WO2023273444A1 - 用于驱动显示面板的装置和方法 - Google Patents

用于驱动显示面板的装置和方法 Download PDF

Info

Publication number
WO2023273444A1
WO2023273444A1 PCT/CN2022/083384 CN2022083384W WO2023273444A1 WO 2023273444 A1 WO2023273444 A1 WO 2023273444A1 CN 2022083384 W CN2022083384 W CN 2022083384W WO 2023273444 A1 WO2023273444 A1 WO 2023273444A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
driving
display panel
during
Prior art date
Application number
PCT/CN2022/083384
Other languages
English (en)
French (fr)
Inventor
单冬晓
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/790,011 priority Critical patent/US20240185796A1/en
Priority to CN202280000570.3A priority patent/CN116034416A/zh
Publication of WO2023273444A1 publication Critical patent/WO2023273444A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/026Arrangements or methods related to booting a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/027Arrangements or methods related to powering off a display

Definitions

  • Embodiments of the present disclosure generally relate to display technologies, and in particular, relate to an apparatus and method for driving a display panel.
  • an OLED panel uses more thin-film transistors (Thin-Film Transistor, TFT), and the circuit is more complicated.
  • TFT Thin-Film Transistor
  • each transistor in the pixel circuit may be in an unstable state, resulting in problems such as flickering images and/or circuit short circuits.
  • An object of the present disclosure is to provide an improved device and method for driving a display panel, so as to solve the above-mentioned or other problems that may occur during power-on and/or power-off of the display panel.
  • the display panel includes a pixel circuit, a gate driving circuit, and a source driving circuit.
  • the device for driving the display panel is configured to: provide an invalid start signal to the gate drive circuit and/or the light emission control drive circuit during the first period of time; and provide the first power signal to the pixel circuit during the second period of time and a second power supply signal; and within a third period of time, provide an effective start signal to the gate drive circuit and/or the light emission control drive circuit.
  • the power terminal of the pixel circuit is grounded.
  • the source driving circuit is made to output a ground signal during the first time period.
  • the device for driving the display panel is configured to: provide a third power signal and a fourth power signal to the gate drive circuit during the first time period; provide a clock signal to the gate drive circuit; and providing an invalid first start signal to the gate drive circuit.
  • the first activation signal remains inactive during the first time period and the second time period.
  • the device for driving the display panel is further configured to: make the source driving circuit provide the display data signal to the pixel circuit during the third time period.
  • the display panel further includes a light emission control driving circuit for outputting a light emission control signal to the pixel circuit.
  • the device for driving the display panel is further configured to: drive the light emission control driving circuit during the first time period.
  • the device for driving the display panel is configured to: provide the third power supply signal and the fourth power supply signal to the power supply terminal of the light emission control driving circuit during the first time period; provide the light emission control driving circuit with a clock signal; and providing an invalid second startup signal to the light-emitting control driving circuit.
  • the device for driving the display panel is further configured to: make the source driving circuit provide the display data signal to the pixel circuit during the third time period.
  • the first startup signal provided to the source driving circuit and the second startup signal provided to the light emission control driving circuit remain ineffective.
  • the second enabling signal remains inactive until the first enabling signal of the gate driving circuit becomes active.
  • the first start signal provided to the source driving circuit and the second start signal provided to the light emission control driving circuit remain ineffective.
  • the second activation signal remains inactive.
  • a display data signal corresponding to displaying black is provided to the pixel circuit.
  • the pixel circuit includes a driving power supply terminal and a reference power supply terminal.
  • the device for driving the display panel is configured to: provide the first power signal and the second power signal to the driving power terminal during the second time period; and supply power to the reference power terminal.
  • the first time period includes the duration of at least one display frame
  • the second time period includes the duration of at least one display frame
  • the first time period does not overlap with the second time period.
  • the display panel further includes a multiplexing circuit disposed between the source driving circuit and the pixel circuit.
  • the multiplexing circuit is turned on.
  • the display panel includes a pixel circuit, a gate driving circuit, and a source driving circuit.
  • the device for driving the display panel is configured to: provide an invalid start signal to the gate drive circuit and/or the light emission control drive circuit during the fourth period of time; The power signal and the second power signal; within the sixth time period, disconnect the third power signal and the fourth power signal provided to the gate drive circuit and/or the light emission control drive circuit.
  • an invalid start signal is provided to the light emission control driving circuit.
  • a valid start signal is provided to the gate driving circuit; and during the fourth time period, a display data signal corresponding to displaying black is provided to the pixel circuit.
  • an inactive start signal is provided to the gate driving circuit.
  • an invalid start signal is provided to the gate driving circuit and the light emission control driving circuit.
  • the pixel circuit includes a driving power supply terminal and a reference power supply terminal; wherein, in the fifth time period, the driving power supply terminal and the reference power supply terminal are grounded; wherein, in the fifth time period, the output of the source driving circuit is grounded Signal.
  • the power terminal of the gate driving circuit and/or the light emission control driving circuit is grounded.
  • the display panel includes a pixel circuit, a gate driving circuit, and a source driving circuit.
  • the device for driving the display panel is configured to: provide an invalid startup signal to the gate drive circuit and/or the light emission control drive circuit during the first time period; provide the pixel circuit with the first power signal and the first power supply signal during the second time period The second power supply signal; during the third time period, provide a valid start signal to the gate drive circuit and/or the light emission control drive circuit; in the fourth time period, provide an invalid start signal to the gate drive circuit and/or light emission control drive circuit In the fifth period of time, disconnect the first power supply signal and the second power supply signal provided to the pixel circuit; and in the sixth period of time, disconnect the supply of The third power signal and the fourth power signal.
  • a device for driving a display panel is integrated with the display panel.
  • Another aspect of the present disclosure also provides a method for driving a display panel by using the device for driving a display panel according to any one of the above-mentioned embodiments.
  • the display panel includes: a pixel circuit, a gate driving circuit, a source driving circuit, and the device for driving the display panel according to any one of the above-mentioned embodiments.
  • an improved power-on sequence is provided for the display panel, which can avoid problems such as flickering of the display screen or circuit short circuit caused by the unstable state of the internal circuit of the display panel during the power-on process.
  • an improved power-off sequence is also provided for the display panel, which can avoid problems such as flickering of the display screen or circuit short circuit caused by the unstable state of the internal circuit of the display panel during the power-off process.
  • FIG. 1( a ) is a block diagram showing the structure of an exemplary OLED display panel.
  • FIG. 1( b ) is an exemplary block diagram illustrating an apparatus for driving a display panel according to an embodiment of the present disclosure.
  • FIG. 2 is an exemplary flowchart illustrating a method for driving a display panel according to an embodiment of the present disclosure.
  • FIG. 3 is a block diagram illustrating the structure of another exemplary OLED display panel.
  • Fig. 4(a) is a circuit diagram of an exemplary pixel unit.
  • FIG. 4( b ) is a timing diagram of an exemplary pixel unit in FIG. 4( a ).
  • FIG. 5( a ) is a circuit diagram of an exemplary gate drive circuit.
  • FIG. 5( b ) is a timing diagram of an exemplary gate driving circuit in FIG. 5( a ).
  • Fig. 6(a) is a circuit diagram of an exemplary light emission control driving circuit.
  • FIG. 6( b ) is an exemplary timing diagram of the light emission control driving circuit in FIG. 6( a ).
  • Fig. 6(c) is a circuit diagram of another exemplary lighting control driving circuit.
  • FIG. 6( d ) is a circuit diagram of another exemplary lighting control driving circuit.
  • FIG. 7( a ) is a circuit diagram of another exemplary pixel unit.
  • FIG. 7( b ) is a timing diagram of an exemplary pixel unit in FIG. 7( a ).
  • FIG. 8( a ) is a flowchart illustrating sub-steps of the method shown in FIG. 2 .
  • FIG. 8( b ) is a flowchart illustrating additional steps of the method shown in FIG. 2 .
  • FIG. 8( c ) is a flowchart illustrating additional steps of the method shown in FIG. 2 .
  • FIG. 8( d ) is an exemplary timing diagram corresponding to a method for driving a display panel according to an embodiment of the present disclosure.
  • FIG. 9 is another exemplary timing diagram corresponding to a method for driving a display panel according to an embodiment of the present disclosure.
  • FIG. 10 is an exemplary test signal waveform diagram corresponding to a method for driving a display panel according to an embodiment of the present disclosure.
  • FIG. 11 is a block diagram showing the structure of another exemplary OLED display panel.
  • FIG. 12( a ) is a circuit diagram of an exemplary pixel unit in FIG. 11 .
  • FIG. 12( b ) is a timing diagram of an exemplary pixel unit in FIG. 12( a ).
  • FIG. 13( a ) is a circuit diagram of an exemplary additional gate drive circuit in FIG. 11 .
  • FIG. 13( b ) is a timing diagram of an exemplary additional gate drive circuit in FIG. 13( a ).
  • FIG. 14 is an exemplary timing diagram corresponding to a method for powering on the OLED display panel in FIG. 11 according to an embodiment of the present disclosure.
  • FIG. 15 is another exemplary flowchart illustrating a method for driving a display panel according to an embodiment of the present disclosure.
  • FIG. 16 is an exemplary timing diagram corresponding to the method for driving a display panel according to an embodiment of the present disclosure shown in FIG. 15 .
  • FIG. 17 is an exemplary test signal waveform diagram corresponding to the method for driving a display panel according to an embodiment of the present disclosure shown in FIG. 15 .
  • FIG. 18 is an exemplary timing diagram corresponding to a method for powering down the OLED display panel in FIG. 11 according to an embodiment of the present disclosure.
  • FIG. 1( a ) is a block diagram showing the structure of an exemplary OLED display panel.
  • an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display panel may include a pixel circuit 1, a gate drive circuit 2, and a source drive circuit 3 .
  • the gate driving circuit 2 and the source driving circuit 3 respectively provide scanning signals, data signals and the like to the pixel circuit 1 .
  • the pixel circuit 1 may include a plurality of pixel units in an array, wherein each pixel unit may include an OLED element.
  • the OLED panel may further include a light emission control driving circuit 4 that outputs a light emission control signal to the pixel circuit 1 .
  • the light emission control driving circuit 4 can cooperate with the gate driving circuit 2 to drive the pixel circuit 1 .
  • FIG. 1( b ) is an exemplary block diagram illustrating an apparatus for driving a display panel according to an embodiment of the present disclosure.
  • the device for driving the display panel in the embodiment of the present disclosure can be used to drive the display panel, especially the method for driving the display panel described in the embodiment of the present disclosure can be executed, for example, in the following FIG. 2, 8(a), 8(b), 8(c), the methods shown in Fig. 15, etc.
  • the device 5 for driving a display panel may include: a processor 501 and a memory 502 .
  • Processor 501 can be any kind of processing component, such as one or more microprocessors or microcontrollers, or other digital hardware, such as digital signal processors (DSPs), application-specific digital logic circuits, field-programmable gate arrays (FPGAs), ), Application Specific Integrated Circuit (ASIC), etc.
  • Memory 502 may be any type of storage component, such as read only memory (ROM), random access memory, cache memory, flash memory devices, optical storage devices, and the like.
  • the memory 502 may store software executed by the processor 501 .
  • the processor 501 executes the software, it can be used to drive the display panel, especially to implement the method for driving the display panel in the embodiments of the present disclosure.
  • the device for driving the display panel may be integrated with the display panel, or provided inside the display panel. Therefore, the device may also be called a display panel driving device/module, a power control device/module, or a power-on/off-power device/module, etc.
  • FIG. 2 is an exemplary flowchart illustrating a method for driving a display panel according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure can be applied to the OLED display panel as shown in FIG. 1 , and any other suitable display panels. Therefore, embodiments of the present disclosure also include such a display panel to which this method is applied. The display panels in the embodiments of the present disclosure can be driven by this method.
  • the method for driving a display panel shown in FIG. 2 may include: step S101, providing an invalid startup signal to the gate drive circuit and/or light emission control drive circuit during a first period of time; step S102, providing an invalid startup signal during a second period of time , providing the first power signal and the second power signal to the pixel circuit; and step S103 , providing a valid start signal to the gate drive circuit and/or the light emission control drive circuit in a third time period.
  • the display panel can enter a normal display process. That is, in a normal display process, the gate drive circuit periodically (for example, with a display frame as a cycle) drives the pixel circuit (makes the transistor in the pixel circuit turn on or off according to a predetermined timing), and the source driver periodically Display data is provided to the pixel circuit, so that the OLED in the pixel circuit operates corresponding to the display data of each display frame (for example, emits light with a corresponding brightness), so that the OLED display panel can display the image picture of each frame.
  • the gate drive circuit periodically (for example, with a display frame as a cycle) drives the pixel circuit (makes the transistor in the pixel circuit turn on or off according to a predetermined timing), and the source driver periodically Display data is provided to the pixel circuit, so that the OLED in the pixel circuit operates corresponding to the display data of each display frame (for example, emits light with a corresponding brightness), so that the OLED display panel can display the image picture of each frame.
  • the power terminal in the pixel circuit may be grounded. According to such a method, the transistor in the pixel circuit can be more reliably in the cut-off state, the anti-interference ability in the power-on process can be improved, and problems such as flickering of the display screen or circuit short circuit can be effectively prevented.
  • the source driving circuit may be made to output a ground signal during the first time period.
  • the pixel circuit receives the ground signal instead of the display data signal, which can further prevent the interference signal during the power-on process from being input to the pixel circuit as display data, and can effectively prevent problems such as flickering of the display screen or circuit short circuit.
  • the first time period does not overlap with the second time period. According to such an approach, it can be ensured that after the gate driving circuit is initialized (that is, after the pixel circuit can be driven completely according to the predetermined display timing), power supply and/or display data are provided to the pixel circuit. This can more effectively prevent problems such as flickering of the display screen or short circuit of the circuit.
  • the first time period includes the duration of at least one display frame
  • the second time period includes the duration of at least one display frame.
  • the method for driving a display panel described in the embodiments of the present disclosure will be further described in conjunction with an exemplary circuit structure of an exemplary OLED display panel. It should be understood that the following circuit structures are merely exemplary, rather than methods described for the embodiments of the present disclosure. The method for driving a display panel described in the embodiments of the present disclosure can be applied to the transformation and improvement of the following circuit structures.
  • FIG. 3 is a block diagram illustrating the structure of another exemplary OLED display panel.
  • the pixel circuit 1 includes a plurality of pixel units in an array, which can be recorded as the first row (Line[1]) to the yth row (Line[y]), and the first column (Row[1]) to column x (Row[x]).
  • x, y are positive integers.
  • OLED display panels can use a so-called line scan mode of operation.
  • the gate drive circuit 2 and the light emission control drive circuit 4 sequentially scan each row of pixel units, and correspondingly, the source drive circuit 3 sequentially provides data signals to each row of scanned pixel units.
  • Display data signals may be represented using Source, Vdata, Data, etc. in the following sections of this document.
  • the gate drive circuit 2 first outputs a valid reset signal (RST[1]), so that the pixel unit of the first row (Line[1]) are reset. Then, the gate driving circuit 2 outputs a valid gate driving signal (GATE[1]), so that the data signal provided by the source driving circuit 3 can be written into the pixel units of the first row (Line[1]).
  • the effective gate driving signal (GATE[1]) can also be used as a reset signal (RST[2]) of the pixel unit in the second row (Line[2]).
  • the luminescence control driving circuit 4 outputs an effective luminescence control signal (EM[1]), so that the OLEDs in the pixel units of the first row (Line[1]) work corresponding to their respective display data (for example, generate respective corresponding brightness).
  • EM[1] effective luminescence control signal
  • the display state can last until the end of the display frame.
  • the second row (Line[2]) pixel unit to the yth row (Line[y]) pixel unit will be scanned in the same way.
  • an "effective" signal refers to a signal that can make a subsequent circuit element (such as a transistor) enter an operating state (such as conduction). Accordingly, specific properties (eg, amplitude) of the "active" signal may vary corresponding to the differences in subsequent circuit elements. For example, for an N-type transistor, the effective signal may be a relatively high-level voltage signal. For a P-type transistor, the effective signal may be a relatively low-level voltage signal.
  • an "invalid" signal refers to a signal that cannot make subsequent circuit elements (such as transistors) enter an operating state (such as conduction), that is, will keep subsequent circuit elements (such as transistors) off.
  • the OLED display panel further includes a multiplexing circuit disposed between the source driving circuit and the pixel circuit.
  • the output of the source driver circuit 3 may be coupled to a multiplexing circuit 31 .
  • the display data provided by the source driver 3 can be respectively provided to pixel units in different columns via the multiplexing circuit.
  • signals for displaying data may be provided to odd columns and even columns respectively.
  • MUX1 When MUX1 is active, the switching elements in the multiplexing circuit 31 corresponding to the pixel units in odd columns can be turned on, so that the output of the source driver circuit 3 is transmitted to the pixel units in odd columns.
  • the switching elements in the multiplexing circuit 31 corresponding to the pixel units of the even columns can be turned on, so that the output of the source driving circuit 3 is transmitted to the pixel units of the even columns.
  • the multiplexing of the source driving circuit 3 can be realized, the circuit components required in the source driving circuit 3 are reduced, and the occupied area and cost are correspondingly reduced.
  • the switching signals MUX1 and MUX2 can have completely opposite waveforms, that is, they are either provided to odd columns or even columns at the same time, so as to realize the multiplexing of the output of the source driving circuit 3 . Therefore, in the following description, only MUX may be used to represent such a plurality of switching signals having a fixed waveform relationship.
  • the OLED display panel in FIG. 3 can be, for example, an AMOLED (Active-matrix organic light-emitting diode, active-matrix organic light-emitting diode) panel, specifically an LTPS (Low Temperature Poly-Silicon, low temperature polysilicon) AMOLED display panel.
  • AMOLED Active-matrix organic light-emitting diode, active-matrix organic light-emitting diode
  • LTPS Low Temperature Poly-Silicon, low temperature polysilicon
  • GOA Gate Driver on Array
  • 2A source-level multiplexing circuit is used (the switching elements (such as thin film transistors) driven by Mux1 and Mux2 are P-channel), and some models of panels may not have a Mux circuit.
  • the switching elements such as thin film transistors driven by Mux1 and Mux2 are P-channel
  • some models of panels may not have a Mux circuit.
  • a P-channel thin film transistor is taken as an example.
  • the type of thin film transistors can also be replaced by other types, such as N-channel.
  • FIG. 4(a) is a circuit diagram of an exemplary pixel unit.
  • FIG. 4( b ) is a timing diagram of an exemplary pixel unit in FIG. 4( a ).
  • the pixel unit shown in FIG. 4( a ) may include an eleventh transistor T11 to a seventeenth transistor T17 and an eleventh capacitor C11 . In addition, it is described that the pixel unit is located in the Nth row.
  • the control electrode of the eleventh transistor T11 is used to input the reset signal Reset (N), the first electrode is coupled to the first reference power supply terminal VREFN (also called the initialization power supply terminal, and may be at a low level), the second The two electrodes are coupled to the control electrode of the thirteenth transistor T13 and the first electrode of the twelfth transistor T12.
  • the control electrode of the twelfth transistor T12 is used to input the gate driving signal Gate, and the second electrode is coupled to the second electrode of the thirteenth transistor T13 and the first electrode of the sixteenth transistor T16 .
  • the first pole of the thirteenth transistor T13 is coupled to the first pole of the fourteenth transistor T14 and the second pole of the fifteenth transistor T15 .
  • the control electrode of the fourteenth transistor T14 is used for inputting the gate driving signal Gate, and the second electrode is used for inputting the display data signal Vdata.
  • the control pole of the fifteenth transistor T15 is used for inputting the light emission control signal EM, and the first pole is coupled to the power supply terminal for inputting the first driving power supply ELVDD (that is, provided as the first power supply signal) level).
  • the control electrode of the sixteenth transistor T16 is used to input the light emission control signal EM, and the second electrode is coupled to the first electrode (which may be an anode) of the OLED.
  • the control electrode of the seventeenth transistor T17 is used to input the reset signal Reset (N+1) of the pixel circuit in the next row (may be the same as the gate drive signal Gate), the first electrode is coupled to the first reference power supply terminal VREFN, The second pole is coupled with the first pole of the OLED.
  • the second electrode (which may be the cathode) of the OLED is coupled to the power terminal (which may input a low level) for inputting the second driving power ELVSS (that is, provided as the second power signal).
  • a first end of the eleventh capacitor C11 is coupled to the power end for inputting the first driving power ELVDD, and a second end is coupled to the control electrode of the thirteenth transistor T13.
  • the control electrode of the transistor may be the gate, the first electrode may be either the source or the drain, and the second electrode may be the other of the source or the drain. Furthermore, the first poles of different transistors may be of different types and the second poles may be of different types.
  • the lighting control signal remains inactive (invalid means that the signal cannot turn on the transistor, or turn off the transistor).
  • the reset signal Reset(N) is valid (valid means that the signal can turn on the transistor), so that the voltage of the corresponding node in the corresponding pixel circuit is reset, or initialized, or set as a reference voltage.
  • the gate driving signal Gate is active, so that the data signal Data (ie, Vdata) is written.
  • the light emission control signal is valid, and the reset signal Reset(N) and the gate driving signal Gate are invalid.
  • the OLED operates (for example, emits light with a predetermined brightness) corresponding to the data signal Data.
  • the duration of the high level of the light emission control signal EM is longer than the time period 2H shown in the figure and covers the low level of the reset signal Reset and the gate drive signal Gate in the time periods t1 and t2 .
  • the reset signal Reset(N) may be the gate driving signal Gate(N ⁇ 1) of the previous row.
  • FIG. 5( a ) is a circuit diagram of an exemplary gate drive circuit.
  • FIG. 5( b ) is a timing diagram of an exemplary gate driving circuit in FIG. 5( a ).
  • the gate drive circuit can be composed of the shift register units shown in Fig. 5(a) connected in series step by step. That is, the gate driving circuit works in the form of a shift register, and the shift register units of each level sequentially output the above-mentioned reset signal and gate driving signal (also collectively referred to as row scanning signals) to the pixel circuit.
  • such a shift register unit may include: the twenty-first transistor T21 to the twenty-eighth transistor T28, the twenty-first capacitor C21 to the twenty-eighth Two capacitors C22.
  • the control pole of the twenty-first transistor T21 is used to input the first clock signal GCK
  • the first pole is used to input the first start signal GSTV
  • the second pole is connected with the control pole of the twenty-second transistor T22
  • the twenty-seventh transistor T22 The second pole of the transistor T27 is coupled to the first pole of the twenty-eighth transistor T28.
  • the first pole of the twenty-second transistor T22 is used to input the first clock signal GCK
  • the second pole is connected with the second pole of the twenty-third transistor T23, the control pole of the twenty-fourth transistor T24, the twenty-sixth transistor
  • the control pole of T26 is coupled.
  • the control electrode of the twenty-third transistor T23 is used for inputting the first clock signal GCK, and the first electrode is coupled to the power terminal for inputting the low level VL (ie, provided as the fourth power signal).
  • the first pole of the twenty-fourth transistor T24 is coupled to the power terminal for inputting a high level VH (that is, provided as a third power signal), and the second pole is connected to the first pole of the twenty-fifth transistor T25. coupled and used to output the gate driving signal GO.
  • the control electrode of the twenty-fifth transistor T25 is coupled to the second electrode of the twenty-eighth transistor T28, and the second electrode is used for inputting the second clock signal GCB.
  • the first pole of the twenty-sixth transistor T26 is coupled to the power terminal for inputting the high level VH, and the second pole is coupled to the first pole of the twenty-seventh transistor T27.
  • the gate of the twenty-seventh transistor T27 is used to input the second clock signal GCB.
  • the control electrode of the twenty-eighth transistor T28 is coupled to the power terminal for inputting the low level VL.
  • the twenty-first capacitor C21 is coupled between the control electrode and the first electrode of the twenty-fourth transistor T24.
  • the twenty-second capacitor C22 is coupled between the control electrode and the first electrode of the twenty-fifth transistor T25.
  • the high level VH may be a positive voltage with a predetermined magnitude
  • the low level VL may be a negative voltage with a predetermined magnitude
  • the first start signal GSTV is valid, so that the corresponding first The shift register unit of the row pixel unit starts to work.
  • the states of the first start signal GSTV, the first clock signal GCK, and the second clock signal GCB change according to a predetermined timing, so that the valid gate driving signal GO1 is output for the first row of pixel units during the time period t2.
  • the gate drive signal GO1 is also used as the start signal of the next-stage shift register unit (for example, corresponding to the second row of pixel units), so that the next-stage shift register unit outputs a valid gate drive signal in the time period t3 GO2 for the next row of pixel units.
  • the shift register units at all levels work sequentially to complete the output of the gate driving signals of all rows.
  • the circuit structures of the shift register units in two adjacent rows are exactly the same, and all stages can share two clock signals GCK and GCB.
  • FIG. 6(a) is a circuit diagram of an exemplary light emission control driving circuit.
  • FIG. 6( b ) is an exemplary timing diagram of the light emission control driving circuit in FIG. 6( a ).
  • the light emission control drive circuit can be composed of the shift register units shown in FIG. 6( a ) in series. That is, the light emission control driving circuit also works in the form of a shift register, and the shift register units of each stage sequentially output the above light emission control signal (which may also belong to the row scanning signal) to the pixel circuit.
  • such a shift register unit may mainly include: a thirty-first transistor T31 to a thirty-eighth transistor T38, a thirty-first capacitor C31 to a third Thirteen capacitors C33.
  • N1, N2, and N3 represent nodes in the circuit.
  • the control pole of the thirty-first transistor T31 is used to input the third clock signal ECK
  • the first pole is used to input the second start signal ESTV
  • the second pole is connected with the control pole of the thirty-third transistor T33
  • the thirty-fifth The control electrode of the transistor T35 is coupled to the control electrode of the thirty-eighth transistor T38.
  • the control pole of the thirty-second transistor T32 is used to input the third clock signal ECK
  • the first pole is coupled to the power terminal for inputting the low level VL
  • the second pole is connected to the second pole of the thirty-third transistor T33
  • the control electrode of the thirty-sixth transistor T36 is coupled.
  • the first pole of the thirty-third transistor T33 is used to input the third clock signal ECK.
  • the control pole of the thirty-fourth transistor T34 is coupled to the second pole of the thirty-seventh transistor T37 and the second pole of the thirty-eighth transistor T38, and the first pole is coupled to the power terminal for inputting a high level VH , the second pole is coupled to the first pole of the thirty-fifth transistor T35, and is used for outputting the light emission control signal EM.
  • the second pole of the thirty-fifth transistor T35 is coupled to the power terminal for inputting the low level VL.
  • the first pole of the thirty-sixth transistor T36 is coupled to the power terminal for inputting the low level VL, and the second pole is coupled to the first pole of the thirty-seventh transistor T37.
  • the control electrode of the thirty-seventh transistor T37 is used to input the fourth clock signal ECB.
  • the first pole of the thirty-eighth transistor T38 is coupled to the power terminal for inputting the high level VH.
  • the first terminal of the thirty-first capacitor C31 is coupled to the control electrode of the thirty-fifth transistor T35, and the second terminal is used for inputting the fourth clock signal ECB.
  • the thirty-second capacitor C32 is coupled between the control electrode and the first electrode of the thirty-fourth transistor T34.
  • the first terminal of the thirty-third capacitor C33 is coupled to the control electrode of the thirty-sixth transistor T36, and the second terminal is used for inputting the fourth clock signal ECB.
  • the second start signal ESTV is invalid, so that the pixel unit corresponding to the first row
  • the shift register unit outputs an invalid lighting control signal.
  • the first enable signal GSTV changes to be valid later, and the states of the third clock signal ECK and the fourth clock signal ECB change according to a predetermined timing, so that the continuously valid light emission control signal EO1 is output for the first row of pixel units.
  • the luminescence control signal EO1 is simultaneously used as an activation signal for the next-stage shift register unit (for example, corresponding to the second row of pixel units), so that the next-stage shift register unit will output an effective luminescence control signal EO2 for use in The pixel unit of the next row.
  • the shift register units at all levels work sequentially to complete the output of the light-emitting control signals of all rows.
  • Fig. 6(c) is a circuit diagram of another exemplary lighting control driving circuit.
  • such a shift register unit may mainly include: the seventy-first transistor T71 to the eighty-third transistor T83, the seventy-first capacitor C71 to the seventh Thirteen capacitors C73.
  • N71, N72, N73, N74, N75, and N76 represent nodes in the circuit.
  • the control pole of the seventy-first transistor T71 is coupled to the first pole of the seventy-sixth transistor T76 and the control pole of the eighty-second transistor T82; its first pole is used to input the third clock signal ECK; its second pole is coupled to It is connected to the second pole of the seventy-second transistor T72, the control pole of the seventy-seventh transistor T77 and the first pole of the seventy-eighth transistor T78.
  • the control electrode of the seventy-second transistor T72 is used for inputting the third clock signal ECK; its first electrode is coupled to the power terminal for inputting the low level VL.
  • the control pole of the seventy-third transistor T73 is coupled to the control pole of the seventy-fifth transistor T75 and the first pole of the eighty-first transistor T81; its first pole is used to input the fourth clock signal ECB; its second pole coupled to the first pole of the seventy-seventh transistor T77.
  • the control pole of the seventy-fourth transistor T74 is coupled to the first pole of the eightieth transistor T80 and the first pole of the eighty-second transistor T82; its first pole is used to input the power supply terminal of the high level VH;
  • the diode is coupled to the first pole of the seventy-fifth transistor T75, and (as the output terminal EO) is used for outputting the light emission control signal EM.
  • the second pole of the seventy-fifth transistor T75 is coupled to the power terminal for inputting the low level VL.
  • the control pole of the seventy-sixth transistor T76 is coupled to another input control signal VCX, so that the seventy-sixth transistor T76 enters an on or off state as required; its second pole is coupled to the eighty-second transistor T82 The second pole, and the power terminal for inputting high level VH.
  • the second pole of the seventy-seventh transistor T77 is coupled to a power supply terminal for inputting a high level VH.
  • the control electrode of the seventy-eighth transistor T78 is coupled to the power terminal for inputting the low level VL, and the second electrode thereof is coupled to the control electrode of the seventy-ninth transistor T79.
  • the first terminal of the seventy-ninth transistor T79 is coupled to the second terminal of the eightieth transistor T80; the second terminal thereof is used for inputting the fourth clock signal ECB.
  • the control electrode of the eightieth transistor T80 is used for inputting the fourth clock signal ECB.
  • the control electrode of the eighty-first transistor T81 is coupled to the power terminal for inputting a low level VL; the second electrode thereof is coupled to the first electrode of the eighty-third transistor T83.
  • the control electrode of the eighty-third transistor T83 is used for inputting the third clock signal ECK; the second electrode thereof is used for inputting the second enabling signal ESTV.
  • the seventy-first capacitor C71 is coupled between the control electrode and the second electrode of the seventy-third transistor T73.
  • the seventy-second capacitor C72 is coupled between the control electrode and the first electrode of the seventy-ninth transistor T79.
  • the seventy-third capacitor C73 is coupled between the control electrode and the first electrode of the seventy-fourth transistor T74.
  • FIG. 6(c) and FIG. 6(a) are corresponding and replaceable, and can be controlled by the same or similar timing (for example, both use the timing in FIG. 6(b)).
  • the main difference between FIG. 6(c) and FIG. 6(a) is: the position of capacitor C33 in FIG. 6(a), the position and connection relationship of capacitor C31 are different from those in FIG. 6(c).
  • the seventy-eighth transistor T78 and the eighty-first transistor T81 are added to stabilize the potential of the N71 node.
  • FIG. 6( d ) is a circuit diagram of another exemplary lighting control driving circuit.
  • such a shift register unit may mainly include: the ninety-first transistor T91 to the one hundred and sixteenth transistor T106, the ninety-first capacitor C91 to Ninety-third capacitor C93. That is, the structure of 16 transistors and 3 capacitors (16T3C).
  • the control electrode of the ninety-first transistor T91 is coupled to the control electrode of the one hundred and fifth transistor T105, and is used for inputting the third clock signal ECK; the first electrode thereof is coupled to the first electrode of the one hundred and fifth transistor T105 pole, and is used to input the second startup signal ESTV; its second pole is coupled to the control pole of the ninety-second transistor T92, the control pole of the ninety-eighth transistor T98, and the first pole of the one hundred and second transistor T102 , The first pole of the one hundred and third transistor T103.
  • the first pole of the ninety-second transistor T92 is used to input the third clock signal ECK; its second pole is coupled to the first pole of the ninety-third transistor T93, the control pole of the ninety-fifth transistor T95, the one hundred The first pole of zero one transistor T101.
  • the control electrode of the ninety-third transistor T93 is used for inputting the third clock signal ECK; the second electrode thereof is coupled to the power terminal for inputting the low level VL.
  • the control pole of the ninety-fourth transistor T94 is coupled to the control pole, the first pole of the one hundred and fourth transistor T104, and the first pole of the one hundred and sixth transistor T106; its first pole is used to input the fourth clock Signal ECB; its second pole is coupled to the first pole of the ninety-fifth transistor T95.
  • the second pole of the ninety-fifth transistor T95 is coupled to a power supply terminal for inputting a high level VH.
  • the control pole of the ninety-sixth transistor T96 is coupled to the second pole of the one hundred and first transistor T101; its first pole is used to input the fourth clock signal ECB; its second pole is coupled to the ninety-seventh transistor T97 of the first pole.
  • the control electrode of the ninety-seventh transistor T97 is used to input the fourth clock signal ECB; the second electrode thereof is coupled to the first electrode of the ninety-eighth transistor T98 and the control electrode of the ninety-ninth transistor T99.
  • the second pole of the ninety-eighth transistor T98 is coupled to a power supply terminal for inputting a high level VH.
  • the first pole of the ninety-ninth transistor T99 is coupled to the power supply terminal for inputting a high level VH; its second pole is coupled to the first pole of the one hundredth transistor T100, and is used as an output terminal (EO) for An emission control signal EM is output.
  • the control pole of the one hundredth transistor T100 is coupled to the second pole of the one hundred and second transistor T102 and the second pole of the one hundred and fourth transistor T104; power terminal.
  • the control electrode of the one hundred and first transistor T101 is coupled to the power terminal for inputting the low level VL.
  • the gate of the one hundred and second transistor T102 is coupled to the gate of the one hundred and sixth transistor T106.
  • the control electrode of the 103rd transistor T103 is coupled to another input control signal VEL to make the 103rd transistor T103 enter the on or off state as required; Pin the power supply terminal of VH.
  • the second terminal of the one hundred and fifth transistor T105 is coupled to the second terminal of the one hundred and sixth transistor T106.
  • the ninety-first capacitor C71 is coupled between the control electrode and the second electrode of the ninety-sixth transistor T96.
  • the ninety-second capacitor C72 is coupled between the control electrode and the first electrode of the ninety-ninth transistor T99.
  • the ninety-third capacitor C73 is coupled between the control electrode and the second electrode of the ninety-fourth transistor T94.
  • Figure 6(d) has a corresponding and replaceable relationship with the circuit structure in Figure 6(c) and Figure 6(a), and can be controlled by the same or similar timing (for example, both use the circuit structure in Figure 6(b) timing).
  • T105 paired with T91
  • T106 paired with T102
  • T104 etc. are additionally set in Figure 6(d), all for the purpose of comparing with Figure 6(c ) circuit structure to further increase the stability of the N71 node in Figure 6(c).
  • the circuit structure corresponding to T76 and T83 in Fig. 6(c) is reserved in Fig. 6(d), and the function is to reset the N1 node.
  • the transistor controlled by the N71 node needs to be turned off, such as the blank (BLANK) stage between frames, before the first frame is displayed, or when abnormalities occur (that is, the low potential of VL does not need to be output), the high potential of VH Input to N71 node.
  • FIG. 4(a), FIG. 5(a), and FIG. 6(a)/FIG. 6(c)/FIG. 6(d) can work in cooperation with each other.
  • any one or more of the circuits may be replaced by circuits of other structures having the same function.
  • FIG. 7( a ) is a circuit diagram of another exemplary pixel unit.
  • FIG. 7( b ) is a timing diagram of an exemplary pixel unit in FIG. 7( a ).
  • the pixel unit shown in FIG. 7( a ) may include a forty-first transistor T41 to a forty-seventh transistor T47 and a forty-first capacitor C41 . In addition, it is also described that the pixel unit is located in the Nth row.
  • the control pole of the forty-first transistor T41 is used to input the reset signal Reset (N), the first pole is coupled to the first reference power supply terminal VREFN, the second pole is coupled to the first pole of the forty-second transistor T42, The control electrode of the forty-third transistor T43.
  • the control electrode of the forty-second transistor T42 is used to input the gate driving signal Gate, and the second electrode is coupled to the second electrode of the forty-third transistor T43 and the first electrode of the forty-sixth transistor T46.
  • the first pole of the forty-third transistor T43 is coupled to the second pole of the forty-seventh transistor T47 and a power terminal for inputting the first driving power ELVDD.
  • the control electrode of the forty-fourth transistor T44 is used to input the gate drive signal Gate, the first electrode is used to input the display data signal Vdata, and the second electrode is coupled to the first electrode of the forty-fifth transistor T45 and the fourth electrode. Seventeen is the first pole of the transistor T47.
  • the control electrode of the forty-fifth transistor T45 is used for inputting the light emission control signal EM, and the second electrode is coupled to the second reference power supply terminal VREFP (also referred to as an initialization power supply terminal, and may input a high level).
  • the control electrode of the forty-sixth transistor T46 is used to input the light emission control signal EM, and the second electrode is coupled to the first electrode of the OLED.
  • the gate of the forty-seventh transistor T47 is used to input the reset signal Reset(N).
  • the second electrode (which may be the cathode) of the OLED is coupled to the power terminal (which may input a low level) for inputting the second driving power ELVSS.
  • the first terminal of the forty-first capacitor C41 is coupled to the second terminal of the forty-fourth transistor T44, and the second terminal is coupled to the second terminal of the forty-first transistor T41.
  • FIG. 7(b) The working sequence of FIG. 7(b) may be exactly the same as that of FIG. 4(b), and its description is omitted.
  • all the transistors are P-type (or called P-channel) transistors, and the corresponding effective signal is a signal of relatively low level (for example, 0V or negative voltage) for example. It should be understood that some or all transistors can also be replaced by N-type without changing the overall function of the circuit, and the effective signal corresponding to the replaced part or all transistors will be a relatively high level (for example, a positive signal with a predetermined amplitude voltage) signal.
  • the method shown in FIG. 2 may have additional steps, or each step in FIG. 2 may have further details.
  • FIG. 8( a ) is a flowchart illustrating sub-steps of the method shown in FIG. 2 .
  • the method for driving the gate drive circuit includes: step S1011, supplying power to the power supply terminal of the gate drive circuit (for example, providing a third power supply signal, the fourth power supply signal); step S1012, providing a clock signal to the gate driving circuit; and step S1013, providing an invalid first start signal to the gate driving circuit.
  • the pixel circuit includes a driving power supply terminal and a reference power supply terminal.
  • the method for driving the pixel circuit includes: step S1021, supplying power to the driving power terminal (for example, providing a first power signal and a second power signal); and step S1022, supplying power to the reference power terminal.
  • FIG. 8( b ) is a flowchart illustrating additional steps of the method shown in FIG. 2 .
  • the method for driving the display panel further includes: Step S104, driving the light emission control driving circuit during the first period of time.
  • the method for driving the light emission control driving circuit may include: Step S1041, supplying power to the power supply terminal of the light emission control driving circuit (for example, providing a third power signal, a fourth power signal) ; Step S1042, providing a clock signal to the light emission control driving circuit; and Step S1043, providing an invalid second startup signal to the light emission control driving circuit.
  • FIG. 8( c ) is a flowchart illustrating additional steps of the method shown in FIG. 2 .
  • the method for driving a display panel further includes: step S105 , causing the source driver circuit to provide a display data signal to the pixel circuit in a third time period.
  • the first activation signal and the second activation signal remain inactive.
  • the second enabling signal remains inactive until the first enabling signal of the gate driving circuit becomes active.
  • FIG. 8( d ) is an exemplary timing diagram corresponding to a method for driving a display panel according to an embodiment of the present disclosure.
  • the first time period may include at least the first frame 1st frame.
  • power is supplied to the power supply terminal of the gate driving circuit, and two supply voltages VH and VL are provided (for example, high level and low level can be provided respectively).
  • the clock signal GCLK provided by the gate driving circuit may represent the first clock signal GCK and the second clock signal GCB mentioned above.
  • An inactive first enable signal GSTV is provided to the gate drive circuit.
  • the first activation signal may remain inactive.
  • the second time period may include at least the second frame 2nd frame.
  • the first enable signal GSTV may remain inactive.
  • GOA supplies power to VH and VL. Except for the GOA input signal (STV, CLK) (ESTV, GSTV can be collectively referred to as STV; ECLK, GCLK can be collectively referred to as CLK) to determine the output high level or low level according to the specific GOA circuit design, other power supplies and signals on the panel maintain output
  • STV GOA input signal
  • CLK GOA input signal
  • ECLK, GCLK can be collectively referred to as CLK
  • GOA power on the power supply VH and VL of the gate drive circuit and/or light emission control drive circuit (hereinafter referred to as GOA), and use a frame Time to initialize the drive circuit;
  • 2GOA is a multi-level cascade architecture
  • the output of the previous stage is the input of the subsequent stage
  • the output status of each level after GOA is powered on is uncertain (possible output status: VH, VL or even a certain voltage between VH and VL)
  • the transistors in the pixel circuit may be in an undesired on state, such as powering on the pixel circuit-related power supplies (VREFN, ELVDD, ELVSS) without additional operations, and/or providing display data signals (Source), and different power supplies may form
  • VREFN, ELVDD, ELVSS pixel circuit-related power supplies
  • Source display data signals
  • different power supplies may form The path causes a short circuit. What's more, when current flows through the OLED device, there will be a momentary flickering phenomenon. Therefore, at the beginning of GOA power-on, it is necessary to determine the status of all levels of GOA; since all levels of GOA are cascaded connections, the operation of determining the output status of each level requires a
  • the multiplexing circuit may be kept on or switched normally (that is, the Mux outputs a low level or normally outputs an alternating high and low level).
  • the multiplexing circuit can also be kept turned on.
  • the signal output from the source driver circuit to the pixel circuit in this frame can be a grounded signal GND, and the switching signal Mux can output low level or normal output.
  • the P-type transistor as a switch it is turned on when the output is low, allowing the data signal to pass through.
  • Normal output refers to the output during normal display, same as 4th Frame. Mux outputs low level or normal output, so that the GND output by the source driver circuit (Source Driver) can reach the pixel circuit, and realize the purpose that as many lines in the panel as possible connected to the source driver circuit can be discharged to GND.
  • the first start signal GSTV and the second start signal ESTV output high level (inactive), the clock signal GCLK of the gate drive circuit and the clock signal ECLK of the light emission control drive circuit (which can represent the above-mentioned third clock signal ECK, fourth clock signal ECB) is the same as the clock signal input to the gate drive circuit (Gate GOA) and the light emission control drive circuit (EM GOA) during normal display.
  • GATE GOA gate drive circuit
  • EM GOA light emission control drive circuit
  • the second start signal ESTV of the light emission control driving signal and the clock signal ECLK maintain the state in the GOA initialization frame.
  • the first start signal GSTV and the clock signal GCLK of the gate driving signal maintain the state in the GOA initialization frame.
  • the voltage of the data signal Source and the state of the switching signal Mux in this frame may not be specified. If the power-on speed of the power supply is too slow (the power-on time is late or the rise time is long), the frame can be changed from one frame to multiple frames to wait for the power-on to complete.
  • the state of the gate of each transistor (eg, TFT) of the pixel circuit is determined, and the relevant power supply of the pixel circuit can be powered on.
  • the pixel power supply ELVDD, ELVSS, and VREFN are powered on (some pixel circuits are powered on together with the pixel power supply VREFP, etc.).
  • the source driver for providing display data can also start to work, but it does not necessarily provide the pixel circuit with a data signal for normal display.
  • the first start signal GSTV and the clock signal GCLK of the gate driving signal, the clock signal ECLK of the light emission control driving signal, the switching signal Mux and the data signal Source can be output normally.
  • the pixel circuit has not written a data signal in the last frame, so the light emission control EM of the pixel circuit cannot be pulled low (effective) at the beginning of this frame, otherwise flicker may occur. Therefore, the second starting signal ESTV of the light emission control driving signal needs to be kept at a high level (invalid) at the beginning of this frame until the second starting signal ESTV is pulled down in a display frame during normal display and then the second starting signal ESTV is activated. Signal ESTV pulled low. That is, during normal display, the second starting signal ESTV is at low level for two periods of time in one frame, and in this frame, the first period of low level of the second starting signal ESTV needs to be pulled high, and then pulled down for the second period of time.
  • the working state of the first starting signal GSTV in the GOA initialization frame can also be the same as the state of the normal display, that is, the same as the 4th frame (4th frame).
  • FIG. 9 is another exemplary timing diagram corresponding to a method for driving a display panel according to an embodiment of the present disclosure.
  • the first activation signal and the second activation signal remain inactive.
  • the second activation signal remains inactive.
  • a display data signal corresponding to displaying black is provided to the pixel circuit.
  • both the power-on of the OLED panel and the initialization frame of the GOA can be the same as those shown in FIG. 8( d ).
  • the main difference from that shown in Figure 8 is that the first start signal GSTV of the gate drive circuit can be in the same state as in normal display, and has a stage of being pulled low (effective) . That is, it is possible to cause a display data signal to be written to the pixel circuit.
  • the written display data signal can be configured as a voltage that enables the thirteenth transistor T13 to be turned off (for example, corresponding to displaying black). It can also prevent screen flickering, circuit short circuit, etc.
  • the frame can be changed from one frame to multiple frames to wait for the power-on to complete.
  • the difference from Figure 8(d) is that since the pixel circuit has written display data (such as black) in the previous frame, at the beginning of this frame, the pixel
  • the writing control signal EM of the circuit can be normally pulled down (effective), that is, the second enable signal ESTV of the writing control driving circuit can also work normally.
  • the working state of the first start signal GSTV in the GOA initialization frame can also be the same as the state during normal display, that is, the same as the 4th frame (4th frame).
  • the clock signal GCLK of the gate drive circuit can work normally in this frame (same as the 4th frame (4th frame)), but it can also not work (for example, depending on the composition of the gate drive circuit, keep high level or low level).
  • FIG. 10 is an exemplary test signal waveform diagram corresponding to a method for driving a display panel according to an embodiment of the present disclosure.
  • FIG. 10 may correspond to the power-on sequence shown in FIG. 9 .
  • SPIMOSI in FIG. 10 corresponds to I/F.
  • the falling edge of TE indicates the beginning of a new frame, and the rising edge indicates the end of the previous frame.
  • SWIRE in FIG. 10 is a signal for providing the first driving power ELVDD and the second driving power ELVSS to the pixel circuit. Once SWIRE is pulled high, the first driving power ELVDD and the second driving power ELVSS start to supply power immediately.
  • the display data signal SRC (namely, source) may be coupled to an interference signal in the first frame (1st frame), resulting in voltage fluctuations (glitch), and if the display process is started directly at this time, it may cause The screen flickers, etc.
  • the gate driving circuit and the like are initialized, which can effectively avoid such a phenomenon.
  • the normal display process starts, and start signals such as ESTV can be output normally.
  • not supplying power to the pixel circuit may also refer to not fully supplying power to the pixel circuit, that is, partially supplying power.
  • the first reference power supply terminal VREFN can be already in the power-on state in the first frame 1st frame.
  • This setting of partial power supply can also play a certain role in avoiding flickering of the display screen or short circuit of the circuit caused by the unstable state of the internal circuit of the display panel.
  • the situation that no power is supplied to the pixel circuit in the first frame 1st frame will be a more preferred implementation manner.
  • FIG. 11 is a block diagram showing the structure of another exemplary OLED display panel.
  • the structure in Figure 11 can be used for LTPO (Low Temperature Polycrystalline Oxide, low temperature polycrystalline oxide) AMOLED panels.
  • LTPO Low Temperature Polycrystalline Oxide, low temperature polycrystalline oxide
  • the gate drive circuit (NGate GOA) is used to provide the required additional gate drive signal NGATE and reset signal NRST to the pixel circuit.
  • FIG. 12( a ) is a circuit diagram of an exemplary pixel unit in FIG. 11 .
  • FIG. 12( b ) is a timing diagram of an exemplary pixel unit in FIG. 12( a ).
  • the LTPO pixel circuit is shown in Figure 12(a).
  • the eleventh transistor T11 and the twelfth transistor T12 are replaced by N-channel transistors (for example, indium gallium zinc oxide thin film transistors, indium gallium zinc oxide thin film transistor, IGZO TFT), and these two TFTs are driven separately using an additional gate drive circuit (NGate GOA).
  • N-channel transistors for example, indium gallium zinc oxide thin film transistors, indium gallium zinc oxide thin film transistor, IGZO TFT
  • the required additional reset signal NReset is further provided.
  • the required additional gate driving signal NGate is further provided. That is, except that the polarities of the driving signals of the eleventh transistor T11 and the twelfth transistor T12 change, the timing of other signals is the same as that in FIG. 4( b ).
  • FIG. 13( a ) is a circuit diagram of an exemplary additional gate drive circuit in FIG. 11 .
  • FIG. 13( b ) is a timing diagram of an exemplary additional gate drive circuit in FIG. 13( a ).
  • the shift register unit of such an additional gate drive circuit may include: the fifty-first transistor T51 to the sixty-third transistor T63, the fifty-first Capacitor C51 to fifty-third capacitor C53.
  • the control pole of the fifty-first transistor T51 is used to input the fifth clock signal GCK', the first pole is coupled to the second pole of the sixty-third transistor T63, and the second pole is coupled to the control pole of the fifty-second transistor T52 , and the first pole of the sixty-second transistor T62 is coupled.
  • the first pole of the fifty-second transistor T52 is used to input the fifth clock signal GCK'
  • the second pole is connected with the second pole of the fifty-third transistor T53
  • the control pole of the fifty-fifth transistor T55 the sixty-first The first pole of the transistor T61 is coupled.
  • the control electrode of the fifty-third transistor T53 is used for inputting the fifth clock signal GCK'
  • the first electrode is coupled to the power terminal for inputting the low level VL.
  • the control electrode of the fifty-fourth transistor T54 is coupled to the control electrode of the fifty-eighth transistor T58, the control electrode of the sixtieth transistor T60, and the second electrode of the sixty-second transistor T62, and the first electrode is used to input the second electrode of the sixth transistor T62.
  • the second pole of the sixth clock signal GCB' is coupled to the second pole of the fifty-fifth transistor T55.
  • a first pole of the fifty-fifth transistor T55 is coupled to a power supply terminal for inputting a high level VH.
  • the control pole of the fifty-sixth transistor T56 is coupled to the second pole of the sixty-first transistor T61, the first pole is used to input the sixth clock signal GCB', and the second pole is coupled to the gate of the fifty-seventh transistor T57 first pole.
  • the control electrode of the fifty-seventh transistor T57 is used to input the sixth clock signal GCB', and the second electrode is coupled to the first electrode of the fifty-eighth transistor T58 and the control electrode of the fifty-ninth transistor T59.
  • the second electrode of the fifty-eighth transistor T58 is used to input the sixth clock signal GCB'.
  • the first pole of the fifty-ninth transistor T59 is used to input the sixth clock signal GCB', the second pole is coupled to the first pole of the sixtieth transistor T60, and is used to output the auxiliary gate drive signal NGox(x can represent the number of rows).
  • the second pole of the sixtieth transistor T60 is coupled to a power terminal for inputting a low level VL.
  • the control electrode of the sixty-first transistor T61 is coupled to the power terminal for inputting the low level VL.
  • the control electrode of the sixty-second transistor T62 is coupled to the power terminal for inputting the low level VL.
  • the control electrode of the sixty-third transistor T63 is used to input the sixth clock signal GCB', and the first electrode is coupled to the auxiliary gate driving signal NGox-1 output from the previous row (x may represent the row number).
  • the fifty-first capacitor C51 is coupled between the control electrode and the second electrode of the fifty-sixth transistor T56.
  • the fifty-second capacitor C52 is coupled between the control electrode and the first electrode of the fifty-ninth transistor T59.
  • the fifty-third capacitor C53 is coupled between the control electrode and the second electrode of the fifty-fourth transistor T54.
  • FIG. 14 is an exemplary timing diagram corresponding to a method for powering on the OLED display panel in FIG. 11 according to an embodiment of the present disclosure.
  • the startup signal NGSTV and the clock signal NGCLK of the additional gate driving circuit can be inverted from the startup signal GSTV and the clock signal GCLK of the gate driving circuit respectively. That is, in each time period, when the activation signal GSTV of the gate driving circuit is active, the activation signal NGSTV of the additional gate driving circuit is also in an active state.
  • FIG. 15 is another exemplary flowchart illustrating a method for driving a display panel according to an embodiment of the present disclosure.
  • the display panel in the embodiments of the present disclosure can also be driven by this method.
  • the method for driving a display panel shown in FIG. 15 may include: step S201, providing an invalid startup signal to the gate drive circuit and/or light emission control drive circuit during a fourth time period; step S202, providing an invalid startup signal during a fifth time period , disconnect the first power signal and the second power signal provided to the pixel circuit; Step S203, within the sixth time period, disconnect the third power signal and the second power signal provided to the gate drive circuit and/or light emission control drive circuit Four power signals.
  • the driving of the gate driving circuit and/or the light emission control driving circuit is stopped, the power supply of the pixel circuit is disconnected, and the gate driving is performed in different time periods. Circuit and/or lighting control drive circuit power supply disconnection and other operations. In this manner, it is possible to prevent the transistors in the pixel circuit from being powered off when they are in an unstable state, thereby effectively preventing problems such as flickering of the display screen or short circuits.
  • the first time period does not overlap with the second time period. According to such an approach, it can be ensured that the gate drive circuit turns off the corresponding circuit elements (for example, transistors) in the pixel circuit according to the predetermined timing for display, and then cuts off the power supply of the pixel circuit. This can more effectively prevent problems such as flickering of the display screen or short circuit of the circuit.
  • the gate drive circuit turns off the corresponding circuit elements (for example, transistors) in the pixel circuit according to the predetermined timing for display, and then cuts off the power supply of the pixel circuit. This can more effectively prevent problems such as flickering of the display screen or short circuit of the circuit.
  • the first period of time includes the duration of at least one display frame. Since the matrix of pixel circuits is scanned row by row, at least one frame time is required to reliably turn off corresponding circuit elements in all pixel circuits.
  • an invalid start signal is provided to the light emission control driving circuit.
  • the light emission control driving circuit cannot output a valid control signal to the pixel circuit.
  • the control element in the pixel circuit related to the light emitting process of the light emitting element is turned off/off.
  • the control element may be a transistor for switching on/off the current flowing through the light emitting element.
  • a valid start signal is provided to the gate driving circuit; and during the fourth time period, a display data signal corresponding to displaying black is provided to the pixel circuit.
  • the display data signal corresponding to displaying black can be written into the pixel circuit, preventing the pixel circuit from still storing the previously written data signal or other interference. Thereby, problems such as flickering can be further prevented. This may be the preferred solution.
  • an invalid start signal is provided to the gate driving circuit and the light emission control driving circuit.
  • the state that the related control elements in the pixel circuit are turned off/off can be maintained continuously.
  • the pixel circuit includes a driving power supply terminal and a reference power supply terminal.
  • the driving power supply terminal and the reference power supply terminal are grounded; and, in the fifth time period, the source driving circuit outputs a ground signal.
  • each power supply terminal and input terminal for example, a display data signal input terminal connected to the source driving circuit
  • each power supply terminal and input terminal may also be grounded. This can prevent the voltages stored by filter capacitors, parasitic capacitors, etc. on these power supply terminals and input terminals from being released, thereby affecting the power-off speed of the display panel.
  • the power terminal of the gate driving circuit and/or the light emission control driving circuit is grounded. According to an embodiment of the present disclosure, once the power-off of the pixel circuit is completed, the power supply signal of the gate drive circuit and/or the light emission control drive circuit can be disconnected as soon as possible, and the power supply signal of the gate drive circuit and/or light emission control drive circuit can be turned off. The power terminal is further grounded to complete the power-off process of the entire display panel.
  • FIG. 16 is an exemplary timing diagram corresponding to the method for driving a display panel according to an embodiment of the present disclosure shown in FIG. 15 .
  • the sequence can also be applied to the AMOLED panel shown in FIG. 3 , and the panel can include various circuit structures as shown in FIG. 4(a), FIG. 5(a), and FIG. 6(a).
  • the panel may also include the circuit structure shown in Fig. 7(a).
  • the OLED panel can be roughly divided into the following stages from normal display until it is turned off.
  • one display frame time may be used to turn off the light-emitting control elements (for example, transistor TFT) in the pixel circuit.
  • the display brightness of the AMOLED display panel is related to many voltages, and the power-off of each voltage is not completed in an instant, but in the millisecond level. If all power supplies are turned off hastily, the display content displayed on the display panel within the duration of the ms level will be uncontrollable.
  • a preferred method is to turn off the power supply after turning off each control element and related circuits in the pixel circuit.
  • the display panel mostly uses a cascaded driver circuit architecture (GOA), and it takes one frame to turn off the relevant elements in the pixel circuits of all rows by using the driver circuit.
  • GOA cascaded driver circuit architecture
  • an invalid activation signal is provided to the light emission control driving circuit. That is, in this time period, corresponding to the type of transistors in the light emission control driving circuit shown in FIG. 6( a ), for example, the second start signal ESTV is always in a high level (inactive) state. In such a case, the light emission control driving circuit will not be able to output a predetermined effective light emission control signal (for example, including a low level, or a level including a high-to-low transition) as shown in FIG. 6( b ) to the pixel circuit.
  • EO1 may represent an emission control signal output to the first row of pixel circuits.
  • EO2 may represent an emission control signal output to the second row of pixel circuits.
  • the fifteenth transistor T15 and the sixteenth transistor T16 are always turned off. During this period, regardless of the state of the thirteenth transistor T13, current cannot flow through the OLED in the pixel circuit through the fifteenth transistor T15 and the sixteenth transistor T16, and the OLED will not emit light.
  • the first start signal GSTV provided by the gate drive circuit may be either inactive (always high) or normally active (for example, including a low level, or including a low-to-high transition level).
  • an active start signal is provided to the gate driving circuit, and a display data signal corresponding to displaying black is provided to the pixel circuit.
  • a display data signal corresponding to displaying black is provided to the pixel circuit.
  • the gate drive circuit (Gate GOA) and the light emission control drive circuit (EM GOA) are cascaded structures respectively, therefore, through the gate drive circuit (Gate GOA) and the light emission control drive Circuitry (EM GOA) to reliably turn off corresponding circuit elements in all pixel circuits requires at least one display frame time.
  • the relevant power supplies (VREFN, ELVDD, ELVSS, Source) of the pixel circuit can be powered off.
  • the related control signal cannot be withdrawn (for example, the control signal applied to the gate of the transistor needs to maintain the related level).
  • the power supply related to the pixel circuit is powered off.
  • the corresponding circuit elements eg, the above-mentioned respective transistors
  • This state continues to be maintained in the fifth time period, so the second start signal ESTV and the first start signal GSTV remain inactive (always high).
  • a gate drive signal that is valid (for example, includes a low level, or includes a high-to-low transition level).
  • GO1 may represent a gate driving signal output to the first row of pixel circuits.
  • GO2 may represent a gate driving signal output to the second row of pixel circuits.
  • the gate driving signal Gate since the gate driving signal Gate remains high at this stage, the data signal Data cannot be written into the storage element (eg, the eleventh capacitor C11 ) in the pixel circuit.
  • the state of the switching signal MUX for example, MUX1, MUX2
  • the state of the data signal Data itself are not limited, which can further simplify the control logic of power-off.
  • each power supply terminal of the pixel circuit for example, for VREFN, ELVDD, ELVSS
  • the input for example, for Source
  • they can be grounded to GND to prevent the voltages stored on these power terminals and input terminals by filter capacitors, parasitic capacitors, etc. from being released, thereby affecting the power-off speed of the display panel.
  • the fifth time period ends.
  • the power supply related to the pixel circuit has been disconnected when the control element is turned off/off. At this time, even if the control element is turned on/on again, no current will flow through the control element and light up the OLED device. At this time, each power supply of the driving circuit can be disconnected. So far, the entire power-off process of the panel is completed.
  • the power-off of the pixel circuit has been completed, so the power-off of the driving circuit (eg, gate driving circuit, light emission control driving circuit) can be started.
  • the driving circuit eg, gate driving circuit, light emission control driving circuit
  • each driving circuit stops outputting the driving signal in the form of pulse.
  • the power supply of the drive circuit can be disconnected as soon as possible, and the power-off process is all completed so far.
  • the power supply terminal of the drive circuit can also be grounded.
  • the specific levels of the above-mentioned “valid” and “inactive” signals are still determined according to the specific circuit structure. For example, when different types of transistors are used to form pixel circuits, driving circuits, etc., the high level can also become an effective level.
  • FIG. 17 is an exemplary test signal waveform diagram corresponding to the method for driving a display panel according to an embodiment of the present disclosure shown in FIG. 15 .
  • FIG. 17 may correspond to the power-off sequence shown in FIG. 16 .
  • the MIPI in FIG. 17 corresponds to the MIPI in FIG. 16 , this signal belongs to a type of interface signal I/F, and can indicate the start of the power-off process alone or together with other signals.
  • the falling edge of TE/VS indicates the beginning of a new frame, and the rising edge indicates the end of the previous frame.
  • SWIRE in FIG. 17 is a signal for providing the first driving power ELVDD and the second driving power ELVSS to the pixel circuit. Once SWIRE is pulled high, the first driving power ELVDD and the second driving power ELVSS start to supply power immediately. Once SWIRE is low, the power supply of the first driving power ELVDD and the second driving power ELVSS is cut off.
  • the above-mentioned fourth time period is represented by TFT off in FIG. 17
  • the above-mentioned fifth time period is represented by Pixel PWR off in FIG. 17
  • the above-mentioned sixth time period is represented by GOA PWR off in FIG. 17 .
  • FIG. 18 is an exemplary timing diagram corresponding to a method for powering down the OLED display panel in FIG. 11 according to an embodiment of the present disclosure.
  • the timing shown has no other differences. In each time period, when the activation signal GSTV of the gate driving circuit is active, the activation signal NGSTV of the additional gate driving circuit is also in an active state.
  • an improved power-on sequence is provided for the OLED display panel, which can avoid problems such as flickering of the display screen or circuit short circuit caused by unstable internal circuit state of the display panel during power-on.
  • problems such as flickering of the display screen or circuit short circuit caused by unstable internal circuit state of the display panel during power-on.
  • problems such as a splash screen at power-on and internal circuit short circuit can be avoided at the moment of power-on.
  • an improved power-off sequence is also provided for the OLED display panel, which can avoid problems such as flickering of the display screen or circuit short circuit caused by unstable internal circuit state of the display panel during the power-off process.
  • the panel can be powered off in a short time (for example, as short as two frames), it can avoid problems such as a startup splash screen and an internal circuit short circuit at the moment of power off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种用于驱动显示面板的装置、方法。显示面板包括像素电路(1)、栅极驱动电路(2)、以及源极驱动电路(3)。用于驱动显示面板的装置被配置为:在第一时间段,向栅极驱动电路(2)和/或发光控制驱动电路(4)提供无效的启动信号;在第二时间段,对像素电路(1)提供第一电源信号和第二电源信号;以及在第三时间段内,向栅极驱动电路(2)和/或发光控制驱动电路(4)提供有效的启动信号。这样的装置对显示面板提供了改进的上电和/或下电时序,可以在上电和/或下电过程中避免由于显示面板内部电路状态不稳定而导致的显示画面闪烁,或者电路短路等问题。

Description

用于驱动显示面板的装置和方法 技术领域
本公开的实施例一般涉及显示技术,尤其涉及一种用于驱动显示面板的装置和方法。
背景技术
本部分仅仅用于提供背景技术以促进本公开的更好的理解。因此,本部分的陈述将从这个角度阅读并且不涉及什么在现有技术中或者什么不在现有技术中的承认。
随着显示技术的发展,显示面板的电路结构往往更加复杂。
例如,OLED面板相较于液晶显示器(Liquid Crystal Display,LCD)面板而言,使用了更多的薄膜晶体管(Thin-Film Transistor,TFT),电路更为复杂。
更为复杂的电路可能会导致更多潜在的问题。例如,在对于OLED显示面板上电和/或下电的过程中,像素电路中的各个晶体管可能会处于不稳定的状态而导致呈现闪烁的画面、和/或电路短路等问题。
发明内容
本发明内容对于本公开的方面进行了简要的描述,这些方面将在具体实施方式中进一步描述。本发明内容并不标识要求保护的主题的关键特征或基本特征,其也不限制要求保护的主题的范围。
本公开的一个目的在于提供改进的用于驱动显示面板的装置和方法,以解决显示面板在上电和/或下电的过程中可能出现的上述问题或者其它问题。
本公开的一个方面提供了一种用于驱动显示面板的装置。显示面板包括像素电路、栅极驱动电路、以及源极驱动电路。用于驱动显示面板的装置被配置为:在第一时间段,向栅极驱动电路和/或发光控制驱动电路提供无效的启动信号;以及在第二时间段,对像素电路提供第一电源信号和第二电源信号;以及在第三时间段内,向栅极驱动电路和/或发光控制驱动电路提供有效的启动信号。
在本公开的实施例中,在第一时间段,将像素电路的电源端接地。
在本公开的实施例中,在第一时间段,使源极驱动电路输出接地信号。
在本公开的实施例中,用于驱动显示面板的装置被配置为:在第一时间段,对栅极驱动电路提供第三电源信号、第四电源信号;对栅极驱动电路提供时钟信号;以及对栅极驱动电路提供无效的第一启动信号。
在本公开的实施例中,在第一时间段以及第二时间段,使第一启动信号保持无效。
在本公开的实施例中,用于驱动显示面板的装置还被配置为:在第三时间段,使源极驱动电路向像素电路提供显示数据信号。
在本公开的实施例中,显示面板还包括用于向像素电路输出发光控制信号的发光控制驱动电路。用于驱动显示面板的装置还被配置为:在第一时间段,驱动发光控制驱动电路。
在本公开的实施例中,用于驱动显示面板的装置被配置为:在第一时间段,对发光控制驱动电路的电源端提供第三电源信号、第四电源信号;对发光控制驱动电路提供时钟信号;以及对发光控制驱动电路提供无效的第二启动信号。
在本公开的实施例中,用于驱动显示面板的装置还被配置为:在第三时间段,使源极驱动电路向像素电路提供显示数据信号。在第一时间段以及第二时间段,对源极驱动电路提供的第一启动信号以及对发光控制驱动电路提供的第二启动信号保持无效。在第三时间段,第二启动信号在栅极驱动电路的第一启动信号变为有效之前保持无效。
在本公开的实施例中,在第一时间段,对源极驱动电路提供的第一启动信号以及对发光控制驱动电路提供的第二启动信号保持无效。在第二时间段,第二启动信号保持无效。
在本公开的实施例中,在第二时间段,对像素电路提供对应于显示黑色的显示数据信号。
在本公开的实施例中,像素电路包括驱动电源端以及参考电源端。用于驱动显示面板的装置被配置为:在第二时间段,对驱动电源端提供第一电源信号、第二电源信号;以及对参考电源端供电。
在本公开的实施例中,第一时间段包括至少一个显示帧的持续时间,第二时间段包括至少一个显示帧的持续时间。
在本公开的实施例中,第一时间段与第二时间段不重叠。
在本公开的实施例中,显示面板还包括被设置在源极驱动电路和像素电 路之间的复用电路。在使源极驱动电路输出接地信号的情况下,复用电路被导通。
本公开的另一个方面提供了一种用于驱动显示面板的装置。显示面板包括像素电路、栅极驱动电路、以及源极驱动电路。用于驱动显示面板的装置被配置为:在第四时间段,向栅极驱动电路和/或发光控制驱动电路提供无效的启动信号;在第五时间段,断开向像素电路提供的第一电源信号和第二电源信号;在第六时间段内,断开向栅极驱动电路和/或发光控制驱动电路提供的第三电源信号和第四电源信号。
在本公开的实施例中,在第四时间段,向发光控制驱动电路提供无效的启动信号。
在本公开的实施例中,在第四时间段,向栅极驱动电路提供有效的启动信号;以及在第四时间段,对像素电路提供对应于显示黑色的显示数据信号。
在本公开的实施例中,在第四时间段,向栅极驱动电路提供无效的启动信号。
在本公开的实施例中,在第五时间段,向栅极驱动电路和发光控制驱动电路提供无效的启动信号。
在本公开的实施例中,像素电路包括驱动电源端以及参考电源端;其中,在第五时间段,驱动电源端以及参考电源端接地;其中,在第五时间段,源极驱动电路输出接地信号。
在本公开的实施例中,在第六时间段,栅极驱动电路和/或发光控制驱动电路的电源端接地。
本公开的另一个方面提供了一种用于驱动显示面板的装置。显示面板包括像素电路、栅极驱动电路、以及源极驱动电路。用于驱动显示面板的装置被配置为:在第一时间段,向栅极驱动电路和/或发光控制驱动电路提供无效的启动信号;在第二时间段,对像素电路提供第一电源信号和第二电源信号;在第三时间段内,向栅极驱动电路和/或发光控制驱动电路提供有效的启动信号;在第四时间段,向栅极驱动电路和/或发光控制驱动电路提供无效的启动信号;在第五时间段,断开向像素电路提供的第一电源信号和第二电源信号;以及在第六时间段内,断开向栅极驱动电路和/或发光控制驱动电路提供的第三电源信号和第四电源信号。
在本公开的实施例中,用于驱动显示面板的装置与所述显示面板集成。
本公开的另一个方面还提供了一种使用根据上述实施例的任一项所述的用于驱动显示面板的装置来驱动显示面板的方法。
本公开的另一个方面还提供了一种显示面板。显示面板包括:像素电路、栅极驱动电路、源极驱动电路,以及根据上述实施例中任一项所述的用于驱动显示面板的装置。
根据本公开的实施例,对显示面板提供了改进的上电时序,可以在上电过程中避免由于显示面板内部电路状态不稳定而导致的显示画面闪烁,或者电路短路等问题。此外,对显示面板还提供了改进的下电时序,可以在下电过程中避免由于显示面板内部电路状态不稳定而导致的显示画面闪烁,或者电路短路等问题。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1(a)是示出了示例性的OLED显示面板的结构的框图。
图1(b)是示出了根据本公开的实施例的用于驱动显示面板的装置的示例性的框图。
图2是示出了根据本公开的实施例的用于驱动显示面板的方法的示例性的流程图。
图3是示出了另一个示例性的OLED显示面板的结构的框图。
图4(a)是一个示例性的像素单元的电路图。
图4(b)是示例性的图4(a)中的像素单元的时序图。
图5(a)是示例性的栅极驱动电路的电路图。
图5(b)是示例性的图5(a)中的栅极驱动电路的时序图。
图6(a)是示例性的发光控制驱动电路的电路图。
图6(b)是示例性的图6(a)中的发光控制驱动电路的时序图。
图6(c)是另一个示例性的发光控制驱动电路的电路图。
图6(d)是另一个示例性的发光控制驱动电路的电路图。
图7(a)是另一个示例性的像素单元的电路图。
图7(b)是示例性的图7(a)中的像素单元的时序图。
图8(a)是示出图2中所示的方法的子步骤的流程图。
图8(b)是示出图2中所示的方法的附加步骤的流程图。
图8(c)是示出图2中所示的方法的附加步骤的流程图。
图8(d)是对应于根据本公开的实施例的用于驱动显示面板的方法的一个示例性的时序图。
图9是对应于根据本公开的实施例的用于驱动显示面板的方法的另一个示例性的时序图。
图10是对应于根据本公开的实施例的用于驱动显示面板的方法的一个示例性的测试信号波形图。
图11是示出了另一个示例性的OLED显示面板的结构的框图。
图12(a)是示例性的图11中的像素单元的电路图。
图12(b)是示例性的图12(a)中的像素单元的时序图。
图13(a)是示例性的图11中的附加栅极驱动电路的电路图。
图13(b)是示例性的图13(a)中的附加栅极驱动电路的时序图。
图14是对应于根据本公开的实施例的用于对图11中的OLED显示面板上电的方法的示例性的时序图。
图15是示出了根据本公开的实施例的用于驱动显示面板的方法的另一个示例性的流程图。
图16是对应于图15所示的根据本公开的实施例的用于驱动显示面板的方法的一个示例性的时序图。
图17是对应于图15所示的根据本公开的实施例的用于驱动显示面板的方法的一个示例性的测试信号波形图。
图18是对应于根据本公开的实施例的用于对图11中的OLED显示面板下电的方法的示例性的时序图。
具体实施方式
为使本公开实施例的技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第 二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“耦接”或者“相连”等类似的词语并非限定于物理的或者机械的耦接,而是可以包括电性的耦接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1(a)是示出了示例性的OLED显示面板的结构的框图。
如图1(a)所示,作为显示面板的非限制性示例,有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板可以包括像素电路1、栅极驱动电路2、以及源极驱动电路3。栅极驱动电路2、以及源极驱动电路3分别为像素电路1提供扫描信号、数据信号等。像素电路1可以包括阵列状的多个像素单元,其中每个像素单元可以包括OLED元件。
此外,作为可选的部分,根据像素电路的具体结构的不同,OLED面板还可能包括向像素电路1输出发光控制信号的发光控制驱动电路4。发光控制驱动电路4可以与栅极驱动电路2配合,以对于像素电路1进行驱动。
图1(b)是示出了根据本公开的实施例的用于驱动显示面板的装置的示例性的框图。
本公开的实施例中的用于驱动显示面板的装置可以用于驱动显示面板,尤其是可以执行本公开的实施例中所述的用于驱动显示面板的方法,例如,在下述的图2、8(a),8(b),8(c),图15等中示出的方法。
如图1(b)所示,用于驱动显示面板的装置5可以包括:处理器501和存储器502。处理器501可以是任何种类的处理组件,例如一个或多个微处理器或微控制器,或者其他数字硬件,例如数字信号处理器(DSP)、专用数字逻辑电路、现场可编程门阵列(FPGA)、专用集成电路(ASIC)等等。存储器502可以是任何类型的存储组件,例如只读存储器(ROM)、随机存取存储器、高速缓存、闪存设备、光存储设备等。
存储器502可以存储由处理器501执行的软件。在处理器501执行该软件时,可以用于驱动显示面板,尤其是实现本公开的实施例中的用于驱动显示面板的方法。
在本公开的实施例中,用于驱动显示面板的装置可以与显示面板集成,或者被设置在显示面板内部。因此,该装置也可以被称为显示面板的驱动装置/模块、电源控制装置/模块、或者上电下电装置/模块等。
图2是示出了根据本公开的实施例的用于驱动显示面板的方法的示例性的流程图。
本公开的实施例可以应用于如图1所示的OLED显示面板,以及其它任何合适的显示面板。因此,本公开的实施例也包含应用了该方法的这样的显示面板。本公开的实施例中的显示面板可以由该方法驱动。
图2所示的用于驱动显示面板的方法可以包括:步骤S101,在第一时间段,向栅极驱动电路和/或发光控制驱动电路提供无效的启动信号;步骤S102,在第二时间段,对所述像素电路提供第一电源信号和第二电源信号;以及步骤S103,在第三时间段,向栅极驱动电路和/或发光控制驱动电路提供有效的启动信号。
根据本公开的实施例,在显示面板上电的过程中,在不同的时间段中进行栅极驱动电路的驱动、像素电路的供电、显示数据的提供等操作。通过这样的方式,可以防止像素电路中的晶体管状态不稳定时被驱动,进而有效防止显示画面闪烁,或者电路短路等问题。
在完成上述上电过程之后,显示面板就可以进入正常的显示过程。即,在正常的显示过程中,栅极驱动电路周期性地(例如,以显示帧为周期)驱动像素电路(按照预定时序使得像素电路中的晶体管导通或者截止),源极驱动器周期性地向像素电路提供显示数据,使得像素电路中的OLED对应于每一显示帧的显示数据而操作(例如,以相应的亮度发光),从而OLED显示面板能够显示每一帧的图像画面。
在本公开的实施例中,在第一时间段,可以将像素电路中的电源端接地。根据这样的方式,可以使得像素电路中的晶体管更可靠地处于截止状态,提高上电过程中的抗干扰的能力,有效防止显示画面闪烁,或者电路短路等问题。
在本公开的实施例中,在第一时间段,可以使源极驱动电路输出接地信号。根据这样的方式,像素电路接收到接地信号以代替显示数据信号,这可以进一步防止上电过程中的干扰信号被作为显示数据输入到像素电路,可以有效防止显示画面闪烁,或者电路短路等问题。
在本公开的实施例中,第一时间段与第二时间段不重叠。根据这样的方式,可以确保栅极驱动电路完成初始化之后(即,可以完全按照预定显示用时序对于像素电路进行驱动之后),再对于像素电路提供供电和/或提供显示数据。这可以更有效防止显示画面闪烁,或者电路短路等问题。
在本公开的实施例中,第一时间段包括至少一个显示帧的持续时间,第二时间段包括至少一个显示帧的持续时间。考虑到电源等各个电路模块都可能需要一段时间以进入稳定状态,根据这样的方式,可以确保上电过程完成后各个电路模块都进入了稳定的工作状态,而避免画面闪烁,或者电路短路等问题。
以下,将结合示例性的OLED显示面板的示例性的电路结构,对于本公开的实施例所述的用于驱动显示面板的方法进行进一步的说明。应当理解,下列电路结构仅仅是示例性的,而不是对于本公开的实施例所述的方法。本公开的实施例所述的用于驱动显示面板的方法可以应用于下列电路结构的变换和改进。
图3是示出了另一个示例性的OLED显示面板的结构的框图。
如图3所示,像素电路1包括阵列状的多个像素单元,可以记为第1行(Line[1])至第y行(Line[y]),第1列(Row[1])至第x列(Row[x])。x,y为正整数。
OLED显示面板可以使用所谓的行扫描工作模式。在一个显示帧中,栅极驱动电路2、发光控制驱动电路4依次扫描每一行像素单元,并且相应地源极驱动电路3依次向被扫描的每一行像素单元提供数据信号。显示数据信号在本文的以下部分中可以使用Source、Vdata、Data等等来表示。
例如,以扫描第1行(Line[1])像素单元为例,栅极驱动电路2首先输出有效的复位信号(RST[1]),以使得第1行(Line[1])的像素单元都被复位。然后,栅极驱动电路2输出有效的栅极驱动信号(GATE[1]),使得源极驱动电路3提供的数据信号可以被写入第1行(Line[1])的像素单元。该有效的栅极驱动信号(GATE[1])同时可以作为第2行(Line[2])的像素单元的复位信号(RST[2])。然后,发光控制驱动电路4输出有效的发光控制信号(EM[1]),使得第1行(Line[1])的像素单元中的OLED对应于各自的显示数据而工作(例如,产生各自相应的亮度)。该显示状态可以持续到该显示帧的结束。
第2行(Line[2])像素单元直到第y行(Line[y])像素单元都将以同样的方式完成扫描。
应当理解,“有效”的信号是指可以使得后续的电路元件(例如晶体管)进入工作状态(例如导通)的信号。因此,对应于后续电路元件的不同,该“有效”的信号的具体属性(例如,幅值)可以不同。例如,对于N型晶体管,有效的信号可以是为相对高电平的电压信号。而对于P型晶体管,有效的信号可以是相对低电平的电压信号。相应地,“无效”的信号是指不能使得后续的电路元件(例如晶体管)进入工作状态(例如导通)的信号,也就是说,将使得后续的电路元件(例如晶体管)保持截止。
此外,在本公开的实施例中,OLED显示面板还包括被设置在源极驱动电路和像素电路之间的复用电路。源极驱动电路3的输出可以耦接到复用电路31。在切换信号的控制下,源极驱动器3提供的显示数据可以经由复用电路分别提供到不同列的像素单元。例如,如图3所示,可以在切换信号MUX1,MUX2的控制下,分别向奇数列、偶数列提供显示数据的信号。MUX1有效时,可以使得复用电路31中的与奇数列的像素单元对应的开关元件导通,从而源极驱动电路3的输出被传输到奇数列的像素单元。而MUX2有效时,可以使得复用电路31中的与偶数列的像素单元对应的开关元件导通,从而源极驱动电路3的输出被传输到偶数列的像素单元。如此,可以实现源极驱动电路3的复用,减少了源极驱动电路3中所需要的电路元件并相应降低占用面积、成本等。
此外,在工作期间,切换信号MUX1,MUX2可以具有完全相反的波形,即同一时刻要么向奇数列提供,要么向偶数列提供,以实现源极驱动电路3的输出的复用。因此,在之后的描述中,也可以仅仅使用MUX来表示这样具有固定波形关系的多个切换信号。
作为非限制性的示例,图3中的OLED显示面板可以是例如AMOLED(Active-matrix organic light-emitting diode,主动矩阵有机发光二极体)面板,具体可以是LTPS(Low Temperature Poly-Silicon,低温多晶硅)AMOLED显示面板。根据图3的结构,可以具有以下特点:①使用类似移位寄存器的栅极驱动电路(Gate Driver on Array,GOA)来驱动像素的复位Reset、栅极Gate和发光控制EM信号。②采用源级复用电路(Mux1和Mux2驱动的开关元件(例如,薄膜晶体管)为P沟道),部分型号面板也可以没有Mux电 路。在以下的说明中,以P沟道的薄膜晶体管为例进行说明。但是,应当理解,薄膜晶体管的类型也可以替换为其它类型,例如N沟道。
图4(a)是一个示例性的像素单元的电路图。图4(b)是示例性的图4(a)中的像素单元的时序图。
图4(a)所示的像素单元可以包括第十一晶体管T11~第十七晶体管T17、第十一电容C11。此外,以该像素单元位于第N行进行说明。
第十一晶体管T11的控制极被用于输入复位信号Reset(N),第一极耦接到第一参考电源端VREFN(也可以被称为初始化电源端,并且可以是低电平),第二极与第十三晶体管T13的控制极、第十二晶体管T12的第一极耦接。第十二晶体管T12的控制极被用于输入栅极驱动信号Gate,第二极与第十三晶体管T13的第二极、第十六晶体管T16的第一极耦接。第十三晶体管T13的第一极与第十四晶体管T14的第一极、第十五晶体管T15的第二极耦接。第十四晶体管T14的控制极被用于输入栅极驱动信号Gate,第二极被用于输入显示数据信号Vdata。第十五晶体管T15的控制极被用于输入发光控制信号EM,第一极耦接到用于输入第一驱动电源ELVDD(即,作为第一电源信号而被提供)的电源端(可以输入高电平)。第十六晶体管T16的控制极被用于输入发光控制信号EM,第二极与OLED的第一极(可以是阳极)耦接。第十七晶体管T17的控制极被用于输入下一行的像素电路的复位信号Reset(N+1)(可以与栅极驱动信号Gate相同),第一极耦接到第一参考电源端VREFN,第二极与OLED的第一极耦接。OLED的第二极(可以是阴极)与用于输入第二驱动电源ELVSS(即,作为第二电源信号而被提供)的电源端(可以输入低电平)耦接。第十一电容C11的第一端耦接到用于输入第一驱动电源ELVDD的电源端,第二端与第十三晶体管T13的控制极耦接。
晶体管的控制极可以是栅极,第一极可以是源极或者漏极中的任一个,而第二极可以是源极或者漏极中的另一个。此外,不同晶体管的第一极可以是不同的类型,第二极可以是不同的类型。
如图4(b)所示,在时间段t1,t2,发光控制信号保持无效(无效是指该信号不能使晶体管导通,或者说是使得晶体管截止)。在时间段t1,复位信号Reset(N)有效(有效是指该信号能够使晶体管导通),使得相应像素电路中相应节点的电压被复位,或者被初始化,或者被设置为参考电压。在 时间段t2,栅极驱动信号Gate有效,使得数据信号Data(即Vdata)被写入。在时间段t3之后,发光控制信号有效,复位信号Reset(N)、栅极驱动信号Gate无效。OLED对应于数据信号Data而工作(例如,以预定的亮度发光)。
如图4(b)所示,发光控制信号EM高电平持续时间大于图中所示的时间段2H且包裹住时间段t1和t2内的复位信号Reset和栅极驱动信号Gate的低电平。
应当理解,该复位信号Reset(N)可以是上一行的栅极驱动信号Gate(N-1)。
图5(a)是示例性的栅极驱动电路的电路图。图5(b)是示例性的图5(a)中的栅极驱动电路的时序图。
栅极驱动电路可以由图5(a)中所示的移位寄存器单元逐级串联组成。即,栅极驱动电路采用移位寄存器的方式工作,各级的移位寄存器单元依次向像素电路输出上述的复位信号、栅极驱动信号(也可以统称为行扫描信号)。
如图5(a)所示,作为一个非限制性的示例,这样的移位寄存器单元可以包括:第二十一晶体管T21~第二十八晶体管T28、第二十一电容C21~第二十二电容C22。
第二十一晶体管T21的控制极被用于输入第一时钟信号GCK,第一极被用于输入第一启动信号GSTV,第二极与第二十二晶体管T22的控制极、第二十七晶体管T27的第二极、第二十八晶体管T28的第一极耦接。第二十二晶体管T22的第一极被用于输入第一时钟信号GCK,第二极与第二十三晶体管T23的第二极、第二十四晶体管T24的控制极、第二十六晶体管T26的控制极耦接。第二十三晶体管T23的控制极被用于输入第一时钟信号GCK,第一极耦接到用于输入低电平VL(即,作为第四电源信号而被提供)的电源端。第二十四晶体管T24的第一极耦接到用于输入高电平VH(即,作为第三电源信号而被提供)的电源端,第二极与第二十五晶体管T25的第一极耦接,且用于输出栅极驱动信号GO。第二十五晶体管T25的控制极与第二十八晶体管T28的第二极耦接,第二极被用于输入第二时钟信号GCB。第二十六晶体管T26的第一极耦接到用于输入高电平VH的电源端,第二极与第二十七晶体管T27的第一极耦接。第二十七晶体管T27的控制极被用于输入第二时钟信号GCB。第二十八晶体管T28的控制极耦接到用于输入低电平VL的电源端。
第二十一电容C21耦接在第二十四晶体管T24的控制极和第一极之间。第二十二电容C22耦接在第二十五晶体管T25的控制极和第一极之间。
例如,高电平VH可以是预定幅值的正电压,低电平VL可以是预定幅值的负电压。
如图5(b)所示,以该移位寄存器单元位于第一级(例如,对应于第一行像素单元)为例,在时间段t1,第一启动信号GSTV有效,使得对应于第一行像素单元的移位寄存器单元开始工作。第一启动信号GSTV、以及第一时钟信号GCK、第二时钟信号GCB的状态按照预定时序改变,使得在时间段t2,对于第一行像素单元输出有效的栅极驱动信号GO1。该栅极驱动信号GO1同时作为(例如,对应于第二行像素单元的)下一级移位寄存器单元的启动信号,使得下一级移位寄存器单元在时间段t3输出有效的栅极驱动信号GO2,以用于下一行的像素单元。以此类推,各级的移位寄存器单元依次工作,完成所有行的栅极驱动信号的输出。
相邻两行的移位寄存器单元的电路结构是完全相同,且所有级可以共用两个时钟信号GCK和GCB。
图6(a)是示例性的发光控制驱动电路的电路图。图6(b)是示例性的图6(a)中的发光控制驱动电路的时序图。
与栅极驱动电路类似地,发光控制驱动电路可以由图6(a)中所示的移位寄存器单元逐级串联组成。即,发光控制驱动电路也采用移位寄存器的方式工作,各级的移位寄存器单元依次向像素电路输出上述的发光控制信号(也可以属于行扫描信号)。
如图6(a)所示,作为一个非限制性的示例,这样的移位寄存器单元可以主要包括:第三十一晶体管T31~第三十八晶体管T38、第三十一电容C31~第三十三电容C33。图中,N1,N2,N3表示电路中的节点。
第三十一晶体管T31的控制极被用于输入第三时钟信号ECK,第一极被用于输入第二启动信号ESTV,第二极与第三十三晶体管T33的控制极、第三十五晶体管T35的控制极、第三十八晶体管T38的控制极耦接。第三十二晶体管T32的控制极被用于输入第三时钟信号ECK,第一极耦接到用于输入低电平VL的电源端,第二极与第三十三晶体管T33的第二极、第三十六晶体管T36的控制极耦接。第三十三晶体管T33的第一极被用于输入第三时钟信号ECK。第三十四晶体管T34的控制极与第三十七晶体管T37的第 二极、第三十八晶体管T38的第二极耦接,第一极耦接到用于输入高电平VH的电源端,第二极与第三十五晶体管T35的第一极耦接,且用于输出发光控制信号EM。第三十五晶体管T35的第二极耦接到用于输入低电平VL的电源端。第三十六晶体管T36的第一极耦接到用于输入低电平VL的电源端,第二极与第三十七晶体管T37的第一极耦接。第三十七晶体管T37的控制极被用于输入第四时钟信号ECB。第三十八晶体管T38的第一极耦接到用于输入高电平VH的电源端。
第三十一电容C31的第一端耦接到第三十五晶体管T35的控制极,第二端用于输入第四时钟信号ECB。第三十二电容C32耦接在第三十四晶体管T34的控制极和第一极之间。第三十三电容C33的第一端耦接到第三十六晶体管T36的控制极,第二端用于输入第四时钟信号ECB。
如图6(b)所示,以该移位寄存器单元位于第一级(例如,对应于第一行像素单元)为例,首先,第二启动信号ESTV无效,使得对应于第一行像素单元的移位寄存器单元输出无效的发光控制信号。第一启动信号GSTV在之后改变为有效,并且第三时钟信号ECK、第四时钟信号ECB的状态按照预定时序改变,使得对于第一行像素单元输出持续有效的发光控制信号EO1。该发光控制信号EO1同时作为(例如对应于第二行像素单元的)下一级移位寄存器单元的启动信号,使得下一级移位寄存器单元在之后输出有效的发光控制信号EO2,以用于下一行的像素单元。以此类推,各级的移位寄存器单元依次工作,完成所有行的发光控制信号的输出。
图6(c)是另一个示例性的发光控制驱动电路的电路图。
如图6(c)所示,作为一个非限制性的示例,这样的移位寄存器单元可以主要包括:第七十一晶体管T71~第八十三晶体管T83、第七十一电容C71~第七十三电容C73。图中,N71,N72,N73,N74,N75,N76表示电路中的节点。
第七十一晶体管T71的控制极耦接第七十六晶体管T76的第一极以及第八十二晶体管T82的控制极;其第一极用于输入第三时钟信号ECK;其第二极耦接到第七十二晶体管T72的第二极、第七十七晶体管T77的控制极以及第七十八晶体管T78的第一极。第七十二晶体管T72的控制极用于输入第三时钟信号ECK;其第一极耦接到用于输入低电平VL的电源端。第七十三晶体管T73的控制极耦接到第七十五晶体管T75的控制极、第八十一晶体管 T81的第一极;其第一极用于输入第四时钟信号ECB;其第二极耦接到第七十七晶体管T77的第一极。第七十四晶体管T74的控制极耦接到第八十晶体管T80的第一极、第八十二晶体管T82的第一极;其第一极用于输入高电平VH的电源端;其第二极耦接到第七十五晶体管T75的第一极,且(作为输出端EO)用于输出发光控制信号EM。第七十五晶体管T75的第二极耦接到用于输入低电平VL的电源端。第七十六晶体管T76的控制极耦接到另外的输入控制信号VCX,以根据需要使得第七十六晶体管T76进入导通或者截止状态;其第二极耦接到第八十二晶体管T82的第二极,以及用于输入高电平VH的电源端。第七十七晶体管T77的第二极耦接到用于输入高电平VH的电源端。第七十八晶体管T78的控制极耦接到用于输入低电平VL的电源端,其第二极耦接到第七十九晶体管T79的控制极。第七十九晶体管T79的第一极耦接到第八十晶体管T80的第二极;其第二极用于输入第四时钟信号ECB。第八十晶体管T80的控制极用于输入第四时钟信号ECB。第八十一晶体管T81的控制极耦接到用于输入低电平VL的电源端;其第二极耦接到第八十三晶体管T83的第一极。第八十三晶体管T83的控制极用于输入第三时钟信号ECK;其第二极用于输入第二启动信号ESTV。
第七十一电容C71的耦接到第七十三晶体管T73的控制极和第二极之间。第七十二电容C72耦接在第七十九晶体管T79的控制极和第一极之间。第七十三电容C73耦接在第七十四晶体管T74的控制极和第一极之间。
图6(c)与图6(a)中的电路结构具有对应和可替换的关系,可以通过相同或者相似的时序来控制(例如,都使用图6(b)中的时序)。此外,图6(c)与图6(a)中的主要区别在于:图6(a)中的电容C33的位置,电容C31的位置和连接关系与图6(c)中的相关设置不同。而在图6(c)中,增加了第七十八晶体管T78,第八十一晶体管T81以用于稳定N71节点电位。
图6(d)是另一个示例性的发光控制驱动电路的电路图。
如图6(d)所示,作为一个非限制性的示例,这样的移位寄存器单元可以主要包括:第九十一晶体管T91~第一百一十六晶体管T106、第九十一电容C91~第九十三电容C93。也就是16个晶体管3个电容(16T3C)的结构。
第九十一晶体管T91的控制极耦接到第一百零五晶体管T105的控制极,且用于输入第三时钟信号ECK;其第一极耦接到第一百零五晶体管T105的 第一极,且用于输入第二启动信号ESTV;其第二极耦接到第九十二晶体管T92的控制极、第九十八晶体管T98的控制极、第一百零二晶体管T102的第一极、第一百零三晶体管T103的第一极。第九十二晶体管T92的第一极用于输入第三时钟信号ECK;其第二极耦接到第九十三晶体管T93的第一极、第九十五晶体管T95的控制极、第一百零一晶体管T101的第一极。第九十三晶体管T93的控制极用于输入第三时钟信号ECK;其第二极耦接到用于输入低电平VL的电源端。第九十四晶体管T94的控制极耦接到第一百零四晶体管T104的控制极、第一极、和第一百零六晶体管T106的第一极;其第一极用于输入第四时钟信号ECB;其第二极耦接到第九十五晶体管T95的第一极。第九十五晶体管T95的第二极耦接到用于输入高电平VH的电源端。第九十六晶体管T96的控制极耦接到第一百零一晶体管T101的第二极;其第一极用于输入第四时钟信号ECB;其第二极耦接到第九十七晶体管T97的第一极。第九十七晶体管T97的控制极用于输入第四时钟信号ECB;其第二极耦接到第九十八晶体管T98的第一极、第九十九晶体管T99的控制极。第九十八晶体管T98的第二极耦接到用于输入高电平VH的电源端。第九十九晶体管T99的第一极耦接到用于输入高电平VH的电源端;其第二极耦接到第一百晶体管T100的第一极,且作为输出端(EO)用于输出发光控制信号EM。第一百晶体管T100的控制极耦接到第一百零二晶体管T102的第二极、第一百零四晶体管T104的第二极;其第二极耦接到用于输入低电平VL的电源端。第一百零一晶体管T101的控制极耦接到用于输入低电平VL的电源端。第一百零二晶体管T102的控制极耦接到第一百零六晶体管T106的控制极。第一百零三晶体管T103的控制极耦接到另外的输入控制信号VEL,以根据需要使得第一百零三晶体管T103进入导通或者截止状态;其第二极耦接到用于输入高电平VH的电源端。第一百零五晶体管T105的第二极耦接到第一百零六晶体管T106的第二极。
第九十一电容C71的耦接在第九十六晶体管T96的控制极和第二极之间。第九十二电容C72耦接在第九十九晶体管T99的控制极和第一极之间。第九十三电容C73耦接在第九十四晶体管T94的控制极和第二极之间。
图6(d)与图6(c)、图6(a)中的电路结构具有对应和可替换的关系,可以通过相同或者相似的时序来控制(例如,都使用图6(b)中的时序)。与6(a)和6(c)相比,在图6(d)中额外地设置了T105(与T91配对),T106 (与T102配对),T104等,都是为了相对于图6(c)的电路结构,进一步增加图6(c)中的N71节点的稳定。
与图6(c)中的T76和T83相对应的电路结构在图6(d)中保留,作用是给N1节点复位。在N71节点控制的晶体管需要关闭时,例如帧与帧之间的空白(BLANK)阶段、首帧显示前、出现异常等情况时(即不需要输出VL的低电位),则将VH的高电位输入到N71节点。
上述图4(a)、图5(a)、图6(a)/图6(c)/图6(d)中所示出的电路可以相互配合工作。然而,应当理解,其中的任意一个或者多个电路都可以被其它的结构的具有相同功能的电路替换。
图7(a)是另一个示例性的像素单元的电路图。图7(b)是示例性的图7(a)中的像素单元的时序图。
图7(a)所示的像素单元可以包括第四十一晶体管T41~第四十七晶体管T47、第四十一电容C41。此外,也以该像素单元位于第N行进行说明。
第四十一晶体管T41的控制极被用于输入复位信号Reset(N),第一极耦接到第一参考电源端VREFN,第二极耦接到第四十二晶体管T42的第一极、第四十三晶体管T43的控制极。第四十二晶体管T42的控制极被用于输入栅极驱动信号Gate,第二极耦接到第四十三晶体管T43的第二极、第四十六晶体管T46的第一极。第四十三晶体管T43的第一极耦接到第四十七晶体管T47的第二极、以及用于输入第一驱动电源ELVDD的电源端。第四十四晶体管T44的控制极被用于输入栅极驱动信号Gate,第一极被用于输入显示数据信号Vdata,第二极耦接到第四十五晶体管T45的第一极以及第四十七晶体管T47的第一极。第四十五晶体管T45的控制极被用于输入发光控制信号EM,第二极耦接到第二参考电源端VREFP(也可以被称为初始化电源端,并且可以是输入高电平)。第四十六晶体管T46的控制极被用于输入发光控制信号EM,第二极与OLED的第一极耦接。第四十七晶体管T47的控制极被用于输入复位信号Reset(N)。OLED的第二极(可以是阴极)与用于输入第二驱动电源ELVSS的电源端(可以输入低电平)耦接。第四十一电容C41的第一端耦接到第四十四晶体管T44的第二极,第二端与第四十一晶体管T41的第二极耦接。
图7(b)的工作时序可以和图4(b)完全相同,省略其描述。
以上,以所有晶体管都为P型(或者称为P沟道)晶体管,相对应的有 效信号为相对低的电平(例如,0V或者负电压)的信号为例进行说明。应当理解,部分或者全部晶体管也可以被替换为N型而不改变电路的整体功能,被替换的这一部分或者全部晶体管对应的有效信号将为相对高的电平(例如,具有预定幅值的正电压)的信号。
根据所应用的OLED面板的具体结构,图2所示的方法可以具有附加的步骤,或者图2中的各个步骤可以具有进一步的细节。
图8(a)是示出图2中所示的方法的子步骤的流程图。
如图8(a)所示,在本公开的实施例中,在第一时间段,驱动栅极驱动电路的方法包括:步骤S1011,对栅极驱动电路的电源端供电(例如,提供第三电源信号、第四电源信号);步骤S1012,对栅极驱动电路提供时钟信号;以及步骤S1013,对栅极驱动电路提供无效的第一启动信号。
在本公开的实施例中,像素电路包括驱动电源端以及参考电源端。在第二时间段,驱动像素电路的方法包括:步骤S1021,对驱动电源端供电(例如,提供第一电源信号、第二电源信号);以及步骤S1022,对参考电源端供电。
图8(b)是示出图2中所示的方法的附加步骤的流程图。
如图8(b)所示,在本公开的实施例中,在显示面板还包括用于向像素电路输出发光控制信号的发光控制驱动电路的情况下,用于驱动显示面板的方法还包括:步骤S104,在第一时间段,驱动发光控制驱动电路。
在本公开的实施例中,在第一时间段,驱动发光控制驱动电路的方法可以包括:步骤S1041,对发光控制驱动电路的电源端供电(例如,提供第三电源信号、第四电源信号);步骤S1042,对发光控制驱动电路提供时钟信号;以及步骤S1043,对发光控制驱动电路提供无效的第二启动信号。
图8(c)是示出图2中所示的方法的附加步骤的流程图。
在本公开的实施例中,用于驱动显示面板的方法,还包括:步骤S105,在第三时间段,使源极驱动电路向像素电路提供显示数据信号。在第一时间段以及第二时间段,第一启动信号以及第二启动信号保持无效。在第三时间段,第二启动信号在栅极驱动电路的第一启动信号变为有效之前保持无效。
图8(d)是对应于根据本公开的实施例的用于驱动显示面板的方法的一个示例性的时序图。
如图8(d)所示,第一时间段可以至少包括第一帧1st frame。在该第一 帧中,对栅极驱动电路的电源端开始供电,提供了两路供电电压VH和VL(例如,可以分别提供高电平,和低电平)。对于栅极驱动电路提供时钟信号GCLK,可以代表上述的第一时钟信号GCK以及第二时钟信号GCB。对栅极驱动电路提供无效的第一启动信号GSTV。
在本公开的实施例中,在第一时间段以及第二时间段,可以使第一启动信号保持无效。
如图8(d)所示,第二时间段可以至少包括第二帧2nd frame。在该第一帧和第二帧中,第一启动信号GSTV都可以保持无效。
具体而言,如图8(d)所示,从OLED面板开机直到显示可以大致分为以下阶段。
1.OLED面板经由接口(I/F)收到开始显示(Display on)的指令后,GOA供电VH和VL上电。除GOA输入信号(STV、CLK)(ESTV、GSTV可以统称为STV;ECLK、GCLK可以统称为CLK)根据具体GOA电路设计确定输出高电平或者低电平外,面板其他电源和信号均维持输出GND状态,防止在上电过程中像素电路可能形成的短路回路中出现电流;
2.进入上述上电方法中的第一时间段中的GOA初始化帧,栅极驱动电路、和/或发光控制驱动电路(以下,简称为GOA)的电源VH和VL上电,并使用一帧时间对驱动电路初始化;
①像素电路中除图4(a)、图7(a)所示的T3外,各个晶体管的栅极控制均需要由GOA来完成,故面板上电需要首先对GOA操作;
②GOA为多级级联架构,前级的输出为后级的输入,GOA上电后各级输出状态不确定(可能输出状态:VH、VL甚至是VH与VL之间的某一电压),造成像素电路中的晶体管可能处于不期望的开启状态,如不做额外操作就对像素电路相关电源(VREFN、ELVDD、ELVSS)上电,和/或提供显示数据信号(Source),不同电源间可能形成通路造成短路。更甚,如此时有电流流过OLED器件,会出现瞬间闪屏现象。故GOA上电之初需要将GOA各级状态确定下来;由于GOA各级为级联连接,完成确定各级输出状态的操作需要一帧画面的刷新周期。
在本公开的实施例中,在第一时间段,复用电路可以保持导通或者正常切换(即,Mux输出低电平或者正常输出交替变化的高低电平)。或者,在源极驱动电路输出接地信号时,复用电路也可以保持被导通。
在该GOA初始化帧中,此帧中由源极驱动电路向像素电路输出的信号可以是接地的信号GND,切换信号Mux输出低电平或正常输出均可。对应于P型晶体管作为开关,那么输出低电平的时候为导通,允许数据信号通过。正常输出(toggle)指正常显示时的输出,同4th Frame。Mux输出低电平或正常输出,使得源极驱动电路(Source Driver)输出的GND均可达到像素电路,实现面板中可尽可能多的线路与源极驱动电路相连部分泄放到GND的目的,此时ELVDD、ELVSS、VREFP、VREFN电压也均为GND,故像素电路内绝大部分均为GND,无法在像素电路内形成不可控的电流。此时,输出低电平时更优,可以使GND由源极驱动电路灌入面板,防止闪烁。第一启动信号GSTV和第二启动信号ESTV输出高电平(无效),栅极驱动电路的时钟信号GCLK和发光控制驱动电路的时钟信号ECLK(可以代表上述第三时钟信号ECK,第四时钟信号ECB)与正常显示时输入栅极驱动电路(Gate GOA)和发光控制驱动电路(EM GOA)的时钟信号相同。此帧完成后,例如图4(a)中的像素电路的TFT除第十三晶体管T13外,所有TFT的栅极状态均为高电平状态(无效),TFT进入截止状态。
3.进入上述上电方法中的第二时间段中的像素电源上电帧,发光控制驱动信号的第二启动信号ESTV和时钟信号ECLK维持GOA初始化帧中的状态。栅极驱动信号的第一启动信号GSTV和时钟信号GCLK维持GOA初始化帧中的状态。此帧中,由于像素电路没有处于写入数据的状态,此帧数据信号Source的电压和切换信号Mux的状态可以不做规定。如有电源上电速度过慢(上电时间晚或上升时间长),该帧可由一帧变为多帧,以等待上电完成。
此时像素电路各个晶体管(例如,TFT)栅极状态确定,像素电路相关电源可以上电。像素电源ELVDD、ELVSS、VREFN上电(有些像素电路还有像素电源VREFP等一并上电)。用于提供显示数据的源极驱动器(以Source表示其输出)也可以开始工作,但并不一定向像素电路提供用于正常显示的数据信号。
4.进入开始显示帧,面板由此帧开始显示。栅极驱动信号的第一启动信号GSTV和时钟信号GCLK、发光控制驱动信号的时钟信号ECLK、切换信号Mux和数据信号Source可以正常输出。
此外,像素电路在上一帧中还未写入数据信号,因此,在此帧开始时像 素电路的发光控制EM不能拉低(有效),否则可能出现闪烁。故发光控制驱动信号的第二启动信号ESTV在此帧开始时,需要保持高电平(无效),直至第二启动信号ESTV在正常显示时一显示帧内被拉低的位置再将第二启动信号ESTV拉低。即正常显示时,第二启动信号ESTV在一帧内有两段时间为低电平,而在此帧第二启动信号ESTV第一段低电平需要拉高,第二段时间内拉低。
5.上电完成之后,面板正常显示。
此外,由于第一启动信号GSTV低电平宽度很窄,如果栅极驱动电路的第一启动信号GSTV和时钟信号GCLK正常工作,则在一个显示帧的显示画面结束时,面板内所有行的栅极驱动信号Gate均为高电平(同第一启动信号GSTV始终拉高、时钟信号GCLK正常工作方式下一帧画面结束时面板内所有行栅极驱动信号Gate的状态)。故在GOA初始化帧中第一启动信号GSTV的工作状态也可以与正常显示时的状态相同,即与第4帧(4th frame)等相同。
图9是对应于根据本公开的实施例的用于驱动显示面板的方法的另一个示例性的时序图。
在本公开的实施例中,在第一时间段,第一启动信号以及第二启动信号保持无效。在第二时间段,第二启动信号保持无效。
在本公开的实施例中,在第二时间段,对像素电路提供对应于显示黑色的显示数据信号。
如图9所示,OLED面板开机以及GOA初始化帧都可以与图8(d)所示相同。
在像素电源上电帧(2nd frame)中,与图8所示不同之处主要在于,栅极驱动电路的第一启动信号GSTV可以与正常显示时状态相同,具有被拉低(有效)的阶段。也就是说,可以使得显示数据信号被写入到像素电路。
相对应地,考虑到上电过程中像素电路各供电电压情况,被写入的显示数据信号可以被配置为可使得第十三晶体管T13关闭的电压(例如,对应于显示黑色)。同样可以防止画面闪烁、电路短路等。
如有电源上电速度过慢(上电时间晚或上升时间长),该帧可由一帧变为多帧,以等待上电完成。
此外,在进入显示帧开始,即第三帧(3rd frame),与图8(d)不同的 是,由于像素电路在上一帧已写入显示数据(例如黑色),在此帧开始时像素电路的写入控制信号EM就可以正常地被拉低(有效),即写入控制驱动电路的第二启动信号ESTV也可以正常工作。
此外,与图8(d)相同地,在GOA初始化帧中第一启动信号GSTV的工作状态也可以与正常显示时的状态相同,即与第4帧(4th frame)等相同。
此外,由于像素电源上电帧(2nd Frame)中,栅极驱动电路的第一启动信号GSTV存在拉低的情况,显示数据信号Source的电压会被写入,并且强制要求写入黑数据。因此,栅极驱动电路的时钟信号GCLK在此帧即可正常工作(同第4帧(4th frame)),但是也可以不工作(例如,根据不同的栅极驱动电路组成,保持高电平或低电平)。
图10是对应于根据本公开的实施例的用于驱动显示面板的方法的一个示例性的测试信号波形图。
具体而言,图10可以对应于图9所示的上电时序。在图10中的SPIMOSI对应于I/F。TE的下降沿表示新一帧的开始,上升沿表示上一帧的结束。在图10中的SWIRE是用于向像素电路的提供第一驱动电源ELVDD,第二驱动电源ELVSS的信号,一旦SWIRE拉高后,第一驱动电源ELVDD,第二驱动电源ELVSS立即开始供电。
在图10中可以看出,显示数据信号SRC(即,source)在第一帧(1st frame)中可能会耦合到干扰信号,产生电压波动(毛刺),此时如果直接开始显示过程,可能使得画面出现闪烁等现象。根据本公开的实施例,在第一帧(1st frame)中,不进行显示,而是对于栅极驱动电路等进行初始化,可以有效避免这样的现象产生。
在初始化以及上电等过程都完成后,例如,图10中的第四帧(4th frame),开始正常的显示过程,ESTV等启动信号可以正常输出。
此外,考虑到实际应用环境和需求,在本公开中所述的“不对像素电路供电”也可以指不对像素电路完全供电的情况,即,可以部分供电。例如,在图10中,由于测试对象中的芯片等的实际应用情况,可以使得第一参考电源端VREFN在第一帧1st frame中已经处于上电的状态。在避免由于显示面板内部电路状态不稳定而导致的显示画面闪烁,或者电路短路等方面,这种部分供电的设置同样可以起到一定的作用。当然,第一帧1st frame中完全不对像素电路供电的情况将是更优选的实施方式。
图11是示出了另一个示例性的OLED显示面板的结构的框图。
图11中的结构可以用于LTPO(Low Temperature Polycrystalline Oxide,低温多晶氧化物)AMOLED面板。相较图3所示的LTPS AMOLED面板而言,多出一个附加栅极驱动电路(NGate GOA)。该栅极驱动电路(NGate GOA)用于向像素电路提供所需要的附加的栅极驱动信号NGATE、复位信号NRST。
图12(a)是示例性的图11中的像素单元的电路图。图12(b)是示例性的图12(a)中的像素单元的时序图。
LTPO像素电路如图12(a),相较图4,第十一晶体管T11和第十二晶体管T12被替换为N沟道晶体管(例如,铟镓锌氧化物薄膜晶体管,indium gallium zinc oxide thin film transistor,IGZO TFT),并且这两个TFT单独使用附加栅极驱动电路(NGate GOA)驱动。
具体而言,图12(b)中,在时间段T1,进一步提供了所需要的附加复位信号NReset。在时间段T2,进一步提供了所需要的附加的栅极驱动信号NGate。即,除了第十一晶体管T11和第十二晶体管T12的驱动信号极性变化以外,其余信号与图4(b)中的信号时序相同。
图13(a)是示例性的图11中的附加栅极驱动电路的电路图。图13(b)是示例性的图13(a)中的附加栅极驱动电路的时序图。
如图13(a)所示,作为一个非限制性的示例,这样的附加栅极驱动电路的移位寄存器单元可以包括:第五十一晶体管T51~第六十三晶体管T63、第五十一电容C51~第五十三电容C53。第五十一晶体管T51的控制极被用于输入第五时钟信号GCK’,第一极与第六十三晶体管T63的第二极耦接,第二极与第五十二晶体管T52的控制极、第六十二晶体管T62的第一极耦接。第五十二晶体管T52的第一极被用于输入第五时钟信号GCK’,第二极与第五十三晶体管T53的第二极、第五十五晶体管T55的控制极、第六十一晶体管T61的第一极耦接。第五十三晶体管T53的控制极被用于输入第五时钟信号GCK’,第一极耦接到用于输入低电平VL的电源端。第五十四晶体管T54的控制极与第五十八晶体管T58的控制极、第六十晶体管T60的控制极、第六十二晶体管T62的第二极耦接,第一极被用于输入第六时钟信号GCB’,第二极与第五十五晶体管T55的第二极耦接。第五十五晶体管T55的第一极耦接到用于输入高电平VH的电源端。第五十六晶体管T56的控制极耦接到第六十一晶体管T61的第二极,第一极被用于输入第六时钟信号GCB’,第 二极耦接到第五十七晶体管T57的第一极。第五十七晶体管T57的控制极被用于输入第六时钟信号GCB’,第二极耦接到第五十八晶体管T58的第一极、第五十九晶体管T59的控制极。第五十八晶体管T58的第二极被用于输入第六时钟信号GCB’。第五十九晶体管T59的第一极被用于输入第六时钟信号GCB’,第二极与第六十晶体管T60的第一极耦接,且被用于输出辅助栅极驱动信号NGox(x可以表示行数)。第六十晶体管T60的第二极耦接到用于输入低电平VL的电源端。第六十一晶体管T61的控制极耦接到用于输入低电平VL的电源端。第六十二晶体管T62的控制极耦接到用于输入低电平VL的电源端。第六十三晶体管T63的控制极被用于输入第六时钟信号GCB’,第一极耦接到上一行输出的辅助栅极驱动信号NGox-1(x可以表示行数)。
第五十一电容C51耦接在第五十六晶体管T56的控制极和第二极之间。第五十二电容C52耦接在第五十九晶体管T59的控制极和第一极之间。第五十三电容C53耦接在第五十四晶体管T54的控制极和第二极之间。
图13(b)的时序与图5(b)相比较,其区别在于图13(b)中的附加栅极驱动电路的启动信号NGSTV、附加栅极驱动信号NGO(包括第一行的NGO1,第二行的NGO2)均为高电平有效。此外,图13(b)中的第五时钟信号GCK’、第六时钟信号GCB’的电平相对应进行调整。
图14是对应于根据本公开的实施例的用于对图11中的OLED显示面板上电的方法的示例性的时序图。
如图14所示,除了像素电路中的第十一晶体管T11和第十二晶体管T12的驱动信号极性变化而需要提供附加栅极驱动电路的启动信号NGSTV、时钟信号NGCLK之外,与图9所示的时序没有其它区别。此外,附加栅极驱动电路的启动信号NGSTV、时钟信号NGCLK可以分别与栅极驱动电路的启动信号GSTV、时钟信号GCLK反向。也就是说,在各个时间段中,在栅极驱动电路的启动信号GSTV有效时,附加栅极驱动电路的启动信号NGSTV也为有效状态。
图15是示出了根据本公开的实施例的用于驱动显示面板的方法的另一个示例性的流程图。本公开的实施例中的显示面板也可以由该方法驱动。
图15所示的用于驱动显示面板的方法可以包括:步骤S201,在第四时间段,向栅极驱动电路和/或发光控制驱动电路提供无效的启动信号;步骤S202,在第五时间段,断开向像素电路提供的第一电源信号和第二电源信号; 步骤S203,在第六时间段内,断开向栅极驱动电路和/或发光控制驱动电路提供的第三电源信号和第四电源信号。
根据本公开的实施例,在显示面板下电的过程中,在不同的时间段中进行栅极驱动电路和/或发光控制驱动电路的驱动的停止、像素电路的供电的断开、栅极驱动电路和/或发光控制驱动电路的供电的断开等操作。通过这样的方式,可以防止像素电路中的晶体管状态不稳定时被断电,进而有效防止显示画面闪烁,或者电路短路等问题。
在本公开的实施例中,第一时间段与第二时间段不重叠。根据这样的方式,可以确保栅极驱动电路按照预定的用于显示的时序关闭像素电路中的对应电路元件(例如,晶体管)之后,再断开像素电路的供电。这可以更有效防止显示画面闪烁,或者电路短路等问题。
在本公开的实施例中,第一时间段包括至少一个显示帧的持续时间。由于像素电路的矩阵为逐行扫描,故可靠地关闭所有像素电路中的对应电路元件需要至少一帧时间。
在本公开的实施例中,在第四时间段,向发光控制驱动电路提供无效的启动信号。根据本公开的实施例,向发光控制驱动电路提供无效的启动信号后,发光控制驱动电路无法向像素电路输出有效的控制信号。像素电路中的与发光元件的发光过程相关的控制元件被关闭/截止。例如,该控制元件可以是用于接通/断开流经发光元件的电流的晶体管。根据本公开的实施例,在显示面板下电的过程中,无论栅极驱动电路是否工作,发光元件都将不会发光。
在本公开的实施例中,在第四时间段,向栅极驱动电路提供有效的启动信号;以及在第四时间段,对像素电路提供对应于显示黑色的显示数据信号。
根据本公开的实施例,可以向像素电路写入对应于显示黑色的显示数据信号,防止像素电路中仍然保存有之前写入的数据信号或者其它干扰。从而可以进一步防止闪烁等问题。这可以是较为优选的方案。
此外,在本公开的实施例中,也可以是,在第四时间段,向栅极驱动电路提供无效的启动信号。根据本公开的实施例,将使得无法向像素电路写入显示数据信号。因此,在显示面板下电过程中,也可以不关注显示数据信号的具体状态。
在本公开的实施例中,在第五时间段,向栅极驱动电路和发光控制驱动电路提供无效的启动信号。根据本公开的实施例,在第五时间段,可以继续 维持像素电路中相关控制用元件被关闭/截止的状态。
在本公开的实施例中,像素电路包括驱动电源端以及参考电源端。在第五时间段,驱动电源端以及参考电源端接地;以及,在第五时间段,源极驱动电路输出接地信号。根据本公开的实施例,在第五时间段,还可以使得像素电路的各个电源端、输入端(例如,与源极驱动电路连接的显示数据信号输入端)接地。这可以防止这些电源端、输入端上的由滤波电容、寄生电容等等存储的电压无法被释放,从而影响显示面板下电的速度。
在本公开的实施例中,在第六时间段,栅极驱动电路和/或发光控制驱动电路的电源端接地。根据本公开的实施例,一旦像素电路的下电完成,则可以尽快断开栅极驱动电路和/或发光控制驱动电路的电源信号,并可以将栅极驱动电路和/或发光控制驱动电路的电源端进一步接地,以完成整个显示面板的下电过程。
图16是对应于图15所示的根据本公开的实施例的用于驱动显示面板的方法的一个示例性的时序图。
作为示例,该时序也可以应用于图3所示的AMOLED面板,且该面板可以包含如图4(a),图5(a),图6(a)所示的各个电路结构。或者,该面板也可以包括图7(a)所示的电路结构。
如图16所示,从OLED面板正常显示直到关闭可以大致分为以下阶段。
在本公开的实施例中,在收到显示关闭(Display off)指令,可以使用一个显示帧的时间来关闭像素电路中的发光控制用的元件(例如,晶体管TFT)。这是因为,AMOLED显示面板显示亮度与诸多电压相关,各电压下电不是在瞬间完成,而是在ms级别时长完成。如贸然对各电源下电,显示面板显示内容在ms级别时长内的显示内容将会是不可控的。优选的做法为关闭像素电路内各个控制元件以及相关回路后,再做电源的下电操作。显示面板多使用级联的驱动电路架构(GOA),使用驱动电路关闭所有行的像素电路中的相关元件就需要一帧的时间。
具体而言,在第四时间段中,向发光控制驱动电路提供无效的启动信号。即,在该时间段,对应于例如图6(a)中所示出的发光控制驱动电路中的晶体管的类型,第二启动信号ESTV始终处于高电平(无效)的状态。在这样的情况下,发光控制驱动电路将无法向像素电路输出预定的如图6(b)所示的有效(例如,包含低电平、或者包含高低变换的电平)的发光控制信号。 EO1可以表示输出到第一行像素电路的发光控制信号。EO2可以表示输出到第二行像素电路的发光控制信号。
参见图4(a)和图4(b),在该像素电路的发光控制信号(由EM表示)是无效时(始终为高),则第十五晶体管T15、第十六晶体管T16始终关闭。在此期间,无论第十三晶体管T13的状态如何,电流都不能经由第十五晶体管T15、第十六晶体管T16而流过像素电路中的OLED,OLED将无法发光。
此时,栅极驱动电路提供无效(始终为高)或正常有效(例如,包含低电平、或者包含低高变换的电平)的第一启动信号GSTV均可以。
作为示例,在第四时间段,向栅极驱动电路提供有效的启动信号,以及对像素电路提供对应于显示黑色的显示数据信号。或者,也可以不在意显示数据信号的具体状态。
此外,由于像素电路的矩阵为逐行扫描,栅极驱动电路(Gate GOA)和发光控制驱动电路(EM GOA)分别为级联结构,因此,通过栅极驱动电路(Gate GOA)和发光控制驱动电路(EM GOA)来可靠地关闭所有像素电路中的对应电路元件需要至少一显示帧时间。
在像素电路中的相关控制元件已经被关闭的情况下,像素电路的相关电源(VREFN、ELVDD、ELVSS、Source)就可以下电了。为了维持控制元件的关闭状态,相关的控制信号还不能撤去(例如,对于晶体管的栅极施加的控制信号需要保持相关的电平)。
具体而言,在第五时间段中,对于像素电路相关电源下电。第四时间段结束时,所有像素电路中的对应电路元件(例如,上述的各个晶体管)已处于关闭/截止状态。此状态在第五时间段继续保持,故第二启动信号ESTV、第一启动信号GSTV仍然保持无效(始终为高)。
参见图5(a)的栅极驱动电路(Gate GOA)的单元,如果第一启动信号GSTV始终为高,则栅极驱动电路将无法向像素电路输出预定的如图5(b)所示的有效(例如,包含低电平、或者包含高低变换的电平)的栅极驱动信号。GO1可以表示输出到第一行像素电路的栅极驱动信号。GO2可以表示输出到第二行像素电路的栅极驱动信号。
参见图4(a)的像素电路,由于此阶段栅极驱动信号Gate维持为高,则数据信号Data无法写入到像素电路中的存储元件(例如,第十一电容C11)中。在无法写入数据信号时,如图3所示的切换信号MUX(例如,MUX1, MUX2)的状态、以及数据信号Data自身的状态都可以不做限制,这可以进一步简化下电的控制逻辑。
在第五时间段,在所有像素电路中的对应电路元件(例如,上述的各个晶体管)已处于关闭/截止状态之后,就可以使得像素电路的各个电源端(例如,用于VREFN、ELVDD、ELVSS)、输入端(例如,用于Source)断电。尤其是,可以使得它们接地至GND,以防止这些电源端、输入端上的由滤波电容、寄生电容等等存储的电压无法被释放,从而影响显示面板下电的速度。在它们放电至GND后,第五时间段结束。
像素电路相关的电源已在控制元件被关闭/截止状态下被断开,此时即便控制元件再次处于开启/导通状态,也不会再有电流流经控制元件和点亮OLED器件。此时驱动电路的各个电源可以被断开。至此,面板的整个下电过程完成。
具体而言,在第六时间段,像素电路下电已经完成,于是可以开始对于驱动电路(例如,栅极驱动电路、发光控制驱动电路)的断电。此阶段各驱动电路停止输出脉冲形式的驱动信号。在脉冲输出停止后,就可以尽快断开驱动电路的供电,至此下电过程全部完成。尤其是,也可以将驱动电路的电源端接地。
应当理解,下电过程中,上述“有效”、“无效”信号的具体电平仍然是根据具体的电路结构而决定。例如,在使用不同类型的晶体管组成像素电路、驱动电路等的时候,高电平也可以成为有效的电平。
图17是对应于图15所示的根据本公开的实施例的用于驱动显示面板的方法的一个示例性的测试信号波形图。
具体而言,图17可以对应于图16所示的下电时序。在图17中的MIPI与图16中的MIPI对应,该信号属于接口信号I/F的一种,可以单独或者与其它信号一起指示下电过程的开始。TE/VS的下降沿表示新一帧的开始,上升沿表示上一帧的结束。在图17中的SWIRE是用于向像素电路的提供第一驱动电源ELVDD,第二驱动电源ELVSS的信号,一旦SWIRE拉高后,第一驱动电源ELVDD,第二驱动电源ELVSS立即开始供电。一旦SWIRE为低,则第一驱动电源ELVDD,第二驱动电源ELVSS的供电被断开。
上述的第四时间段在图17中由TFT off表示,上述的第五时间段在图17中由Pixel PWR off表示,上述的第六时间段在图17中由GOA PWR off 表示。
图18是对应于根据本公开的实施例的用于对图11中的OLED显示面板下电的方法的示例性的时序图。
如图18所示,除了像素电路中的第十一晶体管T11和第十二晶体管T12的驱动信号极性变化而需要提供附加栅极驱动电路的启动信号NGSTV、时钟信号NGCLK之外,与图16所示的时序没有其它区别。在各个时间段中,在栅极驱动电路的启动信号GSTV有效时,附加栅极驱动电路的启动信号NGSTV也为有效状态。
根据本公开的实施例,对OLED显示面板提供了改进的上电时序,可以在上电过程中避免由于显示面板内部电路状态不稳定而导致的显示画面闪烁,或者电路短路等问题。尤其是可在短时间(例如,两帧)完成面板上电的情况下,避免上电瞬间出现开机闪屏和内部电路短路等问题。
此外,根据本公开的实施例,还对OLED显示面板提供了改进的下电时序,可以在下电过程中避免由于显示面板内部电路状态不稳定而导致的显示画面闪烁,或者电路短路等问题。尤其是可在短时间(例如,可短至两帧)完成面板下电的情况下,避免下电瞬间出现开机闪屏和内部电路短路等问题。
应当理解,以上仅为本公开的示例性的具体实施方式,本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (26)

  1. 一种用于驱动显示面板的装置,其中,所述显示面板包括像素电路、栅极驱动电路、以及源极驱动电路,所述装置被配置为:
    在第一时间段,向所述栅极驱动电路和/或发光控制驱动电路提供无效的启动信号;
    在第二时间段,对所述像素电路提供第一电源信号和第二电源信号;以及
    在第三时间段内,向所述栅极驱动电路和/或发光控制驱动电路提供有效的启动信号。
  2. 根据权利要求1所述的用于驱动显示面板的装置,其中,在所述第一时间段,将所述像素电路的电源端接地。
  3. 根据权利要求1至2中任一项所述的用于驱动显示面板的装置,其中,在所述第一时间段,使所述源极驱动电路输出接地信号。
  4. 根据权利要求1至3中任一项所述的用于驱动显示面板的装置,其中,所述装置进一步被配置为:在所述第一时间段,
    对所述栅极驱动电路的电源端提供第三电源信号、第四电源信号;
    对所述栅极驱动电路提供时钟信号;以及
    对所述栅极驱动电路提供无效的第一启动信号。
  5. 根据权利要求4所述的用于驱动显示面板的方法,其中,在所述第一时间段以及所述第二时间段,使所述第一启动信号保持无效。
  6. 根据权利要求1至5中任一项所述的用于驱动显示面板的装置,还被配置为:
    在第三时间段,使所述源极驱动电路向所述像素电路提供显示数据信号。
  7. 根据权利要求1至5中任一项所述的用于驱动显示面板的装置,其中,所述显示面板还包括用于向所述像素电路输出发光控制信号的所述发光控制驱动电路;
    所述装置还被配置为:在第一时间段,驱动所述发光控制驱动电路。
  8. 根据权利要求7所述的用于驱动显示面板的装置,其中,所述装置进一步被配置为:在第一时间段,
    对所述发光控制驱动电路的电源端提供第三电源信号、第四电源信号;
    对所述发光控制驱动电路提供时钟信号;以及
    对所述发光控制驱动电路提供无效的第二启动信号。
  9. 根据权利要求8所述的用于驱动显示面板的装置,还被配置为:
    在第三时间段,使所述源极驱动电路向所述像素电路提供显示数据信号;
    其中,在所述第一时间段以及所述第二时间段,对所述栅极驱动电路提供的第一启动信号以及对所述发光控制驱动电路提供的所述第二启动信号保持无效;以及
    其中,在所述第三时间段,所述第二启动信号在所述栅极驱动电路的第一启动信号变成有效之前保持无效。
  10. 根据权利要求8所述的用于驱动显示面板的装置,其中,在所述第一时间段,对所述栅极驱动电路提供的第一启动信号以及对所述发光控制驱动电路提供的所述第二启动信号保持无效;以及其中,在所述第二时间段,所述第二启动信号保持无效。
  11. 根据权利要求10所述的用于驱动显示面板的装置,其中,在所述第二时间段,对所述像素电路提供对应于显示黑色的显示数据信号。
  12. 根据权利要求1至11中任一项所述的用于驱动显示面板的装置,其中,所述像素电路包括驱动电源端以及参考电源端;以及
    其中,所述装置进一步被配置为在所述第二时间段,
    对所述驱动电源端提供所述第一电源信号、所述第二电源信号;以及
    对所述参考电源端供电。
  13. 根据权利要求1至12中任一项所述的用于驱动显示面板的装置,其中,所述第一时间段包括至少一个显示帧的持续时间,所述第二时间段包括至少一个显示帧的持续时间。
  14. 根据权利要求1至13中任一项所述的用于驱动显示面板的装置,其中,所述第一时间段与所述第二时间段不重叠。
  15. 根据权利要求1至14中任一项所述的用于驱动显示面板的装置,其中,所述显示面板还包括被设置在所述源极驱动电路和所述像素电路之间的复用电路;
    其中,在使所述源极驱动电路输出接地信号的情况下,所述复用电路被导通。
  16. 一种用于驱动显示面板的装置,其中所述显示面板包括像素电路、栅极驱动电路、以及源极驱动电路,其中,所述装置被配置为:
    在第四时间段,向所述栅极驱动电路和/或所述发光控制驱动电路提供无效的启动信号;
    在第五时间段,断开向所述像素电路提供的所述第一电源信号和所述第二电源信号;
    在第六时间段内,断开向所述栅极驱动电路和/或所述发光控制驱动电路提供的第三电源信号和第四电源信号。
  17. 根据权利要求16所述的用于驱动显示面板的装置,其中,在所述第四时间段,向所述发光控制驱动电路提供无效的启动信号。
  18. 根据权利要求17所述的用于驱动显示面板的装置,其中,在所述第四时间段,向所述栅极驱动电路提供有效的启动信号;以及其中,在所述第四时间段,对所述像素电路提供对应于显示黑色的显示数据信号。
  19. 根据权利要求17所述的用于驱动显示面板的装置,其中,在所述第四时间段,向所述栅极驱动电路提供无效的启动信号。
  20. 根据权利要求16所述的用于驱动显示面板的装置,其中,在所述第五时间段,向所述栅极驱动电路和所述发光控制驱动电路提供无效的启动信号。
  21. 根据权利要求20所述的用于驱动显示面板的装置,其中,所述像素电路包括驱动电源端以及参考电源端;其中,在所述第五时间段,所述驱动电源端以及所述参考电源端接地;其中,在所述第五时间段,所述源极驱动电路输出接地信号。
  22. 根据权利要求16所述的用于驱动显示面板的装置,其中,在第六时间段,所述栅极驱动电路和/或所述发光控制驱动电路的电源端接地。
  23. 一种用于驱动显示面板的装置,其中,所述显示面板包括像素电路、栅极驱动电路、以及源极驱动电路,其中,所述装置被配置为:
    在第一时间段,向所述栅极驱动电路和/或发光控制驱动电路提供无效的启动信号;
    在第二时间段,对所述像素电路提供第一电源信号和第二电源信号;
    在第三时间段内,向所述栅极驱动电路和/或发光控制驱动电路提供有效的启动信号;
    在第四时间段,向所述栅极驱动电路和/或所述发光控制驱动电路提供无效的启动信号;
    在第五时间段,断开向所述像素电路提供的所述第一电源信号和所述第二电源信号;以及
    在第六时间段内,断开向所述栅极驱动电路和/或所述发光控制驱动电路提供的第三电源信号和第四电源信号。
  24. 根据权利要求1-23中任一项所述的用于驱动显示面板的装置,其中,所述用于驱动显示面板的装置与所述显示面板集成。
  25. 一种使用根据权利要求1-24中任一项所述的用于驱动显示面板的装置来驱动显示面板的方法。
  26. 一种显示面板,包括:像素电路、栅极驱动电路、源极驱动电路,以及根据权利要求1-24中任一项所述的用于驱动显示面板的装置。
PCT/CN2022/083384 2021-06-30 2022-03-28 用于驱动显示面板的装置和方法 WO2023273444A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/790,011 US20240185796A1 (en) 2021-06-30 2022-03-28 Apparatus and method for driving display panel
CN202280000570.3A CN116034416A (zh) 2021-06-30 2022-03-28 用于驱动显示面板的装置和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/103599 WO2023272589A1 (zh) 2021-06-30 2021-06-30 用于驱动显示面板的方法
CNPCT/CN2021/103599 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273444A1 true WO2023273444A1 (zh) 2023-01-05

Family

ID=84689827

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/103599 WO2023272589A1 (zh) 2021-06-30 2021-06-30 用于驱动显示面板的方法
PCT/CN2022/083384 WO2023273444A1 (zh) 2021-06-30 2022-03-28 用于驱动显示面板的装置和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103599 WO2023272589A1 (zh) 2021-06-30 2021-06-30 用于驱动显示面板的方法

Country Status (3)

Country Link
US (1) US20240185796A1 (zh)
CN (1) CN116034416A (zh)
WO (2) WO2023272589A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084559A (ja) * 2003-09-11 2005-03-31 Matsushita Electric Ind Co Ltd パワーオンリセット回路
US20070001980A1 (en) * 2005-06-30 2007-01-04 Samsung Electronics Co., Ltd. Timing controllers for display devices, display devices and methods of controlling the same
CN103943064A (zh) * 2014-03-11 2014-07-23 京东方科技集团股份有限公司 关机控制方法及电路、驱动电路和amoled显示装置
CN105702207A (zh) * 2016-04-15 2016-06-22 京东方科技集团股份有限公司 防止关机时显示面板的画面残影的驱动方法及显示装置
CN106652903A (zh) * 2017-03-03 2017-05-10 京东方科技集团股份有限公司 一种oled像素电路及其驱动方法、显示装置
CN110264971A (zh) * 2019-06-26 2019-09-20 京东方科技集团股份有限公司 防闪屏电路及方法、驱动电路、显示装置
CN213583064U (zh) * 2020-11-17 2021-06-29 昆山龙腾光电股份有限公司 调控电路及液晶显示装置
CN113936602A (zh) * 2021-10-25 2022-01-14 京东方科技集团股份有限公司 用于驱动显示面板的方法及相关显示面板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI251200B (en) * 2004-07-16 2006-03-11 Au Optronics Corp A liquid crystal display with an image flicker elimination function applied when power-on and an operation method of the same
CN100362560C (zh) * 2005-10-10 2008-01-16 深圳创维-Rgb电子有限公司 液晶电视开机时序控制方法
CN101409059B (zh) * 2008-11-24 2011-01-05 三一重工股份有限公司 实现花屏抑制的方法和系统
CN104505024B (zh) * 2015-01-05 2017-09-08 上海天马有机发光显示技术有限公司 一种显示驱动方法、显示面板和显示装置
CN109493781B (zh) * 2018-12-04 2020-11-06 惠科股份有限公司 驱动装置以及显示设备
CN111312183B (zh) * 2019-11-13 2021-09-03 Tcl华星光电技术有限公司 显示装置及其驱动方法
CN112992092B (zh) * 2021-02-19 2022-10-14 昆山龙腾光电股份有限公司 一种驱动电路和驱动电路的控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084559A (ja) * 2003-09-11 2005-03-31 Matsushita Electric Ind Co Ltd パワーオンリセット回路
US20070001980A1 (en) * 2005-06-30 2007-01-04 Samsung Electronics Co., Ltd. Timing controllers for display devices, display devices and methods of controlling the same
CN103943064A (zh) * 2014-03-11 2014-07-23 京东方科技集团股份有限公司 关机控制方法及电路、驱动电路和amoled显示装置
CN105702207A (zh) * 2016-04-15 2016-06-22 京东方科技集团股份有限公司 防止关机时显示面板的画面残影的驱动方法及显示装置
CN106652903A (zh) * 2017-03-03 2017-05-10 京东方科技集团股份有限公司 一种oled像素电路及其驱动方法、显示装置
CN110264971A (zh) * 2019-06-26 2019-09-20 京东方科技集团股份有限公司 防闪屏电路及方法、驱动电路、显示装置
CN213583064U (zh) * 2020-11-17 2021-06-29 昆山龙腾光电股份有限公司 调控电路及液晶显示装置
CN113936602A (zh) * 2021-10-25 2022-01-14 京东方科技集团股份有限公司 用于驱动显示面板的方法及相关显示面板

Also Published As

Publication number Publication date
US20240185796A1 (en) 2024-06-06
WO2023272589A1 (zh) 2023-01-05
CN116034416A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US10692441B2 (en) Drive circuit and drive method for foldable display panel and display device
US10347351B2 (en) Display device and method of driving the same
US7873140B2 (en) Shift register
US9105234B2 (en) Array substrate row driving unit, array substrate row driving circuit and display device
US8041000B2 (en) Shift register
US11581051B2 (en) Shift register and driving method thereof, gate drive circuit, and display device
US11443682B2 (en) Display device, gate drive circuit, shift register including two shift register units and control method thereof
US8130183B2 (en) Scan driver and scan signal driving method and organic light emitting display using the same
CN105632403B (zh) 一种像素电路、驱动方法、显示面板及显示装置
JP2008241832A (ja) 液晶装置、画素回路、アクティブマトリクス基板、および電子機器
WO2019015267A1 (zh) 移位寄存器单元及其驱动方法、栅极驱动电路
US10861392B2 (en) Display device drive method and display device
WO2016008232A1 (zh) 像素电路和显示装置
JP2019504335A (ja) Gip回路及びその駆動方法、並びにフラットパネルディスプレイ装置
KR20140086192A (ko) 쉬프트 레지스터와 이의 구동방법
WO2020173367A1 (zh) 驱动方法、驱动电路和显示装置
US11393402B2 (en) OR logic operation circuit and driving method, shift register unit, gate drive circuit, and display device
KR102015848B1 (ko) 액정표시장치
TWI752260B (zh) 顯示裝置以及顯示驅動方法
WO2023273444A1 (zh) 用于驱动显示面板的装置和方法
US11749225B2 (en) Scanning signal line drive circuit and display device provided with same
JP2008225494A (ja) 表示ドライバ及び電気光学装置
KR20160141346A (ko) 게이트 드라이버 및 이를 포함하는 액정표시장치
CN110875017B (zh) 显示装置以及显示驱动方法
JP2005107166A (ja) 画像表示システム及びその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17790011

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202327025497

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.04.2024)