WO2023276757A1 - リチウム二次電池 - Google Patents
リチウム二次電池 Download PDFInfo
- Publication number
- WO2023276757A1 WO2023276757A1 PCT/JP2022/024524 JP2022024524W WO2023276757A1 WO 2023276757 A1 WO2023276757 A1 WO 2023276757A1 JP 2022024524 W JP2022024524 W JP 2022024524W WO 2023276757 A1 WO2023276757 A1 WO 2023276757A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- current collector
- lithium
- positive electrode
- electrode current
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 78
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 239000011255 nonaqueous electrolyte Substances 0.000 claims abstract description 45
- 238000007600 charging Methods 0.000 claims abstract description 23
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 20
- 238000007599 discharging Methods 0.000 claims abstract description 14
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims abstract description 12
- 239000007774 positive electrode material Substances 0.000 claims abstract description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 19
- -1 ether compound Chemical class 0.000 claims description 19
- 239000003125 aqueous solvent Substances 0.000 claims description 18
- 229910003002 lithium salt Inorganic materials 0.000 claims description 9
- 159000000002 lithium salts Chemical class 0.000 claims description 9
- 238000009831 deintercalation Methods 0.000 claims description 3
- 238000009830 intercalation Methods 0.000 claims description 3
- 229910001566 austenite Inorganic materials 0.000 description 32
- 239000000203 mixture Substances 0.000 description 20
- 239000010410 layer Substances 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- 150000001450 anions Chemical class 0.000 description 15
- 229910001220 stainless steel Inorganic materials 0.000 description 14
- 239000010935 stainless steel Substances 0.000 description 13
- 239000011888 foil Substances 0.000 description 11
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 238000000151 deposition Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000011651 chromium Substances 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 229910000314 transition metal oxide Inorganic materials 0.000 description 7
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 230000000087 stabilizing effect Effects 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000007773 negative electrode material Substances 0.000 description 5
- 229910052723 transition metal Inorganic materials 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 210000001787 dendrite Anatomy 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- ZDCRNXMZSKCKRF-UHFFFAOYSA-N tert-butyl 4-(4-bromoanilino)piperidine-1-carboxylate Chemical compound C1CN(C(=O)OC(C)(C)C)CCC1NC1=CC=C(Br)C=C1 ZDCRNXMZSKCKRF-UHFFFAOYSA-N 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 229910013075 LiBF Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 2
- 150000004651 carbonic acid esters Chemical class 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 150000004292 cyclic ethers Chemical class 0.000 description 2
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920000447 polyanionic polymer Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- HCBRSIIGBBDDCD-UHFFFAOYSA-N 1,1,2,2-tetrafluoro-3-(1,1,2,2-tetrafluoroethoxy)propane Chemical compound FC(F)C(F)(F)COC(F)(F)C(F)F HCBRSIIGBBDDCD-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- UNDXPKDBFOOQFC-UHFFFAOYSA-N 4-[2-nitro-4-(trifluoromethyl)phenyl]morpholine Chemical compound [O-][N+](=O)C1=CC(C(F)(F)F)=CC=C1N1CCOCC1 UNDXPKDBFOOQFC-UHFFFAOYSA-N 0.000 description 1
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- URSLCTBXQMKCFE-UHFFFAOYSA-N dihydrogenborate Chemical compound OB(O)[O-] URSLCTBXQMKCFE-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229910001039 duplex stainless steel Inorganic materials 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- BPFOYPDHLJUICH-UHFFFAOYSA-N ethenyl ethyl carbonate Chemical compound CCOC(=O)OC=C BPFOYPDHLJUICH-UHFFFAOYSA-N 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- MHAIQPNJLRLFLO-UHFFFAOYSA-N methyl 2-fluoropropanoate Chemical compound COC(=O)C(C)F MHAIQPNJLRLFLO-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000003901 oxalic acid esters Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920006124 polyolefin elastomer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910021561 transition metal fluoride Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/669—Steels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0034—Fluorinated solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This disclosure relates to lithium secondary batteries.
- Non-aqueous electrolyte secondary batteries are used for applications such as ICT such as personal computers and smartphones, vehicles, and power storage. In such applications, the non-aqueous electrolyte secondary battery is required to have a higher capacity.
- Lithium ion batteries are known as high-capacity non-aqueous electrolyte secondary batteries.
- a high capacity lithium ion battery can be achieved by using, for example, graphite and an alloy active material such as a silicon compound together as a negative electrode active material.
- increasing the capacity of lithium-ion batteries is reaching its limit.
- a lithium secondary battery (lithium metal secondary battery) is promising as a high-capacity non-aqueous electrolyte secondary battery that exceeds that of lithium-ion batteries.
- lithium metal is deposited on the negative electrode during charging, and this lithium metal dissolves in the non-aqueous electrolyte during discharging.
- Patent Document 1 a positive electrode having a positive electrode active material made of a lithium-containing transition metal oxide, a negative electrode current collector, and a negative electrode on which lithium metal is deposited on the negative electrode current collector during charging, and between the positive electrode and the negative electrode
- a non-aqueous electrolyte secondary battery comprising a separator arranged in a non-aqueous electrolyte, wherein the molar ratio of the total amount of lithium in the positive electrode and the negative electrode to the amount of transition metal contained in the positive electrode is 1.1 or less
- There is a space layer between the negative electrode and the separator in a discharged state and the positive electrode capacity ⁇ (mAh/cm 2 ) per unit area of the positive electrode and the average thickness X ( ⁇ m) of the space layer
- a non-aqueous electrolyte secondary battery has been proposed that satisfies 0.05 ⁇ /X ⁇ 0.2.
- the negative electrode current collector breaks during charging and discharging, and the cycle characteristics deteriorate.
- One aspect of the present disclosure includes a positive electrode including a positive electrode active material capable of intercalating and deintercalating lithium ions, a negative electrode including a negative electrode current collector, a separator disposed between the positive electrode and the negative electrode, and a lithium ion conductive material.
- a non-aqueous electrolyte having a specific property wherein the negative electrode deposits lithium metal during charging, and the lithium metal dissolves during discharging, and the negative electrode current collector contains austenitic stainless steel.
- FIG. 1 is a vertical cross-sectional view schematically showing a lithium secondary battery according to an embodiment of the present disclosure
- FIG. 2 is an enlarged cross-sectional view of region II in FIG. 1
- FIG. 2 is an enlarged cross-sectional view of region III in FIG. 1;
- An embodiment of the present disclosure relates to a lithium secondary battery (lithium metal secondary battery) using lithium metal as a negative electrode active material. That is, the lithium secondary battery according to the embodiment of the present disclosure is arranged between a positive electrode including a positive electrode active material capable of intercalating and deintercalating lithium ions, a negative electrode including a negative electrode current collector, and the positive electrode and the negative electrode. It comprises a separator and a non-aqueous electrolyte having lithium ion conductivity. In the negative electrode, lithium metal is deposited during charging, and the lithium metal is dissolved during discharging.
- the negative electrode of the lithium secondary battery according to the present disclosure is different from the negative electrode in which electron movement in the negative electrode during charging and discharging is mainly due to the absorption and release of lithium ions by the negative electrode active material (such as graphite).
- the negative electrode of the lithium secondary battery according to the present disclosure may not contain a negative electrode active material (such as graphite) that absorbs and releases lithium ions.
- the open circuit voltage (OCV: Open Circuit Voltage) of the negative electrode when fully charged is, for example, 70 mV or less with respect to lithium metal (lithium dissolution deposition potential).
- a fully charged state is a state in which the battery is charged to a state of charge (SOC) of, for example, 0.98 ⁇ C or more, where C is the rated capacity of the battery.
- SOC state of charge
- the open circuit potential (OCV) of the negative electrode when fully charged can be measured by disassembling a fully charged battery in an argon atmosphere, taking out the negative electrode, and assembling a cell using lithium metal as a counter electrode.
- the non-aqueous electrolyte of the cell may be of the same composition as the non-aqueous electrolyte in the disassembled battery.
- “swelling of the negative electrode” means an increase in the total volume of the volume of the negative electrode and the volume of the deposited lithium metal.
- the amount of expansion is further increased. As a result, stress is likely to occur in the negative electrode.
- the inventors diligently studied the factors that cause the negative electrode current collector to rupture during charging and discharging. As a result, the inventors obtained new knowledge that the negative electrode current collector becomes embrittled with repeated charging and discharging, and that the stress generated in the negative electrode and the embrittlement of the negative electrode current collector are the factors that cause the negative electrode current collector to fracture. According to SEM observation, at the fractured portion of the negative electrode current collector, deformation in the ductile direction of the crystal grains when the negative electrode current collector is stretched and fractured and almost no tapering deformation of the negative electrode current collector are observed, and brittle fracture is exhibited. It became clear for the first time that
- the inventors of the present invention further conducted extensive studies focusing on the crystal structure of stainless steel (ferrite, austenite, and martensite with different slip planes, etc.), and found that austenite has the effect of suppressing the embrittlement of the negative electrode current collector. We newly found that .
- the negative electrode current collector contains austenitic stainless steel. In this case, embrittlement of the negative electrode current collector is suppressed, the negative electrode current collector has appropriate strength and flexibility, and a negative electrode current collector having excellent resistance to stress generated in the negative electrode can be obtained. As a result, it is possible to suppress the occurrence of fracture of the negative electrode current collector during charging and discharging and the accompanying decrease in cycle characteristics.
- the above "austenitic stainless steel” means stainless steel with an austenite rate of 50% or more.
- the austenite ratio means the ratio (mass ratio) of the austenite phase in the stainless steel.
- the austenite ratio is calculated by ⁇ x/(x+y+z) ⁇ 100, where x, y, and z are the contents of the austenite phase, ferrite phase, and martensite phase in the stainless steel.
- the austenite structure has a face-centered cubic lattice structure (FCC structure), and the ferrite structure and martensite structure have a body-centered cubic lattice structure (BCC structure).
- the austenite rate may be 70% or more, 90% or more, or 100%.
- the austenite rate can be obtained by the following method. Prepare a negative electrode current collector (stainless steel foil) sample (for example, size: 25 mm square), perform X-ray diffraction (XRD) measurement using a two-dimensional detection function for the sample, and obtain an XRD pattern (vertical axis: X-ray Diffraction intensity, horizontal axis: diffraction angle 2 ⁇ ) are obtained.
- the size of the measurement area (minute portion) is, for example, 15 mm square.
- Desirable XRD measurement conditions are shown below.
- Tube Co Monochromatic: Use a monochromator (CoK ⁇ ) Tube output: 40kV-30mA
- the XRD pattern may have diffraction peaks corresponding to at least one of the austenite, ferrite, and martensite phases.
- the analysis can be performed using software attached to the analyzer. Through the analysis, the ratio (mass ratio) of the austenite phase to the total of the austenite phase, ferrite phase, and martensite phase is determined as the austenite ratio. Several measurement regions are arbitrarily selected from the sample, the austenite ratio in each measurement region is determined, and the average value thereof is calculated.
- the negative electrode current collector preferably has a breaking strength of 850 MPa or less and a breaking elongation of 3% or more. In this case, it is easy to obtain a negative electrode current collector that has good strength and flexibility and is excellent in resistance to stress generated in the negative electrode.
- an austenitic stainless steel foil may be heat treated to obtain a breaking strength and breaking elongation within the above ranges. In general, heat treatment tends to increase grain size due to recrystallization, reduce strength, and improve elongation at break.
- the breaking strength of the negative electrode current collector may be 700 MPa or less, or 650 MPa or less. From the viewpoint of improving the reliability of battery production, the breaking strength of the negative electrode current collector may be 400 MPa or more.
- the range of the breaking strength may be a range in which the above upper limit and lower limit are arbitrarily combined.
- the breaking elongation of the negative electrode current collector may be 5% or more, or may be 10% or more. From the viewpoint of improving the reliability of battery production, the elongation at break of the negative electrode current collector may be 60% or less.
- the range of elongation at break may be a range in which the above upper limit and lower limit are arbitrarily combined.
- breaking strength tensile strength
- breaking elongation are obtained in accordance with JIS Z 2241 (metal material tensile test method).
- JIS Z 2241 metal material tensile test method.
- the measurement of elongation at break requires a skillful technique, and it is desirable that the measurement be performed at an institution with a proven track record.
- the ratio of the thickness Y of the separator to the thickness X of the negative electrode current collector may be 2.5 or more, 3 or more, or 4 or more.
- Y/X is, for example, 5 or less.
- the range of Y/X may be a range in which the above upper limit and lower limit are arbitrarily combined.
- the thickness Y of the separator refers to the thickness of the separator before forming the electrode group (before housing the electrode group in the battery case).
- Y is the sum of the thicknesses of the plurality of materials.
- Y is the maximum value of the thickness.
- the region where the separator has thickness Y (maximum value) has an area of, for example, 20% to 80% of the total area of the separator facing the negative electrode.
- the thickness X of the negative electrode current collector is, for example, 5 ⁇ m or more and 30 ⁇ m or less.
- the cycle characteristics are greatly improved.
- Y/X satisfies 2.5 or more (when the separator has a thickness of 2.5 times or more the thickness of the negative electrode current collector)
- the expansion of the negative electrode (expansion of dendrites) during charging is buffered by the separator.
- the stress generated in the negative electrode (negative electrode current collector) is relaxed.
- Austenitic stainless steel suppresses embrittlement of the negative electrode current collector, improves resistance to stress generated in the negative electrode, and relieves stress generated in the negative electrode (negative electrode current collector) when Y/X is 2.5 or more. Together with this, the effect of improving the cycle characteristics can be obtained remarkably. If the austenite ratio is less than 50%, the negative electrode current collector is more likely to be ruptured, and if Y/X is 2.5 or more, the effect of relaxing the stress generated in the negative electrode is less likely to be exhibited.
- the thickness X of the negative electrode current collector is obtained by measuring the thickness of the negative electrode current collector at arbitrary 10 points using a scanning electron microscope (SEM) and calculating the average value thereof.
- the thickness Y of the separator is similarly obtained. When the separator has a plurality of regions with different thicknesses, the thickness of ten arbitrary points in the region having the maximum thickness may be measured, and the average value thereof may be calculated.
- the negative electrode has a negative electrode current collector.
- lithium metal deposits on the surface of the negative electrode during charging. More specifically, lithium ions contained in the non-aqueous electrolyte receive electrons on the negative electrode current collector during charging to become lithium metal, which is deposited on the surface of the negative electrode current collector. Lithium metal deposited on the surface of the negative electrode current collector dissolves as lithium ions in the non-aqueous electrolyte due to discharge.
- the lithium ions contained in the non-aqueous electrolyte may be derived from the lithium salt added to the non-aqueous electrolyte, or may be supplied from the positive electrode active material during charging. There may be.
- the negative electrode current collector is usually an austenitic stainless steel foil (sheet).
- Austenitic stainless steel may contain, for example, C, Si, Mn, P, S, Ni, Cr, Mn, Mo, Cu, N, etc., as components other than Fe.
- the stainless steel may be a low-carbon, ultra-low-carbon, or nitrogen-added stainless steel, or may be a duplex stainless steel containing austenite.
- austenitic stainless steel examples include SUS301, SUS302, SUS303, SUS304, SUS305, SUS309, SUS310, SUS312, SUS315, SUS316L, SUS317, SUS321, and SUS347. Among them, SUS304 and SUS316L are preferable.
- the austenite fraction can be measured by the XRD method, but can also be estimated by Schaeffler's organization chart, which shows the relationship between ferrite-stabilizing elements, austenite-stabilizing elements, and the organization.
- the structure chart shows the structure ratio with the ferrite stabilizing element and the austenite stabilizing element on both axes.
- the vertical axis of the organization chart indicates the Ni equivalent, and the horizontal axis indicates the Cr equivalent.
- a lithium metal sheet may be placed in advance on the surface of the negative electrode current collector before the initial charge.
- the lithium metal sheet is formed, for example, by attaching lithium metal to the surface of the negative electrode current collector and then electrodepositing or vapor-depositing the same.
- a negative electrode mixture layer may be formed on the surface of the negative electrode current collector. In this case, the negative electrode mixture layer is formed so thin that lithium metal can be deposited on the negative electrode during charging.
- the negative electrode mixture layer is formed by applying a negative electrode mixture slurry containing a negative electrode active material such as graphite onto the surface of the negative electrode current collector.
- the thickness of the lithium metal sheet (or negative electrode mixture layer) is not particularly limited, and is, for example, 3 to 300 ⁇ m.
- the lithium metal sheet (negative electrode mixture layer) may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces of the negative electrode current collector.
- the surface of the negative electrode current collector may be smooth. This facilitates uniform deposition of lithium metal derived from the positive electrode on the negative electrode current collector during charging.
- Smooth means that the maximum height roughness Rz of the negative electrode current collector is 20 ⁇ m or less.
- the maximum height roughness Rz of the negative electrode current collector may be 10 ⁇ m or less.
- the maximum height roughness Rz is measured according to JIS B 0601:2013.
- the positive electrode includes, for example, a positive electrode current collector and a positive electrode mixture layer supported by the positive electrode current collector.
- the positive electrode mixture layer includes, for example, a positive electrode active material, a conductive material, and a binder.
- the positive electrode mixture layer may be formed only on one side of the positive electrode current collector, or may be formed on both sides.
- the positive electrode is obtained, for example, by applying a positive electrode mixture slurry containing a positive electrode active material, a conductive material, and a binder on both sides of a positive electrode current collector, drying the coating film, and then rolling.
- a positive electrode active material is a material that absorbs and releases lithium ions.
- positive electrode active materials include lithium-containing transition metal oxides, transition metal fluorides, polyanions, fluorinated polyanions, and transition metal sulfides. Among them, lithium-containing transition metal oxides are preferable in terms of low production cost and high average discharge voltage.
- the transition metal elements contained in the lithium-containing transition metal oxide include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, W, and the like.
- the lithium-containing transition metal oxide may contain one or more transition metal elements.
- the transition metal elements may be Co, Ni and/or Mn.
- the lithium-containing transition metal oxide may contain one or more main group elements as needed. Typical elements include Mg, Al, Ca, Zn, Ga, Ge, Sn, Sb, Pb, and Bi. A typical element may be Al or the like.
- the conductive material is, for example, a carbon material.
- carbon materials include carbon black, acetylene black, ketjen black, carbon nanotubes, and graphite.
- binders include fluorine resins, polyacrylonitrile, polyimide resins, acrylic resins, polyolefin resins, and rubber-like polymers.
- fluororesins include polytetrafluoroethylene and polyvinylidene fluoride.
- Foil, film, etc. are used for the positive electrode current collector.
- a carbon material may be applied to the surface of the positive electrode current collector.
- Examples of the material of the positive electrode current collector include metal materials containing Al, Ti, Fe, and the like.
- the metal material may be Al, Al alloy, Ti, Ti alloy, Fe alloy, or the like.
- the Fe alloy may be stainless steel (SUS).
- the thickness of the positive electrode current collector is not particularly limited, and is, for example, 5 ⁇ m or more and 30 ⁇ m or less.
- a porous sheet having ion permeability and insulation is used for the separator.
- porous sheets include thin films, woven fabrics, and non-woven fabrics having microporosity.
- the material of the separator is not particularly limited, but may be a polymer material.
- polymeric materials include olefin resins, polyamide resins, and cellulose.
- olefin resins include polyethylene, polypropylene, and copolymers of ethylene and propylene.
- a separator may also contain an additive as needed. An inorganic filler etc. are mentioned as an additive.
- the separator may be composed of multiple layers that differ in morphology and/or composition.
- a non-aqueous electrolyte having lithium ion conductivity includes, for example, a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
- the non-aqueous electrolyte may be liquid or gel.
- a liquid non-aqueous electrolyte is prepared by dissolving a lithium salt in a non-aqueous solvent. Lithium ions and anions are generated by dissolving the lithium salt in the non-aqueous solvent.
- a gel-like non-aqueous electrolyte contains a lithium salt and a matrix polymer, or a lithium salt, a non-aqueous solvent and a matrix polymer.
- the matrix polymer for example, a polymer material that gels by absorbing a non-aqueous solvent is used. Examples of polymer materials include fluorine resins, acrylic resins, polyether resins, and the like.
- lithium salt or anion known ones used for non-aqueous electrolytes of lithium secondary batteries can be used. Specific examples include BF 4 ⁇ , ClO 4 ⁇ , PF 6 ⁇ , CF 3 SO 3 ⁇ , CF 3 CO 2 ⁇ , anions of imides, and anions of oxalate complexes.
- the anion of the oxalate complex may contain boron and/or phosphorus.
- the anion of the oxalate complex includes bisoxalate borate anion, BF 2 (C 2 O 4 ) ⁇ , PF 4 (C 2 O 4 ) ⁇ , PF 2 (C 2 O 4 ) 2 ⁇ and the like.
- the non-aqueous electrolyte may contain these anions singly or in combination of two or more.
- the non-aqueous electrolyte preferably contains at least an anion of an oxalate complex. Due to the interaction between the anion of the oxalate complex and lithium, the lithium metal is easily precipitated uniformly in the form of fine particles. Therefore, it becomes easier to suppress local deposition of lithium metal. You may combine the anion of an oxalate complex with another anion. Other anions may be PF 6 - and/or imide class anions.
- non-aqueous solvents examples include ester compounds, ether compounds, nitrile compounds, and amide compounds. These compounds include halogen-substituted compounds and the like. Fluoride etc. are mentioned as a halogen substitution body.
- the non-aqueous electrolyte may contain one of these non-aqueous solvents, or two or more of them.
- the non-aqueous solvent may contain an ether compound as a main component.
- the term "main component" as used herein means that the content of the ether compound in the non-aqueous solvent is 50% by mass or more, and may be 80% by mass or more. Moreover, the content of the ether compound in the non-aqueous solvent may be 95% by mass or less, or may be 100% by mass or less.
- the range of the content of the ether compound in the non-aqueous solvent may be a range in which the above upper limit and lower limit are arbitrarily combined.
- the ether compound has excellent stability (especially resistance to reduction), suppresses the formation of decomposition products on the surface of the negative electrode current collector, and has little effect on the negative electrode current collector.
- a non-aqueous electrolyte containing an ether compound as a main component is used for a negative electrode current collector containing austenitic stainless steel, the embrittlement suppression of the negative electrode current collector can significantly improve cycle characteristics. If the austenite ratio is less than 50%, the negative electrode current collector is more likely to be fractured, and the effect of the ether compound is less likely to be exhibited.
- Ether compounds include cyclic ethers and chain ethers.
- Cyclic ethers include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran and the like.
- Chain ethers include 1,2-dimethoxyethane, diethyl ether, ethyl vinyl ether, methylphenyl ether, benzyl ethyl ether, diphenyl ether, dibenzyl ether, 1,2-diethoxyethane, diethylene glycol dimethyl ether, 1,1,2, 2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether and the like.
- 1,2-dimethoxyethane and 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether are preferable from the viewpoint of suppressing embrittlement of the negative electrode current collector.
- ester compounds include carbonic acid esters and carboxylic acid esters.
- cyclic carbonates include ethylene carbonate and propylene carbonate.
- Chain carbonic acid esters include dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate and the like.
- Cyclic carboxylic acid esters include ⁇ -butyrolactone, ⁇ -valerolactone and the like.
- chain carboxylic acid esters include ethyl acetate, methyl propionate, and methyl fluoropropionate.
- the concentration of the lithium salt in the non-aqueous electrolyte is, for example, 0.5 mol/L or more and 3.5 mol/L or less.
- the anion concentration in the non-aqueous electrolyte may be 0.5 mol/L or more and 3.5 mol/L or less.
- the concentration of the anion of the oxalate complex in the non-aqueous electrolyte may be 0.05 mol/L or more and 1 mol/L or less.
- the non-aqueous electrolyte may contain additives.
- the additive may form a film on the negative electrode. Formation of the film derived from the additive on the negative electrode facilitates suppression of the formation of dendrites.
- examples of such additives include vinylene carbonate, fluoroethylene carbonate (FEC), vinyl ethyl carbonate (VEC), and the like.
- lithium secondary battery lithium secondary battery
- the configuration of the lithium secondary battery according to the present disclosure will be described with reference to the drawings, taking a cylindrical battery including a wound electrode group as an example.
- the present disclosure is not limited to the following configurations.
- FIG. 1 is a vertical cross-sectional view schematically showing an example of a lithium secondary battery according to an embodiment of the present disclosure.
- FIG. 2 is an enlarged view of a portion (a portion including the positive electrode) surrounded by region II in FIG.
- FIG. 3 is an enlarged view of a portion (part including the negative electrode) surrounded by region III in FIG.
- each figure is shown schematically, and the ratio of the dimension (for example, thickness) of each component may be different from the actual one.
- the lithium secondary battery 10 includes a cylindrical battery case, a wound electrode group 14 housed in the battery case, and a non-aqueous electrolyte (not shown).
- the electrode group 14 is configured by winding a strip-shaped positive electrode 11 and a strip-shaped negative electrode 12 with a separator 13 interposed between the positive electrode 11 and the negative electrode 12 .
- the negative electrode 12 is composed of a negative electrode current collector.
- the negative electrode 12 (negative electrode current collector) has a thickness X and faces the separator 13 having a thickness Y. Note that the thickness Y in FIG. 3 indicates the thickness of the separator 13 before housing the electrode group 14 in the case body 15 .
- the negative electrode 12 is composed only of the negative electrode current collector.
- the negative electrode may be configured by supporting the negative electrode mixture layer on the surface of the electric body.
- the negative electrode 12 is electrically connected via a negative electrode lead 20 to a case body 15 that also serves as a negative electrode terminal.
- One end of the negative electrode lead 20 is connected to, for example, a longitudinal end of the negative electrode 12 , and the other end is welded to the inner bottom surface of the case body 15 .
- the positive electrode 11 includes a positive electrode current collector 30 and a positive electrode mixture layer 31, and is electrically connected via a positive electrode lead 19 to a cap 26 that also serves as a positive electrode terminal.
- One end of the positive electrode lead 19 is connected, for example, near the center of the positive electrode 11 in the longitudinal direction.
- a positive electrode lead 19 extending from the positive electrode 11 extends to the filter 22 through a through hole (not shown) formed in the insulating plate 17 .
- the other end of the positive electrode lead 19 is welded to the surface of the filter 22 on the electrode group 14 side.
- the battery case is composed of a case body 15 which is a bottomed cylindrical metal container and a sealing member 16 which seals the opening of the case body 15 .
- a gasket 27 is arranged between the case main body 15 and the sealing member 16 to ensure the airtightness of the battery case.
- Insulating plates 17 and 18 are arranged at both ends of the electrode group 14 in the winding axis direction in the case main body 15 .
- the case body 15 has, for example, a stepped portion 21 formed by partially pressing the side wall of the case body 15 from the outside.
- the stepped portion 21 may be annularly formed on the side wall of the case body 15 along the circumferential direction of the case body 15 .
- the sealing member 16 is supported by the surface of the stepped portion 21 on the opening side.
- the sealing body 16 includes a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25 and a cap 26. In the sealing member 16, these members are laminated in this order.
- the sealing member 16 is attached to the opening of the case body 15 so that the cap 26 is positioned outside the case body 15 and the filter 22 is positioned inside the case body 15 .
- Each of the members constituting the sealing member 16 is, for example, disk-shaped or ring-shaped.
- the lower valve body 23 and the upper valve body 25 are connected to each other at their central portions, and an insulating member 24 is interposed between their peripheral edge portions.
- the filter 22 and the lower valve body 23 are connected to each other at their peripheral edges.
- the upper valve body 25 and the cap 26 are connected to each other at their peripheral edge portions. That is, each member except the insulating member 24 is electrically connected to each other.
- a ventilation hole (not shown) is formed in the lower valve body 23 . Therefore, when the internal pressure of the battery case rises due to abnormal heat generation or the like, the upper valve body 25 swells toward the cap 26 side and separates from the lower valve body 23 . Thereby, the electrical connection between the lower valve body 23 and the upper valve body 25 is cut off. When the internal pressure further increases, the upper valve body 25 is broken, and gas is discharged from an opening (not shown) formed in the cap 26 .
- a cylindrical lithium secondary battery has been described, but the present embodiment can be applied without being limited to this case.
- the shape of the lithium secondary battery can be appropriately selected from various shapes such as a cylindrical shape, a coin shape, a rectangular shape, a sheet shape, a flat shape, etc., depending on the application.
- a wound electrode group configured by winding a positive electrode and a negative electrode with a separator interposed therebetween is shown. It may also be a stacked electrode group configured by stacking via layers.
- known ones can be used without particular limitation.
- NCA positive electrode Lithium-containing transition metal oxide containing Li, Ni, Co and Al
- AB positive electrode active material
- PVdF polyvinylidene fluoride
- NMP N-methyl-2-pyrrolidone
- the obtained positive electrode mixture slurry was applied to both surfaces of an Al foil functioning as a positive electrode current collector, dried, and a coating film of the positive electrode mixture was rolled using a roller. Finally, the obtained laminate of the positive electrode current collector and the positive electrode mixture was cut into a predetermined electrode size to prepare a positive electrode having positive electrode mixture layers on both sides of the positive electrode current collector.
- E1 SUS304 modified 2 (Ni content: 5% by mass)
- E2 SUS304 modified 1 (Ni content: 6.5% by mass)
- E3 SUS304
- E4 SUS316
- SUS316L SUS316L
- Non-Aqueous Electrolyte LiPF 6 and LiBF 2 (C 2 O 4 ) were dissolved to 1 mol/L and 0.1 mol/L of LiBF 2 (C 2 O 4 ), respectively, in a non-aqueous solvent to form a liquid non-aqueous electrolyte.
- a water electrolyte was prepared.
- Table 1 in the ether-based non-aqueous electrolyte, 1,2-dimethoxyethane and 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether were used as non-aqueous solvents.
- dimethyl carbonate was used as the non-aqueous solvent.
- Table 1 shows the evaluation results.
- the discharge capacity at 100 cycles of each battery is shown as a relative value when the discharge capacity at 100 cycles of E1 is 100.
- E1 to E6 with an austenite rate of 50% or more had a higher discharge capacity at 100 cycles and improved cycle characteristics than C1 to C4 with an austenite rate of less than 50%.
- E4 using an ether-based non-aqueous electrolyte has further improved cycle characteristics compared to E3 using a carbonate-based non-aqueous electrolyte.
- C2 to C3 with an austenite rate of less than 50% are compared
- C3 using an ether-based non-aqueous electrolyte shows no improvement in cycle characteristics compared to C2 using a carbonate-based non-aqueous electrolyte. I didn't. From the above, it was shown that when an ether-based non-aqueous electrolyte is used for a negative electrode current collector having an austenite ratio of 50% or more, the effect of improving cycle characteristics is significantly obtained.
- the lithium secondary battery of the present disclosure can be used for electronic devices such as mobile phones, smartphones, and tablet terminals, electric vehicles including hybrids and plug-in hybrids, household storage batteries combined with solar cells, and the like. While the invention has been described in terms of presently preferred embodiments, such disclosure is not to be construed in a limiting sense. Various alterations and modifications will no doubt become apparent to those skilled in the art to which the invention pertains after reading the above disclosure. Therefore, the appended claims are to be interpreted as covering all variations and modifications without departing from the true spirit and scope of the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
負極集電体(ステンレス鋼箔)の試料(例えば、サイズ:25mm角)を準備し、当該試料について2次元検出機能を用いるX線回折(XRD)測定を行い、XRDパターン(縦軸:X線回折強度、横軸:回折角2θ)を得る。測定領域(微小部)の大きさは、例えば、15mm角である。
<分析装置>
2次元微小部X線回折装置((株)リガク製、RINT-RAPID II)
<分析条件>
管球:Co
単色化:モノクロメータを使用(CoKα)
管球出力:40kV-30mA
検出器:イメージングプレート(2次元)
(反射法)
コリメータ:Φ300μm
ω角:25°~35°(2°/sec)
Φ角:360°回転(1°/sec)
測定時間(露光):30分
負極は、負極集電体を備える。リチウム二次電池では、充電時に負極の表面にリチウム金属が析出する。より具体的には、非水電解質に含まれるリチウムイオンが、充電により、負極集電体上で電子を受け取ってリチウム金属になり、負極集電体の表面に析出する。負極集電体の表面に析出したリチウム金属は、放電により非水電解質中にリチウムイオンとして溶解する。なお、非水電解質に含まれるリチウムイオンは、非水電解質に添加したリチウム塩に由来するものであってもよく、充電により正極活物質から供給されるものであってもよく、これらの双方であってもよい。
正極は、例えば、正極集電体と、正極集電体に担持された正極合材層とを備える。正極合材層は、例えば、正極活物質と導電材と結着材とを含む。正極合材層は、正極集電体の片面のみに形成されてもよく、両面に形成されてもよい。正極は、例えば、正極集電体の両面に正極活物質と導電材と結着材とを含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧延することにより得られる。
セパレータには、イオン透過性および絶縁性を有する多孔性シートが用いられる。多孔性シートとしては、例えば、微多孔を有する薄膜、織布、不織布等が挙げられる。セパレータの材質は特に限定されないが、高分子材料であってもよい。高分子材料としては、オレフィン樹脂、ポリアミド樹脂、セルロース等が挙げられる。オレフィン樹脂としては、ポリエチレン、ポリプロピレンおよびエチレンとプロピレンとの共重合体等が挙げられる。セパレータは、必要に応じて、添加剤を含んでもよい。添加剤としては、無機フィラー等が挙げられる。セパレータは、形態および/または組成が異なる複数の層で構成されていてもよい。
リチウムイオン伝導性を有する非水電解質は、例えば、非水溶媒と、非水溶媒に溶解するリチウム塩と、を含む。非水電解質は、液状でもよいし、ゲル状でもよい。液状の非水電解質は、リチウム塩を非水溶媒に溶解させることにより調製される。リチウム塩が非水溶媒中に溶解することにより、リチウムイオンおよびアニオンが生成する。
以下、本開示に係るリチウム二次電池の構成を、巻回型の電極群を備える円筒形電池を例にして、図面を参照しながら説明する。ただし、本開示は以下の構成に限定されるものではない。
なお、本実施形態では、負極12は負極集電体のみで構成されるが、初回充電前に負極集電体の表面に予めリチウム金属シートを配置して負極を構成してもよく、負極集電体の表面に負極合材層を担持させて負極を構成してもよい。
以下、本開示に係るリチウム二次電池を実施例および比較例に基づいて具体的に説明する。本開示は以下の実施例に限定されるものではない。
(1)正極の作製
Li、Ni、CoおよびAlを含有するリチウム含有遷移金属酸化物(NCA;正極活物質)と、アセチレンブラック(AB;導電材)と、ポリフッ化ビニリデン(PVdF;結着材)とを、NCA:AB:PVdF=95:2.5:2.5の質量比で混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて撹拌して、正極合材スラリーを調製した。次に、得られた正極合材スラリーを、正極集電体として機能するAl箔の両面に塗布した後、乾燥して、ローラーを用いて正極合材の塗膜を圧延した。最後に、得られた正極集電体と正極合材との積層体を所定の電極サイズに切断し、正極集電体の両面に正極合材層を備える正極を作製した。
オーステナイト率、破断強度、および破断伸びが、それぞれ表1に示す値である矩形のステンレス鋼の箔(厚みX:10μm)を負極集電体として準備した。不活性ガス雰囲気中で、当該ステンレス鋼箔にリチウム合金箔(厚み25μm)を圧着させた。このようにして負極を作製した。
E1:SUS304改2(Ni含有量:5質量%)
E2:SUS304改1(Ni含有量:6.5質量%)
E3:SUS304
E4:SUS316
E5:SUS316L
E6:SUS316L
C1:SUS304改3(Ni含有量:3.5質量%)
C2:SUS304改4(Ni含有量:2質量%)
C3:SUS444
C4:SUS444
E2、E1、C1、およびC2では、この順に、SUS304をベースにNi量を減らしてフェライト量を増やした(オーステナイト率を小さくした)ステンレス鋼を用いた。
非水溶媒に、LiPF6を1モル/Lと、LiBF2(C2O4)を0.1モル/Lと、なるようにそれぞれ溶解させて、液体の非水電解質を調製した。表1中、エーテル系の非水電解質では、非水溶媒に1,2-ジメトキシエタンと1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテルを用いた。カーボネート系の非水電解質では、非水溶媒にジメチルカーボネートを用いた。
上記で得られた正極に、Al製のタブを取り付けた。上記で得られた負極に、Ni製のタブを取り付けた。不活性ガス雰囲気中で、正極と負極との間にセパレータを介在させて、正極と負極とを渦巻状に巻回し、巻回型の電極群を作製した。セパレータにはポリエチレン薄膜を用い、セパレータの厚みYは表1に示す値とした。得られた電極群を、Al層を備えるラミネートシートで形成される袋状の外装体に収容し、電極群を収容した外装体に上記非水電解質を注入した後、外装体を封止してリチウム二次電池を作製した。表1中、E1~E6は、実施例1~6の電池であり、C1~C4は、比較例1~4の電池である。
得られた各電池について、25℃の環境下で充放電サイクル試験を行った。充放電は、以下の条件で行った。充電と放電との間は、20分間の休止を行った。
電圧が4.1Vになるまで10mAで定電流充電を行い、その後、電流が1mAになるまで4.1Vで定電圧充電を行った。
電圧が3Vになるまで10mAで定電流放電を行った。
以上のことから、オーステナイト率が50%以上の負極集電体に対して、エーテル系の非水電解質を用いる場合、サイクル特性の向上効果が顕著に得られることが示された。
以上のことから、オーステナイト率が50%以上の負極集電体に対して、Y/Xが2.5以上である場合、サイクル特性の向上効果が顕著に得られることが示された。
本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
11 正極
12 負極
13 セパレータ
14 電極群
15 ケース本体
16 封口体
17、18 絶縁板
19 正極リード
20 負極リード
21 段部
22 フィルタ
23 下弁体
24 絶縁部材
25 上弁体
26 キャップ
27 ガスケット
30 正極集電体
31 正極合材層
Claims (4)
- リチウムイオンを吸蔵および放出可能な正極活物質を含む正極と、
負極集電体を備える負極と、
前記正極と前記負極との間に配置されるセパレータと、
リチウムイオン伝導性を有する非水電解質と、を備え、
前記負極では、充電時にリチウム金属が析出し、放電時に前記リチウム金属が溶解し、
前記負極集電体は、オーステナイト系ステンレス鋼を含む、リチウム二次電池。 - 前記負極集電体は、850MPa以下の破断強度と、3%以上の破断伸びと、を有する、請求項1に記載のリチウム二次電池。
- 前記非水電解質は、非水溶媒と、前記非水溶媒中に溶解するリチウム塩と、を含み、
前記非水溶媒は、エーテル化合物を80質量%以上含む、請求項1または2に記載のリチウム二次電池。 - 前記負極集電体の厚みXに対する前記セパレータの厚みYの比:Y/Xは、2.5以上である、請求項1~3のいずれか1項に記載のリチウム二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023531820A JPWO2023276757A1 (ja) | 2021-06-30 | 2022-06-20 | |
US18/574,244 US20240322217A1 (en) | 2021-06-30 | 2022-06-20 | Lithium secondary battery |
EP22832905.8A EP4366017A1 (en) | 2021-06-30 | 2022-06-20 | Lithium secondary battery |
CN202280045419.1A CN117561627A (zh) | 2021-06-30 | 2022-06-20 | 锂二次电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021109588 | 2021-06-30 | ||
JP2021-109588 | 2021-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023276757A1 true WO2023276757A1 (ja) | 2023-01-05 |
Family
ID=84691740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/024524 WO2023276757A1 (ja) | 2021-06-30 | 2022-06-20 | リチウム二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240322217A1 (ja) |
EP (1) | EP4366017A1 (ja) |
JP (1) | JPWO2023276757A1 (ja) |
CN (1) | CN117561627A (ja) |
WO (1) | WO2023276757A1 (ja) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05182650A (ja) * | 1991-12-27 | 1993-07-23 | Yuasa Corp | 薄形電池 |
JPH06111820A (ja) * | 1992-09-25 | 1994-04-22 | Sanyo Electric Co Ltd | 非水系電池 |
JPH07161382A (ja) * | 1993-12-13 | 1995-06-23 | Toshiba Battery Co Ltd | 非水電解液二次電池 |
JPH08130036A (ja) * | 1994-09-08 | 1996-05-21 | Fuji Photo Film Co Ltd | 非水二次電池 |
JP2001035537A (ja) * | 1998-07-10 | 2001-02-09 | Hitachi Maxell Ltd | 非水二次電池 |
JP2005063731A (ja) * | 2003-08-08 | 2005-03-10 | Japan Storage Battery Co Ltd | 非水電解質二次電池およびその製造方法 |
WO2013080988A1 (ja) * | 2011-11-29 | 2013-06-06 | 古河電気工業株式会社 | 電極用集電体、非水電解質二次電池用電極、非水電解質二次電池 |
JP2013114825A (ja) * | 2011-11-25 | 2013-06-10 | Nisshin Steel Co Ltd | 電極積層体およびそれを用いたリチウムイオン二次電池 |
JP2016184572A (ja) * | 2015-03-26 | 2016-10-20 | パナソニック株式会社 | 電気化学エネルギー蓄積デバイス |
JP2016219255A (ja) * | 2015-05-20 | 2016-12-22 | 日産自動車株式会社 | 電池、電池モジュールおよび電池の設計方法 |
JP2018206541A (ja) * | 2017-05-31 | 2018-12-27 | 日本碍子株式会社 | 電池要素の封止方法及びそれを用いたフィルム外装電池の製造方法 |
WO2019017331A1 (ja) * | 2017-07-18 | 2019-01-24 | 株式会社Gsユアサ | 電極、蓄電素子、及び電極の製造方法 |
WO2019087709A1 (ja) | 2017-10-30 | 2019-05-09 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池及びその製造方法 |
JP2020024877A (ja) * | 2018-08-08 | 2020-02-13 | Fdk株式会社 | 蓄電素子 |
-
2022
- 2022-06-20 WO PCT/JP2022/024524 patent/WO2023276757A1/ja active Application Filing
- 2022-06-20 JP JP2023531820A patent/JPWO2023276757A1/ja active Pending
- 2022-06-20 CN CN202280045419.1A patent/CN117561627A/zh active Pending
- 2022-06-20 US US18/574,244 patent/US20240322217A1/en active Pending
- 2022-06-20 EP EP22832905.8A patent/EP4366017A1/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05182650A (ja) * | 1991-12-27 | 1993-07-23 | Yuasa Corp | 薄形電池 |
JPH06111820A (ja) * | 1992-09-25 | 1994-04-22 | Sanyo Electric Co Ltd | 非水系電池 |
JPH07161382A (ja) * | 1993-12-13 | 1995-06-23 | Toshiba Battery Co Ltd | 非水電解液二次電池 |
JPH08130036A (ja) * | 1994-09-08 | 1996-05-21 | Fuji Photo Film Co Ltd | 非水二次電池 |
JP2001035537A (ja) * | 1998-07-10 | 2001-02-09 | Hitachi Maxell Ltd | 非水二次電池 |
JP2005063731A (ja) * | 2003-08-08 | 2005-03-10 | Japan Storage Battery Co Ltd | 非水電解質二次電池およびその製造方法 |
JP2013114825A (ja) * | 2011-11-25 | 2013-06-10 | Nisshin Steel Co Ltd | 電極積層体およびそれを用いたリチウムイオン二次電池 |
WO2013080988A1 (ja) * | 2011-11-29 | 2013-06-06 | 古河電気工業株式会社 | 電極用集電体、非水電解質二次電池用電極、非水電解質二次電池 |
JP2016184572A (ja) * | 2015-03-26 | 2016-10-20 | パナソニック株式会社 | 電気化学エネルギー蓄積デバイス |
JP2016219255A (ja) * | 2015-05-20 | 2016-12-22 | 日産自動車株式会社 | 電池、電池モジュールおよび電池の設計方法 |
JP2018206541A (ja) * | 2017-05-31 | 2018-12-27 | 日本碍子株式会社 | 電池要素の封止方法及びそれを用いたフィルム外装電池の製造方法 |
WO2019017331A1 (ja) * | 2017-07-18 | 2019-01-24 | 株式会社Gsユアサ | 電極、蓄電素子、及び電極の製造方法 |
WO2019087709A1 (ja) | 2017-10-30 | 2019-05-09 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池及びその製造方法 |
JP2020024877A (ja) * | 2018-08-08 | 2020-02-13 | Fdk株式会社 | 蓄電素子 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023276757A1 (ja) | 2023-01-05 |
EP4366017A1 (en) | 2024-05-08 |
CN117561627A (zh) | 2024-02-13 |
US20240322217A1 (en) | 2024-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180006322A1 (en) | Electrode plate and secondary battery | |
JP5748193B2 (ja) | 二次電池 | |
JP6024457B2 (ja) | 二次電池およびそれに用いる二次電池用電解液 | |
WO2011040443A1 (ja) | 二次電池 | |
JPWO2012039041A1 (ja) | 非水電解質二次電池 | |
JP5867396B2 (ja) | 二次電池 | |
JP5920217B2 (ja) | 二次電池 | |
JP2013201077A (ja) | 非水電解質二次電池 | |
EP3322024A1 (en) | Nonaqueous electrolyte battery and battery pack | |
WO2012029625A1 (ja) | 二次電池 | |
JP5867398B2 (ja) | 二次電池 | |
CN112018342A (zh) | 正极活性物质和使用该正极活性物质的二次电池 | |
US10243204B2 (en) | Negative electrode active material, and negative electrode and lithium ion secondary battery using the negative electrode active material | |
WO2012049889A1 (ja) | 二次電池およびそれに用いる二次電池用電解液 | |
WO2023276756A1 (ja) | リチウム二次電池 | |
US20240128591A1 (en) | Lithium secondary battery | |
WO2023276757A1 (ja) | リチウム二次電池 | |
WO2023026482A1 (ja) | 電極、電池、及び電池パック | |
KR101229229B1 (ko) | 원통형 이차전지용 탑 캡 및 이를 포함하는 이차전지 | |
JP6227168B1 (ja) | リチウムイオン電池およびその製造方法 | |
WO2012029645A1 (ja) | 二次電池およびそれに用いる二次電池用電解液 | |
JP6168356B2 (ja) | リチウムイオン二次電池 | |
WO2023190872A1 (ja) | リチウム二次電池 | |
CN112018389A (zh) | 正极活性物质和使用该正极活性物质的二次电池 | |
WO2023074845A1 (ja) | リチウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22832905 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023531820 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18574244 Country of ref document: US Ref document number: 202280045419.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022832905 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022832905 Country of ref document: EP Effective date: 20240130 |