WO2023273791A1 - 挖掘机控制方法和装置、电子设备及存储介质 - Google Patents

挖掘机控制方法和装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023273791A1
WO2023273791A1 PCT/CN2022/096865 CN2022096865W WO2023273791A1 WO 2023273791 A1 WO2023273791 A1 WO 2023273791A1 CN 2022096865 W CN2022096865 W CN 2022096865W WO 2023273791 A1 WO2023273791 A1 WO 2023273791A1
Authority
WO
WIPO (PCT)
Prior art keywords
excavator
proportional valve
hydraulic pump
valve control
control current
Prior art date
Application number
PCT/CN2022/096865
Other languages
English (en)
French (fr)
Inventor
牛洪科
罗建华
王铭啸
Original Assignee
上海华兴数字科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华兴数字科技有限公司 filed Critical 上海华兴数字科技有限公司
Publication of WO2023273791A1 publication Critical patent/WO2023273791A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2066Control of propulsion units of the type combustion engines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection

Definitions

  • the present application relates to the technical field of mechanical engineering, in particular to an excavator control method and device, electronic equipment and a storage medium.
  • Excavators are one of the most widely used working machines. Due to the extremely complex working conditions of the excavator, the load changes in real time, and the fuel utilization rate is low.
  • Excavator control system has negative flow control system, load sensing system and positive flow control system. Among them, the positive flow control system is divided into constant power and constant torque control system. Compared with the former two, the positive flow control system has the advantages of fast action response and good speed regulation characteristics, and is more and more favored by users.
  • the power matching of each gear of the existing excavator is a fixed power matching. Due to the complex and changeable working conditions of the excavator, the engine often passively adjusts the speed and fuel injection amount due to sudden changes in the external load, and often causes the car to hold and stall. The situation leads to high fuel consumption and low energy efficiency of the excavator.
  • the present application provides an excavator control method and device, electronic equipment and a storage medium, which are used to solve the technical problems of high fuel consumption and low energy efficiency of the excavator caused by the excavator control method.
  • the present application provides an excavator control method, including: obtaining the main pressure of the hydraulic pump of the excavator; Current; the engine of the excavator is controlled based on the fuel injection quantity of the engine, and the hydraulic pump of the excavator is controlled based on the proportional valve control current.
  • the determining the engine fuel injection quantity and the proportional valve control current of the excavator based on the main pressure of the hydraulic pump includes: based on the main pressure of the hydraulic pump , and the main pressure demand power curve of the excavator, determine the fuel injection quantity of the engine of the excavator; based on the main pressure of the hydraulic pump, and the constant power curve and main pressure power given correction curve of the excavator , to determine the proportional valve control current of the excavator.
  • the proportional valve of the excavator is determined based on the main pressure of the hydraulic pump, the constant power curve and the given main pressure power correction curve of the excavator
  • Controlling the current includes: determining the preset value of the proportional valve control current of the excavator based on the main pressure of the hydraulic pump and the constant power curve; based on the main pressure of the hydraulic pump and the main pressure
  • the power given correction curve determines the correction value of the proportional valve control current of the excavator; based on the preset value of the proportional valve control current and the correction value of the proportional valve control current, determines the proportional valve control current of the excavator .
  • the determining the preset value of the proportional valve control current of the excavator based on the main pressure of the hydraulic pump and the constant power curve includes: obtaining the The pilot pressure of the hydraulic pump of the excavator; based on the main pressure of the hydraulic pump and the constant power curve, as well as the pilot pressure and pilot pressure curve of the hydraulic pump, determine the preset value of the proportional valve control current.
  • the proportional valve control current is determined based on the main pressure of the hydraulic pump and the constant power curve, as well as the pilot pressure and pilot pressure curve of the hydraulic pump.
  • the preset value includes: based on the main pressure of the hydraulic pump and the constant power curve, determining the first preset value of the proportional valve control current of the excavator; based on the pilot pressure and pilot pressure of the hydraulic pump curve, determine the second preset value of the proportional valve control current of the excavator; determine the preset value of the proportional valve control current based on the first preset value and the second preset value of the proportional valve control current .
  • the correction value of the proportional valve control current of the excavator is determined based on the main pressure of the hydraulic pump and the given correction curve of the main pressure power, including : Based on the main pressure of the hydraulic pump and the given correction curve of the main pressure power, determine the power correction given value of the hydraulic pump of the excavator; based on the main pressure of the hydraulic pump, the ratio of the engine speed and the feedback The valve control current is used to determine the hydraulic pump power value of the excavator; based on the hydraulic pump power correction given value and hydraulic pump power value of the excavator, the correction value of the proportional valve control current is determined.
  • the determination of the proportional valve control current of the excavator based on the preset value of the proportional valve control current of the excavator and the correction value of the proportional valve control current includes : Based on the difference between the preset value of the proportional valve control current and the correction value of the proportional valve control current, determine the given value of the proportional valve control current of the excavator; based on the given value of the proportional valve control current, And feedback the proportional valve control current to determine the proportional valve control current of the excavator.
  • the present application provides an excavator control device, including: an acquisition unit for acquiring the main pressure of the hydraulic pump of the excavator; a determination unit for determining the excavation pressure based on the main pressure of the hydraulic pump The engine fuel injection amount of the machine and the proportional valve control current; the control unit is used to control the engine of the excavator based on the engine fuel injection amount, and control the hydraulic pump of the excavator based on the proportional valve control current. Take control.
  • the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the computer program, the computer program described in the first aspect is implemented. excavator control method.
  • the present application provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the excavator control method described in the first aspect is implemented.
  • the excavator control method and device, electronic equipment, and storage medium provided by the present application determine the fuel injection quantity of the engine and the proportional valve control current of the excavator according to the main pressure of the hydraulic pump of the excavator, and control the engine and the hydraulic pump so that
  • the real-time output power of the engine matches the real-time output power of the hydraulic pump, which prevents the engine from being held up and stalled, and enables the excavator to maintain stable speed and optimal output of energy efficiency in the case of sudden changes in external loads, improving excavation efficiency.
  • the combustion efficiency of the engine of the excavator is improved, and the fuel consumption of the engine of the excavator is reduced.
  • FIG. 1 is a schematic flowchart of an excavator control method provided by the present application.
  • FIG. 2 is a schematic flow chart of an excavator fuel-saving control method provided by the present application.
  • Fig. 3 is a schematic structural diagram of the excavator control device provided by the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by the present application.
  • An excavator also known as an excavating machine or an excavator, is an earth-moving machine that uses a bucket to dig materials and load them into a transport vehicle or unload them into a stockyard. Due to the complex and changeable working conditions of the excavator and the unpredictability of the load, the engine often passively adjusts the speed and fuel injection amount according to the sudden change of the external load, which often causes the engine to hold, stall, and high fuel consumption, which reduces the performance of the vehicle. In addition, the power matching of each gear of the excavator is fixed, and there are situations of low energy efficiency utilization such as high load, slow movement, low load and high fuel consumption. Engine stalling refers to a sharp drop in engine speed.
  • Fig. 1 is a schematic flowchart of an excavator control method provided by the present application. As shown in Fig. 1 , the method includes the following steps.
  • Step 110 acquiring the main pressure of the hydraulic pump of the excavator.
  • the hydraulic system of the excavator includes an engine, a hydraulic pump, a pilot handle, a travel motor, a swing motor, a multi-way valve, a proportional valve, and the like.
  • the hydraulic pump is connected to the engine and is used to convert the mechanical energy generated by the engine into liquid pressure and then perform external work.
  • the main pressure of the hydraulic pump is the working oil pressure in the hydraulic pump.
  • Step 120 based on the main pressure of the hydraulic pump, determine the fuel injection quantity of the engine of the excavator and the control current of the proportional valve.
  • the change of the load borne by the excavator is reflected in the working oil pressure, that is to say, the change of the external load of the excavator can be tracked through the change of the main pressure of the hydraulic pump.
  • the fuel injection quantity of the engine is used to adjust the engine in the excavator, thereby controlling the output power of the engine.
  • Proportional valve also known as electromagnetic proportional valve. The proportional valve controls the current, which is used to control the opening of the proportional valve and change the inclination angle of the swash plate of the main pump in the hydraulic pump, thereby changing the output flow and controlling the output power of the hydraulic pump.
  • the output power of the engine and hydraulic pump can be matched in real time. According to the main pressure of the hydraulic pump collected in real time, the fuel injection quantity of the engine of the excavator and the control current of the proportional valve can be calculated respectively.
  • step 130 the engine of the excavator is controlled based on the fuel injection quantity of the engine, and the hydraulic pump of the excavator is controlled based on the proportional valve control current.
  • the engine of the excavator is controlled according to the fuel injection amount of the engine, and the hydraulic pump of the excavator is controlled according to the proportional valve control current, so that the real-time output power of the engine matches the real-time output power of the hydraulic pump.
  • the main pressure of the hydraulic pump of the excavator can be obtained in real time, and the fuel injection quantity of the engine and the control current of the proportional valve can be determined according to the main pressure of the hydraulic pump. While the output power of the engine is controlled according to the fuel injection quantity of the engine, the output power of the hydraulic pump is also controlled according to the proportional valve control current.
  • the engine in the related art is adjusted according to the result of the comparison between the actual engine speed and the set target speed, so that the engine often changes the speed according to the sudden change of the external load.
  • the excavator control method provided in the embodiment of the present application can reflect the change of the external load in real time through the main pressure of the hydraulic pump, actively adjust the fuel injection amount of the engine, intervene in the engine in advance, let the engine inject fuel in advance, and perform work in advance. Avoid the real-time power mismatch between the engine and the hydraulic pump, thereby avoiding the phenomenon of engine brake, flameout and high fuel consumption.
  • the excavator control method provided in the embodiment of the present application determines the fuel injection quantity of the engine and the proportional valve control current of the excavator according to the main pressure of the hydraulic pump of the excavator, and controls the engine and the hydraulic pump so that the real-time output power of the engine and The real-time output power of the hydraulic pump is matched, which avoids the situation of the engine stalling and flameout, so that the excavator can maintain the stable speed and the optimal output of energy efficiency in the case of sudden changes in the external load, and improves the combustion efficiency of the engine of the excavator.
  • the fuel consumption of the engine of the excavator is reduced.
  • step 120 includes: based on the main pressure of the hydraulic pump, and the main pressure demand power curve of the excavator, determining the fuel injection quantity of the engine of the excavator; based on the main pressure of the hydraulic pump, and the constant power curve of the excavator and The main pressure power given correction curve determines the proportional valve control current of the excavator.
  • the fuel injection quantity of the engine may be determined according to the main pressure demand power curve.
  • the main pressure demand power curve is used to represent the relationship between the main pressure of the hydraulic pump and the required power of the hydraulic pump. According to the main pressure and main pressure demand power curve of the hydraulic pump at the current moment, the required power of the hydraulic pump at the current moment can be obtained, and the required power is the power that the engine needs to provide. Correspondingly, according to the power that the engine needs to provide, we can get Engine fuel injection volume.
  • the proportional valve control current can be determined according to the constant power curve and main pressure power given correction curve.
  • the constant power curve is used to represent the relationship between the proportional valve control current and the main pressure when the hydraulic pump outputs constant power, which reflects the inherent regulation characteristics of the hydraulic pump.
  • the main pressure power given correction curve is used to express the relationship between the proportional valve control current and the main pressure when the main pressure of the hydraulic pump changes, and it reflects the correction of the power output characteristics of the hydraulic pump.
  • the output power preset value of the hydraulic pump can be obtained, and then the correction curve can be given according to the main pressure and main pressure power of the hydraulic pump to obtain the output power correction value of the hydraulic pump, and then The output power of the hydraulic pump is obtained according to the output power preset value and the output power correction value.
  • the proportional valve control current of the excavator is determined based on the main pressure of the hydraulic pump, the constant power curve and the given correction curve of the main pressure power of the excavator, including: based on the main pressure of the hydraulic pump, and the constant
  • the power curve determines the preset value of the proportional valve control current of the excavator; based on the main pressure of the hydraulic pump and the given correction curve of the main pressure power, determines the correction value of the proportional valve control current of the excavator; based on the proportional valve control current
  • the preset value and the correction value of the proportional valve control current determine the proportional valve control current of the excavator.
  • the preset value of the proportional valve control current is determined according to the constant power curve of the hydraulic pump and corresponds to the main pressure of the hydraulic pump at the current moment, and the current value reflects the inherent output characteristics of the hydraulic pump.
  • the correction value of the proportional valve control current is the current correction value corresponding to the main pressure of the hydraulic pump at the current moment determined according to the main pressure power given correction curve of the hydraulic pump.
  • the current correction value reflects the main pressure change according to the current moment. , the output power of the hydraulic pump needs to be corrected.
  • the proportional valve control current can be determined according to the preset value of the proportional valve control current of the excavator and the correction value of the proportional valve control current. For example, addition and subtraction can be performed between the preset value of the proportional valve control current and the corrected value of the proportional valve control current to obtain the proportional valve control current.
  • determining the preset value of the proportional valve control current of the excavator includes: obtaining the pilot pressure of the hydraulic pump of the excavator; And the constant power curve, as well as the pilot pressure and pilot pressure curve of the hydraulic pump, determine the preset value of the proportional valve control current of the excavator.
  • the pilot pressure of the hydraulic pump is the pressure of the pilot pump in the hydraulic pump, and the pilot pump is connected to the pilot handle for controlling the working oil pressure in the hydraulic pump with the control oil. That is to say, the pilot pressure is the control oil pressure of the hydraulic pump.
  • the pilot pressure curve is used to represent the relationship between the proportional valve current and the pilot pressure when the hydraulic pump is working externally, which reflects the regulation characteristics of the hydraulic pump.
  • the pilot pressure of the hydraulic pump reflects the operator's expectation for the output power of the hydraulic pump, and the main pressure of the hydraulic pump reflects the external load borne by the hydraulic pump.
  • the preset value of the proportional valve control current can be jointly determined according to the main pressure and constant power curve of the hydraulic pump, and the pilot pressure and pilot pressure curve of the hydraulic pump.
  • the preset value of the proportional valve control current of the excavator is determined, including: based on the main pressure of the hydraulic pump and constant power curve to determine the first preset value of the proportional valve control current of the excavator; based on the pilot pressure and pilot pressure curve of the hydraulic pump, determine the second preset value of the proportional valve control current of the excavator; based on the proportional valve control The first preset value and the second preset value of the current determine the preset value of the proportional valve control current.
  • the first preset value of the proportional valve control current of the excavator is determined according to the main pressure and constant power curve of the hydraulic pump. For example, according to the main pressure of the hydraulic pump at the current moment, the first preset value of the proportional valve control current can be found in the constant power curve, and the first preset value is used to represent the output power obtained according to the inherent output characteristics of the hydraulic pump It is equal to the set current value when the external load is applied.
  • the second preset value of the proportional valve control current of the excavator is determined according to the pilot pressure of the hydraulic pump and the pilot pressure curve.
  • the second preset value of the proportional valve control current can be obtained by searching the pilot pressure curve according to the pilot pressure of the hydraulic pump at the current moment.
  • the second preset value is used to represent the set current value when the output power judged by the operator's experience is equal to the external load.
  • the minimum value of the first preset value of the proportional valve control current and the second preset value of the proportional valve control current can be used as the preset value of the proportional valve control current of the excavator, thereby realizing power protection for the hydraulic pump of the excavator.
  • the correction value of the proportional valve control current of the excavator is determined, including: based on the main pressure of the hydraulic pump and the main pressure power given Correction curve to determine the hydraulic pump power correction given value of the excavator; based on the main pressure of the hydraulic pump, the engine speed and the feedback proportional valve control current, determine the hydraulic pump power value of the excavator; based on the hydraulic pump power correction given value of the excavator The fixed value and the power value of the hydraulic pump determine the correction value of the proportional valve control current of the excavator.
  • the hydraulic pump power correction given value of the excavator can be determined according to the main pressure of the hydraulic pump and the main pressure power given correction curve.
  • the hydraulic pump power correction given value is used to correct the preset value of the proportional valve control current.
  • the main pressure power given correction curve is used to express the relationship between the proportional valve current and the main pressure when the output power of the hydraulic pump is corrected according to the actual situation of the external load. For example, according to the main pressure of the hydraulic pump at the current moment, the power correction given value of the hydraulic pump can be obtained by searching the main pressure power given correction curve.
  • the power value of the hydraulic pump of the excavator can be determined.
  • the main pressure of the hydraulic pump at the current moment represents the external load borne by the hydraulic pump
  • the engine speed at the current moment represents the output power of the engine
  • the proportional valve control current value fed back at the current moment represents the output power of the hydraulic pump.
  • the proportional valve control current correction value of the excavator can be determined. For example, calculate the difference between the hydraulic pump power correction given value and the hydraulic pump power value to obtain the difference, and use the difference as the correction value of the proportional valve control current.
  • determining the proportional valve control current of the excavator includes: based on the preset value of the proportional valve control current of the excavator value and the correction value of the proportional valve control current to determine the given value of the proportional valve control current of the excavator; based on the given value of the proportional valve control current of the excavator and the feedback proportional valve control current, determine the A proportional valve controls the current.
  • a closed-loop control method can be used to determine the control current of the proportional valve of the excavator.
  • the difference between the preset value of the proportional valve control current of the excavator and the corrected value of the proportional valve control current is used as the given value of the proportional valve control current, combined with the feedback proportional valve control current, using the control algorithm, the proportional valve of the excavator can be obtained control current.
  • the control algorithm may adopt a proportional integral derivative (Proportional Integral Derivative, PID) algorithm and the like.
  • Fig. 2 is a schematic flowchart of an excavator fuel-saving control method provided by the present application.
  • the method is based on the main pressure demand power curve, the constant power curve of the hydraulic pump and the pilot pressure curve
  • the main pressure given power correction curve actively adjusts the fuel injection volume of the engine and the opening of the main valve of the hydraulic pump in real time when the external load changes, so as to make them match reasonably, so that the excavator can maintain the stability of the engine speed and energy efficiency in the case of sudden changes in the external load
  • the optimal output to achieve the purpose of fuel saving and high efficiency.
  • the controller collects the main pressure of the hydraulic pump, and sends it to the electronic control unit (Electronic Control Unit) of the engine through the controller area network (Controller Area Network, CAN) communication according to the main pressure demand power curve.
  • the ECU of the engine controls the fuel injection quantity of the engine in advance according to the demand power value, intervenes in the engine machine in advance, and keeps the engine speed stable in the case of sudden changes in the external load.
  • the controller collects the change of the main pressure of the hydraulic pump, and determines the set point (Set Point, SP) of the given power of the hydraulic pump according to the main pressure given power correction curve.
  • the controller selects the smaller one from the current value determined by collecting the pilot pressure and the current value determined by the main pressure according to the constant power curve, and then converts it into the given current SP of the main pump.
  • the controller calculates the process measurement value (Process Value, PV) of the power feedback through the collected current feedback and the main pressure of the hydraulic pump through the power. Real-time adjustment of the displacement of the main pump under different conditions, to solve the situation of different loads and different power requirements, and allocate according to needs.
  • the power PID is mainly used to correct the actual output power of the main pump according to the main pressure power given correction curve to obtain the power correction value, and then convert the power correction value
  • the current preset value determined by the pressure curve is corrected to obtain the control input of the current PID.
  • the controller adjusts the given power of the main pump in real time according to the main pressure, dynamically adjusts the given power of the main pump when the external load changes, increases the given power under high load conditions, and reduces the given power under low load conditions, thereby avoiding energy Waste, improve energy efficiency utilization.
  • Fig. 3 is a schematic structural diagram of an excavator control device provided by the present application. As shown in Fig. 3, the device includes the following units.
  • the acquiring unit 310 is configured to acquire the main pressure of the hydraulic pump of the excavator.
  • the determination unit 320 is configured to determine the fuel injection quantity of the engine of the excavator and the control current of the proportional valve based on the main pressure of the hydraulic pump.
  • the control unit 330 is configured to control the engine of the excavator based on the fuel injection amount of the engine, and control the hydraulic pump of the excavator based on the proportional valve control current.
  • the excavator control device determines the fuel injection quantity of the engine and the proportional valve control current of the excavator according to the main pressure of the hydraulic pump of the excavator, and controls the engine and the hydraulic pump so that the real-time output power of the engine and The real-time output power of the hydraulic pump is matched, which avoids the situation of the engine being blocked and stalled, so that the excavator can maintain the stable speed and the optimal output of energy efficiency in the case of sudden changes in the external load, and improve the combustion efficiency of the engine of the excavator , Reduce the fuel consumption of the engine of the excavator.
  • the determination unit 320 includes: a fuel injection quantity determination subunit for determining the engine fuel injection quantity of the excavator based on the main pressure of the hydraulic pump and the main pressure demand power curve of the excavator; determining the current value The subunit is used to determine the proportional valve control current of the excavator based on the main pressure of the hydraulic pump, the constant power curve of the excavator and the given correction curve of main pressure power.
  • the current value determination subunit includes: a current value preset module, used to determine the preset value of the proportional valve control current of the excavator based on the main pressure of the hydraulic pump and the constant power curve; a power correction module , used to determine the correction value of the proportional valve control current of the excavator based on the main pressure of the hydraulic pump and the given correction curve of the main pressure power; the current value determination module is used to control the preset value of the current based on the proportional valve and the proportional valve The correction value of the control current determines the control current of the proportional valve of the excavator.
  • the current value preset module includes: an acquisition submodule, used to acquire the pilot pressure of the hydraulic pump of the excavator; a preset submodule, used based on the main pressure and constant power curve of the hydraulic pump, and the hydraulic pressure The pilot pressure of the pump and the pilot pressure curve determine the preset value of the proportional valve control current.
  • the preset submodule is used to: determine the first preset value of the proportional valve control current of the excavator based on the main pressure and constant power curve of the hydraulic pump; based on the pilot pressure and the pilot pressure curve of the hydraulic pump , determine a second preset value of the proportional valve control current of the excavator; and determine a preset value of the proportional valve control current based on the first preset value and the second preset value of the proportional valve control current.
  • the power correction module is used to: determine the hydraulic pump power correction given value of the excavator based on the main pressure of the hydraulic pump and the given correction curve of the main pressure power; based on the main pressure of the hydraulic pump, the engine speed and the feedback proportional valve control current to determine the hydraulic pump power value of the excavator; based on the hydraulic pump power correction given value and hydraulic pump power value of the excavator, the correction value of the proportional valve control current is determined.
  • the current value determination module is used to: determine the given value of the proportional valve control current of the excavator based on the difference between the preset value of the proportional valve control current and the correction value of the proportional valve control current; The given value of the control current and the feedback proportional valve control current determine the proportional valve control current of the excavator.
  • Fig. 4 is the structural representation of the electronic equipment that the present application provides, as shown in Fig. 4, this electronic equipment can comprise: processor (Processor) 410, communication interface (Communications Interface) 420, memory (Memory) 430 and communication bus (Communications) Bus) 440, wherein, the processor 410, the communication interface 420, and the memory 430 communicate with each other through the communication bus 440.
  • the processor 410 can invoke logic commands in the memory 430 to perform the following methods.
  • the above logic commands in the memory 430 may be implemented in the form of software function units and when sold or used as an independent product, they may be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including several
  • the commands are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • the processor in the electronic device provided by the embodiment of the present application can call the logic instruction in the memory to implement the above method, and its specific implementation mode is consistent with the above method implementation mode, and can achieve the same beneficial effect, and will not be repeated here.
  • An embodiment of the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the methods provided in the above-mentioned embodiments are implemented, for example, including: obtaining the excavator's The main pressure of the hydraulic pump; based on the main pressure of the hydraulic pump, determine the engine fuel injection volume and proportional valve control current of the excavator; control the engine of the excavator based on the fuel injection volume of the engine, and control the excavator based on the proportional valve control current The hydraulic pump is controlled.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general hardware platform, and of course also by hardware.
  • the essence of the above technical solutions or the part that contributes to related technologies can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, disk , CD, etc., including several commands to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in each embodiment or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

一种挖掘机控制方法、装置、电子设备及存储介质。挖掘机控制方法包括:获取挖掘机的液压泵的主压;基于液压泵的主压,确定挖掘机的发动机喷油量和比例阀控制电流;基于发动机喷油量对挖掘机的发动机进行控制,并基于比例阀控制电流对挖掘机的液压泵进行控制。

Description

挖掘机控制方法和装置、电子设备及存储介质 技术领域
本申请涉及机械工程技术领域,尤其涉及一种挖掘机控制方法和装置、电子设备及存储介质。
发明背景
挖掘机是使用最为广泛的作业机械之一。由于挖掘机的工况极为复杂,负载实时发生变化,燃油利用率低。挖掘机控制系统有负流量控制系统、负载敏感系统和正流量控制系统。其中,正流量控制系统又分为恒功率与恒扭矩控制系统。相对于前两者而言,正流量控制系统具有动作响应性快、调速特性好等优点,并越来越受到用户青睐。
现有的挖掘机各个档位的功率匹配都为固定功率匹配,由于挖掘机工况复杂多变,发动机常常因为外界负载突变导致被动地去调节转速以及喷油量,常常出现憋车和熄火等情况,导致挖掘机油耗高,能效低。
发明内容
本申请提供一种挖掘机控制方法和装置、电子设备及存储介质,用于解决挖掘机控制方法导致挖掘机油耗高,能效低的技术问题。
第一方面,本申请提供了一种挖掘机控制方法,包括:获取挖掘机的液压泵的主压;基于所述液压泵的主压,确定所述挖掘机的发动机喷油量和比例阀控制电流;基于所述发动机喷油量对所述挖掘机的发动机进行控制,并基于所述比例阀控制电流对所述挖掘机的液压泵进行控制。
结合第一方面,在本申请一实施例中,所述基于所述液压泵的主压,确定所述挖掘机的发动机喷油量和比例阀控制电流,包括:基于所述液压泵的主压,以及所述挖掘机的主压需求功率曲线,确定所述挖掘机的发动机喷油量;基于所述液压泵的主压,以及所述挖掘机的恒功率曲线和主压功率给定修正曲线,确定所述挖掘机的比例阀控制电流。
结合第一方面,在本申请一实施例中,所述基于所述液压泵的主压,以及所述挖掘机的恒功率曲线和主压功率给定修正曲线,确定所述挖掘机的比例阀控制电流,包括:基于所述液压泵的主压,以及所述恒功率曲线,确定所述挖掘机的比例阀控制电流的预设值;基于所述液压泵的主压,以及所述主压功率给定修正曲线,确定所述挖掘机的比例阀控制电流的修正值;基于所述比例阀控制电流的 预设值和比例阀控制电流的修正值,确定所述挖掘机的比例阀控制电流。
结合第一方面,在本申请一实施例中,所述基于所述液压泵的主压,以及所述恒功率曲线,确定所述挖掘机的比例阀控制电流的预设值,包括:获取所述挖掘机的液压泵的先导压力;基于所述液压泵的主压和所述恒功率曲线,以及所述液压泵的先导压力和先导压力曲线,确定所述比例阀控制电流的预设值。
结合第一方面,在本申请一实施例中,所述基于所述液压泵的主压和所述恒功率曲线,以及所述液压泵的先导压力和先导压力曲线,确定所述比例阀控制电流的预设值,包括:基于所述液压泵的主压和所述恒功率曲线,确定所述挖掘机的比例阀控制电流的第一预设值;基于所述液压泵的先导压力和先导压力曲线,确定所述挖掘机的比例阀控制电流的第二预设值;基于所述比例阀控制电流的第一预设值和第二预设值,确定所述比例阀控制电流的预设值。
结合第一方面,在本申请一实施例中,所述基于所述液压泵的主压,以及所述主压功率给定修正曲线,确定所述挖掘机的比例阀控制电流的修正值,包括:基于所述液压泵的主压,以及所述主压功率给定修正曲线,确定所述挖掘机的液压泵功率修正给定值;基于所述液压泵的主压,发动机转速以及反馈的比例阀控制电流,确定所述挖掘机的液压泵功率值;基于所述挖掘机的液压泵功率修正给定值和液压泵功率值,确定所述比例阀控制电流的修正值。
结合第一方面,在本申请一实施例中,所述基于所述挖掘机的比例阀控制电流的预设值和比例阀控制电流的修正值,确定所述挖掘机的比例阀控制电流,包括:基于所述比例阀控制电流的预设值和比例阀控制电流的修正值之差,确定所述挖掘机的比例阀控制电流的给定值;基于所述比例阀控制电流的给定值,以及反馈的比例阀控制电流,确定所述挖掘机的比例阀控制电流。
第二方面,本申请提供了一种挖掘机控制装置,包括:获取单元,用于获取挖掘机的液压泵的主压;确定单元,用于基于所述液压泵的主压,确定所述挖掘机的发动机喷油量和比例阀控制电流;控制单元,用于基于所述发动机喷油量对所述挖掘机的发动机进行控制,并基于所述比例阀控制电流对所述挖掘机的液压泵进行控制。
第三方面,本申请提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现第一方面所述的挖掘机控制方法。
第四方面,本申请提供了一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面所述的挖掘机控制方法。
本申请提供的挖掘机控制方法和装置、电子设备及存储介质,根据挖掘机的液压泵的主压,确定挖掘机的发动机喷油量和比例阀控制电流,对发动机和液压泵进行控制,使得发动机的实时输出功率和液压泵的实时输出功率相匹配,避免 了发动机出现憋车和熄火等情况,使得挖掘机在外界负载突变的情况下能够保持转速稳定与能效的最优输出,提高了挖掘机的发动机的燃烧效率,降低了挖掘机的发动机的燃油消耗。
附图简要说明
为了更清楚地说明本申请或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的挖掘机控制方法的流程示意图。
图2为本申请提供的挖掘机节油控制方法的流程示意图。
图3为本申请提供的挖掘机控制装置的结构示意图。
图4为本申请提供的电子设备的结构示意图。
实施本申请的方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
挖掘机,又称挖掘机械、挖土机,是用铲斗挖掘物料,并装入运输车辆或卸至堆料场的土方机械。由于挖掘机工况复杂多变,以及负载的不可预测性,发动机往往根据外界负载突变被动地去调节转速以及喷油量,经常出现发动机憋车、熄火、油耗高等现象,降低了整车性能。此外,挖掘机各个档位功率匹配固定,出现负载高动作慢、负载低油耗高等能效利用率低的情况。发动机憋车是指发动机转速急剧下降。
图1为本申请提供的挖掘机控制方法的流程示意图,如图1所示,该方法包括如下步骤。
步骤110,获取挖掘机的液压泵的主压。
具体地,挖掘机的液压系统包括发动机、液压泵、先导手柄、行走马达、回转马达、多路阀和比例阀等。液压泵与发动机连接,用于将发动机产生的机械能转换为液体压力进而对外做功。其中,液压泵的主压为液压泵中的工作油压力。
步骤120,基于液压泵的主压,确定挖掘机的发动机喷油量和比例阀控制电流。
具体地,挖掘机对外做功时,所承担的负载变化体现在工作油压力中,也就是说,可以通过液压泵的主压变化,跟踪挖掘机的外界负载变化。发动机喷油量,用于对挖掘机中的发动机进行调节,从而控制发动机的输出功率。比例阀,又称电磁比例阀。比例阀控制电流,用于控制比例阀的开度大小,改变液压泵中主泵的斜盘倾斜角,从而改变输出流量,实现控制液压泵的输出功率。
为了避免挖掘机出现憋车和熄火等情况,可以通过对发动机和液压泵的输出功率进行实时性匹配。可以根据实时采集的液压泵的主压,分别计算得到挖掘机的发动机喷油量和比例阀控制电流。
步骤130,基于发动机喷油量对挖掘机的发动机进行控制,并基于比例阀控制电流对挖掘机的液压泵进行控制。
具体地,根据发动机喷油量对挖掘机的发动机进行控制,同时,根据比例阀控制电流对挖掘机的液压泵进行控制,使得发动机的实时输出功率和液压泵的实时输出功率相匹配。
例如,可以实时获取挖掘机的液压泵的主压,根据液压泵的主压,确定发动机喷油量和比例阀控制电流。根据发动机喷油量对发动机进行输出功率控制的同时,也根据比例阀控制电流对液压泵进行输出功率控制。
相关技术中的发动机是根据发动机的实际转速与设定目标转速进行对比后的结果进行调节,使得发动机往往根据外界负载突变导致转速变化。而本申请实施例中提供的挖掘机控制方法,可以通过液压泵的主压实时地反应外界负载的变化,主动地调节发动机的喷油量,提前干预发动机,让发动机提前喷油,提前做功,避免发动机和液压泵之间出现实时功率不匹配的情况,从而避免了发动机憋车、熄火和油耗高等现象。
本申请实施例提供的挖掘机控制方法,根据挖掘机的液压泵的主压,确定挖掘机的发动机喷油量和比例阀控制电流,对发动机和液压泵进行控制,使得发动机的实时输出功率和液压泵的实时输出功率相匹配,避免了发动机憋车和熄火等情况,使得挖掘机在外界负载突变的情况下能够保持转速稳定与能效的最优输出,提高了挖掘机的发动机的燃烧效率,降低了挖掘机的发动机的燃油消耗。
基于上述实施例,步骤120包括:基于液压泵的主压,以及挖掘机的主压需求功率曲线,确定挖掘机的发动机喷油量;基于液压泵的主压,以及挖掘机的恒功率曲线和主压功率给定修正曲线,确定挖掘机的比例阀控制电流。
具体地,发动机喷油量可以根据主压需求功率曲线进行确定。主压需求功率曲线用于表示液压泵的主压与液压泵的需求功率之间的关系。根据液压泵在当前时刻的主压和主压需求功率曲线,可以得到液压泵在当前时刻的需求功率,该需求功率即为发动机需要提供的功率,相应地,可以根据发动机需要提供的功率,得到发动机喷油量。
比例阀控制电流可以根据恒功率曲线和主压功率给定修正曲线进行确定。其中,恒功率曲线用于表示液压泵在输出恒定功率时比例阀控制电流与主压之间的关系,体现的是液压泵的固有调节特性。主压功率给定修正曲线用于表示液压泵主压变化时比例阀控制电流与主压之间的关系,体现的是对液压泵功率输出特性的修正。例如,可以根据液压泵的主压和恒功率曲线,得到液压泵的输出功率预设值,再根据液压泵的主压和主压功率给定修正曲线,得到液压泵的输出功率修正值,再根据输出功率预设值和输出功率修正值,得到液压泵的输出功率。
基于上述任一实施例,基于液压泵的主压,以及挖掘机的恒功率曲线和主压功率给定修正曲线,确定挖掘机的比例阀控制电流,包括:基于液压泵的主压,以及恒功率曲线,确定挖掘机的比例阀控制电流的预设值;基于液压泵的主压,以及主压功率给定修正曲线,确定挖掘机的比例阀控制电流的修正值;基于比例阀控制电流的预设值和比例阀控制电流的修正值,确定挖掘机的比例阀控制电流。
具体地,比例阀控制电流的预设值为根据液压泵的恒功率曲线确定的与液压泵在当前时刻的主压相对应的电流值,该电流值体现了液压泵的固有输出特性。
比例阀控制电流的修正值为根据液压泵的主压功率给定修正曲线确定的与液压泵在当前时刻的主压相对应的电流修正值,该电流修正值体现了根据当前时刻的主压变化,需要对液压泵的输出功率进行修正。
可以根据挖掘机的比例阀控制电流的预设值和比例阀控制电流的修正值,确定比例阀控制电流。例如,可以对比例阀控制电流的预设值和比例阀控制电流的修正值之间进行加减运算,得到比例阀控制电流。
基于上述任一实施例,基于液压泵的主压,以及恒功率曲线,确定挖掘机的比例阀控制电流的预设值,包括:获取挖掘机的液压泵的先导压力;基于液压泵的主压和恒功率曲线,以及液压泵的先导压力和先导压力曲线,确定挖掘机的比例阀控制电流的预设值。
具体地,液压泵的先导压力为液压泵中的先导泵的压力,先导泵与先导手柄连接,用于利用控制油对液压泵中的工作油压进行控制。也就是说,先导压力为液压泵的控制油压力。先导压力曲线用于表示液压泵在对外做功时比例阀电流与先导压力之间的关系,体现的是液压泵的调节特性。
液压泵的先导压力反映的是操作员对于液压泵的输出功率的期望值,液压泵的主压反映的是液压泵所承担的外界负载。可以根据液压泵的主压和恒功率曲线,以及液压泵的先导压力和先导压力曲线来联合确定比例阀控制电流的预设值。
基于上述任一实施例,基于液压泵的主压和恒功率曲线,以及液压泵的先导压力和先导压力曲线,确定挖掘机的比例阀控制电流的预设值,包括:基于液压泵的主压和恒功率曲线,确定挖掘机的比例阀控制电流的第一预设值;基于液压泵的先导压力和先导压力曲线,确定挖掘机的比例阀控制电流的第二预设值;基 于比例阀控制电流的第一预设值和第二预设值,确定比例阀控制电流的预设值。
具体地,根据液压泵的主压和恒功率曲线,确定挖掘机的比例阀控制电流的第一预设值。例如,可以根据液压泵在当前时刻的主压,在恒功率曲线中查找得到比例阀控制电流的第一预设值,第一预设值用于表示根据液压泵的固有输出特性得到的输出功率等于外界负载时的设定电流值。
根据液压泵的先导压力和先导压力曲线,确定挖掘机的比例阀控制电流的第二预设值。例如,可以根据液压泵在当前时刻的先导压力,在先导压力曲线中查找得到比例阀控制电流的第二预设值。第二预设值用于表示根据操作员的经验判断得到的输出功率等于外界负载时的设定电流值。
可以将比例阀控制电流的第一预设值和比例阀控制电流的第二预设值的最小值作为挖掘机的比例阀控制电流的预设值,从而实现对挖掘机液压泵的功率保护。
基于上述任一实施例,基于液压泵的主压,以及主压功率给定修正曲线,确定挖掘机的比例阀控制电流的修正值,包括:基于液压泵的主压,以及主压功率给定修正曲线,确定挖掘机的液压泵功率修正给定值;基于液压泵的主压,发动机转速以及反馈的比例阀控制电流,确定挖掘机的液压泵功率值;基于挖掘机的液压泵功率修正给定值和液压泵功率值,确定挖掘机的比例阀控制电流的修正值。
具体地,为了实现对挖掘机的比例阀控制电流进行精确控制,可以根据液压泵的主压,以及主压功率给定修正曲线,确定挖掘机的液压泵功率修正给定值。液压泵功率修正给定值用于对比例阀控制电流的预设值进行修正。
主压功率给定修正曲线用于表示根据外界负载的实际情况对液压泵的输出功率进行修正时比例阀电流与主压之间的关系。例如,可以根据液压泵在当前时刻的主压,在主压功率给定修正曲线中查找得到液压泵功率修正给定值。
根据液压泵的主压,发动机转速以及反馈的比例阀控制电流,可以确定挖掘机的液压泵功率值。例如,当前时刻的液压泵主压表征了液压泵承担的外界负载,当前时刻的发动机转速表征了发动机的输出功率,当前时刻反馈的比例阀控制电流值表征了液压泵的输出功率,对三者进行求平均运算,可以得到用于表征液压泵在当前时刻的输出功率。
根据挖掘机的液压泵功率修正给定值和液压泵功率值,可以确定挖掘机的比例阀控制电流修正值。例如,将液压泵功率修正给定值和液压泵功率值进行求差,得到差值,并将差值作为比例阀控制电流的修正值。
基于上述任一实施例,基于挖掘机的比例阀控制电流的预设值和比例阀控制电流的修正值,确定挖掘机的比例阀控制电流,包括:基于挖掘机的比例阀控制电流的预设值和比例阀控制电流的修正值之差,确定挖掘机的比例阀控制电流的给定值;基于挖掘机的比例阀控制电流的给定值,以及反馈的比例阀控制电流,确定挖掘机的比例阀控制电流。
具体地,可以采用闭环控制的方法,确定挖掘机的比例阀控制电流。
将挖掘机的比例阀控制电流的预设值和比例阀控制电流的修正值之差作为比例阀控制电流给定值,结合反馈的比例阀控制电流,采用控制算法,可以得到挖掘机的比例阀控制电流。控制算法可以采用比例积分微分(Proportional Integral Derivative,PID)算法等。
基于上述任一实施例,图2为本申请提供的挖掘机节油控制方法的流程示意图,如图2所示,该方法根据主压需求功率曲线、液压泵的恒功率曲线以及先导压力曲线、主压给定功率修正曲线在外界负载发生变化时实时主动地调节发动机喷油量、液压泵主阀开度,使其合理匹配,使挖掘机在外界负载突变的情况下保持发动机转速稳定与能效的最优输出,到达省油高效的目的。
当外界负载或者工况突然改变时,控制器通过采集液压泵主压,根据主压需求功率曲线,控制器通过控制器局域网(Controller Area Network,CAN)通讯发给发动机的电子控制单元(Electronic Control Unit,ECU)需求功率值,发动机的ECU根据需求功率值提前去控制发动机的喷油量,提前干预发动机机,保持发动机在外界负载突变的情况下保持转速稳定。
控制器采集液压泵主压的变化,根据主压给定功率修正曲线确定液压泵的给定功率的设定值(Set Point,SP)。控制器根据采集先导压力确定的电流值与主压根据恒功率曲线确定的电流值进行取小,然后转换成主泵给定电流SP。控制器通过采集的电流反馈与液压泵主压,通过功率计算出功率反馈的过程测量值(Process Value,PV),功率PID、电流PID根据给定的功率与给定电流,在外界负载变化的情况下实时的调节主泵的排量,解决不同负载情况下,需求功率不同的情况,按需分配。
此处,功率PID主要用于根据主压功率给定修正曲线对主泵的实际输出功率进行修正后,得到功率修正值,然后将功率修正值转换为电流修正值,对根据恒功率曲线和先导压力曲线确定的电流预设值进行修正,得到电流PID的控制输入。
控制器根据主压实时调节主泵的给定功率,在外界负载变化的情况下动态调整主泵给定功率,高负载情况下提升给定功率,低负载情况下降低给定功率,从而避免能量浪费,提高能效利用率。
图3为本申请提供的挖掘机控制装置的结构示意图,如图3所示,该装置包括如下单元。
获取单元310,用于获取挖掘机的液压泵的主压。
确定单元320,用于基于液压泵的主压,确定挖掘机的发动机喷油量和比例阀控制电流。
控制单元330,用于基于发动机喷油量对挖掘机的发动机进行控制,并基于比例阀控制电流对挖掘机的液压泵进行控制。
本申请实施例提供的挖掘机控制装置,根据挖掘机的液压泵的主压,确定挖掘机的发动机喷油量和比例阀控制电流,对发动机和液压泵进行控制,使得发动机的实时输出功率和液压泵的实时输出功率相匹配,避免了发动机出现憋车和熄火等情况,使得挖掘机在外界负载突变的情况下能够保持转速稳定与能效的最优输出,提高了挖掘机的发动机的燃烧效率,降低了挖掘机的发动机的燃油消耗。
基于上述任一实施例,确定单元320包括:喷油量确定子单元,用于基于液压泵的主压,以及挖掘机的主压需求功率曲线,确定挖掘机的发动机喷油量;电流值确定子单元,用于基于液压泵的主压,以及挖掘机的恒功率曲线和主压功率给定修正曲线,确定挖掘机的比例阀控制电流。
基于上述任一实施例,电流值确定子单元包括:电流值预设模块,用于基于液压泵的主压,以及恒功率曲线,确定挖掘机的比例阀控制电流的预设值;功率修正模块,用于基于液压泵的主压,以及主压功率给定修正曲线,确定挖掘机的比例阀控制电流的修正值;电流值确定模块,用于基于比例阀控制电流的预设值和比例阀控制电流的修正值,确定挖掘机的比例阀控制电流。
基于上述任一实施例,电流值预设模块包括:获取子模块,用于获取挖掘机的液压泵的先导压力;预设子模块,用于基于液压泵的主压和恒功率曲线,以及液压泵的先导压力和先导压力曲线,确定比例阀控制电流的预设值。
基于上述任一实施例,预设子模块用于:基于液压泵的主压和恒功率曲线,确定挖掘机的比例阀控制电流的第一预设值;基于液压泵的先导压力和先导压力曲线,确定挖掘机的比例阀控制电流的第二预设值;基于比例阀控制电流的第一预设值和第二预设值,确定比例阀控制电流的预设值。
基于上述任一实施例,功率修正模块用于:基于液压泵的主压,以及主压功率给定修正曲线,确定挖掘机的液压泵功率修正给定值;基于液压泵的主压,发动机转速以及反馈的比例阀控制电流,确定挖掘机的液压泵功率值;基于挖掘机的液压泵功率修正给定值和液压泵功率值,确定比例阀控制电流的修正值。
基于上述任一实施例,电流值确定模块用于:基于比例阀控制电流的预设值和比例阀控制电流的修正值之差,确定挖掘机的比例阀控制电流的给定值;基于比例阀控制电流的给定值,以及反馈的比例阀控制电流,确定挖掘机的比例阀控制电流。
图4为本申请提供的电子设备的结构示意图,如图4所示,该电子设备可以包括:处理器(Processor)410、通信接口(Communications Interface)420、存储器(Memory)430和通信总线(Communications Bus)440,其中,处理器410,通信接口420,存储器430通过通信总线440完成相互间的通信。处理器410可以调用存储器430中的逻辑命令,以执行如下方法。
获取挖掘机的液压泵的主压;基于液压泵的主压,确定挖掘机的发动机喷油 量和比例阀控制电流;基于发动机喷油量对挖掘机的发动机进行控制,并基于比例阀控制电流对挖掘机的液压泵进行控制。
此外,上述的存储器430中的逻辑命令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干命令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供的电子设备中的处理器可以调用存储器中的逻辑指令,实现上述方法,其具体的实施方式与前述方法实施方式一致,且可以达到相同的有益效果,此处不再赘述。
本申请实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的方法,例如包括:获取挖掘机的液压泵的主压;基于液压泵的主压,确定挖掘机的发动机喷油量和比例阀控制电流;基于发动机喷油量对挖掘机的发动机进行控制,并基于比例阀控制电流对挖掘机的液压泵进行控制。
本申请实施例提供的非暂态计算机可读存储介质上存储的计算机程序被执行时,实现上述方法,其具体的实施方式与前述方法实施方式一致,且可以达到相同的有益效果,此处不再赘述。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干命令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制; 尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (14)

  1. 一种挖掘机控制方法,包括:
    获取挖掘机的液压泵的主压;
    基于所述液压泵的主压,确定所述挖掘机的发动机喷油量和比例阀控制电流;
    基于所述发动机喷油量对所述挖掘机的发动机进行控制,并基于所述比例阀控制电流对所述挖掘机的液压泵进行控制。
  2. 根据权利要求1所述的挖掘机控制方法,其中,所述基于所述液压泵的主压,确定所述挖掘机的发动机喷油量和比例阀控制电流,包括:
    基于所述液压泵的主压,以及所述挖掘机的主压需求功率曲线,确定所述挖掘机的发动机喷油量;
    基于所述液压泵的主压,以及所述挖掘机的恒功率曲线和主压功率给定修正曲线,确定所述挖掘机的比例阀控制电流。
  3. 根据权利要求2所述的挖掘机控制方法,其中,所述基于所述液压泵的主压,以及所述挖掘机的主压需求功率曲线,确定所述挖掘机的发动机喷油量,包括:
    基于所述液压泵的主压和所述主压需求功率曲线,确定所述液压泵的需求功率;
    基于所述液压泵的需求功率,确定所述挖掘机的发动机喷油量。
  4. 根据权利要求2或3所述的挖掘机控制方法,其中,所述基于所述液压泵的主压,以及所述挖掘机的恒功率曲线和主压功率给定修正曲线,确定所述挖掘机的比例阀控制电流,包括:
    基于所述液压泵的主压,以及所述恒功率曲线,确定所述挖掘机的比例阀控制电流的预设值;
    基于所述液压泵的主压,以及所述主压功率给定修正曲线,确定所述挖掘机的比例阀控制电流的修正值;
    基于所述比例阀控制电流的预设值和所述比例阀控制电流的修正值,确定所述挖掘机的比例阀控制电流。
  5. 根据权利要求4所述的挖掘机控制方法,其中,所述基于所述液压泵的主压,以及所述恒功率曲线,确定所述挖掘机的比例阀控制电流的预设值,包括:
    获取所述挖掘机的液压泵的先导压力;
    基于所述液压泵的主压和所述恒功率曲线,以及所述液压泵的先导压力和先导压力曲线,确定所述比例阀控制电流的预设值。
  6. 根据权利要求5所述的挖掘机控制方法,其中,所述基于所述液压泵的主 压和所述恒功率曲线,以及所述液压泵的先导压力和先导压力曲线,确定所述比例阀控制电流的预设值,包括:
    基于所述液压泵的主压和所述恒功率曲线,确定所述挖掘机的比例阀控制电流的第一预设值;
    基于所述液压泵的先导压力和所述先导压力曲线,确定所述挖掘机的比例阀控制电流的第二预设值;
    基于所述比例阀控制电流的第一预设值和第二预设值,确定所述比例阀控制电流的预设值。
  7. 根据权利要求5所述的挖掘机控制方法,其中,所述基于所述比例阀控制电流的第一预设值和第二预设值,确定所述比例阀控制电流的预设值,包括:
    确定所述比例阀控制电流的第一预设值和第二预设值中的最小值,并将所述最小值作为所述比例阀控制电流的预设值。
  8. 根据权利要求4至7任一项所述的挖掘机控制方法,其中,所述基于所述液压泵的主压,以及所述主压功率给定修正曲线,确定所述挖掘机的比例阀控制电流的修正值,包括:
    基于所述液压泵的主压,以及所述主压功率给定修正曲线,确定所述挖掘机的液压泵功率修正给定值;
    基于所述液压泵的主压,发动机转速以及反馈的比例阀控制电流,确定所述挖掘机的液压泵功率值;
    基于所述挖掘机的液压泵功率修正给定值和液压泵功率值,确定所述比例阀控制电流的修正值。
  9. 根据权利要求8所述的挖掘机控制方法,其中,所述基于所述挖掘机的液压泵功率修正给定值和液压泵功率值,确定所述比例阀控制电流的修正值,包括:
    对所述挖掘机的液压泵功率修正给定值和液压泵功率值进行求差,确定差值,并将所述差值作为所述比例阀控制电流的修正值。
  10. 根据权利要求4至9任一项所述的挖掘机控制方法,其中,所述基于所述比例阀控制电流的预设值和所述比例阀控制电流的修正值,确定所述挖掘机的比例阀控制电流,包括:
    基于所述比例阀控制电流的预设值和所述比例阀控制电流的修正值之差,确定所述挖掘机的比例阀控制电流的给定值;
    基于所述比例阀控制电流的给定值,以及反馈的比例阀控制电流,确定所述挖掘机的比例阀控制电流。
  11. 根据权利要求10所述的挖掘机控制方法,其中,所述基于所述比例阀控制电流的给定值,以及反馈的比例阀控制电流,确定所述挖掘机的比例阀控制电流,包括:
    利用比例积分微分算法,基于所述比例阀控制电流的给定值和所述反馈的比例阀控制电流,确定所述挖掘机的比例阀控制电流。
  12. 一种挖掘机控制装置,包括:
    获取单元,用于获取挖掘机的液压泵的主压;
    确定单元,用于基于所述液压泵的主压,确定所述挖掘机的发动机喷油量和比例阀控制电流;
    控制单元,用于基于所述发动机喷油量对所述挖掘机的发动机进行控制,并基于所述比例阀控制电流对所述挖掘机的液压泵进行控制。
  13. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至11中任一项所述挖掘机控制方法的步骤。
  14. 一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至11中任一项所述挖掘机控制方法的步骤。
PCT/CN2022/096865 2021-06-29 2022-06-02 挖掘机控制方法和装置、电子设备及存储介质 WO2023273791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110726690.9A CN113357028B (zh) 2021-06-29 2021-06-29 挖掘机控制方法、装置、电子设备及存储介质
CN202110726690.9 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023273791A1 true WO2023273791A1 (zh) 2023-01-05

Family

ID=77537056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096865 WO2023273791A1 (zh) 2021-06-29 2022-06-02 挖掘机控制方法和装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN113357028B (zh)
WO (1) WO2023273791A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113357028B (zh) * 2021-06-29 2022-09-27 上海华兴数字科技有限公司 挖掘机控制方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173605A (ja) * 1999-12-22 2001-06-26 Sumitomo Constr Mach Co Ltd 建設機械の制御装置
CN102518168A (zh) * 2011-12-08 2012-06-27 上海三一重机有限公司 液压系统控制装置及其控制方法及包括该装置的挖掘机
CN104074225A (zh) * 2014-07-08 2014-10-01 湖南机电职业技术学院 一种液压挖掘机功率自适应控制系统和方法
CN110644564A (zh) * 2019-09-11 2020-01-03 徐州徐工挖掘机械有限公司 一种液压挖掘机控制系统及方法
CN111255006A (zh) * 2020-01-20 2020-06-09 广西玉柴重工有限公司 一种挖掘机液压泵、发动机集成同步控制方法及装置
CN113357028A (zh) * 2021-06-29 2021-09-07 上海华兴数字科技有限公司 挖掘机控制方法、装置、电子设备及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3971348B2 (ja) * 2003-06-25 2007-09-05 日立建機株式会社 建設機械のエンジン制御装置
JP4376047B2 (ja) * 2003-12-18 2009-12-02 日立建機株式会社 油圧建設機械の制御装置
WO2005098148A1 (ja) * 2004-04-08 2005-10-20 Komatsu Ltd. 作業機械の油圧駆動装置
JP4407619B2 (ja) * 2005-10-28 2010-02-03 株式会社小松製作所 エンジンおよび油圧ポンプの制御装置
CN101818508A (zh) * 2010-04-19 2010-09-01 三一重机有限公司 挖掘机功率控制系统和方法
CN202831052U (zh) * 2012-09-29 2013-03-27 徐州徐工挖掘机械有限公司 基于恒功率与变功率的液压挖掘机控制系统
JP6081222B2 (ja) * 2013-02-26 2017-02-15 住友建機株式会社 ショベル及びショベルの制御方法
CN103925091B (zh) * 2014-04-09 2016-09-07 三一汽车起重机械有限公司 动态功率匹配方法
JP6564567B2 (ja) * 2014-12-03 2019-08-21 日立建機株式会社 作業機械
CN105971051B (zh) * 2015-03-12 2021-04-30 住友重机械工业株式会社 挖掘机
CN105402039B (zh) * 2015-12-21 2018-05-11 徐州燕大传动与控制技术有限公司 一种基于扭矩与转速复合控制的旋挖钻机功率匹配方法
CN108331064B (zh) * 2018-02-05 2020-09-08 徐州徐工挖掘机械有限公司 一种液压挖掘机负载自适应智能控制装置及控制系统
GB2586010B (en) * 2019-07-22 2022-01-05 Caterpillar Inc Method of reducing fuel consumption in loaders, excavators, backhoe loaders and the like
CN110965607B (zh) * 2019-12-17 2022-02-08 上海华兴数字科技有限公司 挖掘机发动机控制方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001173605A (ja) * 1999-12-22 2001-06-26 Sumitomo Constr Mach Co Ltd 建設機械の制御装置
CN102518168A (zh) * 2011-12-08 2012-06-27 上海三一重机有限公司 液压系统控制装置及其控制方法及包括该装置的挖掘机
CN104074225A (zh) * 2014-07-08 2014-10-01 湖南机电职业技术学院 一种液压挖掘机功率自适应控制系统和方法
CN110644564A (zh) * 2019-09-11 2020-01-03 徐州徐工挖掘机械有限公司 一种液压挖掘机控制系统及方法
CN111255006A (zh) * 2020-01-20 2020-06-09 广西玉柴重工有限公司 一种挖掘机液压泵、发动机集成同步控制方法及装置
CN113357028A (zh) * 2021-06-29 2021-09-07 上海华兴数字科技有限公司 挖掘机控制方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN113357028A (zh) 2021-09-07
CN113357028B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
US8874327B2 (en) Control device for hybrid construction machinery
US8548661B2 (en) Hybrid working machine and controlling method thereof
KR101716943B1 (ko) 하이브리드식 건설 기계
EP0884422B1 (en) Engine control system for construction machine
US9671763B2 (en) Device for controlling construction machinery
US20080245065A1 (en) Control System for Hydraulic Construction Machine
EP2770119B1 (en) Hybrid-driven hydraulic work machine
US9644651B2 (en) Method for controlling hydraulic system of construction machinery
EP3067473A1 (en) Hybrid work machine
WO2023273791A1 (zh) 挖掘机控制方法和装置、电子设备及存储介质
EP4030003A1 (en) Hydraulic excavator control system and method
CN113417332A (zh) 工程机械的控制方法、控制装置、工程机械以及存储介质
WO2014087978A1 (ja) 作業機械
CN109252970B (zh) 一种发动机转速控制方法、发动机及车辆
EP2851540A2 (en) Anti-lug and anti-stall control unit
CN114561985B (zh) 一种基于负载循环变化的挖掘机油门控制方法及系统
CN115263588B (zh) 发动机控制方法、装置、系统及作业机械
US12018460B2 (en) Excavator
US20220002975A1 (en) Excavator
CN114696722A (zh) 电机转速的控制方法及装置
CN115324758A (zh) 一种挖掘机功率控制方法
CN116927279A (zh) 属具控制方法、装置及作业机械
CN117627104A (zh) 液压挖掘机的控制方法、装置和液压挖掘机
JP2001124004A (ja) 建設機械の油圧制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE