WO2011040443A1 (ja) 二次電池
JPWO2012039041A1 (ja) 非水電解質二次電池
JP5867396B2 (ja) 二次電池
JP5920217B2 (ja) 二次電池
JP2013201077A (ja) 非水電解質二次電池
EP3322024A1 (en) Nonaqueous electrolyte battery and battery pack
WO2012029625A1 (ja) 二次電池
JP5867398B2 (ja) 二次電池
CN112018342A (zh) 正极活性物质和使用该正极活性物质的二次电池
US10243204B2 (en) Negative electrode active material, and negative electrode and lithium ion secondary battery using the negative electrode active material
WO2012049889A1 (ja) 二次電池およびそれに用いる二次電池用電解液
WO2023276756A1 (ja) リチウム二次電池
US20240128591A1 (en) Lithium secondary battery
WO2023276757A1 (ja) リチウム二次電池
WO2023026482A1 (ja) 電極、電池、及び電池パック
KR101229229B1 (ko) 원통형 이차전지용 탑 캡 및 이를 포함하는 이차전지
JP6227168B1 (ja) リチウムイオン電池およびその製造方法
WO2012029645A1 (ja) 二次電池およびそれに用いる二次電池用電解液
JP6168356B2 (ja) リチウムイオン二次電池
WO2023190872A1 (ja) リチウム二次電池
CN112018389A (zh) 正极活性物质和使用该正极活性物质的二次电池
WO2023074845A1 (ja) リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832905

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531820

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18574244

Country of ref document: US

Ref document number: 202280045419.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022832905

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022832905

Country of ref document: EP

Effective date: 20240130