WO2017006930A1 - 軽油用酸化防止剤および軽油燃料組成物 - Google Patents

軽油用酸化防止剤および軽油燃料組成物 Download PDF

Info

Publication number
WO2017006930A1
WO2017006930A1 PCT/JP2016/069893 JP2016069893W WO2017006930A1 WO 2017006930 A1 WO2017006930 A1 WO 2017006930A1 JP 2016069893 W JP2016069893 W JP 2016069893W WO 2017006930 A1 WO2017006930 A1 WO 2017006930A1
Authority
WO
WIPO (PCT)
Prior art keywords
light oil
antioxidant
mass
acid methyl
methyl ester
Prior art date
Application number
PCT/JP2016/069893
Other languages
English (en)
French (fr)
Inventor
剛久 望月
誠 鳥羽
雄二 葭村
容子 阿部
仕元 陳
タニタ ソンティサワット
ナタウィ ティーラナノント
チャナカン プエムチャラッド
ピヤナン スリーシリ
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to MYPI2018700031A priority Critical patent/MY184653A/en
Priority to JP2017527463A priority patent/JP6699841B2/ja
Priority to US15/740,386 priority patent/US20180312772A1/en
Publication of WO2017006930A1 publication Critical patent/WO2017006930A1/ja
Priority to PH12018500048A priority patent/PH12018500048B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0476Biodiesel, i.e. defined lower alkyl esters of fatty acids first generation biodiesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/08Inhibitors
    • C10L2230/081Anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a light oil antioxidant and a light oil fuel composition excellent in oxidation stability and low-temperature fluidity.
  • Patent Document 2 In order to satisfy this required level, it is necessary to add a large amount of an antioxidant, resulting in an increase in production cost. In addition, when the amount of the antioxidant is increased, there is a problem that the antioxidant is likely to be precipitated due to a temperature decrease (Patent Document 2).
  • Patent Document 3 a light oil composition that maintains the oxidation stability of light oil without using an antioxidant. Specifically, focusing on fluorenes and naphthenobenzenes as substances with poor oxidation stability, these compounds are mixed with naphthalenes, which are substances with good oxidation stability, and the content is adjusted to oxidize. Ensures stability.
  • the aromatic component has a low cetane number and generally has a poor ignitability, and there is a concern that the production of particulate matter may increase because the combustibility deteriorates.
  • JP 2004-225000 A Japanese Patent No. 5427361 JP 2011-184672 A
  • the problem to be solved by the present invention is to provide an antioxidant for light oil that improves the oxidation stability of light oil and a light oil fuel composition having excellent oxidation stability.
  • the inventors of the present invention include fatty acid methyl esters derived from palm oil, rapeseed oil, or soybean oil, the content of polyunsaturated fatty acid methyl esters and saturated fatty acid methyl esters. It has been found that a light oil fuel composition excellent in oxidation stability and low-temperature fluidity can be obtained by adding an antioxidant having a specific amount of each, and thus has completed the present invention.
  • an antioxidant for light oil As an antioxidant for light oil, [1] Antioxidant for light oil containing fatty acid methyl ester derived from palm oil, the content of polyunsaturated fatty acid methyl ester is 0.5 to 7.0% by mass, and the content of saturated fatty acid methyl ester An antioxidant for light oil, characterized in that the amount is 50 to 84% by mass. Also, [2] An antioxidant for light oil containing fatty acid methyl ester derived from rapeseed oil, An antioxidant for light oil, wherein the content of polyunsaturated fatty acid methyl ester is 0.5 to 24.5% by mass and the content of saturated fatty acid methyl ester is 7 to 50% by mass.
  • An antioxidant for light oil containing fatty acid methyl ester derived from soybean oil An antioxidant for light oil, wherein the content of polyunsaturated fatty acid methyl ester is 0.8 to 32% by mass and the content of saturated fatty acid methyl ester is 15 to 56% by mass.
  • a diesel fuel composition comprising 1.0 to 70 mass% of an antioxidant for diesel oil.
  • a light oil fuel composition having high oxidation stability and very high low temperature fluidity At least one selected from the group consisting of the antioxidant for light oils described in [1], the antioxidant for light oils described in [2], and the antioxidant for light oils described in [3].
  • a light oil fuel composition having higher oxidation stability and high low temperature fluidity [6] From at least one selected from the group consisting of the antioxidant for light oil according to [1], the antioxidant for light oil according to [2], and the antioxidant for light oil according to [3].
  • a light oil fuel composition having very high oxidation stability [7] From at least one selected from the group consisting of the antioxidant for light oil according to [1], the antioxidant for light oil according to [2], and the antioxidant for light oil according to [3].
  • the light oil fuel composition as described in [4] which comprises an antioxidant for light oil, which is more than 50% by mass and 70% by mass or less.
  • the light oil fuel composition according to [4] wherein all of the following conditions (a), (b), and (c) are satisfied.
  • (A) The pour point is 9 ° C. or less.
  • the oxidation stability by the petrooxy method is 65 minutes or more.
  • No sludge is generated after a forced oxidation test conducted by supplying pure oxygen at 115 ° C. for 16 hours.
  • the characteristics of the light oil fuel composition having high oxidation stability and very high low temperature fluidity are as follows: [9] The light oil fuel composition according to [5], wherein all of the following conditions (a-1), (b), and (c) are satisfied.
  • A-1) The pour point is ⁇ 8 ° C. or lower.
  • the oxidation stability by the petrooxy method is 65 minutes or more.
  • No sludge is generated after a forced oxidation test conducted by supplying pure oxygen at 115 ° C. for 16 hours.
  • the present invention it is possible to provide a light oil antioxidant capable of improving the oxidation stability of light oil, and to provide a light oil fuel composition excellent in oxidation stability and low-temperature fluidity.
  • the antioxidant for light oil which is one aspect of the present invention is an antioxidant for light oil containing a fatty acid methyl ester derived from palm oil (hereinafter sometimes abbreviated as “antioxidant 1”), fatty acid methyl derived from rapeseed oil.
  • An antioxidant for light oil containing an ester hereinafter sometimes abbreviated as “Antioxidant 2”
  • an antioxidant for light oil containing a fatty acid methyl ester derived from soybean oil hereinafter referred to as “Antioxidant 3”
  • Antioxidant 3 an antioxidant for light oil containing a fatty acid methyl ester derived from soybean oil
  • Conditions for antioxidant 1 including palm oil-derived fatty acid methyl ester
  • Content of polyunsaturated fatty acid methyl ester is 0.5 to 7.0% by mass, and content of saturated fatty acid methyl ester Is 50 to 84 mass%.
  • Conditions for antioxidant 2 including fatty acid methyl ester derived from rapeseed oil
  • the content of polyunsaturated fatty acid methyl ester is 0.5 to 24.5% by mass, and the content of saturated fatty acid methyl ester is 7 to 50% by mass.
  • Conditions for antioxidant 3 including fatty acid methyl ester derived from soybean oil
  • the content of polyunsaturated fatty acid methyl ester is 0.8 to 32% by mass, and the content of saturated fatty acid methyl ester is 15 56 mass%.
  • the present inventors have included fatty acid methyl esters derived from palm oil, rapeseed oil, or soybean oil, and contain polyunsaturated fatty acid methyl esters.
  • the inventors have found that a light oil fuel composition excellent in oxidation stability and low-temperature fluidity can be obtained by adding an antioxidant having a specific amount and a saturated fatty acid methyl ester content.
  • Antioxidants containing polyunsaturated fatty acid methyl esters and saturated fatty acid methyl esters have a lower content of polyunsaturated fatty acid methyl esters, and the higher the content of saturated fatty acid methyl esters, the higher the antioxidant effect and the low temperature flow.
  • the fatty acid composition contained changes with the oil seed
  • content of polyunsaturated fatty acid methyl ester and saturated fatty acid methyl ester changes with oil types used as a raw material, respectively. That is, the present inventors use a fatty acid methyl ester derived from palm oil, rapeseed oil or soybean oil as an antioxidant for light oil, and depending on the oil type, polyunsaturated fatty acid methyl ester and saturated fatty acid methyl ester It was clarified that by controlling the content, a light oil fuel composition excellent in oxidation stability and low temperature fluidity can be provided.
  • “Containing fatty acid methyl ester derived from” means a polyunsaturated fatty acid methyl ester synthesized from a petroleum-derived raw material or the like as long as it contains a fatty acid methyl ester obtained using the oil type. It means that it may contain saturated fatty acid methyl ester, polyunsaturated fatty acid methyl ester or saturated fatty acid methyl ester obtained by using other vegetable oils, or impurities.
  • the method of obtaining fatty acid methyl ester from vegetable oil is not specifically limited, Although a well-known method can be employ
  • the “polyunsaturated fatty acid methyl ester” means an unsaturated fatty acid methyl ester having two or more carbon-carbon double bonds in the molecule.
  • each of the antioxidant 1, the antioxidant 2, and the antioxidant 3 will be described in detail.
  • Antioxidant 1 is an antioxidant containing a palm oil-derived fatty acid methyl ester, but the content of palm oil-derived fatty acid methyl ester in antioxidant 1 is usually 96.5% by mass or more, preferably 97. It is 0.0 mass% or more, More preferably, it is 98.0 mass% or more.
  • Antioxidant 1 has a polyunsaturated fatty acid methyl ester content of 0.5 to 7.0% by mass, preferably 0.6% by mass or more, more preferably 0.7% by mass or more. Preferably it is 5.0 mass% or less, More preferably, it is 3.0 mass% or less.
  • Antioxidant 1 has a saturated fatty acid methyl ester content of 50 to 84% by mass, preferably 52% by mass or more, more preferably 54% by mass or more, preferably 77% by mass or less, more preferably 70% by mass or less.
  • Antioxidant 1 may contain unsaturated fatty acid methyl ester (monoenoic acid methyl ester) having one carbon-carbon double bond in the molecule, but the content of monoenoic acid methyl ester is usually 14% by mass or more. , Preferably 18% by mass or more, more preferably 20% by mass or more, and usually 46% by mass or less, preferably 43% by mass or less, more preferably 40% by mass or less.
  • the antioxidant 1 may contain a compound other than the fatty acid methyl ester, but the content of the compound other than the fatty acid methyl ester is usually 3.5% by mass or less, preferably 3.0% by mass or less, more preferably 2 0.0 mass% or less. Within the above range, good oxidation stability and low temperature fluidity can be easily secured.
  • Antioxidant 2 is an antioxidant containing rapeseed oil-derived fatty acid methyl ester, and the content of rapeseed oil-derived fatty acid methyl ester in antioxidant 2 is usually 96.5% by mass or more, preferably 97.0. It is 9 mass% or more, More preferably, it is 98.0 mass% or more.
  • Antioxidant 2 has a polyunsaturated fatty acid methyl ester content of 0.5 to 24.5% by mass, preferably 1.0% by mass or more, more preferably 1.5% by mass or more. Preferably it is 10 mass% or less, More preferably, it is 4.0 mass% or less.
  • Antioxidant 2 has a saturated fatty acid methyl ester content of 7 to 50% by mass, preferably 10% by mass or more, more preferably 15% by mass or more, preferably 40% by mass or less, more preferably 30% by mass or less.
  • the antioxidant 2 may contain an unsaturated fatty acid methyl ester (monoenoic acid methyl ester) having one carbon-carbon double bond in the molecule, but the content of the monoenoic acid methyl ester is usually 45% by mass or more. , Preferably 50% by mass or more, more preferably 60% by mass or more, and usually 80% by mass or less, preferably 75% by mass or less, more preferably 70% by mass or less.
  • the antioxidant 2 may contain a compound other than the fatty acid methyl ester, but the content of the compound other than the fatty acid methyl ester is usually 3.5% by mass or less, preferably 3.0% by mass or less, more preferably 2 0.0 mass% or less. Within the above range, good oxidation stability and low temperature fluidity can be easily secured.
  • Antioxidant 3 is an antioxidant containing fatty acid methyl ester derived from soybean oil.
  • the content of fatty acid methyl ester derived from soybean oil in antioxidant 3 is usually 96.5% by mass or more, preferably 97. It is 0.0 mass% or more, More preferably, it is 98.0 mass% or more.
  • Antioxidant 3 has a polyunsaturated fatty acid methyl ester content of 0.8 to 32% by mass, preferably 1.0% by mass or more, more preferably 1.2% by mass or more, preferably It is 10 mass% or less, More preferably, it is 4.0 mass% or less.
  • Antioxidant 3 has a saturated fatty acid methyl ester content of 15 to 56 mass%, preferably 17 mass% or more, more preferably 20 mass% or more, preferably 40 mass% or less, more preferably. 35% by mass or less.
  • Antioxidant 3 may contain unsaturated fatty acid methyl ester (monoenoic acid methyl ester) having one carbon-carbon double bond in the molecule, but the content of monoenoic acid methyl ester is usually 25% by mass or more. , Preferably 40% by mass or more, more preferably 60% by mass or more, and usually 75% by mass or less, preferably 70% by mass or less, more preferably 65% by mass or less.
  • the antioxidant 3 may contain a compound other than the fatty acid methyl ester, but the content of the compound other than the fatty acid methyl ester is usually 3.5% by mass or less, preferably 3.0% by mass or less, more preferably 2 0.0 mass% or less. Within the above range, good oxidation stability and low temperature fluidity can be easily secured.
  • the control method of content of the polyunsaturated fatty acid methyl ester and the saturated fatty acid methyl ester of the antioxidant 1, the antioxidant 2, and the antioxidant 3 is not particularly limited, and a known method can be appropriately employed. However, any one of the following methods (1) to (3) may be mentioned.
  • the carbon number of the saturated fatty acid methyl ester when adding the saturated fatty acid methyl ester is usually 8 or more, preferably 10 or more, more preferably 12 or more, and usually 22 or less, preferably 20 or less, more preferably 18 or less. is there.
  • Specific saturated fatty acid methyl esters include capric acid methyl ester, lauric acid methyl ester, myristic acid methyl ester, pentadecylic acid methyl ester, palmitic acid methyl ester, margaric acid methyl ester, stearic acid methyl ester, and arachidic acid methyl ester. And behenic acid methyl ester.
  • carbon number of monoenoic acid methyl ester is usually 8 or more, preferably 10 or more, more preferably 12 or more, and usually 22 or less, preferably 20 or less, more preferably 18 or less. is there.
  • Specific examples of monoenoic acid methyl ester include palmitoleic acid methyl ester, oleic acid methyl ester, vaccenic acid methyl ester, eicosenoic acid methyl ester, and erucic acid methyl ester.
  • Oil types when adding fatty acid methyl esters obtained from oils other than palm oil, rapeseed oil, and soybean oil include jatropha oil, safflower oil, sunflower oil, olive oil, cottonseed oil, tung oil, crude palm oil, coconut oil, etc. Animal oils such as vegetable oil and fish oil.
  • a light oil fuel composition comprising 1.0% by mass or more and 70% by mass or less of an antioxidant for light oil selected from the group consisting of the inhibitor 2 and the antioxidant 3 is also an aspect of the present invention ( Hereinafter, it may be abbreviated as “the light oil fuel composition of the present invention”.
  • the light oil fuel composition of the present invention comprises 1.0% by mass or more and 70% by mass of at least one light oil antioxidant selected from the group consisting of the antioxidant 1, the antioxidant 2, and the antioxidant 3. Includes the following.
  • the lower limit of the antioxidant for light oil is 1.0% by mass or more, but it is 5.0% by mass or more in order to exhibit a higher antioxidant effect, and in order to exhibit a further higher antioxidant effect It is 10.0 mass% or more. That is, if the total content of the antioxidant is 1.0% by mass or more, sludge generation after forced oxidation can be suppressed, and if it is 5.0% by mass or more, higher oxidation stability is obtained. If it is at least mass%, it has higher oxidation stability. It is also conceivable that the content exceeds 20% by mass and exceeds 50% by mass.
  • the light oil fuel composition of the present invention is not particularly limited as long as it contains a specific amount of the above-mentioned light oil antioxidant, but in Japan, the pour point of No. 2 light oil is -7. It is defined as 5 ° C. or less and Special No. 1 diesel oil is 5 ° C. or less. On the other hand, in warm Thailand and Indonesia, which produce a large amount of fatty acid methyl esters, the pour point is less than 10 ° C (Thailand: High Speed) and 18.3 ° C (Indonesia: for automobiles), which is higher than Japan. ing. If the pour point is ⁇ 8 ° C. or less, the pour point of No. 2 gas oil is ⁇ 7.5 ° C. or less.
  • the pour point is 9 ° C or less
  • the pour point standard value for both Thailand (High Speed) and Indonesia (for automobiles) will be satisfied. That is, if the addition amount of the antioxidant for light oil is 70% by mass or less, the pour point of 9 ° C. or less can be achieved, conforming to the above-mentioned standards of warm Thailand and Indonesia, and if it is 50% by mass or less, the pour point of 4 ° C. or less Can be achieved, and if it is 20% by mass or less, it can be -8 ° C or lower and meets the pour point standard of No. 2 gas oil.
  • the Law Enforcement Regulation for ensuring the quality of volatile oil, etc. is used as an index of oxidation stability.
  • the oxidation stability is defined as 65 minutes or more. Therefore, the light oil fuel composition of the present invention preferably has an oxidation stability by the petrooxy method of 65 minutes or more.
  • the oxidation stability can be evaluated, knowledge about sludge generation cannot be obtained. For this reason, after the test method of oxidation stability evaluation stipulated in the Ministry of Economy, Trade and Industry Notification No.
  • the light oil fuel composition of the present invention It is preferable that sludge is not generated.
  • the mixed light oil whose oxidation increase amount measured by this method is 0.12 mgKOH / g or less is supposed to satisfy the requirement of an oxidation stability of 65 minutes or more measured by the revised Petrooxy method.
  • the increase in acid value after forced oxidation treatment under a pure oxygen flow is defined as 0.12 mgKOH / g or less.
  • fluidity improver such as antioxidants, metal deactivators, detergents, corrosion inhibitors, anti-icing agents, microbial disinfectants, auxiliary agents, antistatic agents, and coloring agents may be contained.
  • Oxidation stability was measured by the petrooxy method. That is, 5 ml of a sample is put into a sample chamber, and oxygen is press-fitted to 700 kPa ⁇ 5 kPa, and then heated to 140.0 ° C. ⁇ 0.5 ° C. and held. As the sample oxidizes and degrades over time, oxygen is consumed and the pressure inside the sample chamber drops. Therefore, the pressure change continues to be measured and the pressure drop point (the pressure inside the sample chamber reaches its maximum) This is the time to reach 10% of the pressure.) The sludge generation test was conducted by the old forced oxidation method.
  • fatty acid methyl ester As fatty acid methyl ester (FAME) which is an antioxidant used in the present invention, palm oil FAME, rapeseed oil FAME, and soybean oil FAME were used. Palm oil FAME was obtained from Thailand and used. Other FAMEs are made from raw material oil by an alkali catalyst method. 150 g of these FAMEs and 1.2 g of a commercially available hydrogenation catalyst were charged into a glass autoclave and subjected to hydrogenation treatment at a hydrogen pressure of 0.5 MPa and 80 ° C. Samples were taken at regular intervals to change the FAME composition. The FAME composition and pour point of each sample are shown in Tables 1-3.
  • methyl stearate (purity 99% or more) and methyl oleate (purity 99% or more), which are reagents, were added to palm oil FAME-1 to adjust the amount of polyunsaturated FAME.
  • Table 4 shows the FAME composition and pour point obtained by the adjustment.
  • Palm oil FAME2, 3 and 5 shown in Table 1 are mixed (mixed light oil) in commercial light oil so as to be 20% by mass, and the acid value increase of the mixed light oil is measured, the oxidation stability is measured, and the pour point is measured. Went. The measurement results are shown in Table 5. From the results of Table 5, when palm oil FAME is used, there is no significant difference in the amount of increase in oxidation. However, when palm oil FAME having a small amount of polyunsaturated components is used, the oxidation stability is improved, and sludge generation and oil are performed. No color change was seen.
  • Comparative Examples 1 and 2 As Comparative Example 1, the same measurement as in Example 1 was performed except that a light oil simple taste not mixed with fatty acid methyl ester oil was used. As Comparative Example 2, the same measurement as in Example 1 was performed except that palm oil FAME-1 shown in Table 1 was used. The measurement results are shown in Table 5. From the results shown in Table 5, when a forced oxidation test of simple gas oil was conducted, the acid value increase was as high as 3.85 mgKOH / g. On the other hand, by adding 20% FAME-1, the increase in acid value slightly increased to 3.98 mgKOH / g. By performing forced oxidation, the sample oil was gradually oxidized, and the color of the sample became dark yellow ⁇ yellow ⁇ orange. Sludge formation was also confirmed when the sample oil after forced oxidation showed an orange color. On the other hand, all the oxidation stability showed 65 minutes or more.
  • Example 8 to 15 and Comparative Examples 6 to 16 As Examples 8 to 15, palm oil FAME-7 shown in Table 1 was mixed in commercial light oil so as to be 1, 5, 10, 20, 30, 40, 50, and 70% by mass, and the oxidation stability was measured. And the pour point was measured. This time, in order to clarify the difference due to the difference in oil type composition, an accelerated test was conducted at a forced oxidation temperature of 125 ° C. As Comparative Examples 6 to 14, except that the palm oil FAME-1 listed in Table 1 was mixed in commercial light oil so as to be 1, 5, 10, 20, 30, 40, 50, 70, 80% by mass, The same measurement as in Example 8 was performed.
  • Example 15 the same measurement as in Example 8 was performed, except that palm oil FAME-7 described in Table 1 was mixed in commercial light oil so as to be 80% by mass.
  • Comparative Example 16 the same measurement as in Example 8 was performed, except that a light oil simple taste not mixed with fatty acid methyl ester oil was used.
  • the measurement results are shown in Table 7. From the results in Table 7, by performing forced oxidation at 125 ° C., the amount of increase in acid value was greatly increased even in light oil alone, and the amount of sludge produced was also increased. When FAME-1 having a large amount of polyunsaturated components was used, the acid value increase gradually increased with an increase in the mixing ratio with light oil, but the oxidation stability was slightly improved.
  • Example 16 to 21 The same measurement as in Example 8 was performed, except that palm oil FAME-2 to 6 and 8 shown in Table 1 were mixed in commercial light oil so as to be 20% by mass. The measurement results are shown in Table 8. From the results of Table 8, when FAME with more polyunsaturated components was used, an effect was found in suppressing the increase in acid value, and sludge formation was not observed. On the other hand, when FAME-8 containing a large amount of polyunsaturated components was used, the pour point of the mixed light oil increased to -7 ° C.
  • Example 22 to 27 Comparative Example 17
  • rapeseed oil FAME10 to 15 was mixed in commercial light oil so as to be 20% by mass.
  • Comparative Example 17 the same measurement as in Example 1 was performed, except that rapeseed oil FAME-9 shown in Table 2 was mixed in a commercial light oil so as to be 20% by mass.
  • the measurement results are shown in Table 9. From the results of Table 9, even when rapeseed oil FAME was mixed, the use of FAME with few polyunsaturated components was effective in suppressing the increase in acid value and sludge formation, and the oxidation stability was also increased. On the other hand, when FAME having a high hydrogenation depth was used, the pour point of the mixed light oil increased.
  • Example 28 to 32 the same measurement as in Example 1 was performed, except that soybean oil FAME-17 to 21 was mixed in commercial light oil so as to be 20% by mass.
  • Comparative Example 18 the same measurement as in Example 1 was performed, except that soybean oil FAME-16 shown in Table 3 was mixed in commercial light oil so as to be 20% by mass.
  • the measurement results are shown in Table 10. From the results shown in Table 10, even when soybean oil FAME was mixed, the use of FAME with few polyunsaturated components was effective in suppressing the increase in acid value and sludge formation, and the oxidation stability was also increased. On the other hand, when FAME having a high hydrogenation depth was used, the pour point of the mixed light oil increased.
  • Example 33 to 35 FAME 22 to 24, which were prepared by adding methyl stearate and methyl oleate as reagents to palm oil FAME-1, were mixed in commercially available light oil so as to be 20% by mass. Measurements similar to those in Example 1 were performed. The measurement results are shown in Table 11. From the results shown in Table 11, even when palm oil FAME whose composition was adjusted by adding a reagent was mixed, the effect of suppressing increase in acid value and sludge generation was observed by using FAME with reduced saturated components. Stability also increased.
  • the antioxidant for light oil comprising the fatty acid methyl ester of the present invention is effective in improving the oxidation stability of the light oil and suppressing sludge formation, and the light oil fuel containing the antioxidant has improved oxidation stability and low-temperature fluidity. It is an excellent diesel fuel composition.
  • the antioxidant of the present invention can be used as an antioxidant for light oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Lubricants (AREA)

Abstract

軽油の酸化安定性を向上させる軽油用酸化防止剤及び優れた酸化安定性を有する軽油燃料組成物を提供する。パーム油、菜種油、又は大豆油由来の脂肪酸メチルエステルを含み、多不飽和脂肪酸メチルエステルの含有量及び飽和脂肪酸メチルエステルの含有量がそれぞれ特定量である酸化防止剤を添加することで、酸化安定性及び低温流動性に優れた軽油燃料組成物が得られる。

Description

軽油用酸化防止剤および軽油燃料組成物
 本発明は、軽油用酸化防止剤、並びに酸化安定性及び低温流動性に優れた軽油燃料組成物に関するものである。
 ディーゼル車用燃料等に使用される軽油は、酸化すると変色、沈澱性の重合物(スラッジ)の生成、粘度上昇等が見られ、又、酸化によって生じた過酸化物(ペルオキシド)は燃料系統のゴム等の部材を劣化させることが知られており、酸化安定性を高めることが求められている。そこで、軽油の酸化安定性を向上させるために、これまでアミン系及びフェノール系の酸化防止剤等を軽油に添加する手法が取られている(特許文献1)。
 近年、排気ガス浄化触媒の被毒防止、排ガス中の有毒物質低減、燃費規制等の観点から、燃料中の硫黄化合物や芳香族炭化水素(特に多環芳香族炭化水素)の低減が求められている。しかし、これら硫黄化合物や芳香族炭化水素等はそれ自身に酸化抑制効果を有するため、これらの化合物の低減が酸化安定性を低下させる要因になっている。更に、ディーゼル車の排気ガス規制強化により、コモンレールによる燃料噴射の高圧化が更に進むことで軽油への熱負荷が増大し、従来以上に軽油の酸化安定性を高めることが求められている。この要求レベルを満たすためには、酸化防止剤を多量に添加する必要があり、製造コストの上昇を招く。その上、酸化防止剤量が多くなると、温度低下により酸化防止剤が析出し易くなる問題がある(特許文献2)。
 そこで、酸化防止剤を使用せずに軽油の酸化安定性を維持する軽油組成物が提案されている(特許文献3)。具体的には、酸化安定性の悪い物質としてフルオレン類とナフテノベンゼン類に着目し、これら化合物を、酸化安定性が良好な物質であるナフタレン類と混合し、含有量を調整して、酸化安定性を確保している。しかし、芳香族成分はセタン価が低く、一般的に着火性が悪いものが多く、燃焼性が悪化することから粒子状物質の生成が増加する可能性が懸念される。
特開2004-225000号公報 特許第5427361号公報 特開2011-184672号公報
 従って、本発明が解決しようとする課題は、軽油の酸化安定性を向上させる軽油用酸化防止剤及び優れた酸化安定性を有する軽油燃料組成物を提供することにある。
 本発明者らは、前述の課題を解決するべく鋭意研究を重ねた結果、パーム油、菜種油、又は大豆油由来の脂肪酸メチルエステルを含み、多不飽和脂肪酸メチルエステルの含有量及び飽和脂肪酸メチルエステルの含有量がそれぞれ特定量である酸化防止剤を添加することで、酸化安定性及び低温流動性に優れた軽油燃料組成物が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明によれば、以下の発明が提供される。
 軽油用酸化防止剤として、
[1] パーム油由来の脂肪酸メチルエステルを含む軽油用酸化防止剤であって、多不飽和脂肪酸メチルエステルの含有量が0.5~7.0質量%であり、かつ飽和脂肪酸メチルエステルの含有量が50~84質量%であることを特徴とする軽油用酸化防止剤。
 また、
[2] 菜種油由来の脂肪酸メチルエステルを含む軽油用酸化防止剤であって、
 多不飽和脂肪酸メチルエステルの含有量が0.5~24.5質量%であり、かつ飽和脂肪酸メチルエステルの含有量が7~50質量%であることを特徴とする軽油用酸化防止剤。
 また、
[3] 大豆油由来の脂肪酸メチルエステルを含む軽油用酸化防止剤であって、
 多不飽和脂肪酸メチルエステルの含有量が0.8~32質量%であり、かつ飽和脂肪酸メチルエステルの含有量が15~56質量%であることを特徴とする軽油用酸化防止剤。
 軽油燃料組成物としては、
[4] [1]に記載の軽油用酸化防止剤、[2]に記載の軽油用酸化防止剤、及び[3]に記載の軽油用酸化防止剤からなる群より選択される少なくとも1種からなる軽油用酸化防止剤を1.0質量%以上70質量%以下含むことを特徴とする軽油燃料組成物。
 また、高い酸化安定性及び非常に高い低温流動性を有する軽油燃料組成物としては、
[5] [1]に記載の軽油用酸化防止剤、[2]に記載の軽油用酸化防止剤、及び[3]に記載の軽油用酸化防止剤からなる群より選択される少なくとも1種からなる軽油用酸化防止剤を1.0質量%以上20質量%以下含むことを特徴とする[4]に記載の軽油燃料組成物。
 また、より高い酸化安定性及び高い低温流動性を有する軽油燃料組成物としては、
[6] [1]に記載の軽油用酸化防止剤、[2]に記載の軽油用酸化防止剤、及び[3]に記載の軽油用酸化防止剤からなる群より選択される少なくとも1種からなる軽油用酸化防止剤を20質量%超50質量%以下含むことを特徴とする[4]に記載の軽油燃料組成物。
 また、非常に高い酸化安定性を有する軽油燃料組成物としては、
[7] [1]に記載の軽油用酸化防止剤、[2]に記載の軽油用酸化防止剤、及び[3]に記載の軽油用酸化防止剤からなる群より選択される少なくとも1種からなる軽油用酸化防止剤を50質量%超70質量%以下含むことを特徴とする[4]に記載の軽油燃料組成物。
 上記軽油燃料組成物の特性としては、
[8] 下記(a)、(b)、及び(c)の条件を全て満たすことを特徴とする[4]に記載の軽油燃料組成物。
(a)流動点が9℃以下である。
(b)ペトロオキシ法による酸化安定度が65分以上である。
(c)115℃下で16時間純酸素を供給して行う強制酸化試験後にスラッジが生成しない。
 上記、高い酸化安定性及び非常に高い低温流動性を有する軽油燃料組成物の特性としては、
[9] 下記(a-1)、(b)、及び(c)の条件を全て満たすことを特徴とする[5]に記載の軽油燃料組成物。
(a-1)流動点が-8℃以下である。
(b)ペトロオキシ法による酸化安定度が65分以上である。
(c)115℃下で16時間純酸素を供給して行う強制酸化試験後にスラッジが生成しない。
 上記、より高い酸化安定性及び高い低温流動性を有する軽油燃料組成物の特性としては、
[10] 下記(a-2)、(b)、及び(c)の条件を全て満たす、[6]に記載の軽油燃料組成物。
(a-2)流動点が4℃以下である。
(b)ペトロオキシ法による酸化安定度が65分以上である。
(c)115℃下で16時間純酸素を供給して行う強制酸化試験後にスラッジが生成しない。
 上記、非常に高い酸化安定性を有する軽油燃料組成物の特性としては、
[11] 下記(a)、(b)、及び(c)の条件を全て満たす、[7]に記載の軽油燃料組成物。
(a)流動点が9℃以下である。
(b)ペトロオキシ法による酸化安定度が65分以上である。
(c)115℃下で16時間純酸素を供給して行う強制酸化試験後にスラッジが生成しない。
 本発明によれば、軽油の酸化安定性を向上させる軽油用酸化防止剤を提供することができるとともに、酸化安定性及び低温流動性に優れた軽油燃料組成物を提供することができる。
<軽油用酸化防止剤>
 本発明の一態様である軽油用酸化防止剤は、パーム油由来の脂肪酸メチルエステルを含む軽油用酸化防止剤(以下、「酸化防止剤1」と略す場合がある。)、菜種油由来の脂肪酸メチルエステルを含む軽油用酸化防止剤(以下、「酸化防止剤2」と略す場合がある。)、又は大豆油由来の脂肪酸メチルエステルを含む軽油用酸化防止剤(以下、「酸化防止剤3」と略す場合がある。)であり、下記条件を満たすことを特徴とする。
(1)酸化防止剤1(パーム油由来の脂肪酸メチルエステルを含む)の条件
 多不飽和脂肪酸メチルエステルの含有量が0.5~7.0質量%であり、かつ飽和脂肪酸メチルエステルの含有量が50~84質量%である。
(2)酸化防止剤2(菜種油由来の脂肪酸メチルエステルを含む)の条件
 多不飽和脂肪酸メチルエステルの含有量が0.5~24.5質量%であり、かつ飽和脂肪酸メチルエステルの含有量が7~50質量%である。
(3)酸化防止剤3(大豆油由来の脂肪酸メチルエステルを含む)の条件
 多不飽和脂肪酸メチルエステルの含有量が0.8~32質量%であり、かつ飽和脂肪酸メチルエステルの含有量が15~56質量%である。
 本発明者らは、軽油の酸化安定性を向上させる酸化防止剤を求め鋭意研究を重ねた結果、パーム油、菜種油、又は大豆油由来の脂肪酸メチルエステルを含み、多不飽和脂肪酸メチルエステルの含有量及び飽和脂肪酸メチルエステルの含有量がそれぞれ特定量である酸化防止剤を添加することで、酸化安定性及び低温流動性に優れた軽油燃料組成物が得られることを見出したのである。
 多不飽和脂肪酸メチルエステルと飽和脂肪酸メチルエステルを含む酸化防止剤は、多不飽和脂肪酸メチルエステルの含有量が少なく、飽和脂肪酸メチルエステルの含有量が多い程、酸化防止効果が高くなり、低温流動性が低下する傾向にある。また、脂肪酸メチルエステルの原料となる油種により、含まれる脂肪酸組成が異なることから、多不飽和脂肪酸メチルエステルと飽和脂肪酸メチルエステルの含有量は、それぞれ原料となる油種によって異なるのである。
 即ち、本発明者らは、パーム油、菜種油、又は大豆油由来の脂肪酸メチルエステルを軽油用酸化防止剤に利用する上で、油種に応じて多不飽和脂肪酸メチルエステルと飽和脂肪酸メチルエステルの含有量を制御することで、酸化安定性及び低温流動性に優れた軽油燃料組成物を提供することができることを明らかとしたのである。
 なお、「~由来の脂肪酸メチルエステルを含む」とは、その油種を利用して得られた脂肪酸メチルエステルを含むものであれば、石油由来の原料等から合成した多不飽和脂肪酸メチルエステルや飽和脂肪酸メチルエステル、その他の植物油を利用して得られた多不飽和脂肪酸メチルエステルや飽和脂肪酸メチルエステル、或いは不純物等を含んでもよいことを意味する。また、植物油から脂肪酸メチルエステルを得る方法は、特に限定されず、公知の方法を適宜採用することができるが、具体的には、メタノールによる油脂のエステル交換反応を利用することが挙げられる。
 また、「多不飽和脂肪酸メチルエステル」とは、分子内に炭素-炭素二重結合を2つ以上有する不飽和脂肪酸メチルエステルを意味する。
 以下、酸化防止剤1、酸化防止剤2、酸化防止剤3についてそれぞれ詳細に説明する。
 酸化防止剤1は、パーム油由来の脂肪酸メチルエステルを含む酸化防止剤であるが、酸化防止剤1におけるパーム油由来の脂肪酸メチルエステルの含有量は、通常96.5質量%以上、好ましくは97.0質量%以上、より好ましくは98.0質量%以上である。
 酸化防止剤1は、多不飽和脂肪酸メチルエステルの含有量が0.5~7.0質量%であるが、好ましくは0.6質量%以上、より好ましくは0.7質量%以上であり、好ましくは5.0質量%以下、より好ましくは3.0質量%以下である。
 酸化防止剤1は、飽和脂肪酸メチルエステルの含有量が50~84質量%であるが、好ましくは52質量%以上、より好ましくは54質量%以上であり、好ましくは77質量%以下、より好ましくは70質量%以下である。
 酸化防止剤1は、分子内に炭素-炭素二重結合を1つ有する不飽和脂肪酸メチルエステル(モノエン酸メチルエステル)を含んでもよいが、モノエン酸メチルエステルの含有量は、通常14質量%以上、好ましくは18質量%以上、より好ましくは20質量%以上であり、通常46質量%以下、好ましくは43質量%以下、より好ましくは40質量%以下である。
 酸化防止剤1は、脂肪酸メチルエステル以外の化合物を含んでもよいが、脂肪酸メチルエステル以外の化合物の含有量は、通常3.5質量%以下、好ましくは3.0質量%以下、より好ましくは2.0質量%以下である。
 上記範囲内であると、良好な酸化安定性及び低温流動性を確保し易くなる。
 酸化防止剤2は、菜種油由来の脂肪酸メチルエステルを含む酸化防止剤であるが、酸化防止剤2における菜種油由来の脂肪酸メチルエステルの含有量は、通常96.5質量%以上、好ましくは97.0質量%以上、より好ましくは98.0質量%以上である。
 酸化防止剤2は、多不飽和脂肪酸メチルエステルの含有量が0.5~24.5質量%であるが、好ましくは1.0質量%以上、より好ましくは1.5質量%以上であり、好ましくは10質量%以下、より好ましくは4.0質量%以下である。
 酸化防止剤2は、飽和脂肪酸メチルエステルの含有量が7~50質量%であるが、好ましくは10質量%以上、より好ましくは15質量%以上であり、好ましくは40質量%以下、より好ましくは30質量%以下である。
 酸化防止剤2は、分子内に炭素-炭素二重結合を1つ有する不飽和脂肪酸メチルエステル(モノエン酸メチルエステル)を含んでもよいが、モノエン酸メチルエステルの含有量は、通常45質量%以上、好ましくは50質量%以上、より好ましくは60質量%以上であり、通常80質量%以下、好ましくは75質量%以下、より好ましくは70質量%以下である。
 酸化防止剤2は、脂肪酸メチルエステル以外の化合物を含んでもよいが、脂肪酸メチルエステル以外の化合物の含有量は、通常3.5質量%以下、好ましくは3.0質量%以下、より好ましくは2.0質量%以下である。
 上記範囲内であると、良好な酸化安定性及び低温流動性を確保し易くなる。
 酸化防止剤3は、大豆油由来の脂肪酸メチルエステルを含む酸化防止剤であるが、酸化防止剤3における大豆油由来の脂肪酸メチルエステルの含有量は、通常96.5質量%以上、好ましくは97.0質量%以上、より好ましくは98.0質量%以上である。
 酸化防止剤3は、多不飽和脂肪酸メチルエステルの含有量が0.8~32質量%であるが、好ましくは1.0質量%以上、より好ましくは1.2質量%以上であり、好ましくは10質量%以下、より好ましくは4.0質量%以下である。
 酸化防止剤3は、飽和脂肪酸メチルエステルの含有量が15~56質量%であるが、好ましくは17質量%以上、より好ましくは20質量%以上であり、好ましくは40質量%以下、より好ましくは35質量%以下である。
 酸化防止剤3は、分子内に炭素-炭素二重結合を1つ有する不飽和脂肪酸メチルエステル(モノエン酸メチルエステル)を含んでもよいが、モノエン酸メチルエステルの含有量は、通常25質量%以上、好ましくは40質量%以上、より好ましくは60質量%以上であり、通常75質量%以下、好ましくは70質量%以下、より好ましくは65質量%以下である。
 酸化防止剤3は、脂肪酸メチルエステル以外の化合物を含んでもよいが、脂肪酸メチルエステル以外の化合物の含有量は、通常3.5質量%以下、好ましくは3.0質量%以下、より好ましくは2.0質量%以下である。
 上記範囲内であると、良好な酸化安定性及び低温流動性を確保し易くなる。
 酸化防止剤1、酸化防止剤2、及び酸化防止剤3の多不飽和脂肪酸メチルエステルと飽和脂肪酸メチルエステルの含有量の制御方法は、特に限定されず、公知の方法を適宜採用することができるが、下記(1)~(3)の何れかの方法が挙げられる。
(1)多不飽和脂肪酸メチルエステル及び/又は不飽和脂肪酸メチルエステル(モノエン酸メチルエステル)を水素化する方法。
(2)多不飽和脂肪酸及び飽和脂肪酸の含有量が特定量であるパーム油、菜種油、又は大豆油を選択して脂肪酸メチルエステルを得る方法。
(3)飽和脂肪酸メチルエステル、不飽和脂肪酸メチルエステル(モノエン酸メチルエステル)、飽和度の高い脂肪酸メチルエステル混合物等を添加する方法。
 飽和脂肪酸メチルエステルを添加する場合の飽和脂肪酸メチルエステルの炭素数は、通常8以上、好ましくは10以上、より好ましくは12以上であり、通常22以下、好ましくは20以下、より好ましくは18以下である。具体的な飽和脂肪酸メチルエステルとしては、カプリン酸メチルエステル、ラウリン酸メチルエステル、ミリスチンサン酸メチルエステル、ペンタデシル酸メチルエステル、パルミチン酸メチルエステル、マルガリン酸メチルエステル、ステアリン酸メチルエステル、アラキジン酸メチルエステル、ベヘン酸メチルエステル等が挙げられる。
 モノエン酸メチルエステルを添加する場合のモノエン酸メチルエステルの炭素数は、通常8以上、好ましくは10以上、より好ましくは12以上であり、通常22以下、好ましくは20以下、より好ましくは18以下である。具体的なモノエン酸メチルエステルとしては、パルミトレイン酸メチルエステル、オレイン酸メチルエステル、バクセン酸メチルエステル、エイコセン酸メチルエステル、エルシン酸メチルエステル等が挙げられる。
 パーム油、菜種油、及び大豆油以外の油種から得られる脂肪酸メチルエステルを添加する場合の油種としては、ジャトロファ油、紅花油、ひまわり油、オリーブ油、綿実油、桐油、粗製パーム油、ココナッツ油等の植物油、魚油等の動物油が挙げられる。
<軽油燃料組成物>
 酸化防止剤1、酸化防止剤2、又は酸化防止剤3を添加することで、酸化安定性及び低温流動性に優れた軽油燃料組成物が得られることを前述したが、酸化防止剤1、酸化防止剤2、及び酸化防止剤3からなる群より選択される少なくとも1種の軽油用酸化防止剤を1.0質量%以上70質量%以下含む軽油燃料組成物も本発明の一態様である(以下、「本発明の軽油燃料組成物」と略す場合がある。)。
 本発明の軽油燃料組成物は、酸化防止剤1、酸化防止剤2、及び酸化防止剤3からなる群より選択される少なくとも1種の軽油用酸化防止剤を1.0質量%以上70質量%以下含むものである。さらに、軽油用酸化防止剤の下限値は1.0質量%以上であるが、より高い酸化防止効果を発揮するには5.0質量%以上であり、さらに高い酸化防止効果を発揮するには10.0質量%以上である。すなわち、酸化防止剤の総含有量が1.0質量%以上であれば強制酸化後のスラッジ生成を抑制でき、5.0質量%以上であればより高い酸化安定性を有し、10.0質量%以上であればさらに高い酸化安定性を有する。また、20質量%超、50質量%超とすることも考えられる。
 本発明の軽油燃料組成物は、前述の軽油用酸化防止剤を特定量含むものであれば、その他は特に限定されないが、日本国内においては、JIS K2204において2号軽油の流動点が-7.5℃以下、特1号軽油が5℃以下と規定されている。一方、脂肪酸メチルエステルを多く生産している温暖なタイやインドネシアでは、流動点が10℃以下(タイ:High Speed)、18.3℃以下(インドネシア:自動車用)と日本国に比べ高く規定されている。流動点が-8℃以下であれば2号軽油の流動点-7.5℃以下を満たし、流動点が4℃以下であれば特1号軽油の流動点5℃以下を満たす。さらに流動点が9℃以下であればタイ(High Speed)、インドネシア(自動車用)両者の流動点規格値を満たす。すなわち、軽油用酸化防止剤の添加量が70質量%以下であれば流動点9℃以下を達成でき温暖なタイやインドネシアの上記規格に適合し、50質量%以下であれば流動点4℃以下を達成でき特1号軽油の規格に適合し、20質量%以下であれば-8℃以下を達成でき2号軽油の流動点の規格に適合する。
 また、軽油に脂肪酸メチルエステルを0.1質量%超5質量%以下混合した混合軽油の強制規格として、揮発油等の品質の確保等に関する法律施行規則が平成25年12月20日に改正され、酸化安定度の指標としてペトロオキシ法が用いられている。また、本法により、酸化安定度が65分以上と規定されている。
 従って、本発明の軽油燃料組成物は、ペトロオキシ法による酸化安定度が65分以上であることが好ましい。
 さらにペトロオキシ法では、酸化安定度の評価は可能であるものの、スラッジ生成に関する知見が得られない。このため、スラッジ生成に関する評価が同時に可能な旧強制酸化法である、平成19年度経済産業省告示第81号に規定されている酸化安定性評価の試験法後において、本発明の軽油燃料組成物は、スラッジが生成しないことが好ましい。
 なお、本手法により測定した際の酸化増加量が0.12mgKOH/g以下である混合軽油は、改正後のペトロオキシ法で測定された酸化安定度65分以上の要件を満たすものとされている。本試験法では、前記のように純酸素流通下での強制酸化処理後の酸価増加量は0.12mgKOH/g以下と規定されている。一方、脂肪酸メチルエステルを軽油に5質量%以上混合した際には上記規格は設けられていないが、0.1~5質量%混合した時と同様、酸価増加量が0.12mgKOH/g以下であることが好ましい。
 また、本発明中の軽油用酸化防止剤及び軽油燃料組成物には、本発明の目的が損なわれない範囲で、流動性向上剤、潤滑性向上剤、流動点降下剤、セタン価向上剤、酸化防止剤、金属不活性剤、清浄剤、腐食防止剤、氷結防止剤、微生物殺菌剤、助燃剤、帯電防止剤、着色剤等の燃料用添加剤を含有しても良い。
 以下、本発明を実施例及び比較例に基づいて説明するが、本発明はこれらに限定されるものではない。はじめに、実施例に用いた、流動点、酸化安定度の測定方法、及び原料油中の脂肪酸メチルエステル組成について記載する。
(流動点の測定)
 流動点測定には、米国規格ASTM D6749に準拠した自動流動点・曇り点試験器(田中科学機器製作(株)社製、MPC-102A型)を用いた。
(酸化安定度の測定)
 酸化安定度はペトロオキシ法で測定した。すなわち、試料5mlを試料室に入れ、酸素を700kPa±5kPaまで圧入した後、140.0℃±0.5℃まで昇温し保持する。時間の経過により試料が酸化劣化することで酸素が消費され、試料室内部の圧力が降下するため、その圧力変化の測定を続けて昇温開始時から圧力降下点(試料室内部の圧力が最大圧力に対して10%降下した点をいう。)に達するまでの時間をいう。
 スラッジ生成試験は旧強制酸化法で行った。すなわち、試料20gを反応容器に入れ、115℃に加熱しながら、その中に純酸素を100ml/分で送り込み、16時間酸化させた時の、酸化前後の酸価を測定し、その差を算出し、酸価増加量を得た。酸価測定には、自動滴定装置(メトローム社製、タイトランド型)を用いた。また、強制酸化後に室温で保持した際にスラッジ生成の有無および油色の変化を調べた。
(原料油)
 本発明に使用した酸化防止剤である脂肪酸メチルエステル(FAME)として、パーム油FAME、菜種油FAME、大豆油FAMEを用いた。パーム油FAMEはタイ国から入手して使用した。その他のFAMEは、原料油からアルカリ触媒法により自製したものである。これらFAME150g、市販の水素化触媒1.2gをガラス製のオートクレーブに仕込み、水素圧0.5MPa、80℃で水素化処理し、一定時間ごとにサンプルを採取してFAME組成を変化させた。各試料のFAME組成および流動点を表1~3に示す。また、試薬であるステアリン酸メチル(純度99%以上)及びオレイン酸メチル(純度99%以上)をパーム油FAME-1に添加して多不飽和FAME量を調整した。調整して得られたFAME組成及び流動点を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[実施例1~3]
 表1記載のパーム油FAME2、3、5を20質量%となるように市販軽油中に混合(混合軽油)し、混合軽油の酸価増加量の測定、酸化安定度の測定及び流動点の測定を行った。測定結果を表5に記載した。表5の結果から、パーム油FAMEを用いた場合、酸化増加量に大きな差異は見られないが、多不飽和成分の少ないパーム油FAMEを用いると、酸化安定度が改善され、スラッジ生成や油色変化は見らなかった。
Figure JPOXMLDOC01-appb-T000005
[比較例1~2]
 比較例1として、脂肪酸メチルエステル油を混合していない軽油単味を用いた他は、実施例1と同様の測定を行った。比較例2として、表1記載のパーム油FAME-1を用いた他は、実施例1と同様の測定を行った。測定結果を表5に記載した。表5の結果から、市販軽油単味の強制酸化試験を行ったところ、酸価増加量が3.85mgKOH/gと高い。一方、FAME-1を20%混合させることにより酸価増加量が3.98mgKOH/gと僅かに増加した。強制酸化を行うことで試料油が徐々に酸化され、試料の色は淡黄→黄→橙と濃くなった。強制酸化後の試料油が橙色を示す場合には、スラッジの生成も確認された。一方、酸化安定度はいずれも65分以上を示した。
[実施例4~7及び比較例3~5]
 実施例4~7として、表1記載のパーム油FAME-7を1、5、10、20質量%となるように市販軽油中に混合し、混合軽油の酸価増加量の測定及び流動点の測定を行った。比較例3~5として、表1記載のパーム油FAME-1を1、5、10質量%となるように市販軽油中に混合した他は、実施例4と同様の測定を行った。測定結果を表6に記載した。表6の結果から、多不飽和成分の多いFAME-1を混合させると、混合割合の増加に伴い酸価増加量が増大し、10質量%以上でスラッジ生成も見られた。一方、多不飽和成分の少ないFAME-7を混合させると、FAMEの混合割合を増加させても酸価増加量の増加は見られず、スラッジ生成も確認されなかった。
Figure JPOXMLDOC01-appb-T000006
[実施例8~15及び比較例6~16]
 実施例8~15として、表1記載のパーム油FAME-7を1、5、10、20、30、40、50、70質量%となるように市販軽油中に混合し、酸化安定度の測定及び流動点の測定を行った。今回、油種組成の違いによる差異をより明らかにするため、強制酸化温度を125℃とし、加速試験を行った。比較例6~14として、表1記載のパーム油FAME-1を1、5、10、20、30、40、50、70、80質量%となるように市販軽油中に混合した他は、実施例8と同様の測定を行った。比較例15として、表1記載のパーム油FAME-7を80質量%となるように市販軽油中に混合した他は、実施例8と同様の測定を行った。比較例16として、脂肪酸メチルエステル油を混合していない軽油単味を用いた他は、実施例8と同様の測定を行った。測定結果を表7に記載した。表7の結果から、125℃で強制酸化を行うことで軽油単味においても大幅に酸価増加量が増大し、スラッジ生成量も増加した。多不飽和成分の多いFAME-1を用いると軽油への混合率の増加に伴い酸価増加量が徐々に増加するが、酸化安定度は逆に僅かに向上した。一方、多不飽和成分の少ないFAME-7を使用すると、混合率の増加に伴い酸価増加量が大幅に低下し、いずれの混合率においてもスラッジ生成は観察されなかった。一方、FAME-7を80質量%となるように市販軽油に混合した場合(比較例15)、酸化増加量は非常に少ないが混合軽油の流動点が大幅に増加し、11℃と10℃を超える値を示した。
Figure JPOXMLDOC01-appb-T000007
[実施例16~21]
 表1記載のパーム油FAME-2~6及び8を20質量%となるように市販軽油中に混合した他は、実施例8と同様の測定を行った。測定結果を表8に記載した。表8の結果から、多不飽和成分のより多いFAMEを用いると、酸価増加量の抑制に効果が見られ、スラッジ生成も見られなかった。一方、多不飽和成分が多いFAME-8を用いると、混合軽油の流動点が-7℃に上昇した。
Figure JPOXMLDOC01-appb-T000008
[実施例22~27、比較例17]
 実施例22~27として、菜種油FAME10~15を20質量%となるように市販軽油中に混合した他は、実施例1と同様の測定を行った。比較例17として、表2記載の菜種油FAME-9を20質量%となるように市販軽油中に混合した他は、実施例1と同様の測定を行った。測定結果を表9に記載した。表9の結果から、菜種油FAMEを混合した場合においても多不飽和成分が少ないFAMEを用いることで酸価増加量及びスラッジ生成の抑制に効果が見られ、酸化安定度も増加した。一方、水素化深度の高いFAMEを用いると、混合軽油の流動点が上昇した。
Figure JPOXMLDOC01-appb-T000009
[実施例28~32及び比較例18]
 実施例28~32として、大豆油FAME-17~21を20質量%となるように市販軽油中に混合した他は、実施例1と同様の測定を行った。比較例18として、表3記載の大豆油FAME-16を20質量%となるように市販軽油中に混合した他は、実施例1と同様の測定を行った。測定結果を表10に記載した。表10の結果から、大豆油FAMEを混合した場合においても多不飽和成分が少ないFAMEを用いることで酸価増加量及びスラッジ生成の抑制に効果が見られ、酸化安定度も増加した。一方、水素化深度の高いFAMEを用いると、混合軽油の流動点が上昇した。
Figure JPOXMLDOC01-appb-T000010
[実施例33~35]
 実施例33~35として、パーム油FAME-1に試薬であるステアリン酸メチル及びオレイン酸メチルを添加して組成調整したFAME22~24を20質量%となるように市販軽油中に混合した他は、実施例1と同様の測定を行った。測定結果を表11に記載した。表11の結果から、試薬を添加して組成調整したパーム油FAMEを混合した場合においても、飽和成分を少なくしたFAMEを用いることで酸価増加量及びスラッジ生成の抑制に効果が見られ、酸化安定度も増加した。
Figure JPOXMLDOC01-appb-T000011
 以上より、本発明の脂肪酸メチルエステルから成る軽油用酸化防止剤は、軽油の酸化安定性の改善及びスラッジ生成抑制に効果あり、該酸化防止剤を含む軽油燃料は酸化安定性及び低温流動性に優れた軽油燃料組成物である。
 本発明の酸化防止剤は、軽油の酸化防止剤として使用することができる。

Claims (11)

  1.  パーム油由来の脂肪酸メチルエステルを含む軽油用酸化防止剤であって、
     多不飽和脂肪酸メチルエステルの含有量が0.5~7.0質量%であり、かつ飽和脂肪酸メチルエステルの含有量が50~84質量%であることを特徴とする軽油用酸化防止剤。
  2.  菜種油由来の脂肪酸メチルエステルを含む軽油用酸化防止剤であって、
     多不飽和脂肪酸メチルエステルの含有量が0.5~24.5質量%であり、かつ飽和脂肪酸メチルエステルの含有量が7~50質量%であることを特徴とする軽油用酸化防止剤。
  3.  大豆油由来の脂肪酸メチルエステルを含む軽油用酸化防止剤であって、
     多不飽和脂肪酸メチルエステルの含有量が0.8~32質量%であり、かつ飽和脂肪酸メチルエステルの含有量が15~56質量%であることを特徴とする軽油用酸化防止剤。
  4.  請求項1に記載の軽油用酸化防止剤、請求項2に記載の軽油用酸化防止剤、及び請求項3に記載の軽油用酸化防止剤からなる群より選択される少なくとも1種からなる軽油用酸化防止剤を1.0質量%以上70質量%以下含むことを特徴とする軽油燃料組成物。
  5.  請求項1に記載の軽油用酸化防止剤、請求項2に記載の軽油用酸化防止剤、及び請求項3に記載の軽油用酸化防止剤からなる群より選択される少なくとも1種からなる軽油用酸化防止剤を1.0質量%以上20質量%以下含むことを特徴とする請求項4に記載の軽油燃料組成物。
  6.  請求項1に記載の軽油用酸化防止剤、請求項2に記載の軽油用酸化防止剤、及び請求項3に記載の軽油用酸化防止剤からなる群より選択される少なくとも1種からなる軽油用酸化防止剤を20質量%超50質量%以下含むことを特徴とする請求項4に記載の軽油燃料組成物。
  7.  請求項1に記載の軽油用酸化防止剤、請求項2に記載の軽油用酸化防止剤、及び請求項3に記載の軽油用酸化防止剤からなる群より選択される少なくとも1種からなる軽油用酸化防止剤を50質量%超70質量%以下含むことを特徴とする請求項4に記載の軽油燃料組成物。
  8.  下記(a)、(b)、及び(c)の条件を全て満たすことを特徴とする請求項4に記載の軽油燃料組成物。
    (a)流動点が9℃以下である。
    (b)ペトロオキシ法による酸化安定度が65分以上である。
    (c)115℃下で16時間純酸素を供給して行う強制酸化試験後にスラッジが生成しない。
  9.  下記(a-1)、(b)、及び(c)の条件を全て満たすことを特徴とする請求項5に記載の軽油燃料組成物。
    (a-1)流動点が-8℃以下である。
    (b)ペトロオキシ法による酸化安定度が65分以上である。
    (c)115℃下で16時間純酸素を供給して行う強制酸化試験後にスラッジが生成しない。
  10.  下記(a-2)、(b)、及び(c)の条件を全て満たすことを特徴とする請求項6に記載の軽油燃料組成物。
    (a-2)流動点が4℃以下である。
    (b)ペトロオキシ法による酸化安定度が65分以上である。
    (c)115℃下で16時間純酸素を供給して行う強制酸化試験後にスラッジが生成しない。
  11.  下記(a)、(b)、及び(c)の条件を全て満たすことを特徴とする請求項7に記載の軽油燃料組成物。
    (a)流動点が9℃以下である。
    (b)ペトロオキシ法による酸化安定度が65分以上である。
    (c)115℃下で16時間純酸素を供給して行う強制酸化試験後にスラッジが生成しない。
PCT/JP2016/069893 2015-07-06 2016-07-05 軽油用酸化防止剤および軽油燃料組成物 WO2017006930A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MYPI2018700031A MY184653A (en) 2015-07-06 2016-07-05 Oxidation inhibitor for diesel, and diesel fuel composition
JP2017527463A JP6699841B2 (ja) 2015-07-06 2016-07-05 軽油用酸化防止剤および軽油燃料組成物
US15/740,386 US20180312772A1 (en) 2015-07-06 2016-07-05 Oxidation inhibitor for diesel, and diesel fuel composition
PH12018500048A PH12018500048B1 (en) 2015-07-06 2018-01-05 Oxidation inhibitor for diesel, and diesel fuel composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-135575 2015-07-06
JP2015135575 2015-07-06

Publications (1)

Publication Number Publication Date
WO2017006930A1 true WO2017006930A1 (ja) 2017-01-12

Family

ID=57685786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069893 WO2017006930A1 (ja) 2015-07-06 2016-07-05 軽油用酸化防止剤および軽油燃料組成物

Country Status (5)

Country Link
US (1) US20180312772A1 (ja)
JP (1) JP6699841B2 (ja)
MY (1) MY184653A (ja)
PH (1) PH12018500048B1 (ja)
WO (1) WO2017006930A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06503106A (ja) * 1990-12-17 1994-04-07 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン 低温安定性を改良した脂肪酸低級アルキルエステルの混合物
JP2005220227A (ja) * 2004-02-05 2005-08-18 Dawn Of The World:Kk バイオディーゼル燃料およびその製造方法
JP2007077348A (ja) * 2005-09-16 2007-03-29 Fujifilm Corp 脂肪酸エステルを含むディーゼル燃料
WO2011105291A1 (ja) * 2010-02-24 2011-09-01 独立行政法人産業技術総合研究所 バイオディーゼル燃料の製造方法及びバイオディーゼル燃料組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2234994B1 (en) * 2007-12-27 2017-09-27 Cibus Europe B.V. Fatty acid butyl ester blends
JP5730006B2 (ja) * 2010-12-24 2015-06-03 昭和シェル石油株式会社 軽油組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06503106A (ja) * 1990-12-17 1994-04-07 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチェン 低温安定性を改良した脂肪酸低級アルキルエステルの混合物
JP2005220227A (ja) * 2004-02-05 2005-08-18 Dawn Of The World:Kk バイオディーゼル燃料およびその製造方法
JP2007077348A (ja) * 2005-09-16 2007-03-29 Fujifilm Corp 脂肪酸エステルを含むディーゼル燃料
WO2011105291A1 (ja) * 2010-02-24 2011-09-01 独立行政法人産業技術総合研究所 バイオディーゼル燃料の製造方法及びバイオディーゼル燃料組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YASUFUMI YOSHIMOTO ET AL.: "Applied Technology of Vegetable Oils for Diesel Engines : Use of Biodiesel Fuel", JOURNAL OF THE COMBUSTION SOCIETY OF JAPAN, vol. 51, no. 156, 2009, pages 121 - 128, XP055345483 *

Also Published As

Publication number Publication date
MY184653A (en) 2021-04-14
PH12018500048A1 (en) 2018-07-09
US20180312772A1 (en) 2018-11-01
JPWO2017006930A1 (ja) 2018-04-26
PH12018500048B1 (en) 2018-07-09
JP6699841B2 (ja) 2020-05-27

Similar Documents

Publication Publication Date Title
AU2003258753C1 (en) Diesel fuel composition, comprising components based on biological raw material, obtained by hydrogenating and decomposition fatty acids
US8409304B2 (en) Cetane-improving component for diesel fuels and diesel fuels containing it
KR20100015881A (ko) 지방산 메틸 에스테르(바이오디젤)에 대한 항산화제 배합물
EP2179011B1 (en) Lubricating composition for use in diesel engines compatible with biofuel
CN109957435B (zh) 柴油抗磨剂组合物和柴油组合物及它们的制备方法
US8557001B2 (en) Fuel formulations
WO2011105291A1 (ja) バイオディーゼル燃料の製造方法及びバイオディーゼル燃料組成物
Karavalakis et al. Evaluation of the oxidation stability of diesel/biodiesel blends using the modified rancimat method
JP6699841B2 (ja) 軽油用酸化防止剤および軽油燃料組成物
Anderson et al. Soy Biodiesel Oxidation at Vehicle Fuel System Temperature: Influence of Aged Fuel on Fresh Fuel Degradation to Simulate Refueling
JP5348821B2 (ja) 灯油組成物
JP2006199783A (ja) 燃料組成物
US8231694B2 (en) Use of mixtures of alkylalkanolamines and alkylhydroxylamines as stabilizers for alkyl ester fuels
JP5684183B2 (ja) 軽油組成物
US8709107B2 (en) Biodiesels useful for improving cloud point
WO2019002679A1 (en) FUEL COMPOSITION WITH LOW AROMATIC COMPOUND COMPRISING RENEWABLE DIESEL
US6534453B2 (en) Light oil composition
RU2735083C2 (ru) Топливная композиция дизельного топлива
EP1674553A1 (en) Altering properties of fuel compositions
US20240215601A1 (en) Compositions and methods for inhibiting oxidation of natural oil based composition using aminophenol antioxidant
JP5684180B2 (ja) 軽油組成物
EP2771439B1 (en) Use of dye-stable biofuel blend compositions
JP2011099067A (ja) 安定化されたバイオディーゼル燃料
JP2014105281A (ja) 軽油組成物
JP2013028735A (ja) 燃料組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527463

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15740386

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12018500048

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821399

Country of ref document: EP

Kind code of ref document: A1