WO2023273742A1 - 低硫含量纳米磷酸铁的制备方法 - Google Patents

低硫含量纳米磷酸铁的制备方法 Download PDF

Info

Publication number
WO2023273742A1
WO2023273742A1 PCT/CN2022/095689 CN2022095689W WO2023273742A1 WO 2023273742 A1 WO2023273742 A1 WO 2023273742A1 CN 2022095689 W CN2022095689 W CN 2022095689W WO 2023273742 A1 WO2023273742 A1 WO 2023273742A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferric phosphate
slurry
preparation
phosphate dihydrate
water
Prior art date
Application number
PCT/CN2022/095689
Other languages
English (en)
French (fr)
Inventor
李凌杰
李长东
唐盛贺
阮丁山
韩帅
黄高荣
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to US18/265,882 priority Critical patent/US20240025745A1/en
Priority to MA60464A priority patent/MA60464A1/fr
Priority to GB2309433.7A priority patent/GB2616230A/en
Priority to DE112022000163.1T priority patent/DE112022000163T5/de
Publication of WO2023273742A1 publication Critical patent/WO2023273742A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion batteries, and in particular relates to a method for preparing nano iron phosphate with low sulfur content.
  • lithium-ion batteries as a new and green energy supply method, are widely used in automotive power batteries, electrochemical energy storage, 3C product batteries and other fields.
  • lithium iron phosphate batteries occupy a large share in the market due to their excellent cycle performance, safety performance, low price, environmental protection and non-pollution, and with the popularization of new energy vehicles, their demand is increasing. quickly growing.
  • the main methods for preparing lithium iron phosphate cathode materials include high-temperature solid-phase method, carbothermal reduction method, sol-gel method, co-precipitation method, hydrothermal method, etc.
  • the carbothermal reduction method has stable process, low cost and easy control , has become the mainstream industrial preparation method.
  • the main method of preparing ferric phosphate is to use ferrous sulfate as raw material and prepare it by controlled crystallization method.
  • the product contains a large amount of impurities, which are difficult to remove during subsequent calcination to synthesize lithium iron phosphate, which affects the electrical performance of lithium iron phosphate battery.
  • the impact is relatively large, which greatly affects the application of iron phosphate in battery materials.
  • impurity sulfur is the most serious. Luo Yanhua et al. found that when the mass fraction of sulfur reaches a certain level, the influence on the particle morphology, discharge capacity and cycle performance of lithium iron phosphate is gradually obvious. When the mass fraction of sulfur is lower than 0.22 %, the shape of lithium iron phosphate particles is spherical, and the first discharge capacity of 1C reaches 152mAh/g.
  • the capacity can still be maintained at 140mAh/g, and the electrochemical performance is good; when the mass fraction of sulfur is higher than 0.34%, The lithium iron phosphate particles were agglomerated, and the 1C discharge capacity was lower than 130mAh/g for the first time, and after 150 cycles, the capacity was lower than 107mAh/g.
  • the main methods used to control the sulfur content in iron phosphate in the industry include controlling the pH of the synthesis process, multi-stage washing, citric acid washing, and long-term calcination, etc. These methods often affect the tap density, reactivity, and surface shape of the product. appearance and other properties, or use a large amount of washing water and high-cost citric acid, the pollution is relatively large, which puts great pressure on the subsequent wastewater treatment; during the process of calcination and crystallization of ferric phosphate dihydrate Residual sulfate radicals are often released in the form of SO 2 .
  • the existing process has low calcination temperature and long calcination time, which has poor effect on the removal of S element, and also causes the melting of ferric phosphate primary particles, and the reactivity decreases. Therefore, it is of great significance to develop a method of reducing sulfur content with good effect, low cost and little impact on the environment to optimize the synthesis process of battery-grade nano-iron phosphate and improve its product performance.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a preparation method of nano iron phosphate with low sulfur content.
  • a kind of preparation method of nano iron phosphate with low sulfur content comprising the following steps:
  • the iron source is ferrous sulfate, and an oxidizing agent is added to the raw material liquid; the molar ratio of iron and phosphorus in the raw material liquid is 1:(0.9-1.1) .
  • step S1 the phosphorus source is phosphoric acid.
  • the oxidizing agent is H 2 O 2 .
  • the oxidizing agent oxidizes Fe 2+ to Fe 3+ .
  • the alkali is at least one of sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, ammonia or ammonium salt; preferably, the Alkali is selected sodium hydroxide for use.
  • the surfactant is sodium stearate, polyvinylpyrrolidone, sodium dodecylsulfonate, dodecylphenol polyoxyethylene ether, cetyl At least one of trimethylammonium bromide or cetyltrimethylammonium chloride.
  • the surfactant in step S1, is compounded with polyvinylpyrrolidone and sodium dodecylsulfonate at a mass ratio of about 1:1.
  • polyvinylpyrrolidone and sodium dodecylsulfonate at a mass ratio of about 1:1.
  • step S1 the pH is 1.0-2.5.
  • step S1 the mass ratio of the raw material liquid to the lye is 1: (0.1-0.3).
  • step S1 the stirring speed is 100-800 rpm; the reaction temperature is 20-60° C., and the reaction time is 0.5-5 h.
  • step S1 the surfactant and water are formulated into a surfactant mixed solution with a mass concentration of 10-40%, and the mass ratio of the raw material solution to the surfactant mixed solution is 1: (0.004-0.04).
  • step S2 the mass concentration of the phosphoric acid solution is 60-80%; the pH is 1.0-2.0.
  • step S2 the stirring speed of aging is 50-300 rpm, the aging temperature is 60-100° C., and the aging time is 1-5 h.
  • the obtained ferric phosphate dihydrate has a particle size of 8-20 ⁇ m.
  • the particle size of the dispersed phase of the ground slurry is 2.5-10 ⁇ m.
  • the particle size of wet grinding needs to be adjusted according to the requirements of the later lithium iron phosphate synthesis process.
  • step S3 the mass ratio of ferric phosphate dihydrate to water is 1:(1-4).
  • step S4 the number of washings is twice.
  • the washing solution is one of water or 0.5-2% sodium carbonate solution; preferably, the water is hot water at 60-90°C.
  • the present invention in addition to conventional deionized water, the present invention also innovatively selects hot pure water, which can reduce the viscosity of the slurry and improve the washing effect.
  • Sodium carbonate solution is also innovatively selected. Sodium carbonate and sulfate have a good reaction effect and are easy to remove. At the same time, waste water is easy to treat, which can further reduce the content of impurity sulfur in iron phosphate.
  • the choice of washing liquid can be selected according to production cost control and product performance requirements.
  • step S4 the mass ratio of washing liquid to ferric phosphate dihydrate is (5-20):1.
  • step S4 the water content of the filter residue is 15-30%.
  • step S4 the calcination temperature is 450-800° C., the calcination time is 0.5-5 h; the heating rate is 2-10° C./min.
  • the calcination temperature is 600-800°C, and the calcination time is 0.5-3h.
  • the calcination temperature is increased to above 600°C, and the calcination time is controlled within 3 hours, which can effectively remove the residual sulfate radicals in the iron phosphate particles and ensure the chemical properties of the product. .
  • step S4 compressed air needs to be introduced into the calcination. Introducing pure compressed air can speed up the extraction of S elements.
  • the present invention innovatively advances the grinding process in the lithium iron phosphate synthesis process, adopts wet grinding to reduce the particle size of iron phosphate dihydrate, and opens up the agglomeration of its secondary particles, so that the sulfate radicals wrapped in it can be better Dissolved in the washing water, and then come out, greatly reducing the amount of washing water.
  • the present invention directly calcines without drying. In the process of losing free water and crystal water in the ferric phosphate dihydrate filter residue, pores are left in the particles, which provides favorable conditions for the diffusion and removal of SO 2 .
  • the S content in the obtained finished product is less than 0.01%, reaching the national standard for battery-grade nano-iron phosphate finished products.
  • the process of the present invention is simple, low in cost, stable in control, and easy for large-scale industrialization; when the traditional carbothermal reduction method is used to prepare lithium iron phosphate, it is necessary to reduce the particle size of the raw materials through wet grinding, improve the dispersion uniformity of each raw material, and then carry out Spray dry.
  • the present invention advances the subsequent wet grinding process to the iron phosphate preparation process, combines the front and rear processes, and optimizes and combines the process steps.
  • the preparation process of the product has certain reference function.
  • Fig. 1 is the process flow chart of the embodiment of the present invention 1;
  • Fig. 2 is the SEM figure of the nano iron phosphate that the embodiment of the present invention 1 makes;
  • Fig. 3 is an XRD comparison chart of nanometer iron phosphate prepared in Example 1 and Comparative Example 1 of the present invention.
  • the present embodiment has prepared a kind of nano iron phosphate of low sulfur content, with reference to the process flow chart of Fig. 1, concrete process is:
  • the ICP test result is: the S content in the ferric phosphate dihydrate filter residue obtained in this embodiment is 0.3564%.
  • Figure 2 is the SEM image of the nano-iron phosphate prepared in this example. It can be clearly seen from the SEM image that the synthesized battery-grade nano-iron phosphate has changed from conventional secondary particle agglomerates to relatively loose primary particle disorder The distribution is closer to the state of iron phosphate in the wet grinding and rough grinding process in the later stage, and the secondary particle aggregates are opened to help the detachment of the impurity sulfur element attached to the inside.
  • Fig. 3 is the XRD pattern of the nano iron phosphate that the embodiment of the present invention 1 and comparative example 1 make, can find out obviously by XRD pattern, the iron phosphate that comparative example 1 adopts conventional low-temperature long-period calcining dehydration method to obtain is amorphous state, However, the ferric phosphate obtained by the rapid high-temperature short-cycle calcination method used in Example 1 has good crystallinity, sharp characteristic peaks, and a pure crystal phase structure without impurities.
  • Table 1 shows the particle size distribution of the ferric phosphate product obtained in this example.
  • This embodiment has prepared a kind of nano iron phosphate of low sulfur content, and specific process is:
  • This embodiment has prepared a kind of nano iron phosphate of low sulfur content, and specific process is:
  • This comparative example has prepared a kind of nano iron phosphate, and concrete process is:
  • the ferric phosphate dihydrate filter residue was prepared, and the ferric phosphate dihydrate filter residue was directly washed 3 times with 50 times of deionized water, each time for 30 minutes, and dried at 120 ° C after pressure filtration 10h, then put into a bowl, carry out high-temperature calcination at 300°C for 5h, the heating rate is 5°C/min, and 10Nm 3 /h of pure compressed air is introduced, and the calcined material can be prepared by grinding, pulverizing, and sieving to obtain battery-grade nano phosphoric acid Iron products.
  • This embodiment has prepared a kind of ferric phosphate dihydrate, and the difference with embodiment 1 is that the proportioning of surfactant solution is different, and concrete process is:
  • the ICP test result is: the S content in the ferric phosphate dihydrate filter residue obtained in this comparative example is 0.8129%.
  • Table 1 shows the content of impurity elements in the battery-grade nano-iron phosphate finished products prepared in Examples 1-3 and Comparative Example 1, and the specific data are obtained by testing with ICP-AES equipment.
  • Table 2 shows the main differences between the preparation process of Examples 1-3 and Comparative Example 1.

Abstract

本发明公开了一种低硫含量纳米磷酸铁的制备方法,先将磷源和铁源混合得到原料液,再加入碱和表面活性剂,调节pH,搅拌反应,得到二水磷酸铁浆料;向二水磷酸铁浆料中加入磷酸溶液,调节pH,加热搅拌进行陈化,过滤得到二水磷酸铁;将二水磷酸铁加水制浆,进行研磨,得到研磨后浆料;将研磨后浆料加入洗涤液进行洗涤,固液分离,取固相进行煅烧,得到低硫含量纳米磷酸铁。本发明将磷酸铁锂合成工艺中的研磨工序预先化,使其中包裹的硫酸根能够更好地溶解在洗涤水中,进而脱出,极大程度地降低了洗水量;不经烘干直接煅烧,二水磷酸铁滤渣失去游离水和结晶水的过程中,在颗粒内留下孔道,为SO 2的扩散脱出提供了有利条件。

Description

低硫含量纳米磷酸铁的制备方法 技术领域
本发明属于锂离子电池技术领域,具体涉及一种低硫含量纳米磷酸铁的制备方法。
背景技术
随着新能源行业的迅速发展,锂离子电池作为一种新型、绿色的能源提供方式广泛应用于汽车动力电池、电化学储能、3C产品电池等领域。其中,磷酸铁锂电池由于其出色的循环性能、安全性能以及低廉的价格、环保无污染等特性,在市场中占据了较大的份额,并且随着新能源车的大量普及,其需求量正在高速增长。
目前制备磷酸铁锂正极材料的主要方法有高温固相法、碳热还原法、溶胶-凝胶法、共沉淀法、水热法等,其中,碳热还原法工艺稳定、成本低廉、易于控制,成为主流的工业化制备方法。磷酸铁作为其中的关键原材料,其结构、性能与品质对成品磷酸铁锂的电性能有着非常大的影响。目前,制备磷酸铁的主要方法是以硫酸亚铁为原料、通过控制结晶法制备而得,其产品中含有大量的杂质,后续煅烧合成磷酸铁锂时难以脱出,对磷酸铁锂电池的电性能影响较大,这极大得影响了磷酸铁在电池材料方面的应用。其中,以杂质硫元素的影响最甚,骆艳华等发现,当硫质量分数达到一定程度时,对磷酸铁锂的颗粒形貌、放电容量和循环性能的影响逐渐明显,当硫质量分数低于0.22%时,磷酸铁锂颗粒形貌为球状,1C首次放电容量达152mAh/g,循环150次后,容量仍可维持在140mAh/g,电化学性能良好;当硫质量分数高于0.34%时,磷酸铁锂颗粒发生团聚,且1C首次放电容量低于130mAh/g,循环150次后,容量低于107mAh/g。
现有的生产工艺下,磷酸铁中硫酸根的脱除较为困难,往往需要大量洗涤水才能将杂质带出。但是随着技术发展,磷酸铁晶体结构逐步纳米化,合成的磷酸铁材料颗粒表面和内部均含有大量的SO4 2-,目前的常规洗涤工艺对表面吸附的SO4 2-具有一定的效果,但是对颗粒内部包裹的SO4 2-去除效果不佳,这样一方面严重影响了其制备的磷酸铁锂正极材料的电化学性能,另一面要使用到大量的洗涤水,大大增加了生产成本和环境负担。
目前,工业上控制磷酸铁中硫含量主要采用的方法有控制合成过程pH、多级洗涤、柠檬酸洗涤、长时间煅烧等,这些方法往往会影响到产品的振实密度、反应活性、表面形貌等性能,或者使用大量的洗水以及高成本的柠檬酸,污染较大,给后续废水处理造成了极大压力;在二水磷酸铁煅烧转晶为磷酸铁的过程中,高温下颗粒中残余的硫酸根往往以SO 2的形式脱出,现有的工艺煅烧温度低、煅烧时间长,对S元素的脱除效果不佳,还造成磷酸铁一次颗粒的熔融,反应活性下降。因此,开发出一种效果优良、成本低廉、对环境影响小的降低硫 含量的方法对优化电池级纳米磷酸铁合成工艺、提高其产品性能具有重大意义。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种低硫含量纳米磷酸铁的制备方法。
根据本发明的一个方面,提出了一种低硫含量纳米磷酸铁的制备方法,包括以下步骤:
S1:将磷源和铁源混合得到原料液,再加入碱和表面活性剂,调节pH,搅拌反应,得到二水磷酸铁浆料;
S2:向二水磷酸铁浆料中加入磷酸溶液,调节pH,加热搅拌进行陈化,过滤得到二水磷酸铁;
S3:将二水磷酸铁加水制浆,进行研磨,得到研磨后浆料;
S4:将所述研磨后浆料加入洗涤液进行洗涤,固液分离,取固相进行煅烧,得到低硫含量纳米磷酸铁。
在本发明的一些实施方式中,步骤S1中,所述铁源为硫酸亚铁,所述原料液中还添加有氧化剂;所述原料液中铁和磷的摩尔比为1:(0.9-1.1)。
在本发明的一些实施方式中,步骤S1中,所述磷源为磷酸。
在本发明的一些优选的实施方式中,所述氧化剂为H 2O 2。氧化剂将Fe 2+氧化为Fe 3+
在本发明的一些实施方式中,步骤S1中,所述碱为氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠、碳酸钾、氨水或铵盐中的至少一种;优选地,所述碱选用氢氧化钠。
在本发明的一些实施方式中,步骤S1中,所述表面活性剂为硬脂酸钠、聚乙烯吡咯烷酮、十二烷基磺酸钠、十二烷基酚聚氧乙烯醚、十六烷基三甲基溴化铵或十六烷基三甲基氯化铵中的至少一种。
在本发明的一些实施方式中,步骤S1中,所述表面活性剂采用质量比约为1:1的聚乙烯吡咯烷酮和十二烷基磺酸钠复配。电池级纳米磷酸铁的合成过程中,一般需要加入一定量的表面活性剂控制颗粒的尺寸纳米化,本发明创新性地优化了表面活性剂的配比,在保证磷酸铁合成效果的同时,可以有效降低硫酸根在颗粒内部的附着,降低最终产品的杂质硫含量。
在本发明的一些实施方式中,步骤S1中,所述pH为1.0-2.5。
在本发明的一些实施方式中,步骤S1中,所述原料液与碱液的质量比为1:(0.1-0.3)。
在本发明的一些实施方式中,步骤S1中,所述搅拌的速度为100-800rpm;反应的温度为20-60℃,反应的时间为0.5-5h。
在本发明的一些实施方式中,步骤S1中,所述表面活性剂与水配制成质量浓度为10-40%的表面活性剂混合液,所述原料液与表面活性剂混合液的质量比为1:(0.004-0.04)。
在本发明的一些实施方式中,步骤S2中,磷酸溶液的质量浓度为60-80%;pH为1.0-2.0。
在本发明的一些实施方式中,步骤S2中,陈化的搅拌速度为50-300rpm,陈化的温度为60-100℃,陈化的时间为1-5h。
在本发明的一些实施方式中,步骤S2中,所得到的二水磷酸铁的粒径为8-20μm。
在本发明的一些实施方式中,步骤S3中,所述研磨后浆料的分散相的粒度为2.5-10μm。湿法研磨的粒度需根据后段磷酸铁锂合成工艺的需求进行调整。
在本发明的一些实施方式中,步骤S3中,二水磷酸铁和水的质量比为1:(1-4)。
在本发明的一些实施方式中,步骤S4中,洗涤的次数为两次。
在本发明的一些实施方式中,步骤S4中,所述洗涤液为水或0.5-2%的碳酸钠溶液中的一种;优选的,所述水为60-90℃的热水。在洗涤液的选择中,本发明除了选用常规的去离子水,还创新性地选用了热纯水,热纯水可降低浆料黏度,提高洗涤效果。还创新性地选用了碳酸钠溶液,碳酸钠与硫酸根有较好的反应效果,并且易于去除,同时废水易处理,可进一步降低磷酸铁中杂质硫元素的含量。洗涤液的选择可根据生产成本控制和产品性能要求来选择。
在本发明的一些实施方式中,步骤S4中,洗涤液与二水磷酸铁的质量比为(5-20):1。
在本发明的一些实施方式中,步骤S4中,滤渣的含水量为15-30%。
在本发明的一些实施方式中,步骤S4中,所述煅烧的温度为450-800℃,煅烧的时间为0.5-5h;升温速率为2-10℃/min。
在本发明的一些优选的实施方式中,步骤S4中,所述煅烧的温度为600-800℃,煅烧的时间为0.5-3h。采用快速高温短周期煅烧方法,根据热力学计算和实验结果,将煅烧温度提高到600℃以上,煅烧时间控制在3h以内,能够有效去除磷酸铁颗粒中残余的硫酸根,还能保证产品的化学性能。
在本发明的一些实施方式中,步骤S4中,所述煅烧需通入压缩空气。通入纯净的压缩空气能够加快S元素的脱出。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明创新性地将磷酸铁锂合成工艺中的研磨工序预先化,采用湿法研磨降低二水磷酸铁的粒度,打开其二次颗粒的团聚,使其中包裹的硫酸根能够更好地溶解在洗涤水中,进而脱出,极大程度地降低了洗水量。
2、本发明不经烘干直接煅烧,二水磷酸铁滤渣失去游离水和结晶水的过程中,在颗粒内留下孔道,为SO 2的扩散脱出提供了有利条件。所得到的成品中S含量<0.01%,达到了电池级纳米磷酸铁成品的国家标准。
3、本发明工艺流程简单、成本低廉、控制稳定、易于大规模产业化;传统的碳热还原法 制备磷酸铁锂时需要通过湿法研磨降低原料的粒度,提高各原料分散均匀性,之后进行喷雾干燥。本发明将后面湿法研磨工序部分提前到磷酸铁的制备工序中,前后段工序相结合,工艺步骤优化合并,不仅对电池级纳米磷酸铁的工艺优化有较好的指导作用,还对其他相关产品的制备工艺有一定的借鉴作用。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的工艺流程图;
图2为本发明实施例1制得的纳米磷酸铁的SEM图;
图3为本发明实施例1和对比例1制得的纳米磷酸铁的XRD对比图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种低硫含量的纳米磷酸铁,参照图1的工艺流程图,具体过程为:
(1)搅拌釜中先后加入硫酸亚铁原液、过量的氧化剂H 2O 2和磷酸溶液,充分搅拌后得到的原料液,原料液中的P/Fe摩尔比为1.05:1,另配制浓度为15%的氢氧化钠溶液,另配制浓度为25%、聚乙烯吡咯烷酮和十二烷基磺酸钠质量比为1:1的表面活性剂混合液;
(2)向原料液中缓慢加入氢氧化钠溶液,同时加入原料液质量2%的表面活性剂混合液,严格控制加入速度,调节pH值到1.7-1.9之间,保持200rpm的转速充分搅拌使其反应,得到二水磷酸铁浆料;
(3)往二水磷酸铁浆料中加入一定量70%浓度的磷酸溶液,调节pH值至1.3-1.6,加热至85℃、保持100rpm转速、搅拌5h左右进行陈化反应,控制产物粒径在8-20μm时结束反应,过滤得到二水磷酸铁滤渣;
(4)二水磷酸铁滤渣与去离子水按质量比1:1混合,使用砂磨机将浆料研磨至D50=3μm得到研磨后浆料,将上述浆料加入20倍二水磷酸铁滤渣质量的去离子水中搅拌洗涤30min,洗涤后压滤,得到含水量约为20%的滤饼1;
(5)将上述滤饼加入20倍二水磷酸铁滤渣质量的去离子水中再次搅拌洗涤30min,洗涤后再次压滤,得到含水量约为20%的滤饼2;
(6)将上述滤饼2直接装钵插孔,然后进行700℃高温煅烧1h,升温速度为8℃/min, 通入10Nm 3/h的纯净压缩空气,煅烧后物料经研磨、粉碎、过筛即可得到杂质含量低、性能优良的电池级纳米磷酸铁成品。
ICP测试结果为:本实施例所得二水磷酸铁滤渣中S含量为0.3564%。
图2为本实施例制得的纳米磷酸铁的SEM图,由SEM图中可明显看出,合成的电池级纳米磷酸铁由常规的二次颗粒团聚体变成了较为松散的一次颗粒无序分布,与后段湿法研磨粗磨工序的磷酸铁状态较为接近,二次颗粒团聚体被打开有助于内部附着的杂质硫元素脱出。
图3为本发明实施例1和对比例1制得的纳米磷酸铁的XRD图,由XRD图可明显看出,对比例1采用常规低温长周期煅烧脱水方法得到的磷酸铁呈无定型状态,而实施例1使用的快速高温短周期煅烧方法得到的磷酸铁有良好的结晶度,特征峰尖锐,晶相结构纯净无杂质。
表1为本实施例制得磷酸铁产品的粒度分布情况。
表1
  D10 D50 D90 D99
粒径(μm) 0.66 2.47 12.72 25.90
实施例2
本实施例制备了一种低硫含量的纳米磷酸铁,具体过程为:
(1)搅拌釜中先后加入硫酸亚铁原液、过量的氧化剂H 2O 2和磷酸溶液,充分搅拌后得到的原料液,原料液中P/Fe摩尔比为1.05:1,另配制浓度为15%的氢氧化钠溶液,另配制浓度为25%、聚乙烯吡咯烷酮和十二烷基磺酸钠质量比为1:1的表面活性剂混合液;
(2)向原料液中缓慢加入氢氧化钠溶液,同时加入原料液质量2%的表面活性剂混合液,严格控制加入速度,调节pH值到1.7-1.9之间,保持200rpm的转速充分搅拌使其反应,得到二水磷酸铁浆料;
(3)往二水磷酸铁浆料中加入一定量70%浓度的磷酸溶液,调节pH值至1.3-1.6,加热至85℃、保持100rpm转速、搅拌5h左右进行陈化反应,控制产物粒径在8-20μm时结束反应,过滤得到二水磷酸铁滤渣;
(4)二水磷酸铁滤渣与去离子水按质量比1:1混合,使用砂磨机将浆料研磨至D50=5μm得到研磨后浆料,将上述浆料加入15倍二水磷酸铁滤渣质量的70℃纯水中搅拌洗涤30min,洗涤后压滤,得到含水量约为20%的滤饼1;
(5)将上述滤饼加入15倍二水磷酸铁滤渣质量的70℃纯水中再次搅拌洗涤30min,洗涤后再次压滤,得到含水量约为20%的滤饼2;
(6)将上述滤饼2直接装钵插孔,然后进行600℃高温煅烧1.5h,升温速度为8℃/min,通入10Nm 3/h的纯净压缩空气,煅烧后物料经研磨、粉碎、过筛即可得到杂质含量低、性能 优良的电池级纳米磷酸铁成品。
实施例3
本实施例制备了一种低硫含量的纳米磷酸铁,具体过程为:
(1)搅拌釜中先后加入硫酸亚铁原液、过量的氧化剂H 2O 2和磷酸溶液,充分搅拌后得到的原料液,原料液中P/Fe摩尔比为1.05:1,另配制浓度为15%的氢氧化钠溶液,另配制浓度为25%、聚乙烯吡咯烷酮和十二烷基磺酸钠质量比为1:1的表面活性剂混合液;
(2)向原料液中缓慢加入氢氧化钠溶液,同时加入原料液质量2%的表面活性剂混合液,严格控制加入速度,调节pH值到1.7-1.9之间,保持200rpm的转速充分搅拌使其反应,得到二水磷酸铁浆料;
(3)往二水磷酸铁浆料中加入一定量70%浓度的磷酸溶液,调节pH值至1.3-1.6,加热至85℃、保持100rpm转速、搅拌5h左右进行陈化反应,控制产物粒径在8-20μm时结束反应,过滤得到二水磷酸铁滤渣;
(4)二水磷酸铁滤渣与去离子水按质量比1:1混合,使用砂磨机将浆料研磨至D50=8μm得到研磨后浆料,将上述浆料加入10倍二水磷酸铁滤渣质量的、1%浓度的碳酸钠溶液中搅拌洗涤30min,洗涤后压滤,得到含水量约为20%的滤饼1;
(5)将上述滤饼加入20倍二水磷酸铁滤渣质量的去离子水中再次搅拌洗涤30min,洗涤后再次压滤,得到含水量约为20%的滤饼2;
(6)将上述滤饼2直接装钵插孔,然后进行450℃高温煅烧3h,升温速度为8℃/min,通入10Nm 3/h的纯净压缩空气,煅烧后物料经研磨、粉碎、过筛即可得到杂质含量低、性能优良的电池级纳米磷酸铁成品。
对比例1
本对比例制备了一种纳米磷酸铁,具体过程为:
按实施例1的步骤(1)-(3)制备得到二水磷酸铁滤渣,将二水磷酸铁滤渣直接使用50倍的去离子水洗涤3次,每次30min,压滤后120℃烘干10h,然后装钵,进行300℃高温煅烧5h,升温速度为5℃/min,通入10Nm 3/h的纯净压缩空气,煅烧后物料经研磨、粉碎、过筛即可制备得到电池级纳米磷酸铁成品。
对比例2
本实施例制备了一种二水磷酸铁,与实施例1的区别在于表面活性剂溶液的配比不同,具体过程为:
(1)搅拌釜中先后加入硫酸亚铁原液、过量的氧化剂H 2O 2和磷酸溶液,充分搅拌后得到的原料液,原料液中P/Fe摩尔比为1.05:1,另配制浓度为15%的氢氧化钠溶液,另配制浓度为25%的十六烷基三甲基溴化铵的表面活性剂溶液;
(2)向原料液中缓慢加入氢氧化钠溶液,同时加入原料液质量2%的表面活性剂溶液,严格控制加入速度,调节pH值到1.7-1.9之间,保持200rpm的转速充分搅拌使其反应,得到二水磷酸铁浆料;
(3)往二水磷酸铁浆料中加入一定量70%浓度的磷酸溶液,调节pH值至1.3-1.6,加热至85℃、保持100rpm转速、搅拌5h左右进行陈化反应,控制产物粒径在8-20μm时结束反应,过滤得到二水磷酸铁滤渣;
ICP测试结果为:本对比例所得二水磷酸铁滤渣中S含量为0.8129%。
成品质量
表1为实施例1-3与对比例1制备的电池级纳米磷酸铁成品的杂质元素含量,具体数据是由ICP-AES设备测试得到。
表1电池级纳米磷酸铁成品的杂质含量
杂质元素含量(%) 实施例1 实施例2 实施例3 对比例1
S 0.0093 0.0086 0.0097 0.0649
Mn 0.0012 0.0011 0.0004 0.0026
Na 0.0092 0.0065 0.0133 0.0064
Co 0.0003 0.0002 0.0008 0.0089
Al 0.0052 0.0049 0.0076 0.0213
Cr 0.0143 0.0074 0.0097 0.0155
由表1可知,实施例中制备得到的电池级纳米磷酸铁成品的硫杂质含量均远低于对比例1。
表2为实施例1-3与对比例1制备工艺的主要差别。
表2实施例与对比例制备工艺差异
实验组 总用水量 脱S耗时
实施例1 40:1 7h
实施例2 30:1 6.5h
实施例3 30:1 6h
对比例1 150:1 20h
由表2可知,实施例所用工艺用水量、总耗时均远低于对比例1所用工艺。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种低硫含量纳米磷酸铁的制备方法,其特征在于,包括以下步骤:
    S1:将磷源和铁源混合得到原料液,再加入碱和表面活性剂,调节pH,搅拌反应,得到二水磷酸铁浆料;
    S2:向二水磷酸铁浆料中加入磷酸溶液,调节pH,加热搅拌进行陈化,过滤得到二水磷酸铁;
    S3:将二水磷酸铁加水制浆,进行研磨,得到研磨后浆料;
    S4:将所述研磨后浆料加入洗涤液进行洗涤,固液分离,取固相进行煅烧,得到低硫含量纳米磷酸铁。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述铁源为硫酸亚铁,所述原料液中还添加有氧化剂;所述原料液中铁和磷的摩尔比为1:(0.9-1.1)。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述表面活性剂采用质量比约为1:1的聚乙烯吡咯烷酮和十二烷基磺酸钠复配。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述pH为1.0-2.5。
  5. 根据权利要求3所述的制备方法,其特征在于,步骤S1中,所述表面活性剂与水配制成质量浓度为10-40%的表面活性剂混合液,所述原料液与表面活性剂混合液的质量比为1:(0.004-0.04)。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所得到的二水磷酸铁的粒径为8-20μm。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述研磨后浆料的分散相的粒径D50为2.5-10μm。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤S4中,所述洗涤液为水或0.5-2%的碳酸钠溶液中的一种;优选的,所述水为60-90℃的热水。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤S4中,所述煅烧的温度为450-800℃,煅烧的时间为0.5-5h。
  10. 根据权利要求1所述的制备方法,其特征在于,步骤S4中,所述煅烧需通入压缩空气。
PCT/CN2022/095689 2021-07-01 2022-05-27 低硫含量纳米磷酸铁的制备方法 WO2023273742A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/265,882 US20240025745A1 (en) 2021-07-01 2022-05-27 Preparation method for nano ferric phosphate with low sulphur content
MA60464A MA60464A1 (fr) 2021-07-01 2022-05-27 Procédé de préparation de phosphate ferrique nanométrique à faible teneur en soufre
GB2309433.7A GB2616230A (en) 2021-07-01 2022-05-27 Preparation method for nano ferric phosphate with low sulphur content
DE112022000163.1T DE112022000163T5 (de) 2021-07-01 2022-05-27 Herstellungsverfahren für schwefelarmes nano-eisenphosphat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110748109.3A CN113479861B (zh) 2021-07-01 2021-07-01 低硫含量纳米磷酸铁的制备方法
CN202110748109.3 2021-07-01

Publications (1)

Publication Number Publication Date
WO2023273742A1 true WO2023273742A1 (zh) 2023-01-05

Family

ID=77939461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095689 WO2023273742A1 (zh) 2021-07-01 2022-05-27 低硫含量纳米磷酸铁的制备方法

Country Status (6)

Country Link
US (1) US20240025745A1 (zh)
CN (1) CN113479861B (zh)
DE (1) DE112022000163T5 (zh)
GB (1) GB2616230A (zh)
MA (1) MA60464A1 (zh)
WO (1) WO2023273742A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116621141A (zh) * 2023-04-25 2023-08-22 浙江友山新材料有限公司 低锰、镁磷酸铁的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113104829B (zh) * 2021-03-19 2024-02-09 合肥国轩电池材料有限公司 一种磷酸铁锂材料及其制备方法和应用
CN113479861B (zh) * 2021-07-01 2023-02-14 广东邦普循环科技有限公司 低硫含量纳米磷酸铁的制备方法
CN115744852A (zh) * 2022-10-21 2023-03-07 青海泰丰先行锂能科技有限公司 一种具有可控性的磷酸铁及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120237425A1 (en) * 2009-09-09 2012-09-20 Takahisa Nishio Ferric phosphate hydrate particles and process for producing the same, olivine type lithium iron phosphate particles and process for producing the same, and non-aqueous electrolyte secondary battery
CN104628020A (zh) * 2015-01-27 2015-05-20 北方联合电力有限责任公司 一种以粉煤灰和可循环铵盐为原料生产冶金级氧化铝的方法
CN108117055A (zh) * 2017-12-30 2018-06-05 彩客化学(东光)有限公司 一种电池级磷酸铁的制备方法和生产装置
CN111153391A (zh) * 2020-01-09 2020-05-15 湖南雅城新材料有限公司 一种低硫含量电池级磷酸铁的制备方法
CN112645299A (zh) * 2020-12-03 2021-04-13 广东邦普循环科技有限公司 一种磷酸铁的制备方法和应用
CN113479861A (zh) * 2021-07-01 2021-10-08 广东邦普循环科技有限公司 低硫含量纳米磷酸铁的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100588611C (zh) * 2007-10-11 2010-02-10 河北工业大学 用于制备磷酸铁锂材料的磷酸铁的制备方法
CN105118995A (zh) * 2015-10-14 2015-12-02 湖南省正源储能材料与器件研究所 一种电池级磷酸铁的生产方法
CN106882780A (zh) * 2017-04-05 2017-06-23 河南省净寰新能源科技有限公司 一种电池级磷酸铁微粉的制备方法
CN109850862B (zh) * 2019-04-23 2021-01-29 王柯娜 一种电池级无水磷酸铁的制备方法
CN110857216B (zh) * 2019-09-29 2021-11-12 湖南雅城新材料有限公司 一种电池级磷酸铁前驱体、磷酸铁锂及其制备方法与应用
CN110510593B (zh) * 2019-10-24 2020-04-10 湖南雅城新材料有限公司 一种磷酸铁前驱体及磷酸铁锂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120237425A1 (en) * 2009-09-09 2012-09-20 Takahisa Nishio Ferric phosphate hydrate particles and process for producing the same, olivine type lithium iron phosphate particles and process for producing the same, and non-aqueous electrolyte secondary battery
CN104628020A (zh) * 2015-01-27 2015-05-20 北方联合电力有限责任公司 一种以粉煤灰和可循环铵盐为原料生产冶金级氧化铝的方法
CN108117055A (zh) * 2017-12-30 2018-06-05 彩客化学(东光)有限公司 一种电池级磷酸铁的制备方法和生产装置
CN111153391A (zh) * 2020-01-09 2020-05-15 湖南雅城新材料有限公司 一种低硫含量电池级磷酸铁的制备方法
CN112645299A (zh) * 2020-12-03 2021-04-13 广东邦普循环科技有限公司 一种磷酸铁的制备方法和应用
CN113479861A (zh) * 2021-07-01 2021-10-08 广东邦普循环科技有限公司 低硫含量纳米磷酸铁的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116621141A (zh) * 2023-04-25 2023-08-22 浙江友山新材料有限公司 低锰、镁磷酸铁的制备方法
CN116621141B (zh) * 2023-04-25 2023-12-26 浙江友山新材料科技有限公司 低锰、镁磷酸铁的制备方法

Also Published As

Publication number Publication date
DE112022000163T5 (de) 2024-01-25
CN113479861B (zh) 2023-02-14
CN113479861A (zh) 2021-10-08
GB202309433D0 (en) 2023-08-09
US20240025745A1 (en) 2024-01-25
MA60464A1 (fr) 2023-09-27
GB2616230A (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2023273742A1 (zh) 低硫含量纳米磷酸铁的制备方法
US11824194B2 (en) Method for rapidly preparing Prussian blue analogue with monoclinic crystal structure
CN101708834B (zh) 圆片状磷酸铁及其制备方法和用途
KR20220062344A (ko) Ncma 하이 니켈 4차 전구체의 습식 합성 방법
WO2022267420A1 (zh) 一种磷酸铁前驱体及其制备方法和应用
CN113659134A (zh) 一种使用共结晶法制备纳米级磷酸铁锰锂材料的方法
WO2022179291A1 (zh) 从红土镍矿浸出液中分离镍铁并制备磷酸铁的方法和应用
CN110436427B (zh) 高容量高压实磷酸铁锂用复合结构正磷酸铁的制备方法
CN104828869B (zh) 一种钠锰氧化物微粉及其制备方法
WO2022227668A1 (zh) 一种磷酸铁锂废料的回收方法及应用
CN113353955A (zh) 一种普鲁士蓝及其类似物、缺陷修复方法及其应用
WO2023142672A1 (zh) 高纯磷酸铁的制备方法及其应用
WO2023040286A1 (zh) 含铁矿物综合利用的方法
CN104091950A (zh) 一种水热法制备磷酸亚铁锂材料的方法
WO2024060549A1 (zh) 一种连续化制备磷酸铁的方法和应用
CN110980679A (zh) 一种类球形低硫磷酸铁的制备方法
CN111792635A (zh) 无水磷酸铁的制备方法
CN107352554B (zh) 一种磁性x型分子筛的制备方法及应用
WO2022205534A1 (zh) 一种无汞碱性锌锰电池用的电解二氧化锰的制备方法
CN101877400A (zh) 一种锂离子电池正极材料硅酸锰锂的制备方法
CN111573717B (zh) 以工业偏钛酸制备高纯纳米钛酸锂的方法
CN115849321B (zh) 一种用于锂离子电池正极材料的FePO4空心微球制备方法
CN115701828A (zh) 一种用硫酸亚铁制备电池级无水磷酸铁的准连续式方法
CN109244461A (zh) 磷酸铁锂材料的制备方法
CN116177511A (zh) 一种磷酸铁次品重造的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831564

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022000163

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 18265882

Country of ref document: US

ENP Entry into the national phase

Ref document number: 202309433

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220527