WO2023272481A1 - 一种控制发动机停机的方法、装置、电子设备及存储介质 - Google Patents

一种控制发动机停机的方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023272481A1
WO2023272481A1 PCT/CN2021/103064 CN2021103064W WO2023272481A1 WO 2023272481 A1 WO2023272481 A1 WO 2023272481A1 CN 2021103064 W CN2021103064 W CN 2021103064W WO 2023272481 A1 WO2023272481 A1 WO 2023272481A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
state
starting
engine
shutdown
Prior art date
Application number
PCT/CN2021/103064
Other languages
English (en)
French (fr)
Inventor
井俊超
刘义强
黄伟山
左波涛
于雪梅
王瑞平
肖逸阁
Original Assignee
宁波吉利罗佑发动机零部件有限公司
极光湾科技有限公司
浙江吉利控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波吉利罗佑发动机零部件有限公司, 极光湾科技有限公司, 浙江吉利控股集团有限公司 filed Critical 宁波吉利罗佑发动机零部件有限公司
Priority to EP21854733.9A priority Critical patent/EP4134287A4/en
Priority to CN202180004362.6A priority patent/CN114207264A/zh
Priority to PCT/CN2021/103064 priority patent/WO2023272481A1/zh
Priority to US18/280,681 priority patent/US20240157929A1/en
Publication of WO2023272481A1 publication Critical patent/WO2023272481A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • B60W30/194Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine related to low temperature conditions, e.g. high viscosity of hydraulic fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0688Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to the technical field of engine control, in particular to a method, device, electronic equipment and storage medium for controlling engine shutdown.
  • FIG. 1 is a schematic structural diagram of an existing dual-motor hybrid power system.
  • the motors of the dual-motor hybrid power system have three modes, pure electric mode, series mode and parallel mode. In the series mode, the clutch CO is not engaged, the engine charges the battery through the P1 motor, and the P2 motor drives the wheels. In the parallel mode, the clutch CO is engaged, and the engine directly drives the wheels.
  • the dual-motor hybrid system has three starting modes, namely 12V starting, P1 motor starting and clutch starting.
  • the dual-motor hybrid system uses the P1 motor to start the engine. If the P1 motor fails and the vehicle speed is less than 10km/h, it can be started with 12V. If the P1 motor fails and the vehicle speed is greater than 10km/h, the clutch can be used. start up.
  • the starting process of the three starting methods if the starting time is too long, the engine speed is always lower than the set threshold, resulting in the starting state all the time, or the situation of continuous flameout switching and starting, which will cause the engine, dual mass flywheel and other equipment to fail. damage.
  • Embodiments of the present application provide a method, device, electronic equipment, and storage medium for controlling engine shutdown, which can avoid damage to hardware equipment such as starters and dual-mass flywheels, and can improve system safety and reliability.
  • An embodiment of the present application provides a method for controlling engine shutdown, the method comprising:
  • the current state information includes the starting state
  • the operating parameter information includes the engine speed information, starting time information, coolant temperature information and torque information
  • the engine is controlled to be in the stop state.
  • the current status information also includes the running status
  • Methods also include:
  • the engine is controlled to be in the shutdown state.
  • the current state information also includes the shutdown state
  • the operating parameter information also includes engine restart times information, shutdown duration information, vehicle speed information and safety equipment working information
  • Methods also include:
  • the engine is controlled to be in the shutdown state.
  • the starting state includes a state corresponding to starting based on a plurality of starting modes, and the starting modes include a 12V starting mode, a first motor starting mode and a clutch starting mode;
  • the first preset shutdown condition includes a first sub-condition corresponding to the 12V starting mode, a second sub-condition corresponding to the first motor starting mode, and a third sub-condition corresponding to the clutch starting mode.
  • controlling the engine to be in the stop state includes:
  • the engine is controlled to be in the stop state.
  • controlling the engine to be in the stop state includes:
  • the engine is controlled to be in the stopping state.
  • controlling the engine to be in the stop state includes:
  • the engine is controlled to be in the shutdown state.
  • the embodiment of the present application also provides a device for controlling engine shutdown, the device comprising:
  • the obtaining module is used to obtain the current state information and operating parameter information of the engine;
  • the current state information includes the starting state, and the operating parameter information includes the engine speed information, starting duration information, coolant temperature information and torque information;
  • the control module is used to control the engine to be in the stop state if the current state information is the start state, and the speed information, start duration information, coolant temperature information and torque information meet the first preset stop condition corresponding to the start state.
  • the current status information also includes the running status
  • the control module is used to control the engine to be in the shutdown state if the current state information is the running state and the rotational speed information satisfies the second preset shutdown condition corresponding to the running state.
  • the current state information also includes the shutdown state
  • the operating parameter information also includes engine restart times information, shutdown duration information, vehicle speed information and safety equipment working information
  • the control module is used to control the engine to be in the shutdown state if the current state is the shutdown state, and the restart times information, shutdown duration information, vehicle speed information and safety equipment work information meet the third preset shutdown condition corresponding to the shutdown state.
  • the starting state includes a state corresponding to starting based on multiple starting modes, and the multiple starting modes include a 12V starting mode, a first motor starting mode, and a clutch starting mode;
  • the first preset shutdown condition includes a first sub-condition corresponding to the 12V starting mode, a second sub-condition corresponding to the first motor starting mode, and a third sub-condition corresponding to the clutch starting mode.
  • control module is used to control the engine to be in the stop state if the start state is a state corresponding to start based on the 12V start mode, and the speed information, start duration information, coolant temperature information and torque information meet the first subcondition.
  • control module is used to control the engine to be in the shutdown state if the starting state is a state corresponding to starting based on the first motor starting mode, and the speed information, starting duration information, coolant temperature information and torque information meet the second subcondition.
  • control module is used to control the engine to be in the stop state if the start state is a state corresponding to start based on the clutch start mode, and the speed information, start duration information, coolant temperature information and torque information meet the third subcondition.
  • the embodiment of the present application also provides an electronic device, the electronic device includes a processor and a memory, at least one instruction, at least one program, code set or instruction set are stored in the memory, at least one instruction, at least one program, A code set or instruction set is loaded and executed by the processor to implement the above-mentioned method of controlling engine shutdown.
  • the embodiment of the present application also provides a computer-readable storage medium, the storage medium stores at least one instruction, at least one program, code set or instruction set, at least one instruction, at least one program, code set or instruction set The set is loaded and executed by the processor to implement the above-mentioned method of controlling engine shutdown.
  • a method, device, electronic device, and storage medium for controlling engine shutdown disclosed in the embodiments of the present application includes acquiring current state information and operating parameter information of the engine; the current state information includes the starting state, and the operating parameter information includes engine If the current state information is the starting state, and the speed information, starting time information, coolant temperature information and torque information meet the first preset stop condition corresponding to the starting state , to control the engine to stop.
  • the method includes acquiring current state information and operating parameter information of the engine; the current state information includes the starting state, and the operating parameter information includes engine If the current state information is the starting state, and the speed information, starting time information, coolant temperature information and torque information meet the first preset stop condition corresponding to the starting state , to control the engine to stop.
  • Fig. 1 is a structural schematic diagram of an existing dual-motor hybrid power system
  • Fig. 2 is a schematic diagram of an application environment provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a method for switching current state information of an engine provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for controlling engine shutdown provided in an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a method for controlling engine shutdown provided in an embodiment of the present application
  • FIG. 6 is a schematic flowchart of a method for controlling engine shutdown provided in an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a device for controlling engine shutdown provided by an embodiment of the present application.
  • the “embodiment” referred to herein refers to a specific feature, structure or characteristic that may be included in at least one implementation of the present application.
  • the terms “first”, “second” and “third” are used for description purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating Indicates the number of technical characteristics.
  • features defined as “first”, “second” and “third” may expressly or implicitly include one or more of these features.
  • the terms “first”, “second”, and “third”, etc. are used to distinguish similar items, and are not necessarily used to describe a specific order or sequence.
  • Fig. 2 shows a schematic diagram of an application environment provided by the embodiment of the present application, including: a server 100 and an engine 200, the server 100 can obtain the current state information and operating parameter information of the engine 200, and according to the engine The current state information and operating parameter information of the engine 200 are used to control the engine 200 to be in a shutdown state. If the current state information of the engine 200 is the start state, and the rotational speed information, start duration information, coolant temperature information and torque information meet the first preset stop condition corresponding to the start state, the engine 200 is controlled to be in the stop state.
  • the engine 200 If the current state information of the engine 200 is the running state, and the rotational speed information satisfies the second preset shutdown condition corresponding to the running state, the engine 200 is controlled to be in the shutdown state. If the current state of the engine 200 is the shutdown state, and the number of restarts information, shutdown duration information, vehicle speed information and safety equipment work information meet the third preset shutdown condition corresponding to the shutdown state, the engine 200 is controlled to be in the shutdown state.
  • Fig. 3 is a schematic structural diagram of a method for switching current state information of an engine provided by an embodiment of the present application.
  • the current state information of the engine may include a stop state 0, a starting state 1, a running state 2 and a stopping state 3.
  • the server receives an engine start request, ie T01, and can determine that the engine is in start state 1.
  • the server receives the starting information that the engine is started with a cold engine or 12V, and the engine speed is greater than 800r/s for more than 0.3s and the current fuel cut-off coefficient is lower than 0.9, that is, T02, it can be determined
  • the engine is in running state 2.
  • the server receives the starting information that the engine is warm-up start, first motor start or clutch start, and the engine speed is greater than 600r/s for more than 0.04s and the current fuel cut-off coefficient is lower than 0.9, That is T02, it can be determined that the engine is in running state 2.
  • the server does not receive the engine starting request, ie T06, it can be determined that the engine is in the stopping state 3.
  • the server has not received the engine start request, ie T03, it can be determined that the engine is in the stopping state 3.
  • the server receives the starting information in which the engine speed is less than 100r/s and exceeds 0.1s, that is T04, and it can be determined that the engine is in the shutdown state 0.
  • the server receives the engine starting request, ie T05, and can determine that the engine is in the starting state 1.
  • the server can control the engine to be in the shutdown state when the engine is warmed up and the coolant temperature is greater than 80° C. for more than 2.5 seconds and has not been switched to the running state. It is also possible to control the engine to be in the shutdown state when the cold engine is started and the coolant temperature is less than 80°C and has not been switched to the running state for more than 4s.
  • Figure 4 is a schematic flow chart of a method for controlling engine shutdown provided in an embodiment of the present application.
  • This specification provides a method as shown in the embodiment or flow chart operating steps, but may include more or fewer operating steps based on routine or uninvented labor.
  • the sequence of steps listed in the embodiments is only one of many execution sequences, and does not represent a unique execution sequence. In actual execution, it can be executed in sequence or in parallel according to the methods shown in the embodiments or drawings (for example, parallel processing processor or multi-threaded environment).
  • the method includes:
  • S401 Obtain the current status information and operating parameter information of the engine; the current status information includes the starting status, and the operating parameter information includes the engine speed information, starting duration information, coolant temperature information and torque information.
  • the starting state may include a state corresponding to starting based on multiple starting modes, wherein the starting modes may include a 12V starting mode, a first motor starting mode, and a clutch starting mode.
  • the engine is controlled to be in the stopping state.
  • the first subcondition may be that the rotational speed in the rotational speed information of the engine is less than a set first rotational speed threshold, and the duration in the start-up duration information exceeds the corresponding duration threshold.
  • the corresponding duration threshold may have a corresponding relationship with the starting duration information and the coolant temperature information as shown in Table 1.
  • X represents the coolant temperature information
  • Y represents the start-up duration information
  • the speed of the engine is kept at a low speed state, for example, at a low speed of 100r/s-750r/s for a certain period of time, it will cause damage to the dual mass flywheel and need to be terminated. Start this time.
  • the duration for a certain period of time may have a corresponding relationship with the rotational speed information and the vehicle speed information as shown in Table 2.
  • N represents the rotational speed information
  • V represents the vehicle speed information
  • the engine speed is less than 50r/s and lasts longer than 2.5s during the starting process, it can be considered that the engine failed to start.
  • the engine speed is less than 50r/s and lasts longer than 0.4s, it can be considered that the engine failed to start.
  • the first subcondition may be that the duration in the starting duration information of the engine exceeds a preset duration threshold. For example, if the duration of 12V starting exceeds 30s, it can be considered that the engine failed to start.
  • the engine is controlled to be in the stopped state.
  • the second subcondition may be that the rotational speed in the rotational speed information of the engine is less than a set second rotational speed threshold, and the duration in the starting duration information exceeds the corresponding duration threshold.
  • the rotational speed of the engine is less than 100r/s, and the duration exceeds 1s.
  • the second sub-condition may be that when the cold engine starts, the duration in the startup duration information exceeds the corresponding duration threshold, and the duration in the warm-up startup duration information exceeds the corresponding duration threshold .
  • the duration exceeds 30s
  • the duration exceeds 3s.
  • the second sub-condition may be that during the starting process of the first electric motor, the ISG path of the engine stop/start system exits for more than 0.2s, and the reason may be that the first electric motor and/or the second electric motor Second motor failure, it may also be that during the starting process of the first motor, the ISG start request exit time exceeds 0.2s, the reason may be the failure of the first motor and/or the second motor, it may be that the first motor is not in the torque mode, or It may be that the path is not in the first motor path.
  • the engine is controlled to be in the shutdown state.
  • the third sub-condition may be that when the clutch start ends, the speed in the speed information is less than the third speed threshold, and the clutch torque in the torque information is less than the corresponding torque threshold.
  • the engine speed is less than 300r/s, and the clutch torque is less than 1Nm.
  • the third sub-condition may be that the clutch failure is unavailable.
  • the third subcondition may be that the duration in the starting duration information exceeds the corresponding duration threshold, and the torque in the torque information is less than the corresponding torque threshold.
  • the clutch activation time exceeds 3s and the clutch torque is less than 1Nm.
  • the third subcondition may be that the speed in the speed information is less than the corresponding fourth speed threshold, and the torque of the clutch in the torque information is less than the corresponding torque threshold.
  • the speed of the engine is less than 450r/s, and the clutch torque is less than 1Nm.
  • Figure 5 is a schematic flow chart of a method for controlling engine shutdown provided in an embodiment of the present application.
  • This specification provides a method as shown in the embodiment or flow chart operating steps, but may include more or fewer operating steps based on routine or uninvented labor.
  • the sequence of steps listed in the embodiments is only one of many execution sequences, and does not represent a unique execution sequence. In actual execution, it can be executed in sequence or in parallel according to the methods shown in the embodiments or drawings (for example, parallel processing processor or multi-threaded environment).
  • the method includes:
  • S501 Obtain current state information and operating parameter information of the engine; the current state information includes the operating state, and the operating parameter information includes engine speed information.
  • the second preset shutdown condition may be that when the engine is in a normal running state, the speed of the engine is lower than a preset speed threshold.
  • the engine when the engine is in a normal running state and the engine speed drops below 10 r/s, the engine is controlled to be in a shutdown state.
  • Figure 6 is a schematic flow chart of a method for controlling engine shutdown provided in an embodiment of the present application.
  • This specification provides a method as shown in the embodiment or flow chart operating steps, but may include more or fewer operating steps based on routine or uninvented labor.
  • the sequence of steps listed in the embodiments is only one of many execution sequences, and does not represent a unique execution sequence. In actual execution, it can be executed in sequence or in parallel according to the methods shown in the embodiments or drawings (for example, parallel processing processor or multi-threaded environment).
  • the method includes:
  • S601 Obtain the current state information and operating parameter information of the engine;
  • the current state information includes the shutdown state, and the operating parameter information includes engine restart times information, shutdown duration information, vehicle speed information and safety equipment working information;
  • the third preset shutdown condition when the engine is in the shutdown state, if the third preset shutdown condition is met, that is, the engine enters a low-battery Power Down, the engine is no longer allowed to be automatically started, and it can only be started manually by the driver.
  • the third preset condition may include the following:
  • the vehicle speed in the vehicle speed information is greater than 10km/h
  • the engine If the third preset shutdown condition is not met, and the engine does not enter the low-battery Power Down, and the engine speed is less than 50r/s, the engine is allowed to be automatically started, and the driver does not need to manually turn the key to restart.
  • Using the method for controlling engine shutdown provided by the embodiment of the present application can prevent the engine from taking too long to start and the speed of the engine from being too low, can avoid damage to hardware equipment such as the starter and the dual-mass flywheel, and can improve the safety and reliability of the system.
  • FIG. 7 is a schematic structural diagram of a device for controlling engine shutdown provided in the embodiment of the present application. As shown in FIG. 7, the device may include:
  • Acquisition module 701 is used for acquiring the current state information and operating parameter information of engine;
  • Current state information comprises starting state, and operating parameter information comprises the rotating speed information of engine, starting duration information, coolant temperature information and torque information;
  • the control module 703 is used to control the engine to be in the stop state if the current state information is the start state, and the speed information, start duration information, coolant temperature information and torque information meet the first preset stop condition corresponding to the start state.
  • the current status information also includes the running status
  • the control module is used to control the engine to be in the shutdown state if the current state information is the running state and the rotational speed information satisfies the second preset shutdown condition corresponding to the running state.
  • the current state information also includes the shutdown state
  • the operating parameter information also includes information on the number of engine restarts, shutdown duration information, vehicle speed information, and safety equipment working information
  • the control module is used to control the engine to be in the shutdown state if the current state is the shutdown state, and the restart times information, shutdown duration information, vehicle speed information and safety equipment work information meet the third preset shutdown condition corresponding to the shutdown state.
  • the starting state includes a state corresponding to starting based on multiple starting modes, and the multiple starting modes include a 12V starting mode, a first motor starting mode, and a clutch starting mode;
  • the first preset shutdown condition includes a first sub-condition corresponding to the 12V starting mode, a second sub-condition corresponding to the first motor starting mode, and a third sub-condition corresponding to the clutch starting mode.
  • control module is used to control the engine to stop if the starting state corresponds to starting based on the 12V starting mode, and the speed information, starting duration information, coolant temperature information and torque information meet the first sub-condition.
  • control module is used to control the engine to be in the shutdown state if the starting state is a state corresponding to starting based on the first motor starting mode, and the speed information, starting duration information, coolant temperature information and torque information meet the second sub-condition .
  • control module is used to control the engine to stop if the starting state is a state corresponding to starting based on the clutch starting mode, and the speed information, starting duration information, coolant temperature information and torque information meet the third sub-condition.
  • the device for controlling engine shutdown provided by the embodiment itself can prevent the engine from taking too long to start and the speed is too low, can avoid damage to hardware equipment such as starters and dual-mass flywheels, and can improve the safety and reliability of the system.
  • the embodiment of the present application also provides an electronic device, the electronic device can be set in the controller to save at least one instruction, at least one segment of program, code set related to a method for controlling engine shutdown in the method embodiment Or an instruction set, the at least one instruction, the at least one section of program, the code set or the instruction set is loaded and executed by the memory to implement the above-mentioned method for controlling engine shutdown.
  • An embodiment of the present application also provides a storage medium, which can be set in a server to store at least one instruction, at least one segment of program, code set or instruction related to a method for controlling engine shutdown in the method embodiment
  • the at least one instruction, the at least one section of program, the code set or instruction set is loaded and executed by the processor to implement the above-mentioned method for controlling engine shutdown.
  • the foregoing storage medium may be located in at least one network server among multiple network servers of a computer network.
  • the above-mentioned storage medium may include, but is not limited to: U disk, read-only memory (ROM, Read-only Memory), mobile hard disk, magnetic disk or optical disk, etc., which can store program codes. medium.
  • the method in the application includes: obtaining the current state information and operating parameter information of the engine; the current state information includes starting state, operating parameter The information includes engine speed information, starting duration information, coolant temperature information and torque information; if the current state information is the starting state, and the speed information, starting duration information, coolant temperature information and torque information meet the first preset corresponding to the starting state Set the shutdown condition and control the engine to be in the shutdown state.
  • the embodiment of the application it is possible to prevent the engine from taking too long to start and the rotational speed to be too low, to avoid damage to hardware equipment such as the starter and the dual-mass flywheel, and to improve the safety and reliability of the system.
  • each embodiment in this specification is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • the description is relatively simple, and for the related parts, please refer to the part of the description of the embodiment of the method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

本申请实施例所公开的一种控制发动机停机的方法、装置、电子设备及存储介质,方法包括:获取发动机的当前状态信息和运行参数信息;当前状态信息包括起动状态,运行参数信息包括发动机的转速信息、起动时长信息、冷却液温度信息和扭矩信息;若当前状态信息为起动状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足起动状态对应的第一预设停机条件,控制发动机处于停机状态。基于申请实施例可以防止发动机起动时间过长、转速过低,可以避免起动机和双质量飞轮等硬件设备的损坏,可以提高系统的安全性和可靠性。

Description

一种控制发动机停机的方法、装置、电子设备及存储介质 技术领域
本发明涉及发动机控制技术领域,尤其涉及一种控制发动机停机的方法、装置、电子设备及存储介质。
背景技术
为响应国家节能减排政策的号召,整车厂与零部件供应商致力于严格控制汽车的油耗和排放。随着电气化系统的蓬勃发展,纯电动汽车和混合动力汽车进入大众视野,然而,由于纯电动汽车的制造成本高昂,无法大力推广,因此,混合动力汽车成为节能减排的主力军。图1是现有的一种双电机混合动力系统的结构示意图,该双电机混合动力系统的电机具有三种模式,纯电模式、串联模式和并联模式。在串联模式下,离合器CO不结合,发动机通过P1电机给电池充电,P2电机驱动车轮,在并联模式下,离合器CO结合,发动机直接驱动车轮。
基于图1所示的结构,双电机混合动力系统具有三种启动方式,即12V启动、P1电机启动和离合器启动。在正常情况下,双电机混合动力系统采用P1电机启动发动机,若P1电机发生故障,且车速小于10km/h,可以采用12V启动,若P1电机发生故障,且车速大于10km/h,可以采用离合器启动。在三种启动方式的启动过程中,若启动时间过长,发动机转速一直低于设定的阈值,导致一直处于启动状态,或者出现连续熄火切换启动的情况,将导致发动机、双质量飞轮等设备的损坏。
发明内容
本申请实施例提供了一种控制发动机停机的方法、装置、电子设备及存储介质,可以避免起动机和双质量飞轮等硬件设备的损坏,可以提高系统的安全性和可靠性。
本申请实施例提供了一种控制发动机停机的方法,该方法包括:
获取发动机的当前状态信息和运行参数信息;当前状态信息包括起动状态,运行参数信息包括发动机的转速信息、起动时长信息、冷却液温度信息和扭矩信息;
若当前状态信息为起动状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足起动状态对应的第一预设停机条件,控制发动机处于停机状态。
进一步地,当前状态信息还包括运行状态;
方法还包括:
若当前状态信息为运行状态,且转速信息满足运行状态对应的第二预设停机条件,控制发动机处于停机状态。
进一步地,当前状态信息还包括停机状态,运行参数信息还包括发动机的重启次数信息、停机持续时长信息、车速信息和安全设备工作信息;
方法还包括:
若当前状态为停机状态,且重启次数信息、停机持续时长信息、车速信息和安全设备工作信息满足停机状态对应的第三预设停机条件,控制发动机处于停机状态。
进一步地,起动状态包括基于多个起动模式起动所对应的状态,起动模式包括12V起动模式、第一电机起动模式和离合器起动模式;
第一预设停机条件包括12V起动模式对应的第一子条件、第一电机起动模式对应的第二子条件和离合器起动模式对应的第三子条件。
进一步地,若当前状态信息为起动状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足起动状态对应的第一预设停机条件,控制发动机处于停机状态,包括:
若起动状态为基于12V起动模式起动对应的状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足第一子条件,控制发动机处于停机状态。
进一步地,若当前状态信息为起动状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足起动状态对应的第一预设停机条件,控制 发动机处于停机状态,包括:
若起动状态为基于第一电机起动模式起动对应的状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足第二子条件,控制发动机处于停机状态。
进一步地,若当前状态信息为起动状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足起动状态对应的第一预设停机条件,控制发动机处于停机状态,包括:
若起动状态为基于离合器起动模式起动对应的状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足第三子条件,控制发动机处于停机状态。
相应地,本申请实施例还提供了一种控制发动机停机的装置,该装置包括:
获取模块,用于获取发动机的当前状态信息和运行参数信息;当前状态信息包括起动状态,运行参数信息包括发动机的转速信息、起动时长信息、冷却液温度信息和扭矩信息;
控制模块,用于若当前状态信息为起动状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足起动状态对应的第一预设停机条件,控制发动机处于停机状态。
进一步地,当前状态信息还包括运行状态;
该控制模块,用于若当前状态信息为运行状态,且转速信息满足运行状态对应的第二预设停机条件,控制发动机处于停机状态。
进一步地,当前状态信息还包括停机状态,运行参数信息还包括发动机的重启次数信息、停机持续时长信息、车速信息和安全设备工作信息;
该控制模块,用于若当前状态为停机状态,且重启次数信息、停机持续时长信息、车速信息和安全设备工作信息满足停机状态对应的第三预设停机条件,控制发动机处于停机状态。
进一步地,起动状态包括基于多个起动模式起动所对应的状态,多个起动模式包括12V起动模式、第一电机起动模式和离合器起动模式;
第一预设停机条件包括12V起动模式对应的第一子条件、第一电机起 动模式对应的第二子条件和离合器起动模式对应的第三子条件。
进一步地,控制模块用于若起动状态为基于12V起动模式起动对应的状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足第一子条件,控制发动机处于停机状态。
进一步地,控制模块用于若起动状态为基于第一电机起动模式起动对应的状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足第二子条件,控制发动机处于停机状态。
进一步地,控制模块用于若起动状态为基于离合器起动模式起动对应的状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足第三子条件,控制发动机处于停机状态。
相应地,本申请实施例还提供了一种电子设备,该电子设备包括处理器和存储器,存储器中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现上述的控制发动机停机的方法。
相应地,本申请实施例还提供了一种计算机可读存储介质,该存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现上述的控制发动机停机的方法。
本申请实施例具有如下有益效果:
本申请实施例所公开的一种控制发动机停机的方法、装置、电子设备及存储介质,其中,方法包括获取发动机的当前状态信息和运行参数信息;当前状态信息包括起动状态,运行参数信息包括发动机的转速信息、起动时长信息、冷却液温度信息和扭矩信息;若当前状态信息为起动状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足起动状态对应的第一预设停机条件,控制发动机处于停机状态。基于本申请实施例可以防止发动机起动时间过长、转速过低,可以避免起动机和双质量飞轮等硬件设备的损坏,可以提高系统的安全性和可靠性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案和优点,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1是现有的一种双电机混合动力系统的结构示意图;
图2是本申请实施例所提供的一种应用环境的示意图;
图3是本申请实施例提供的一种发动机的当前状态信息的切换方法的结构示意图;
图4是本申请实施例提供的一种控制发动机停机的方法的流程示意图;
图5是本申请实施例提供的一种控制发动机停机的方法的流程示意图;
图6是本申请实施例提供的一种控制发动机停机的方法的流程示意图;
图7是本申请实施例提供的一种控制发动机停机的装置的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。显然,所描述的实施例仅仅是本申请一个实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
此处所称的“实施例”是指可包含于本申请至少一个实现方式中的特定特征、结构或特性。在本申请实施例的描述中,需要理解的是,术语“第一”、“第二”和“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”和“第三”的特征可以明示或者隐含的包括一个或者更多个该特征。而且,术语“第一”、“第二”和“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例能够以除了在这里图示或描述以外的顺序实施。此外,术语“包括”和“为”以及他们的任何变形,意 图在于覆盖不排他的包含。
请参阅图2,其所示为本申请实施例所提供的一种应用环境的示意图,包括:服务器100和发动机200,该服务器100可以获取发动机200的当前状态信息和运行参数信息,并根据发动机200的当前状态信息和运行参数信息,控制发动机200处于停机状态。若发动机200的当前状态信息为起动状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足起动状态对应的第一预设停机条件,控制发动机200处于停机状态。若发动机200的当前状态信息为运行状态,且转速信息满足运行状态对应的第二预设停机条件,控制发动机200处于所述停机状态。若发动机200的当前状态为停机状态,且重启次数信息、停机持续时长信息、车速信息和安全设备工作信息满足停机状态对应的第三预设停机条件,控制发动机200处于所述停机状态。
图3是本申请实施例提供的一种发动机的当前状态信息的切换方法的结构示意图。
本申请实施例中,发动机的当前状态信息可以包括停机状态0、起动状态1、运行状态2和正在停机状态3。
若发动机的历史状态为停机状态0,服务器接收到发动机起动请求,即T01,可以确定发动机处于起动状态1。
若发动机的历史状态为起动状态1,服务器接收到起动信息中发动机是冷机启动或者12V启动,且发动机的转速大于800r/s超过0.3s且当前断油系数低于0.9,即T02,可以确定发动机处于运行状态2。
若发动机的历史状态为起动状态1,服务器接收到起动信息中发动机是暖机启动、第一电机启动或离合器启动,且发动机的转速大于600r/s超过0.04s且当前断油系数低于0.9,即T02,可以确定发动机处于运行状态2。
若发动机的历史状态为起动状态1,服务器未接收到发动机起动请求,即T06,可以确定发动机处于正在停机状态3。
若发动机的历史状态为运行状态2,服务器未接收到发动机起动请求, 即T03,可以确定发动机处于正在停机状态3。
若发动机的历史状态信息为正在停机状态3,服务器接收到起动信息中发动机的转速小于100r/s超过0.1s,即T04,可以确定发动机处于停机状态0。
若发动机的历史状态信息为正在停机状态3,服务器接收到发动机起动请求,即T05,可以确定发动机处于起动状态1。
本申请实施例中,服务器可以在暖机起动,且冷却液温度大于80℃超过2.5s未切换至运行状态时,控制发动机处于停机状态。还可以在冷机起动,且冷却液温度小于80℃超过4s未切换至运行状态时,控制发动机处于停机状态。
下面介绍本申请一种控制发动机停机的方法的具体实施例,图4是本申请实施例提供的一种控制发动机停机的方法的流程示意图,本说明书提供了如实施例或流程图所示的方法操作步骤,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多执行顺序中的一种方式,不代表唯一的执行顺序,在实际执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境)。具体的如图4所示,该方法包括:
S401:获取发动机的当前状态信息和运行参数信息;当前状态信息包括起动状态,运行参数信息包括发动机的转速信息、起动时长信息、冷却液温度信息和扭矩信息。
S403:若当前状态信息为起动状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足起动状态对应的第一预设停机条件,控制发动机处于停机状态。
本申请实施例中,起动状态可以包括基于多个起动模式起动所对应的状态,其中,起动模式可以包括12V起动模式、第一电机起动模式和离合器起动模式。
本申请实施例中,若起动状态为基于12V起动模式起动对应的状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足第一子条件, 控制发动机处于停机状态。
在一种可选的实施方式中,第一子条件可以是发动机的转速信息中转速小于设定的第一转速阈值,且起动时长信息中持续时长超过对应的持续时长阈值。其中,对应的持续时长阈值可以与起动时长信息和冷却液温度信息具有如表1所示的对应的关系。
表1
Figure PCTCN2021103064-appb-000001
其中,X表示冷却液温度信息,Y表示起动时长信息。
基于表1可以清楚地得到:在12V起动的起动过程中,发动机转速小于320r/s,且持续时长超过10s时,可以认为起动失败。
在另一可选的实施方式中,如果发动机的转速持续保持在一个低转速状态,例如在100r/s~750r/s的低转速且持续一定时间,将会对双质量飞轮造成损坏,需要终止本次启动。其中,持续一定时间可以与转速信息和车速信息具有如表2所示的对应的关系。
表2
Figure PCTCN2021103064-appb-000002
其中,N表示转速信息,V表示车速信息。
在另一种可选的实施方式中,对于12V首次起动,在起动的过程中,若发动机的转速小于50r/s,且持续时长超过2.5s,可以认为发动机起动失败。对于12V重复起动,在起动过程中,若发动机的转速小于50r/s,且持续时长超过0.4s,可以认为发动机起动失败。
在另一种可选的实施方式中,第一子条件可以是发动机的起动时长信息中持续时长超过预设的持续时长阈值。例如,12V起动时持续时长超过30s,可以认为发动机起动失败。
本申请实施例中,若起动状态为基于第一电机起动模式起动对应的状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足第二子条件,控制发动机处于停机状态。
在一种可选的实施方式中,第二子条件可以是发动机的转速信息中转速小于设定的第二转速阈值,且起动时长信息中持续时长超过对应的持续时长阈值。例如,发动机的转速小于100r/s,且持续时长超过1s。
在另一种可选的实施方式中,第二子条件可以是冷机起动时,起动时长信息中持续时长超过对应的持续时长阈值,以及暖机起动时长信息中持续时长超过对应的持续时长阈值。例如,冷机起动时,持续时长超过30s,暖机起动时,持续时长超过3s。
在另一种可选的实施方式中,第二子条件可以是在第一电机的起动过程中,发动机停止/起动系统ISG路径退出时间超过0.2s,其原因可能是第一电机和/或第二电机故障,还可以是在第一电机的起动过程中,ISG起动请求退出时间超过0.2s,其原因可以是第一电机和/或第二电机故障,可能是第一电机不在扭矩模式,还可能是路径不在第一电机路径。
本申请实施例中,若起动状态为基于离合器起动模式起动对应的状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足第三子条件,控制发动机处于停机状态。
在一种可选的实施方式中,第三子条件可以是离合器起动结束时,转 速信息中的转速小于第三转速阈值,且扭矩信息中离合器的扭矩小于对应的扭矩阈值。例如,离合器起动结束时,发动机的转速小于300r/s,且离合器扭矩小于1Nm。
在另一种可选的实施方式中,第三子条件可以是离合器故障不可用。
在另一种可选的实施方式中,第三子条件可以是起动时长信息中持续时长超过对应的持续时长阈值,且扭矩信息中扭矩小于对应的扭矩阈值。例如,离合器起动时长超过3s且离合器扭矩小于1Nm。
在另一种可选的实施方式中,第三子条件可以是转速信息中转速小于对应的第四转速阈值,且扭矩信息中离合器的扭矩小于对应的扭矩阈值。例如,发动机的转速小于450r/s,且离合器扭矩小于1Nm。
下面介绍本申请一种控制发动机停机的方法的具体实施例,图5是本申请实施例提供的一种控制发动机停机的方法的流程示意图,本说明书提供了如实施例或流程图所示的方法操作步骤,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多执行顺序中的一种方式,不代表唯一的执行顺序,在实际执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境)。具体的如图5所示,该方法包括:
S501:获取发动机的当前状态信息和运行参数信息;当前状态信息包括运行状态,运行参数信息包括发动机的转速信息。
S503:若当前状态信息为运行状态,且转速信息满足运行状态对应的第二预设停机条件,控制发动机处于停机状态。
本申请实施例中,第二预设停机条件可以是当发动机处于正常运行状态时,发动机的转速低于预设的转速阈值。
在一种具体的实施方式中,当发动机处于正常运行状态时,发动机的转速掉到低于10r/s时,控制发动机处于停机状态。
下面介绍本申请一种控制发动机停机的方法的具体实施例,图6是本申请实施例提供的一种控制发动机停机的方法的流程示意图,本说明书提 供了如实施例或流程图所示的方法操作步骤,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多执行顺序中的一种方式,不代表唯一的执行顺序,在实际执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境)。具体的如图6所示,该方法包括:
S601:获取发动机的当前状态信息和运行参数信息;当前状态信息包括停机状态,运行参数信息包括发动机的重启次数信息、停机持续时长信息、车速信息和安全设备工作信息;
S603:若当前状态为停机状态,且重启次数信息、停机持续时长信息、车速信息和安全设备工作信息满足停机状态对应的第三预设停机条件,控制发动机处于停机状态。
本申请实施例中,发动机在处于停机状态时,若满足第三预设停机条件,即发动机进入低电量Power Down,则不再允许自动起动发动机,只能通过驾驶员人工起动。其中,第三预设条件可以包括以下几种:
①重启次数信息中重启次数超过3次;
②停机持续时长信息中停机时长超过10s;
③发动机处于停机状态时,车速信息中车速大于10km/h;
④安全设备工作信息中驾驶员未系安全带。
若不满足第三预设停机条件,且发动机未进入低电量Power Down,发动机转速小于50r/s,则允许自动起动发动机,不需要驾驶员手动拧动钥匙重新起动。
采用本申请实施例提供的控制发动机停机的方法,可以防止发动机起动时间过长、转速过低,可以避免起动机和双质量飞轮等硬件设备的损坏,可以提高系统的安全性和可靠性。
本申请实施例还提供的一种控制发动机停机的装置,图7是本申请实施例提供的一种控制发动机停机的装置的结构示意图,如图7所示,该装置可以包括:
获取模块701用于获取发动机的当前状态信息和运行参数信息;当前 状态信息包括起动状态,运行参数信息包括发动机的转速信息、起动时长信息、冷却液温度信息和扭矩信息;
控制模块703用于若当前状态信息为起动状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足起动状态对应的第一预设停机条件,控制发动机处于停机状态。
本申请实施例中,当前状态信息还包括运行状态;
该控制模块,用于若当前状态信息为运行状态,且转速信息满足运行状态对应的第二预设停机条件,控制发动机处于停机状态。
本申请实施例中,当前状态信息还包括停机状态,运行参数信息还包括发动机的重启次数信息、停机持续时长信息、车速信息和安全设备工作信息;
该控制模块,用于若当前状态为停机状态,且重启次数信息、停机持续时长信息、车速信息和安全设备工作信息满足停机状态对应的第三预设停机条件,控制发动机处于停机状态。
本申请实施例中,起动状态包括基于多个起动模式起动所对应的状态,多个起动模式包括12V起动模式、第一电机起动模式和离合器起动模式;
第一预设停机条件包括12V起动模式对应的第一子条件、第一电机起动模式对应的第二子条件和离合器起动模式对应的第三子条件。
本申请实施例中,控制模块用于若起动状态为基于12V起动模式起动对应的状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足第一子条件,控制发动机处于停机状态。
本申请实施中,控制模块用于若起动状态为基于第一电机起动模式起动对应的状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足第二子条件,控制发动机处于停机状态。
本申请实施例中,控制模块用于若起动状态为基于离合器起动模式起动对应的状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足第三子条件,控制发动机处于停机状态。
本申请实施例中的装置与方法实施例基于同样的申请构思。
采用本身实施例提供的控制发动机停机的装置,可以防止发动机起动 时间过长、转速过低,可以避免起动机和双质量飞轮等硬件设备的损坏,可以提高系统的安全性和可靠性。
本申请实施例还提供的一种电子设备,电子设备可设置于控制器之中以保存用于实现方法实施例中的一种控制发动机停机的方法相关的至少一条指令、至少一段程序、代码集或指令集,该至少一条指令、该至少一段程序、该代码集或指令集由该存储器加载并执行以实现上述的控制发动机停机的方法。
本申请实施例还提供的一种存储介质,存储介质可设置于服务器之中以保存用于实现方法实施例中一种控制发动机停机的方法相关的至少一条指令、至少一段程序、代码集或指令集,该至少一条指令、该至少一段程序、该代码集或指令集由该处理器加载并执行以实现上述控制发动机停机的方法。
可选的,在本实施例中,上述存储介质可以位于计算机网络的多个网络服务器中的至少一个网络服务器。可选地,在本实施例中,上述存储介质可以包括但不限于包括:U盘、只读存储器(ROM,Read-only Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
由上述本申请提供的控制发动机停机的方法、装置、电子设备或存储介质的实施例可见,本申请中方法包括:获取发动机的当前状态信息和运行参数信息;当前状态信息包括起动状态,运行参数信息包括发动机的转速信息、起动时长信息、冷却液温度信息和扭矩信息;若当前状态信息为起动状态,且转速信息、起动时长信息、冷却液温度信息和扭矩信息满足起动状态对应的第一预设停机条件,控制发动机处于停机状态。基于申请实施例,可以防止发动机起动时间过长、转速过低,可以避免起动机和双质量飞轮等硬件设备的损坏,可以提高系统的安全性和可靠性。
需要说明的是:上述本申请实施例的先后顺序仅仅为了描述,不代表实施例的优劣,且上述本说明书对特定的实施例进行了描述,其他实施例也在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或者步骤可以按照不同的实施例中的顺序来执行并且能够实现预期的结 果。另外,在附图中描绘的过程不一定要求示出特定顺序或者而连接顺序才能够实现期望的结果,在某些实施方式中,多任务并行处理也是可以的或者可能是有利的。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的均为与其他实施例的不同之处。尤其,对于装置的实施例而言,由于其基于相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种控制发动机停机的方法,其特征在于,包括:
    获取发动机的当前状态信息和运行参数信息;所述当前状态信息包括起动状态,所述运行参数信息包括发动机的转速信息、起动时长信息、冷却液温度信息和扭矩信息;
    若所述当前状态信息为所述起动状态,且所述转速信息、所述起动时长信息、所述冷却液温度信息和所述扭矩信息满足所述起动状态对应的第一预设停机条件,控制所述发动机处于停机状态。
  2. 根据权利要求1所述的方法,其特征在于,所述当前状态信息还包括运行状态;
    所述方法还包括:
    若所述当前状态信息为所述运行状态,且所述转速信息满足所述运行状态对应的第二预设停机条件,控制所述发动机处于所述停机状态。
  3. 根据权利要求1所述的方法,其特征在于,所述当前状态信息还包括所述停机状态,所述运行参数信息还包括所述发动机的重启次数信息、停机持续时长信息、车速信息和安全设备工作信息;
    所述方法还包括:
    若所述当前状态为所述停机状态,且所述重启次数信息、所述停机持续时长信息、所述车速信息和所述安全设备工作信息满足所述停机状态对应的第三预设停机条件,控制所述发动机处于所述停机状态。
  4. 根据权利要求1所述的方法,其特征在于,所述起动状态包括基于多个起动模式起动所对应的状态,所述多个起动模式包括12V起动模式、第一电机起动模式和离合器起动模式;
    所述第一预设停机条件包括所述12V起动模式对应的第一子条件、所述第一电机起动模式对应的第二子条件和所述离合器起动模式对应的第三子条件。
  5. 根据权利要求4所述的方法,其特征在于,所述若所述当前状态信息为所述起动状态,且所述转速信息、所述起动时长信息、所述冷却液温度信息和所述扭矩信息满足所述起动状态对应的第一预设停机条件,所述控制所述发动机处于所述停机状态,包括:
    若所述起动状态为基于所述12V起动模式起动对应的状态,且所述转速信息、所述起动时长信息、所述冷却液温度信息和所述扭矩信息满足所述第一子条件,控制所述发动机处于所述停机状态。
  6. 根据权利要求4所述的方法,其特征在于,所述若所述当前状态信息为所述起动状态,且所述转速信息、所述起动时长信息、所述冷却液温度信息和所述扭矩信息满足所述起动状态对应的第一预设停机条件,所述控制所述发动机处于所述停机状态,包括:
    若所述起动状态为基于所述第一电机起动模式起动对应的状态,且所述转速信息、所述起动时长信息、所述冷却液温度信息和所述扭矩信息满足所述第二子条件,控制所述发动机处于所述停机状态。
  7. 根据权利要求3所述的方法,其特征在于,所述若所述当前状态信息为所述起动状态,且所述转速信息、所述起动时长信息、所述冷却液温度信息和所述扭矩信息满足所述起动状态对应的第一预设停机条件,所述控制所述发动机处于所述停机状态,包括:
    若所述起动状态为基于所述离合器起动模式起动对应的状态,且所述转速信息、所述起动时长信息、所述冷却液温度信息和所述扭矩信息满足所述第三子条件,控制所述发动机处于所述停机状态。
  8. 一种控制发动机停机的装置,其特征在于,包括:
    获取模块,用于获取发动机的当前状态信息和运行参数信息;所述当前状态信息包括起动状态,所述运行参数信息包括发动机的转速信息、起动时长信息、冷却液温度信息和扭矩信息;
    控制模块,用于若所述当前状态信息为所述起动状态,且所述转速信息、所述起动时长信息、所述冷却液温度信息和所述扭矩信息满足所述起动状态对应的第一预设停机条件,控制所述发动机处于停机状态。
  9. 一种电子设备,其特征在于,所述电子设备包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现权利要求1-7任意一项所述的控制发动机停机的方法。
  10. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如权利要求1-7任意一项所述的控制发动机停机的方法。
PCT/CN2021/103064 2021-06-29 2021-06-29 一种控制发动机停机的方法、装置、电子设备及存储介质 WO2023272481A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21854733.9A EP4134287A4 (en) 2021-06-29 2021-06-29 METHOD AND DEVICE FOR CONTROLLING THE SHUTDOWN OF AN ENGINE, AND ELECTRONIC DEVICE AND STORAGE MEDIA
CN202180004362.6A CN114207264A (zh) 2021-06-29 2021-06-29 一种控制发动机停机的方法、装置、电子设备及存储介质
PCT/CN2021/103064 WO2023272481A1 (zh) 2021-06-29 2021-06-29 一种控制发动机停机的方法、装置、电子设备及存储介质
US18/280,681 US20240157929A1 (en) 2021-06-29 2021-06-29 Method and Device for Controlling Engine to Shut Down, and Electronic Device and Storage Medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103064 WO2023272481A1 (zh) 2021-06-29 2021-06-29 一种控制发动机停机的方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023272481A1 true WO2023272481A1 (zh) 2023-01-05

Family

ID=80659061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103064 WO2023272481A1 (zh) 2021-06-29 2021-06-29 一种控制发动机停机的方法、装置、电子设备及存储介质

Country Status (4)

Country Link
US (1) US20240157929A1 (zh)
EP (1) EP4134287A4 (zh)
CN (1) CN114207264A (zh)
WO (1) WO2023272481A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117627798A (zh) * 2024-01-26 2024-03-01 潍柴动力股份有限公司 增程式发动机的控制方法、控制系统、增程式发动机和车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105620299A (zh) * 2015-12-21 2016-06-01 北京新能源汽车股份有限公司 增程式电动汽车増程器起动控制方法和装置
CN105774571A (zh) * 2015-12-30 2016-07-20 北京新能源汽车股份有限公司 增程式电动汽车及其发动机起动控制方法、系统
CN106809206A (zh) * 2015-11-30 2017-06-09 天津市松正电动汽车技术股份有限公司 一种混合动力车辆控制方法及发动机停机控制系统
CN109572666A (zh) * 2018-11-19 2019-04-05 吉林大学 一种行星式混合动力汽车发动机起停控制方法
US20200263621A1 (en) * 2019-02-15 2020-08-20 Ford Global Technologies, Llc Methods and system for automatically stopping an engine
CN112590755A (zh) * 2020-12-03 2021-04-02 浙江吉利控股集团有限公司 发动机停机控制方法、系统及计算机存储介质
CN112677953A (zh) * 2021-01-07 2021-04-20 浙江吉利控股集团有限公司 双电机混合动力系统中发动机的启动方法和装置及车辆

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8515608B2 (en) * 2010-10-21 2013-08-20 Hino Motors, Ltd. Engine start control device, hybrid vehicle and engine start method, and computer program
WO2012097349A2 (en) * 2011-01-13 2012-07-19 Cummins Inc. System, method, and apparatus for controlling power output distribution in a hybrid power train
US9238458B2 (en) * 2013-03-15 2016-01-19 Ford Global Technologies, Llc Hybrid-electric vehicle engine starting method and system
FR3006384B1 (fr) * 2013-05-29 2016-05-06 Peugeot Citroen Automobiles Sa Procede et dispositif d'arbitrage entre plusieurs organes de (re)demarrage lors d'une anomalie (re)demarrage moteur thermique
CN106285972A (zh) * 2015-05-28 2017-01-04 上海通用汽车有限公司 车辆的发动机自动启停的方法
DE102015219902B4 (de) * 2015-10-14 2017-06-08 Ford Global Technologies, Llc Verfahren und Vorrichtung zum Starten und Stoppen eines Verbrennungsmotors eines Kraftfahrzeugs und Kraftfahrzeug
KR101795299B1 (ko) * 2016-09-08 2017-12-01 현대자동차주식회사 주행성능유지를 위한 엔진 기동성 확보 방법 및 하이브리드 차량
FR3087175B1 (fr) * 2018-10-15 2020-10-09 Psa Automobiles Sa Procede d'inhibition d'un arret de moteur thermique pour une chaine de traction de vehicule automobile

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106809206A (zh) * 2015-11-30 2017-06-09 天津市松正电动汽车技术股份有限公司 一种混合动力车辆控制方法及发动机停机控制系统
CN105620299A (zh) * 2015-12-21 2016-06-01 北京新能源汽车股份有限公司 增程式电动汽车増程器起动控制方法和装置
CN105774571A (zh) * 2015-12-30 2016-07-20 北京新能源汽车股份有限公司 增程式电动汽车及其发动机起动控制方法、系统
CN109572666A (zh) * 2018-11-19 2019-04-05 吉林大学 一种行星式混合动力汽车发动机起停控制方法
US20200263621A1 (en) * 2019-02-15 2020-08-20 Ford Global Technologies, Llc Methods and system for automatically stopping an engine
CN112590755A (zh) * 2020-12-03 2021-04-02 浙江吉利控股集团有限公司 发动机停机控制方法、系统及计算机存储介质
CN112677953A (zh) * 2021-01-07 2021-04-20 浙江吉利控股集团有限公司 双电机混合动力系统中发动机的启动方法和装置及车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4134287A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117627798A (zh) * 2024-01-26 2024-03-01 潍柴动力股份有限公司 增程式发动机的控制方法、控制系统、增程式发动机和车辆
CN117627798B (zh) * 2024-01-26 2024-05-17 潍柴动力股份有限公司 增程式发动机的控制方法、控制系统、增程式发动机和车辆

Also Published As

Publication number Publication date
US20240157929A1 (en) 2024-05-16
EP4134287A1 (en) 2023-02-15
EP4134287A4 (en) 2023-02-15
CN114207264A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
RU2670581C2 (ru) Устройство и способ запуска двигателя мягкогибридного транспортного средства
WO2017197833A1 (zh) 电动汽车增程器系统的控制方法和装置
CN112550265B (zh) 一种混合动力车辆发动机启停动态控制方法及系统
JP2002004910A (ja) 車両のエンジン自動停止始動装置
JP5040707B2 (ja) アイドルストップ車両の始動制御装置及び始動制御方法
US20130151131A1 (en) Start-up strategy for hybrid powertrain
US20090043429A1 (en) Control device and control method of vehicle
JP2001289088A (ja) ハイブリッド車両の制御装置
CN110103941B (zh) 一种混合动力车辆中双质量飞轮的保护方法、系统及终端
WO2023272481A1 (zh) 一种控制发动机停机的方法、装置、电子设备及存储介质
JP2007046508A (ja) アイドルストップ制御装置およびアイドルストップ制御方法
WO2017113968A1 (zh) 增程式电动汽车的增程器停机控制方法及系统
JP7128661B2 (ja) バッテリ診断装置
WO2024017149A1 (zh) 混动汽车的起机控制方法、装置、汽车及介质
CN102267454B (zh) 混合动力汽车冷启动控制系统和方法以及混合动力汽车
JP6307548B2 (ja) 車両
US9206762B2 (en) Device and method for starting an internal combustion engine arranged in a vehicle
CN110985260A (zh) 增程器启动控制方法、设备、增程式电动汽车和存储介质
JP2010077859A (ja) エンジン始動装置及びエンジン始動制御方法
CN111891112B (zh) 混合动力汽车发动机启停控制方法、装置、设备和介质
KR101021130B1 (ko) 마일드 하이브리드 차량의 제어장치 및 방법
JP2000161099A (ja) 内燃機関の冷却制御装置
JPH11150805A (ja) ハイブリッド車両
JP2020089038A (ja) 車両の電源制御装置
JPH11173179A (ja) ハイブリッド型電気自動車

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021854733

Country of ref document: EP

Effective date: 20220215

WWE Wipo information: entry into national phase

Ref document number: 18280681

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE