WO2023274335A1 - 燃油润滑性改进剂组合物及其应用 - Google Patents

燃油润滑性改进剂组合物及其应用 Download PDF

Info

Publication number
WO2023274335A1
WO2023274335A1 PCT/CN2022/102570 CN2022102570W WO2023274335A1 WO 2023274335 A1 WO2023274335 A1 WO 2023274335A1 CN 2022102570 W CN2022102570 W CN 2022102570W WO 2023274335 A1 WO2023274335 A1 WO 2023274335A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
component
acid monoester
hydrocarbon group
monoester
Prior art date
Application number
PCT/CN2022/102570
Other languages
English (en)
French (fr)
Inventor
蔺建民
夏鑫
李宝石
陶志平
李妍
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to EP22832147.7A priority Critical patent/EP4368686A1/en
Priority to CA3224644A priority patent/CA3224644A1/en
Publication of WO2023274335A1 publication Critical patent/WO2023274335A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/1905Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine

Definitions

  • the present application relates to the field of fuel oil, in particular to a fuel oil lubricity improver composition and its application.
  • Polycyclic aromatic hydrocarbons, oxygen-containing impurities and nitrogen-containing impurities are very effective anti-wear agents.
  • the lower content of nitrogen compounds and oxygen compounds causes the lubricating performance of diesel oil itself to decline, resulting in wear and tear of the fuel pump and failure.
  • low-sulfur diesel Due to the poor lubricity of low-sulfur diesel, low-sulfur diesel and ultra-low-sulfur diesel are usually treated with lubricity improvers (also known as lubricity additives or anti-wear agents) to improve their lubricity.
  • lubricity improvers also known as lubricity additives or anti-wear agents
  • Diesel lubricity improvers are mostly derivatives of fatty acids, fatty acid esters, amides or salts.
  • EP773279 discloses carboxylate prepared by reacting dimer acid with alcohol amine as diesel lubricity improver.
  • EP798364 discloses salts or amides prepared by the reaction of fatty acids and fatty amines as diesel lubricity improvers.
  • EP1209217 discloses the reaction product of C6-50 saturated fatty acid and dicarboxylic acid and short-chain oil-soluble primary, secondary and tertiary amines as diesel lubricity improver.
  • WO9915607 discloses reaction products of dimerized fatty acids and epoxides as diesel lubricity improvers. Most of these technologies use fatty acids or fatty acid dimers to react with alcoholamines, amines, and epoxides. Some of them have high raw material costs and general anti-wear effects, and they are added in large amounts in diesel oil.
  • the existing industrially used low-sulfur diesel lubricity improvers mainly include acid type and ester type.
  • the main components of acid type lubricity improvers are long-chain unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid etc., typically products derived from refined tall oil fatty acids.
  • the ester type lubricity improver is the esterification reaction product of the above-mentioned fatty acid and polyhydric alcohol.
  • WO9417160A1 discloses the use of monoglyceride oleate as a diesel lubricity improver.
  • CN109576021A discloses an improver for improving the lubricity of low-sulfur diesel oil and its preparation method, which is to mix unsaturated dicarboxylic acid ester (maleic acid diester) and polymerization inhibitor at 150-180°C, and gradually add tung oil biodiesel After the addition, the reaction is continued at 200-240°C for a certain period of time, and the improver product is obtained by vacuum distillation after the reaction.
  • This product needs to use tung oil biodiesel, which is rare and unstable, and the reaction requires high temperature, so it is difficult to prepare. The most important thing is that the anti-wear effect is very general, and more than 600ppm needs to be added.
  • CN106929112A discloses a method for improving the lubricity of low-sulfur diesel oil.
  • the lubricity of diesel oil is improved by the esterification reaction product of alkenyl succinic anhydride and monohydric fatty alcohol. Diesel for vehicles with emission standards) is generally effective in improving lubricity.
  • G.Anastopoulos published an article on Tribology International journal (G.Anastopoulos, E.Lois.Influence of aceto acetic esters and di-carboxylic acid esters on diesel fuel lubrication[J].Tribology International.2001,34(11):749 -755) reported dibasic acid diesters, such as dibutyl adipate, dioctyl adipate, diethyl azelate, dibutyl azelate, dioctyl azelate, decane Adding dibasic carboxylic acid diester compounds such as diethyl dicarboxylate to low-sulfur diesel oil can improve the lubricity, but the anti-wear effect of diester compounds is very poor, and it is necessary to add 500ppm or even more than 1000ppm.
  • the purpose of this application is to provide a fuel lubricity improver composition and application thereof, which can overcome the deficiencies of the prior art and provide a satisfactory lubricity improvement effect with a relatively low dosage.
  • the application provides a fuel lubricity improver composition, comprising:
  • Component A a dicarboxylic acid monoester having the following structural formula (I),
  • R 1 is a C 1-10 divalent hydrocarbon group
  • R 3 is a C 8-24 divalent hydrocarbon group
  • R 4 is hydrogen or C 1-10 hydrocarbyl
  • Component B C 8-24 long-chain fatty acids, polyol esters thereof or mixtures thereof,
  • the total amount of the component A and the component B is 70-100wt% of the total weight of the composition; the mass ratio of the component A to the component B is 9 : 1 to 1 : 9.
  • the inventors of the present application have unexpectedly found that when the dicarboxylic acid monoester with structural formula (I) and the long-chain fatty acid of C 8-24 or its polyhydric alcohol ester are formulated in a specific ratio After the combination, only a small amount of addition in low-sulfur diesel oil can greatly improve the lubricity of diesel oil, showing an unexpected synergistic effect, which is significantly better than the fatty acid type or fatty acid glyceride lubricity improver commonly used in industry at present , which can greatly reduce the amount of lubricity modifier.
  • the present application provides a method for improving the lubricity of diesel oil, comprising adding the fuel oil lubricity improver composition of the present application to low-sulfur diesel oil, wherein the fuel lubricity
  • the added amount of the sex improver composition is preferably 10-400 ppm.
  • the application provides a diesel oil composition, including low-sulfur diesel oil and the fuel oil lubricity improver composition of the application, wherein the diesel oil in the diesel composition is based on the mass of the low-sulfur diesel oil.
  • the content of the fuel lubricity improver composition is preferably 10-400 ppm.
  • the fuel oil lubricity improver of the present application is easy to obtain raw materials, easy to produce, and the effect is unexpectedly better than conventional fatty acid or fatty acid ester type lubricity improvers, which can significantly improve the lubricity of low-sulfur diesel oil, so that the amount of addition can be greatly reduced. The cost of use is significantly reduced.
  • the fuel lubricity improver composition of the present application also has the effect of improving lubricity in gasoline and jet fuel.
  • Fig. 1 shows the infrared spectrogram of the product obtained in Preparation Example 1;
  • Fig. 2 has shown the wear spot photograph of the diesel oil A used in the embodiment
  • Fig. 5 has shown the wear spot photograph of the diesel oil B that is used in the embodiment
  • hydrocarbyl generally refers to various saturated or unsaturated organic compounds composed of carbon atoms and hydrogen atoms, such as various aliphatic, cycloaliphatic and aromatic compounds, removing one hydrogen atom groups formed later.
  • hydrocarbon group examples include, but are not limited to, straight-chain or branched-chain alkyl (also referred to as "alkalkyl”), straight-chain or branched-chain alkenyl (also known as “alkenyl”), straight-chain or branched chain alkynyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, alkenylcycloalkyl, cycloalkylalkenyl, cycloalkenyl, alkylcycloalkenyl, cycloalkenylalkyl, Aryl, arylalkyl, alkylaryl, and the like.
  • divalent hydrocarbon group (also known as “hydrocarbylene group”) generally refers to various saturated or unsaturated organic compounds composed of carbon atoms and hydrogen atoms, such as various aliphatic, alicyclic And aromatic compounds, the group formed after the removal of two hydrogen atoms.
  • divalent hydrocarbon group examples include, but are not limited to, linear or branched alkylene groups (also referred to as “divalent chain alkyl groups”), linear or branched chain alkenylene groups (also referred to as “divalent chain alkyl groups”), Alkenyl”), straight-chain or branched alkynylene, cycloalkylene, -alkyl-cycloalkyl-, -cycloalkyl-alkyl-, -alkenyl-cycloalkyl-, -cycloalkane -alkenyl-, cycloalkenylene, -alkyl-cycloalkenyl-, -cycloalkenyl-alkyl-, arylene (also known as "divalent aryl”), -aryl-alkyl -, -alkyl-aryl-, etc.
  • hydrocarbon group and “divalent hydrocarbon group” may be substituted or unsubstituted, and are preferably unsubstituted.
  • alkenyl means an aliphatic hydrocarbon group having at least one (for example, 1-5, preferably 1-3) carbon-carbon double bonds and no carbon-carbon triple bonds in the carbon chain, the carbon-carbon The double bond can be on the main chain of the alkenyl or on the side chain, such as vinyl, propenyl, allyl and the like.
  • substituted means that the described group is selected from C 1-10 straight chain or branched chain hydrocarbon group, halogen, Hydroxy, carboxyl, ester, ether, nitro and amino, preferably selected from C 1-4 straight or branched chain hydrocarbon groups, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl group, vinyl, propenyl and allyl, etc., the group substitution.
  • any matters or matters not mentioned are directly applicable to those known in the art without any change.
  • any of the implementations described herein can be freely combined with one or more other implementations described herein, and the resulting technical solutions or technical ideas are regarded as a part of the original disclosure or original record of the application, and should not be It is regarded as a new content that has not been disclosed or expected in this paper, unless those skilled in the art think that the combination is obviously unreasonable.
  • the application provides a fuel lubricity improver composition, comprising:
  • Component A a dicarboxylic acid monoester having the following structural formula (I),
  • R 1 is a C 1-10 divalent hydrocarbon group
  • R 3 is a C 8-24 divalent hydrocarbon group
  • R 4 is hydrogen or C 1-10 hydrocarbyl
  • Component B C 8-24 long-chain fatty acids, polyol esters thereof or mixtures thereof,
  • the total amount of the component A and component B is 70-100wt% of the total weight of the composition
  • the mass ratio of the component A to the component B is 9 : 1 to 1 : 9.
  • a small amount of additional components can also be included in the fuel oil lubricity modifier composition of the present application, such as diesel oil, organic solvents, unreacted preparation raw materials (such as alcohol or phenol), reaction by-products (such as dicarboxylic acid diester compounds), etc., but the total amount of these additional components is no more than 20wt% of the total weight of the fuel lubricity modifier composition, preferably no more than 10wt% %, more preferably no more than 5wt%, such as no more than 1wt%.
  • the total amount of component A and component B is 80-100wt%, more preferably 90-100wt%, such as 91wt%, 92wt%, 93wt%, 94wt%, 95wt%, 96wt%, 97wt%, 98wt%, 99wt% or 100wt%.
  • the component B is a C8-24 long-chain fatty acid, and the mass ratio of the component A to the component B is 8:2 to 2:8, preferably 7:3 to 3:7, more preferably 7:3 to 5:5, eg 7:3 to 6:4.
  • the component B is a polyol ester of a C 8-24 long-chain fatty acid, and the component A and component B The mass ratio is 8:2 to 1:9, preferably 8:2 to 2:8, more preferably 5:5 to 2:8, for example 4:6 to 3:7.
  • the fuel lubricity modifier consists essentially of the components A and B, that is, except for unavoidable impurities (such as unreacted raw materials, and reaction by-products)
  • said component A and component B are included, and said component B is a long-chain fatty acid of C 8-24 , and by weight of said composition, said composition comprises 20-80wt%, preferably 30 - 70 wt%, more preferably 50-70 wt%, such as 60-70 wt%, of component A, and 20-80 wt%, preferably 30-70 wt%, more preferably 30-50 wt%, such as 30-40 wt% of component B.
  • the fuel lubricity modifier consists essentially of the components A and B, that is, except for unavoidable impurities (such as unreacted raw materials, and reaction by-products)
  • the component B is a polyhydric alcohol ester of a C 8-24 long-chain fatty acid, and by weight of the composition, the composition contains 10-80wt %, preferably 20-80wt%, more preferably 20-50wt%, such as 30-40wt% of component A, and 20-90wt%, preferably 20-80wt%, more preferably 50-80wt%, such as 60-70wt% Component B.
  • the lubricity improver of the present application can be used alone to improve the lubricity of fuel oil, such as diesel oil, and can also be combined with one or more other fuel additives, such as phenolic antioxidant, polymer amine type ashless dispersant, Flow improvers, cetane number improvers, metal deactivators, antistatic agents, corrosion inhibitors, rust inhibitors and demulsifiers are used in combination to improve the lubricity of fuel and one or more other properties.
  • fuel oil such as diesel oil
  • fuel additives such as phenolic antioxidant, polymer amine type ashless dispersant, Flow improvers, cetane number improvers, metal deactivators, antistatic agents, corrosion inhibitors, rust inhibitors and demulsifiers are used in combination to improve the lubricity of fuel and one or more other properties.
  • Component A and component B in the composition of the present application are further described in detail below.
  • the component A is a dicarboxylic acid monoester having the following structural formula (I),
  • R 1 is a C 1-10 divalent hydrocarbon group
  • R 3 is a C 8-24 divalent hydrocarbon group
  • R 4 is hydrogen or C 1-10 hydrocarbon group.
  • R 1 is a C 1-10 divalent chain alkyl group, a C 2-10 divalent alkenyl group or a group with the structure -R 5 -R 6 -R 7 -, preferably a C 1-8 divalent Alkanyl, C 2-6 divalent alkenyl or groups with the structure -R 5 -R 6 -R 7 -, more preferably C 1-4 divalent alkenyl or C 2-4 Divalent alkenyl;
  • R 2 is a C 3-20 hydrocarbon group, preferably a C 3-20 straight chain or branched chain hydrocarbon group, a C 4-20 alicyclic hydrocarbon group, a C 7-20 aryl substituted hydrocarbon group or a C 7-20 hydrocarbon group substituted Aryl group, more preferably C 3-18 straight chain or branched chain hydrocarbon group, C 4-18 alicyclic hydrocarbon group, C 7-18 aryl substituted hydrocarbon group or C 7-18 hydrocarbon substituted aryl group;
  • R 5 and R 7 are each independently a single bond, or a C 1-3 divalent hydrocarbon group, preferably each independently a single bond or methylene;
  • R 6 is a C 3-10 divalent alicyclic hydrocarbon group, or a C 6-10 substituted or unsubstituted divalent aryl group, preferably a C 4-7 divalent alicyclic hydrocarbon group, or a C 6-10 A substituted or unsubstituted divalent aryl group, and the total carbon number of R 5 , R 6 and R 7 groups is less than or equal to 10;
  • substituted means by one or more selected from C 1-4 straight chain or branched hydrocarbon group, halogen, hydroxyl, carboxyl, ester group, ether group, nitro and amino, preferably selected from C 1-4 4 Substituted by linear or branched hydrocarbon groups.
  • R 1 is a C 2-20 divalent hydrocarbon group, preferably a C 2-8 divalent hydrocarbon group;
  • R 3 is a C 8-24 divalent hydrocarbon group with 0-5 carbon-carbon double bonds, preferably a C 16-22 divalent hydrocarbon group with 0-3 carbon-carbon double bonds;
  • R 4 is hydrogen or C 1-10 hydrocarbon group, preferably hydrogen or C 1-4 hydrocarbon group.
  • the dicarboxylic acid monoester of component A is selected from dicarboxylic acid monoesters having the structural formula (I-1), (I-2) or (I-3):
  • n is an integer of 2-6, and R is a C 3-20 hydrocarbon group, preferably a C 4-18 hydrocarbon group;
  • p is an integer of 1-8
  • R is a hydrocarbon group of C 3-20 , preferably a hydrocarbon group of C 4-18 ;
  • m is an integer from 0 to 1
  • Q is a C 3-8 divalent alicyclic hydrocarbon group or a C 6-10 substituted or unsubstituted divalent aryl group
  • R is a C 3-20 hydrocarbon group, preferably C 4-18 hydrocarbon group.
  • R may be an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or an aryl group.
  • the aliphatic hydrocarbon group can be linear or branched; it can be a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group; the unsaturated aliphatic hydrocarbon group can contain at least one carbon-carbon double bond (olefinic bond) Or an aliphatic hydrocarbon group with at least one carbon-carbon triple bond (alkyne bond).
  • the alicyclic hydrocarbon group may be a saturated alicyclic hydrocarbon group (cycloalkane group) or an unsaturated alicyclic hydrocarbon group.
  • the aryl group may be a monocyclic aryl group, or a bicyclic or polycyclic aryl group.
  • the carbocycles of the alicyclic hydrocarbon groups and aryl groups may also have various hydrocarbon substituents.
  • the R is selected from C 3-20 straight chain or branched aliphatic hydrocarbon group, C 4-20 Alicyclic hydrocarbon group, C 7-20 aryl substituted hydrocarbon group or C 7-20 hydrocarbon substituted aryl group, preferably C 4-18 straight chain or branched chain alkyl.
  • R when R is a saturated linear or branched aliphatic hydrocarbon group, R can be a normal alkyl or an isoalkyl.
  • R When R is a normal alkyl group, it is preferably methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, Mono-n-dodecyl (lauryl), n-tetradecyl, n-hexadecyl, n-octadecyl, etc., more preferably n-butyl, n-hexyl, n-octyl, n-nonyl, n- Decyl.
  • R is isoalkyl
  • it is preferably isopropyl, isobutyl, sec-butyl, isopentyl, isohexyl, isoheptyl, isooctyl (especially 2-ethylhexyl), isononyl, isodecyl isoundecyl, isotridecyl, isopentadecyl, isoheptadecyl, etc., more preferably sec-butyl, isooctyl (especially 2-ethylhexyl), isononyl , Isodecyl, Isoundecyl, Isotridecanyl.
  • R is an unsaturated straight-chain or branched aliphatic hydrocarbon group, preferably allyl, 2-butenyl, 3-butenyl, isopentenyl, 3-hexenyl, 2-octyl Alkenyl, 3-nonenyl, 2-decenyl, 7-dodecenyl, 1,5-hexadienyl, 2,4-nonadienyl, 2,4-decenyl, 9,11-dodecadienyl, 9-octadecenyl, more preferably 3-hexenyl, 2-octenyl, 3-nonenyl, isopentenyl, 9-octadecenyl .
  • R is an alicyclic hydrocarbon group
  • it is preferably cyclobutyl, cyclopentyl, cyclohexyl, 3-cyclohexenyl, 2-cyclohexenyl, etc., more preferably cyclopentyl, cyclohexyl, 3-cyclohexenyl, 2-cyclohexenyl.
  • R when R is an unsubstituted aryl group, it is preferably phenyl; when R is a hydrocarbyl-substituted aryl group, it is preferably methylphenyl, p-nonylphenyl, p-dodecylphenyl etc.; when R is an aryl-substituted hydrocarbon group, it is preferably benzyl (benzyl), phenethyl, p-dodecylphenyl, etc., more preferably benzyl (benzyl), p-nonylbenzene base, p-dodecylphenyl.
  • the dicarboxylic acid monoester shown in the structural formula (I-1) is obtained by esterifying a carboxyl group of a C 4-8 straight chain or branched dibasic carboxylic acid having a carbon-carbon unsaturated double bond unsaturated dicarboxylic acid monoester.
  • the dicarboxylic acid monoesters shown in the structural formula (I-1) are maleic acid monoesters (that is, maleic acid monoesters), fumaric acid monoesters (that is, trans butenedioic acid monoester); when n is 3, the dicarboxylic acid monoester shown in structural formula (I-1) is itaconic acid monoester, citraconic acid monoester (that is, methyl maleic acid monoester ), methyl fumaric acid monoester (that is, methyl fumaric acid monoester), glutaconic acid monoester, etc.; when n is 4, the dicarboxylic acid monoester shown in structural formula (I-1)
  • the ester is preferably 2,3-dimethylmaleic acid monoester, ethylmaleic acid monoester, hexenedioic acid monoester, or the like.
  • the dicarboxylic acid monoester shown in structural formula (I-1) is selected from maleic acid monoester, fumaric acid monoester, itaconic acid monoester, citraconic acid monoester, methyl fumaric acid monoester , 2,3-dimethylmaleic acid monoester, glutaconate monoester, etc., more preferably selected from maleic acid monoester and itaconic acid monoester.
  • the dicarboxylic acid monoester shown in structural formula (I-1) is selected from maleic acid monoesters with structural formula (I-1-1),
  • the maleic acid monoester of structural formula (I-1-1) can be selected from monomethyl maleate, monoethyl maleate, mono-n-propyl maleate , Mono-n-butyl maleate, Mono-n-pentyl maleate, Mono-n-hexyl maleate, Mono-n-heptyl maleate, Mono-n-octyl maleate, Mono-n-nonyl maleate, Maleic acid Mono-n-decyl maleate, Mono-n-undecyl maleate, Mono-n-dodecyl maleate (Lauryl), Mono-n-tetradecyl maleate, Mono-n-hexadecyl maleate, Mono-n-dodecyl maleate N-octadecyl ester, etc., preferably monomethyl maleate, monoethyl maleate, mono-n-propyl maleate, mono-n-butyl
  • the maleic acid monoester described in the structural formula (I-1-1) can be selected from monoisopropyl maleate, monoisobutyl maleate, maleic acid Mono-sec-butyl maleate, mono-tert-butyl maleate, mono-isoamyl maleate, mono-isohexyl maleate, mono-isooctyl maleate (mono-2-ethylhexyl maleate), maleate Monoisodecyl maleate, Monoisodecyl maleate, Monoisodecyl maleate, Monoisodecyl maleate, Monoisotridecyl maleate, Monoisotetradecyl maleate , monoisopentadecyl maleate, monoisoheptadecyl maleate, etc., preferably monoisopropyl maleate, monoisobutyl maleate, mono-sec-butyl maleate, and monois
  • the maleic acid monoester described in structural formula (I-1-1) can be selected from maleic acid monoallyl ester, maleic acid mono-3 -buten-1-ol ester, monoprenyl maleate, mono-3-hexen-1-ol maleate, mono-1-hepten-3-ol maleate, maleic acid Monomethylheptenol ester, mono 2-octen-1-ol maleate, mono 3-nonen-1-ol maleate, mono 2-decen-1-ol maleate, Mono 7-dodecen-1-ol maleate, Mono 1,5-hexadienyl maleate, Mono 2,4-nonadien-1-ol maleate, Maleic acid Mono-2,4-decadien-1-ol ester, mono-9,11-dodecadienyl maleate, monooleyl maleate, etc., preferably monoallyl maleate, maleic acid
  • the itaconate monoester described in structural formula (I-1-2) and (I-1-3) can be selected from itaconate monoallyl ester, itaconate mono-2-butene-1- Alcohol ester, itaconate mono-3-buten-1-ol ester, itaconate mono-prenyl ester, itaconate mono-3-hexen-1-ol ester, itaconate mono-1-heptene- 3-alcohol ester, itaconate monomethylheptenyl ester, itaconate mono-2-octen-1-ol ester, itaconate mono-3-nonen-1-ol ester, itaconate mono-2- Decen-1-ol ester, itaconic acid mono-7-do
  • the maleic acid monoester described in structural formula (I-1-1) can be selected from monocyclobutyl maleate, monocyclopentyl maleate, maleic acid Monocyclohexyl ester, 3-cyclohexene-1-methyl maleate and 2-cyclohexenyl maleate, etc.; described in structural formula (I-1-2) and (I-1-3)
  • the monoester of itaconate can be selected from monocyclohexyl itaconate, mono-2-cyclohexenyl itaconate and the like.
  • the maleic acid monoester described in the structural formula (I-1-1) can be selected from mono-p-nonylphenyl maleate, mono-p-dodecyl maleate Alkylphenyl ester etc.; Itaconic acid monoester described in structural formula (I-1-2) and (I-1-3) can be selected from Alkylphenyl esters.
  • the maleic acid monoester described in the structural formula (I-1-1) can be selected from monobenzyl maleate, monophenylethyl maleate, maleic acid Acid monophenylpropanol ester;
  • the itaconate monoester described in structural formula (I-1-2) and (I-1-3) can be selected from itaconate monobenzyl ester, itaconate monophenylethanol ester, itaconate Monophenylpropanol Conate, etc.
  • the dicarboxylic acid monoester represented by the structural formula (I-2) is a dicarboxylic acid monoester obtained by esterifying a carboxyl group of a C3-10 saturated linear or branched dicarboxylic acid.
  • the dicarboxylic acid monoester shown in the structural formula (I-2) is a monoester of a saturated straight-chain dicarboxylic acid, that is, between two carbonyl groups in the structural formula (I-2).
  • the carbon chain is a saturated straight-chain dicarboxylic acid monoester.
  • the dicarboxylic acid monoester represented by the structural formula (I-2) is selected from the group consisting of malonic acid monoester, succinic acid monoester (i.e., succinic acid monoester), glutaric acid monoester, adipate monoester ester, pimelic acid monoester, suberic acid monoester, azelaic acid monoester, sebacic acid monoester, undecanedioic acid monoester, dodecanedioic acid monoester, tridecanedioic acid monoester, Tetradecanedioic acid monoester, hexadecandioic acid monoester, octadecadecandioic acid monoester, etc.
  • malonic acid monoester i.e., succinic acid monoester
  • succinic acid monoester i.e., succinic acid monoester
  • glutaric acid monoester i.e., glutaric acid
  • the dicarboxylic acid monoester shown in structural formula (I-2) is selected from malonic acid monoester, succinic acid monoester, glutaric acid monoester, adipate monoester, azelaic acid monoester and sebacic acid monoester.
  • the malonate monoester is more preferably monomethyl malonate, monoethyl malonate, monopropyl malonate, mono-n-butyl malonate, mono-n-hexyl malonate, Mono-n-octyl malonate, Mono-n-decyl malonate, Mono-n-dodecyl malonate (Lauryl), Mono-isobutyl malonate, Mono-tert-butyl malonate, Monoiso-malonate Octyl ester, mono-isononyl malonate, mono-isodecyl malonate, mono-isodecyl malonate, mono-isotridecyl malonate, monooleyl malonate (mono- 9-octadecenyl ester), monocyclohexyl malonate, mono-3-cyclohexene-1-methyl malonate, mono-p-nonylphenyl malonate,
  • mono-n-butyl succinate mono-sec-butyl succinate, mono-n-hexyl succinate, mono-n-octyl succinate, mono-n-butyl succinate are more preferred.
  • the glutaric acid monoester is further preferably monomethyl glutarate, monoethyl glutarate, monopropyl glutarate, mono-n-butyl glutarate, mono-n-hexyl glutarate, Monooctyl glutarate, monodecyl glutarate, monododecyl glutarate (lauryl), monoisobutyl glutarate, monotert-butyl glutarate, monoisoglutaric acid Octyl esters, monoisononyl glutarate, monoisodecyl glutarate, monoisodecyl glutarate, monoisotridecyl glutarate, monooleyl glutarate (mono- 9-octadecenyl ester), monocyclohexyl glutarate, mono-3-cyclohexene-1-methyl glutarate, mono-p-nonylphenyl glutarate, monobenzyl glutarate, etc. .
  • the adipate monoester is further preferably monomethyl adipate, monoethyl adipate, mono-n-butyl adipate, mono-n-hexyl adipate, mono-n-octyl adipate , monodecyl adipate, monododecyl adipate (lauryl), monopropyl adipate, monoisobutyl adipate, monoisooctyl adipate, monoisoadipate Nonyl, monoisodecyl adipate, monoisoundecyl adipate, monoisotridecyl adipate, monooleyl adipate (mono-9-octadecenyl adipate) , monocyclohexyl adipate, mono-3-cyclohexene-1-methyl adipate, mono-p-nonylphenyl adipate, monobenz
  • the monoester of azelate is more preferably monomethyl azelate, monoethyl azelate, monopropyl azelate, mono-n-butyl azelate, mono-n-hexyl azelate, Monooctyl Azelate, Monodecyl Azelate, Monododecyl Azelate (Lauryl), Monoisobutyl Azelate, Monoisooctyl Azelate, Monoisooctyl Azelate Nonyl, Monoisodecyl Azelate, Monoisoundecyl Azelate, Monoisotridecyl Azelate, Monooleyl Azelate (Mono-9-Octadecenyl Azelate) , monocyclohexyl azelate, mono-3-cyclohexene-1-methyl azelate, mono-p-nonylphenyl azelate, monobenzyl azelate, etc
  • the dicarboxylic acid monoester represented by the structural formula (I-3) is a C 5-12 dicarboxylic acid monoester containing an optionally substituted saturated or unsaturated carbocyclic structure with 3-10 carbon atoms in the main chain.
  • m is 0,
  • Q is a C 4-8 substituted or unsubstituted divalent alicyclic hydrocarbon group or a C 6-10 substituted or unsubstituted divalent aryl group, and R is a C 4-12 hydrocarbon group.
  • the dicarboxylic acid monoester shown in structural formula (I-3) is selected from 1,2-cyclohexanedicarboxylic acid monoester, tetrahydrophthalic acid monoester (that is, 4-cyclohexene-1 , 2-dicarboxylic acid monoester), phthalic acid monoester, terephthalic acid monoester, 3-methylhexahydrophthalic acid monoester (ie, 3-methyl-1,2-cyclohexanedicarboxylic acid monoester), 4-methylhexahydrophthalate monoester (ie, 4-methyl-1,2-cyclohexanedicarboxylate monoester), methylhexahydrophthalate monoester, methyltetrahydro Phthalate monoester, 4-methyl-4-cyclohexene-1,2-dicarboxylate monoester, 3-methyl-4-cyclohexene-1,2-dicarboxylate monoester, and the like.
  • the dicarboxylic acid monoester shown in structural formula (I-3) is selected from 1,2-cyclohexanedicarboxylic acid monoester, tetrahydrophthalic acid monoester, phthalic acid monoester, methyl Monoesters of hexahydrophthalate and methyltetrahydrophthalate, such as monobutyl 1,2-cyclohexanedicarboxylate, monooctyl 1,2-cyclohexanedicarboxylate, 1,2-cyclohexanedicarboxylate Monoisooctyl adipate, 1,2-monoisononyl cyclohexanedicarboxylate, monobutyl tetrahydrophthalate, monooctyl tetrahydrophthalate, monoisooctyl tetrahydrophthalate Esters, mono-isononyl tetrahydrophthalate, mono-butyl phthalate, mono-oc
  • the dicarboxylic acid monoester represented by the structural formula (I-1), (I-2) or (I-3) is selected from monobutyl maleate, maleic acid Mono-isooctyl, Mono-isononyl maleate, Mono-iso-octyl succinate, Mono-hexyl phthalate, Mono-iso-octyl phthalate, Mono-iso-octyl methyltetrahydrophthalate , mono-octyl citraconic acid, mono-iso-octyl itaconate, mono-tert-butyl malonate.
  • the dicarboxylic acid monoester is selected from monobutyl maleate, monoisooctyl maleate, monoisononyl maleate, monoisooctyl itaconate, monoisooctyl succinate ester, monohexyl phthalate, monoisooctyl phthalate, monoisooctyl methyltetrahydrophthalate, monotert-butyl malonate.
  • the dicarboxylic acid monoester shown in the structural formula (I-1), (I-2) or (I-3) can be obtained by making saturated dicarboxylic acid, unsaturated dicarboxylic acid, cyclic dicarboxylic acid Acid or benzene dicarboxylic acid and its anhydride react with C 3-20 alcohol or phenol.
  • the conditions of the reaction include: reacting dicarboxylic acid or acid anhydride with C2-20 alcohol or phenol in a molar ratio of 1:0.5 to 1:1.5, the reaction temperature is 50-250°C, and the reaction time is 0.1-10hr,
  • the reaction pressure can be normal pressure, and can also be carried out under a certain pressure.
  • the dicarboxylic acid monoesters of component A are selected from dicarboxylic acid monoesters having the structural formula (I-4):
  • R 8 is a C 2-10 divalent hydrocarbon group
  • R 9 is hydrogen or a hydrocarbon group with or without a double bond
  • R 10 is a divalent hydrocarbon group with or without a double bond
  • the total carbon of R 9 and R 10 The number is 15-21
  • R 11 is hydrogen or C 1-10 hydrocarbon group.
  • the total carbon number of R9 and R10 is 15-21, and the total number of double bonds is 0-3, for example, R9 and R10 can be independently selected from alkyl, alkenyl, di alkenyl etc.
  • R 11 is hydrogen or a C 1-4 hydrocarbon group, including a C 1-4 alkenyl group and a C 2-4 alkenyl group, such as methyl, ethyl, n-propyl, propenyl, n-butyl, isobutyl, butenyl, etc., most preferably hydrogen, methyl or ethyl.
  • R can be an alkylene group having 2-10 carbon atoms, an alkenylene group, an alkyl substituted alkylene group, an alkyl substituted alkenylene group, an alkenyl substituted alkylene group Alkenyl, alkenyl substituted alkenylene, cycloalkylene, alkyl substituted cycloalkylene, alkenyl substituted cycloalkylene, cycloalkenylene, alkyl substituted cycloalkenylene, alkenyl substituted
  • R 8 is a C 2-8 divalent hydrocarbon group
  • R 9 is hydrogen or a hydrocarbon group
  • R 10 is a divalent hydrocarbon group
  • R 9 and R 10 The total carbon number of is 15-21, and the total carbon-carbon double bond number is 0-3
  • R 11 is hydrogen or C 1-4 hydrocarbon group.
  • the dicarboxylic acid monoester shown in the structural formula (I-4) can be obtained by making hydroxy fatty acid and/or hydroxy fatty acid ester (abbreviated as "hydroxy fatty acid (ester)”) and dibasic carboxylic acid and/or It can be obtained by esterification reaction of its anhydride.
  • the conditions of the esterification reaction may include: the temperature is in the range of 30-300°C, preferably 50-250°C, more preferably 70-180°C; the reaction time is 0.5-30 hours, preferably 2-20 hours, more preferably 4 -10 hours.
  • the esterification reaction is optionally carried out in the presence of a solvent and a catalyst
  • the solvent can be toluene, xylene, ethylbenzene, sherwood oil, solvent naphtha, hexanaphthene, n-octane or a mixture thereof
  • the catalyst can be Acid catalysts, such as sulfuric acid, p-toluenesulfonic acid, phosphoric acid, boric acid, etc.
  • the hydroxy fatty acid may be selected from the group consisting of hydroxyoctadecenoic acid (hydroxystearic acid), hydroxyoctadecenoic acid (ricinoleic acid), hydroxyoctadecadienoic acid, hydroxybehenic acid, hydroxybehenic acid enoic acid, hydroxylicicoic acid, hydroxylicicoic acid, etc., preferably selected from ricinoleic acid, hydroxystearic acid, and hydroxyoctadecadienoic acid.
  • the hydroxy fatty acid ester may be selected from methyl hydroxyoctadecanoate (methyl hydroxystearate), methyl hydroxyoctadecenoate (methyl ricinoleate), ethyl ricinoleate, hydroxydecanoate Methyl octadecadienoate, methyl hydroxyeicosanoate, methyl hydroxyeicosate, methyl hydroxyetradecenoate, methyl hydroxyeicosate, etc., preferably selected from methyl ricinoleate esters, methyl inverse ricinoleate, ethyl ricinoleate and methyl hydroxyoctadecadienoate.
  • the dicarboxylic acid may be a saturated dicarboxylic acid, for example selected from succinic acid (succinic acid), glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, one or more of acid, undecanedioic acid, dodecanedioic acid, etc.; one or more species.
  • the dicarboxylic acid may be an unsaturated dicarboxylic acid, for example selected from maleic acid (maleic acid), fumaric acid (fumaric acid), cis-methylbutenedioic acid (citraconic acid), trans-methylbutaconic acid (mesaconic acid), dimethylmaleic acid, itaconic acid (methylene succinic acid, methylene succinic acid), glutaconic acid, trans -3-Hexenedioic acid, butynedioic acid, 2-butene-1,4-dicarboxylic acid, adienedioic acid, heptenedioic acid, octanedioic acid, nonenedioic acid, decenedioic acid , decadienedioic acid, undecenedioic acid, dodecenedioic acid, etc.; can also be selected from pentenylsuccinic acid, hexadienylsuccinic acid,
  • diacid, nonenylsuccinic acid, decenylsuccinic acid, etc. preferably selected from maleic acid (maleic acid), fumaric acid (fumaric acid), cis-methylbutenedioic acid (citraconic acid), trans-methylbutenedioic acid (mesaconic acid), dimethylmaleic acid, itaconic acid (methylidene succinic acid, methylene succinic acid ), 2-butene-1,4-dicarboxylic acid, and one or more of decenylsuccinic acid.
  • the anhydride of the saturated dicarboxylic acid may be selected from succinic anhydride (succinic anhydride), glutaric anhydride, adipic anhydride, phthalic anhydride (phthalic anhydride), hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl Hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, etc.; also methylglutaric anhydride, methylsuccinic anhydride, dimethylsuccinic anhydride, ethylsuccinic anhydride, propylsuccinic anhydride, butylsuccinic anhydride , one or more of pentylsuccinic anhydride, hexylsuccinic anhydride, heptylsuccinic anhydride, octylsuccinic anhydride, nonylsuccinic anhydride, decyls
  • the anhydride of the unsaturated dicarboxylic acid may be selected from (2-methyl-2-propenyl) succinic anhydride, vinyl succinic anhydride, propenyl succinic anhydride, butenyl succinic anhydride, Triisobutenyl succinic anhydride, pentenyl succinic anhydride, 3-methyl-hexenyl succinic anhydride, heptenyl succinic anhydride, octenyl succinic anhydride, nonenyl succinic anhydride, decenyl One or more of succinic anhydride, etc.
  • the anhydride of the dicarboxylic acid is selected from maleic anhydride, citraconic anhydride, itaconic anhydride, succinic anhydride, glutaric anhydride, phthalic anhydride (phthalic anhydride), hexahydrophthalic anhydride, tetrahydrophthalic anhydride , methyl hexahydrophthalic anhydride, methyl tetrahydrophthalic anhydride, methyl succinic anhydride, dimethyl succinic anhydride, nonyl succinic anhydride, decyl succinic anhydride, nonenyl succinic anhydride, decenyl butanedioic anhydride One or more of acid anhydrides, etc.
  • the dicarboxylic acid monoester compound represented by the structural formula (I-4) is selected from maleic acid monoester ricinoleic acid methyl ester, maleic acid monoester ricinoleic acid, succinic acid monoester Acid monoester group ricinoleic acid methyl ester, succinic acid monoester group ricinoleic acid, succinic acid monoester group 12-hydroxystearic acid methyl ester, maleic acid monoester group 12-hydroxystearic acid methyl ester, o-phthalic acid monoester group Methyl ricinoleate dicarboxylate, methyl hexahydrophthalate monoester ricinoleate, methyl tetrahydrophthalate monoester ricinoleate, or any combination thereof .
  • the component B is a C 8-24 long-chain fatty acid, a polyol ester of a C 8-24 long-chain fatty acid, or a mixture thereof.
  • the C8-24 long-chain fatty acid may be selected from caprylic acid, capric acid, lauric acid (dodecanoic acid), myristic acid (tetradecanoic acid), palmitic acid (hexadecanoic acid), palmitoleic acid ( hexadecenoic acid), stearic acid (octadecenoic acid), oleic acid (octadecenoic acid), linoleic acid (octadecenoic acid), linolenic acid (octadecenoic acid), ricinoleic acid (hydroxyl octadecenoic acid), hydroxystearic acid, arachidic acid (eicosanic acid), arachidic acid (eicosenoic acid), behenic acid (behenic acid), erucic acid (eicosanic acid), etc. its mixture.
  • the component B is selected from C 12-20 unsaturated fatty acids, polyol esters of C 12-20 unsaturated fatty acids, or mixtures thereof.
  • the C 12-20 unsaturated fatty acid is preferably selected from oleic acid, linoleic acid, linolenic acid, ricinoleic acid, or their composition, or selected from oleic acid, linoleic acid, linolenic acid, A fatty acid mixture with ricinoleic acid as the main component.
  • Natural oils or waste oils can be hydrolyzed to produce a mixture of various fatty acids. After distillation or urea inclusion, low-temperature freezing and crystallization, products mainly composed of unsaturated fatty acids can be obtained. Hydrolysis can also produce unsaturated fatty acids. Tall oil fatty acids derived from the paper industry contain a large amount of unsaturated fatty acids. These products are all preferred component B.
  • the unsaturated fatty acid mixture obtained by hydrolyzing and refining tall oil, cottonseed oil, cottonseed acidified oil, soybean oil, soybean acidified oil, etc. is also a preferred component B, such as the unsaturated fatty acid JC2006S produced by Jiangsu Innovation Petrochemical Co. Xinjiang Dasen Chemical Co., Ltd. unsaturated fatty acid KMJ-031, unsaturated fatty acid R90 produced by Jiangxi Xilinke Co., Ltd., etc.
  • the polyol esters of long-chain fatty acids are various esterification products formed by the esterification reaction of the above-mentioned long-chain saturated or unsaturated fatty acids with polyols, such as monoesters, diesters, triesters and mixtures thereof.
  • the polyhydric alcohol includes but not limited to ethylene glycol, glycerol (glycerol), 1,2-propanediol, 1,3-propanediol, sorbitan, pentaerythritol, trimethylolpropane, etc., preferably glycerol .
  • the polyol ester is glyceride, preferably monoglyceride and diglyceride, more preferably monoglyceride of unsaturated fatty acid, most preferably oleic acid monoglyceride, linoleic acid monoglyceride , monoglyceride linolenate, monoglyceride ricinoleate. It is preferred to use glycerides produced by the esterification reaction of unsaturated fatty acids and glycerol as component B, such as JC-2017Z of Jiangsu Innovation Petrochemical Co., Ltd., etc.
  • a method for preparing the fuel lubricity improver composition of the present application comprising mixing component A and component B at a ratio of 9:1 to 1:9, preferably 7:3 to 3:7, more preferably 6 :4 to 4:6 mass ratio and mix evenly.
  • the present application provides a method for improving the lubricity of diesel oil, comprising adding the fuel oil lubricity improver composition of the present application to low-sulfur diesel oil, wherein the fuel oil lubricity is calculated by the mass of the low-sulfur diesel oil
  • the added amount of the sex improver composition is preferably 10-400ppm, more preferably 50-200ppm.
  • the present application provides a diesel oil composition, including low-sulfur diesel oil and the fuel lubricity improver composition of the present application, wherein, based on the mass of the low-sulfur diesel oil, the diesel oil composition
  • the content of the fuel lubricity improver composition is preferably 10-400 ppm, more preferably 50-200 ppm.
  • Low sulfur diesel fuels suitable for use with the lubricity improvers of the present application include various low sulfur diesel fuels.
  • crude oil petroleum
  • refinery processes such as atmospheric and vacuum, catalytic cracking, catalytic reforming, coking, hydrofining, hydrocracking, etc.
  • the distillation range is between 160-380°C
  • the distillate between them is prepared to meet the national standard GB/T 19147 for diesel fuel for compression-ignition internal combustion engines.
  • the low-sulfur diesel may also be second-generation biodiesel derived from renewable resources such as vegetable oils and tallow, and typically hydrotreated in refineries, by hydrotreating vegetable oils by Hydrogenation produces isomerized or non-isomerized long-chain hydrocarbons, and second-generation biodiesel may resemble petroleum-based fuel oils in nature and quality.
  • the low-sulfur diesel oil can also be third-generation biodiesel, which is non-greasy biomass with high cellulose content such as wood chips, crop stalks and solid waste, and microbial oils using gasification and Fischer-Tropsch technology processed.
  • the low-sulfur diesel can also be coal liquefied diesel (CTL), which refers to diesel fuel obtained by Fischer-Tropsch synthesis of coal, or diesel fuel obtained by direct liquefaction of coal. It can also be a blended diesel oil in which oxygenated diesel blending components are added to petroleum-based diesel oil.
  • the oxygenated diesel blending components refer to oxygenated compounds or oxygenated compounds that can be blended with various diesel engine fuels to meet certain specifications. Mixtures, usually alcohols and ethers or mixtures thereof, such as ethanol, polyoxymethylene dimethyl ethers (PODEn, DMMn or OME for short), etc.
  • the diesel oil composition of the present application can also contain other additives, such as phenolic antioxidants, polymer amine type ashless dispersants, flow improvers, cetane number improvers, metal deactivators, anti One or more of electrostatic agents, preservatives, rust inhibitors, and demulsifiers.
  • additives such as phenolic antioxidants, polymer amine type ashless dispersants, flow improvers, cetane number improvers, metal deactivators, anti One or more of electrostatic agents, preservatives, rust inhibitors, and demulsifiers.
  • the reagents and raw materials used are all commercially available materials, and the purity is reagent pure.
  • the infrared spectrograms of the obtained products were measured by Thermo Fisher Nicolet iS50 Fourier Transform Infrared Spectrometer.
  • composition analysis of the obtained products was carried out with an Agilent 7890A-5975C GC/MS instrument, and the chromatographic conditions were: the initial temperature was 50°C, the heating rate was 5°C/min, the temperature of the chromatographic column was 300°C, and the flame Ionization detector (FID), quantified by the area normalization method, and the chromatographic column is HP-5.
  • the chromatographic conditions were: the initial temperature was 50°C, the heating rate was 5°C/min, the temperature of the chromatographic column was 300°C, and the flame Ionization detector (FID), quantified by the area normalization method, and the chromatographic column is HP-5.
  • the wear spot photos of the diesel oil before and after adding the lubricity improver composition are measured on a high-frequency reciprocating testing machine (High-Frequency Reciprocating Rig, HFRR, British PCS Instrument Company) using the SH/T 0765 method
  • the wear scar diameter (Wear Scar Diameter, WSD) at 60°C is obtained.
  • maleic anhydride maleic anhydride, mass fraction is 99.5%, produced by Zibo Qixiang Tengda Chemical Co., Ltd.
  • 720g isomeric nonanol Exxal TM 9s, mass fraction is 99.5%, produced by Exxon-Mobil Company
  • the mol ratio of maleic anhydride and isomeric nonanol is about 1: 1
  • heating and stirring is heated up to 85 °C, is heated up to 150 °C after reaction 5 hours and reduces Unreacted isononyl alcohol and maleic anhydride were removed by pressure distillation to obtain 1006 g of product.
  • the infrared spectrogram of the product obtained is shown in Figure 1, wherein the content of monoisononyl maleate is about 90.5%, and the content of diisononyl maleate is about 8.6% through gas chromatography spectrometer analysis.
  • succinic anhydride succinic anhydride, mass fraction is 99%, produced by Shanghai Shenren Fine Chemical Co., Ltd.
  • isooctyl alcohol 2 -Ethylhexanol, the mass fraction is 99.9%, produced by Qilu Petrochemical Branch of China Petroleum and Chemical Corporation
  • the mol ratio of succinic anhydride and isooctyl alcohol is about 1: 1.1
  • heating and stirring is heated up to 110 °C
  • reaction 4 After one hour, the temperature was raised to 160° C. and the unreacted isooctyl alcohol was distilled off under reduced pressure to obtain 1109 g of product, and the content of monoisooctyl succinate was about 86.7% in it analyzed by GC-MS.
  • reaction flow diagram is shown in Reaction Formula 1.
  • Examples 1-2 and Comparative Examples 1-3 are provided to illustrate the performance improvement of the lubricity improver composition of the present invention compared to the non-lubricity improver composition of the present invention
  • Example 3- 5 is provided to illustrate that when component B is a long-chain fatty acid polyol ester, the selection of component A affects the performance of the lubricity improver composition of the present invention
  • embodiment 5-8 is provided to illustrate that component B is In the case of long-chain fatty acid polyol ester, the influence of the selection of the mass ratio of component A/B on the performance of the lubricity improver composition of the present invention.
  • Examples 22-32 are provided to illustrate the properties of other lubricity improver compositions of the present invention obtained by mixing components A and B.
  • Monoisooctyl maleate purchased from TCI Shanghai Chemical Industry Development Co., Ltd., with a purity of 95%;
  • Diisooctyl maleate purchased from Beijing Yinuokai Technology Co., Ltd., with a purity of 95%;
  • Mono-tert-butyl malonate purchased from Ark Pharm company, the purity is greater than 97%;
  • Mono-n-butyl maleate purchased from Hubei Jusheng Technology Co., Ltd., with a purity of 99%;
  • Monohexyl phthalate purchased from Shanghai Aladdin Biochemical Technology Co., Ltd., with a purity of 98%.
  • the compound with structural formula (I-1) includes mono-n-butyl maleate (such as embodiment 30), mono-isononyl maleate (such as embodiment 27), Mono-isooctyl citraconic acid (such as embodiment 22) etc.;
  • the compound with structural formula (I-2) includes mono-tert-butyl malonate (such as embodiment 29) etc.;
  • the compound with structural formula (I-3) includes Monohexyl phthalate (such as embodiment 32), methyltetrahydrophthalate monoisooctyl (such as embodiment 24) etc.;
  • the compound with structural formula (I-4) comprises maleic acid monoester group Ricinoleic acid methyl ester (as embodiment 13) etc.
  • Linoleic acid purchased from Shanghai Aladdin Biochemical Technology Co., Ltd., with a purity of 95%;
  • Oleic acid purchased from Shanghai Aladdin Biochemical Technology Co., Ltd., analytically pure;
  • Tall oil fatty acid 2LT a mixture of fatty acids mainly composed of unsaturated fatty acids such as linoleic acid and oleic acid obtained from the purification of tall oil from Arizona Company of the United States;
  • Unsaturated fatty acids KMJ-031, JC-2006S and R90 the main components are linoleic acid and oleic acid, the specific information is shown in Table 2;
  • Unsaturated fatty acid glycerides JC-2017Z The main components are monoglycerides and diglycerides formed by the esterification of linoleic acid and oleic acid with glycerol. The specific information is shown in Table 2.
  • the lubricity improver compositions of Examples 1-32 and Comparative Examples 1-5 were respectively mixed with diesel oil, and their effect in diesel oil was tested.
  • the low-sulfur diesel oil A used comes from Sinopec Yanshan Branch, and the ultra-low-sulfur diesel B comes from Sinopec Gaoqiao Branch.
  • the physical and chemical properties of diesel A and diesel B are shown in Table 3.
  • the lubricity of diesel oil was measured on a high-frequency reciprocating tester (High-Frequency Reciprocating Rig, HFRR, British PCS Instrument Company) in accordance with the SH/T 0765 method.
  • the wear scar diameter (Wear Scar Diameter, WSD) at 60 ° C was measured by temperature
  • the reported results of the wear scar diameter WS1.4 were corrected for the influence of moisture and humidity.
  • the wear scar diameter WS1.4 of the blank diesel oil A is 564 ⁇ m (see Figure 2 for the wear scar photo), which does not meet the performance requirements of vehicle diesel.
  • the wear spot diameter WS1.4 of diesel A can be reduced from 564 ⁇ m to 324 ⁇ m; when 100 mg/kg linoleic acid is used alone, the wear spot diameter of diesel A can be reduced
  • the diameter WS1.4 is reduced from 564 ⁇ m to 458 ⁇ m, and the composition obtained by mixing 100 mg/kg monoisooctyl maleate and linoleic acid in the mass ratio of 7:3 in Example 1 can reduce the wear spot diameter of diesel oil A
  • the reduction of WS1.4 from 564 ⁇ m to 226 ⁇ m is surprising.
  • the wear scar diameter WS1.4 of diesel oil A can be reduced from 564 ⁇ m to 305 ⁇ m (see Figure 4 for the wear scar photo).
  • the above results clearly show that there is a significant synergistic effect between component A and component B of the lubricity improver composition of the present application, so that the lubricity improvement effect of the composition is significantly better than that of component A and component B alone B, so the usage amount of the lubricity improver can be greatly reduced.
  • the composition obtained by mixing diisooctyl maleate and linoleic acid in the same mass ratio in Comparative Example 1 has a poor lubricity improvement effect and does not show any synergistic effect.
  • the wear scar diameter WS1.4 value of the blank diesel oil A is 564 ⁇ m, and 100 mg/kg of diisooctyl maleate is added to the diesel oil alone, and the WS1.4 value of the additive diesel oil is 561 ⁇ m, without lubricating improvement effect;
  • Add 100mg/kg monoisooctyl maleate separately in this diesel oil the WS1.4 value of additive diesel oil is 324 ⁇ m (as shown in table 4-1);
  • the WS1.4 value of the additive diesel is 469 ⁇ m, which still cannot meet the performance requirements.
  • the wear scar diameter WS1.4 value of the blank diesel oil B is 651 ⁇ m (see Figure 5 for the wear scar photo), which does not meet the performance requirements of vehicle diesel.
  • the WS1.4 value of the additive diesel is 513 ⁇ m.
  • Example 1 of the present application is added to the diesel oil in an amount of 100 mg/kg, and the WS1.4 value of the additive diesel oil is reduced to 256 ⁇ m (see Figure 6 for the photo of wear spots), and it is added in the diesel oil in an amount of 200 mg/kg , the WS1.4 value of the added diesel oil was reduced to 189 ⁇ m (see Figure 7 for the photo of wear spots), and the lubricating performance of the added diesel oil was significantly improved.
  • This effect is unexpected, illustrating that there is a significant synergistic effect between monoisooctyl maleate and linoleic acid in the composition of Example 1.
  • Comparative Example 1 the composition obtained by mixing diisooctyl maleate and linoleic acid in the same mass ratio has a poor lubricating improvement effect and does not show any synergistic effect.
  • compositions of each embodiment show excellent lubrication improvement effects
  • Example 9 using monoisooctyl succinate Lubrication improvement effect is better than the embodiment 11 composition that adopts monobenzyl alcohol maleate;
  • the lubrication improvement effect of the embodiment 17 composition that adopts monoisooctyl maleate is better than the implementation that adopts mono-tert-butyl malonate Example 10 composition;
  • the lubricity improvement effect of the embodiment 14 composition that adopts monoisooctyl maleate is better than the embodiment 13 composition that adopts maleic acid monoester group ricinoleic acid methyl ester, is further better than adopting methyl ricinoleate
  • compositions of each example showed excellent lubricity improvement effect, while the composition of Comparative Example 4 with component A/B mass ratio of 9.5:0.5 compound and component A/B mass ratio of 0.5:9.5 of the composition of Comparative Example 5, the lubricity improvement effect of the composition is significantly lower than the composition of Examples 9-21, even lower than a single component A, illustrating Comparative Example 4- No synergistic effect is shown between the components in the composition of 6;
  • the lubrication improvement effect of the composition of Example 20 with a mass ratio of component A/B of 7:3 is better than that of the composition of Example 21 with a larger mass ratio of component A/B, and the composition of component A/B
  • the composition of Example 18 and Example 14 with a smaller mass ratio of B; and, the composition of Example 19 with a mass ratio of component A/B of 6:4 has a better lubrication improvement effect than the mass ratio of component A/B
  • the composition of Example 17 is 4:6.
  • the test results show that in the lubricity improver composition of the present application, after the component A and component B are mixed in a specific ratio, they show an obvious synergistic effect, and the effect on improving the lubricity of diesel oil is significantly superior.
  • the addition amount of the lubricity improver of the present application can be greatly reduced, reducing the additive cost required to make the diesel lubricity meet the performance requirements, and also reducing the side effects after adding the additive risks that arise.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Lubricants (AREA)

Abstract

公开了一种燃油润滑性改进剂组合物及其应用,所述组合物包含具有结构式(I)的二羧酸单酯作为组分A,和C8-24的长链脂肪酸、其多元醇酯或者它们的混合物作为组分B,其中所述组分A和组分B的总量为所述组合物的总重量的70-100wt%,所述组分A与组分B的质量比为9∶1至1∶9。所述燃油润滑性改进剂以较低的用量使用即可提供令人满意的润滑性改进效果。

Description

燃油润滑性改进剂组合物及其应用
相关申请的交叉引用
本申请要求2021年6月30日递交的申请号为202110740397.8、发明名称为“柴油抗磨剂组合物、其制备方法及柴油组合物”的中国专利申请的优先权,其全部内容经此引用并入本文。
技术领域
本申请涉及燃料油领域,具体地,涉及一种燃油润滑性改进剂组合物及其应用。
背景技术
随着世界各国对环境问题的关注度日益升高,生产高质量的清洁能源已成为现代炼油工业的发展方向,柴油的生产标准逐步提高。这种清洁柴油具有芳烃含量低、十六烷值高、馏分轻、低硫、低氮的特点。硫是增加大气中污染物含量的最有害的元素,因而需严格控制柴油中含硫化合物的含量。目前生产的清洁柴油主要采用加氢的工艺生产,这种方式在去除柴油中含硫化合物的同时,也降低了柴油中含氮化合物和含氧化合物的含量。已知柴油的润滑性主要取决于柴油中抗磨杂质的含量,多环芳烃、含氧杂质和含氮杂质是很有效的抗磨剂。较低的氮化合物和氧化合物的含量引起柴油自身的润滑性能下降,导致燃料泵出现磨损而失效。
由于低硫柴油润滑性较差,因此低硫柴油和超低硫柴油通常用润滑性改进剂(也称润滑性添加剂或抗磨剂)进行处理,改善其润滑性能。该方法具有成本小、生产灵活、污染少等优点,在工业上受到广泛的重视。
柴油润滑性改进剂多为脂肪酸、脂肪酸酯、酰胺或盐的衍生物。EP773279公开了用二聚酸与醇胺反应制备的羧酸酯作为柴油润滑性改进剂。EP798364公开了用脂肪酸与脂肪胺反应制备的盐或酰胺作为柴油润滑性改进剂。EP1209217公开了C 6-50饱和脂肪酸和二羧酸与短链油溶性伯、仲、叔胺的反应产物作为柴油润滑性改进剂。WO9915607公开了二聚脂肪酸与环氧化物的反应产物作为柴油润滑性改进剂。这 些技术多数以脂肪酸或者脂肪酸二聚物与醇胺、胺、环氧化物反应,其中有些反应原料成本较高且抗磨效果一般,在柴油中的添加量较大。
现有的工业上使用的低硫柴油润滑性改进剂主要包括酸型和酯型两种类型,酸型润滑性改进剂的主要成分是长链不饱和脂肪酸如油酸、亚油酸、亚麻酸等,典型的产品来自于精制的妥尔油脂肪酸。酯型润滑性改进剂是上述脂肪酸与多元醇的酯化反应产物。WO9417160A1公开了油酸单甘油酯用作柴油润滑性改进剂的用途。
使用脂肪酸型润滑性改进剂解决柴油润滑性问题虽然成本相对较低,但随着柴油排放标准的升级以及润滑性的变差面临用量偏大,造成柴油酸度超标,腐蚀性风险增加等问题。使用脂肪酸酯型润滑性改进剂虽然用量少,但也存在成本高,加剂柴油遇水发生乳化变浑的风险。
CN109576021A公开一种改善低硫柴油润滑性的改进剂及其制备方法,是将不饱和二元羧酸酯(马来酸二酯)、阻聚剂在150-180℃混合,逐步加入桐油生物柴油,加完后在200-240℃继续反应一定时间,反应后经减压蒸馏得到改进剂产品。该产品需要用到桐油生物柴油,这种原料比较罕见且很不稳定,而且反应需要高温,较难制备,最关键的是抗磨效果很一般,需要加入600ppm以上。
CN106929112A公开一种改善低硫柴油润滑性的方法,由烯基琥珀酸酐与一元脂肪醇酯化反应产物来改善柴油的润滑性,但这种产品黏度大,对超低硫柴油(如达到国VI排放标准的车用柴油)改善润滑性的效果一般。
G.Anastopoulos发表在Tribology International期刊上的文章(G.Anastopoulos,E.Lois.Influence of aceto acetic esters and di-carboxylic acid esters on diesel fuel lubricity[J].Tribology International.2001,34(11):749-755)报道了将二元酸二酯,例如己二酸二丁酯、己二酸二辛酯、壬二酸二乙酯、壬二酸二丁酯、壬二酸二辛酯、癸二酸二乙酯等二元羧酸二酯化合物加入低硫柴油对润滑性的改善,但是二酯化合物抗磨效果很差,需要加入500ppm、甚至1000ppm以上。
发明内容
本申请的目的是提供一种燃油润滑性改进剂组合物及其应用,该 组合物能够克服现有技术的不足,以较低的用量提供令人满意的润滑性改进效果。
为了实现上述目的,一方面,本申请提供了一种燃油润滑性改进剂组合物,包含:
组分A:具有如下结构式(I)的二羧酸单酯,
Figure PCTCN2022102570-appb-000001
其中,R 1为C 1-10的二价烃基;
R 2为C 1-20烃基,或者具有-R 3-C(=O)-O-R 4结构的基团;
R 3为C 8-24的二价烃基;
R 4为氢或者C 1-10烃基;和
组分B:C 8-24的长链脂肪酸、其多元醇酯或者它们的混合物,
其中,所述组分A和组分B的总量为所述组合物的总重量的70-100wt%;所述组分A与组分B的质量比为9 1至1 9。
经过深入的研究和大量的实验,本申请的发明人意外地发现,当具有结构式(I)的二羧酸单酯与C 8-24的长链脂肪酸或其多元醇酯以特定的比例配制成组合物后,在低硫柴油中仅少量添加就能大大改善柴油的润滑性,显示出意想不到的协同增效作用,显著优于目前工业上常用的脂肪酸型或脂肪酸甘油酯型润滑性改进剂,由此可以大幅减少润滑性改性剂的用量。
另一方面,本申请提供了一种改善柴油润滑性的方法,包括向低硫柴油中添加本申请的燃油润滑性改进剂组合物,其中以所述低硫柴油的质量计,所述燃油润滑性改进剂组合物的添加量优选为10-400ppm。
再一方面,本申请提供了一种柴油组合物,包括低硫柴油和本申请的燃油润滑性改进剂组合物,其中以所述低硫柴油的质量计,所述柴油组合物中的所述燃油润滑性改进剂组合物的含量优选为10-400ppm。
本申请的燃油润滑性改进剂原料易得、生产简便,效果出人意料地优于常规脂肪酸型或者脂肪酸酯型润滑性改进剂,可显著改善低硫 柴油的润滑性,从而添加量可大幅减少,使用成本显著降低。
此外,本申请的燃油润滑性改进剂组合物在汽油和喷气燃料中也具有改善润滑性的作用。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1显示了制备例1所得产物的红外光谱图;
图2显示了实施例中所用的柴油A的磨斑照片;
图3显示了添加实施例1组合物的柴油A的磨斑照片,加剂量为100mg/kg,WS1.4=226μm;
图4显示了添加实施例1组合物的柴油A的磨斑照片,加剂量为70mg/kg,WS1.4=305μm;
图5显示了实施例中所用的柴油B的磨斑照片;
图6显示了添加实施例1组合物的柴油B的磨斑照片,加剂量为100mg/kg,WS1.4=256μm;
图7显示了添加实施例1组合物的柴油B的磨斑照片,加剂量为200mg/kg,WS1.4=189μm。
具体实施方式
以下将通过具体的实施方式对本申请作出进一步的详细描述,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,但不以任何方式限制本申请。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理 解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
在本申请中,术语“烃基”泛指各种从由碳原子和氢原子组成的饱和或不饱和的有机化合物,例如各种脂族、脂环族和芳族化合物,上脱除一个氢原子后形成的基团。所述烃基的具体例子包括,但不限于,直链或支链烷基(也称为“链烷基”)、直链或支链烯基(也称为“链烯基”)、直链或支链炔基、环烷基、烷基环烷基、环烷基烷基、烯基环烷基、环烷基烯基、环烯基、烷基环烯基、环烯基烷基、芳基、芳基烷基、烷基芳基等等。
在本申请中,术语“二价烃基(也称为“亚烃基”)”泛指各种从由碳原子和氢原子组成的饱和或不饱和的有机化合物,例如各种脂族、脂环族和芳族化合物,上脱除两个氢原子后形成的基团。所述二价烃基的具体例子包括,但不限于,直链或支链亚烷基(也称为“二价链烷基”)、直链或支链亚烯基(也称为“二价链烯基”)、直链或支链亚炔基、亚环烷基、-烷基-环烷基-、-环烷基-烷基-、-烯基-环烷基-、-环烷基-烯基-、亚环烯基、-烷基-环烯基-、-环烯基-烷基-、亚芳基(也称为“二价芳基”)、-芳基-烷基-、-烷基-芳基-等等。
在本申请中,如无相反表示,所述“烃基”和“二价烃基”可以是取代或未取代的,优选为未取代的。
在本申请中,术语“烯基”表示碳链中具有至少一个(例如1-5个、优选1-3个)碳碳双键且不具有碳碳三键的脂族烃基,所述碳碳双键可以在所述烯基的主链上也可以在侧链上,例如为乙烯基、丙烯基、烯丙基等。
在本申请中,术语“亚烯基”表示碳链中具有至少一个(例如1-5个、优选1-3个)碳碳双键且不具有碳碳三键的脂族亚烃基,所述碳碳双键可以在所述亚烯基的主链上也可以在侧链上,例如为亚乙烯基、-(CH 2=)C-CH 2-、-(CH 3)C=CH-、-(CH 3)C=C(CH 3)-等。
在本申请中,表述“任选取代的”和“取代或未取代的”可以互换使用,表示所述的基团可以是未取代的基团或者被一个或多个取代基取代的基团。
在本申请中,如无相反表示,术语“取代的”表示所述的基团被一个或多个(例如1、2或3个)选自C 1-10直链或支链烃基、卤素、羟基、 羧基、酯基、醚基、硝基和氨基,优选选自C 1-4直链或支链烃基,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、乙烯基、丙烯基和烯丙基等,的基团取代。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本申请原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
第一方面,本申请提供了一种燃油润滑性改进剂组合物,包含:
组分A:具有如下结构式(I)的二羧酸单酯,
Figure PCTCN2022102570-appb-000002
其中,R 1为C 1-10的二价烃基;
R 2为C 1-20烃基,或者具有-R 3-C(=O)-O-R 4结构的基团;
R 3为C 8-24的二价烃基;
R 4为氢或者C 1-10烃基;和
组分B:C 8-24的长链脂肪酸、其多元醇酯或者它们的混合物,
其中,所述组分A和组分B的总量为所述组合物的总重量的70-100wt%;
所述组分A与组分B的质量比为9 1至1 9。
根据实际情况,除了所述组分A和组分B之外,本申请的燃油润滑性改性剂组合物中还可以包含少量附加组分,例如柴油、有机溶剂、未反应的制备原料(如醇或酚)、反应副产物(如二羧酸双酯类化合物)等,但是这些附加组分的总量不超过所述燃油润滑性改性剂组合物总重量的20wt%,优选不超过10wt%,更优选不超过5wt%,例如不超过1wt%。
在优选的实施方式中,所述组分A和组分B的总量为所述燃油润滑性改性剂组合物的总重量的80-100wt%,更优选90-100wt%,例如91wt%、92wt%、93wt%、94wt%、95wt%、96wt%、97wt%、98wt%、99wt%或100wt%。
在某些优选的实施方式中,所述燃油润滑性改性剂组合物中,所述组分B为C 8-24的长链脂肪酸,且所述组分A与组分B的质量比为8∶2至2∶8,优选为7∶3至3∶7,更优选为7∶3至5∶5,例如7∶3至6∶4。
在某些优选的实施方式中,所述燃油润滑性改性剂组合物中,所述组分B为C 8-24的长链脂肪酸的多元醇酯,且所述组分A与组分B的质量比为8∶2至1∶9,优选为8∶2至2∶8,更优选为5∶5至2∶8,例如为4∶6至3∶7。
在某些特别优选的实施方式中,所述燃油润滑性改性剂基本由所述组分A和组分B组成,即除了不可避免的杂质(如未反应的原料,和反应副产物)之外仅包含所述组分A和组分B,所述组分B为C 8-24的长链脂肪酸,并且以所述组合物的重量计,所述组合物包含20-80wt%,优选30-70wt%、更优选50-70wt%,例如60-70wt%的组分A,和20-80wt%,优选30-70wt%,更优选30-50wt%,例如30-40wt%的组分B。
在某些特别优选的实施方式中,所述燃油润滑性改性剂基本由所述组分A和组分B组成,即除了不可避免的杂质(如未反应的原料,和反应副产物)之外仅包含所述组分A和组分B,所述组分B为C 8-24的长链脂肪酸的多元醇酯,并且以所述组合物的重量计,所述组合物包含10-80wt%,优选20-80wt%、更优选20-50wt%,例如30-40wt%的组分A,和20-90wt%,优选20-80wt%,更优选50-80wt%,例如60-70wt%的组分B。
根据需要,本申请的润滑性改进剂可以单独使用来改善燃油、如柴油的润滑性,也可以与一种或多种其它燃油添加剂,如酚型抗氧剂、高分子胺型无灰分散剂、流动改进剂、十六烷值改进剂、金属钝化剂、抗静电剂、防腐剂、防锈剂和破乳剂等结合使用来改善燃油的润滑性和一项或多项其他性能。
以下对本申请组合物中的组分A和组分B做进一步的详细说明。
组分A
根据本申请,所述组分A为具有如下结构式(I)的二羧酸单酯,
Figure PCTCN2022102570-appb-000003
其中,R 1为C 1-10的二价烃基;
R 2为C 1-20烃基,或者具有-R 3-C(=O)-O-R 4结构的基团;
R 3为C 8-24的二价烃基;
R 4为氢或者C 1-10烃基。
在某些优选的实施方式中,在所述结构式(I)中:
R 1为C 1-10的二价链烷基、C 2-10的二价链烯基或者具有-R 5-R 6-R 7-结构的基团,优选为C 1-8的二价链烷基、C 2-6的二价链烯基或者具有-R 5-R 6-R 7-结构的基团,更优选为C 1-4的二价链烷基或者C 2-4的二价链烯基;
R 2为C 3-20烃基,优选为C 3-20直链或支链烃基、C 4-20的脂环族烃基、C 7-20的芳基取代的烃基或C 7-20的烃基取代的芳基,更优选为C 3-18直链或支链烃基、C 4-18的脂环族烃基、C 7-18的芳基取代的烃基或C 7-18的烃基取代的芳基;
R 5和R 7各自独立地为单键、或者C 1-3的二价烃基,优选各自独立地为单键或亚甲基;
R 6为C 3-10的二价脂环族烃基、或者C 6-10的取代或未取代的二价芳基,优选C 4-7的二价脂环族烃基、或者C 6-10的取代或未取代的二价芳基,且R 5、R 6和R 7基团的总碳数小于等于10;
其中所述“取代的”是指被一个或多个选自C 1-4直链或支链烃基、卤素、羟基、羧基、酯基、醚基、硝基和氨基、优选选自C 1-4直链或支链烃基的基团取代。
在某些优选的实施方式中,在所述结构式(I)中:
R 1为C 2-20的二价烃基,优选为C 2-8的二价烃基;
R 2为具有-R 3-C(=O)-O-R 4结构的基团;
R 3为具有0-5个碳碳双键的C 8-24的二价烃基,优选为具有0-3个碳碳双键的C 16-22的二价烃基;以及
R 4为氢或者C 1-10烃基,优选为氢或者C 1-4烃基。
在某些进一步优选的实施方式中,所述组分A的二羧酸单酯选自具有结构式(I-1)、(I-2)或(I-3)的二羧酸单酯:
Figure PCTCN2022102570-appb-000004
其中,n为2-6的整数,R为C 3-20烃基、优选为C 4-18的烃基;
Figure PCTCN2022102570-appb-000005
其中,p为1-8的整数,R为C 3-20的烃基、优选为C 4-18的烃基;
Figure PCTCN2022102570-appb-000006
其中,m是0到1的整数,Q为C 3-8的二价脂环族烃基或者C 6-10的取代或未取代的二价芳基,R为C 3-20的烃基、优选为C 4-18的烃基。
根据本申请,结构式(I-1)、(I-2)或(I-3)中,R可以是脂肪烃基、脂环烃基,也可以是芳基。所述脂肪烃基可以是直链的,也可以是带有支链的;可以是饱和脂肪烃基,也可以是不饱和脂肪烃基;不饱和脂肪烃基可以是含有至少一个碳碳双键(烯键)或至少一个碳碳三键(炔键)的脂肪烃基。所述脂环烃基可以是饱和脂环烃基(环烷烃基),也可以是不饱和脂环烃基。所述芳基可以是单环芳基,也可以是双环或多环芳基。所述脂环烃基和芳基的碳环上还可以带有各种烃基取代基。
在进一步优选的实施方式中,结构式(I-1)、(I-2)和(I-3)中,所述R选自C 3-20直链或支链脂族烃基,C 4-20脂环烃基、C 7-20的芳基取代的烃基或C 7-20的烃基取代的芳基,优选C 4-18直链或支链烷基。
在本申请中,当R是饱和直链或支链脂烃基时,R可以是正构烷基,也可以是异构烷基。R是正构烷基时优选甲基、乙基、正丙基、正丁基、正戊基、正己基、正庚基、正辛基、正壬基、正癸基、正十一 烷基、单正十二烷基(月桂酯基)、正十四烷基、正十六烷基、正十八烷基等,更优选为正丁基、正己基、正辛基、正壬基、正癸基。R是异构烷基时优选异丙基、异丁基、仲丁基、异戊基、异己基、异庚基、异辛基(尤其是2-乙基己基)、异壬基、异癸基,异十一烷基、异十三烷基、异十五烷基、异十七烷基等,更优选为仲丁基、异辛基(尤其是2-乙基己基)、异壬基、异癸基、异十一烷基、异十三烷基。
在本申请中,当R是不饱和直链或支链脂烃基时,优选烯丙基、2-丁烯基、3-丁烯基、异戊烯基、3-己烯基、2-辛烯基、3-壬烯基、2-癸烯基、7-十二碳烯基、1,5-己二烯基、2,4-壬二烯基、2,4-癸二烯基、9,11-十二碳二烯基、9-十八烯基,更优选为3-己烯基、2-辛烯基、3-壬烯基、异戊烯基、9-十八烯基。
在本申请中,当R是脂环烃基时,优选环丁基、环戊基、环己基、3-环己烯基、2-环己烯基等,更优选为环戊基、环己基、3-环己烯基、2-环己烯基。
在本申请中,当R是未取代的芳基时,优选为苯基;当R是烃基取代的芳基时,优选为甲基苯基、对壬基苯基、对十二烷基苯基等;当R是芳基取代的烃基时,优选为苄基(苯甲基)、苯乙基、对十二烷基苯基等,更优选为苄基(苯甲基)、对壬基苯基、对十二烷基苯基。
根据本申请,所述结构式(I-1)所示的二羧酸单酯是具有一个碳碳不饱和双键的C 4-8直链或支链二元羧酸的一个羧基被酯化得到的不饱和二羧酸单酯。
具体地,当n为2时,结构式(I-1)所示的二羧酸单酯是马来酸单酯(即,顺丁烯二酸单酯)、富马酸单酯(即,反丁烯二酸单酯);当n为3时,结构式(I-1)所示的二羧酸单酯是衣康酸单酯、柠康酸单酯(即,甲基马来酸单酯)、甲基富马酸单酯(即,甲基反丁烯二酸单酯)、戊烯二酸单酯等;当n为4时,结构式(I-1)所示的二羧酸单酯优选为2,3-二甲基马来酸单酯、乙基马来酸单酯、己烯二酸单酯等。
优选地,结构式(I-1)所示的二羧酸单酯选自马来酸单酯、富马酸单酯、衣康酸单酯、柠康酸单酯、甲基富马酸单酯、2,3-二甲基马来酸单酯、戊烯二酸单酯等,更优选选自马来酸单酯和衣康酸单酯。
进一步优选地,结构式(I-1)所示的二羧酸单酯选自具有结构式(I-1-1)的马来酸单酯,
Figure PCTCN2022102570-appb-000007
具有结构式(I-1-2)的衣康酸单酯,或者
Figure PCTCN2022102570-appb-000008
或具有结构式(I-1-3)的衣康酸单酯,
Figure PCTCN2022102570-appb-000009
其中R的定义如前所述。
特别优选地,当R是正构烷基时,结构式(I-1-1)的马来酸单酯可以选自马来酸单甲酯、马来酸单乙酯、马来酸单正丙酯、马来酸单正丁酯、马来酸单正戊酯、马来酸单正己酯、马来酸单正庚酯、马来酸单正辛酯、马来酸单正壬酯、马来酸单正癸酯、马来酸单正十一酯、马来酸单正十二酯(月桂酯)、马来酸单正十四酯、马来酸单正十六酯、马来酸单正十八酯等,优选马来酸单甲酯、马来酸单乙酯、马来酸单正丙酯、马来酸单正丁酯、马来酸单正辛酯、马来酸单正壬酯、马来酸单正癸酯、马来酸单正十二酯等,更优选为马来酸单正丁酯、马来酸单正戊酯、马来酸单正辛酯、马来酸单正壬酯、马来酸正癸酯;结构式(I-1-2)和(I-1-3)所述的衣康酸单酯可以选自衣康酸单甲酯、衣康酸单乙酯、衣康酸单正丙酯、衣康酸单正丁酯、衣康酸单正戊酯、衣康酸单正己酯、衣康酸单正庚酯、衣康酸单正辛酯、衣康酸单正壬酯、衣康酸单正癸酯、衣康酸单正十一酯、衣康酸单正十二酯(月桂酯)、 衣康酸单正十四酯、衣康酸单正十六酯、衣康酸单正十八酯等,优选衣康酸单甲酯、衣康酸单乙酯、衣康酸单正丙酯、衣康酸单正丁酯、衣康酸单正辛酯、衣康酸单正癸酯、衣康酸单正十二酯(月桂酯)、衣康酸单正十八酯等,更优选为衣康酸单正丁酯、衣康酸单正戊酯、衣康酸单正辛酯、衣康酸单正壬酯、衣康酸单正癸酯。
特别优选地,当R是异构烷基时,结构式(I-1-1)所述的马来酸单酯可以选自马来酸单异丙酯、马来酸单异丁酯、马来酸单仲丁酯、马来酸单叔丁酯、马来酸单异戊酯、马来酸单异己酯、马来酸单异辛酯(马来酸单2-乙基己酯)、马来酸单异壬酯、马来酸单异癸酯、马来酸单异十一酯、马来酸单异十二酯、马来酸单异十三酯、马来酸单异十四酯、马来酸单异十五酯、马来酸单异十七酯等,优选马来酸单异丙酯、马来酸单异丁酯、马来酸单仲丁酯、马来酸单异辛酯、马来酸单异壬酯、马来酸单异癸酯,马来酸单异十一酯、马来酸单异十三酯,马来酸单异十八酯等,更优选为马来酸单叔丁酯、马来酸单仲丁酯、马来酸单异戊酯、马来酸单异辛酯(马来酸单2-乙基己酯)、马来酸单异壬酯、马来酸单异十一酯、马来酸单异十三酯;结构式(I-1-2)和(I-1-3)所述的衣康酸单酯可以选自衣康酸单异丙酯、衣康酸单异丁酯、衣康酸单仲丁酯、衣康酸单叔丁酯、衣康酸单异戊酯、衣康酸单异己酯、衣康酸单异辛酯(衣康酸单2-乙基己酯)、衣康酸单异壬酯、衣康酸单异癸酯,衣康酸单异十一酯、衣康酸单异十三酯等,优选衣康酸单异丙酯、衣康酸单异丁酯、衣康酸单异辛酯(衣康酸单2-乙基己酯)、衣康酸单异壬酯、衣康酸单异癸酯,衣康酸单异十一酯,衣康酸单异十八酯等,更优选为衣康酸单叔丁酯、衣康酸单异戊酯、衣康酸单异己酯、衣康酸单异辛酯(衣康酸单2-乙基己酯)、衣康酸单异壬酯、衣康酸单异十一酯。
特别优选地,当R是不饱和直链或支链脂烃基时,结构式(I-1-1)所述的马来酸单酯可以选自马来酸单烯丙酯、马来酸单3-丁烯-1-醇酯、马来酸单异戊烯醇酯、马来酸单3-己烯-1-醇酯、马来酸单1-庚烯-3-醇酯、马来酸单甲基庚烯醇酯、马来酸单2-辛烯-1-醇酯、马来酸单3-壬烯-1-醇酯、马来酸单2-癸烯-1-醇酯、马来酸单7-十二碳烯-1-醇酯、马来酸单1,5-己二烯醇酯、马来酸单2,4-壬二烯-1-醇酯、马来酸单2,4-癸二烯-1-醇酯、马来酸单9,11-十二碳二烯醇酯、马来酸单油醇酯等, 优选马来酸单烯丙酯、马来酸单3-丁烯-1-醇酯、马来酸单异戊烯醇酯、马来酸单3-己烯-1-醇酯、马来酸单1-庚烯-3-醇酯、马来酸单甲基庚烯醇酯、马来酸单3-壬烯-1-醇酯、马来酸单2,4-癸二烯-1-醇酯、马来酸单油醇酯等,更优选为马来酸单2-辛烯-1-醇酯、马来酸单3-壬烯-1-醇酯、马来酸单2-癸烯-1-醇酯、马来酸单油醇酯;结构式(I-1-2)和(I-1-3)所述的衣康酸单酯可以选自衣康酸单烯丙酯、衣康酸单2-丁烯-1-醇酯、衣康酸单3-丁烯-1-醇酯、衣康酸单异戊烯醇酯、衣康酸单3-己烯-1-醇酯、衣康酸单1-庚烯-3-醇酯、衣康酸单甲基庚烯醇酯、衣康酸单2-辛烯-1-醇酯、衣康酸单3-壬烯-1-醇酯、衣康酸单2-癸烯-1-醇酯、衣康酸单7-十二碳烯-1-醇酯、衣康酸单1,5-己二烯醇酯、衣康酸单2,4-壬二烯-1-醇酯、衣康酸单2,4-癸二烯-1-醇酯、衣康酸单9,11-十二碳二烯醇酯、衣康酸单油醇酯等,优选衣康酸单烯丙酯、衣康酸单3-丁烯-1-醇酯、衣康酸单异戊烯醇酯、衣康酸单3-己烯-1-醇酯、衣康酸单3-壬烯-1-醇酯、衣康酸单油醇酯等,更优选为衣康酸单2-辛烯-1-醇酯、衣康酸单3-壬烯-1-醇酯、衣康酸单油醇酯。
特别优选地,当R是脂环烃基时,结构式(I-1-1)所述的马来酸单酯可以选自马来酸单环丁酯、马来酸单环戊酯、马来酸单环己酯、马来酸单3-环己烯-1-甲酯和马来酸单2-环己烯酯等;结构式(I-1-2)和(I-1-3)所述的衣康酸单酯可以选自衣康酸单环己酯、衣康酸单2-环己烯酯等。
特别优选地,当R是烃基取代的芳基时,结构式(I-1-1)所述的马来酸单酯可以选自马来酸单对壬基苯酯、马来酸单对十二烷基苯酯等;结构式(I-1-2)和(I-1-3)所述的衣康酸单酯可以选自衣康酸单对壬基苯酯、衣康酸单对十二烷基苯酯。
特别优选地,当R是芳基取代的烃基时,结构式(I-1-1)所述的马来酸单酯可以选自马来酸单苄酯、马来酸单苯乙醇酯、马来酸单苯丙醇酯;结构式(I-1-2)和(I-1-3)所述的衣康酸单酯可以选自衣康酸单苄酯、衣康酸单苯乙醇酯、衣康酸单苯丙醇酯等。
根据本申请,所述结构式(I-2)所示的二羧酸单酯是C 3-10饱和直链或支链二元羧酸的一个羧基被酯化得到的二羧酸单酯。
在进一步优选的实施方式中,所述结构式(I-2)所示的二羧酸单酯是饱和直链二羧酸的单酯,即结构式(I-2)中的两个羰基之间的碳链为饱和直链的二羧酸单酯。
特别优选地,结构式(I-2)所示的二羧酸单酯选自丙二酸单酯、丁二酸单酯(即,琥珀酸单酯)、戊二酸单酯、己二酸单酯、庚二酸单酯、辛二酸单酯、壬二酸单酯、癸二酸单酯、十一碳二酸单酯、十二碳二酸单酯、十三碳二酸单酯、十四碳二酸单酯、十六碳二酸单酯、十八碳二酸单酯等。
尤其特别优选地,结构式(I-2)所示的二羧酸单酯选自丙二酸单酯、丁二酸单酯、戊二酸单酯、己二酸单酯、壬二酸单酯和癸二酸单酯。
作为例子,对于所述丙二酸单酯,进一步优选丙二酸单甲酯、丙二酸单乙酯、丙二酸单丙酯、丙二酸单正丁酯、丙二酸单正己酯、丙二酸单正辛酯、丙二酸单正癸酯、丙二酸单正十二酯(月桂酯)、丙二酸单异丁酯、丙二酸单叔丁酯、丙二酸单异辛酯、丙二酸单异壬酯、丙二酸单异癸酯,丙二酸单异十一酯、丙二酸单异十三酯、丙二酸单油醇酯(丙二酸单-9-十八烯醇酯)、丙二酸单环己酯、丙二酸单-3-环己烯-1-甲酯、丙二酸单对壬基苯酯、丙二酸单苄酯等。
作为例子,对于所述丁二酸单酯,进一步优选丁二酸单正丁酯、丁二酸单仲丁酯、丁二酸单正己酯、丁二酸单正辛酯、丁二酸单正癸酯、丁二酸单正十二酯(月桂酯)、丁二酸单异丁酯、丁二酸单叔丁酯、丁二酸单异戊酯、丁二酸单异己酯、丁二酸单异辛酯、丁二酸单异壬酯、丁二酸单异癸酯,丁二酸单异十一酯、丁二酸单异十三酯、丁二酸单油醇酯(丁二酸单-9-十八烯醇酯)、丁二酸单环己酯、丁二酸单3-环己烯-1-甲酯、丁二酸单对壬基苯酯、丁二酸单苄酯等。
作为例子,对于所述戊二酸单酯,进一步优选戊二酸单甲酯、戊二酸单乙酯、戊二酸单丙酯、戊二酸单正丁酯、戊二酸单正己酯、戊二酸单正辛酯、戊二酸单正癸酯、戊二酸单正十二酯(月桂酯)、戊二酸单异丁酯、戊二酸单叔丁酯、戊二酸单异辛酯、戊二酸单异壬酯、戊二酸单异癸酯,戊二酸单异十一酯、戊二酸单异十三酯、戊二酸单油醇酯(戊二酸单-9-十八烯醇酯)、戊二酸单环己酯、戊二酸单-3-环己烯-1-甲酯、戊二酸单对壬基苯酯、戊二酸单苄酯等。
作为例子,对于所述己二酸单酯,进一步优选己二酸单甲酯、己二酸单乙酯、己二酸单正丁酯、己二酸单正己酯、己二酸单正辛酯、己二酸单正癸酯、己二酸单正十二酯(月桂酯)、己二酸单丙酯、己二酸单异丁酯、己二酸单异辛酯、己二酸单异壬酯、己二酸单异癸酯, 己二酸单异十一酯、己二酸单异十三酯、己二酸单油醇酯(己二酸单-9-十八烯醇酯)、己二酸单环己酯、己二酸单-3-环己烯-1-甲酯、己二酸单对壬基苯酯、己二酸单苄酯等。
作为例子,对于所述壬二酸单酯,进一步优选壬二酸单甲酯、壬二酸单乙酯、壬二酸单丙酯、壬二酸单正丁酯、壬二酸单正己酯、壬二酸单正辛酯、壬二酸单正癸酯、壬二酸单正十二酯(月桂酯)、壬二酸单异丁酯、壬二酸单异辛酯、壬二酸单异壬酯、壬二酸单异癸酯,壬二酸单异十一酯、壬二酸单异十三酯、壬二酸单油醇酯(壬二酸单-9-十八烯醇酯)、壬二酸单环己酯、壬二酸单-3-环己烯-1-甲酯、壬二酸单对壬基苯酯、壬二酸单苄酯等。
作为例子,对于所述癸二酸单酯,进一步优选癸二酸单甲酯、癸二酸单乙酯、癸二酸单丙酯、癸二酸单正丁酯、癸二酸单正己酯、癸二酸单正辛酯、癸二酸单正癸酯、癸二酸单正十二酯(月桂酯)、癸二酸单异丁酯、癸二酸单异辛酯、癸二酸单异壬酯、癸二酸单异癸酯,癸二酸单异十一酯、癸二酸单异十三酯、癸二酸单油醇酯(癸二酸单-9-十八烯醇酯)、癸二酸单环己酯、癸二酸单-3-环己烯-1-甲酯、癸二酸单对壬基苯酯、癸二酸单苄酯等。
根据本申请,所述结构式(I-3)所示的二羧酸单酯是主链中包含具有3-10个碳原子的任选取代的饱和或不饱和碳环结构的C 5-12二元羧酸的一个羧基被酯化得到的二羧酸单酯。优选地,m是0,Q是C 4-8的取代或未取代的二价脂环族烃基或者C 6-10的取代或未取代的二价芳基,R为C 4-12的烃基。
特别优选地,结构式(I-3)所示的二羧酸单酯选自1,2-环己烷二甲酸单酯,四氢临苯二甲酸单酯(即,4-环己烯-1,2-二甲酸单酯),邻苯二甲酸单酯,对苯二甲酸单酯,3-甲基六氢苯二甲酸单酯(即,3-甲基-1,2-环己二甲酸单酯)、4-甲基六氢苯二甲酸单酯(即,4-甲基-1,2-环己二甲酸单酯)、甲基六氢临苯二甲酸单酯、甲基四氢苯二甲酸单酯、4-甲基-4-环己烯-1,2-二甲酸单酯和3-甲基-4-环己烯-1,2-二甲酸单酯等。
尤其特别优选地,结构式(I-3)所示的二羧酸单酯选自1,2-环己二甲酸单酯、四氢临苯二甲酸单酯、邻苯二甲酸单酯、甲基六氢临苯二甲酸单酯和甲基四氢临苯二甲酸单酯,例如1,2-环己二甲酸单丁酯、1,2-环己二甲酸单辛酯、1,2-环己二甲酸单异辛酯、1,2-环己二甲酸单异壬 酯、四氢临苯二甲酸单丁酯、四氢临苯二甲酸单辛酯、四氢临苯二甲酸单异辛酯、四氢临苯二甲酸单异壬酯、邻苯二甲酸单丁酯、邻苯二甲酸单辛酯、邻苯二甲酸单异辛酯、邻苯二甲酸单异壬酯、甲基六氢临苯二甲酸单丁酯、甲基六氢临苯二甲酸单丁酯、甲基六氢临苯二甲酸单辛酯、甲基六氢临苯二甲酸单异辛酯、甲基六氢临苯二甲酸单异壬酯、甲基六氢临苯二甲酸单月桂酯、甲基四氢临苯二甲酸单丁酯、甲基四氢临苯二甲酸单辛酯、甲基四氢临苯二甲酸单异辛酯、甲基四氢临苯二甲酸单异壬酯、甲基四氢临苯二甲酸单月桂酯等。
在某些特别优选的实施方式中,所述结构式(I-1)、(I-2)或(I-3)所示的二羧酸单酯选自马来酸单丁酯、马来酸单异辛酯、马来酸单异壬酯、丁二酸单异辛酯、邻苯二甲酸单己酯、邻苯二甲酸单异辛酯、甲基四氢临苯二甲酸单异辛酯、柠康酸单异辛酯、衣康酸单异辛酯、丙二酸单叔丁酯。最优选地,所述二羧酸单酯选自马来酸单丁酯、马来酸单异辛酯、马来酸单异壬酯、衣康酸单异辛酯、丁二酸单异辛酯、邻苯二甲酸单己酯、邻苯二甲酸单异辛酯、甲基四氢临苯二甲酸单异辛酯、丙二酸单叔丁酯。
根据本申请,所述结构式(I-1)、(I-2)或(I-3)所示的二羧酸单酯可以通过使饱和二羧酸、不饱和二羧酸、环状二羧酸或苯二羧酸及其酸酐与C 3-20的醇或者酚反应得到。所述反应的条件包括:使二羧酸或者酸酐与C 2-20的醇或者酚按照摩尔比1∶0.5至1∶1.5进行反应,反应温度为50-250℃,反应时间为0.1-10hr,反应压力可以是常压,也可以在一定压力下进行。
在某些进一步优选的实施方式中,所述组分A的二羧酸单酯选自具有结构式(I-4)的二羧酸单酯:
Figure PCTCN2022102570-appb-000010
其中,R 8为C 2-10的二价烃基;R 9为氢或者含或不含双键的烃基,R 10为含或不含双键的二价烃基,R 9和R 10的总碳数为15-21;R 11为氢或C 1-10的烃基。
在进一步优选的实施方式中,R 9和R 10的总碳数为15-21,总双键数为0-3,例如R 9和R 10可以各自独立地选自烷基、烯基、二烯基等等。
在进一步优选的实施方式中,R 11为氢或C 1-4的烃基,包括C 1-4的链烷基和C 2-4的链烯基,例如甲基、乙基、正丙基、丙烯基、正丁基、异丁基、丁烯基等,最优选为氢、甲基或乙基。
在进一步优选的实施方式中,R 8可以为具有2-10个碳原子的亚烷基、亚烯基、烷基取代的亚烷基、烷基取代的亚烯基、烯基取代的亚烷基、烯基取代的亚烯基,亚环烷基、烷基取代的亚环烷基、烯基取代的亚环烷基、亚环烯基、烷基取代的亚环烯基、烯基取代的亚环烯基、亚芳基、烷基取代的亚芳基或烯基取代的亚芳基;所述亚烷基可以是正构亚烷基或异构亚烷基,所述亚烯基可以是正构亚烯基或异构亚烯基;更优选地,R 8为C 2-8的亚烷基、C 2-8的亚烯基、C 2-8的烷基或烯基取代的亚烷基、C 2-8的烷基或烯基取代的亚烯基,C 3-8的亚环烷基、C 3-8的亚环烯基、C 6-8的烷基或烯基取代的亚环烷基、C 6-8的烷基或烯基取代的亚环烯基,C 6-10的亚芳基、C 7-10的烷基或烯基取代的亚芳基,如亚乙基、亚乙烯基、甲叉亚乙基、甲基亚乙基、亚丁基、甲基亚丁基、亚丁烯基、亚苯基、环己亚基、甲基六氢苯亚基、甲基四氢苯亚基等等。
在更进一步优选的实施方式中,在结构式(I-4)中,R 8为C 2-8的二价烃基;R 9为氢或烃基,R 10为二价烃基,且R 9和R 10的总碳数为15-21, 总碳碳双键数为0-3;R 11为氢或C 1-4的烃基。
根据本申请,所述结构式(I-4)所示的二羧酸单酯可以通过使羟基脂肪酸和/或羟基脂肪酸酯(简称为“羟基脂肪酸(酯)”)与二元羧酸和/或其酸酐进行酯化反应得到。所述酯化反应的条件可以包括:温度为30-300℃范围,优选为50-250℃,更优选为70-180℃;反应时间为0.5-30小时,优选2-20小时,更优选4-10小时。所述酯化反应任选在溶剂和催化剂存在下进行,所述溶剂可以是甲苯、二甲苯、乙苯、石油醚、溶剂油、环己烷、正辛烷或其混合物,所述催化剂可以是酸催化剂,如硫酸、对甲苯磺酸、磷酸、硼酸等。
作为示例,所述羟基脂肪酸可以选自羟基十八酸(羟基硬脂酸)、羟基十八烯酸(蓖麻油酸)、羟基十八碳二烯酸、羟基二十二酸、羟基二十二烯酸、羟基二十四酸、羟基二十四烯酸等,优选选自蓖麻油酸、羟基硬脂酸、和羟基十八碳二烯酸。
作为示例,所述羟基脂肪酸酯可以选自羟基十八酸甲酯(羟基硬脂酸甲酯)、羟基十八烯酸甲酯(蓖麻油酸甲酯)、蓖麻油酸乙酯、羟基十八碳二烯酸甲酯、羟基二十二酸甲酯、羟基二十二烯酸甲酯、羟基二十四酸甲酯、羟基二十四烯酸甲酯等,优选选自蓖麻油酸甲酯、反蓖麻酸甲酯、蓖麻油酸乙酯和羟基十八碳二烯酸甲酯。
作为示例,所述二元羧酸可以为饱和二元羧酸,例如选自丁二酸(琥珀酸)、戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十一烷二酸、十二烷二酸等中的一种或多种;优选选自丁二酸、甲基丁二酸、二甲基丁二酸、辛基丁二酸中的一种或多种。
或者,所述二元羧酸可以为不饱和二元羧酸,例如选自顺丁烯二酸(马来酸)、反丁烯二酸(富马酸)、顺式甲基丁烯二酸(柠康酸)、反式甲基丁烯二酸(中康酸)、二甲基马来酸、衣康酸(甲叉琥珀酸、亚甲基丁二酸)、戊烯二酸、反-3-己烯二酸、丁炔二酸、2-丁烯-1,4-二甲酸、已二烯二酸、庚烯二酸、辛烯二酸、壬烯二酸、癸烯二酸、癸二烯二酸、十一烯二酸、十二烯二酸等;也可以选自戊烯基丁二酸、己二烯基丁二酸、庚烯基丁二酸、辛烯基丁二酸、壬烯基丁二酸、癸烯基丁二酸等中的一种或多种,优选选自顺丁烯二酸(马来酸)、反丁烯二酸(富马酸)、顺式甲基丁烯二酸(柠康酸)、反式甲基丁烯二酸(中康酸)、二甲基马来酸、衣康酸(甲叉琥珀酸、亚甲基丁二酸)、2-丁烯-1,4- 二甲酸、癸烯基丁二酸中的一种或多种。
作为示例,所述饱和二元羧酸的酸酐可以选自丁二酸酐(琥珀酸酐)、戊二酸酐、己二酸酐、邻苯二甲酸酐(苯酐)、六氢苯酐、四氢苯酐、甲基六氢苯酐、甲基四氢苯酐等;也可以是甲基戊二酸酐、甲基丁二酸酐、二甲基丁二酸酐、乙基丁二酸酐、丙基丁二酸酐、丁基丁二酸酐、戊基丁二酸酐、己基丁二酸酐、庚基丁二酸酐、辛基丁二酸酐、壬基丁二酸酐、癸基丁二酸酐等中的一种或多种,优选选自顺丁烯二酸酐(马来酸酐)、2,3-二甲基马来酸酐、柠康酸酐、衣康酸酐、戊烯二酸酐等中的一种或多种。
作为示例,所述不饱和二元羧酸的酸酐可以选自(2-甲基-2-丙烯)基丁二酸酐、乙烯基丁二酸酐、丙烯基丁二酸酐、丁烯基丁二酸酐、三异丁烯基丁二酸酐、戊烯基丁二酸酐、3-甲基-己烯基丁二酸酐、庚烯基丁二酸酐、辛烯基丁二酸酐、壬烯基丁二酸酐、癸烯基丁二酸酐等中的一种或多种。
特别优选地,所述二元羧酸的酸酐选自马来酸酐、柠康酸酐、衣康酸酐、丁二酸酐、戊二酸酐、邻苯二甲酸酐(苯酐)、六氢苯酐、四氢苯酐、甲基六氢苯酐、甲基四氢苯酐、甲基丁二酸酐、二甲基丁二酸酐、壬基丁二酸酐、癸基丁二酸酐、壬烯基丁二酸酐、癸烯基丁二酸酐等中的一种或多种。
在特别优选的实施方式中,所述结构式(I-4)所示的二羧酸单酯化合物选自马来酸单酯基蓖麻油酸甲酯、马来酸单酯基蓖麻油酸、琥珀酸单酯基蓖麻油酸甲酯、琥珀酸单酯基蓖麻油酸、琥珀酸单酯基12-羟基硬脂酸甲酯、马来酸单酯基12-羟基硬脂酸甲酯、邻苯二甲酸单酯基蓖麻油酸甲酯、甲基六氢邻苯二甲酸单酯基蓖麻油酸甲酯、甲基四氢邻苯二甲酸单酯基蓖麻油酸甲酯,或者它们的任意组合。
组分B
根据本申请,所述组分B是C 8-24的长链脂肪酸、C 8-24长链脂肪酸的多元醇酯,或者它们的混合物。
作为示例,所述C 8-24的长链脂肪酸可以选自辛酸、癸酸、月桂酸(十二酸)、肉豆蔻酸(十四酸)、棕榈酸(十六酸)、棕榈油酸(十六烯酸)、硬脂酸(十八酸)、油酸(十八烯酸)、亚油酸(十八二烯酸)、亚麻酸(十八三烯酸)、蓖麻酸(羟基十八烯酸)、羟基硬脂酸、花生 酸(二十酸)、花生烯酸(二十烯酸)、山萮酸(二十二酸)、芥酸(二十二烯酸)等及其混合物。
在优选的实施方式中,所述组分B选自C 12-20的不饱和脂肪酸、C 12-20不饱和脂肪酸的多元醇酯,或者它们的混合物。
作为示例,所述C 12-20的不饱和脂肪酸优选选自油酸、亚油酸、亚麻酸、蓖麻酸,或者它们的组合物,或者选自以油酸、亚油酸、亚麻酸、蓖麻酸为主要成分的脂肪酸混合物。
天然油脂或废弃油脂经水解可生产各种脂肪酸的混合物,经蒸馏或尿素包合、低温冷冻结晶可得到以不饱和脂肪酸为主的产物,生物柴油经过蒸馏或尿素包合、低温冷冻结晶后在水解也可以生产不饱和脂肪酸。来源于造纸工业的妥尔油脂肪酸含有大量不饱和脂肪酸。这些产品都是优选的组分B。以妥尔油、棉籽油、棉籽酸化油、大豆油、大豆酸化油等为原料水解精制而成的不饱和脂肪酸混合物也是优选的组分B,例如江苏创新石化有限公司生产的不饱和脂肪酸JC2006S、新疆大森化工有限公司不饱和脂肪酸KMJ-031、江西西林科股份有限公司生产的不饱和脂肪酸R90等。
根据本申请,所述长链脂肪酸的多元醇酯是上述长链饱和或不饱和脂肪酸与多元醇进行酯化反应生成的各种酯化产物,例如单酯、二酯和三酯及其混合物。
作为示例,所述多元醇包括但不限于乙二醇、甘油(丙三醇)、1,2-丙二醇、1,3-丙二醇、失水山梨醇、季戊四醇、三羟甲基丙烷等,优选甘油。
在优选的实施方式中,所述多元醇酯为甘油酯,优选为甘油单酯和甘油二酯,进一步优选不饱和脂肪酸的单甘油酯,最优选油酸单甘油酯、亚油酸单甘油酯、亚麻酸单甘油酯、蓖麻酸单甘油酯。优选用不饱和脂肪酸与甘油进行酯化反应生成的甘油酯作为组分B,例如江苏创新石化有限公司JC-2017Z等。
第二方面,提供了制备本申请的燃油润滑性改进剂组合物的方法,包括将组分A与组分B以9∶1至1∶9,优选7∶3至3∶7,更优选6∶4至4∶6的质量比混合均匀。
第三方面,本申请提供了一种改善柴油润滑性的方法,包括向低硫柴油中添加本申请的燃油润滑性改进剂组合物,其中以所述低硫柴 油的质量计,所述燃油润滑性改进剂组合物的添加量优选为10-400ppm,更优选为50-200ppm。
第四方面,本申请提供了一种柴油组合物,包括低硫柴油和本申请的燃油润滑性改进剂组合物,其中以所述低硫柴油的质量计,所述柴油组合物中的所述燃油润滑性改进剂组合物的含量优选为10-400ppm,更优选为50-200ppm。
适于使用本申请的润滑性改进剂的低硫柴油包括各种低硫柴油机燃料。例如,可以是原油(石油)经炼油厂的各种炼制工艺如常减压、催化裂化、催化重整、焦化、加氢精制、加氢裂化等装置处理后的馏程在160-380℃之间的馏分,并经过调配而成的满足车用柴油国家标准GB/T 19147的压燃式内燃机用燃料。
所述低硫柴油也可以是第二代生物柴油,第二代生物柴油衍生自可再生资源,如植物油和动物脂,并通常在精炼厂中通常使用加氢处理法,对植物油氢化处理,通过氢化产生异构化或非异构化的长链烃,第二代生物柴油在性质和品质上可能类似于石油基燃料油。
所述低硫柴油还可以是第三代生物柴油,第三代生物柴油是高纤维素含量的非油脂类生物质如木屑、农作物秸秆和固体废弃物等和微生物油脂采用气化和费托技术处理而得。
所述低硫柴油还还可以是煤液化柴油(CTL),指煤经费托合成而获得的柴油机燃料,或煤直接液化而获得的柴油机燃料。也可以是石油基柴油中加入含氧柴油调合组分的混合柴油,其中含氧柴油调合组分是指可与各种柴油机燃料调配成符合一定规范要求的含氧化合物或含氧化合物的混合物,通常是醇类和醚类或其混合物,例如乙醇、聚甲氧基二甲醚(Polyoxymethylene dimethyl ethers,简称PODEn、DMMn或OME)等。
根据使用需要,本申请的柴油组合物中,还可以含有其它添加剂,如酚型抗氧剂、高分子胺型无灰分散剂、流动改进剂、十六烷值改进剂、金属钝化剂、抗静电剂、防腐剂、防锈剂、破乳剂中的一种或多种。
实施例
下面将通过实施例来进一步说明本申请,但是本申请并不因此而 受到任何限制。
以下实施例和对比例中,如无特殊表示,所用试剂和原料均为市售材料,纯度为试剂纯。
以下实施例和对比例中,所得产品的红外光谱图通过赛默飞Nicolet iS50傅立叶变换红外光谱仪测量得到。
以下实施例和对比例中,所得产物的组成分析用安捷伦7890A-5975C气质联用仪进行,色谱条件:初始温度为50℃,升温速率为5℃/min,色谱柱温度为300℃,采用火焰离子化检测器(FID),面积归一法定量,色谱柱为HP-5。
以下实施例和对比例中,添加润滑性改进剂组合物前后的柴油的磨斑照片采用SH/T 0765方法在高频往复试验机(High-Frequency Reciprocating Rig,HFRR,英国PCS仪器公司)上测定60℃时的磨痕直径(Wear Scar Diameter,WSD)得到。
二羧酸单酯制备例
制备例1马来酸单异壬酯
在一2000mL装有电动搅拌器、温度计的反应器中,加入490g马来酸酐(顺丁烯二酸酐,质量分数为99.5%,淄博齐翔腾达化工股份有限公司生产)和720g异构壬醇(Exxal TM9s,质量分数为99.5%,Exxon-Mobil公司生产),马来酸酐与异构壬醇的摩尔比约为1∶1,加热搅拌升温至85℃,反应5小时后升温至150℃减压蒸馏除去未反应的异壬醇和马来酸酐,得到1006g产品。所得产品的红外光谱图如图1所示,通过气质联用仪分析其中马来酸单异壬酯含量约为90.5%,马来酸双异壬酯含量约为8.6%。
制备例2丁二酸单异辛酯
在一2000mL装有电动搅拌器、温度计、回流冷凝管的反应器中,加入490g丁二酸酐(琥珀酸酐,质量分数为99%,上海申人精细化工有限公司生产)和700g异辛醇(2-乙基己醇,质量分数为99.9%,中国石油化工股份有限公司齐鲁石化分公司生产),丁二酸酐与异辛醇的摩尔比约为1∶1.1,加热搅拌升温至110℃,反应4小时后升温到160℃并减压蒸馏除去未反应的异辛醇,得到1109g产品,通过气质联用仪分析其中丁二酸单异辛酯含量约为86.7%。
制备例3甲基四氢临苯二甲酸单异辛酯
在一500mL装有电动搅拌器、温度计的反应器中,加入166g甲基四氢邻苯二甲酸酐(质量分数为98%,山东佑晟化工有限公司生产)和143g异辛醇(质量分数为99.5%,中国石油化工股份有限公司齐鲁分公司生产),甲基四氢邻苯二甲酸酐与异辛醇的摩尔比约为1∶1.1,加热搅拌升温至110℃,反应3.5小时后升温到165℃并减压蒸馏回收未反应的原料,得到243g产品,通过气质联用仪分析其中甲基四氢邻苯二甲酸单异辛酯含量约为85%。
制备例4柠康酸单异辛酯
在一500mL装有电动搅拌器、温度计、回流冷凝管的反应器中,加入112g甲基马来酸酐(柠康酸酐,分析纯试剂,购自上海阿拉丁生化科技股份有限公司)和143g异辛醇(2-乙基己醇,质量分数为99.9%,中国石油化工股份有限公司齐鲁石化分公司生产),甲基马来酸酐与异辛醇的摩尔比约为1∶1.1,加热搅拌升温至90℃,反应4小时后升温到140℃并减压蒸馏除去未反应的异辛醇,得到245g柠康酸酸单异辛酯为主的产品。
制备例5十二烯基琥珀酸单异辛酯
在一500mL装有电动搅拌器、温度计、回流冷凝管的反应器中,加入200g十二烯基琥珀酸酐(分析纯试剂,购自北京伊诺凯科技有限公司)和117g异辛醇(2-乙基己醇,质量分数为99.9%,中国石油化工股份有限公司齐鲁石化分公司生产),十二烯基琥珀酸酐与异辛醇的摩尔比约为1∶1.2,加热搅拌升温至100℃,反应3小时后升温到150℃并减压蒸馏除去未反应的异辛醇,得到303g以十二烯基琥珀酸单异辛酯为主的产品。
制备例6马来酸单酯基蓖麻油酸甲酯
在一500mL装有电动搅拌器、温度计、回流冷凝管的反应器中,加入350.5g蓖麻油酸甲酯(质量分数为75%,购自上海阿拉丁生化科技股份有限公司)和100g马来酸酐(顺丁烯二酸酐,质量分数为99%,购自上海阿拉丁生化科技股份有限公司),蓖麻油酸甲酯与马来酸酐的摩尔比约为1.1∶1,加热搅拌升温至100℃,反应3小时,得到442.7g以马来酸单酯基蓖麻油酸甲酯为主的产品,通过气质联用仪分析其中马来酸单酯基蓖麻油酸甲酯含量约为88%。
反应流程图如反应式1所示。
Figure PCTCN2022102570-appb-000011
制备例7衣康酸单异辛酯
在一500mL装有电动搅拌器、温度计、回流冷凝管的反应器中,加入200g亚甲基琥珀酸酐(衣康酸酐,分析纯试剂,购自北京伊诺凯科技有限公司)和240.3g异辛醇(2-乙基己醇,质量分数为99.9%,中国石油化工股份有限公司齐鲁石化分公司生产),亚甲基琥珀酸酐与异辛醇的摩尔比约为1∶1.2,加热搅拌升温至100℃,反应3小时后升温140℃并减压蒸馏除去未反应的原料,得到429.7g以衣康酸单异辛酯为主的产品,通过气质联用仪分析其中衣康酸单异辛酯含量约为84%。
制备例8马来酸单苄醇酯
在一500mL装有电动搅拌器、温度计、回流冷凝管的反应器中,加入150g马来酸酐(顺丁烯二酸酐,分析纯试剂,购自北京伊诺凯科技有限公司)和198.5g苯甲醇(质量分数为99%,购自北京伊诺凯科技有限公司),马来酸酐与苯甲醇的摩尔比约为1∶1.2,加热搅拌升温至80℃,反应5小时后升温到150℃并减压蒸馏除去未反应的原料,得到343.6g以马来酸单苄醇酯为主的产品,通过气质联用仪分析其中马来酸单苄醇酯含量约为88%。
制备例9甲基四氢邻苯二甲酸单酯基蓖麻油酸甲酯
在一500mL装有电动搅拌器、温度计、回流冷凝管的反应器中,加入248g蓖麻油酸甲酯(质量分数为75%,购自上海阿拉丁生化科技股份有限公司)和100g甲基四氢邻苯二甲酸酐(质量分数为99%,购 自北京伊诺凯科技有限公司),蓖麻油酸甲酯与甲基四氢邻苯二甲酸酐的摩尔比约为1.1,加热搅拌升温至140℃,反应3小时,得到329.1g以甲基四氢邻苯二甲酸单酯基蓖麻油酸甲酯为主的产品,通过气质联用仪分析其中甲基四氢邻苯二甲酸单酯基蓖麻油酸甲酯的含量约为77%。
润滑性改进剂组合物实施例
按表1-1至表1-3所示的组分和质量比,将组分A和组分B均匀混合,配制得到实施例1-32和对比例1-5的润滑性改进剂组合物。
表1-1实施例1-8和对比例1-3的组合物
Figure PCTCN2022102570-appb-000012
Figure PCTCN2022102570-appb-000013
表1-1中,实施例1-2和对比例1-3提供用来说明本发明的润滑性改进剂组合物相比非本发明的润滑性改进剂组合物的性能改进;实施例3-5提供用来说明组分B为长链脂肪酸多元醇酯时,组分A的选择对于本发明的润滑性改进剂组合物的性能的影响;实施例5-8提供用来说明组分B为长链脂肪酸多元醇酯时,组分A/B的质量比的选择对于本发明的润滑性改进剂组合物的性能的影响。
表1-2实施例9-21和对比例4-5的组合物
Figure PCTCN2022102570-appb-000014
Figure PCTCN2022102570-appb-000015
表1-2中,实施例9-14提供用来说明组分B为长链脂肪酸时,组分A的选择对于本发明的润滑性改进剂组合物的性能的影响;实施例14-21和对比例4-5提供用来说明组分B为长链脂肪酸时,组分A/B的质量比的选择对于所得润滑性改进剂组合物的性能的影响。
表1-3实施例22-32的组合物
Figure PCTCN2022102570-appb-000016
Figure PCTCN2022102570-appb-000017
表1-3中,实施例22-32提供用来说明其他由组分A和组分B混合得到的本发明润滑性改进剂组合物的性能。
实施例1-32中所用的市售组分A的具体信息如下:
马来酸单异辛酯:购自TCI上海化成工业发展有限公司,纯度95%;
马来酸二异辛酯:购自北京伊诺凯科技有限公司,纯度95%;
丙二酸单叔丁酯:购自Ark Pharm公司,纯度大于97%;
马来酸单正丁酯:购自湖北巨胜科技有限公司,纯度99%;以及
邻苯二甲酸单己酯:购自上海阿拉丁生化科技股份有限公司,纯度98%。
实施例1-32所用的组分A中,具有结构式(I-1)的化合物包括马来酸单正丁酯(如实施例30)、马来酸单异壬酯(如实施例27)、柠康酸单异辛酯(如实施例22)等;具有结构式(I-2)的化合物包括丙二酸单叔丁酯(如实施例29)等;具有结构式(I-3)的化合物包括邻苯二甲酸单己酯(如实施例32)、甲基四氢临苯二甲酸单异辛酯(如实施例24)等;具有结构式(I-4)的化合物包括马来酸单酯基蓖麻油酸甲酯(如实施例13)等。
实施例1-32中所用的市售组分B的具体信息如下:
亚油酸:购自上海阿拉丁生化科技股份有限公司,纯度95%;
油酸:购自上海阿拉丁生化科技股份有限公司,分析纯;
妥尔油脂肪酸2LT:购自美国Arizonal公司,由妥尔油提纯得到的以亚油酸和油酸等不饱和脂肪酸为主的脂肪酸混合物;
不饱和脂肪酸KMJ-031、JC-2006S和R90:主要成分是亚油酸和油酸,具体信息如表2所示;
不饱和脂肪酸甘油酯JC-2017Z:主要成分是亚油酸和油酸与甘油酯化生成的单甘油酯和二甘油酯,具体信息如表2所示。
表2实施例和对比例中所用市售脂肪酸及脂肪酸酯产品的基本信息
Figure PCTCN2022102570-appb-000018
Figure PCTCN2022102570-appb-000019
测试例
将实施例1-32和对比例1-5的润滑性改进剂组合物分别与柴油混合,测试其在柴油中的使用效果。所用低硫柴油A来源于中石化燕山分公司,超低硫柴油B来源于中石化高桥分公司,柴油A和柴油B的理化性能见表3。
表3试验用柴油的理化性质
项目 柴油A 柴油B
密度(20℃)/(kg·m -3) 834.1 806.2
初馏点/℃ 192.0 210.1
5%温度/℃ 216.8 226.3
10%温度/℃ 227.5 231.3
20%温度/℃ 240.0 236.4
30%温度/℃ 251.2 242.1
40%温度/℃ 258.9 246.6
50%温度/℃ 269.0 250.3
60%温度/℃ 278.8 254.3
70%温度/℃ 291.2 258.3
80%温度/℃ 305.1 263.3
90%温度/℃ 325.6 273.6
95%温度/℃ 341.5 290.3
终馏点/℃ 345.8 305.7
残留量(ψ)/% 1.0 1.0
损失量(ψ)/% 1.4 1.3
酸度/(mgKOH·100mL -1) 0.45 0.51
20℃黏度/(mm 2·s -1) 4.512 3.421
40℃黏度/(mm 2·s -1) 2.913 2.290
10%残炭,% <0.05 <0.05
灰分,% <0.002 <0.002
冷滤点/℃ -5 -29
凝固点/℃ -10 -36
闭口闪点/℃ 73 82
w(硫)/mg·L -1 10 <5
水分,% 痕迹 痕迹
润滑性(HFRR)/μm 564 651
柴油的润滑性按照SH/T 0765方法在高频往复试验机(High-Frequency Reciprocating Rig,HFRR,英国PCS仪器公司)上测定60℃时的磨痕直径(Wear Scar Diameter,WSD),通过对温度和湿度的影响进行校正得磨斑直径WS1.4的报告结果。
添加润滑性改进剂组合物前后的柴油磨斑直径WS1.4值见表4-1、表4-2、表5-1、表5-2、表5-3和表5-4,其中磨斑直径越小表明柴油润滑性越好。目前,世界上多数柴油标准例如欧洲标准EN 590、中国车用柴油标准GB 19147、车用柴油北京市地方标准DB 11/239都以磨斑直径小于460μm(60℃)为柴油润滑性合格的依据。
表4-1实施例1和对比例1的组合物在柴油A中的测试结果
油样 加剂量(mg·kg -1) WS1.4(μm)
柴油A / 564
柴油A+马来酸单异辛酯 70 399
柴油A+马来酸单异辛酯 100 324
柴油A+亚油酸 30 525
柴油A+亚油酸 100 458
柴油A+实施例1产品 100 226
柴油A+实施例1产品 70 305
柴油A+对比例1产品 100 524
由表4-1的结果可见,空白柴油A的磨斑直径WS1.4为564μm(磨斑照片见图2),不满足车用柴油的使用性能要求。当单独使用100mg/kg的马来酸单异辛酯时能够将柴油A的磨斑直径WS1.4从564μm 降低到324μm,当单独使用100mg/kg的亚油酸时能够将柴油A的磨斑直径WS1.4从564μm降低到458μm,而使用100mg/kg实施例1中马来酸单异辛酯与亚油酸以质量比7∶3混合得到的组合物,能够将柴油A的磨斑直径WS1.4从564μm降低到226μm(磨斑照片见图3),这一结果是令人惊奇的。并且,即使将实施例1组合物的用量降低到70mg/kg,也能够将柴油A的磨斑直径WS1.4从564μm降低到305μm(磨斑照片见图4)。上述结果清楚表明,本申请的润滑性改进剂组合物的组分A和组分B之间具有显著的协同增效作用,使得组合物的润滑改善效果显著优于单独的组分A和组分B,因而可大幅降低润滑性改进剂的使用量。相比之下,对比例1使用马来酸二异辛酯与亚油酸以同样质量比混合得到的组合物润滑改善效果很差,没有显示出任何的协同增效作用。
表4-2实施例2和对比例2-3的组合物在柴油A中的测试结果
Figure PCTCN2022102570-appb-000020
由表4-2的结果可见,空白柴油A的磨斑直径WS1.4值为564μm,在该柴油中单独加入100mg/kg的马来酸二异辛酯,加剂柴油的WS1.4值为561μm,无润滑改善效果;在该柴油中单独加入100mg/kg的马来 酸单异辛酯,加剂柴油的WS1.4值为324μm(如表4-1所示);而在该柴油中单独加入100mg/kg的不饱和脂肪酸甘油酯JC-2017Z,加剂柴油的WS1.4值为469μm,仍无法满足使用性能要求。然而,使用实施例2中马来酸单异辛酯与不饱和脂肪酸甘油酯JC-2017Z以质量比5∶5混合得到的组合物,在100mg/kg的加剂量条件下能使加剂柴油的WS1.4值降低至212μm,表现出令人惊讶的润滑改善效果,即使在50mg/kg的加剂量条件下,也能使加剂柴油的WS1.4值降低至415μm,满足使用性能要求。相比之下,对比例2使用马来酸二异辛酯得到的组合物和对比例3使用十二烯基琥珀酸单异辛酯得到的组合物的润滑改善效果显著低于实施例2的组合物。
表5-1实施例1和对比例1的组合物在柴油B中的测试结果
油样 加剂量(mg·kg -1) WS1.4(μm)
柴油B / 651
柴油B+马来酸单异辛酯 200 233
柴油B+马来酸单异辛酯 100 466
柴油B+亚油酸 100 513
柴油B+亚油酸 200 413
柴油B+实施例1产品 200 189
柴油B+实施例1产品 100 256
柴油B+对比例1产品 200 584
由表5-1的结果可见,空白柴油B的磨斑直径WS1.4值为651μm(磨斑照片见图5),不满足车用柴油的使用性能要求。在该柴油中单独加入100mg/kg的马来酸单异辛酯,加剂柴油的WS1.4值为466μm,仍不满足使用性能要求;在该柴油中单独加入100mg/kg的亚油酸,加剂柴油的WS1.4值为513μm。将本申请实施例1的组合物以100mg/kg用量加入到该柴油中,加剂柴油的WS1.4值降低到256μm(磨斑照片见图6),以200mg/kg用量加入到该柴油中,加剂柴油的WS1.4值降低到189μm(磨斑照片见图7),加剂柴油的润滑性能得到显著改善。这一效果是出人意料的,说明实施例1组合物中马来酸单异辛酯与亚油酸之间存在显著的协同增效作用。相比之下,对比例1使用马来酸 二异辛酯与亚油酸以同样质量比混合得到的组合物润滑改善效果很差,没有显示出任何的协同增效作用。
表5-2实施例2-8和对比例2-3的组合物在柴油B中的测试结果
Figure PCTCN2022102570-appb-000021
由表5-2的结果可以看出:
1)在柴油B中单独加入100mg/kg的马来酸单异辛酯,加剂柴油的WS1.4值为412μm;在柴油B中单独加入100mg/kg的不饱和脂肪酸甘油酯JC-2017Z,加剂柴油的WS1.4值为459μm;而在柴油B中加入100mg/kg的实施例2的组合物,能够将柴油B的磨斑直径WS1.4降低到305μm,这一结果是出人意料的,表明实施例2的组合物中马 来酸单异辛酯与不饱和脂肪酸甘油酯JC-2017Z具有显著的协同增效作用。相比之下,对比例2使用马来酸二异辛酯得到的组合物和对比例3使用十二烯基琥珀酸单异辛酯得到的组合物的润滑改善效果显著低于实施例2的组合物,甚至低于单一的组分B,说明对比例2-3的组合物中各组分之间并未显示出协同增效作用;
2)在本申请所述的组分A/B质量比范围内,各实施例的组合物均显示出优异的润滑改善效果;
3)当组分B为长链脂肪酸多元醇酯时,在相同组分B和组分A/B质量比的条件下,在相同加剂量时,采用马来酸单异辛酯的实施例5组合物的润滑改善效果优于采用衣康酸单异辛酯的实施例3组合物和采用邻苯二甲酸单酯基蓖麻油酸甲酯的实施例4组合物;以及
4)在相同组分A和组分B的条件下,在相同加剂量时,组分A/B质量比为4 6的实施例6组合物的润滑改善效果显著优于组分A/B质量比更大的实施例5组合物和实施例8组合物,以及组分A/B质量比更小的实施例7组合物。
表5-3实施例9-21和对比例4-5的组合物在柴油B中的测试结果
Figure PCTCN2022102570-appb-000022
Figure PCTCN2022102570-appb-000023
由表5-3的结果可以看出:
1)当组分B为长链脂肪酸时,在相同组分B和组分A/B质量比的条件下,在相同加剂量时,采用丁二酸单异辛酯的实施例9组合物的润滑改善效果优于采用马来酸单苄醇酯的实施例11组合物;采用马来酸单异辛酯的实施例17组合物的润滑改善效果优于采用丙二酸单叔丁酯的实施例10组合物;而采用马来酸单异辛酯的实施例14组合物的润滑改善效果优于采用马来酸单酯基蓖麻油酸甲酯的实施例13组合物,进一步优于采用甲基四氢邻苯二甲酸单酯基蓖麻油酸甲酯的实施 例12组合物;
2)在本申请所述的组分A/B质量比范围内,各实施例的组合物均显示出优异的润滑改善效果,而组分A/B质量比为9.5∶0.5的对比例4组合物和组分A/B质量比为0.5∶9.5的对比例5的组合物的润滑改善效果显著低于实施例9-21的组合物,甚至低于单一的组分A,说明对比例4-6的组合物中各组分之间并未显示出协同增效作用;
3)当组分B为长链脂肪酸时,在相同组分A和组分B的条件下,当组分A/B质量比为1∶9时(如实施例15),在总加剂量120mg/kg(含有12mg/kg组分A)情况下,将柴油润滑性磨斑直径降低到398μm,而单独加入12mg/kg组分A几乎没有抗磨效果(643μm);当组分A/B质量比为2∶8时(如实施例16),在总加剂量120mg/kg(含有24mg/kg组分A)情况下,将柴油润滑性磨斑直径降低到367μm,而单独加入24mg/kg组分A抗磨效果较差(601μm),单独加入120mg/kg组分B的效果也较差(497μm),说明组分A和组分B出现了协同作用。在相同加剂量时,组分A/B质量比为7∶3的实施例20组合物的润滑改善效果优于组分A/B质量比更大的实施例21组合物、以及组分A/B质量比更小的实施例18组合物和实施例14组合物;并且,组分A/B质量比为6∶4的实施例19组合物的润滑改善效果优于组分A/B质量比为4∶6的实施例17组合物。
表5-4实施例22-32的组合物在柴油B中的测试结果
Figure PCTCN2022102570-appb-000024
Figure PCTCN2022102570-appb-000025
Figure PCTCN2022102570-appb-000026
由表5-4的结果可以看出,采用各种组分A与组分B配制的本申请的润滑性改进剂组合物均显示出优异的润滑改善效果,显著优于单一的组分A和组分B,在极少的添加量时就能大大改善柴油的润滑性。
综上,测试结果表明,在本申请的润滑性改进剂组合物中,所述组分A和组分B以特定比例混合后,表现出明显的协同作用,对柴油润滑性的改善效果显著优于单一的组分A和组分B,使得本申请的润滑性改进剂的添加量可以大大减少,降低了使柴油润滑性达到使用性能要求所需的添加剂成本,同时也降低了加入添加剂后副作用出现的风险。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (15)

  1. 一种燃油润滑性改进剂组合物,包含:
    组分A:具有如下结构式(I)的二羧酸单酯,
    Figure PCTCN2022102570-appb-100001
    其中,R 1为C 1-10的二价烃基;
    R 2为C 1-20烃基,或者具有-R 3-C(=O)-O-R 4结构的基团;
    R 3为C 8-24的二价烃基;
    R 4为氢或者C 1-10烃基;和
    组分B:C 8-24的长链脂肪酸、其多元醇酯或者它们的混合物,
    其中,所述组分A和组分B的总量为所述组合物的总重量的70-100wt%,优选80-100wt%,更优选90-100wt%;
    所述组分A与组分B的质量比为9∶1至1∶9。
  2. 根据权利要求1所述的组合物,其中组分B为C 8-24的长链脂肪酸,且所述组分A与组分B的质量比为8∶2至2∶8,优选为7∶3至3∶7,更优选为7∶3至5∶5。
  3. 根据权利要求1所述的组合物,其中组分B为C 8-24的长链脂肪酸的多元醇酯,且所述组分A与组分B的质量比为8∶2至1∶9,优选为8∶2至2∶8,更优选为5∶5至2∶8。
  4. 根据权利要求1所述的组合物,其中所述组分B为C 8-24的长链脂肪酸,并且以所述组合物的重量计,所述组合物包含20-80wt%,优选30-70wt%、更优选50-70wt%的组分A,和20-80wt%,优选30-70wt%,更优选30-50wt%的组分B。
  5. 根据权利要求1所述的组合物,其中所述组分B为C 8-24的长链脂肪酸的多元醇酯,并且以所述组合物的重量计,所述组合物包含10-80wt%,优选20-80wt%、更优选20-50wt%的组分A,和20-90wt%,优选20-80wt%,更优选50-80wt%的组分B。
  6. 根据在先权利要求中任一项所述的组合物,其中,在所述结构 式(I)中:
    R 1为C 1-10的二价链烷基、C 2-10的二价链烯基或者具有-R 5-R 6-R 7-结构的基团,优选为C 1-8的二价链烷基、C 2-6的二价链烯基或者具有-R 5-R 6-R 7-结构的基团,更优选为C 1-4的二价链烷基或者C 2-4的二价链烯基;
    R 2为C 3-20烃基,优选为C 3-20直链或支链烃基、C 4-20的脂环族烃基、C 7-20的芳基取代的烃基或C 7-20的烃基取代的芳基,更优选为C 3-18直链或支链烃基、C 4-18的脂环族烃基、C 7-18的芳基取代的烃基或C 7-18的烃基取代的芳基;
    R 5和R 7各自独立地为单键、或者C 1-3的二价烃基,优选各自独立地为单键或亚甲基;
    R 6为C 3-10的二价脂环族烃基、或者C 6-10的取代或未取代的二价芳基,优选C 4-7的二价脂环族烃基、或者C 6-10的取代或未取代的二价芳基,且R 5、R 6和R 7基团的总碳数小于等于10;
    其中所述“取代的”是指被一个或多个选自C 1-4直链或支链烃基、卤素、羟基、羧基、酯基、醚基、硝基和氨基的基团取代。
  7. 根据权利要求1-5中任一项所述的组合物,其中,在所述结构式(I)中:
    R 1为C 2-10的二价烃基,优选为C 2-8的二价烃基;
    R 2为具有-R 3-C(=O)-O-R 4结构的基团;
    R 3为具有0-5个碳碳双键的C 8-24的二价烃基,优选为具有0-3个碳碳双键的C 16-22的二价烃基;以及
    R 4为氢或者C 1-10烃基,优选为氢或者C 1-4烃基。
  8. 根据权利要求1-6中任一项所述的组合物,其中所述组分A的二羧酸单酯具有以下的结构式(I-1):
    Figure PCTCN2022102570-appb-100002
    其中,n为2-6的整数,R为C 3-20的烃基、优选为C 4-18的烃基,
    优选地,所述组分A的二羧酸单酯选自马来酸单酯、富马酸单酯、衣康酸单酯、柠康酸单酯、甲基富马酸单酯、2,3-二甲基马来酸单酯、 戊烯二酸单酯,或者它们的任意组合,
    更优选地,所述组分A的二羧酸单酯选自马来酸单酯、衣康酸单酯,或者它们的任意组合。
  9. 根据权利要求1-6中任一项所述的组合物,其中所述组分A的二羧酸单酯具有以下的结构式(I-2):
    Figure PCTCN2022102570-appb-100003
    其中,p为1-8的整数,R为C 3-20的烃基、优选为C 4-18的烃基;
    优选地,所述组分A的二羧酸单酯选自丙二酸单酯、丁二酸单酯、戊二酸单酯、己二酸单酯、壬二酸单酯、癸二酸单酯,或者它们的任意组合,
    更优选地,所述组分A的二羧酸单酯选自丙二酸单酯、丁二酸单酯、己二酸单酯,或者它们的任意组合。
  10. 根据权利要求1-6中任一项所述的组合物,其中所述组分A的二羧酸单酯具有以下的结构式(I-3):
    Figure PCTCN2022102570-appb-100004
    其中,m为0-1的整数,Q为C 3-8的二价脂环族烃基或者C 6-10的取代或未取代的二价芳基,R为C 3-20的烃基、优选为C 4-18的烃基;
    优选地,所述组分A的二羧酸单酯选自1,2-环己二甲酸单酯、四氢邻苯二甲酸单酯、邻苯二甲酸单酯、甲基六氢邻苯二甲酸单酯、甲基四氢邻苯二甲酸单酯,或者它们的任意组合,
    更优选地,所述组分A的二羧酸单酯选自六氢邻苯二甲酸单酯、甲基四氢邻苯二甲酸单酯、邻苯二甲酸单酯,或者它们的任意组合。
  11. 根据权利要求1-5和7中任一项所述的组合物,其中所述组分A的二羧酸单酯具有以下的结构式(I-4):
    Figure PCTCN2022102570-appb-100005
    其中,R 8为C 2-10的二价烃基;R 9为氢或烃基,R 10为二价烃基,且R 9和R 10的总碳数为15-21,总碳碳双键数为0-3;R 11为氢或C 1-10烃基,优选为氢或者C 1-4烃基;
    优选地,R 8选自亚乙基、亚乙烯基、甲叉亚乙基、甲基亚乙基、亚丁基、甲基亚丁基、亚丁烯基、苯基、环己基、甲基六氢苯基、甲基四氢苯基,R 11选自氢、甲基和乙基;
    更优选地,所述组分A的二羧酸单酯选自马来酸单酯基蓖麻油酸甲酯、马来酸单酯基蓖麻油酸、琥珀酸单酯基蓖麻油酸甲酯、琥珀酸单酯基蓖麻油酸、邻苯二甲酸单酯基蓖麻油酸甲酯、甲基六氢邻苯二甲酸单酯基蓖麻油酸甲酯、甲基四氢邻苯二甲酸单酯基蓖麻油酸甲酯,或者它们的任意组合。
  12. 根据权利要求1-5中任一项所述的组合物,其中,所述组分A的二羧酸单酯选自马来酸单丁酯、马来酸单异辛酯、马来酸单异壬酯、丁二酸单异辛酯、衣康酸单丁酯、衣康酸单异辛酯、衣康酸单异壬酯、邻苯二甲酸单己酯、邻苯二甲酸单异辛酯、甲基四氢临苯二甲酸单异辛酯、柠康酸单异辛酯、丙二酸单叔丁酯,琥珀酸单酯基蓖麻油酸甲酯、琥珀酸单酯基蓖麻油酸、马来酸单酯基蓖麻油酸甲酯、马来酸单酯基蓖麻油酸,甲基四氢邻苯二甲酸单酯基蓖麻油酸甲酯或者它们的任意组合,更优选为马来酸单丁酯、马来酸单异辛酯、马来酸单异壬酯、丁二酸单异辛酯、衣康酸单异辛酯、邻苯二甲酸单己酯、邻苯二甲酸单异辛酯、甲基四氢临苯二甲酸单异辛酯、丙二酸单叔丁酯、琥珀酸单酯基蓖麻油酸甲酯、柠康酸单异辛酯、马来酸单酯基蓖麻油酸甲酯、甲基四氢邻苯二甲酸单酯基蓖麻油酸甲酯。
  13. 根据在先权利要求中任一项所述的组合物,其中组分B中所述的不饱和脂肪酸选自C 12-20的不饱和脂肪酸或者它们的任意组合,所述的多元醇选自乙二醇、甘油、1,2-丙二醇、1,3-丙二醇、失水山梨醇、季戊四醇、三羟甲基丙烷,或者它们的任意组合,
    优选地,所述不饱和脂肪酸选自油酸、亚油酸、亚麻酸、蓖麻酸,或者它们的任意组合,或者选自以油酸、亚油酸、亚麻酸、蓖麻酸为主要成分的脂肪酸混合物,并且所述多元醇为甘油。
  14. 一种改善柴油润滑性的方法,包括向低硫柴油中添加权利要求1-13中任一项所述的燃油润滑性改进剂组合物,其中以所述低硫柴油的质量计,所述燃油润滑性改进剂组合物的添加量优选为10-400ppm,更优选为50-200ppm。
  15. 一种柴油组合物,包括低硫柴油和权利要求1-13中任一项所述的燃油润滑性改进剂组合物,其中以所述低硫柴油的质量计,所述柴油组合物中的所述燃油润滑性改进剂组合物的含量优选为10-400ppm,更优选为50-200ppm。
PCT/CN2022/102570 2021-06-30 2022-06-30 燃油润滑性改进剂组合物及其应用 WO2023274335A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22832147.7A EP4368686A1 (en) 2021-06-30 2022-06-30 Lubricity improver composition for fuel oil and use thereof
CA3224644A CA3224644A1 (en) 2021-06-30 2022-06-30 Lubricity improver composition for fuel oil and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110740397.8A CN115537242B (zh) 2021-06-30 2021-06-30 柴油抗磨剂组合物、其制备方法及柴油组合物
CN202110740397.8 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023274335A1 true WO2023274335A1 (zh) 2023-01-05

Family

ID=84691509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102570 WO2023274335A1 (zh) 2021-06-30 2022-06-30 燃油润滑性改进剂组合物及其应用

Country Status (5)

Country Link
EP (1) EP4368686A1 (zh)
CN (1) CN115537242B (zh)
CA (1) CA3224644A1 (zh)
TW (1) TW202319526A (zh)
WO (1) WO2023274335A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86103481A (zh) * 1985-04-25 1987-02-18 鲁布里佐尔公司 含硫组合物及添加剂浓缩物,润滑油及含上述物质的金属加工润滑剂
WO1994017160A1 (en) 1993-01-21 1994-08-04 Exxon Chemical Patents Inc. Fuel composition
CN1149312A (zh) * 1994-05-24 1997-05-07 出光兴产株式会社 切割或研磨油组合物
EP0773279A1 (en) 1995-11-13 1997-05-14 Ethyl Petroleum Additives Limited Fuel additive
EP0798364A1 (en) 1996-03-25 1997-10-01 Oronite Japan Limited Diesel fuel additives and diesel fuel composition
WO1999015607A1 (en) 1997-09-22 1999-04-01 Infineum Usa L.P. Lubricity additives for fuel oil compositions
CN1349556A (zh) * 1999-04-14 2002-05-15 国际壳牌研究有限公司 液压用液体
EP1209217A2 (de) 2000-11-24 2002-05-29 Clariant GmbH Brennstofföle mit verbesserter Schmierwirkung, enthaltend Umsetzungsprodukte aus Fettsäuren mit kurzkettigen öllöslichen Aminen
CN100999685A (zh) * 2006-01-10 2007-07-18 中国石油化工股份有限公司 低硫柴油多效添加剂的制备方法
CN101213276A (zh) * 2005-07-05 2008-07-02 托塔尔法国公司 用于烃类混合物的润滑组合物及其获得的产品
CN106318568A (zh) * 2016-07-26 2017-01-11 中国石油化工股份有限公司 高润滑轧制油组合物及其用途
CN106929112A (zh) 2015-12-30 2017-07-07 中国石油化工股份有限公司 一种改善低硫柴油抗磨性的方法
CN109576021A (zh) 2017-09-28 2019-04-05 中国石油化工股份有限公司 一种改善低硫柴油润滑性的改进剂及其制备方法
CN112779065A (zh) * 2019-11-11 2021-05-11 中国石油化工股份有限公司 一种柴油抗磨剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112779064B (zh) * 2019-11-11 2022-12-13 中国石油化工股份有限公司 一种低酸型柴油抗磨剂及其制备方法和应用
CN112779063B (zh) * 2019-11-11 2022-12-09 中国石油化工股份有限公司 一种低硫柴油抗磨剂及其制备方法和应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86103481A (zh) * 1985-04-25 1987-02-18 鲁布里佐尔公司 含硫组合物及添加剂浓缩物,润滑油及含上述物质的金属加工润滑剂
WO1994017160A1 (en) 1993-01-21 1994-08-04 Exxon Chemical Patents Inc. Fuel composition
CN1149312A (zh) * 1994-05-24 1997-05-07 出光兴产株式会社 切割或研磨油组合物
EP0773279A1 (en) 1995-11-13 1997-05-14 Ethyl Petroleum Additives Limited Fuel additive
EP0798364A1 (en) 1996-03-25 1997-10-01 Oronite Japan Limited Diesel fuel additives and diesel fuel composition
WO1999015607A1 (en) 1997-09-22 1999-04-01 Infineum Usa L.P. Lubricity additives for fuel oil compositions
CN1349556A (zh) * 1999-04-14 2002-05-15 国际壳牌研究有限公司 液压用液体
EP1209217A2 (de) 2000-11-24 2002-05-29 Clariant GmbH Brennstofföle mit verbesserter Schmierwirkung, enthaltend Umsetzungsprodukte aus Fettsäuren mit kurzkettigen öllöslichen Aminen
CN101213276A (zh) * 2005-07-05 2008-07-02 托塔尔法国公司 用于烃类混合物的润滑组合物及其获得的产品
CN100999685A (zh) * 2006-01-10 2007-07-18 中国石油化工股份有限公司 低硫柴油多效添加剂的制备方法
CN106929112A (zh) 2015-12-30 2017-07-07 中国石油化工股份有限公司 一种改善低硫柴油抗磨性的方法
CN106318568A (zh) * 2016-07-26 2017-01-11 中国石油化工股份有限公司 高润滑轧制油组合物及其用途
CN109576021A (zh) 2017-09-28 2019-04-05 中国石油化工股份有限公司 一种改善低硫柴油润滑性的改进剂及其制备方法
CN112779065A (zh) * 2019-11-11 2021-05-11 中国石油化工股份有限公司 一种柴油抗磨剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. ANATOPOULOSE. LOIS, THE JOURNAL OF TRIBOLOGY INTERNATIONAL
TRIBOLOGY INTERNATIONAL, vol. 34, no. 11, 2001, pages 749 - 755

Also Published As

Publication number Publication date
TW202319526A (zh) 2023-05-16
CN115537242B (zh) 2023-11-10
CA3224644A1 (en) 2023-01-05
CN115537242A (zh) 2022-12-30
EP4368686A1 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
CA2230354C (en) Esters derived from vegetable oils used as additives for fuels
EP0902824B1 (en) Fuel additives
US20070049727A1 (en) Low sulfur tall oil fatty acid
EP2152835B1 (en) Use of a fatty acid alkyl ester in diesel fuel compositions comprising a gas oil base fuel
KR101605782B1 (ko) 에틸렌 및/또는 프로필렌 및 비닐 에스테르의 공중합체에서 그래프팅하여 얻어진 액체 탄화수소용 이기능성 첨가제
JPH09509450A (ja) 燃料油組成物
EP4130206A1 (en) Fuel lubricity improver and application thereof
WO1998021293A1 (en) Lubricants for diesel fuel
WO2023274335A1 (zh) 燃油润滑性改进剂组合物及其应用
WO2004056948A1 (en) Diesel fuel compositions
CN112779065B (zh) 一种柴油抗磨剂及其制备方法和应用
US6589302B1 (en) Friction modifier for poor lubricity fuels
CN112779063B (zh) 一种低硫柴油抗磨剂及其制备方法和应用
CN112779064B (zh) 一种低酸型柴油抗磨剂及其制备方法和应用
CN113462442B (zh) 柴油抗磨剂组合物、其制备方法及柴油组合物
CN113462443B (zh) 柴油抗磨剂组合物、其制备方法及柴油组合物
CN115141663B (zh) 改善汽油润滑性能的添加剂及汽油组合物
CN113462441B (zh) 柴油抗磨剂组合物、其制备方法及柴油组合物
CN117987189A (zh) 一种改性蓖麻油柴油抗磨剂、其制备方法及柴油组合物
CN116640612A (zh) 一种燃料添加剂、其制备方法及燃料组合物
CA3198894A1 (en) Use of a diesel fuel composition
EP1992674A1 (en) Diesel fuel compositions comprising a gas oil base fuel, a fatty acid alkyl ester and an aromatic component
CN115141661A (zh) 喷气燃料组合物及改善喷气燃料润滑性的方法
JPH05194980A (ja) 2サイクルエンジン油組成物
WO2017006930A1 (ja) 軽油用酸化防止剤および軽油燃料組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832147

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2023580940

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3224644

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022832147

Country of ref document: EP

Ref document number: 2024102180

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022832147

Country of ref document: EP

Effective date: 20240130