WO2023273274A1 - 羰基硫水解催化剂及其制备方法 - Google Patents

羰基硫水解催化剂及其制备方法 Download PDF

Info

Publication number
WO2023273274A1
WO2023273274A1 PCT/CN2021/143494 CN2021143494W WO2023273274A1 WO 2023273274 A1 WO2023273274 A1 WO 2023273274A1 CN 2021143494 W CN2021143494 W CN 2021143494W WO 2023273274 A1 WO2023273274 A1 WO 2023273274A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonyl sulfide
hydrolysis catalyst
weight
sulfide hydrolysis
parts
Prior art date
Application number
PCT/CN2021/143494
Other languages
English (en)
French (fr)
Inventor
王键
张敏
孙曼丽
Original Assignee
中晶环境科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中晶环境科技股份有限公司 filed Critical 中晶环境科技股份有限公司
Publication of WO2023273274A1 publication Critical patent/WO2023273274A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/34Purifying combustible gases containing carbon monoxide by catalytic conversion of impurities to more readily removable materials

Definitions

  • the invention relates to a carbonyl sulfide hydrolysis catalyst, and also relates to a preparation method of the carbonyl sulfide hydrolysis catalyst.
  • Blast furnace gas is the most combustible gas produced by iron and steel enterprises. After residual pressure power generation, blast furnace gas is sent to blast furnace hot blast stoves, steel rolling heating furnaces, gas power generation and other user units for use as fuel. However, blast furnace gas still contains a lot of organic sulfur harmful impurities.
  • the main component of organic sulfur is carbonyl sulfide.
  • the physical and chemical properties of carbonyl sulfide are relatively stable, and its acidity, polarity, and chemical activity are low, so it is difficult to remove.
  • the common carbonyl sulfide removal methods are mainly divided into wet and dry desulfurization. Wet desulfurization mainly includes liquid-phase catalytic hydrolysis and organic amine solution absorption.
  • Dry desulfurization has disadvantages such as difficult waste liquid discharge and treatment, high energy consumption for solvent regeneration, and low desulfurization precision.
  • Dry desulfurization mainly includes adsorption method, catalytic hydrolysis method, and hydrogenation conversion method. Dry desulfurization has high desulfurization precision, no waste residue and liquid discharge, and simple process. Therefore, the dry removal of carbonyl sulfide has become the main research direction at present.
  • the hydrolysis method has developed rapidly in recent years due to its advantages such as mild reaction conditions, no consumption of raw material gas, few side reactions, and relatively low energy consumption.
  • CN101108339A discloses a method for preparing a medium-temperature carbonyl sulfide hydrolysis catalyst.
  • Pseudo-boehmite the precursor of the carrier alumina-based component, potassium carbonate, the precursor of the alkali metal oxide-based component of the activity promoter, and vanadium pentoxide, the precursor of the vanadium metal oxide-based component of the modifier, and
  • After mixing the pore-forming agent add the binder, extrude at room temperature, place at room temperature for 12-24 hours, then dry at 100-150°C for 2-4 hours, and finally bake at 500-700°C for 2 hours.
  • the finished catalyst is obtained;
  • the pore-forming agent is a mixture of three pore-forming agents of cellulose, polymer and inorganic substances, and the binder is water or nitric acid.
  • the hydrolysis catalyst is a medium-temperature catalyst, and the applicable temperature is 200-400°C.
  • CN106861665B discloses a preparation method of alumina carbonyl sulfide hydrolysis catalyst: provide soluble aluminum salt, polystyrene microspheres, mesoporous template agent P123, potassium oxalate, oxalic acid, ethylene glycol, methanol, absolute ethanol, fatty alcohol poly Oxyethylene ether, distilled water; prepare the solution of alumina precursor, prepare the solution of mesoporous template agent, prepare polystyrene microsphere macroporous template and prepare active component precursor potassium oxalate coordination solution; mix the alumina precursor The solution of the body and the solution of the mesoporous template agent to obtain a mixed solution; the polystyrene microsphere macroporous template is immersed in the mixed solution and the mixed solution is filled into the polystyrene microsphere macropore template to obtain a primary complex; the active component precursor potassium oxalate coordination solution is sprayed into the primary complex, and the active component precursor potassium o
  • the present invention provides a carbonyl sulfide hydrolysis catalyst prepared from raw materials comprising the following components:
  • ⁇ -Al 2 O 3 is prepared by the following method:
  • the weight ratio of the polyvinyl alcohol, carboxymethyl cellulose and ammonium bicarbonate is (3-6):2:(4-7).
  • the potassium oxide precursor is potassium carbonate
  • the titanium-containing substance is titanium dioxide
  • the concentration of the aluminate solution is 0.5-2 mol/L;
  • the aluminate solution is reacted with an acidic substance to form pseudo-boehmite; wherein the acidic substance is selected from a sulfuric acid solution or an acidic liquid formed by passing carbon dioxide into water.
  • the aging time is 2-8 hours
  • the drying time is 2-9 hours
  • the roasting time is 2-8 hours.
  • the binder is selected from one or more of kale powder, citric acid, nitric acid, acetic acid or water.
  • the aluminate in the aluminate solution is selected from one or more of sodium aluminate or potassium aluminate.
  • the present invention also provides a kind of preparation method of carbonyl sulfide hydrolysis catalyst, comprises the steps:
  • roast the dried green body heat up to 400-500°C at a heating rate of 3-10°C/min, and roast at a constant temperature for 1-5h; then heat up to 500°C at a heating rate of 5-13°C/min. ⁇ 650°C, constant temperature roasting for 1 ⁇ 5h; after cooling, a carbonyl sulfide hydrolysis catalyst is obtained.
  • the drying temperature is 80-120°C.
  • the step of preparing ⁇ -Al 2 O 3 is also included:
  • the ⁇ -Al 2 O 3 prepared by a specific method in the present invention has abundant pores; under the action of a certain ratio of polyvinyl alcohol, carboxymethyl cellulose and ammonium bicarbonate, the ⁇ -Al 2 O 3 can be further Macropores and mesopores are formed in the pore structure, and micropores are formed on the pore channels, which help the hydrolysis of carbonyl sulfide and the diffusion of H 2 S, reducing sulfur deposition; titanium dioxide and potassium carbonate can further improve the pore structure and help Hydrolysis of carbonyl sulfide and diffusion of H2S .
  • the carbonyl sulfide hydrolysis catalyst of the present invention is a low-temperature carbonyl sulfide hydrolysis catalyst, and the temperature used is 30-100°C; preferably 50-100°C; preferably 60-90°C.
  • the carbonyl sulfide hydrolysis catalyst of the present invention is prepared from raw materials comprising the following components: ⁇ -Al 2 O 3 , titanium-containing substance, potassium oxide precursor, polyvinyl alcohol, carboxymethyl cellulose, ammonium bicarbonate and binder .
  • the raw material consists of ⁇ -Al 2 O 3 , titanium dioxide, potassium carbonate, polyvinyl alcohol, carboxymethyl cellulose, ammonium bicarbonate and a binder.
  • the preparation method of ⁇ -Al 2 O 3 of the present invention comprises the following steps: (a) gel forming step; (b) aging step; (c) washing and drying step; (d) roasting step.
  • the aluminate solution is gelled under the conditions of a temperature of 50-75° C. and a pH of 9.5-12 to form pseudo-boehmite.
  • an aluminate solution is reacted with an acidic species to form pseudo-boehmite.
  • the acidic substance is selected from sulfuric acid solution or acidic liquid formed by passing carbon dioxide into water.
  • the concentration of H + in the sulfuric acid solution is 0.3-1 mol/L; preferably 0.3-0.8 mol/L; more preferably 0.4-0.7 mol/L.
  • the prepared pseudo-boehmite has high purity and can obtain a precursor with a well-developed pore structure, which helps to increase the hydrolysis rate of carbonyl sulfide and reduce sulfur deposition.
  • the aluminate in the aluminate solution may be selected from one or more of sodium aluminate or potassium aluminate.
  • the aluminate in the aluminate solution is sodium aluminate.
  • the concentration of the aluminate solution is 0.5-2 mol/L; preferably 0.8-1.5 mol/L; more preferably 1.1-1.3 mol/L.
  • the gel forming temperature is 50-75°C; preferably 55-70°C; more preferably 55-65°C.
  • the gelling pH is 9.5-12; preferably 9.5-11; more preferably 9.8-10.5.
  • the prepared pseudo-boehmite has high purity and can obtain a precursor with a well-developed pore structure, which helps to increase the hydrolysis rate of carbonyl sulfide and reduce sulfur deposition.
  • step (b) the pseudo-boehmite is aged at 80-105° C. and the pH is 10-12.5 to obtain crystals.
  • the loose flocculent gel formed during the gelation process can be further crystallized to produce crystal grains and increase the crystallinity, which is conducive to the formation of ⁇ -Al 2 O 3 with well-developed pore structure, and helps to increase the hydrolysis rate of carbonyl sulfide. Reduce sulfur deposition.
  • the aging temperature is 80-105°C; preferably 85-100°C; more preferably 85-95°C.
  • the aging pH is 10-12.5; preferably 10-11.5; more preferably 10-10.5. This contributes to the formation of ⁇ -Al 2 O 3 with well-developed pore structure.
  • step (c) the crystals are washed and then dried at 80-120° C. to obtain a precursor.
  • the crystals can be washed with dilute nitric acid. Drying can be performed in an oven.
  • the drying temperature may be 80-120°C; preferably 90-110°C; more preferably 100-110°C.
  • the drying time may be 2-9 hours; preferably 2-6 hours; more preferably 3-5 hours. This helps to maintain the pore structure.
  • step (d) the precursor is calcined at 350-650° C. to obtain ⁇ -Al 2 O 3 .
  • the firing temperature is 350-650°C; preferably 400-600°C; more preferably 520-600°C.
  • the firing time may be 2-8 hours; preferably 3-6 hours; more preferably 3-5 hours. This helps to obtain ⁇ -Al 2 O 3 with well-developed pore structure.
  • the amount of ⁇ -Al 2 O 3 can be 60-85 parts by weight; preferably 65-80 parts by weight; more preferably 68-70 parts by weight. This helps to obtain a hydrolysis catalyst with high hydrolysis rate of carbonyl sulfide and rapid diffusion of H 2 S.
  • the amount of the titanium-containing substance can be 1-5 parts by weight; preferably 1-4 parts by weight; more preferably 1-3 parts by weight.
  • the amount of the potassium oxide precursor can be 3-20 parts by weight; preferably 5-15 parts by weight; more preferably 10-12 parts by weight.
  • the titanium-containing substance may be a titanium-containing compound or a titanium-containing salt.
  • the titanium-containing compound is preferably titanium dioxide.
  • the potassium oxide precursor may be potassium carbonate.
  • the amount of polyvinyl alcohol can be 1-10 parts by weight; preferably 2-6 parts by weight; more preferably 4-5 parts by weight.
  • the amount of carboxymethyl cellulose is 0.3-5 parts by weight; preferably 1-4 parts by weight; more preferably 1-3 parts by weight.
  • the amount of ammonium bicarbonate can be 2-10 parts by weight; preferably 4-8 parts by weight; more preferably 4-6 parts by weight. This can improve the pore structure of the carbonyl sulfide hydrolysis catalyst, help to increase the hydrolysis rate of carbonyl sulfide, and reduce sulfur deposition.
  • the weight ratio of polyvinyl alcohol, carboxymethyl cellulose and ammonium bicarbonate can be (3 ⁇ 6):2:(4 ⁇ 7); preferably, polyvinyl alcohol, carboxymethyl cellulose and The weight ratio of ammonium bicarbonate is (3 ⁇ 5):2:(4 ⁇ 6); more preferably, the weight ratio of polyvinyl alcohol, carboxymethyl cellulose and ammonium bicarbonate is 4:2:5.
  • the ⁇ -Al 2 O 3 in the present invention can have a more suitable pore structure, which is beneficial to the rapid diffusion of hydrogen sulfide and reduces sulfur deposition.
  • the binding agent can be selected from one or more of scallop powder, citric acid, nitric acid, acetic acid or water.
  • the binder is selected from one or more of nitric acid, acetic acid or water. More preferably, the binder is acetic acid and water.
  • the amount of the binder can be 3-15 parts by weight; preferably 5-10 parts by weight; more preferably 6-7 parts by weight. Too much binder is not conducive to the formation of pore structure; too little binder is not conducive to the formation of carbonyl sulfide hydrolysis catalyst.
  • the preparation method of the carbonyl sulfide hydrolysis catalyst of the present invention comprises the following steps: (1) a molding step; (2) a drying step; and (3) a roasting step.
  • the raw materials including ⁇ -Al 2 O 3 , titanium-containing substance, potassium oxide precursor, polyvinyl alcohol, carboxymethyl cellulose, ammonium bicarbonate and binder are mixed and shaped to obtain a green body .
  • the feedstock consists of ⁇ -Al 2 O 3 , titanium-containing species, potassium oxide precursor, polyvinyl alcohol, carboxymethyl cellulose, ammonium bicarbonate, and a binder.
  • the composition and amount of raw materials are specifically as described above.
  • the forming method can be one of the ball forming method, the kneading extruding method, and the honeycomb forming method; preferably, one selected from the ball forming method or the extruding method.
  • step (2) the green body is dried by a hot air method to obtain a dried green body.
  • the drying temperature may be 80-120°C; preferably 90-110°C; more preferably 95-105°C.
  • step (3) the dried green body is roasted: at the first heating rate, the temperature is raised to the first roasting temperature, and at the first roasting temperature, the constant temperature roasting; then at the second heating rate, the temperature is raised to the second roasting temperature , and constant temperature roasting at the second roasting temperature; after cooling, a carbonyl sulfide hydrolysis catalyst is obtained.
  • the first heating rate is 3-10°C/min; preferably 4-8°C/min; more preferably 5-7°C/min.
  • the first calcination temperature is 400-500°C; preferably 400-480°C; more preferably 400-450°C. According to an embodiment of the present invention, the first calcination temperature is 400-430°C.
  • the constant temperature calcination time at the first calcination temperature may be 1-5 hours; preferably 1-4 hours; more preferably 1-3 hours.
  • the second heating rate is 5-13°C/min; preferably 6-10°C/min; more preferably 7-9°C/min.
  • the second calcination temperature is 500-650°C; preferably 500-600°C; more preferably 520-580°C.
  • the constant temperature calcination time at the second calcination temperature may be 1-5 hours; preferably 1-4 hours; more preferably 1-3 hours.
  • Such calcination steps and calcination conditions are conducive to the formation of pore structures in the carbonyl sulfide hydrolysis catalyst, improve the hydrolysis rate of the catalyst for carbonyl sulfide, and facilitate the rapid diffusion of hydrogen disulfide.
  • step (a) adopts the method as described below, all the other are the same as Preparation Example 1.
  • the concentration of sodium aluminate solution is calculated as alumina.
  • the raw materials shown in Table 2 were uniformly mixed and molded to obtain a green body.
  • the green body was dried at 100° C. by hot air method to obtain a dried green body.
  • the calcination temperature is constant temperature calcination at the second calcination temperature for 2 hours, and the carbonyl sulfide hydrolysis catalyst is obtained after cooling.
  • Example 1 Example 2 Comparative example 1 ⁇ -Al 2 O 3 (Preparation Example 1) 70 parts by weight — — ⁇ -Al 2 O 3 (Preparation Example 2) — — 72 parts by weight ⁇ -Al 2 O 3 (Preparation Example 3) — 70 parts by weight — Titanium dioxide 2 parts by weight 2 parts by weight 2 parts by weight cobalt nitrate — — 2 parts by weight potassium carbonate 10 parts by weight 10 parts by weight 10 parts by weight 10 parts by weight polyvinyl alcohol 3 parts by weight 4 parts by weight 3 parts by weight carboxymethyl cellulose 2 parts by weight 2 parts by weight 2 parts by weight ammonium bicarbonate 5 parts by weight 5 parts by weight 3 parts by weight nitric acid 3 parts by weight — 2 parts by weight Acetic acid — 3 parts by weight — water 5 parts by weight 4 parts by weight 4 parts by weight Forming method kneading extrusion method ball rolling kneading extrusion method Body shape columnar spherical columnar first
  • the carbonyl sulfide hydrolysis catalyst was prepared according to the method of Embodiment 3 of CN101108339A.
  • the performance of the carbonyl sulfide hydrolysis catalyst was tested by the following method: the carbonyl sulfide hydrolysis catalyst was filled into a fixed bed reactor, the inlet flue gas carbonyl sulfide concentration was 200ppm, the water content was 0.1wt%, and the space velocity was 3000h -1 and the temperature was 80 Under the condition of °C, the performance of carbonyl sulfide hydrolysis catalyst was tested. The obtained results are shown in Table 3.
  • COS carbonyl sulfide
  • Hydrogen sulfide (H 2 S) generation rate refers to the ratio of H 2 S generated by actual hydrolysis to the theoretical amount of H 2 S generated by complete hydrolysis of COS.
  • the calculation formula is as follows:
  • the generation rate of hydrogen sulfide of the present invention can reach more than 99% within 5 hours, which shows that while carbonyl sulfide of the present invention is hydrolyzed to generate hydrogen sulfide, hydrogen sulfide is rapidly desorbed from the inner surface of the catalyst and diffused into the gas phase In the main body, the sulfur deposition is reduced, and the chance of carbonyl sulfide hydrolysis catalyst poisoning is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种羰基硫水解催化剂及其制备方法。该羰基硫水解催化剂由包括如下组分的原料制备得到:γ-Al 2O 3 60~85重量份;含钛物1~5重量份;氧化钾前驱体3~20重量份;聚乙烯醇1~10重量份;羧甲基纤维素0.3~5重量份;碳酸氢铵2~10重量份;粘结剂3~15重量份。该羰基硫水解催化剂低温下羰基硫水解率高,且能够减少硫沉积现象的发生。

Description

羰基硫水解催化剂及其制备方法 技术领域
本发明涉及一种羰基硫水解催化剂,还涉及一种羰基硫水解催化剂的制备方法。
背景技术
高炉煤气作为钢铁企业产量最大的可燃气体,经余压发电后,送往高炉热风炉、轧钢加热炉、煤气发电等用户单元作为燃料使用,但高炉煤气仍含有较多的有机硫有害杂质。有机硫中主要的成分为羰基硫。羰基硫的物化性质相对稳定,其酸性、极性、化学活性较低,较难脱除。目前常见的羰基硫的脱除方法主要分为湿法和干法脱硫。湿法脱硫主要包括液相催化水解法、有机胺类溶液吸收法。湿法脱硫存在废液排放处理难、溶剂再生能耗高、脱硫精度低等缺点。干法脱硫主要包括吸附法、催化水解法、加氢转化法。干法脱硫的脱硫精度高,无废渣废液排放,工艺简单。因此,干法脱除羰基硫成为目前主要研究方向。水解法由于具有反应条件温和、不消耗原料气、副反应少、能耗相对较低等优势,近年来发展较为迅速。
CN101108339A公开了一种中温羰基硫水解催化剂的制备方法。将载体氧化铝基组分的前驱物拟薄水铝石、活性促进剂碱金属氧化物基组分的前驱物碳酸钾、改性剂钒金属氧化物基组分的前驱物五氧化二钒与造孔剂混匀后,加入粘结剂后在常温下挤条成型,在常温下放置12~24小时,然后在100~150℃下干燥2~4小时,最后在500~700℃下焙烧2~4小时,得到成品催化剂;造孔剂为纤维素类、聚合物类、无机物类三种造孔剂的混合物,粘结剂是水或硝酸。该水解催化剂为中温催化剂,适用温度为200~400℃。
CN106861665B公开了一种氧化铝羰基硫水解催化剂的制备方法:提供可溶性铝盐、聚苯乙烯微球、介孔模板剂P123、草酸钾、草酸、乙二醇、甲醇、无水乙醇、脂肪醇聚氧乙烯醚、蒸馏水;制备氧化铝前驱体的溶液、制备介孔模板剂的溶液、制备聚苯乙烯微球大孔模板以及制备活性组分前驱物草酸钾配位溶液;混合所述氧化铝前驱体的溶液与所述介孔模板剂的溶液以获得混合溶液;将所述聚苯乙烯微球大孔模板浸入所述混合溶液并且使所述混合溶液填充进入所述聚苯乙烯微球大孔模板中,以获得一次复合体;将所述活性组分前驱物草酸钾配位溶液喷淋加入到所述一次复合体中,并且使所述活性组分前驱物草酸钾配位溶液渗透进入所述一次复合体中,以获得二次复合体;通过两段程序升温焙烧法焙烧所述二次复合体以获得具有梯级孔的氧化铝羰基硫水解催化剂。该催化剂对羰基硫的转化率较低且持续时间较短。
发明内容
有鉴于此,本发明的一个目的在于提供一种羰基硫水解催化剂,该催化剂在低温下羰基硫水解率高,且能够减少硫沉积现象的发生。本发明的另一个目的在于提供一种羰基硫水解催化剂的制备方法。
通过以下技术方案实现上述技术目的。
一方面,本发明提供一种羰基硫水解催化剂,由包括如下组分的原料制备得到:
Figure PCTCN2021143494-appb-000001
Figure PCTCN2021143494-appb-000002
其中,所述γ-Al 2O 3采用如下方法制备得到:
(a)将铝酸盐溶液在温度为50~75℃且pH为9.5~12的条件下成胶,形成拟薄水铝石;
(b)将拟薄水铝石在80~105℃且pH为10~12.5的条件下老化,得到结晶物;
(c)将结晶物洗涤,然后在80~120℃干燥,得到前驱物;
(d)将前驱物在350~650℃下焙烧,得到γ-Al 2O 3
根据本发明的羰基硫水解催化剂,优选地,所述聚乙烯醇、羧甲基纤维素和碳酸氢铵的重量比为(3~6):2:(4~7)。
根据本发明的羰基硫水解催化剂,优选地,所述氧化钾前驱体为碳酸钾,所述含钛物为二氧化钛。
根据本发明的羰基硫水解催化剂,优选地,以氧化铝计,所述铝酸盐溶液的浓度为0.5~2mol/L;
使铝酸盐溶液与酸性物质反应,以形成拟薄水铝石;其中,所述酸性物质选自硫酸溶液或二氧化碳通入水中形成的酸性液体。
根据本发明的羰基硫水解催化剂,优选地,老化时间为2~8h,干燥时间为2~9h,焙烧时间为2~8h。
根据本发明的羰基硫水解催化剂,优选地,所述粘结剂选自田菁粉、柠檬酸、硝酸、乙酸或水中的一种或多种。
根据本发明的羰基硫水解催化剂,优选地,所述铝酸盐溶液中的铝酸盐选自铝酸钠或铝酸钾中的一种或多种。
另一方面,本发明还提供了一种羰基硫水解催化剂的制备方法,包括如下步骤:
(1)将包括γ-Al 2O 3、含钛物、氧化钾前驱体、聚乙烯醇、羧甲 基纤维素、碳酸氢铵和粘结剂的原料混合,成型,得到坯体;
(2)将坯体采用热空气法干燥,得到干燥后的坯体;
(3)将干燥后的坯体焙烧:在3~10℃/min的升温速度下升温至400~500℃,恒温焙烧1~5h;然后在5~13℃/min的升温速度下升温至500~650℃,恒温焙烧1~5h;冷却后得到羰基硫水解催化剂。
根据本发明的制备方法,优选地,干燥温度为80~120℃。
根据本发明的制备方法,优选地,还包括制备γ-Al 2O 3的步骤:
(a)将铝酸盐溶液在温度为50~75℃且pH为9.5~12的条件下成胶,形成拟薄水铝石;
(b)将拟薄水铝石在80~105℃且pH为10~12.5的条件下老化,得到结晶物;
(c)将结晶物洗涤,然后在80~120℃干燥,得到前驱物;
(d)将前驱物在350~650℃下焙烧,得到γ-Al 2O 3
本发明通过特定的方法制备得到的γ-Al 2O 3具有丰富孔隙;在一定配比的聚乙烯醇、羧甲基纤维素和碳酸氢铵的作用下能够进一步在γ-Al 2O 3的孔隙结构中形成大孔和中孔,并在孔道上形成微孔,有助于羰基硫的水解以及H 2S的扩散,减少硫沉积;二氧化钛和碳酸钾能够进一步改善孔隙的结构,有助于羰基硫水解以及H 2S的扩散。
具体实施方式
下面对本发明进行更详细的描述,但本发明不限于此。
<羰基硫水解催化剂>
本发明的羰基硫水解催化剂为一种低温羰基硫水解催化剂,其所使用的温度为30~100℃;优选为50~100℃;优选为60~90℃。
本发明的羰基硫水解催化剂由包括如下组分的原料制备得到:γ-Al 2O 3、含钛物、氧化钾前驱体、聚乙烯醇、羧甲基纤维素、碳酸氢铵和粘结剂。根据本发明的一个实施方式,原料由γ-Al 2O 3、二氧化钛、碳酸钾、聚乙烯醇、羧甲基纤维素、碳酸氢铵和粘结剂组成。
本发明的γ-Al 2O 3的制备方法包括如下步骤:(a)成胶的步骤;(b)老化的步骤;(c)洗涤和干燥的步骤;(d)焙烧的步骤。
步骤(a)中,将铝酸盐溶液在温度为50~75℃且pH为9.5~12的条件下成胶,形成拟薄水铝石。具体地,使铝酸盐溶液与酸性物质反应,以形成拟薄水铝石。酸性物质选自硫酸溶液或二氧化碳通入水中形成的酸性液体。硫酸溶液中H +的浓度为0.3~1mol/L;优选为0.3~0.8mol/L;更优选为0.4~0.7mol/L。这样所制得的拟薄水铝石纯度高,且能够得到孔隙结构发达的前驱物,有助于提高羰基硫的水解率,降低硫沉积。
铝酸盐溶液中的铝酸盐可以选自铝酸钠或铝酸钾中的一种或多种。根据本发明的一个实施方式,铝酸盐溶液中的铝酸盐为铝酸钠。以氧化铝计,铝酸盐溶液的浓度为0.5~2mol/L;优选为0.8~1.5mol/L;更优选为1.1~1.3mol/L。成胶温度为50~75℃;优选为55~70℃;更优选为55~65℃。成胶pH为9.5~12;优选为9.5~11;更优选为9.8~10.5。这样所制得的拟薄水铝石纯度高,且能够得到孔隙结构发达的前驱物,有助于提高羰基硫的水解率,降低硫沉积。
步骤(b)中,将拟薄水铝石在80~105℃且pH为10~12.5的条件下老化,得到结晶物。这样能够使成胶过程中生成的松散的絮状凝胶进一步结晶,产生晶粒,提高结晶度,有利于形成孔隙结构发达的γ-Al 2O 3,有助于提高羰基硫的水解率,降低硫沉积。
老化温度为80~105℃;优选为85~100℃;更优选为85~95℃。老化pH为10~12.5;优选为10~11.5;更优选为10~10.5。这样有 助于孔隙结构发达的γ-Al 2O 3的形成。
步骤(c)中,将结晶物洗涤,然后在80~120℃干燥,得到前驱物。可以采用稀硝酸对结晶物进行洗涤。干燥可以在烘箱中进行。干燥温度可以为80~120℃;优选为90~110℃;更优选为100~110℃。干燥时间可以为2~9h;优选为2~6h;更优选为3~5h。这样有助于孔隙结构的保持。
步骤(d)中,将前驱物在350~650℃下焙烧,得到γ-Al 2O 3。焙烧温度为350~650℃;优选为400~600℃;更优选为520~600℃。焙烧时间可以为2~8h;优选为3~6h;更优选为3~5h。这样有助于得到孔隙结构发达的γ-Al 2O 3
在本发明中,γ-Al 2O 3的用量可以为60~85重量份;优选为65~80重量份;更优选为68~70重量份。这样有助于得到羰基硫水解率高且H 2S扩散迅速的水解催化剂。
含钛物的用量可以为1~5重量份;优选为1~4重量份;更优选为1~3重量份。氧化钾前驱体的用量可以为3~20重量份;优选为5~15重量份;更优选为10~12重量份。含钛物可以为含钛的化合物或者含钛的盐。含钛的化合物优选为二氧化钛。氧化钾前驱体可以为碳酸钾。钛与钾相互配合,既能够提高催化剂对COS的水解性能,又能够增强催化剂抗硫中毒的能力,提高H 2S扩散速度,降低硫沉积。
聚乙烯醇的用量可以为1~10重量份;优选为2~6重量份;更优选为4~5重量份。羧甲基纤维素的用量为0.3~5重量份;优选为1~4重量份;更优选为1~3重量份。碳酸氢铵的用量可以为2~10重量份;优选为4~8重量份;更优选为4~6重量份。这样能够改善羰基硫水解催化剂的孔隙结构,有助于提高羰基硫的水解率,降低硫沉积。
在本发明中,聚乙烯醇、羧甲基纤维素和碳酸氢铵的重量比可以 为(3~6):2:(4~7);优选地,聚乙烯醇、羧甲基纤维素和碳酸氢铵的重量比为(3~5):2:(4~6);更优选地,聚乙烯醇、羧甲基纤维素和碳酸氢铵的重量比为4:2:5。这样能够使本发明中的γ-Al 2O 3具有更适宜的孔隙结构,有利于硫化氢的快速扩散,减低硫沉积。
粘结剂可以选自田菁粉、柠檬酸、硝酸、乙酸或水中的一种或多种。优选地,粘结剂选自硝酸、乙酸或水中的一种或多种。更优选地,粘结剂为乙酸和水。粘结剂的用量可以为3~15重量份;优选为5~10重量份;更优选为6~7重量份。粘结剂用量过多,不利于孔隙结构的形成;用量过少,则不利于羰基硫水解催化剂的成型。
<羰基硫水解催化剂的制备方法>
本发明的羰基硫水解催化剂的制备方法包括如下步骤:(1)成型的步骤;(2)干燥的步骤;和(3)焙烧的步骤。
步骤(1)中,将包括γ-Al 2O 3、含钛物、氧化钾前驱体、聚乙烯醇、羧甲基纤维素、碳酸氢铵和粘结剂的原料混合,成型,得到坯体。在某些实施方式中,原料由γ-Al 2O 3、含钛物、氧化钾前驱体、聚乙烯醇、羧甲基纤维素、碳酸氢铵和粘结剂组成。原料的组成和用量具体如上文所述。成型的方式可以采用转动成球法、捏合挤条法、蜂窝成型法中的一种;优选地,选自转动成球法或捏合挤条法中的一种。
步骤(2)中,将坯体采用热空气法干燥,得到干燥后的坯体。干燥温度可以为80~120℃;优选为90~110℃;更优选为95~105℃。
步骤(3)中,将干燥后的坯体焙烧:在第一升温速度下,升温至第一焙烧温度,在第一焙烧温度下恒温焙烧;然后在第二升温速度下升温至第二焙烧温度,在第二焙烧温度下恒温焙烧;冷却后得到羰基硫水解催化剂。第一升温速度为3~10℃/min;优选为4~8℃/min;更优选为5~7℃/min。第一焙烧温度为400~500℃;优选为400~ 480℃;更优选为400~450℃。根据本发明的一个实施方式,第一焙烧温度为400~430℃。在第一焙烧温度下恒温焙烧时间可以为1~5h;优选为1~4h;更优选为1~3h。第二升温速度为5~13℃/min;优选为6~10℃/min;更优选为7~9℃/min。第二焙烧温度为500~650℃;优选为500~600℃;更优选为520~580℃。在第二焙烧温度下恒温焙烧时间可以为1~5h;优选为1~4h;更优选为1~3h。这样的焙烧步骤和焙烧条件有助于羰基硫水解催化剂中孔隙结构的形成,提高催化剂对于羰基硫的水解率,且有助于二硫化氢的快速扩散。
制备例1
(a)将铝酸钠溶液与硫酸溶液(H +浓度为0.6mol/L)缓慢混合,充分接触成胶,得到拟薄水铝石;
(b)将拟薄水铝石老化,得到结晶物;
(c)用稀硝酸洗涤结晶物,然后在烘箱中干燥,得到前驱物;
(d)将前驱物焙烧,得到γ-Al 2O 3
具体参数如表1所示。
制备例2~3
除步骤(a)采用如下所述的方法外,其余同制备例1。
(a)将CO 2气体缓慢均匀地通入铝酸钠溶液中,缓慢混合,充分接触成胶,得到拟薄水铝石。
具体参数如表1所示。
表1
序号 制备例1 制备例2 制备例3
铝酸钠溶液浓度(mol/L) 1.2 1.0 1.2
成胶温度(℃) 60 60 60
成胶pH 10 10 10
老化温度(℃) 90 90 90
老化pH 10.2 10.5 10.2
老化时间(h) 4 4 4
干燥温度(℃) 105 105 105
干燥时间(h) 4 4 4
焙烧温度(℃) 500 500 550
焙烧时间(h) 4 4 4
注:铝酸钠溶液浓度以氧化铝计。
实施例1~2和比较例1
将如表2所示的原料混合均匀,成型,得到坯体。将坯体采用热空气法在100℃下干燥,得到干燥后的坯体。将干燥后的坯体焙烧:在6℃/min的升温速度下,升温至第一焙烧温度,在第一焙烧温度下恒温焙烧2h;然后在8℃/min的升温速度下,升温至第二焙烧温度,在第二焙烧温度下恒温焙烧2h,冷却后得到羰基硫水解催化剂。
表2
  实施例1 实施例2 比较例1
γ-Al 2O 3(制备例1) 70重量份
γ-Al 2O 3(制备例2) 72重量份
γ-Al 2O 3(制备例3) 70重量份
二氧化钛 2重量份 2重量份 2重量份
硝酸钴 2重量份
碳酸钾 10重量份 10重量份 10重量份
聚乙烯醇 3重量份 4重量份 3重量份
羧甲基纤维素 2重量份 2重量份 2重量份
碳酸氢铵 5重量份 5重量份 3重量份
硝酸 3重量份 2重量份
乙酸 3重量份
5重量份 4重量份 4重量份
成型方式 捏合挤条法 转动成球法 捏合挤条法
坯体形态 柱状 球状 柱状
第一焙烧温度 450℃ 420℃ 500℃
第二焙烧温度 600℃ 550℃ 580℃
比较例2
根据CN101108339A实施方式3的方法制备羰基硫水解催化剂。
实验例
采用如下方法测试羰基硫水解催化剂的性能:将羰基硫水解催化剂填充至固定床反应器中,入口烟气羰基硫浓度为200ppm、含水率0.1wt%,在空速为3000h -1和温度为80℃的条件下,测试羰基硫水解催化剂的性能。所得结果如表3所示。
羰基硫水解率的计算方法如下:
羰基硫(COS)水解率指发生水解反应的COS占进口COS的量的比率,计算公式如下:
Figure PCTCN2021143494-appb-000003
式中,η cos—COS水解率,%;
C m—COS进口平均浓度,ppm;
C i—COS出口浓度(i=1,2,3,…),ppm。
硫化氢生成率的计算方法如下:
硫化氢(H 2S)生成率指实际水解产生的H 2S占理论上COS完全水解产生H 2S的量的比率,计算公式如下:
Figure PCTCN2021143494-appb-000004
式中,η H2S—H 2S生成率,%;
C n—COS理论上完全水解产生H 2S的平均浓度,ppm;
C j—H 2S出口浓度(i=1,2,3,…),ppm
表3
Figure PCTCN2021143494-appb-000005
由表3的数据可知,本发明的硫化氢的生成率在5h即可达到99%以上,这表明本发明羰基硫水解生成硫化氢的同时,硫化氢迅速从催化剂内表面脱附并扩散到气相主体中,降低了硫沉积,减少了羰基硫水解催化剂中毒的机会。
本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员可以想到的任何变形、改进、替换均落入本发明的范围。

Claims (10)

  1. 一种羰基硫水解催化剂,其特征在于,由包括如下组分的原料制备得到:
    Figure PCTCN2021143494-appb-100001
    其中,所述γ-Al 2O 3采用如下方法制备得到:
    (a)将铝酸盐溶液在温度为50~75℃且pH为9.5~12的条件下成胶,形成拟薄水铝石;
    (b)将拟薄水铝石在80~105℃且pH为10~12.5的条件下老化,得到结晶物;
    (c)将结晶物洗涤,然后在80~120℃干燥,得到前驱物;
    (d)将前驱物在350~650℃下焙烧,得到γ-Al 2O 3
  2. 根据权利要求1所述的羰基硫水解催化剂,其特征在于,所述聚乙烯醇、羧甲基纤维素和碳酸氢铵的重量比为(3~6):2:(4~7)。
  3. 根据权利要求1所述的羰基硫水解催化剂,其特征在于,所述氧化钾前驱体为碳酸钾,所述含钛物为二氧化钛。
  4. 根据权利要求1所述的羰基硫水解催化剂,其特征在于,以氧化铝计,所述铝酸盐溶液的浓度为0.5~2mol/L;
    使铝酸盐溶液与酸性物质反应,以形成拟薄水铝石;其中,所述酸性物质选自硫酸溶液或二氧化碳通入水中形成的酸性液体。
  5. 根据权利要求1所述的羰基硫水解催化剂,其特征在于,老 化时间为2~8h,干燥时间为2~9h,焙烧时间为2~8h。
  6. 根据权利要求1所述的羰基硫水解催化剂,其特征在于,所述粘结剂选自田菁粉、柠檬酸、硝酸、乙酸或水中的一种或多种。
  7. 根据权利要求1~6任一所述的羰基硫水解催化剂,其特征在于,所述铝酸盐溶液中的铝酸盐选自铝酸钠或铝酸钾中的一种或多种。
  8. 一种权利要求1~7任一所述的羰基硫水解催化剂的制备方法,其特征在于,包括如下步骤:
    (1)将包括γ-Al 2O 3、含钛物、氧化钾前驱体、聚乙烯醇、羧甲基纤维素、碳酸氢铵和粘结剂的原料混合,成型,得到坯体;
    (2)将坯体采用热空气法干燥,得到干燥后的坯体;
    (3)将干燥后的坯体焙烧:在3~10℃/min的升温速度下升温至400~500℃,恒温焙烧1~5h;然后在5~13℃/min的升温速度下升温至500~650℃,恒温焙烧1~5h;冷却后得到羰基硫水解催化剂。
  9. 根据权利要求8所述的制备方法,其特征在于,干燥温度为80~120℃。
  10. 据权利要求8所述的制备方法,其特征在于,还包括制备γ-Al 2O 3的步骤:
    (a)将铝酸盐溶液在温度为50~75℃且pH为9.5~12的条件下成胶,形成拟薄水铝石;
    (b)将拟薄水铝石在80~105℃且pH为10~12.5的条件下老化,得到结晶物;
    (c)将结晶物洗涤,然后在80~120℃干燥,得到前驱物;
    (d)将前驱物在350~650℃下焙烧,得到γ-Al 2O 3
PCT/CN2021/143494 2021-06-28 2021-12-31 羰基硫水解催化剂及其制备方法 WO2023273274A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110719490.0 2021-06-28
CN202110719490.0A CN113441124A (zh) 2021-06-28 2021-06-28 羰基硫水解催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2023273274A1 true WO2023273274A1 (zh) 2023-01-05

Family

ID=77813370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143494 WO2023273274A1 (zh) 2021-06-28 2021-12-31 羰基硫水解催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN113441124A (zh)
WO (1) WO2023273274A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113441124A (zh) * 2021-06-28 2021-09-28 中晶环境科技股份有限公司 羰基硫水解催化剂及其制备方法
CN113976101A (zh) * 2021-11-15 2022-01-28 中国科学院山西煤炭化学研究所 一种负载型羰基硫水解催化剂及其制备方法与应用
CN114367279B (zh) * 2021-12-31 2024-06-25 东南大学 高炉煤气精脱硫的低温抗中毒水解催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212237A (zh) * 1997-09-19 1999-03-31 中国科学院山西煤炭化学研究所 铝酸钠碳酸化法制备活性氧化铝的方法
JP2002224572A (ja) * 2001-01-31 2002-08-13 Kawasaki Steel Corp 硫化カルボニルの加水分解用触媒および硫化カルボニルの加水分解方法
CN101108339A (zh) * 2007-07-25 2008-01-23 太原理工大学 中温羰基硫水解催化剂及其制备方法与用途
CN113441124A (zh) * 2021-06-28 2021-09-28 中晶环境科技股份有限公司 羰基硫水解催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1212237A (zh) * 1997-09-19 1999-03-31 中国科学院山西煤炭化学研究所 铝酸钠碳酸化法制备活性氧化铝的方法
JP2002224572A (ja) * 2001-01-31 2002-08-13 Kawasaki Steel Corp 硫化カルボニルの加水分解用触媒および硫化カルボニルの加水分解方法
CN101108339A (zh) * 2007-07-25 2008-01-23 太原理工大学 中温羰基硫水解催化剂及其制备方法与用途
CN113441124A (zh) * 2021-06-28 2021-09-28 中晶环境科技股份有限公司 羰基硫水解催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU YANXIA, SHANGGUAN JU; WANG ZEXIN; XU YIKUN; LIN LONG: "Moderate Temperature COS Hydrolysis Activity of γ-Al2O3 Based Catalyst Modified by TiO2", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY, MEMBER OF CHINESE ACADEMY OF ENGINEERING, PROFESSOR, CHINA, vol. 37, no. 10, 5 October 2018 (2018-10-05), pages 3885 - 3894, XP093018480, ISSN: 1000-6613, DOI: 10.16085/j.issn.1000-6613.2017-2296 *

Also Published As

Publication number Publication date
CN113441124A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2023273274A1 (zh) 羰基硫水解催化剂及其制备方法
CN102553574B (zh) 一种烟气scr脱硝催化剂的制备方法
CN112473730B (zh) 一种铜基cha型硅铝分子筛催化剂及其制备方法
CN105727930A (zh) 一种用于丙烷脱氢制丙烯的催化剂及其制备方法与应用
CN113634257A (zh) 一种双功能催化剂应用于烟道气中co2捕获-甲烷化一体化
WO2012065326A1 (zh) 一种助剂改性的二氧化碳催化加氢制甲醇的催化剂及制备方法
CN108837823A (zh) 一种钙钛矿型催化剂及其整体式成型方法和应用
CN108187665A (zh) 脱硝催化剂及其制备方法
CN110354837B (zh) α-氧化铝载体及其制备方法与应用
CN114832829A (zh) 一种燃气尾气高温脱硝催化剂及其制备方法
CN109289831A (zh) 具有高抗积碳性的丙烷脱氢制丙烯的催化剂及其制备方法
CN110170333B (zh) 一种用于二氧化碳气氛下乙烷制乙烯催化剂及其制备方法
CN115155582B (zh) 一种活性炭负载的甲醇重整制氢催化剂及其制备方法与应用
CN110697768A (zh) 一种介孔TiO2材料和催化剂及其制备方法以及一种脱硝方法
CN111514884A (zh) 一种蜂窝结构脱硝催化剂及其制备方法
CN113877568B (zh) 多孔耐高温催化剂及其制备方法
CN113289663B (zh) 用于等温固定床的甲烷化催化剂制备方法
CN109529882B (zh) 一种固体超强酸催化剂及其制备方法
CN110152660B (zh) 一种液氮洗尾气高温催化燃烧催化剂及其制备方法和应用
TWI655180B (zh) 用於製造甲醇之觸媒、其製備方法及甲醇的製造方法
CN113600207A (zh) 一种适用于高co的宽温变换催化剂及其制备和应用
CN112717907A (zh) 一种纳米片堆积中空球形结构的γ-Al2O3催化剂载体材料及其制备方法
CN115569664B (zh) Sba-15负载型耐硫变换催化剂的制备方法
CN110918116A (zh) 一种净化有机废气的陶瓷蜂窝状催化剂及其制备方法
CN103638943A (zh) 一种用于生物质合成气的钴基费托固定床催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21948196

Country of ref document: EP

Kind code of ref document: A1