WO2023276586A1 - 膜分離方法およびルーズro膜の製造方法 - Google Patents

膜分離方法およびルーズro膜の製造方法 Download PDF

Info

Publication number
WO2023276586A1
WO2023276586A1 PCT/JP2022/023031 JP2022023031W WO2023276586A1 WO 2023276586 A1 WO2023276586 A1 WO 2023276586A1 JP 2022023031 W JP2022023031 W JP 2022023031W WO 2023276586 A1 WO2023276586 A1 WO 2023276586A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
liquid
treated
loose
separation method
Prior art date
Application number
PCT/JP2022/023031
Other languages
English (en)
French (fr)
Inventor
雄大 中筋
直毅 横川
正博 木下
真一 中尾
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2023531744A priority Critical patent/JPWO2023276586A1/ja
Priority to KR1020247000733A priority patent/KR20240027684A/ko
Priority to CN202280043510.XA priority patent/CN117529361A/zh
Publication of WO2023276586A1 publication Critical patent/WO2023276586A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a membrane separation method and a loose RO membrane manufacturing method.
  • RO reverse osmosis
  • pressure is applied to the dense solution side separated by a semipermeable membrane, and the operating pressure difference between the liquid to be treated and the permeate side is the difference between the rich solution side and the dilute solution side.
  • It is a technique for selectively permeating a solvent through a semipermeable membrane by increasing the difference in osmotic pressure.
  • the technology is widely used for seawater desalination and the like.
  • reverse osmosis is sometimes classified into RO and NF (nanofiltration).
  • Reverse osmosis is known to be an energy-saving technique compared to evaporation, which uses thermal energy to evaporate and concentrate water.
  • Patent Document 1 describes a saltwater desalination method using reverse osmosis.
  • the desalination treatment method described in Patent Document 1 uses a semipermeable membrane module having a first chamber and a second chamber partitioned by a semipermeable membrane. A portion of the salt water is flowed into the first chamber, the other portion of the salt water is flowed into the second chamber, and the first chamber is pressurized to increase the concentration of the salt water on the permeation side, resulting in permeation.
  • a method of reducing the pressure differential is disclosed.
  • the salt in the salt water introduced into the second chamber diffuses toward the membrane surface on the permeation side with the concentration distribution as the driving force, but the flow of the solvent permeating from the membrane surface causes the diffusion in the opposite direction. pushed back to Therefore, with the above-described prior art, it may be difficult to sufficiently increase the membrane surface concentration on the permeate side, which substantially contributes to the osmotic pressure.
  • An object of one aspect of the present invention is to provide a membrane separation method to which reverse osmosis can be applied as a method for separating or concentrating a liquid to be treated having a high osmotic pressure or as a method for recovering water.
  • a membrane separation method for a liquid to be treated having an osmotic pressure is a reverse osmosis method using a loose RO membrane to convert the liquid to be treated into a first permeate and a first non-permeate liquid, wherein the liquid to be treated has an osmotic pressure of the liquid to be treated side membrane surface concentration Cb ' and a maximum operating pressure difference of ⁇ Pmax,
  • ⁇ Cb' > ⁇ Pmax is satisfied
  • the loose RO membrane is a membrane that allows at least part of the solute contained in the liquid to be treated to pass therethrough together with the solvent.
  • the method for membrane separation of a liquid to be treated having an osmotic pressure is a reverse osmosis method using a loose RO membrane.
  • the osmotic pressure of the liquid to be treated is 5 MPa or more and 100 MPa or less, and the loose RO membrane removes at least part of the solutes contained in the liquid to be treated together with the solvent. It is a membrane separation method, which is a permeable membrane.
  • a method for manufacturing a loose RO membrane according to one aspect of the present invention brings an oxidizing agent solution containing an oxidizing agent into contact with an RO membrane.
  • a membrane separation method to which reverse osmosis can be applied as a method for separating or concentrating a liquid to be treated having a high osmotic pressure or as a method for recovering water.
  • FIG. 1 is a schematic diagram that schematically shows the configuration of a membrane separation system 1 according to an exemplary embodiment of the present invention
  • FIG. 1 is an example of a flow chart showing a rough flow of a method for manufacturing a loose RO membrane 50 according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram schematically showing the configuration of a membrane separation system 1A used in Example 1.
  • FIG. 1 is a schematic diagram that schematically shows the configuration of a membrane separation system 1 according to an exemplary embodiment of the present invention
  • FIG. 1 is an example of a flow chart showing a rough flow of a method for manufacturing a loose RO membrane 50 according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram schematically showing the configuration of a membrane separation system 1A used in Example 1.
  • the membrane separation system is described as a system that separates the liquid to be treated into a permeated liquid and a non-permeated liquid, but the membrane separation system concentrates the liquid to be treated, It can be easily understood that it can also be used as a concentration system for obtaining and. Similarly, it can be easily understood that the separation device provided in the membrane separation system can also be used as a concentration device. In addition, it can be easily understood that the membrane separation system can be used as a filtration system for recovering a solvent of high purity from the liquid to be treated, and it can be easily understood that the separation device can also be used as a filtration device. can be
  • FIG. 1 is a schematic diagram schematically showing the configuration of a membrane separation system 1 used in a membrane separation method according to an exemplary embodiment of the present invention.
  • the membrane separation system 1 includes a first separation device 10 and a second separation device 20 .
  • the first separation device 10 includes a loose RO membrane 50 (loose reverse osmosis membrane). and a first non-permeate liquid. That is, the first separation device 10 is a device that realizes the first step of separating the liquid to be treated into a first permeate liquid and a first non-permeate liquid by reverse osmosis using a loose RO membrane.
  • the first separation device 10 may be configured by combining a plurality of membrane modules in parallel or in series with respect to the non-permeate liquid, as typified by a Christmas tree type.
  • the loose RO film 50 will be described in detail below.
  • the second separation device 20 has a reverse osmosis membrane 60, and pressurizes the side of the liquid to be treated that supplies the first permeated liquid discharged from the first separation device 10 as the second liquid to be treated.
  • the device separates the first permeated liquid into the second permeated liquid and the second non-permeated liquid. That is, the second separation device 20 is a device that realizes the second step of separating the first permeated liquid into the second permeated liquid and the second non-permeated liquid by reverse osmosis using the reverse osmosis membrane 60. be.
  • the second separation device 20 may be configured by combining a plurality of membrane modules in parallel or in series with respect to the non-permeate liquid, as typified by a Christmas tree type.
  • the reverse osmosis membrane 60 will be described in detail below.
  • a pipe 11 is connected to the liquid to be treated inlet of the first separation device 10 .
  • the first permeate outlet of the first separation device 10 and the first permeate inlet of the second separation device 20 are connected by a pipe 12, and the first non-permeate outlet of the first separation device 10 is A pipe 13 is connected.
  • a pipe 21 is connected to the second permeated liquid outlet of the second separation device 20, and a pipe 22 is connected to the second non-permeated liquid outlet.
  • the pipe 22 may be connected to the pipe 11 or the liquid to be treated side of the first separation device 10 .
  • each pipe may be pressurized by a pump or the like, and it is desirable to pressurize the supply pipe of each separation device.
  • Rejection Rate and Concentration Polarization Reverse osmosis membrane performance can usually be represented by the rejection rate of solutes and the permeation flux.
  • rejection rate an apparent rejection rate Robs[-] defined by the following equation (1) can be generally used.
  • the concentration Cb' on the film surface on the side of the liquid to be treated can be obtained from the material balance in the boundary film using the following formula (3).
  • Lp is the pure water permeability coefficient [m 3 /m 2 /s/Pa]
  • ⁇ P is the operating pressure difference between the treated liquid side and the permeation side [Pa]
  • is the reflection coefficient [ ⁇ ]
  • is The osmotic pressure difference [Pa] between the liquid to be treated and the permeation side
  • P is the solute permeability coefficient [m/s]
  • C is the average concentration [mol/m 3 ] on both sides of the membrane.
  • can also be represented by the following equation (6).
  • ⁇ Cb′ ⁇ Cp (6)
  • ⁇ Cb' is the osmotic pressure [Pa] of the treated liquid side membrane surface concentration Cb'
  • ⁇ Cp is the osmotic pressure [Pa] of the permeated liquid concentration Cp .
  • Equation (4) and (5) are based on the thermodynamics of irreversible processes and are based on phenomenological equations.
  • C represents the average concentration on both sides of the membrane, but the average value is meaningless when the concentration difference on both sides is very large as in the membrane separation method. Therefore, a transport equation is proposed in which equation (5) is applied in a differential system in the film and integrated with respect to the film thickness.
  • equation (7) cannot be expressed in the form of the solute permeation flux Js, it can be expressed by the following equation (7) using the true rejection R.
  • the membrane separation system 1 according to this embodiment can be applied to a liquid to be treated having a high osmotic pressure, and is preferably applied to a liquid to be treated having an osmotic pressure exceeding the maximum operating pressure difference.
  • ⁇ Cb' is the osmotic pressure of the treated liquid-side membrane surface concentration Cb'
  • ⁇ Pmax is the maximum operating pressure difference
  • it is preferably applied to the treated liquid that satisfies ⁇ Cb' > ⁇ Pmax.
  • the membrane separation system 1 according to this embodiment can be suitably applied to a liquid to be treated having an osmotic pressure of 5 MPa or more and 100 MPa or less.
  • the first separation device 10 includes a loose RO membrane 50 .
  • the loose RO membrane 50 is an RO membrane that allows at least part of the solute contained in the liquid to be treated to permeate together with the solvent. In other words, it has a lower apparent rejection Robs compared to conventional RO membranes. Specifically, the apparent rejection ratio Robs of the loose RO membrane 50 can be 20% or more and 90% or less under the operating conditions of reverse osmosis membrane treatment using the loose RO membrane 50 .
  • the apparent rejection ratio Robs of the loose RO film 50 in this embodiment is preferably 20% or more and 90% or less, more preferably 40% or more and 80% or less.
  • the target of the above rejection rate is the sum of all solutes with osmotic pressure in the solution.
  • the solute that the loose RO membrane 50 according to this embodiment allows to permeate is not limited to a specific one.
  • the apparent rejection ratio Robs may vary depending on operating conditions even for the same membrane.
  • the liquid to be treated which is a 25 wt % potassium hydrogen carbonate aqueous solution, is treated at a liquid temperature of 40° C., an operating pressure difference of 8 MPa, a pH of 7 or more and 9 or less, and a recovery rate of 10. % or more and 20% or less, it can be defined as having an apparent rejection rate Robs of 20% or more and 90% or less.
  • the loose RO membrane 50 has a pure water permeability coefficient Lp of 1 ⁇ 10 ⁇ 12 [m 3 /m 2 /s/Pa] or more and 1 ⁇ 10 ⁇ 9 [m 3 /m 2 /s /Pa] or less, the reflection coefficient ⁇ of the solute is 0.2 or more and 0.9 or less, and the transmission coefficient P of the solute is 1 ⁇ 10 ⁇ 8 [m/s] or more and 1 ⁇ 10 ⁇ 5 [m/s] or less. It may be a reverse osmosis membrane.
  • FIG. 2 is an example of a flow chart showing a rough flow of the method for manufacturing the loose RO membrane 50. As shown in FIG.
  • a generally used reverse osmosis membrane is prepared (reverse osmosis membrane preparation step: S1).
  • the reverse osmosis membrane used to manufacture the loose RO membrane 50 is not particularly limited.
  • the reverse osmosis membrane may be a polyamide-based membrane or a cellulose acetate-based membrane, and the element may be a spiral type or a hollow fiber type, but it is preferable that the usable pressure is high, and the one that has a high pure water permeability coefficient is more preferable. .
  • the reverse osmosis membrane prepared in step S1 is oxidized (oxidation step: S2).
  • a reverse osmosis membrane is brought into contact with an oxidizing agent.
  • the oxidizing agent may be dissolved in a solvent such as water, for example.
  • an inorganic halogen-based oxidizing agent, an oxygen-based oxidizing agent, an organic compound oxidizing agent, or the like can be used as the oxidizing agent used in the oxidation step S2.
  • oxidizing agents containing chlorine are suitable, and more specifically, chlorates, hypochlorites, chlorites, chlorine dioxide and the like can be used.
  • the oxidation step S2 can be carried out, for example, by bringing the reverse osmosis membrane into contact with an aqueous solution containing an oxidizing agent at a predetermined concentration for a predetermined period of time.
  • an oxidizing agent By bringing the oxidizing agent into contact with the reverse osmosis membrane, the rejection of the reverse osmosis membrane can be lowered and, for example, a loose RO membrane having an apparent rejection Robs of 20% or more and 90% or less can be produced.
  • a loose RO membrane having a desired rejection rate can be produced.
  • concentration of the oxidant solution is constant, the longer the contact time between the oxidant solution and the reverse osmosis membrane, the lower the rejection rate of the loose RO membrane can be obtained.
  • a loose RO membrane having a desired rejection rate can be produced in the oxidation step S2 by adjusting the concentration of the oxidizing agent. Specifically, when the contact time is constant, a loose RO film with a lower rejection rate can be obtained as the concentration of the oxidant solution is increased.
  • the rejection rate may be adjusted by adjusting both the oxidant concentration and the contact time.
  • the loose RO membrane 50 is obtained by replacing the oxidant solution that can come into contact with the reverse osmosis membrane with pure water or the like (washing step: S3).
  • the oxidizing agent solution in the container used for contact may be replaced with pure water, or the loose RO membrane may be removed from the container and washed with pure water or the like.
  • the above-described method for manufacturing a loose RO membrane using a reverse osmosis membrane can be similarly applied to the manufacture of a loose RO membrane element using a reverse osmosis membrane element.
  • the membrane separation system 1 in FIG. 1 shows an example in which there is one first separation device 10, but the membrane separation system 1 includes a plurality of first separation devices 10 upstream of the second separation device 20. may be provided.
  • the required number of stages is determined from the osmotic pressure of the liquid to be treated, the maximum operating pressure difference, etc. The higher the osmotic pressure of the liquid to be treated, the more stages are required. However, if the number of stages increases too much, the recompression power and the like increase, so the membrane separation system 1 preferably includes 1 or more and 10 or less first separation devices 10 . That is, the membrane separation method may include 1 to 10 first steps.
  • the loose RO membranes 50 in at least one of the consecutive first separation devices 10 are higher than the loose RO membranes 50 in the upstream first separation devices 10. , preferably has a high rejection rate. Further, in order to reduce the required film area and the required number of stages, it is preferable that the rejection ratio Robs of the loose RO film 50 increases as it goes downstream. Alternatively, regarding the performance parameters of the loose RO film 50, it is preferable that the solute permeability coefficient P is lower and the reflection coefficient ⁇ is higher toward the downstream.
  • a liquid to be treated having a higher osmotic pressure can be treated.
  • the second separation device 20 includes a reverse osmosis membrane 60 .
  • the reverse osmosis membrane 60 used in the present embodiment is an RO membrane that can be generally used for seawater desalination, usually has a pore size of 1 nm or less, and is a membrane that can remove ions or low-molecular-weight organic substances.
  • the pure water permeability coefficient Lp of the exemplary reverse osmosis membrane 60 is 1 ⁇ 10 ⁇ 13 [m 3 /m 2 /s/Pa] or more and 1 ⁇ 10 ⁇ 10 [m 3 /m 2 /s/Pa].
  • the reflection coefficient ⁇ of the solute is 0.95 or more and 1 or less, and the transmission coefficient P of the solute can be 1 ⁇ 10 ⁇ 6 [m/s] or less.
  • the apparent rejection Robs of exemplary reverse osmosis membrane 60 can be 95% or greater.
  • a liquid to be treated (first liquid to be treated) is sent to the liquid to be treated side of the first separation device 10 through the pipe 11 .
  • the first liquid to be treated is pressurized by a pump or the like and passed through the loose RO membrane 50, thereby being separated into the first permeated liquid and the first non-permeated liquid (concentrate, salt concentrate) (second 1 step).
  • the first non-permeated liquid obtained in the first step is discharged through pipe 13 .
  • the first permeated liquid is sent to the liquid to be treated side of the second separation device 20 through the pipe 12 as the second liquid to be treated.
  • the second liquid to be treated is pressurized by a pump or the like and passed through the reverse osmosis membrane 60 to be separated into a second permeated liquid and a second non-permeated liquid (second step).
  • the second permeate obtained in the second step can be recovered through pipe 21 .
  • the reverse osmosis membrane treatment using the loose RO membrane 50 with a low rejection rate is performed as the first step.
  • the liquid to be treated having a high osmotic pressure can be separated into the permeated liquid and the non-permeated liquid.
  • the first separation device 10 can process a liquid to be treated having an osmotic pressure ⁇ Cb ' higher than the maximum operating pressure difference ⁇ Pmax at a pressure equal to or lower than ⁇ Pmax.
  • the operating pressure difference ⁇ P can satisfy the condition ⁇ P> ⁇ .
  • the operating pressure difference in at least one first step is, for example, 5 MPa or more and 10 MPa or less.
  • the ⁇ Pmax can be the breakdown voltage of the loose RO membrane 50 element.
  • the second separation device provided with the reverse osmosis membrane 60 is installed, and further the second non-permeable
  • high osmotic pressure treatment becomes possible, and high salt recovery and high-purity solvent recovery can be realized at the same time.
  • the membrane separation method can replace the treatment of the liquid to be treated having a high osmotic pressure, which has conventionally been treated using the evaporation method, which is an energy-intensive process, thereby saving energy in the process. , and eventually contribute to the achievement of the Sustainable Development Goals (SDGs).
  • SDGs Sustainable Development Goals
  • a membrane separation method is a membrane separation method for a liquid to be treated having an osmotic pressure, wherein the liquid to be treated is separated into a first permeate and a first permeate by reverse osmosis using a loose RO membrane.
  • the osmotic pressure of the liquid-to-be-treated side membrane surface concentration Cb' is ⁇ Cb' and the maximum operating pressure difference is ⁇ Pmax
  • the liquid to be treated has the following: satisfies the formula (1), ⁇ Cb′ > ⁇ P max (1)
  • the loose RO membrane is a membrane separation method that allows at least part of the solute contained in the liquid to be treated to permeate together with the solvent.
  • a thin separation method according to aspect 2 of the present invention is a membrane separation method for a liquid to be treated having an osmotic pressure, wherein the liquid to be treated is first permeated under pressure by reverse osmosis using a loose RO membrane.
  • the osmotic pressure of the liquid to be treated is 5 MPa or more and 100 MPa or less, and the loose RO membrane has at least a solute contained in the liquid to be treated.
  • the osmotic pressure difference between the liquid to be treated and the permeation side is ⁇
  • the reflection coefficient of the solute of the loose RO membrane is
  • the operating pressure difference ⁇ P is within a range that satisfies the following formula (2), where ⁇ .
  • the membrane separation method according to Aspect 4 of the present invention is any one of Aspects 1 to 3 above, wherein the loose RO membrane has an apparent rejection rate Robs of 20% or more and 90% or less under operating conditions. Separation method.
  • the liquid to be treated in the first step of aspect 4, is a 25 wt% potassium hydrogen carbonate aqueous solution, and the liquid to be treated is operated at a liquid temperature of 40 ° C.
  • the apparent rejection Robs of the loose RO membrane is 20% or more and 90% or less when treated with a pressure difference of 8 MPa, a pH of 7 or more and 9 or less, and a recovery rate of 10% or more and 20% or less.
  • the membrane separation method according to aspect 6 of the present invention is any one of aspects 1 to 5 above, wherein the first permeated liquid is subjected to reverse osmosis using a reverse osmosis membrane to obtain a second permeated liquid and a second non-permeated liquid.
  • the membrane separation method includes a second step of separating into a liquid, wherein the reverse osmosis membrane has an apparent rejection ratio Robs of 95% or more.
  • a membrane separation method according to aspect 7 of the present invention is a membrane separation method according to any one of aspects 1 to 6, including 1 or more and 10 or less of the first steps.
  • a membrane separation method in any one of Aspects 1 to 7, wherein at least one of the loose RO membranes has a pure water permeability coefficient Lp of 1 ⁇ 10 -12 [m 3 /m 2 /s/Pa] or more and 1 ⁇ 10 ⁇ 9 [m 3 /m 2 /s/Pa] or less, the reflection coefficient ⁇ of the solute is 0.2 or more and 0.9 or less, and the solute transmission coefficient P is 1 ⁇ 10 ⁇ 8 [m/s] or more and 1 ⁇ 10 ⁇ 5 [m/s] or less.
  • the membrane separation method according to aspect 9 of the present invention in any one of aspects 1 to 8, includes a plurality of the first steps, and the loose RO membrane in at least one of the continuous first steps is upstream
  • the membrane separation method has a rejection rate higher than that of the loose RO membrane in the first step of (1).
  • the membrane separation method according to Aspect 10 of the present invention is any one of Aspects 6 to 9 above, wherein at least part of the first non-permeate liquid and/or the second non-permeate liquid is and/or used as part of the second liquid to be treated.
  • a membrane separation method according to aspect 11 of the present invention is the membrane separation method according to any one of aspects 1 to 10, wherein the operating pressure difference in at least one of the first steps is 5 MPa or more and 10 MPa or less.
  • a loose RO membrane manufacturing method is a manufacturing method in which an oxidizing agent solution containing an oxidizing agent is brought into contact with an RO membrane.
  • a method for producing a loose RO membrane according to aspect 13 of the present invention is the method according to aspect 12, wherein the adjusted apparent rejection rate Robs is 20% or more and 90% or less under operating conditions.
  • a membrane separation method according to aspect 14 of the present invention is a membrane separation method using a loose RO membrane produced by the production method of aspect 12 or 13 in the membrane separation method of any one of aspects 1 to 11. .
  • Comparative Example and Example 1 were carried out for the case of applying the reverse osmosis method to the process of concentrating salt water with a concentration Cw of 25 wt % as the liquid to be treated.
  • the concentration C [mol/m 3 ] of the salt water and the osmotic pressure ⁇ C [Pa] at the concentration C are calculated from the following equations (8) and (9). According to this, the osmotic pressure ⁇ Cb of the liquid to be treated with a concentration Cw of 25 wt % is 18.5 MPa.
  • FIG. 3 is a schematic diagram schematically showing the configuration of the membrane separation system 1A used in Example 1. As shown in FIG. The membrane separation system 1A includes three first separation devices 10 (10A, 10B, 10C) and a second separation device 20.
  • the first separation device 10A is a device arranged on the most upstream side, and is equipped with a loose RO membrane 50A.
  • the first separation device 10B is a device arranged downstream of the permeation side of the first separation device 10A, and has a loose RO membrane 50B.
  • the first separation device 10C is a device arranged downstream of the permeation side of the first separation device 10B, and has a loose RO membrane 50C.
  • the second separation device 20 is a device arranged downstream of the permeation side of the first separation device 10C, and has a reverse osmosis membrane 60 .
  • Lp 1.50 ⁇ 10 ⁇ 11 [m 3 /m 2 /s/Pa]
  • a solute permeability coefficient P 9.
  • a film with a reflection coefficient of .00 ⁇ 10 ⁇ 6 [m/s] and a reflection coefficient ⁇ of 0.65 was used.
  • the liquid to be treated (first liquid to be treated) is sent through the pipe 11 to the side of the liquid to be treated of the first separation device 10A.
  • the 1A non-permeated liquid obtained in the 1A step is discharged through the pipe 13 .
  • the 1A permeated liquid is sent as the 1B liquid to be treated through the pipe 12 to the liquid to be treated side of the first separation device 10B.
  • the 1B non-permeated liquid obtained in the 1B step is mixed with the first liquid to be treated through the pipe 16 as a recycled liquid.
  • the 1B permeated liquid is sent as the 1C liquid to be treated through the pipe 14 to the liquid to be treated side of the first separation device 10C.
  • the 1C non-permeated liquid obtained in the 1C step is mixed with the 1B liquid to be treated through the pipe 17 as a recycled liquid.
  • the 1C permeated liquid is sent to the liquid to be treated side of the second separation device 20 through the pipe 15 as the second liquid to be treated.
  • the second permeated liquid obtained in the second step is discharged through pipe 21 .
  • the second non-permeated liquid obtained in the second step is mixed with the 1C liquid to be treated through the pipe 22 as a recycled liquid.
  • the 1st liquid to be treated, the 1B liquid to be treated, the 1C liquid to be treated and the 2nd liquid to be treated were pressurized using pumps, and the operating pressure difference ⁇ P of each separation device was set to 8 MPa.
  • the intra-film mass transfer coefficient k in each of the first separation devices 10A to 10C and the second separation device 20 was set to 8.00 ⁇ 10 ⁇ 5 [m/s].
  • the material balance in each of the first separation devices 10A to 10C and the second separation device 20 was calculated as follows. That is, with the concentration Cb′ [mol/m 3 ] of the liquid to be treated and the permeate concentration Cp [mol/m 3 ] as variables, the above equations (3) and (4) are calculated for each membrane area of 0.001 m 2 . And the convergence calculation was performed so that the formula (7) holds. Also, with the required membrane area as a variable, the convergence condition is that the salt concentration of each recycled liquid is equal to the salt concentration of the liquid to be treated at the recycle merging destination.
  • Fig. 3 Detailed numerical values for the material balance set as described above are shown in Fig. 3.
  • the membrane separation operation using the membrane separation system 1A dehydrates the first liquid to be treated by about 30% by operation below the maximum operating pressure difference to obtain a concentrated first non-permeate liquid. Together with this, a salt recovery rate of 99.9% or more could be achieved. That is, the membrane separation system 1A was proved to be capable of reverse osmosis treatment of the liquid to be treated, which has an osmotic pressure as high as 18.5 MPa, which could not be separated in the comparative example, by operating below the maximum operating pressure difference. .

Abstract

高い浸透圧を有する被処理液の分離もしくは濃縮法または水回収法として、逆浸透法を適用し得る、膜分離方法を提供する。本発明の浸透圧を有する被処理液の膜分離方法は、ルーズRO膜(50)を用いた逆浸透法により、前記被処理液を第1透過液と第1非透過液とに分離する、第1工程を含む。前記被処理液は、被処理液側膜面濃度Cb'の浸透圧をπCb'、最大運転圧力差をΔPmaxとした場合、πCb'>ΔPmaxを満たすかまたは5MPa以上100MPa以下の浸透圧を有する。ルーズRO膜(50)は、前記被処理液に含まれる溶質の少なくとも一部を溶媒と共に透過させる膜である。

Description

膜分離方法およびルーズRO膜の製造方法
 本発明は、膜分離方法およびルーズRO膜の製造方法に関する。
 逆浸透(reverse osmosis:RO)法は、半透膜で仕切られた濃厚溶液側に圧力をかけ、被処理液側と透過側との間の運転圧力差を濃厚溶液側と希薄溶液側との浸透圧の差よりも高くすることにより、半透膜を通して溶媒を選択透過させる技術である。当該技術は、海水淡水化用途などで広く普及している技術である。さらに、逆浸透法は、ROとNF(nanofiltration:ナノろ過)とに分類されることがある。逆浸透法は、熱エネルギーを用いて水を蒸発させて濃縮する蒸発法と比較して省エネ技術であることが知られている。
 しかしながら、逆浸透法に用いるエレメントの耐圧などに由来して、操作可能な運転圧力差に上限があるため、逆浸透法を適用できる溶液の濃度が限定されていた。さらに逆浸透法では、分離に伴う濃度分極による膜表面の溶質濃度の上昇および溶媒透過による被処理液中の溶質濃度上昇により、実質的な浸透圧が上昇することも、逆浸透法の適用範囲制約となっている。そのため高濃度液の濃縮または低濃度液の高濃縮などの操作は、依然蒸発法で行われることが多い。
 特許文献1には、逆浸透法を用いた塩水の淡水化処理方法が記載されている。特許文献1に記載の淡水化処理方法は、半透膜で仕切られた第1室および第2室を備える半透膜モジュールを用いている。そして、前記第1室に塩水の一部を流し、前記第2室に塩水の他の一部を流し、前記第1室を加圧することで、透過側の塩水の濃度を上げることにより、浸透圧差を低減する方法が開示されている。
日本国特開2018-1111号公報
 しかしながら、前記第2室に導入した塩水中の塩は、濃度分布を推進力として透過側の膜面に向かって拡散していくが、膜面から透過してくる溶媒の流れによって拡散と逆方向に押し戻される。そのため、上述の従来技術では、実質的に浸透圧に寄与する、透過側の膜面濃度を十分に上げることが困難な場合がある。
 本発明の一態様は、高い浸透圧を有する被処理液の分離もしくは濃縮法または水回収法として、逆浸透法を適用し得る、膜分離方法を提供することを目的とする。
 上記の課題を解決するために、本発明の一態様にかかる、浸透圧を有する被処理液の膜分離方法は、ルーズRO膜を用いた逆浸透法により、前記被処理液を第1透過液と第1非透過液とに分離する、第1工程を含み、前記被処理液は、被処理液側膜面濃度Cb’の浸透圧をπCb’、最大運転圧力差をΔPmaxとした場合、πCb’>ΔPmaxを満たし、前記ルーズRO膜は、前記被処理液に含まれる溶質の少なくとも一部を溶媒と共に透過させる膜である、膜分離方法である。
 また、本発明の一態様にかかる、浸透圧を有する被処理液の膜分離方法は、ルーズRO膜を用いた逆浸透法により、加圧下で前記被処理液を第1透過液と第1非透過液とに分離する、第1工程を含み、前記被処理液の浸透圧は、5MPa以上100MPa以下であり、前記ルーズRO膜は、前記被処理液に含まれる溶質の少なくとも一部を溶媒と共に透過させる膜である、膜分離方法である。
 本発明の一態様にかかるルーズRO膜の製造方法は、酸化剤を含む酸化剤溶液と、RO膜と、を接触させる。
 本発明の一態様によれば、高い浸透圧を有する被処理液の分離もしくは濃縮法または水回収法として、逆浸透法を適用し得る、膜分離方法を提供することができる。
本発明の例示的な一実施形態に係る膜分離システム1の構成を模式的に示す概略図である。 本発明の実施形態に係るルーズRO膜50の製造方法の大まかな流れを示すフロー図の一例である。 実施例1で用いた膜分離システム1Aの構成を模式的に示す概略図である。
 本発明に係る膜分離方法の例示的な実施形態について以下に詳細に説明する。本発明の実施形態は、以下に示す具体例に限られるものではない。以下の実施形態において、膜分離システムは、被処理液を透過液と非透過液とに分離するシステムとして記載されるが、当該膜分離システムは、被処理液を濃縮し、透過液と濃縮液とを得る濃縮システムとしても用いられ得ることは容易に理解され得る。同様に、膜分離システムが備える分離装置についても、濃縮装置として用いられ得ることが容易に理解され得る。加えて、当該膜分離システムは、被処理液から純度の高い溶媒を回収するろ過システムとして用いられ得ることは容易に理解され得、分離装置についても、ろ過装置として用いられ得ることが容易に理解され得る。
 〔実施形態〕
 図1は、本発明の例示的な一実施形態に係る膜分離方法に用いる膜分離システム1の構成を模式的に示す概略図である。図1に示すように、膜分離システム1は、第1分離装置10と、第2分離装置20とを備える。
 第1分離装置10は、ルーズRO膜50(ルーズ逆浸透膜)を備えており、被処理液を供給する被処理液側を加圧して通液させることにより、被処理液を第1透過液と、第1非透過液とに分離する装置である。すなわち、第1分離装置10は、ルーズRO膜を用いた逆浸透法により、前記被処理液を第1透過液と第1非透過液とに分離する第1工程を実現する装置である。第1分離装置10は、クリスマスツリー型に代表されるように、非透過液に対して、複数の膜モジュールを並列または直列に組み合わせて構成してもよい。ルーズRO膜50については、下記で詳述する。
 第2分離装置20は、逆浸透膜60を備えており、第1分離装置10から排出された第1透過液を、第2被処理液として供給する被処理液側を加圧して通液させることにより、第1透過液を第2透過液と、第2非透過液とに分離する装置である。すなわち、第2分離装置20は、第1透過液を、逆浸透膜60を用いた逆浸透法により、第2透過液と第2非透過液とに分離する、第2工程を実現する装置である。第2分離装置20は、クリスマスツリー型に代表されるように、非透過液に対して、複数の膜モジュールを並列または直列に組み合わせて構成してもよい。逆浸透膜60については、下記で詳述する。
 図1の膜分離システム1において、第1分離装置10の被処理液入口には、配管11が接続されている。第1分離装置10の第1透過液出口と、第2分離装置20の第1透過液入口とは、配管12によって接続されており、第1分離装置10の第1非透過液出口には、配管13が接続されている。第2分離装置20の第2透過液出口には、配管21が接続され、第2非透過液出口には、配管22が接続されている。配管22は、配管11もしくは第1分離装置10の被処理液側に接続されていてもよい。また、各配管において、ポンプ等で昇圧してもよく、各分離装置の供給配管は昇圧することが望ましい。
 <膜分離プロセスにおける透過現象について>
 まず、本願発明の理解のために、膜分離プロセスにおける透過現象に関し、(i)阻止率と濃度分極について、および(ii)膜透過の輸送方程式について、以下に説明する。
 (i)阻止率および濃度分極について
 逆浸透膜性能は、通常溶質の阻止率と、透過流束とで表され得る。阻止率は、汎用的には、以下の式(1)で定義される見かけの阻止率Robs[-]が用いられ得る。
 Robs=1-(Cp/Cb)   (1)
 上記式中、Cbは被処理液濃度[mol/m]であり、Cpは透過液濃度[mol/m]である。
 一方、膜によって阻止された溶質が膜面に蓄積し、被処理液側膜面における濃度Cb’[mol/m]が、被処理液濃度Cbよりも高くなる濃度分極が生じることが知られている。すなわち、膜は、実際には濃度Cb’の溶液を分離していることとなり、真の阻止率R[-]は、以下の式(2)で表され得る。
 R=1-(Cp/Cb’)   (2)
 上記式中、Cpは透過液の濃度[mol/m]である。
 また、被処理液側膜面における濃度Cb’は、境膜内の物質収支から、以下の式(3)を用いて求められ得る。
 (Cb’-Cp)/(Cb-Cp)=exp(Jv/k)   (3)
 上記式中、Jvは溶媒透過流束[m/m/s]であり、kは被処理液側境膜内溶質物質移動係数[m/s]である。
 (ii)膜透過の輸送方程式
 膜分離プロセスにおいて、膜を透過する溶媒透過流束および溶質透過流束を記述する方程式が、膜透過の輸送方程式である。溶媒透過流束Jvおよび溶質透過流束Js[m/m/s]は、例えば、それぞれ以下の式(4)および式(5)で表され得る。
 Jv=Lp(ΔP-σΔπ)   (4)
 Js=P(Cb’-Cp)+(1-σ)CJv   (5)
 上記式中、Lpは純水透過係数[m/m/s/Pa]、ΔPは被処理液側と透過側との運転圧力差[Pa]、σは反射係数[-]、Δπは被処理液側と透過側との浸透圧差[Pa]、Pは溶質の透過係数[m/s]、Cは膜両側の平均濃度[mol/m]である。反射係数σは、膜の半透性を表しており、σ=1の場合には完全な半透膜であることを示し、σ=0の場合には全く半透性がない(分離が起こらない)ことを示している。
 またΔπは、以下の式(6)で表され得る。
 Δπ=πCb’-πCp   (6)
 上記式中、πCb’は被処理液側膜面濃度Cb’の浸透圧[Pa]、πCpは透過液濃度Cpの浸透圧[Pa]である。
 上記式(4)および式(5)は、不可逆過程の熱力学に基づき、現象論方程式を出発点としたものである。上記式(5)において、Cは膜両側の平均濃度を表しているが、膜分離法のように両側の濃度差が非常に大きい場合には平均値が意味を持たない。そこで、式(5)を微分系で膜内に適用し、膜厚について積分した輸送方程式が提案されている。積分結果は溶質透過流束Jsの形では書き表せないが真の阻止率Rを用いて、以下の式(7)で表され得る。
Figure JPOXMLDOC01-appb-M000001
 <被処理液>
 本実施形態に係る膜分離システム1は、高い浸透圧を有する被処理液に適用され得、最大運転圧力差を超える浸透圧を有する被処理液に好適に適用される。換言すると、被処理液側膜面濃度Cb’の浸透圧をπCb’、最大運転圧力差をΔPmaxとした場合、πCb’>ΔPmaxを満たす被処理液に好適に適用される。より具体的には、本実施形態に係る膜分離システム1は、5MPa以上100MPa以下の浸透圧を有する被処理液に好適に適用され得る。
 <第1分離装置10およびルーズRO膜50>
 本実施形態に係る第1分離装置10は、ルーズRO膜50を備えている。
 本実施形態に係るルーズRO膜50は、被処理液に含まれる溶質の少なくとも一部を溶媒と共に透過させる、RO膜である。換言すると、従来のRO膜と比較して、低い見かけの阻止率Robsを有している。具体的には、ルーズRO膜50の見かけの阻止率Robsは、ルーズRO膜50を用いた逆浸透膜処理の運転条件において、20%以上90%以下であり得る。
 運転条件における見かけの阻止率Robsが20%以上90%以下であることにより、透過液濃度Cpを上昇させ、被処理液側の溶液と透過側の溶液との浸透圧差をコントロール可能となる。これにより、高浸透圧を有する被処理液を逆浸透処理することが可能となる。見かけの阻止率Robsが20%未満であると、濃縮プロセスに適用する場合、濃縮効率が低く、所望の濃縮度を得るために必要段数が増え、膜面積が大きくなる。見かけの阻止率Robsが90%を超えると、十分な被処理液側の溶液と、透過側の溶液との浸透圧差を確保することが困難となる。そのため、本実施形態におけるルーズRO膜50の見かけの阻止率Robsは20%以上90%以下であることが好ましく、40%以上80%以下であることがより好ましい。
 上記阻止率の対象は、溶液中の浸透圧を有する全ての溶質の総和である。一方で、本実施形態に係るルーズRO膜50が透過させる溶質は、特定のものに限定されない。
 なお、当該見かけの阻止率Robsは、同じ膜であっても運転条件により変動し得る。本実施形態に係るルーズRO膜50は、例示的な運転条件として、25wt%の炭酸水素カリウム水溶液の前記被処理液を、液温40℃、運転圧力差8MPa、pH7以上9以下、回収率10%以上20%以下で逆浸透法処理した場合、20%以上90%以下の見かけの阻止率Robsを有していると定義することもできる。
 あるいは、本実施形態に係るルーズRO膜50は、純水の透過係数Lpが1×10-12[m/m/s/Pa]以上1×10-9[m/m/s/Pa]以下、溶質の反射係数σが0.2以上0.9以下、および溶質の透過係数Pが1×10-8[m/s]以上1×10-5[m/s]以下である逆浸透膜であってもよい。
 (ルーズRO膜50の製造)
 このようなルーズRO膜50は、例えば、従来の逆浸透膜を用いて製造することができる。図2は、ルーズRO膜50の製造方法の大まかな流れを示すフロー図の一例である。
 図2に示すように、まず、一般的に用いられている逆浸透膜を準備する(逆浸透膜準備工程:S1)。ルーズRO膜50を製造するために用いる逆浸透膜は特に限定されない。当該逆浸透膜は、ポリアミド系膜や酢酸セルロース系膜でもよく、エレメントもスパイラルタイプでも中空糸タイプでもよいが、使用可能圧力が高いものが好適であり、純水透過係数が大きい方がより好ましい。
 次に、工程S1で準備した逆浸透膜を酸化させる(酸化工程:S2)。例えば、逆浸透膜と、酸化剤とを接触させる。酸化剤は、例えば、水などの溶媒に溶解したものを用いてもよい。酸化工程S2において用いられる酸化剤としては、無機ハロゲン系酸化剤、酸素系酸化剤、有機化合物酸化剤などを使用できる。なかでも、塩素を含む酸化剤が好適であり、より具体的には、塩素酸塩、次亜塩素酸塩、亜塩素酸塩、二酸化塩素などを用いることができる。
 酸化工程S2は、例えば、所定濃度の酸化剤を含む水溶液に、逆浸透膜を所定時間接触させることにより実施され得る。酸化剤と、逆浸透膜とを接触させることにより、逆浸透膜の阻止率を低下させ、例えば、見かけの阻止率Robsが20%以上90%以下であるルーズRO膜を製造することができる。
 さらに、酸化工程S2では、逆浸透膜と、酸化剤との接触時間を調整することにより、所望の阻止率を有するルーズRO膜を製造し得る。具体的には、酸化剤溶液の濃度が一定である場合には、酸化剤溶液と、逆浸透膜との接触時間を長くするほど、阻止率の低いルーズRO膜を得ることができる。
 あるいは、酸化工程S2では、酸化剤の濃度を調整することにより、所望の阻止率を有するルーズRO膜を製造し得る。具体的には、接触時間が一定の場合、酸化剤溶液の濃度を高くするほど、阻止率の低いルーズRO膜を得ることができる。もちろん、酸化剤濃度および接触時間の両方を調節することにより、阻止率を調整してもよい。
 酸化工程S2の後、逆浸透膜と接触し得る酸化剤溶液を純水等に置換することにより、ルーズRO膜50を得る(洗浄工程:S3)。接触に用いた容器中の酸化剤溶液を純水に置換してもよいし、ルーズRO膜を容器から取り出して、純水などにより洗浄してもよい。
 上述した逆浸透膜を用いたルーズRO膜の製造方法は、逆浸透膜エレメントを用いたルーズRO膜エレメントの製造においても同様に適用することができる。
 (第1分離装置10の多段構成)
 図1の膜分離システム1では、第1分離装置10が1つである例が示されているが、膜分離システム1は、第2分離装置20よりも上流に複数の第1分離装置10を備えていてもよい。前記理論式より、被処理液の浸透圧および最大運転圧力差などから、必要段数が決定され、被処理液の浸透圧が高いほど、多くの段が必要になる。しかしながら、段数が増えすぎると再圧縮動力等が増加するため、膜分離システム1は、1以上10以下の第1分離装置10を備えることが好ましい。すなわち、膜分離方法において、第1工程を1以上10以下含んでもよい。
 膜分離システム1が2以上の第1分離装置10を備える場合、連続する第1分離装置10の少なくとも1つにおけるルーズRO膜50は、上流の第1分離装置10の前記ルーズRO膜50よりも、阻止率が高いことが好ましい。また、必要膜面積および必要段数を少なくするためには、下流にいくほど、ルーズRO膜50の阻止率Robsが高いことが好ましい。あるいは、ルーズRO膜50の性能パラメータについては、下流にいくほど、溶質透過係数Pは低く、反射係数σは高いことが好ましい。
 膜分離システム1が第1分離装置10を複数備えることにより、より高い浸透圧を有する被処理液を処理することができる。
 <第2分離装置20および逆浸透膜60>
 本実施形態に係る第2分離装置20は、逆浸透膜60を備えている。
 本実施形態において用いられる逆浸透膜60は、一般的に海水淡水化に用いられ得るRO膜であり、通常、孔径が1nm以下であり、イオン類または低分子の有機物を除去し得る膜である。例えば、例示的な逆浸透膜60の純水の透過係数Lpは1×10-13[m/m/s/Pa]以上1×10-10[m/m/s/Pa]以下であり、溶質の反射係数σは0.95以上1以下であり、溶質の透過係数Pは1×10-6[m/s]以下であり得る。あるいは、例示的な逆浸透膜60の見かけの阻止率Robsは、95%以上であり得る。
 <本実施形態に係る膜分離方法および膜分離システム1の動作>
 被処理液(第1被処理液)は、配管11を通して第1分離装置10の被処理液側へ送液される。第1被処理液は、ポンプ等で昇圧され、ルーズRO膜50に通液されることにより、第1透過液と第1非透過液(濃縮液、塩濃縮液)とに分離される(第1工程)。第1工程で得られた第1非透過液は、配管13を通して排出される。
 第1透過液は、第2被処理液として、配管12を通して第2分離装置20の被処理液側へ送液される。第2被処理液は、ポンプ等で昇圧され、逆浸透膜60に通液されることにより、第2透過液と第2非透過液とに分離される(第2工程)。第2工程で得られた第2透過液は、配管21を通して回収され得る。溶質(例えば塩)の回収率を高めるために、第2工程で得られた第2非透過液を、配管22を通して、第1被処理液と混合することが好ましい。
 このように、本実施形態に係る膜分離方法および膜分離システム1では、第1工程として阻止率の低いルーズRO膜50を用いた逆浸透膜処理を行う。これにより、第1工程において、浸透圧の高い被処理液を、透過液と非透過液とに分離することができる。より具体的には、第1分離装置10は、最大運転圧力差ΔPmaxより高い浸透圧πCb’を有する被処理液を、ΔPmax以下の圧力で処理することができる。また、第1工程において、運転圧力差ΔPは、ΔP>σΔπの条件を満たし得る。あるいは、少なくとも1つの第1工程における運転圧力差は、例えば、5MPa以上10MPa以下である。
 なお、第1分離装置10がルーズRO膜50エレメントである場合、前記ΔPmaxはルーズRO膜50エレメントの耐圧であり得る。
 また、本実施形態に係る膜分離方法および膜分離システム1では、ルーズRO膜を備える第1分離装置10の後に、逆浸透膜60を備える第2分離装置を設置し、さらには第2非透過液を第1分離装置10の被処理液に戻すことで、高い浸透圧の処理が可能となるとともに、高塩回収率、高純度溶媒回収を同時に実現できる。
 このような構成によれば、従来、エネルギー多消費プロセスである蒸発法を用いて処理していた高い浸透圧を有する被処理液の処理を膜分離法によって代替することができ、プロセスの省エネルギー化、ひいては持続可能な開発目標(SDGs)の達成に貢献できる。
 (実施形態まとめ)
 ・本願発明の態様1に係る膜分離方法は、浸透圧を有する被処理液の膜分離方法であって、ルーズRO膜を用いた逆浸透法により、前記被処理液を第1透過液と第1非透過液とに分離する、第1工程を含み、前記被処理液は、被処理液側膜面濃度Cb’の浸透圧をπCb’、最大運転圧力差をΔPmaxとした場合、以下の式(1)を満たし、
 πCb’>ΔPmax   (1)
 前記ルーズRO膜は、前記被処理液に含まれる溶質の少なくとも一部を溶媒と共に透過させる膜である、膜分離方法である。
 ・本願発明の態様2に係る薄分離方法は、浸透圧を有する被処理液の膜分離方法であって、ルーズRO膜を用いた逆浸透法により、加圧下で前記被処理液を第1透過液と第1非透過液とに分離する、第1工程を含み、前記被処理液の浸透圧は、5MPa以上100MPa以下であり、前記ルーズRO膜は、前記被処理液に含まれる溶質の少なくとも一部を溶媒と共に透過させる膜である、膜分離方法である。
 ・本願発明の態様3に係る膜分離方法は、上記態様1または態様2における前記第1工程において、被処理液側と透過側との浸透圧差をΔπ、前記ルーズRO膜の溶質の反射係数をσとした場合、運転圧力差ΔPが、以下の式(2)を満たす範囲である、膜分離方法である。
 ΔP>σΔπ   (2)
 ・本願発明の態様4に係る膜分離方法は、上記態様1から3のいずれかにおいて、前記ルーズRO膜における溶質の見かけの阻止率Robsは、運転条件において20%以上90%以下である、膜分離方法である。
 ・本願発明の態様5に係る膜分離方法は、上記態様4の前記第1工程において、前記被処理液が25wt%の炭酸水素カリウム水溶液であり、当該被処理液を、液温40℃、運転圧力差8MPa、pH7以上9以下、回収率10%以上20%以下で処理した場合、前記ルーズRO膜の前記見かけの阻止率Robsは、20%以上90%以下である、膜分離方法である。
 ・本願発明の態様6に係る膜分離方法は、上記態様1から5のいずれかにおいて、前記第1透過液を、逆浸透膜を用いた逆浸透法により、第2透過液と第2非透過液とに分離する、第2工程を含み、前記逆浸透膜について、見かけの阻止率Robsは95%以上である、膜分離方法である。
 ・本願発明の態様7に係る膜分離方法は、上記態様1から6のいずれかにおいて、前記第1工程を1以上10以下含む、膜分離方法である。
 ・本願発明の態様8に係る膜分離方法は、上記態様1から7のいずれかにおいて、少なくとも1つの前記ルーズRO膜について、純水の透過係数Lpは1×10-12[m/m/s/Pa]以上1×10-9[m/m/s/Pa]以下であり、溶質の反射係数σは0.2以上0.9以下であり、溶質の透過係数Pは1×10-8[m/s]以上1×10-5[m/s]以下である、膜分離方法である。
 ・本願発明の態様9に係る膜分離方法は、上記態様1から8のいずれかにおいて、複数の前記第1工程を含み、連続する前記第1工程の少なくとも1つにおける前記ルーズRO膜は、上流の前記第1工程の前記ルーズRO膜よりも、阻止率が高い、膜分離方法である。
 ・本願発明の態様10に係る膜分離方法は、上記態様6から9のいずれかにおいて、前記第1非透過液および/または前記第2非透過液の少なくとも一部を、当該第1被処理液および/または第2被処理液の一部として用いる、膜分離方法である。
 ・本願発明の態様11に係る膜分離方法は、上記態様1から10のいずれかにおいて、少なくとも1つの前記第1工程における運転圧力差は、5MPa以上10MPa以下である、膜分離方法である。
 ・本願発明の態様12に係るルーズRO膜の製造方法は、酸化剤を含む酸化剤溶液と、RO膜と、を接触させる、製造方法である。
 ・本願発明の態様13に係るルーズRO膜の製造方法は、上記態様12において、前記調整された見かけの阻止率Robsは、運転条件において20%以上90%以下である、製造方法である。
 ・本願発明の態様14に係る膜分離方法は、上記態様1から11のいずれかの膜分離方法において、上記態様12または13の製造方法によって製造されたルーズRO膜を用いる、膜分離方法である。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以下、実施例および比較例を挙げ、本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 <適用例>
 被処理液として、濃度Cw=25wt%の塩水を濃縮するプロセスに、逆浸透法を適用するケースについて、比較例および実施例1に従い実施した。当該塩水の濃度C[mol/m]および濃度Cにおける浸透圧π[Pa]は、以下の式(8)および式(9)より算出されるものとする。これによると、濃度Cw=25wt%の本被処理液の浸透圧πCbは18.5MPaである。
 C=0.003286×Cw+0.6091×Cw+99.2×Cw  (8)
 π=0.7345C+4229.9C   (9)
 (比較例)
 比較例では、最大運転圧力差ΔPmax=8MPa、純水透過係数Lp=8.90×10-12[m/m/s/Pa]、溶質透過係数P=1.00×10-7[m/s]、反射係数σ=0.999である逆浸透膜を用いて逆浸透法処理を試みる。しかしながら、本条件下では(ΔP-σΔπ)≒-10.5<0であり、上記式(4)で表される溶媒透過流束が負の値となるため、本逆浸透法処理では、被処理液を濃縮することができない。
 (実施例1)
 実施例1では、本発明に従う膜分離方法を用いて被処理液の逆浸透法処理を試みるものである。図3は、実施例1で用いた膜分離システム1Aの構成を模式的に示す概略図である。膜分離システム1Aは、3つの第1分離装置10(10A・10B・10C)と、第2分離装置20と、を備える。
 第1分離装置10Aは一番上流側に配置される装置であり、ルーズRO膜50Aを備えている。第1分離装置10Bは第1分離装置10Aの透過側の下流側に配置される装置であり、ルーズRO膜50Bを備えている。第1分離装置10Cは第1分離装置10Bの透過側の下流側に配置される装置であり、ルーズRO膜50Cを備えている。第2分離装置20は第1分離装置10Cの透過側の下流側に配置される装置であり、逆浸透膜60を備えている。
 ルーズRO膜50AおよびルーズRO膜50Bは、最大運転圧力差ΔPmax=8MPa、純水透過係数Lp=1.50×10-11[m/m/s/Pa]、溶質透過係数P=9.00×10-6[m/s]、反射係数σ=0.65の膜を用いた。ルーズRO膜50Cは、最大運転圧力差ΔPmax=8MPa、純水透過係数Lp=1.26×10-11[m/m/s/Pa]、溶質透過係数P=7.00×10-6[m/s]、反射係数σ=0.75の膜を用いた。
 逆浸透膜60は、比較例と同じ、最大運転圧力差ΔPmax=8MPa、純水透過係数Lp=8.90×10-12[m/m/s/Pa]、溶質透過係数P=1.00×10-7[m/s]、反射係数σ=0.999の膜である。
 (膜分離操作の流れ)
 被処理液(第1被処理液)は、配管11を通して第1分離装置10Aの被処理液側へ送液される。第1被処理液は、ルーズRO膜50Aに通液され、ΔP=8MPaの条件下で、第1A透過液と第1A非透過液(濃縮液)とに分離される(第1A工程)。第1A工程で得られた第1A非透過液は、配管13を通して排出される。
 第1A透過液は、第1B被処理液として、配管12を通して第1分離装置10Bの被処理液側へ送液される。第1B被処理液は、ルーズRO膜50Bに通液され、ΔP=8MPaの条件下で、第1B透過液と第1B非透過液とに分離される(第1B工程)。第1B工程で得られた第1B非透過液は、リサイクル液として、配管16を通して第1被処理液に混合される。
 第1B透過液は、第1C被処理液として、配管14を通して第1分離装置10Cの被処理液側へ送液される。第1C被処理液は、ルーズRO膜50Cに通液され、ΔP=8MPaの条件下で、第1C透過液と第1C非透過液とに分離される(第1C工程)。第1C工程で得られた第1C非透過液は、リサイクル液として、配管17を通して第1B被処理液と混合される。
 第1C透過液は、第2被処理液として、配管15を通して第2分離装置20の被処理液側へ送液される。第2被処理液は、逆浸透膜60に通液され、ΔP=8MPaの条件下で、第2透過液と第2非透過液とに分離される(第2工程)。第2工程で得られた第2透過液は、配管21を通して排出される。第2工程で得られた第2非透過液は、リサイクル液として、配管22を通して第1C被処理液と混合される。
 第1被処理液、第1B被処理液、第1C被処理液および第2被処理液は、ポンプを用いて昇圧するものとし、各分離装置の運転圧力差ΔP=8MPaとした。
 (収束条件の設定)
 各第1分離装置10A~10Cおよび第2分離装置20における境膜内物質移動係数kは8.00×10-5[m/s]とした。また、各第1分離装置10A~10Cおよび第2分離装置20におけるマテリアルバランスは、以下のように計算した。すなわち、被処理液側の濃度Cb’[mol/m]と透過液濃度Cp[mol/m]を変数として、膜面積0.001mごとに、上記式(3)、式(4)および式(7)が成立するように収束計算を実施した。また、必要膜面積を変数として、各リサイクル液の塩濃度がリサイクル合流先の被処理液の塩濃度と等しくなることを収束条件とした。
 上述のように設定したマテリアルバランスの詳細な数値は、図3に示されている。図3に示すように、膜分離システム1Aを用いた膜分離操作により、最大運転圧力差以下の操作によって、第1被処理液を約30%脱水し、濃縮された第1非透過液を得るとともに、99.9%以上の塩回収率を達成することができた。すなわち、膜分離システム1Aは、比較例では分離することのできなかった18.5MPaもの高い浸透圧を有する被処理液を、最大運転圧力差以下の操作で、逆浸透法処理できることが証明された。
 1、1A・・・膜分離システム
 10、10A、10B、10C・・・第1分離装置
 20 第2分離装置
 50、50A、50B、50C・・・ルーズRO膜
 60・・・逆浸透膜

Claims (13)

  1.  浸透圧を有する被処理液の膜分離方法であって、
     ルーズRO膜を用いた逆浸透法により、前記被処理液を第1透過液と第1非透過液とに分離する、第1工程を含み、
     前記ルーズRO膜は、前記被処理液に含まれる溶質の少なくとも一部を溶媒と共に透過させる膜であり、
     前記被処理液は、
     (i)被処理液側膜面濃度Cb’の浸透圧をπCb’、最大運転圧力差をΔPmaxとした場合、以下の式(1)を満たすか、または
      πCb’>ΔPmax   (1)
     (ii)5MPa以上100MPa以下の浸透圧を有する、膜分離方法。
  2.  前記第1工程において、被処理液側と透過側との浸透圧差をΔπ、前記ルーズRO膜の溶質の反射係数をσとした場合、運転圧力差ΔPが、以下の式(2)を満たす範囲である、請求項1に記載の膜分離方法。
     ΔP>σΔπ   (2)
  3.  前記ルーズRO膜における溶質の見かけの阻止率Robsは、運転条件において20%以上90%以下である、請求項1に記載の膜分離方法。
  4.  前記第1工程において、前記被処理液が25wt%の炭酸水素カリウム水溶液であり、当該被処理液を、液温40℃、運転圧力差8MPa、pH7以上9以下、回収率10%以上20%以下で処理した場合、前記ルーズRO膜の前記見かけの阻止率Robsは、20%以上90%以下である、請求項3に記載の膜分離方法。
  5.  前記第1透過液を、逆浸透膜を用いた逆浸透法により、第2透過液と第2非透過液とに分離する、第2工程を含み、
     前記逆浸透膜について、見かけの阻止率Robsは95%以上である、請求項1に記載の膜分離方法。
  6.  前記第1工程を1以上10以下含む、請求項1に記載の膜分離方法。
  7.  少なくとも1つの前記ルーズRO膜について、純水の透過係数Lpは1×10-12[m/m/s/Pa]以上1×10-9[m/m/s/Pa]以下であり、溶質の反射係数σは0.2以上0.9以下であり、溶質の透過係数Pは1×10-8[m/s]以上1×10-5[m/s]以下である、請求項1に記載の膜分離方法。
  8.  複数の前記第1工程を含み、連続する前記第1工程の少なくとも1つにおける前記ルーズRO膜は、上流の前記第1工程の前記ルーズRO膜よりも、阻止率が高い、請求項1に記載の膜分離方法。
  9.  前記第1非透過液および/または前記第2非透過液の少なくとも一部を、第1被処理液および/または第2被処理液の一部として用いる、請求項5に記載の膜分離方法。
  10.  少なくとも1つの前記第1工程における運転圧力差は、5MPa以上10MPa以下である、請求項1に記載の膜分離方法。
  11.  酸化剤を含む酸化剤溶液と、RO膜と、を接触させる、ルーズRO膜の製造方法。
  12.  前記調整された見かけの阻止率Robsは、運転条件において20%以上90%以下である、請求項11に記載のルーズRO膜の製造方法。
  13.  請求項11または12に記載の製造方法によって製造されたルーズRO膜を用いる、請求項1から10のいずれか1項に記載の膜分離方法。
     
PCT/JP2022/023031 2021-06-29 2022-06-08 膜分離方法およびルーズro膜の製造方法 WO2023276586A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023531744A JPWO2023276586A1 (ja) 2021-06-29 2022-06-08
KR1020247000733A KR20240027684A (ko) 2021-06-29 2022-06-08 막 분리 방법 및 루스 ro 막의 제조 방법
CN202280043510.XA CN117529361A (zh) 2021-06-29 2022-06-08 膜分离方法和疏松ro膜的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-108090 2021-06-29
JP2021108090 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023276586A1 true WO2023276586A1 (ja) 2023-01-05

Family

ID=84690261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023031 WO2023276586A1 (ja) 2021-06-29 2022-06-08 膜分離方法およびルーズro膜の製造方法

Country Status (5)

Country Link
JP (1) JPWO2023276586A1 (ja)
KR (1) KR20240027684A (ja)
CN (1) CN117529361A (ja)
TW (1) TW202313187A (ja)
WO (1) WO2023276586A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200810A (ja) * 1985-02-28 1986-09-05 Kurita Water Ind Ltd 膜分離装置
JPH04150923A (ja) * 1990-10-12 1992-05-25 Kawasaki Heavy Ind Ltd 低圧用逆浸透膜による高濃度溶液の濃縮方法及び装置
JPH09248429A (ja) * 1996-03-14 1997-09-22 Toray Ind Inc 分離方法およびその装置
JP2000093751A (ja) * 1998-09-22 2000-04-04 Toray Ind Inc 逆浸透分離装置及び逆浸透分離方法
JP2001269543A (ja) * 1994-12-02 2001-10-02 Toray Ind Inc 膜分離装置および高濃度溶液の分離方法
JP2001269544A (ja) * 1994-12-02 2001-10-02 Toray Ind Inc 膜分離装置および高濃度溶液の分離方法
JP2005152818A (ja) * 2003-11-27 2005-06-16 Toray Ind Inc 液体分離膜およびその製造方法
JP2016155074A (ja) * 2015-02-24 2016-09-01 オルガノ株式会社 分離膜の運転方法、分離膜の改質方法、および分離膜
JP2018001111A (ja) 2016-07-05 2018-01-11 東洋紡株式会社 塩水の淡水化処理方法、および、塩水の淡水化処理システム
CN111807471A (zh) * 2019-04-10 2020-10-23 国家能源投资集团有限责任公司 一种含盐水的处理方法和处理系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200810A (ja) * 1985-02-28 1986-09-05 Kurita Water Ind Ltd 膜分離装置
JPH04150923A (ja) * 1990-10-12 1992-05-25 Kawasaki Heavy Ind Ltd 低圧用逆浸透膜による高濃度溶液の濃縮方法及び装置
JP2001269543A (ja) * 1994-12-02 2001-10-02 Toray Ind Inc 膜分離装置および高濃度溶液の分離方法
JP2001269544A (ja) * 1994-12-02 2001-10-02 Toray Ind Inc 膜分離装置および高濃度溶液の分離方法
JPH09248429A (ja) * 1996-03-14 1997-09-22 Toray Ind Inc 分離方法およびその装置
JP2000093751A (ja) * 1998-09-22 2000-04-04 Toray Ind Inc 逆浸透分離装置及び逆浸透分離方法
JP2005152818A (ja) * 2003-11-27 2005-06-16 Toray Ind Inc 液体分離膜およびその製造方法
JP2016155074A (ja) * 2015-02-24 2016-09-01 オルガノ株式会社 分離膜の運転方法、分離膜の改質方法、および分離膜
JP2018001111A (ja) 2016-07-05 2018-01-11 東洋紡株式会社 塩水の淡水化処理方法、および、塩水の淡水化処理システム
CN111807471A (zh) * 2019-04-10 2020-10-23 国家能源投资集团有限责任公司 一种含盐水的处理方法和处理系统

Also Published As

Publication number Publication date
CN117529361A (zh) 2024-02-06
KR20240027684A (ko) 2024-03-04
JPWO2023276586A1 (ja) 2023-01-05
TW202313187A (zh) 2023-04-01

Similar Documents

Publication Publication Date Title
US20200086274A1 (en) Advancements in osmotically driven membrane systems including multi-stage purification
CN108778469B (zh) 渗透压辅助的反渗透法及其使用方法
US10214437B2 (en) Cross current staged reverse osmosis
US9981226B2 (en) Method of solvent recovery from a dilute solution
JP6834360B2 (ja) 濃縮方法および濃縮装置
CN109922873B (zh) 渗透膜
US20210198136A1 (en) Combinatorial membrane-based systems and methods for dewatering and concentrating applications
US20140299546A1 (en) Nanofiltration process for enhanced brine recovery and sulfate removal
JP2018001110A (ja) ブラインの処理方法、塩水の淡水化処理方法、ブラインの処理システム、および、塩水の淡水化処理システム
US20130112603A1 (en) Forward osmotic desalination device using membrane distillation method
JP2018001111A (ja) 塩水の淡水化処理方法、および、塩水の淡水化処理システム
JP2008100220A (ja) 造水方法
US9687788B2 (en) Forward osmosis process
CN107555542B (zh) 一种多级纳滤-反渗透-膜蒸馏联用脱盐分盐方法
WO2023276586A1 (ja) 膜分離方法およびルーズro膜の製造方法
JP2000051663A (ja) 逆浸透膜分離装置および逆浸透膜分離方法
JP2004130233A (ja) 逆浸透膜による高濃度溶液の処理方法
US20050214192A1 (en) Recovery of sodium thiocyanate from industrial process solution using nanofiltration technique
KR102415603B1 (ko) 황산 분리장치 및 이를 포함하는 고농축 황산 분리회수방법
KR20140128496A (ko) 초고염도수의 삼투 에너지 회수가 가능한 담수화 시스템 및 방법
US20240025774A1 (en) Method and system for achieving high concentrations and recoveries from membrane systems using internal pressure boosting pumps and flow control
JP2006167533A (ja) 海水濃縮方法
KR20170097967A (ko) 역삼투를 이용한 염수 농축 방법
JP2002282855A (ja) 造水方法および造水装置
WO2024052721A1 (en) Saline water treatment pre-treatment or treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531744

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247000733

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000733

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022832743

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022832743

Country of ref document: EP

Effective date: 20240129