WO2023190872A1 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
WO2023190872A1
WO2023190872A1 PCT/JP2023/013185 JP2023013185W WO2023190872A1 WO 2023190872 A1 WO2023190872 A1 WO 2023190872A1 JP 2023013185 W JP2023013185 W JP 2023013185W WO 2023190872 A1 WO2023190872 A1 WO 2023190872A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode
region
base material
positive electrode
Prior art date
Application number
PCT/JP2023/013185
Other languages
English (en)
French (fr)
Inventor
洋平 内山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023190872A1 publication Critical patent/WO2023190872A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a lithium secondary battery.
  • a lithium secondary battery (lithium metal secondary battery) includes a columnar wound electrode group having a hollow portion and a nonaqueous electrolyte.
  • the wound electrode group is configured by spirally winding a positive electrode and a negative electrode including a negative electrode current collector with a separator in between.
  • lithium metal is deposited on the negative electrode during charging, and lithium metal is dissolved during discharge and released as lithium ions into the nonaqueous electrolyte.
  • Patent Document 1 proposes forming a reinforcing part by overlapping a reinforcing separator on a part of the separator body in order to prevent short circuits in a nickel-metal hydride battery having a spiral electrode group.
  • Lithium secondary batteries are required to have improved cycle characteristics.
  • One aspect of the present disclosure includes a columnar wound electrode group having a hollow portion and a nonaqueous electrolyte having lithium ion conductivity, and the electrode group includes a positive electrode and a negative electrode including a negative electrode current collector. and a separator disposed between the positive electrode and the negative electrode, in the negative electrode, lithium metal is deposited during charging, and the lithium metal is dissolved during discharge, and the negative electrode current collector is made of austenite.
  • system stainless steel foil or oxygen-free copper foil and when the radial length from the inner circumferential surface to the outer circumferential surface in a cross section perpendicular to the winding axis of the electrode group during discharge is D, the above during discharge.
  • the electrode group has a first region whose distance from the inner peripheral surface of the electrode group is (1/4) ⁇ D or less, and a distance from the outer peripheral surface of the electrode group is (1/4) ⁇ D or less. and a second region, in the electrode group during discharge, an inter-electrode distance X1 between the positive electrode and the negative electrode in the first region, and an inter-electrode distance X1 between the positive electrode and the negative electrode in the second region.
  • the distance X2 relates to a lithium secondary battery having a relationship of 2 ⁇ X1/X2.
  • the cycle characteristics of a lithium secondary battery can be improved.
  • FIG. 1 is a vertical cross-sectional view schematically showing a lithium secondary battery according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram schematically showing a cross section perpendicular to the axis of the battery.
  • FIG. 3 is a diagram schematically showing an example of the configuration of a first region of an electrode group.
  • FIG. 7 is a diagram schematically showing another example of the configuration of the first region of the electrode group.
  • (a) It is a top view showing an example of a first base material and a negative electrode arranged on the first base material.
  • (b) It is a top view showing an example of a negative electrode composite.
  • (a) It is a top view which shows an example of a 2nd base material and the positive electrode arrange
  • FIG. 3 is a top view showing an example of a positive electrode with a convex portion.
  • a lithium secondary battery includes a columnar wound electrode group having a hollow portion and a nonaqueous electrolyte having lithium ion conductivity.
  • the electrode group includes a positive electrode, a negative electrode including a negative electrode current collector, and a separator disposed between the positive electrode and the negative electrode.
  • the negative electrode current collector is an austenitic stainless steel foil or an oxygen-free copper foil. Let D be the radial length from the inner peripheral surface to the outer peripheral surface in a cross section perpendicular to the winding axis of the electrode group during discharge.
  • the electrode group during discharge has a first region whose distance from the inner circumferential surface of the electrode group is (1/4) ⁇ D or less, and a first region whose distance from the outer circumferential surface of the electrode group is (1/4) ⁇ D or less. D or less.
  • the inter-electrode distance X1 between the positive electrode and the negative electrode in the first region and the inter-electrode distance X2 between the positive electrode and the negative electrode in the second region have a relationship of 2 ⁇ X1/X2.
  • the electrode group is in contact with the inner peripheral surface of the battery can at all times from the time of charging to the time of discharging, so the distance from the inner peripheral surface of the battery can to the second region is (1/4) x D It can also be said to be the following areas.
  • the radial direction of the cross section perpendicular to the winding axis of the electrode group is the radial direction of the cross section perpendicular to the axis of the battery can. You can say that.
  • the inter-electrode distance is the distance between the positive electrode and the negative electrode facing the positive electrode.
  • the distance between the electrodes is approximately the same as the thickness of the separator between the positive and negative electrodes during discharge.
  • the thickness of the separator is the total thickness of the plurality of base materials (or base materials and convex portions). Note that during discharge refers to when the SOC is 0.1 ⁇ C or less.
  • the lithium secondary battery according to the present disclosure is also referred to as a lithium metal secondary battery.
  • a lithium metal secondary battery At the negative electrode of this type of battery, lithium metal precipitates during charging and dissolves during discharge.
  • the negative electrode has at least a negative electrode current collector, and lithium metal is deposited on the negative electrode current collector.
  • a lithium secondary battery for example, 70% or more of the rated capacity is developed by precipitation and dissolution of lithium metal.
  • the movement of electrons in the negative electrode during charging and discharging is mainly due to the precipitation and dissolution of lithium metal in the negative electrode.
  • 70 to 100% (for example, 80 to 100% or 90 to 100%) of the movement of electrons (current from another point of view) in the negative electrode during charging and discharging is due to precipitation and dissolution of lithium metal.
  • the negative electrode according to the present disclosure is different from a negative electrode in which the movement of electrons in the negative electrode during charging and discharging is mainly caused by occlusion and desorption of lithium ions by a negative electrode active material (such as graphite).
  • the open circuit voltage (OCV) of the negative electrode at full charge is, for example, 70 mV or less with respect to lithium metal (lithium dissolution deposition potential).
  • Fully charged is a state in which the battery is charged to a state of charge (SOC) of, for example, 0.98 ⁇ C or higher, where C is the rated capacity of the battery.
  • SOC state of charge
  • the open circuit potential (OCV) of the negative electrode when fully charged can be measured by disassembling a fully charged battery in an argon atmosphere, taking out the negative electrode, and assembling a cell using lithium metal as a counter electrode.
  • the non-aqueous electrolyte in the cell may have the same composition as the non-aqueous electrolyte in the disassembled battery.
  • the negative electrode current collector By using austenitic stainless steel foil or oxygen-free copper foil for the negative electrode current collector, embrittlement of the negative electrode current collector (e.g., electrolytic copper foil, ferritic stainless steel foil) and associated breakage of the negative electrode during charging and discharging can be avoided. is suppressed. On the other hand, since lithium metal is precipitated at the negative electrode during charging, the amount of expansion of the negative electrode is large. Further, normally, at all times from charging to discharging, the outer circumferential surface of the electrode group and the inner circumferential surface of the battery can housing the electrode group are in contact with each other. The end of the winding end of the electrode group is fixed with tape.
  • an austenitic stainless steel foil or an oxygen-free copper foil is used for the negative electrode current collector, and the electrode in the first region on the winding start side is The distance between them is increased. Breaking of the negative electrode due to embrittlement of the negative electrode current collector is suppressed, and by increasing the distance between the electrodes in the first region with X1/X2 of 2 or more, the separator is easily compressed effectively (voids inside the separator are ), the stress concentration near the hollow part (inner peripheral side) of the electrode group due to the expansion of the negative electrode is effectively alleviated, and buckling of the electrode is suppressed.
  • the effect of suppressing embrittlement of the negative electrode current collector and the effect of alleviating stress concentration combine to significantly improve cycle characteristics.
  • the distance between the electrodes can be made smaller than in the first region, and the energy density can be increased. Further, since the distance between the electrodes is small, surface pressure is easily applied from the separator to the negative electrode, and the formation of dendrites can be suppressed.
  • electrolytic copper foil is used for the negative electrode current collector, even if the distance between the electrodes in the first region on the winding start side is increased by X1/X2 of 2 or more, the negative electrode will break due to embrittlement of the negative electrode current collector. (Especially, the breakage is likely to occur in the outer peripheral portion of the second region), and the cycle characteristics deteriorate. If X1/X2 is less than 2, the effect of alleviating the stress concentration described above will be insufficient, buckling of the electrode, etc. will occur, and the cycle characteristics will deteriorate.
  • X1/X2 may be 2 or more and 10 or less, 2 or more and 8 or less, or 4 or more and 8 or less.
  • the inter-electrode distance X1 in the first region and the inter-electrode distance X2 in the second region can be determined as follows.
  • X-ray CT of a cross section perpendicular to the winding axis of the electrode group inside the battery for a battery in an initial discharge state for example, the first discharge after purchasing the battery or the discharge after several charging and discharging cycles after manufacturing the battery
  • Get the image the image. Note that during discharge refers to when the SOC is 0.1 ⁇ C or less.
  • the radial length D from the inner circumferential surface to the outer circumferential surface in the cross section of the electrode group is measured to determine the first region and the second region.
  • the electrodes and separators are distinguished by binarization processing or the like. Measure the inter-electrode distances at 5 to 20 points selected at equal intervals along the separator in the first region, average them, and find X1.
  • X2 is obtained in the same manner for the second region.
  • the thickness of the positive and negative electrodes obtained by disassembling the battery in the initial discharge state, the above-mentioned length D and the first region obtained from the above-mentioned X-ray CT image, and the number of stages in the first region may be calculated based on the number of turns of the negative electrode.
  • the inter-electrode distance X2 may be calculated in the same manner for the second region.
  • the electrode group has a third region between the first region and the second region.
  • the third region may have a region with an inter-electrode distance X1 on the first region side and a region with an inter-electrode distance X2 on the second region side.
  • the combined area of the first area and a part of the third area on the first area side (for example, the distance from the inner peripheral surface of the electrode group is less than (1/2) x D or (2/5) xD or less) may be a region where the inter-electrode distance is X1.
  • the entire third region may be a region with an inter-electrode distance of X1 or X2.
  • the ratio of the region X1 and the region X2 may be determined as appropriate depending on the energy density and the distribution of the magnitude of stress generated within the electrode group.
  • the positive electrode, negative electrode, and separator each have, for example, a long sheet shape.
  • the electrode group having a hollow portion is formed, for example, by spirally winding a positive electrode and a negative electrode around a predetermined winding core with a separator interposed therebetween, and then removing the winding core. Since the electrode group has a hollow portion, the nonaqueous electrolyte can be contained in the hollow portion, and the retention of the nonaqueous electrolyte within the electrode group can be improved. With repeated charging and discharging (expansion and contraction of the electrodes), extrusion of the non-aqueous electrolyte from the electrode group is suppressed.
  • FIG. 2 is a diagram schematically showing a cross section perpendicular to the axis of the battery.
  • FIG. 2 schematically shows a cross section of the electrode group 14 housed in the battery can 15 perpendicular to the winding axis.
  • the columnar wound electrode group 14 is configured by spirally winding a positive electrode and a negative electrode including a negative electrode current collector with a separator in between.
  • the electrode group 14 is housed in a cylindrical battery can 15 with a bottom.
  • the electrode group 14 has a hollow portion 29 .
  • D be the radial length from the inner circumferential surface S1 to the outer circumferential surface S2 in a cross section perpendicular to the winding axis of the electrode group 14 during discharge.
  • the electrode group 14 during discharge has a first region 41 whose distance from the inner circumferential surface S1 of the electrode group 14 is (1/4) ⁇ D or less, and an outer circumferential surface S2 of the electrode group 14 (the battery can 15 a second region 42 whose distance from the inner circumferential surface of the second region 42 is equal to or less than (1/4) ⁇ D.
  • the inter-electrode distance X1 in the first region 41 and the inter-electrode distance X2 in the second region 42 have a relationship of 2 ⁇ X1/X2.
  • the electrode group 14 has a third region 43 between the first region 41 and the second region 42 .
  • the distance between the electrodes in the third region 43 may be X1 or X2.
  • the negative electrode current collector is an austenitic stainless steel foil or an oxygen-free copper foil.
  • austenitic stainless steel foil When using austenitic stainless steel foil, the embrittlement of the negative electrode current collector is suppressed, the negative electrode current collector has appropriate strength and flexibility, and the negative electrode current collector has excellent resistance to stress generated in the negative electrode. is obtained. Also when using copper foil with a small amount of oxygen, embrittlement of the negative electrode current collector is suppressed.
  • the thickness of the negative electrode current collector is not particularly limited, and is, for example, 5 ⁇ m or more and 300 ⁇ m or less.
  • Austenitic stainless steel is stainless steel that has an austenite percentage of 50% or more.
  • the austenite rate may be 70% or more, 90% or more, or 100%.
  • the austenite ratio means the proportion (mass ratio) of the austenite phase in stainless steel.
  • the austenite rate is calculated as ⁇ x/(x+y+z) ⁇ 100.
  • the austenite structure has a face-centered cubic lattice structure (FCC structure), and the ferrite structure and martensitic structure have a body-centered cubic lattice structure (BCC structure).
  • Austenitic stainless steel may contain, for example, C, Si, Mn, P, S, Ni, Cr, Mn, Mo, Cu, N, etc. as components other than Fe.
  • the stainless steel may be a low carbon type, an extremely low carbon type, or a nitrogen-added type stainless steel, or may be a duplex stainless steel containing austenite.
  • austenitic stainless steel examples include SUS301, SUS302, SUS303, SUS304, SUS305, SUS309, SUS310, SUS312, SUS315, SUS316L, SUS317, SUS321, SUS347, etc. Among them, SUS304 and SUS316L are preferable.
  • the austenitic stainless steel is not limited to those exemplified above, and may be any stainless steel with an austenite ratio of 50% or more produced by a melting method. Further, the austenitic stainless steel foil may be a foil softened by annealing.
  • the austenite rate can be determined by the following method.
  • a stainless steel foil sample for example, size: 25 mm square
  • XRD X-ray diffraction
  • the size of the measurement area is, for example, 15 mm square.
  • the obtained XRD pattern is fitted by the least squares method using a standard database, and then quantitative analysis is performed by Rietveld analysis.
  • the XRD pattern may have diffraction peaks corresponding to at least one of an austenite phase, a ferrite phase, and a martensitic phase.
  • the analysis can be performed using software attached to the analyzer. Through this analysis, the ratio (mass ratio) of the austenite phase to the total of the austenite phase, ferrite phase, and martensite phase is determined as the austenite ratio.
  • Several measurement areas are arbitrarily selected in the sample, the austenite percentage in each measurement area is determined, and their average value is calculated.
  • the austenite ratio can also be estimated from Schaeffler's structure diagram, which shows the relationship between ferrite stabilizing elements and austenite stabilizing elements and structures.
  • the structure diagram shows the structure ratio with ferrite stabilizing elements and austenite stabilizing elements on both axes.
  • the vertical axis of the organization chart shows Ni equivalent, and the horizontal axis shows Cr equivalent.
  • Oxygen-free copper foil is copper foil with an oxygen content of 50 ppm or less.
  • the oxygen content may be 30 ppm or less, or 15 ppm or less. Note that the oxygen content means the oxygen content in the base material excluding the oxide film covering the surface of the copper foil.
  • Oxygen-free copper foil may contain trace amounts of components other than copper (for example, Ni, Cr, Fe, Zn, Sn, Ag, Pb, Bi, Cd, Hg, O, P, S, Se, Te, H, etc.). good.
  • the content of Cu in the copper foil may be 99.9% by mass or more, or 99.96% by mass or more.
  • the copper foil may be a rolled copper foil. Examples of oxygen-free copper include JIS H3100 and alloy number C1020.
  • the oxygen content in copper foil can be determined by the following method.
  • a copper foil sample is washed with nitric acid (1+1) for 10 seconds to remove the oxide film on the sample surface. The above washing is repeated until the sample is reduced by 10% by mass or more.
  • the sample is washed with distilled water, alcohol, and acetone in this order.
  • the sample is dried with hot air and immediately analyzed by inert gas melting/infrared absorption method to determine the oxygen content in the sample.
  • an oxygen/nitrogen simultaneous analyzer manufactured by LECO, TC-336) can be used.
  • the separator may be composed of one base material or a plurality of base materials.
  • the base material may be in the form of a sheet.
  • the separator may be a laminate of multiple base materials.
  • the separator may be a laminate of a base material and a convex portion (spacer).
  • a space may be formed between the electrode and the base material by a convex portion (spacer).
  • the convex portions may be provided in a plurality of lines along the longitudinal direction of the separator, or may be provided in a honeycomb shape, for example. In a part of the separator, the distance between the electrodes between the first region and the second region may be changed by increasing the number of laminated base materials or arranging a convex portion.
  • Examples of the base material include microporous membranes, woven fabrics, nonwoven fabrics, heat-resistant layers, and the like.
  • a resin material is used as the material of the microporous membrane, and examples thereof include olefin resin, polyamide resin, polyimide resin, polyester resin, and cellulose resin.
  • Examples of the olefin resin include polyethylene, polypropylene, and a copolymer of ethylene and propylene.
  • the polyester resin include polyethylene terephthalate.
  • glass fibers, cellulose fibers, olefin resins, polyamide resins, polyimide resins, polyester resins, etc. are used as the fiber materials constituting the nonwoven fabric.
  • the heat-resistant layer is, for example, a mixed layer of an inorganic material and a resin material.
  • the thickness of the separator is not particularly limited, but is, for example, 10 ⁇ m or more and 80 ⁇ m or less, and may be 20 ⁇ m or more and 70 ⁇ m or less.
  • the thickness of the separator is the total thickness of the laminate.
  • the separator may include at least one base material selected from the group consisting of microporous sheets (sheet-like microporous membranes) and nonwoven fabric sheets.
  • the separator may include a microporous sheet and a heat-resistant layer disposed on at least one surface of the microporous sheet.
  • a heat-resistant layer may be disposed between at least one of the positive electrode and the negative electrode and the microporous sheet.
  • the heat-resistant layer may be arranged in a line on at least one surface of the microporous sheet.
  • a space may be provided between at least one of the positive electrode and the negative electrode and the microporous sheet by the linear heat-resistant layer.
  • the heat-resistant layer includes, for example, inorganic particles and a resin material supporting the inorganic particles.
  • the resin material include fluorine-containing resins such as polyvinylidene fluoride (PVdF) and polytetrafluoroethylene, and fluorine-containing rubbers such as vinylidene fluoride-tetrafluoroethylene copolymer.
  • the inorganic particles include insulating metal oxides. Examples of metal oxides include aluminum oxide (alumina and boehmite), magnesium oxide, titanium oxide (titania), zirconium oxide, silicon oxide (silica), magnesium hydroxide, aluminum hydroxide, and the like.
  • the average particle diameter of the inorganic particles is not particularly limited, but is preferably 10 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 2.0 ⁇ m or less.
  • the particle size of the inorganic particles is determined by photographing a cross section of the separator using an electron microscope, performing image processing such as binarization to identify the particles, and determining the diameter of an equivalent circle having the same area as the particles.
  • the average particle size is determined, for example, by determining the particle diameters of 100 or more particles and averaging them.
  • the heat-resistant layer may be formed, for example, by applying a treatment liquid containing a resin material and inorganic particles to the surface of a sheet-like base material, positive electrode, or negative electrode and drying the treatment liquid.
  • a treatment liquid containing a resin material and inorganic particles for example, N-methyl-2-pyrrolidone (NMP) is used as the solvent or dispersion medium for the treatment liquid.
  • NMP N-methyl-2-pyrrolidone
  • the content of the inorganic particles in the heat-resistant layer (treatment liquid) is, for example, 70 parts by mass or more and 100 parts by mass or less per 100 parts by mass of the resin material. In this case, the strength and heat resistance of the heat-resistant layer can be easily ensured.
  • the separator may include a base material and a protrusion (spacer).
  • a spacer is interposed between at least one of the positive electrode and the negative electrode and the base material.
  • the convex portion may be arranged in the first region. Thereby, a space is formed between at least one of the positive electrode and the negative electrode and the base material.
  • the discharge state is a state after a large amount of lithium metal has been dissolved from the negative electrode, and may be, for example, a state of SOC of 0.1 ⁇ C or less.
  • the space since the space does not need to be completely filled with lithium metal in the charged state, the space may exist even in the fully charged state, for example.
  • the spacer is arranged on at least one selected from the group consisting of the surface of the positive electrode, the surface of the negative electrode, and the surface of the separator base material.
  • the spacer is preferably arranged on the surface of the positive electrode or the surface of the base material on the positive electrode side. In this case, surface pressure from the base material is easily applied to the negative electrode, making it difficult for dendrite-like lithium metal to precipitate, which is advantageous for improving capacity retention during charge/discharge cycles.
  • the height of the spacer may be appropriately designed according to the thickness of the base material and the distance between the electrodes.
  • FIG. 1 is a vertical cross-sectional view schematically showing a cross section parallel to the winding axis of a lithium secondary battery according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram schematically showing a cross section perpendicular to the axis of the battery (a cross section perpendicular to the winding axis of the electrode group).
  • FIG. 3 is a diagram schematically showing an example of the configuration of the first region of the electrode group.
  • FIG. 4 is a diagram schematically showing another example of the configuration of the first region of the electrode group.
  • the battery 10 includes a cylindrical battery case, a wound electrode group 14 housed in the battery case, and a non-aqueous electrolyte (not shown).
  • the battery case includes a cylindrical battery can 15 with a bottom and a sealing body 16 that seals the opening of the battery can 15.
  • the battery can 15 has an annular step 21 formed by partially pressing the side wall from the outside near the opening.
  • the sealing body 16 is supported by the opening side surface of the stepped portion 21 .
  • a gasket 27 is disposed between the battery can 15 and the sealing body 16, thereby ensuring the hermeticity of the battery can.
  • insulating plates 17 and 18 are arranged at both ends of the electrode group 14 in the winding axis direction, respectively.
  • the inner diameter of the battery can may be set to a size such that the outer circumferential surface of the electrode group of the lithium secondary battery in a discharged state after initial charging and discharging comes into contact with the inner circumferential surface of the battery can. In this case, at all times from the time of charging to the time of discharging, a moderate pressure is applied from the battery can to the electrode group from the outer peripheral side, and buckling of the electrodes is suppressed.
  • the sealing body 16 includes a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25, and a cap 26.
  • the cap 26 is placed on the outside of the battery can 15, and the filter 22 is placed on the inside of the battery can 15.
  • the lower valve body 23 and the upper valve body 25 are connected to each other at their central portions, and an insulating member 24 is interposed between their peripheral edges.
  • the filter 22 and the lower valve body 23 are connected to each other at their respective peripheral edges.
  • the upper valve body 25 and the cap 26 are connected to each other at their respective peripheral edges.
  • a ventilation hole is formed in the lower valve body 23.
  • the electrode group 14 is composed of a positive electrode 11, a negative electrode (negative electrode current collector) 12, and a separator 13.
  • the positive electrode 11, the negative electrode 12, and the separator 13 interposed between them are all in the form of a long sheet (or band), and are wound so that their respective width directions are parallel to the winding axis.
  • the electrode group 14 has a hollow portion 29 .
  • the electrode group 14 has a first region 41 and a second region 42, and the inter-electrode distance X1 in the first region 41 and the inter-electrode distance X2 in the second region 42 are 2 ⁇ It has a relationship of X1/X2.
  • the positive electrode 11 includes a positive electrode current collector and a positive electrode composite material layer.
  • the positive electrode 11 is electrically connected via a positive electrode lead 19 to a cap 26 that also serves as a positive electrode terminal.
  • One end of the positive electrode lead 19 is connected to, for example, near the center of the positive electrode 11 in the longitudinal direction.
  • the other end of the positive electrode lead 19 extending from the positive electrode 11 passes through a through hole formed in the insulating plate 17 and is welded to the inner surface of the filter 22 .
  • the negative electrode 12 is electrically connected to a battery can 15 which also serves as a negative electrode terminal via a negative electrode lead 20.
  • a battery can 15 which also serves as a negative electrode terminal via a negative electrode lead 20.
  • One end of the negative electrode lead 20 is connected, for example, to the longitudinal end of the negative electrode 12, and the other end is welded to the inner bottom surface of the battery can 15.
  • the separator 13 includes a first base material 13A and a second base material 13B in the first region 41 (FIG. 3), and a first base material 13A in the second region 42.
  • the separator 13 includes, for example, the first base material 13A, the second base material 13B, and/or the first base material 13A in the third region 43.
  • the materials of the first base material and the second base material may be the same or different.
  • the thickness of the first base material and the second base material may be the same or different.
  • the separator 13 may be composed of a first base material 13A and a linear convex portion 13C in the first region 41 (FIG. 4), and may be composed of a first base material 13A in the second region 42.
  • the separator 13 includes the first base material 13A, the linear convex portion 13C, and/or the first base material 13A in the third region 43.
  • the first base material 13A may be a microporous sheet
  • the convex portions 13C may be a heat-resistant layer.
  • the convex portion 13C functions as a spacer, and a space 28 is formed between the positive electrode 11 and the negative electrode 12 by the convex portion 13C.
  • the cross-sectional shape of the convex portion 13C is rectangular, but is not limited to this, and may be, for example, trapezoidal.
  • the convex portion 13C is provided between the positive electrode 11 and the first base material 13A, but may be provided between the negative electrode 12 and the first base material 13A.
  • the linear convex portion 13C may be arranged on the positive electrode 11.
  • the plurality of convex portions 13C are provided at regular intervals in the width direction of the positive electrode 11. There is. Further, the plurality of convex portions 13C are provided in parallel along the length direction of the positive electrode 11.
  • the convex portions may be arranged in a curved shape, in a mesh shape, or in a dot shape. good.
  • a space 28 is provided between the positive electrode 11 and the negative electrode 12 by the separator 13 having the convex portion 13C.
  • the discharge state lithium metal is not deposited on the surface of the negative electrode current collector, and the space 28 is maintained.
  • the charged state lithium metal is deposited on the surface of the negative electrode current collector and is accommodated in the space 28 while being subjected to the pressing force of the first base material 13A.
  • the negative electrode 12 includes a negative electrode current collector in a discharged state, and includes a negative electrode current collector and lithium metal deposited on the surface of the negative electrode current collector in a charged state.
  • this configuration is only an example, and the negative electrode 12 may include lithium metal on its surface as well as the negative electrode current collector even in the discharge state.
  • the band-shaped first base material 13A is folded in half along the width direction at the center portion in the length direction, and a crease 130a is formed.
  • a negative electrode 12 with a negative electrode lead 19 is prepared.
  • the negative electrode 12 is placed at a predetermined position on the first base material 13A (FIG. 5(a)).
  • the end of the negative electrode 12 is fixed to the first base material 13A using, for example, double-sided tape.
  • the first base material 13A is folded in half along the fold line 130a to obtain a negative electrode composite 200 in which the first base material 13A is disposed on both sides of the negative electrode 12 (FIG. 5(b)).
  • the band-shaped second base material 13B is folded in half along the width direction at the central portion in the length direction, and a crease 130b is formed.
  • a positive electrode 13 with a positive electrode lead 20 is prepared.
  • a part of the positive electrode 11 is placed at a predetermined position on the second base material 13B (FIG. 6(a)).
  • the end of the positive electrode 11 is fixed to the second base material 13B using, for example, double-sided tape.
  • the second base material 13B is folded in half along the fold line 130b, and the second base material 13B is placed on both sides of the positive electrode 11 on one side (winding start side) of the positive electrode 11 in the length direction. In this way, a positive electrode composite 100 is obtained (FIG. 6(b)).
  • the separator includes a first base material and a second base material in the first region, a first base material in the second region, and a first base material and a second base material in the third region. material and/or the first base material.
  • the end 200a of the negative electrode composite 200 is wound around a winding core, and then the positive electrode composite 100 is wound together with the negative electrode composite 200 from the side where the second base material 13B is arranged. At this time, the end of the negative electrode composite 200 and the winding core are brought into contact, and the positive electrode composite 100 is wound around the winding core together with the negative electrode composite 200 from the outer surface side of the negative electrode composite 200.
  • the separator 13 in the electrode group 14 includes a first base material 13A and a second base material 13B in the first region 41, and a first base material 13A in the second region 42. Further, the third region 43 of the separator 13 is composed of the first base material 13A, the second base material 13B, and/or the first base material 13A.
  • Convex portions 13C are arranged on both sides of the positive electrode 11 on one side (winding start side) in the length direction of the positive electrode 11 to obtain a positive electrode composite 300 (FIG. 7).
  • the ratio of the length L1 of the linear convex portion 13C to the length L0 of the positive electrode 11: L1/L0 is adjusted to a predetermined value.
  • L1/L0 is, for example, 0.3 to 0.75.
  • the separator is composed of a first base material and a line-shaped convex part in the first region, a first base material in the second region, and a first base material and a line-shaped convex part in the third region 43. It is adjusted so that it is composed of the convex portion and/or the first base material.
  • the end 200a of the negative electrode composite 200 is wound around a winding core, and then the positive electrode composite 300 is wound together with the negative electrode composite 200 from the side where the linear protrusion 13C is arranged. At this time, the end of the negative electrode composite 200 and the winding core are brought into contact, and the positive electrode composite 300 is wound around the winding core together with the negative electrode composite 200 from the outer surface side of the negative electrode composite 200.
  • the separator 13 in the electrode group 14 includes a first base material 13A and a linear convex portion 13C in the first region 41, and a first base material 13A in the second region 42. Further, the third region 43 of the separator 13 is composed of the first base material 13A, the linear convex portion 13C, and/or the first base material 13A.
  • the thickness T of the lithium metal deposited on the negative electrode during charging and the average distance between the electrodes in the electrode group X A during discharging satisfy the relationship of 1.5 ⁇ X A /T.
  • the average inter-electrode distance XA can also be said to be the average thickness of the separator between the positive and negative electrodes during discharge.
  • the inter-electrode distance X1 of the first region 41 is approximately the same as the sum of the thickness T1 of the first base material 13A and the thickness T2 of the second base material 13B (or the linear recess 13C).
  • the inter-electrode distance X2 of the second region 42 is approximately the same as the thickness T1 of the first base material 13A.
  • the charging time referred to herein refers to when a large amount of lithium metal is deposited on the negative electrode, for example, when the SOC is 0.9 ⁇ C or more.
  • the time of discharge is when a large amount of lithium metal is dissolved from the negative electrode, and refers to, for example, when the SOC is 0.1 ⁇ C or less.
  • the above thickness T can also be said to be the difference between the thickness of lithium metal during charging and the thickness of lithium metal during discharging.
  • X A /T When X A /T is 1.5 or more, a sufficient distance between the electrodes is ensured, and stress generated in the electrodes due to precipitation of lithium metal (particularly dendrite-like lithium metal) during charging is easily relaxed.
  • X A /T When X A /T is 1.5 or more, X1/X2 is set to 2 or more, so that when using austenitic stainless steel foil or oxygen-free copper foil for the negative electrode current collector, the A remarkable effect of alleviating stress concentration can be obtained. From the viewpoint of improving cycle characteristics and ensuring high energy density, X A /T may be, for example, 1.5 or more and 4 or less.
  • a cylindrical lithium secondary battery equipped with a wound electrode group has been described, but the shape of the lithium secondary battery is not limited to this, and may be square, and various shapes may be used depending on the purpose. It can be selected as appropriate. Further, known configurations other than those described above can be used without particular restriction.
  • the negative electrode includes a negative electrode current collector.
  • lithium metal is deposited on the surface of the negative electrode during charging. More specifically, upon charging, lithium ions contained in the nonaqueous electrolyte receive electrons on the negative electrode to become lithium metal, which is deposited on the surface of the negative electrode. Lithium metal deposited on the surface of the negative electrode is dissolved into the nonaqueous electrolyte as lithium ions by discharge.
  • the lithium ions contained in the non-aqueous electrolyte may be derived from a lithium salt added to the non-aqueous electrolyte, or may be supplied from the positive electrode active material by charging, and both of these may be derived from the lithium salt added to the non-aqueous electrolyte. There may be.
  • the negative electrode may include a negative electrode current collector and a sheet of lithium metal or lithium alloy that is in close contact with the surface of the negative electrode current collector. That is, a base layer containing lithium metal (a layer of lithium metal or lithium alloy (hereinafter also referred to as "lithium base layer”)) may be provided in advance on the negative electrode current collector.
  • the lithium alloy may contain elements such as aluminum, magnesium, indium, zinc, silver, and copper.
  • the negative electrode may include a lithium ion storage layer (a layer that develops capacity by occluding and releasing lithium ions by a negative electrode active material (such as graphite)) supported on a negative electrode current collector.
  • the open circuit potential of the negative electrode at full charge may be 70 mV or less with respect to lithium metal (lithium dissolution deposition potential). If the open circuit potential of the negative electrode at full charge is 70 mV or less with respect to lithium metal, lithium metal is present on the surface of the lithium ion storage layer at full charge. That is, the negative electrode develops capacity due to precipitation and dissolution of lithium metal.
  • the lithium ion storage layer is formed by forming a layer of a negative electrode composite material containing a negative electrode active material.
  • the negative electrode composite material may also contain a binder, a thickener, a conductive agent, and the like.
  • Examples of the negative electrode active material include carbonaceous materials, Si-containing materials, Sn-containing materials, and the like.
  • the negative electrode may contain one type of negative electrode active material, or may contain a combination of two or more types.
  • Examples of the carbonaceous material include graphite, graphitizable carbon (soft carbon), and non-graphitizable carbon (hard carbon).
  • the conductive material is, for example, a carbon material.
  • the carbon material include carbon black, acetylene black, Ketjen black, carbon nanotubes, and graphite.
  • binder examples include fluororesin, polyacrylonitrile, polyimide resin, acrylic resin, polyolefin resin, rubber-like polymer, and the like.
  • fluororesin examples include polytetrafluoroethylene and polyvinylidene fluoride.
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode composite material layer supported by the positive electrode current collector.
  • the positive electrode composite material layer includes, for example, a positive electrode active material, a conductive material, and a binder.
  • the positive electrode composite material layer may be formed on only one side of the positive electrode current collector, or may be formed on both sides.
  • the positive electrode is obtained, for example, by applying a positive electrode composite slurry containing a positive electrode active material, a conductive material, and a binder to both sides of a positive electrode current collector, drying the coating film, and then rolling the slurry.
  • known materials can be used as the positive electrode active material, binder, conductive agent, and the like.
  • the positive electrode active material is a material that absorbs and releases lithium ions.
  • the positive electrode active material include lithium-containing transition metal oxides, transition metal fluorides, polyanions, fluorinated polyanions, transition metal sulfides, and the like. Among these, lithium-containing transition metal oxides are preferred because of their low manufacturing cost and high average discharge voltage.
  • a lithium-containing transition metal oxide is a composite oxide containing lithium and a metal Me other than lithium, where the metal Me includes at least a transition metal.
  • the lithium-containing transition metal oxides composite oxides having a rock salt type (layered rock salt type) crystal structure having a layered structure are preferable in terms of obtaining high capacity.
  • the metal Me may include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, W, etc. as transition metal elements.
  • the lithium-containing transition metal oxide may contain one type of transition metal element, or may contain two or more types of transition metal elements.
  • the metal Me desirably contains at least one selected from the group consisting of Co, Ni, and Mn as a transition metal element, and desirably contains at least Ni as a transition metal.
  • the lithium-containing transition metal oxide may contain one or more typical elements as necessary. Typical elements include Mg, Al, Ca, Zn, Ga, Ge, Sn, Sb, Pb, Bi, and the like.
  • the typical element may be Al or the like. That is, the metal Me may contain Al as an optional component.
  • the lithium-containing transition metal oxide is represented by, for example, the general formula (1): Li a Ni b M 1-b O 2 .
  • general formula (1) 0.9 ⁇ a ⁇ 1.2 and 0.65 ⁇ b ⁇ 1 are satisfied, and M is Co, Mn, Al, Ti, Fe, Nb, B, Mg, Ca, Sr, At least one element selected from the group consisting of Zr and W.
  • mLi/mMe The molar ratio of the total amount mLi of Li in the positive electrode and the negative electrode to the amount mMe of metal Me in the lithium-containing transition metal oxide: mLi/mMe is, for example, 1.2 or less, and may be 1.1 or less.
  • Examples of the material of the positive electrode current collector include metal materials containing Al, Ti, Fe, and the like.
  • the metal material may be Al, Al alloy, Ti, Ti alloy, Fe alloy (stainless steel (SUS), etc.).
  • the thickness of the positive electrode current collector is not particularly limited, and is, for example, 5 ⁇ m or more and 300 ⁇ m or less.
  • a non-aqueous electrolyte having lithium ion conductivity includes, for example, a non-aqueous solvent, and lithium ions and anions dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte may be in liquid form or gel form.
  • a liquid non-aqueous electrolyte is prepared by dissolving a lithium salt in a non-aqueous solvent. Lithium ions and anions are generated by dissolving the lithium salt in a nonaqueous solvent.
  • lithium salt or anion known materials used in nonaqueous electrolytes of lithium secondary batteries can be used. Specific examples include BF 4 ⁇ , ClO 4 ⁇ , PF 6 ⁇ , CF 3 SO 3 ⁇ , CF 3 CO 2 ⁇ , imide anions, oxalate complex anions, and the like.
  • the anion of the oxalate complex may contain boron and/or phosphorus.
  • the non-aqueous electrolyte may contain one or more of these anions.
  • the nonaqueous electrolyte preferably contains at least an anion of an oxalate complex, and more preferably an anion of an oxalate complex containing fluorine.
  • the interaction between the fluorine-containing oxalate complex anion and lithium facilitates the uniform precipitation of lithium metal in the form of fine particles. Therefore, local precipitation of lithium metal can be easily suppressed.
  • the fluorine-containing oxalate complex anion and other anions may be combined. Other anions may be PF 6 - and/or imide anions.
  • anions of the oxalate complex include bisoxalate borate anion, difluorooxalate borate anion (BF 2 (C 2 O 4 ) ⁇ ), PF 4 (C 2 O 4 ) ⁇ , PF 2 (C 2 O 4 ) 2 ⁇ etc., and it is desirable to use at least a difluorooxalate borate anion.
  • nonaqueous solvent examples include esters, ethers, nitriles, amides, and halogen-substituted products thereof.
  • the non-aqueous electrolyte may contain one or more of these non-aqueous solvents.
  • halogen-substituted substances include fluorides and the like.
  • esters include carbonate esters and carboxylic acid esters.
  • examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, fluoroethylene carbonate (FEC), and the like.
  • Examples of chain carbonate esters include dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate, and the like.
  • Examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone and ⁇ -valerolactone.
  • chain carboxylic acid esters include ethyl acetate, methyl propionate, methyl fluoropropionate, and the like.
  • Ethers include cyclic ethers and chain ethers.
  • the cyclic ether include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, and 2-methyltetrahydrofuran.
  • the chain ether include 1,2-dimethoxyethane, diethyl ether, ethyl vinyl ether, methylphenyl ether, benzyl ethyl ether, diphenyl ether, dibenzyl ether, 1,2-diethoxyethane, diethylene glycol dimethyl ether, and the like.
  • the concentration of the lithium salt in the nonaqueous electrolyte is, for example, 0.5 mol/L or more and 3.5 mol/L or less.
  • the concentration of anions in the non-aqueous electrolyte may be 0.5 mol/L or more and 3.5 mol/L or less.
  • the concentration of the anion of the oxalate complex in the nonaqueous electrolyte may be 0.05 mol/L or more and 1 mol/L or less.
  • Examples 1 to 6 ⁇ (Preparation of negative electrode) A strip-shaped negative electrode current collector (thickness: 10 ⁇ m) was prepared. In a dry atmosphere with a dew point of ⁇ 30° C. or less, lithium metal foil (thickness: 30 ⁇ m) was pressed onto both sides of the negative electrode current collector, and a lithium metal layer (base layer) was arranged. In this way, the negative electrode 12 was produced. A negative electrode lead 20 made of Ni was attached to a predetermined position of the negative electrode 12. The lithium metal layer had a thickness of 55 ⁇ m during charging and a thickness of 30 ⁇ m during discharge. That is, the thickness T of the lithium metal deposited on the negative electrode during charging was 25 ⁇ m.
  • Austenitic stainless steel foil or oxygen-free copper foil was used for the negative electrode current collector.
  • austenitic stainless steel foil SUS316L or SUS304 foil was used.
  • the oxygen-free copper foil used was JIS H 3100 alloy number C1020.
  • a strip-shaped first base material 13A shown in FIG. 5(a) was prepared.
  • a sheet-like microporous membrane made of polyethylene was used as the first base material 13A.
  • the thickness of the first base material 13A was 15 ⁇ m.
  • the negative electrode 12 was placed at a predetermined position on the first base material 13A (FIG. 5(a)). At this time, the end portion of the negative electrode 12 (the portion not facing the positive electrode) was fixed to the first base material 13A using double-sided tape. Next, the first base material 13A was folded in half along the fold line 130a to obtain a negative electrode composite 200 in which the first base material 13A was arranged on both sides of the negative electrode 12 (FIG. 5(b)).
  • a positive electrode mixture slurry was applied to both sides of a band-shaped Al foil (positive electrode current collector), dried, and the coating film was rolled to obtain a laminate in which positive electrode mixture layers were formed on both sides of the positive electrode current collector. .
  • the laminate was cut into a predetermined electrode size to obtain a strip-shaped positive electrode 11.
  • a positive electrode lead 19 made of Al was attached to a predetermined position of the positive electrode 11 .
  • the filling amount of the positive electrode composite layer (positive electrode active material) was adjusted so that the thickness T of lithium metal deposited on the negative electrode current collector during charging was 25 ⁇ m.
  • a strip-shaped second base material 13B shown in FIG. 6(a) was prepared.
  • the length of the second base material 13B is determined by the ratio of the length L1 of the positive electrode coating portion of the second base material 13B to the length L0 of the positive electrode 11 when constructing the positive electrode composite 100 described later: L1/L0 as shown in Table 1. Adjusted to match the value.
  • the thickness of the second base material 13B was 20 ⁇ m, 45 ⁇ m, 75 ⁇ m, or 105 ⁇ m.
  • a sheet-like microporous polyethylene membrane was used as the second base material 13B.
  • a part of the positive electrode 11 was placed at a predetermined position on the second base material 13B (FIG. 6(a)). At this time, the end of the positive electrode 11 was fixed to the second base material 13B using double-sided tape. Next, the second base material 13B is folded in half along the fold line 130b, and the second base material 13B is placed on both sides of the positive electrode 11 on one side (winding start side) in the length direction of the positive electrode 11. A composite 100 was obtained (FIG. 6(b)). In the positive electrode composite 100 of FIG. 6(b), the ratio of the length L1 of the portion of the second base material 13B covering the positive electrode 11 to the length L0 of the positive electrode 11: L1/L0 was adjusted to the value shown in Table 1.
  • the end portion 200a of the negative electrode composite 200 was wound around a winding core, and then the positive electrode composite 100 was wound together with the negative electrode composite 200 from the side where the second base material 13B was disposed. At this time, the end of the negative electrode composite 200 was brought into contact with the winding core, and the positive electrode composite 100 was wound around the winding core together with the negative electrode composite 200 from the outer surface side of the negative electrode composite 200.
  • the separator 13 in the electrode group 14 was composed of a first base material 13A and a second base material 13B in the first region, and was composed of a first base material 13A in the second region.
  • a positive electrode lead 19 and a negative electrode lead 20 were exposed from one end surface of the electrode group.
  • a nonaqueous electrolyte was prepared by dissolving LiFSI and LiFOB in a mixed solvent containing a mass ratio of 25:75.
  • the concentration of LiFSI in the non-aqueous electrolyte was 1.0 mol/L, and the concentration of LiFOB in the non-aqueous electrolyte was 0.05 mol/L.
  • LiFSI is LiN(SO 2 F) 2 and LiFOB is LiBF 2 (C 2 O 4 ).
  • the electrode group was inserted into a cylindrical battery can with a bottom, a nonaqueous electrolyte was injected, and the opening of the battery can was sealed with a sealing body. At this time, the positive electrode lead was connected to the sealing body, and the negative electrode lead was connected to the battery can. A gasket was placed between the sealing body and the battery can. In this way, a lithium secondary battery was completed.
  • E1 to E6 are lithium secondary batteries of Examples 1 to 6, respectively.
  • Example 7 (Preparation of spacer ink) A spacer ink was prepared by mixing 90 parts by mass of inorganic particles, 10 parts by mass of polyvinylidene fluoride (PVdF) as a resin material, and N-methyl-2-pyrrolidone as a dispersion medium. Alumina particles (containing alumina with an average particle size of 1 ⁇ m and alumina with an average particle size of 0.1 ⁇ m in a mass ratio of 10/1) were used as the inorganic particles.
  • PVdF polyvinylidene fluoride
  • N-methyl-2-pyrrolidone N-methyl-2-pyrrolidone
  • the end portion 200a of the negative electrode composite 200 was wound around a winding core, and then the positive electrode composite 300 was wound together with the negative electrode composite 200 from the side where the linear convex portion 13C was arranged. At this time, the end of the negative electrode composite 200 was brought into contact with the winding core, and the positive electrode composite 300 was wound around the winding core together with the negative electrode composite 200 from the outer surface side of the negative electrode composite 200.
  • the separator 13 in the electrode group 14 was composed of a first base material 13A and a linear protrusion 13C in the first region 41, and was composed of the first base material 13A in the second region 42.
  • Battery E7 was obtained in the same manner as Battery E5 of Example 5, except that the electrode group obtained above was used.
  • Battery R2 was obtained in the same manner as Battery R1 of Comparative Example 1 except that SUS444 (ferritic stainless steel) foil was used for the negative electrode current collector.
  • Electrolytic copper foil was used as the negative electrode current collector.
  • the thickness of the second base material 13B was 15 ⁇ m.
  • the filling amount of the positive electrode composite layer (positive electrode active material) was adjusted so that the thickness T of lithium metal deposited on the negative electrode current collector during charging was 20 ⁇ m.
  • Battery R3 was obtained in the same manner as Battery E5 of Example 5 except for the above.
  • Electrolytic copper foil was used as the negative electrode current collector.
  • the thickness of the linear convex portion 13C was set to 15 ⁇ m.
  • the filling amount of the positive electrode composite layer (positive electrode active material) was adjusted so that the thickness T of lithium metal deposited on the negative electrode current collector during charging was 10 ⁇ m.
  • Battery R4 was obtained in the same manner as Battery E7 of Example 7 except for the above.
  • the evaluation results are shown in Table 1.
  • the cycle capacity retention rate in Table 1 is expressed as a relative value (index) when the cycle capacity retention rate of battery R2 of Comparative Example 2 is set to 100.
  • Batteries E1 to E7 had higher capacity retention rates than batteries R1 to R4.
  • the negative electrode current collector was made of austenitic stainless steel and X1/X2 was less than 2, so the capacity retention rate decreased due to stress concentration near the hollow part of the electrode group due to expansion of the negative electrode.
  • X1/X2 was less than 2
  • the negative electrode current collector was a ferritic stainless steel (SUS444) foil, which became brittle and broke, resulting in a decrease in capacity retention.
  • batteries R3 and R4 because electrolytic copper foil was used, the foil became brittle and broke, resulting in a decrease in capacity retention.
  • the lithium secondary battery of the present disclosure can be used in electronic devices such as mobile phones, smartphones, and tablet terminals, electric vehicles, hybrid vehicles, plug-in hybrid vehicles, household storage batteries, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

リチウム二次電池は、中空部を有する柱状の巻回型電極群と、リチウムイオン伝導性を有する非水電解質と、を具備する。電極群は、正極と、負極集電体を備える負極と、正極と前記負極との間に配置されたセパレータと、を有する。負極では、充電時にリチウム金属が析出し、放電時にリチウム金属が溶解する。負極集電体は、オーステナイト系ステンレス鋼箔または無酸素銅箔である。放電時の電極群の巻回軸と垂直な断面における内周面から外周面までの径方向の長さをDとするとき、放電時の電極群は、電極群の内周面からの距離が(1/4)×D以下である第1領域と、電極群の外周面からの距離が(1/4)×D以下である第2領域と、を有する。放電時の電極群おいて、第1領域における正極と負極との電極間距離X1と、第2領域における正極と負極との電極間距離X2とは、2≦X1/X2の関係を有する。

Description

リチウム二次電池
 本開示は、リチウム二次電池に関する。
 リチウム二次電池(リチウム金属二次電池)は、中空部を有する柱状の巻回型電極群と、非水電解質と、を具備する。巻回型電極群は、正極と、負極集電体を備える負極とを、セパレータを介して渦巻状に巻回することにより構成される。リチウム二次電池では、充電時に、負極にリチウム金属が析出し、放電時にリチウム金属が溶解して非水電解質中にリチウムイオンとして放出される。
 ところで、特許文献1では、渦巻状電極群を備えるニッケル水素電池において、短絡の防止のため、セパレータ本体の一部に補強セパレータを重ね合わせて強化部を形成することが提案されている。
特開2014-216261号公報
 リチウム二次電池では、サイクル特性の向上が求められている。
 本開示の一側面は、中空部を有する柱状の巻回型電極群と、リチウムイオン伝導性を有する非水電解質と、を具備し、前記電極群は、正極と、負極集電体を備える負極と、前記正極と前記負極との間に配置されたセパレータと、を有し、前記負極では、充電時にリチウム金属が析出し、放電時に前記リチウム金属が溶解し、前記負極集電体は、オーステナイト系ステンレス鋼箔または無酸素銅箔であり、放電時の前記電極群の巻回軸と垂直な断面における内周面から外周面までの径方向の長さをDとするとき、放電時の前記電極群は、前記電極群の内周面からの距離が(1/4)×D以下である第1領域と、前記電極群の外周面からの距離が(1/4)×D以下である第2領域と、を有し、放電時の前記電極群おいて、前記第1領域における前記正極と前記負極との電極間距離X1と、前記第2領域における前記正極と前記負極との電極間距離X2とは、2≦X1/X2の関係を有する、リチウム二次電池に関する。
 本開示によれば、リチウム二次電池のサイクル特性を高めることができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示の一実施形態に係るリチウム二次電池を模式的に示す縦断面図である。 電池の軸と垂直な断面を模式的に示す図である。 電極群の第1領域の構成の一例を模式的に示す図である。 電極群の第1領域の構成の他の例を模式的に示す図である。 (a)第1基材および第1基材上に配置された負極の一例を示す上面図である。(b)負極複合体の一例を示す上面図である。 (a)第2基材および第2基材上に配置された正極の一例を示す上面図である。(b)正極複合体の一例を示す上面図である。 凸部付き正極の一例を示す上面図である。
 以下では、本開示の実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などに関する数値の下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかを任意に組み合わせることができる。複数の材料が例示される場合、その中から1種を選択して単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本開示の一実施形態に係るリチウム二次電池は、中空部を有する柱状の巻回型電極群と、リチウムイオン伝導性を有する非水電解質と、を具備する。電極群は、正極と、負極集電体を備える負極と、正極と負極との間に配置されたセパレータと、を有する。負極では、充電時にリチウム金属が析出し、放電時にリチウム金属が溶解する。負極集電体は、オーステナイト系ステンレス鋼箔または無酸素銅箔である。放電時の電極群の巻回軸と垂直な断面における内周面から外周面までの径方向の長さをDとする。このとき、放電時の電極群は、電極群の内周面からの距離が(1/4)×D以下である第1領域と、電極群の外周面からの距離が(1/4)×D以下である第2領域と、を有する。放電時の電極群おいて、第1領域における正極と負極との電極間距離X1と、第2領域における正極と負極との電極間距離X2とは、2≦X1/X2の関係を有する。
 通常、電極群は、充電時から放電時に至る常時において、電池缶の内周面に接していることから、第2領域は、電池缶の内周面からの距離が(1/4)×D以下の領域とも言える。また、電極群の巻回軸は、筒状の電池缶の軸とほぼ一致することから、電極群の巻回軸と垂直な断面の径方向は、電池缶の軸と垂直な断面の径方向とも言える。
 電極間距離は、正極と、正極と対向する負極との間の距離である。電極間距離は、放電時の正負極間のセパレータの厚みとほぼ同じである。セパレータの厚みとは、セパレータが複数の基材(もしくは基材および凸部)で構成される場合、当該複数の基材(もしくは基材および凸部)の合計厚みである。なお、放電時とは、SOCが0.1×C以下であるときを指す。
 本開示に係るリチウム二次電池は、リチウム金属二次電池とも称される。この種の電池の負極では、充電時にリチウム金属が析出し、放電時にリチウム金属が溶解する。具体的には、負極は、少なくとも負極集電体を有し、リチウム金属は負極集電体上に析出する。
 リチウム二次電池では、定格容量の例えば70%以上がリチウム金属の析出と溶解により発現する。充電時および放電時の負極における電子の移動は、主に負極におけるリチウム金属の析出および溶解による。具体的には、充電時および放電時の負極における電子の移動(別の観点では電流)の70~100%(例えば80~100%や90~100%)がリチウム金属の析出および溶解による。すなわち、本開示に係る負極は、充電時および放電時の負極における電子の移動が主に負極活物質(黒鉛等)によるリチウムイオンの吸蔵および放出による負極とは異なる。
 充電時に負極においてリチウム金属を析出させる電池では、満充電時における負極の開回路電位(OCV:Open Circuit Voltage)は、リチウム金属(リチウムの溶解析出電位)に対して、例えば70mV以下である。満充電時とは、電池の定格容量をCとするとき、例えば0.98×C以上の充電状態(SOC:State of Charge)となるまで電池を充電した状態である。満充電時における負極の開回路電位(OCV)は、満充電状態の電池をアルゴン雰囲気下で分解して負極を取り出し、リチウム金属を対極としてセルを組み立てて測定すればよい。セルの非水電解質は、分解した電池中の非水電解質と同じ組成でもよい。
 負極集電体にオーステナイト系ステンレス鋼箔または無酸素銅箔を用いることにより、充放電時の負極集電体(例えば、電解銅箔、フェライト系ステンレス鋼箔)の脆化およびそれに伴う負極の破断が抑制される。一方、負極では充電時にリチウム金属が析出するため、負極の膨張量が大きい。また、通常、充電時から放電時に至る常時において、電極群の外周面と当該電極群を収容する電池缶の内周面とは接している。電極群の巻き終わり側の端部は、テープにより固定されている。よって、負極の膨張に伴い電池缶から電極群にその外周側から内周側に向かって応力がかかり、電極群の中空部近傍(内周側)で応力が集中し易い。よって、電極群の中空部近傍において電極の座屈(折曲を含む)、正極の破断等が生じる。その結果、内部短絡等が生じ、サイクル時の容量維持率が大幅に低下する。特に、リチウム金属がデンドライト状に析出する場合、負極の膨張量はさらに大きくなり、電極の座屈等が生じ易い。負極集電体の脆化による負極の破断が抑制される場合、当該破断による応力の解放が生じないことから、上記の負極の膨張に伴う電極群の中空部近傍(内周側)での応力集中が顕著となる。
 これに対して、本開示に係るリチウム二次電池では、負極集電体にオーステナイト系ステンレス鋼箔または無酸素銅箔を用いつつ、2以上のX1/X2で巻き始め側の第1領域の電極間距離を大きくしている。負極集電体の脆化による負極の破断が抑制されるとともに、2以上のX1/X2で第1領域の電極間距離を大きくすることによりセパレータが効果的に圧縮され易く(セパレータ内部の空隙が小さくなり)、上記の負極の膨張に伴う電極群の中空部近傍(内周側)での応力集中が効果的に緩和され、電極の座屈等が抑制される。負極集電体の脆化抑制の効果と当該応力集中の緩和効果とが相俟ってサイクル特性が大幅に上昇する。
 第2領域では、負極集電体の脆化による負極の破断が抑制されるとともに、上記の応力集中は生じにくい。よって、第2領域では、第1領域と比べて電極間距離を小さくでき、エネルギー密度を高めることができる。また、電極間距離が小さいためセパレータから負極へ面圧がかかり易くデンドライトの生成を抑制できる。
 仮に負極集電体に電解銅箔を用いる場合、2以上のX1/X2で巻き始め側の第1領域の電極間距離を大きくしても、負極集電体の脆化により負極の破断が生じ(特に第2領域の外周部分で当該破断が生じ易く)、サイクル特性が低下する。仮にX1/X2が2未満である場合、上記の応力集中の緩和効果が不十分となり、電極の座屈等が生じ、サイクル特性が低下する。
 サイクル特性の向上および高エネルギー密度の観点から、X1/X2は、2以上、10以下であってもよく、2以上、8以下であってもよく、4以上、8以下であってもよい。
 第1領域の電極間距離X1および第2領域の電極間距離X2は、以下のようにして求めることができる。
 初期の放電状態の電池(例えば、電池購入後の初回放電時もしくは電池製造後の数サイクルの充放電後の放電時)について、電池内部の電極群の巻回軸に垂直な断面のX線CT画像を得る。なお、放電時とは、SOCが0.1×C以下であるときを指す。当該画像を用い、電極群の断面における内周面から外周面までの径方向の長さDを測定し、第1領域および第2領域を求める。電極とセパレータとを二値化処理等により区別する。第1領域内のセパレータに沿って等間隔に選出された5~20点の電極間距離を測定し、それらを平均し、X1を求める。第2領域についても同様にしてX2を求める。
 また、初期の放電状態の電池を分解して求められた正負極の厚みと、上記のX線CT画像より求められた上記の長さDおよび第1領域と、第1領域内の段数(正負極の巻回数)に基づいて、第1領域の電極間距離X1を算出してもよい。第2領域も同様にして電極間距離X2を算出してもよい。
 電極群は、第1領域と第2領域との間に第3領域を有する。第3領域は、第1領域側に電極間距離X1の領域、および、第2領域側に電極間距離X2の領域を有してもよい。例えば、第1領域と、第3領域の第1領域側の一部とを合わせた領域(例えば、電極群の内周面からの距離が(1/2)×D以下もしくは(2/5)×D以下である領域)が、電極間距離X1の領域であってもよい。第3領域の全体が、電極間距離X1またはX2の領域であってもよい。第3領域については、エネルギー密度および電極群内に生じる応力の大きさの分布に応じて、X1の領域およびX2の領域の比率を適宜決めればよい。
 正極、負極、およびセパレータは、それぞれ、例えば長尺シート状である。中空部を有する電極群は、例えば、正極と負極とをセパレータを介して所定の巻き芯の周囲に渦巻状に巻回し、巻き芯を抜き取ることで形成される。電極群が中空部を有することで、中空部に非水電解質を含ませることができ、電極群内の非水電解質の保持性を高めることができる。充放電(電極の膨張収縮)の繰り返しに伴い、非水電解質が電極群から押し出されることが抑制される。
 ここで、図2は、電池の軸と垂直な断面を模式的に示す図である。図2は、電池缶15に収容される電極群14の巻回軸と垂直な断面を模式的に示す。
 柱状の巻回型電極群14は、正極と、負極集電体を備える負極とを、セパレータを介して渦巻状に巻回することにより構成されている。電極群14は、有底円筒状の電池缶15に収容されている。電極群14は中空部29を有する。
 放電時の電極群14の巻回軸と垂直な断面における内周面S1から外周面S2までの径方向の長さをDとする。このとき、放電時の電極群14は、電極群14の内周面S1からの距離が(1/4)×D以下である第1領域41と、電極群14の外周面S2(電池缶15の内周面)からの距離が(1/4)×D以下である第2領域42と、を有する。放電時の電極群14おいて、第1領域41における電極間距離X1と、第2領域42における電極間距離X2とは、2≦X1/X2の関係を有する。電極群14は、第1領域41と第2領域42との間に第3領域43を有する。第3領域43の電極間距離はX1でもよく、X2でもよい。
(負極集電体)
 負極集電体はオーステナイト系ステンレス鋼箔または無酸素銅箔である。オーステナイト系ステンレス鋼箔を用いる場合、負極集電体の脆化が抑制され、かつ、負極集電体は適度な強度および柔軟性を有し、負極で生じる応力に対する耐性に優れた負極集電体が得られる。酸素量が小さい銅箔を用いる場合も、負極集電体の脆化が抑制される。負極集電体の厚みは、特に制限されず、例えば、5μm以上、300μm以下である。
 オーステナイト系ステンレス鋼は、50%以上のオーステナイト率を有するステンレス鋼である。オーステナイト率は、70%以上であってもよく、90%以上であってもよく、100%であってもよい。
 オーステナイト率とは、ステンレス鋼に占めるオーステナイト相の割合(質量比)を意味する。ステンレス鋼中のオーステナイト相、フェライト相、およびマルテンサイト相の含有量を、それぞれ、x、y、およびzとするとき、オーステナイト率は、{x/(x+y+z)}×100で算出される。オーステナイト組織は面心立方格子構造(FCC構造)であり、フェライト組織およびマルテンサイト組織は体心立方格子構造(BCC構造)である。
 オーステナイト系ステンレス鋼は、Fe以外の成分として、例えば、C、Si、Mn、P、S、Ni、Cr、Mn、Mo、Cu、N等を含み得る。当該ステンレス鋼は、低炭素系、極低炭素系、または窒素添加系のステンレス鋼であってもよく、オーステナイトを含む2相ステンレス鋼であってもよい。
 オーステナイト系ステンレス鋼の例としては、SUS301、SUS302、SUS303、SUS304、SUS305、SUS309、SUS310、SUS312、SUS315、SUS316L、SUS317、SUS321、SUS347等が挙げられる。中でも、SUS304、SUS316Lが好ましい。オーステナイト系ステンレス鋼は、上記で例示するものに限定されず、溶解法により任意に作製された、オーステナイト率が50%以上のステンレス鋼であってもよい。また、オーステナイト系ステンレス鋼の箔は、アニールにより軟化した箔であってもよい。
 オーステナイト率は、以下の方法により求めることができる。
 ステンレス鋼箔の試料(例えば、サイズ:25mm角)を準備し、当該試料について2次元検出機能を用いるX線回折(XRD)測定を行い、XRDパターン(縦軸:X線回折強度、横軸:回折角2θ)を得る。測定領域(微小部)の大きさは、例えば、15mm角である。
 以下、望ましいXRDの測定条件を示す。
 <分析装置>
 2次元微小部X線回折装置((株)リガク製、RINT-RAPID II)
 <分析条件>
  管球:Co
  単色化:モノクロメータを使用(CoKα)
  管球出力:40kV-30mA
  検出器:イメージングプレート(2次元)
 (反射法)
  コメリータ:Φ300μm
  ω角:25°~35°(2°/sec)
  Φ角:360°回転(1°/sec)
  測定時間(露光):30分
 得られたXRDパターンについて、標準データベースを利用して最小二乗法によりフィッティングを行い、次に、リートベルト解析による定量分析を行う。XRDパターンは、オーステナイト相、フェライト相、およびマルテンサイト相のうちの少なくとも1つの相に対応する回折ピークを有し得る。当該解析は、分析装置に付属のソフトウェアを用いて行うことができる。当該解析により、オーステナイト相、フェライト相、およびマルテンサイト相の合計に対するオーステナイト相の割合(質量比)をオーステナイト率として求める。上記試料において測定領域を任意に数点選出し、各測定領域におけるオーステナイト率を求め、それらの平均値を算出する。
 また、オーステナイト率は、フェライト安定化元素およびオーステナイト安定化元素と組織との関係を示すシェフラ(Schaeffler)の組織図によっても推定できる。当該組織図は、フェライト安定化元素とオーステナイト安定化元素を両軸にとって、組織比率を示したものである。当該組織図の縦軸はNi当量を示し、横軸はCr当量を示す。Cr当量は、フェライト安定化元素の度合いをクロム量に換算した値であり、Cr当量=%Cr+%Mo+1.5×%Si+0.5×%Nbの式で表すことができる。Ni当量は、オーステナイト安定化元素の度合いをニッケル量に換算した値であり、Ni当量=%Ni+30×%C+0.5×%Mnの式で表すことができる。
 JIS G 0321に準拠して、ステンレス鋼の成分分析を行うことができ、オーステナイト安定化元素(Ni、Mn、C等)、フェライト安定化元素(Cr、Mo、Si、Nb)について定量分析を行うことができる。
 無酸素銅箔は、酸素含有量が50ppm以下の銅箔である。酸素含有量は、30ppm以下であってもよく、15ppm以下であってもよい。なお、酸素含有量とは、銅箔の表面を覆う酸化皮膜を除く母材中の酸素含有量を意味する。
 無酸素銅箔は、銅以外の成分(例えば、Ni、Cr、Fe、Zn、Sn、Ag、Pb、Bi、Cd、Hg、O、P、S、Se、Te、H等)を微量含んでもよい。銅箔中のCuの含有量は、99.9質量%以上であってもよく、99.96質量%以上であってもよい。銅箔は、圧延銅箔であってもよい。無酸素銅としては、例えば、JIS H 3100、合金番号C1020が挙げられる。
 銅箔中の酸素含有量は、以下の方法により求めることができる。
 銅箔の試料を硝酸(1+1)で10秒間洗浄し、試料表面の酸化皮膜を除去する。上記洗浄は、試料が10質量%以上減少するまで繰り返し行う。次に、蒸留水、アルコール、およびアセトンの順で、試料の洗浄を行う。次に、試料について、温風による乾燥を行い、直ちに、不活性ガス融解-赤外線吸収法による分析を行い、試料中の酸素含有量を求める。分析装置には、酸素窒素同時分析装置(LECO社製、TC-336)を用いることができる。
(セパレータ)
 セパレータには、イオン透過性および絶縁性を有する多孔性の基材が用いられる。セパレータは、1つの基材により構成されていてもよく、複数の基材により構成されていてもよい。基材はシート状であればよい。セパレータは、複数の基材の積層体であってもよい。また、セパレータは、基材および凸部(スペーサ)の積層体であってもよい。凸部(スペーサ)により電極と基材との間に空間が形成されていてもよい。凸部は、例えば、セパレータの長手方向に沿った複数のライン状に設けられていてもよく、ハニカム状に設けられてもよい。セパレータの一部において、基材の積層数を増やしたり、凸部を配置したりすることで、第1領域と第2領域との電極間距離を変えてもよい。
 基材としては、微多孔膜、織布、不織布、耐熱層等が挙げられる。微多孔膜の材料には、樹脂材料が用いられ、例えば、オレフィン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、セルロース樹脂等が用いられる。オレフィン樹脂としては、ポリエチレン、ポリプロピレン、エチレンとプロピレンとの共重合体等が挙げられる。ポリエステル樹脂としては、ポリエチレンテレフタレート等が挙げられる。不織布を構成する繊維材料には、例えば、ガラス繊維、セルロース繊維、オレフィン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂等が用いられる。耐熱層は、例えば、無機材料と樹脂材料との混合層である。
 セパレータの厚さは、特に限定されないが、例えば10μm以上、80μm以下であり、20μm以上、70μm以下であってもよい。セパレータが複数の基材の積層体である場合、セパレータの厚さは、積層体の総厚みである。
 セパレータは、微多孔シート(シート状の微多孔膜)および不織布シートからなる群より選択される少なくとも1種の基材を含んでもよい。セパレータは、微多孔シートと、微多孔シートの少なくとも一方の表面に配置された耐熱層とを含んでもよい。電極群において、正極および負極の少なくとも一方と、微多孔シートとの間に、耐熱層が配置されていてもよい。耐熱層は、微多孔シートの少なくとも一方の表面にライン状に配置されていてもよい。ライン状の耐熱層により、正極および負極の少なくとも一方と微多孔シートとの間に空間が設けられていてもよい。
 耐熱層は、例えば、無機粒子と、無機粒子を担持する樹脂材料と、を含む。樹脂材料としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン等の含フッ素樹脂、フッ化ビニリデン-テトラフルオロエチレン共重合体等の含フッ素ゴム等が挙げられる。無機粒子は、絶縁性の金属酸化物等が挙げられる。金属酸化物としては、酸化アルミニウム(アルミナやベーマイト)、酸化マグネシウム、酸化チタン(チタニア)、酸化ジルコニウム、酸化ケイ素(シリカ)、水酸化マグネシウム、水酸化アルミニウム等が挙げられる。
 無機粒子の平均粒径は、特に限定されないが、例えば10μm以下が好ましく、0.1μm以上、2.0μm以下がより好ましい。無機粒子の粒径は、セパレータの断面を電子顕微鏡で撮影し、二値化等の画像処理を行って粒子を特定し、粒子と同じ面積を有する相当円の直径として求める。平均粒径は、例えば100個以上の粒子の粒径を求め、それらを平均して求める。
 耐熱層は、例えば、シート状の基材、正極または負極の表面に、樹脂材料および無機粒子を含む処理液を塗布して乾燥させることにより形成してもよい。処理液の溶媒もしくは分散媒には、例えば、N-メチル-2-ピロリドン(NMP)が用いられる。耐熱層(処理液)中の無機粒子の含有量は、例えば、樹脂材料100質量部あたり、70質量部以上、100質量部以下である。この場合、耐熱層の強度および耐熱性が確保され易い。
 セパレータは、基材および凸部(スペーサ)を備えていてもよい。この場合、正極および負極の少なくとも一方と基材との間にスペーサが介在する。凸部は、第1領域に配置されていてもよい。これにより、正極および負極の少なくとも一方と基材との間に空間が形成される。上記空間の形成により、負極が膨張したときの体積増加分が吸収され、負極に生じる応力が緩和される。また、当該空間に非水電解質が留まり、液枯れが抑制され、電極群内における反応のばらつき(反応ムラ)が抑制される。凸部は、例えば、樹脂材料を含んでもよく、樹脂材料と無機粒子とを含んでもよい。樹脂材料および無機粒子には、上記の耐熱層で例示するものを用いることができる。
 当該空間は、少なくとも放電状態において存在すればよい。ここで、放電状態とは、負極から多くのリチウム金属が溶解した後の状態であり、例えば、0.1×C以下のSOCの状態であってよい。ただし、充電状態において当該空間が完全にリチウム金属で埋められる必要はないため、例えば、満充電状態でも、当該空間が存在し得る。
 スペーサは、正極の表面、負極の表面、およびセパレータ基材の表面からなる群より選択される少なくとも1つに配置されている。スペーサは、正極の表面または基材の正極側の表面に配置されていることが好ましい。この場合、負極に基材からの面圧力が印加されやすく、デンドライト状のリチウム金属が析出しにくくなり、充放電サイクルにおける容量維持率の向上に有利である。スペーサの高さは、基材の厚みおよび電極間距離に合わせて適宜設計すればよい。
 以下、図面を参照して本開示に係る電池の実施形態を更に説明する。各図面において、各構成部品の形状または特徴は、必ずしも実際の寸法を反映していないし、必ずしも同一の縮尺比で表されていない。各図面において同一の構成部品には同一の符号を用いる。
 図1は、本開示の一実施形態に係るリチウム二次電池の巻回軸に平行な断面を模式的に示す縦断面図である。図2は、電池の軸と垂直な断面(電極群の巻回軸と垂直な断面)を模式的に示す図である。図3は、電極群の第1領域の構成の一例を模式的に示す図である。図4は、電極群の第1領域の構成の他の例を模式的に示す図である。
 電池10は、円筒形の電池ケースと、電池ケース内に収容された巻回型の電極群14および図示しない非水電解質とを備える。電池ケースは、有底円筒状の電池缶15と、電池缶15の開口を封口する封口体16とで構成される。電池缶15は、開口付近に側壁を部分的に外側からプレスして形成された環状の段部21を有する。封口体16は、段部21の開口側の面により支持される。電池缶15と封口体16との間には、ガスケット27が配置されており、これにより電池缶の密閉性が確保されている。電池缶15内において、電極群14の巻回軸方向の両端部には、絶縁板17、18がそれぞれ配置されている。
 電池缶の内径は、初回充放電後の放電状態のリチウム二次電池の電極群の外周面と電池缶の内周面とが接触する大きさとしてよい。この場合、充電時から放電時に至る常時において、電池缶から適度な圧力が電極群に外周側から印加され、電極の座屈が抑制される。
 封口体16は、フィルタ22、下弁体23、絶縁部材24、上弁体25およびキャップ26を備えている。キャップ26は電池缶15の外側に配置され、フィルタ22は電池缶15の内側に配置される。下弁体23と上弁体25とは、各々の中央部で互いに接続されるとともに、各々の周縁部の間には絶縁部材24が介在している。フィルタ22と下弁体23とは、各々の周縁部で互いに接続している。上弁体25とキャップ26とは、各々の周縁部で互いに接続している。下弁体23には、通気孔が形成されている。異常発熱等により電池缶の内圧が上昇すると、上弁体25がキャップ26側に膨れて、下弁体23から離間する。これにより、下弁体23と上弁体25との電気的接続が遮断される。さらに内圧が上昇すると、上弁体25が破断し、キャップ26に形成された開口からガスが排出される。
 電極群14は、正極11、負極(負極集電体)12およびセパレータ13とで構成されている。正極11、負極12およびこれらの間に介在するセパレータ13は、いずれも長尺シート状(もしくは帯状)であり、それぞれの幅方向が巻回軸と平行となるように巻回されている。電極群14は、中空部29を有する。図2に示すように、電極群14は第1領域41および第2領域42を有し、第1領域41内の電極間距離X1と第2領域42内の電極間距離X2とが、2≦X1/X2の関係を有する。
 正極11は、正極集電体および正極合材層を備える。正極11は、正極リード19を介して、正極端子を兼ねるキャップ26と電気的に接続されている。正極リード19の一端は、例えば、正極11の長手方向の中央付近に接続されている。正極11から延出した正極リード19の他端は、絶縁板17に形成された貫通孔を通ってフィルタ22の内側面に溶接されている。
 負極12は、負極リード20を介して負極端子を兼ねる電池缶15と電気的に接続されている。負極リード20の一端は、例えば、負極12の長手方向の端部に接続されており、他端は、電池缶15の内底面に溶接されている。
 セパレータ13は、第1領域41では第1基材13Aおよび第2基材13Bで構成され(図3)、第2領域42では第1基材13Aで構成されている。この場合、セパレータ13は、第3領域43では、例えば、第1基材13Aおよび第2基材13B、ならびに/または、第1基材13Aにより構成されている。第1基材および第2基材の材料は、互いに同じであってもよく、異なっていてもよい。第1基材および第2基材の厚みは、互いに同じであってもよく、異なっていてもよい。
 また、セパレータ13は、第1領域41では第1基材13Aとライン状凸部13Cとで構成され(図4)、第2領域42では第1基材13Aで構成されていてもよい。また、この場合、セパレータ13は、第3領域43では、第1基材13Aおよびライン状凸部13C、ならびに/または、第1基材13Aにより構成されている。この場合、第1基材13Aは微多孔シートであってもよく、凸部13Cは耐熱層であってもよい。凸部13Cは、スペーサとして機能し、凸部13Cにより、正極11と負極12との間に空間28が形成される。
 凸部13Cの断面形状は、断面形状が矩形であるが、これに限定されず、例えば、台形等であってよい。凸部13Cは、正極11と第1基材13Aとの間に設けられているが、負極12と第1基材13Aとの間に設けられてもよい。
 図7に示すように、ライン状凸部13Cは正極11に配置されていてもよい。電極群の構成前において、ライン状凸部13Cを有する正極11を、その主面の法線方向から見たとき、複数の凸部13Cは、正極11の幅方向において一定の間隔で設けられている。また、複数の凸部13Cは、正極11の長さ方向に沿って平行に設けられている。
 図7では、3本のライン状凸部13Cが、正極11の長さ方向に沿って平行に配置されているが、ライン状凸部の本数はこれに限定されない。また、ライン状凸部の配置形態はこれに限定されない。電極群の構成前において凸部を有する正極を、その主面の法線方向から見たとき、凸部は、曲線状に配置されていてもよく、網目状、ドット状に配置されていてもよい。
 凸部13Cを有するセパレータ13により、正極11と負極12との間に空間28が設けられている。放電状態では、負極集電体の表面にリチウム金属が析出しておらず、空間28が保持されている。一方、充電状態では、負極集電体の表面にリチウム金属が析出し、第1基材13Aの押圧力を受けながら空間28に収容される。ここでは、負極12は、放電状態では負極集電体を備え、充電状態では負極集電体とその表面に析出したリチウム金属とを備える。ただし、この構成は一例に過ぎず、負極12は、放電状態でも負極集電体だけでなく、その表面にリチウム金属を備えてよい。
 リチウム金属は、正極11とセパレータ13との間の空間28に収容されるため、充放電サイクルにおいてリチウム金属の析出に伴う電極群の見かけの体積変化が低減される。よって、負極集電体に付与される応力も抑制される。また、負極12と第1基材13Aとの間に収容されたリチウム金属には第1基材13Aから圧力が加わるため、リチウム金属の析出状態が制御され、リチウム金属が孤立しにくく、充放電効率の低下が抑制される。
 以下、第1領域41では第1基材13Aおよび第2基材13Bで構成され、第2領域42では第1基材で構成されるセパレータ13を有する電極群の作製方法の一例を、図5および図6を参照しながら説明する。
 帯状の第1基材13Aを長さ方向の中央部において幅方向に沿って2つ折りにし、折り目130aを付ける。負極リード19付き負極12を準備する。第1基材13Aの所定位置に負極12を配置する(図5(a))。このとき、例えば、両面テープ等を用いて、負極12の端部を第1基材13Aに固定する。折り目130aに沿って第1基材13Aを2つ折りにし、負極12の両面に第1基材13Aが配置された負極複合体200を得る(図5(b))。
 帯状の第2基材13Bを長さ方向の中央部において幅方向に沿って2つ折りにし、折り目130bを付ける。正極リード20付き正極13を準備する。第2基材13Bの所定位置に正極11の一部を配置する(図6(a))。このとき、例えば、両面テープ等を用いて、正極11の端部を第2基材13Bに固定する。折り目130bに沿って第2基材13Bを2つ折りにし、正極11の長さ方向の一方の側(巻き始め側)において正極11の両面に第2基材13Bを配置する。このようにして正極複合体100を得る(図6(b))。
 図6(b)の正極複合体100において、正極11の長さL0に対する第2基材13Bが正極11を覆う部分の長さL1の比:L1/L0を所定値に調整する。L1/L0は、例えば、0.3~0.75である。電極群の構成時に、セパレータが、第1領域では第1基材および第2基材で構成され、第2領域では第1基材で構成され、第3領域では第1基材および第2基材、ならびに/または、第1基材で構成されるように調整する。
 負極複合体200の端部200aを巻き芯に巻き付け、次いで、正極複合体100を第2基材13Bが配置された側から負極複合体200とともに巻回する。このとき、負極複合体200の端部と巻き芯を接触させ、正極複合体100を負極複合体200の外面側より負極複合体200とともに巻き芯に巻き付ける。
 その後、巻き芯を取り外し、電極群を得る。電極群14内のセパレータ13は、第1領域41では第1基材13Aおよび第2基材13Bで構成され、第2領域42では第1基材13Aで構成される。また、セパレータ13の第3領域43は、第1基材13Aおよび第2基材13B、ならびに/または、第1基材13Aで構成される。
 以下、第1領域41では第1基材13Aおよびライン状凸部13Cで構成され、第2領域42では第1基材で構成されるセパレータ13を有する電極群の作製方法の一例を、図7を参照しながら説明する。
 正極11の長さ方向の一方の側(巻き始め側)において正極11の両面に凸部13Cを配置し、正極複合体300を得る(図7)。このとき、図7の正極複合体300において、正極11の長さL0に対するライン状凸部13Cの長さL1の比:L1/L0を所定値に調整する。L1/L0は、例えば、0.3~0.75である。電極群の構成時に、セパレータが、第1領域では第1基材およびライン状凸部で構成され、第2領域では第1基材で構成され、第3領域43では第1基材およびライン状凸部、ならびに/または、第1基材で構成されるように調整する。
 負極複合体200の端部200aを巻き芯に巻き付け、次いで、正極複合体300をライン状凸部13Cが配置された側から負極複合体200とともに巻回する。このとき、負極複合体200の端部と巻き芯を接触させ、正極複合体300を負極複合体200の外面側より負極複合体200とともに巻き芯に巻き付ける。
 その後、巻き芯を取り外し、電極群14を得る。電極群14内のセパレータ13は、第1領域41では第1基材13Aおよびライン状凸部13Cで構成され、第2領域42では第1基材13Aで構成される。また、セパレータ13の第3領域43は、第1基材13Aおよびライン状凸部13C、ならびに/または、第1基材13Aで構成される。
 充電時に負極に析出するリチウム金属の厚みTと、放電時の電極群内の電極間距離の平均Xとは、1.5≦X/Tの関係を満たすことが好ましい。なお、電極間距離の平均Xは、第1領域の電極間距離X1、第2領域の電極間距離X2、図6(b)または図7中の長さL0および長さL1とを用いて、下記式により求められる。
 電極間距離の平均X=X1×(L1/L0)+X2×{(L0-L1)/L0}
 電極間距離の平均Xは、放電時の正負極間のセパレータの平均厚みとも言える。放電時において、第1領域41の電極間距離X1は、第1基材13Aの厚みT1および第2基材13B(もしくはライン状凹部13C)の厚みT2の合計とほぼ同じである。また、第2領域42の電極間距離X2は、第1基材13Aの厚みT1とほぼ同じである。
 また、ここでいう充電時とは、負極に多くのリチウム金属が析出したときであり、例えば、SOCが0.9×C以上であるときを指す。放電時とは、負極から多くのリチウム金属が溶解したときであり、例えば、SOCが0.1×C以下であるときを指す。放電時もリチウム金属が存在する場合、上記の厚みTは、充電時のリチウム金属の厚みと、放電時のリチウム金属の厚みとの差とも言える。
 X/Tが1.5以上である場合、電極間距離が十分に確保され、充電時のリチウム金属(特にデンドライト状のリチウム金属)の析出に伴い電極に生じる応力が緩和され易い。X/Tが1.5以上である場合、X1/X2を2以上とすることによる、負極集電体にオーステナイト系ステンレス鋼箔または無酸素銅箔を用いる際の電極群の中空近傍での応力集中の緩和効果が顕著に得られる。サイクル特性の向上および高エネルギー密度の確保の観点から、X/Tは、例えば、1.5以上、4以下であってもよい。
 図示例では、巻回型の電極群を備える円筒形のリチウム二次電池について説明したが、リチウム二次電池の形状等はこれに限らず、角型でもよく、用途等に応じて各種形状から適宜選択することができる。また、上記以外の公知の構成を特に制限なく利用できる。
 以下、リチウム二次電池の負極、正極、および非水電解質について、具体的に説明する。
(負極)
 負極は、負極集電体を備える。リチウム二次電池では、負極の表面に、充電によりリチウム金属が析出する。より具体的には、非水電解質に含まれるリチウムイオンが、充電により、負極上で電子を受け取ってリチウム金属になり、負極の表面に析出する。負極の表面に析出したリチウム金属は、放電により非水電解質中にリチウムイオンとして溶解する。なお、非水電解質に含まれるリチウムイオンは、非水電解質に添加したリチウム塩に由来するものであってもよく、充電により正極活物質から供給されるものであってもよく、これらの双方であってもよい。
 負極は、負極集電体と、負極集電体の表面に密着しているシート状のリチウム金属もしくはリチウム合金を備えてもよい。すなわち、負極集電体には、予めリチウム金属を含む下地層(リチウム金属もしくはリチウム合金の層(以下、「リチウム下地層」とも称する。))を設けてもよい。リチウム合金は、リチウム以外に、アルミニウム、マグネシウム、インジウム、亜鉛、銀、銅等の元素を含み得る。リチウム下地層を設け、充電時にその上にリチウム金属を析出させることで、デンドライト状の析出を更に効果的に抑制することができる。リチウム下地層の厚さは、特に限定されないが、例えば5μm~25μmの範囲であってもよい。
 負極は、負極集電体に担持されたリチウムイオン吸蔵層(負極活物質(黒鉛等)によるリチウムイオンの吸蔵および放出により容量を発現する層)を含んでもよい。この場合、満充電時における負極の開回路電位は、リチウム金属(リチウムの溶解析出電位)に対して70mV以下であってもよい。満充電時における負極の開回路電位がリチウム金属に対して70mV以下である場合、満充電時におけるリチウムイオン吸蔵層の表面にはリチウム金属が存在する。すなわち負極は、リチウム金属の析出および溶解による容量を発現する。
 リチウムイオン吸蔵層は、負極活物質を含む負極合材を層状に形成したものである。負極合材は、負極活物質以外に、結着剤、増粘剤、導電剤等を含んでもよい。
 負極活物質としては、炭素質材料、Si含有材料、Sn含有材料等が挙げられる。負極は、負極活物質を1種含んでいてもよく、2種以上組み合わせて含んでもよい。炭素質材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)が挙げられる。
 導電材は、例えば、炭素材料である。炭素材料としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、および黒鉛等が挙げられる。
 結着材としては、例えば、フッ素樹脂、ポリアクリロニトリル、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂、ゴム状重合体等が挙げられる。フッ素樹脂としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等が挙げられる。
(正極)
 正極は、例えば、正極集電体と、正極集電体に支持された正極合材層とを備える。正極合材層は、例えば、正極活物質と導電材と結着材とを含む。正極合材層は、正極集電体の片面のみに形成されてもよく、両面に形成されてもよい。正極は、例えば、正極集電体の両面に正極活物質と導電材と結着材とを含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧延することにより得られる。正極活物質、結着剤、導電剤等としては、例えば、公知の材料を用い得る。
 正極活物質は、リチウムイオンを吸蔵および放出する材料である。正極活物質としては、例えば、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン、フッ素化ポリアニオン、遷移金属硫化物等が挙げられる。中でも、製造コストが安く、平均放電電圧が高い点で、リチウム含有遷移金属酸化物が好ましい。
 リチウム含有遷移金属酸化物とは、リチウムと、リチウム以外の金属Meとを含み、金属Meが、少なくとも遷移金属を含む複合酸化物である。リチウム含有遷移金属酸化物の中でも、層状構造を有する岩塩型(層状岩塩型)の結晶構造を有する複合酸化物が、高容量を得る点で好ましい。
 金属Meは、遷移金属元素として、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、W等を含み得る。リチウム含有遷移金属酸化物は、遷移金属元素を一種含んでもよく、二種以上含んでいてもよい。金属Meは、遷移金属元素としてCo、NiおよびMnからなる群より選択される少なくとも1種を含むことが望ましく、少なくとも遷移金属としてNiを含むことが望ましい。
 リチウム含有遷移金属酸化物は、必要に応じて1種以上の典型元素を含み得る。典型元素としては、Mg、Al、Ca、Zn、Ga、Ge、Sn、Sb、Pb、Bi等が挙げられる。典型元素はAl等であってもよい。すなわち、金属Meは、任意成分としてAlを含んでもよい。
 リチウム含有遷移金属酸化物は、例えば、一般式(1):LiNi1-bで表される。一般式(1)中、0.9≦a≦1.2および0.65≦b≦1を満たし、Mは、Co、Mn、Al、Ti、Fe、Nb、B、Mg、Ca、Sr、ZrおよびWからなる群より選択される少なくとも1種の元素である。
 リチウム含有遷移金属酸化物が有する金属Meの量mMeに対する、正極および負極が有するLiの合計量mLiのモル比:mLi/mMeは、例えば、1.2以下であり、1.1以下でもよい。
 正極集電体の材質としては、例えば、Al、Ti、Fe等を含む金属材料が挙げられる。金属材料は、Al、Al合金、Ti、Ti合金、Fe合金(ステンレス鋼(SUS)等)であってもよい。
 正極集電体の厚みは、特に制限されず、例えば5μm以上、300μm以下である。
(非水電解質)
 リチウムイオン伝導性を有する非水電解質は、例えば、非水溶媒と、非水溶媒に溶解したリチウムイオンとアニオンとを含んでいる。非水電解質は、液状でもよいし、ゲル状でもよい。液状の非水電解質は、リチウム塩を非水溶媒に溶解させることにより調製される。リチウム塩が非水溶媒中に溶解することにより、リチウムイオンおよびアニオンが生成する。
 リチウム塩またはアニオンとしては、リチウム二次電池の非水電解質に利用される公知の材料が使用できる。具体的には、BF 、ClO 、PF 、CFSO 、CFCO 、イミド類のアニオン、オキサレート錯体のアニオン等が挙げられる。イミド類のアニオンとしては、N(SOCF 、N(C2m+1SO(C2n+1SO (mおよびnは、それぞれ独立して0または1以上の整数であり、xおよびyは、それぞれ独立して0、1または2であり、x+y=2を満たす。)等が挙げられる。オキサレート錯体のアニオンは、ホウ素および/またはリンを含有してもよい。非水電解質は、これらのアニオンを単独で含んでもよく、2種以上含んでもよい。
 リチウム金属がデンドライト状に析出するのを抑制する観点から、非水電解質は、少なくともオキサレート錯体のアニオンを含むことが好ましく、中でもフッ素を有するオキサレート錯体アニオンを含むことが望ましい。フッ素を有するオキサレート錯体アニオンとリチウムとの相互作用により、リチウム金属が細かい粒子状で均一に析出し易くなる。そのため、リチウム金属の局所的な析出を抑制しやすくなる。フッ素を有するオキサレート錯体アニオンと他のアニオンとを組み合わせてもよい。他のアニオンは、PF および/またはイミド類のアニオンであってもよい。オキサレート錯体のアニオンとしては、ビスオキサレートボレートアニオン、ジフルオロオキサレートボレートアニオン(BF(C)、PF(C、PF(C 等が挙げられ、少なくともジフルオロオキサレートボレートアニオンを用いることが望ましい。
 非水溶媒としては、例えば、エステル、エーテル、ニトリル、アミド、またはこれらのハロゲン置換体が挙げられる。非水電解質は、これらの非水溶媒を単独で含んでもよく、2種以上含んでもよい。ハロゲン置換体としては、フッ化物等が挙げられる。
 エステルとしては、例えば、炭酸エステル、カルボン酸エステル等が挙げられる。環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート(FEC)等が挙げられる。鎖状炭酸エステルとしては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン、γ-バレロラクトン等が挙げられる。鎖状カルボン酸エステルとしては、酢酸エチル、プロピオン酸メチル、フルオロプロピオン酸メチル等が挙げられる。
 エーテルとしては、環状エーテルおよび鎖状エーテルが挙げられる。環状エーテルとしては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン等が挙げられる。鎖状エーテルとしては、1,2-ジメトキシエタン、ジエチルエーテル、エチルビニルエーテル、メチルフェニルエーテル、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、1,2-ジエトキシエタン、ジエチレングリコールジメチルエーテル等が挙げられる。
 非水電解質中のリチウム塩の濃度は、例えば、0.5mol/L以上、3.5mol/L以下である。非水電解質中のアニオンの濃度を、0.5mol/L以上、3.5mol/L以下としてもよい。非水電解質中のオキサレート錯体のアニオンの濃度を、0.05mol/L以上、1mol/L以下としてもよい。
[実施例]
 以下、本開示に係るリチウム二次電池を実施例および比較例に基づいて更に具体的に説明する。ただし、本開示は以下の実施例に限定されるものではない。
《実施例1~6》
(負極の準備)
 帯状の負極集電体(厚さ10μm)を準備した。露点がマイナス30℃以下のドライ雰囲気中で、負極集電体の両面にリチウム金属箔(厚み30μm)を圧着し、リチウム金属層(下地層)を配置した。このようにして負極12を作製した。負極12の所定位置にNi製の負極リード20を取り付けた。なお、リチウム金属層は、充電時の厚み55μmおよび放電時の厚み30μmであった。すなわち、充電時に負極に析出するリチウム金属の厚みTは、25μmであった。
 負極集電体には、オーステナイト系ステンレス鋼箔または無酸素銅箔を用いた。オーステナイト系ステンレス鋼箔には、SUS316LまたはSUS304の箔を用いた。無酸素銅箔には、JIS H 3100、合金番号C1020の箔を用いた。
(第1基材の準備)
 図5(a)の帯状の第1基材13Aを準備した。第1基材13Aには、シート状のポリエチレン製の微多孔膜を用いた。第1基材13Aの厚さは、15μmとした。
(負極複合体の作製)
 第1基材13Aの所定位置に負極12を配置した(図5(a))。このとき、両面テープを用いて負極12の端部(正極と対向しない部分)を第1基材13Aに固定した。次に、折り目130aに沿って第1基材13Aを2つ折りにして、負極12の両面に第1基材13Aが配置された負極複合体200を得た(図5(b))。
(正極の作製)
 正極活物質95質量部に、アセチレンブラック2.5質量部と、ポリフッ化ビニリデン2.5質量部とを加え、さらにN-メチル-2-ピロリドンを適量加えて撹拌し、正極合材スラリーを調製した。正極活物質には、Li、Ni、CoおよびAl(Ni、CoおよびAlの合計に対するLiのモル比は1.0)を含有し、層状構造を有する岩塩型のリチウム含有遷移金属酸化物を用いた。
 正極合材スラリーを帯状のAl箔(正極集電体)の両面に塗布し、乾燥し、塗膜を圧延し、正極集電体の両面に正極合材層が形成された積層体を得た。積層体を所定の電極サイズに切断し、帯状の正極11を得た。正極11の所定位置にAl製の正極リード19を取り付けた。充電時に負極集電体上に析出するリチウム金属の厚みTが25μmとなるように、正極合材層(正極活物質)の充填量を調整した。
(第2基材の準備)
 図6(a)の帯状の第2基材13Bを準備した。第2基材13Bの長さは、後述の正極複合体100の構成時に正極11の長さL0に対する第2基材13Bの正極被覆部の長さL1の比:L1/L0が表1に示す値となるように調整した。第2基材13Bの厚さは、20μm、45μm、75μm、または105μmとした。第2基材13Bには、シート状のポリエチレン製の微多孔膜を用いた。
(正極複合体の作製)
 第2基材13Bの所定位置に正極11の一部を配置した(図6(a))。このとき、両面テープを用いて正極11の端部を第2基材13Bに固定した。次に、折り目130bに沿って第2基材13Bを2つ折りにして、正極11の長さ方向の一方の側(巻き始め側)において正極11の両面に第2基材13Bを配置し、正極複合体100を得た(図6(b))。図6(b)の正極複合体100において、正極11の長さL0に対する第2基材13Bが正極11を覆う部分の長さL1の比:L1/L0を表1に示す値に調整した。
(電極群の作製)
 負極複合体200の端部200aを巻き芯に巻き付け、次いで、正極複合体100を第2基材13Bが配置された側から負極複合体200とともに巻回した。このとき、負極複合体200の端部を巻き芯に接触させ、正極複合体100を負極複合体200の外面側より負極複合体200とともに巻き芯に巻き付けた。
 その後、巻き芯を取り外し、電極群14を得た。電極群14内のセパレータ13は、第1領域では第1基材13Aおよび第2基材13Bで構成され、第2領域では第1基材13Aで構成された。電極群の一方の端面から正極リード19および負極リード20を露出させた。
(非水電解質の調製)
 ジメトキシエタン(DME)と、1,1,2,2-テトラフルオロエチル2,2,3,3-テトラフルオロプロピルエーテル(H(CFCHO(CFH)とを、25:75の質量比で含む混合溶媒に、LiFSIおよびLiFOBを溶解させて、非水電解質を調製した。非水電解質中のLiFSIの濃度は1.0mol/Lとし、非水電解質中のLiFOBの濃度は0.05mol/Lとした。なお、LiFSIはLiN(SOF)であり、LiFOBはLiBF(C)である。
(電池の組み立て)
 電極群を有底円筒状の電池缶に挿入し、非水電解質を注入し、封口体で電池缶の開口を封口した。このとき、正極リードを封口体に接続し、負極リードを電池缶に接続した。封口体と電池缶との間にガスケットを配置した。このようにして、リチウム二次電池を完成させた。なお、表1中、E1~E6は、それぞれ実施例1~6のリチウム二次電池である。
《実施例7》
(スペーサインクの調製)
 無機粒子90質量部と、樹脂材料であるポリフッ化ビニリデン(PVdF)10質量部と、分散媒N-メチル-2-ピロリドンとを混合して、スペーサインクを調製した。無機粒子には、アルミナ粒子(平均粒径1μmのアルミナと平均粒径0.1μmのアルミナとを10/1の質量比で含む)を用いた。
(スペーサ付き正極の作製:正極へのライン状凸部の配置)
 ディスペンサを用いて正極の両方の表面にスペーサインクを塗布し、熱風乾燥させ、ライン状凸部(スペーサ)を形成した。具体的には、図7に示すように、正極11の長さ方向の一方の側(巻き始め側)において正極11の両方の表面にライン状凸部13Cを配置した。具体的には、正極11の幅方向の両端部および中央部に、その長さ方向に沿って、合計3本の互いに平行なライン状凸部13C(幅1mm、高さ75μm)を形成した。このようにして、正極複合体300を得た(図7)。このとき、正極複合体300において、正極11の長さL0に対するライン状凸部13Cの長さL1の比:L1/L0を表1に示す値に調整した。
(電極群の作製)
 負極複合体200の端部200aを巻き芯に巻き付け、次いで、正極複合体300をライン状凸部13Cが配置された側から負極複合体200とともに巻回した。このとき、負極複合体200の端部と巻き芯を接触させ、正極複合体300を負極複合体200の外面側より負極複合体200とともに巻き芯に巻き付けた。
 その後、巻き芯を取り外し、電極群14を得た。電極群14内のセパレータ13は、第1領域41では第1基材13Aおよびライン状凸部13Cで構成され、第2領域42では第1基材13Aで構成された。
 上記で得られた電極群を用いた以外、実施例5の電池E5と同様にして、電池E7を得た。
《比較例1》
 充電時に負極集電体上に析出するリチウム金属の厚みTが20μmとなるように、正極合材層(正極活物質)の充填量を調整した。第2基材を用いずに、負極複合体の所定位置に正極を配置し、正負極積層体を構成し、正負極積層体を巻き芯を用いて巻回して電極群を得た。
 上記以外、実施例5の電池E5と同様にして、電池R1を得た。
《比較例2》
 負極集電体にSUS444(フェライト系ステンレス鋼)箔を用いた以外、比較例1の電池R1と同様にして、電池R2を得た。
《比較例3》
 負極集電体に電解銅箔を用いた。第2基材13Bの厚みを15μmとした。充電時に負極集電体上に析出するリチウム金属の厚みTが20μmとなるように、正極合材層(正極活物質)の充填量を調整した。
 上記以外、実施例5の電池E5と同様にして、電池R3を得た。
《比較例4》
 負極集電体に電解銅箔を用いた。ライン状凸部13Cの厚みを15μmとした。充電時に負極集電体上に析出するリチウム金属の厚みTが10μmとなるように、正極合材層(正極活物質)の充填量を調整した。
 上記以外、実施例7の電池E7と同様にして、電池R4を得た。
[評価]
 得られた各電池について、25℃の環境下で充放電サイクル試験を行った。充放電は、以下の条件で行った。充電と放電との間は、20分間の休止を行った。
(充電)
 電池電圧が4.1Vになるまで10mAで定電流充電を行い、その後、電流値が1mAになるまで4.1Vの電圧で定電圧充電を行った。
(放電)
 電池電圧が3.0Vになるまで10mAで定電流放電を行った。
 充放電を100サイクルまで繰り返し行い、1サイクル目の放電容量C1に対する100サイクル目の放電容量C2の割合:(C2/C1)×100を、サイクル容量維持率(%)として求めた。
 評価結果を表1に示す。表1中のサイクル容量維持率は、比較例2の電池R2のサイクル容量維持率を100とするときの相対値(指数)として表した。
Figure JPOXMLDOC01-appb-T000001
 電池E1~E7では、電池R1~R4と比べて高い容量維持率が得られた。
 電池R1では、負極集電体がオーステナイト系ステンレス鋼であり、X1/X2が2未満であるため、負極の膨張に伴う電極群の中空部近傍での応力集中により、容量維持率が低下した。電池R2では、X1/X2が2未満であり、負極集電体がフェライト系ステンレス鋼(SUS444)箔であり、脆化して箔切れが生じ、容量維持率が低下した。電池R3、R4では、電解銅箔を用いたため、脆化して箔切れが生じ、容量維持率が低下した。
 本開示のリチウム二次電池は、携帯電話、スマートフォン、タブレット端末のような電子機器、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、家庭用蓄電池等に用いることができる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
  10 リチウム二次電池
  11 正極
  12 負極
  13 セパレータ
  13A 第1基材
  13B 第2基材
  13C ライン状凸部
  14 電極群
  15 電池缶
  16 封口体
  17、18 絶縁板
  19 正極リード
  20 負極リード
  21 段部
  22 フィルタ
  23 下弁体
  24 絶縁部材
  25 上弁体
  26 キャップ
  27 ガスケット
  28 空間
  29 中空部
  41 第1領域
  42 第2領域
  43 第3領域
  100、300 正極複合体
  200 負極複合体
 
 
 

Claims (5)

  1.  中空部を有する柱状の巻回型電極群と、
     リチウムイオン伝導性を有する非水電解質と、を具備し、
     前記電極群は、正極と、負極集電体を備える負極と、前記正極と前記負極との間に配置されたセパレータと、を有し、
     前記負極では、充電時にリチウム金属が析出し、放電時に前記リチウム金属が溶解し、
     前記負極集電体は、オーステナイト系ステンレス鋼箔または無酸素銅箔であり、
     放電時の前記電極群の巻回軸と垂直な断面における内周面から外周面までの径方向の長さをDとするとき、
     放電時の前記電極群は、前記電極群の内周面からの距離が(1/4)×D以下である第1領域と、前記電極群の外周面からの距離が(1/4)×D以下である第2領域と、を有し、
     放電時の前記電極群おいて、前記第1領域における前記正極と前記負極との電極間距離X1と、前記第2領域における前記正極と前記負極との電極間距離X2とは、2≦X1/X2の関係を有する、リチウム二次電池。
  2.  前記X1/X2は、2以上、8以下である、請求項1に記載のリチウム二次電池。
  3.  充電時に前記負極に析出するリチウム金属の厚みTと、放電時の前記電極群内の前記電極間距離の平均Xとは、1.5≦X/Tの関係を満たす、請求項1または2に記載のリチウム二次電池。
  4.  前記セパレータは、前記第1領域では第1基材と第2基材とで構成され、前記第2領域では前記第1基材で構成されている、請求項1~3のいずれか1項に記載のリチウム二次電池。
  5.  前記セパレータは、前記第1領域では第1基材とライン状凸部とで構成され、前記第2領域では前記第1基材で構成されており、
     前記第1領域では、前記ライン状凸部により、前記正極および前記負極の少なくとも一方と、前記第1基材との間に、空間が設けられている、請求項1~3のいずれか1項に記載のリチウム二次電池。
     
     
     
PCT/JP2023/013185 2022-03-31 2023-03-30 リチウム二次電池 WO2023190872A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-060689 2022-03-31
JP2022060689 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190872A1 true WO2023190872A1 (ja) 2023-10-05

Family

ID=88202808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013185 WO2023190872A1 (ja) 2022-03-31 2023-03-30 リチウム二次電池

Country Status (1)

Country Link
WO (1) WO2023190872A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012279A (ja) * 1996-04-26 1998-01-16 Denso Corp 金属リチウム2次電池
KR20030033491A (ko) * 2001-10-23 2003-05-01 삼성에스디아이 주식회사 리튬 이차 전지
JP2012201964A (ja) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp 圧延銅箔及びそれを用いた二次電池
JP2014216261A (ja) 2013-04-26 2014-11-17 株式会社Gsユアサ 渦巻状電極群を備える電池
JP2017195028A (ja) * 2016-04-18 2017-10-26 日立マクセル株式会社 非水電解液電池およびその製造方法
JP2019057422A (ja) * 2017-09-21 2019-04-11 イビデン株式会社 蓄電デバイス用電極及び蓄電デバイス
JP2019212608A (ja) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 リチウム二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012279A (ja) * 1996-04-26 1998-01-16 Denso Corp 金属リチウム2次電池
KR20030033491A (ko) * 2001-10-23 2003-05-01 삼성에스디아이 주식회사 리튬 이차 전지
JP2012201964A (ja) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp 圧延銅箔及びそれを用いた二次電池
JP2014216261A (ja) 2013-04-26 2014-11-17 株式会社Gsユアサ 渦巻状電極群を備える電池
JP2017195028A (ja) * 2016-04-18 2017-10-26 日立マクセル株式会社 非水電解液電池およびその製造方法
JP2019057422A (ja) * 2017-09-21 2019-04-11 イビデン株式会社 蓄電デバイス用電極及び蓄電デバイス
JP2019212608A (ja) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 リチウム二次電池

Similar Documents

Publication Publication Date Title
US8178244B2 (en) Non-aqueous electrolyte battery and battery pack
JP5704413B2 (ja) 非水電解質二次電池
WO2022209601A1 (ja) リチウム二次電池
JP2007018881A (ja) 非水電解質電池及び電池パック
JP7113227B2 (ja) リチウム二次電池
JP6479984B2 (ja) 非水電解質電池及び電池パック
JP2013201077A (ja) 非水電解質二次電池
CN110265629B (zh) 负极及锂离子二次电池
WO2022224872A1 (ja) リチウム二次電池
JPWO2020059131A1 (ja) 電池及び電池パック
EP3780165A1 (en) Electrode group, battery, and battery pack
WO2023276756A1 (ja) リチウム二次電池
WO2020026705A1 (ja) リチウム二次電池
WO2023190872A1 (ja) リチウム二次電池
US12040486B2 (en) Electrode, electrode group, battery, and battery pack
WO2023190870A1 (ja) リチウム二次電池
JP2023112393A (ja) 全固体電池
JP7113226B2 (ja) リチウム二次電池
JP6952883B2 (ja) 電極群、非水電解質電池及び電池パック
WO2023276757A1 (ja) リチウム二次電池
WO2023190871A1 (ja) 二次電池
JPWO2017138116A1 (ja) リチウムイオン電池およびその製造方法
CN118843971A (zh) 锂二次电池
WO2024143221A1 (ja) リチウム二次電池
WO2024143219A1 (ja) リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024512799

Country of ref document: JP

Kind code of ref document: A