WO2023248656A1 - メタル系フラックス入りワイヤ - Google Patents
メタル系フラックス入りワイヤ Download PDFInfo
- Publication number
- WO2023248656A1 WO2023248656A1 PCT/JP2023/018501 JP2023018501W WO2023248656A1 WO 2023248656 A1 WO2023248656 A1 WO 2023248656A1 JP 2023018501 W JP2023018501 W JP 2023018501W WO 2023248656 A1 WO2023248656 A1 WO 2023248656A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- less
- wire
- content
- metal
- Prior art date
Links
- 230000004907 flux Effects 0.000 title abstract description 7
- 238000003466 welding Methods 0.000 claims abstract description 42
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims description 77
- 229910052751 metal Inorganic materials 0.000 claims description 77
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 11
- 229910052804 chromium Inorganic materials 0.000 abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 4
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 20
- 238000011156 evaluation Methods 0.000 description 14
- 239000007789 gas Substances 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 229910001566 austenite Inorganic materials 0.000 description 10
- 230000007547 defect Effects 0.000 description 10
- 230000007797 corrosion Effects 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 9
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 8
- 239000011148 porous material Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000000087 stabilizing effect Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 230000002542 deteriorative effect Effects 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 229910001039 duplex stainless steel Inorganic materials 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000036544 posture Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/368—Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
Definitions
- the present invention relates to a metal flux-cored wire.
- duplex stainless steel formed by austenitic and ferritic metal structures is widely used in various fields such as chemical plant equipment, oil country tubular goods for oil or natural gas drilling, and seawater desalination equipment. For this reason, there is an increasing demand for flux-cored wires used for welding duplex stainless steels.
- Patent Document 1 the contents of Cr, Ni, Mo, N, Mn, and Si are specified, and the relationship between the Ti equivalent value of a Ti alloy and the Al equivalent value of an Al alloy is appropriately controlled. Flux-cored wires for phase-based stainless steels have been proposed. Further, Patent Document 1 describes that the low-temperature toughness and pitting corrosion resistance of the welded portion are improved by performing arc welding using the above-mentioned flux-cored wire.
- metal flux-cored wires for stainless steel are required to suppress the occurrence of blowholes during welding.
- Patent Document 1 a slag-based flux-cored wire containing 5% or more of a slag component such as TiO 2 is studied in detail, but a metal-based flux-cored wire is not studied. Furthermore, there is a problem in that simply reducing the slag component from the wire of Patent Document 1 causes blowholes. Therefore, there is a need for a metal flux-cored wire that can suppress the occurrence of blowholes in arc welding of stainless steel.
- the present invention has been made in view of the above-mentioned situation, and aims to provide a metal flux-cored wire that can reduce the occurrence of blowholes in arc welding of stainless steel, and a weld metal with reduced blowholes. purpose.
- Fe 50% by mass or more and 65% by mass or less
- Cr 22.0% by mass or more and 29.0% by mass or less
- Ni 7.5% by mass or more and 11.0% by mass or less
- Mo 1.5% by mass or more and 6.0% by mass or less
- N 0.20% by mass or more and 0.40% by mass or less
- Mg content relative to the total mass of the wire is expressed as [Mg] in mass %
- Al content relative to the total mass of the wire is expressed as [Al] in mass %
- [Mg] ⁇ 5+[Al] A metal flux-cored wire characterized in that it is 0.50 or more and 5.0 or less.
- preferred embodiments of the present invention relating to metal flux-cored wires relate to the following [2] to [6].
- the metal flux-cored wire according to [1] which contains Mg: more than 0% by mass and 0.70% by mass or less.
- Al 0.10% by mass or more and 0.60% by mass or less
- Mg Contains 0.10% by mass or more and 0.70% by mass or less
- FIG. 1 is a schematic diagram showing the shapes of base materials when welded using metal flux-cored wires of invention examples and comparative examples.
- a metal flux-cored wire may be simply referred to as a "wire.”
- the present invention is not limited to the embodiments described below, and can be implemented with arbitrary changes within the scope of the gist of the present invention.
- the metal-based flux-cored wire according to the present embodiment is used as a welding material for stainless steel, and has less slag-forming components than the slag-based flux-cored wire.
- the metal flux-cored wire of this embodiment has an O content of 2.0% by mass or less.
- the metal-based flux-cored wire according to the present embodiment includes a cylindrical outer skin and a metal-based flux filled inside the outer skin.
- Flux-cored wires include a seamless type with a seamless outer sheath, a seam type that is formed into a tubular shape such as a C section, a overlapped cross section, etc., and has a seam on the outer sheath. It may be.
- the stainless steel is not particularly limited, and includes, for example, duplex stainless steel, and more specifically, the material to be welded is a steel plate or a pipe. Note that the flux-cored wire of this embodiment can be made of materials other than stainless steel.
- the amount of each component in a metal flux-cored wire refers to the total amount of components contained in the outer sheath and flux. It is defined as the value of the content relative to the total amount).
- Cr has the role of adjusting the balance between the ferrite phase and the austenite phase as a ferrite stabilizing element, and has the effect of improving the pitting corrosion resistance of the welded part as a passive film forming element. If the Cr content in the wire is less than 22.0% by mass, the above effects cannot be sufficiently obtained. Therefore, the Cr content based on the total mass of the wire is 22.0% by mass or more, preferably 23% by mass or more, and more preferably 24% by mass or more.
- the Cr content in the wire exceeds 29.0% by mass, the ⁇ phase, which is an intermetallic compound, will precipitate and the low-temperature toughness of the weld will decrease. Therefore, the Cr content based on the total mass of the wire is 29.0% by mass or less, preferably 28% by mass or less, and more preferably 27% by mass or less.
- Ni has the role of adjusting the ferrite/austenite phase balance as an austenite stabilizing element, and is an effective element for improving the low-temperature toughness of the weld zone. If the Ni content in the wire is less than 7.5% by mass, the above effects cannot be sufficiently obtained. Therefore, the Ni content based on the total mass of the wire is 7.5% by mass or more, preferably 8.0% by mass or more, and more preferably 8.5% by mass or more. On the other hand, if the Ni content in the wire exceeds 11.0% by mass, the austenite phase in the weld metal becomes excessive and the strength of the welded part decreases. Therefore, the Ni content based on the total mass of the wire is 11.0% by mass or less, preferably 10.5% by mass or less, and more preferably 10.0% by mass or less.
- Mo has the role of adjusting the ferrite/austenite phase balance as a ferrite stabilizing element, and also has the effect of improving the pitting corrosion resistance of the weld joint together with Cr. If the content of Mo in the wire is less than 1.5% by mass, the above effect cannot be sufficiently obtained. Therefore, the Mo content based on the total mass of the wire is 1.5% by mass or more, preferably 2.0% by mass or more, and more preferably 3.0% by mass or more. On the other hand, when the content of Mo in the wire exceeds 6.0% by mass, precipitation of the ⁇ phase is promoted and the low-temperature toughness of the weld zone is reduced. Therefore, the Mo content based on the total mass of the wire is 6.0% by mass or less, preferably 5.0% by mass or less, and more preferably 4.0% by mass or less.
- N has the role of adjusting the ferrite/austenite phase balance as an austenite stabilizing element, and also has the effect of improving the pitting corrosion resistance of the weld joint together with Cr and Mo. If the N content in the wire is less than 0.20% by mass, the above effects cannot be sufficiently obtained. Therefore, the N content based on the total mass of the wire is 0.20% by mass or more, preferably 0.22% by mass or more, and more preferably 0.24% by mass or more. On the other hand, if the N content in the wire exceeds 0.30% by mass, the porosity defect resistance decreases, making it difficult to obtain a sound welded joint. Therefore, the N content based on the total mass of the wire is 0.40% by mass or less, preferably 0.35% by mass or less, more preferably 0.29% by mass or less, and 0.28% by mass or less. It is more preferable that
- Mn has a role of adjusting the ferrite/austenite phase balance as an austenite stabilizing element, and also acts as a deoxidizing element.
- Mn does not necessarily need to be included in the wire as a deoxidizing element, and may be 0% by mass.
- the Mn content relative to the total mass of the wire is preferably 0.2% by mass or more, and more preferably 0.5% by mass or more.
- the Mn content based on the total mass of the wire is 4.0% by mass or less, preferably 3.0% by mass or less, and more preferably 2.0% by mass or less.
- Si has a role of adjusting the ferrite/austenite phase balance as a ferrite stabilizing element, and also acts as a deoxidizing element.
- the content may be 0% by mass.
- the Si content relative to the total mass of the wire is preferably 0.1% by mass or more, and more preferably 0.3% by mass or more.
- the Si content based on the total mass of the wire is 2.0% by mass or less, preferably 1.8% by mass or less, and more preferably 1.5% by mass or less.
- Ti is a strong deoxidizing element and can suppress the generation of blowholes by combining with inclusions remaining in the molten weld metal and forming oxides.
- blowholes can be reduced by appropriately controlling the contents of Mg and Al, which will be described later. Therefore, it is not necessary to necessarily include Ti in the wire as a deoxidizing element, and It may be %.
- the Ti content relative to the total mass of the wire is preferably 0.1% by mass or more, and 0.3% by mass. % or more is more preferable.
- the Ti content in the wire exceeds 1.0% by mass, excess Ti will be introduced into the molten weld metal, and some of the excess Ti will be present in the weld metal. Reacts with N to form TiN. As a result, inclusions not only agglomerate and become coarse, increasing the risk of becoming a starting point for pitting corrosion, but also reduce the pitting corrosion resistance of the weld due to a decrease in the amount of N contained in the matrix. . Therefore, the Ti content based on the total mass of the wire is 1.0% by mass or less, preferably 0.9% by mass or less, and more preferably 0.7% by mass or less.
- F has the effect of suppressing pore defects such as pits and blowholes.
- blowholes can be reduced by appropriately controlling the contents of Mg and Al, which will be described later. Therefore, it is not necessary to include F in the wire, and it may be 0% by mass. Good too.
- the F content relative to the total mass of the wire is preferably 0.02% by mass or more, and 0.05% by mass. More preferably, it is at least % by mass.
- the F content based on the total mass of the wire is 1.0% by mass or less.
- Mg and Al are strong deoxidizing elements and are the most important elements in this embodiment.
- the wire does not necessarily need to contain both Mg and Al, but may contain at least one selected from Mg and Al.
- Mg has a higher effect of reducing the occurrence of blowholes than Al, and that the above effect can be obtained even when it is contained in a small amount, and the following formula (1) The parameters expressed by are derived.
- [Mg] is a value expressed in mass % of Mg content based on the total mass of the wire
- [Al] is a value expressed in mass % of Al content based on the total mass of the wire.
- the contents of Mg and Al are defined based on the Mg content and Al content in the wire so that the value calculated by the above formula (1) falls within a desired range. If the value obtained by the above formula (1) is less than 0.50, the occurrence of blowholes cannot be reduced. Therefore, the value obtained by the above formula (1) should be 0.50 or more, preferably 0.70 or more, and more preferably 1.0 or more. On the other hand, when the value obtained by the above formula (1) exceeds 5.0, workability deteriorates significantly. Therefore, the value obtained by the above formula (1) should be 5.0 or less, preferably 4.0 or less, and more preferably 3.0 or less.
- Mg more than 0% by mass
- Al more than 0% by mass
- the value obtained by the above formula (1) can be set to 1.5 or more. More preferred.
- the lower limit of the value obtained by the above formula (1) be 1.0 or more.
- the upper limit is 2.5 or less.
- the Mg content in the wire is more than 0% by mass, the effect of reducing the occurrence of blowholes can be obtained. Therefore, the Mg content based on the total mass of the wire is preferably more than 0% by mass, more preferably 0.1% by mass or more, and even more preferably 0.2% by mass or more.
- the Mg content based on the total mass of the wire is preferably 0.70% by mass or less, more preferably 0.60% by mass or less, and even more preferably 0.50% by mass or less.
- Al like Mg, is a strong deoxidizing element and is an important element in this embodiment.
- Al is a strong deoxidizing element and is an important element in this embodiment.
- the Al content in the wire is 0.10% by mass or more, the effect of reducing the occurrence of blowholes can be obtained. Therefore, the Al content relative to the total mass of the wire is preferably 0.10% by mass or more, more preferably 0.12% by mass or more.
- the Al content in the wire is 0.60% by mass or less, the arc becomes stable and blowholes are less likely to occur.
- the Al content relative to the total mass of the wire is preferably 0.60% by mass or less, more preferably 0.50% by mass or less.
- ⁇ [Al]+[Mg]: 0.30 or more and 1.20 or less> As described above, in this embodiment, it is not necessary to contain both Mg and Al in the wire, but welding workability is improved by containing Al in an appropriate content together with Mg in the wire. be able to.
- [Al]+[Mg] is 0.30 or more and 1.20 or less, it is possible to obtain both the effects of improving welding workability and reducing the occurrence of blowholes. More specifically, the value obtained by [Al]+[Mg] is preferably 0.30 or more, more preferably 0.50 or more. On the other hand, the value obtained by [Al]+[Mg] is preferably 1.20 or less, more preferably 1.0 or less.
- the metal flux-cored wire according to the present embodiment further contains at least one selected from Na, C, Nb, and Cu.
- the upper limit value of each component and the reason for its limitation will be explained.
- Na has an effect of ensuring arc stability, and in this embodiment, has an effect as an arc fine adjustment agent.
- the Na content relative to the total mass of the wire is preferably 0.5% by mass or less, more preferably 0.3% by mass or less.
- C is a component that improves the strength of weld metal by combining with elements such as Nb and forming fine precipitates, it is also a component that deteriorates corrosion resistance.
- the C content based on the total mass of the wire is preferably 2.0% by mass or less, more preferably 1.0% by mass or less.
- Nb is a component that combines with C to improve the strength of the weld metal, it is a component that generates low melting point compounds at grain boundaries and deteriorates solidification cracking resistance.
- the Nb content based on the total mass of the wire is preferably 1.0% by mass or less, more preferably 0.5% by mass or less.
- Cu is a component that has the effect of increasing the strength of the weld metal, it is also a component that increases the risk of hot cracking of the weld metal and deteriorates the toughness of the weld metal by causing excessive hardening.
- the Cu content relative to the total mass of the wire is preferably 5.0% by mass or less, more preferably 1.0% by mass or less.
- O is a component that tends to cause blowholes to occur, and is also a component that reduces the toughness of the weld metal by increasing the amount of oxygen in the weld metal.
- O content based on the total mass of the wire is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, even more preferably 0.5% by mass or less, and 0. It is particularly preferable that the amount is .1% by mass or less.
- Fe 50% by mass or more and 65% by mass or less>
- Fe is the main component of the metal-based flux-cored wire according to this embodiment, and it is preferable to adjust the Fe content in order to obtain a weld metal with desired characteristics.
- the Fe content relative to the total mass of the wire is preferably 50% by mass or more, more preferably 55% by mass or more, even more preferably 57% by mass or more, particularly 58% by mass or more. preferable.
- the total content of Fe, Cr, Ni, Mo, N, Mg, Al, Mn, Si, Ti, and F is 90 mass based on the total mass of the wire. % or more, more preferably 93% by mass or more, even more preferably 96% by mass or more, particularly preferably 98% by mass or more.
- the metal-based flux-cored wire according to the present embodiment can contain various metal components in addition to inevitable impurities as the remainder within a range that does not impede the above effects.
- the metal component from the viewpoint of corrosion resistance and mechanical performance, V, W, etc. may be contained in the wire, and from the viewpoint of arc stability, K, Li, etc. may be contained in the wire.
- the total amount of these metal components is preferably less than 0.30% by mass, for example.
- Unavoidable impurities include P, S, and the like.
- the shielding gas used is not particularly limited, but for example, Ar gas, carbon dioxide gas, a mixed gas of Ar gas and carbon dioxide gas, a mixed gas of Ar gas and oxygen gas, etc. Can be used.
- the flow rate of the gas is also not particularly limited, but can be set to, for example, 15 to 30 L/min.
- the welding posture using the metal flux wire according to this embodiment is not particularly limited, and welding can be performed in various welding postures.
- the thickness of the outer skin and the wire diameter (diameter) of the metal flux-cored wire according to the present embodiment are not particularly limited, but it is applicable to wires with a diameter specified in welding material standards such as AWS or JIS. be able to.
- the weld metal according to this embodiment is obtained by welding using the metal flux-cored wire described above.
- Welding conditions are not particularly limited, and commonly used welding conditions can be used.
- the commonly used welding conditions can be, for example, welding conditions based on the method for producing weld metal described in JIS Z3184:2003.
- FIG. 1 is a schematic diagram showing the shapes of base materials when welded using metal flux-cored wires of invention examples and comparative examples.
- a plate material having a thickness of 12 mm was prepared, and a groove 1a was formed at a depth of 6 mm from one surface to produce a base material 1.
- the groove 1a had a groove angle of 60°, and the bottom 1b of the groove 1a was rounded with a radius of 3 mm to form a U-shape.
- gas-shielded arc welding was performed on the base material 1 using the produced metal flux-cored wire. The welding conditions are shown below.
- Base material type JIS G 4304 SUS821L1 Type of shielding gas, flow rate: 80% Ar-20% CO 2 mixed gas, 25 liters/min, welding current 250 A Welding voltage: 30V Welding position: Downward welding Welding speed: 300mm/min Pass: 2 layers and 2 passes for groove 1a
- invention example No. Nos. 1 to 14 were able to reduce the occurrence of blowholes because the chemical components of the wires were within the numerical range defined by the present invention.
- invention examples No. 9 to 14 have Mg: more than 0% by mass and Al: more than 0% by mass, and the value obtained by formula (1): [Mg] x 5 + [Al] is 1.5 or more. Therefore, the evaluation results of pore defect resistance were even more excellent.
- the values obtained by formula (1) were 1.0 or more and 2.5 or less, so the workability evaluation results were even better. Ta.
- comparative example No. No. 1 to No. 3 the chemical composition of the wire or the value calculated by formula (1) was outside the numerical range defined by the present invention, and therefore the evaluation results of pore defect resistance were poor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nonmetallic Welding Materials (AREA)
Abstract
ステンレス鋼のアーク溶接においてブローホールの発生を低減することができるメタル系フラックス入りワイヤを提供する。メタル系フラックス入りワイヤは、ワイヤ全質量に対して、Fe:50質量%以上65質量%以下、Cr:22.0質量%以上29.0質量%以下、Ni:7.5質量%以上11.0質量%以下、Mo:1.5質量%以上6.0質量%以下、N:0.20質量%以上0.40質量%以下、及び、Mg及びAlから選択された少なくとも一方を含有し、Mn:4.0質量%以下(0質量%を含む)、Si:2.0質量%以下(0質量%を含む)、Ti:1.0質量%以下(0質量%を含む)、F:1.0質量%以下(0質量%を含む)であり、ワイヤ全質量に対するMg含有量を質量%で[Mg]、ワイヤ全質量に対するAl含有量を質量%で[Al]と表す場合に、[Mg]×5+[Al]:0.50以上5.0以下である。
Description
本発明は、メタル系フラックス入りワイヤに関する。
一般に、化学プラント機器、石油または天然ガスの掘削用油井管、海水淡水化装置などの様々な分野において、オーステナイト系とフェライト系の金属組織によって形成される二相系ステンレス鋼が多用されている。このため、二相系ステンレス鋼の溶接に使用されるフラックス入りワイヤについての要求が高まっている。
例えば、特許文献1には、Cr、Ni、Mo、N、Mn及びSiの含有量を規定するとともに、Ti合金のTi換算値と、Al合金のAl換算値との関係を適切に制御した二相系ステンレス鋼用のフラックス入りワイヤが提案されている。また、特許文献1には、上記フラックス入りワイヤを使用してアーク溶接することにより、溶接部の低温靱性および耐孔食性を向上させることが記載されている。
ところで、ステンレス鋼用のメタル系フラックス入りワイヤを用いてアーク溶接を行うとブローホールが発生しやすい。このため、ステンレス鋼用のメタル系フラックス入りワイヤでは、溶接時におけるブローホールの発生を抑制することが求められている。
しかしながら、上記特許文献1には、TiO2等のスラグ成分を5%以上含有するスラグ系のフラックス入りワイヤについて詳しく検討されているが、メタル系のフラックス入りワイヤについては検討されていない。また、特許文献1のワイヤから単にスラグ成分を低減するとブローホールが発生してしまう問題があった。したがって、ステンレス鋼のアーク溶接において、ブローホールの発生を抑制可能なメタル系フラックス入りワイヤが求められている。
本発明は、上述した状況に鑑みてなされたものであり、ステンレス鋼のアーク溶接においてブローホールの発生を低減することができるメタル系フラックス入りワイヤ及びブローホールを低減した溶接金属を提供することを目的とする。
本発明者らは、上記課題を解決するために鋭意研究した結果、二相系ステンレス鋼のアーク溶接において、メタル系フラックス入りワイヤ中のMg含有量とAl含有量との関係を適切に制御することにより、ブローホールの発生を低減することができることを見出した。本発明は、この知見に基づいてなされたものである。
本発明の上記目的は、メタル系フラックス入りワイヤに係る下記[1]の構成により達成される。
[1] ワイヤ全質量に対して、
Fe:50質量%以上65質量%以下、
Cr:22.0質量%以上29.0質量%以下、
Ni:7.5質量%以上11.0質量%以下、
Mo:1.5質量%以上6.0質量%以下、
N:0.20質量%以上0.40質量%以下、及び、
Mg及びAlから選択された少なくとも一方を含有し、
Mn:4.0質量%以下(0質量%を含む)、
Si:2.0質量%以下(0質量%を含む)、
Ti:1.0質量%以下(0質量%を含む)、
F:1.0質量%以下(0質量%を含む)であり、
ワイヤ全質量に対するMg含有量を質量%で[Mg]、ワイヤ全質量に対するAl含有量を質量%で[Al]と表す場合に、
[Mg]×5+[Al]:0.50以上5.0以下であることを特徴とする、メタル系フラックス入りワイヤ。
Fe:50質量%以上65質量%以下、
Cr:22.0質量%以上29.0質量%以下、
Ni:7.5質量%以上11.0質量%以下、
Mo:1.5質量%以上6.0質量%以下、
N:0.20質量%以上0.40質量%以下、及び、
Mg及びAlから選択された少なくとも一方を含有し、
Mn:4.0質量%以下(0質量%を含む)、
Si:2.0質量%以下(0質量%を含む)、
Ti:1.0質量%以下(0質量%を含む)、
F:1.0質量%以下(0質量%を含む)であり、
ワイヤ全質量に対するMg含有量を質量%で[Mg]、ワイヤ全質量に対するAl含有量を質量%で[Al]と表す場合に、
[Mg]×5+[Al]:0.50以上5.0以下であることを特徴とする、メタル系フラックス入りワイヤ。
また、メタル系フラックス入りワイヤに係る本発明の好ましい実施形態は、以下の[2]~[6]に関する。
[2] ワイヤ全質量に対して、
Mg:0質量%超0.70質量%以下を含有することを特徴とする、[1]に記載のメタル系フラックス入りワイヤ。
Mg:0質量%超0.70質量%以下を含有することを特徴とする、[1]に記載のメタル系フラックス入りワイヤ。
[3] ワイヤ全質量に対して、
Al:0.10質量%以上0.60質量%以下、及び、
Mg:0.10質量%以上0.70質量%以下を含有し、
[Al]+[Mg]:0.30以上1.20以下であることを特徴とする、[1]又は[2]に記載のメタル系フラックス入りワイヤ。
Al:0.10質量%以上0.60質量%以下、及び、
Mg:0.10質量%以上0.70質量%以下を含有し、
[Al]+[Mg]:0.30以上1.20以下であることを特徴とする、[1]又は[2]に記載のメタル系フラックス入りワイヤ。
[4] さらに、Na、C、Nb及びCuから選択された少なくとも1種を、
ワイヤ全質量に対して、
Na:0.5質量%以下、
C:2.0質量%以下、
Nb:1.0質量%以下、
Cu:5.0質量%以下の範囲で含有することを特徴とする、[1]~[3]のいずれか1つに記載のメタル系フラックス入りワイヤ。
ワイヤ全質量に対して、
Na:0.5質量%以下、
C:2.0質量%以下、
Nb:1.0質量%以下、
Cu:5.0質量%以下の範囲で含有することを特徴とする、[1]~[3]のいずれか1つに記載のメタル系フラックス入りワイヤ。
[5] さらに、ワイヤ全質量に対して、
O:2.0質量%以下を含有することを特徴とする、[1]~[3]のいずれか1つに記載のメタル系フラックス入りワイヤ。
O:2.0質量%以下を含有することを特徴とする、[1]~[3]のいずれか1つに記載のメタル系フラックス入りワイヤ。
[6] さらに、ワイヤ全質量に対して、
O:2.0質量%以下を含有することを特徴とする、[4]に記載のメタル系フラックス入りワイヤ。
O:2.0質量%以下を含有することを特徴とする、[4]に記載のメタル系フラックス入りワイヤ。
また、本発明の上記目的は、溶接金属に係る下記[7]の構成により達成される。
[7] [1]~[6]のいずれか1つに記載のメタル系フラックス入りワイヤを用いたガスシールドアーク溶接により製造されることを特徴とする、溶接金属。
本発明によれば、ステンレス鋼のアーク溶接においてブローホールの発生を低減することができるメタル系フラックス入りワイヤ及びブローホールを低減した溶接金属を提供することができる。
以下、本発明を実施するための形態について詳細に説明する。なお、本明細書において、メタル系フラックス入りワイヤを、単に「ワイヤ」ということがある。また、本発明は、以下に説明する実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変更して実施することができる。
〔メタル系フラックス入りワイヤ〕
本実施形態に係るメタル系フラックス入りワイヤは、ステンレス鋼用の溶接材料として使用されるものであり、スラグ系フラックス入りワイヤと比較して、スラグ形成成分が少ない。具体的には、本実施形態のメタル系フラックス入りワイヤは、Oの含有量が2.0質量%以下とされている。本実施形態に係るメタル系フラックス入りワイヤは、筒状の外皮と、その外皮の内部に充填されたメタル系のフラックスとからなる。なお、フラックス入りワイヤとしては、外皮に継目のないシームレスタイプ、C断面、重ね断面等のように管状に成形され、外皮に継目のあるシームタイプ等があるが、本実施形態においてはいずれの形態であってもよい。ステンレス鋼としては特に限定されるものではなく、例えば二相系ステンレス鋼であり、被溶接材としてより具体的には鋼板や管などである。なお、本実施形態のフラックス入りワイヤはステンレス鋼以外にも用いることができる。
本実施形態に係るメタル系フラックス入りワイヤは、ステンレス鋼用の溶接材料として使用されるものであり、スラグ系フラックス入りワイヤと比較して、スラグ形成成分が少ない。具体的には、本実施形態のメタル系フラックス入りワイヤは、Oの含有量が2.0質量%以下とされている。本実施形態に係るメタル系フラックス入りワイヤは、筒状の外皮と、その外皮の内部に充填されたメタル系のフラックスとからなる。なお、フラックス入りワイヤとしては、外皮に継目のないシームレスタイプ、C断面、重ね断面等のように管状に成形され、外皮に継目のあるシームタイプ等があるが、本実施形態においてはいずれの形態であってもよい。ステンレス鋼としては特に限定されるものではなく、例えば二相系ステンレス鋼であり、被溶接材としてより具体的には鋼板や管などである。なお、本実施形態のフラックス入りワイヤはステンレス鋼以外にも用いることができる。
次に、本実施形態に係るメタル系フラックス入りワイヤに含有される化学成分について、その含有理由及び数値限定理由を詳細に説明する。なお、所望の特性を得るための各元素は、外皮及びフラックスのいずれから含有されていてもよい。したがって、以下の説明において、特に断りのない限り、メタル系フラックス入りワイヤ中の各成分量は外皮中及びフラックス中に含有される成分の合計量を、ワイヤ全質量(外皮と外皮内のフラックスの合計量)に対する含有量とした値で規定される。
<Cr:22.0質量%以上29.0質量%以下>
Crは、フェライト安定化元素として、フェライト相とオーステナイト相とのバランスを調整する役割を有するとともに、不動態被膜の形成元素として溶接部の耐孔食性を向上させる作用を有する。ワイヤ中のCrの含有量が22.0質量%未満であると、上記作用を十分に得ることができない。したがって、ワイヤ全質量に対するCr含有量は、22.0質量%以上とし、23質量%以上であることが好ましく、24質量%以上であることがより好ましい。一方、ワイヤ中のCrの含有量が29.0質量%を超えると、金属間化合物であるσ相が析出し、溶接部の低温靱性が低下する。したがって、ワイヤ全質量に対するCr含有量は、29.0質量%以下とし、28質量%以下であることが好ましく、27質量%以下であることがより好ましい。
Crは、フェライト安定化元素として、フェライト相とオーステナイト相とのバランスを調整する役割を有するとともに、不動態被膜の形成元素として溶接部の耐孔食性を向上させる作用を有する。ワイヤ中のCrの含有量が22.0質量%未満であると、上記作用を十分に得ることができない。したがって、ワイヤ全質量に対するCr含有量は、22.0質量%以上とし、23質量%以上であることが好ましく、24質量%以上であることがより好ましい。一方、ワイヤ中のCrの含有量が29.0質量%を超えると、金属間化合物であるσ相が析出し、溶接部の低温靱性が低下する。したがって、ワイヤ全質量に対するCr含有量は、29.0質量%以下とし、28質量%以下であることが好ましく、27質量%以下であることがより好ましい。
<Ni:7.5質量%以上11.0質量%以下>
Niは、オーステナイト安定化元素としてフェライト/オーステナイト相バランスを調整する役割を有するとともに、溶接部の低温靱性向上に有効な元素である。ワイヤ中のNiの含有量が7.5質量%未満であると、上記効果を十分に得ることができない。したがって、ワイヤ全質量に対するNi含有量は、7.5質量%以上とし、8.0質量%以上であることが好ましく、8.5質量%以上であることがより好ましい。一方、ワイヤ中のNiの含有量が11.0質量%を超えると、溶接金属中のオーステナイト相が過多となり溶接部の強度が低下する。したがって、ワイヤ全質量に対するNi含有量は、11.0質量%以下とし、10.5質量%以下であることが好ましく、10.0質量%以下であることがより好ましい。
Niは、オーステナイト安定化元素としてフェライト/オーステナイト相バランスを調整する役割を有するとともに、溶接部の低温靱性向上に有効な元素である。ワイヤ中のNiの含有量が7.5質量%未満であると、上記効果を十分に得ることができない。したがって、ワイヤ全質量に対するNi含有量は、7.5質量%以上とし、8.0質量%以上であることが好ましく、8.5質量%以上であることがより好ましい。一方、ワイヤ中のNiの含有量が11.0質量%を超えると、溶接金属中のオーステナイト相が過多となり溶接部の強度が低下する。したがって、ワイヤ全質量に対するNi含有量は、11.0質量%以下とし、10.5質量%以下であることが好ましく、10.0質量%以下であることがより好ましい。
<Mo:1.5質量%以上6.0質量%以下>
Moは、フェライト安定化元素としてフェライト/オーステナイト相バランスを調整する役割があるとともに、Crとともに溶接部の耐孔食性を改善する作用を有する。ワイヤ中のMoの含有量が1.5質量%未満であると、上記作用を十分に得ることができない。したがって、ワイヤ全質量に対するMo含有量は、1.5質量%以上とし、2.0質量%以上であることが好ましく、3.0質量%以上であることがより好ましい。一方、ワイヤ中のMoの含有量が6.0質量%を超えると、σ相の析出が助長され溶接部の低温靱性が低下する。したがって、ワイヤ全質量に対するMo含有量は、6.0質量%以下とし、5.0質量%以下であることが好ましく、4.0質量%以下であることがより好ましい。
Moは、フェライト安定化元素としてフェライト/オーステナイト相バランスを調整する役割があるとともに、Crとともに溶接部の耐孔食性を改善する作用を有する。ワイヤ中のMoの含有量が1.5質量%未満であると、上記作用を十分に得ることができない。したがって、ワイヤ全質量に対するMo含有量は、1.5質量%以上とし、2.0質量%以上であることが好ましく、3.0質量%以上であることがより好ましい。一方、ワイヤ中のMoの含有量が6.0質量%を超えると、σ相の析出が助長され溶接部の低温靱性が低下する。したがって、ワイヤ全質量に対するMo含有量は、6.0質量%以下とし、5.0質量%以下であることが好ましく、4.0質量%以下であることがより好ましい。
<N:0.20質量%以上0.40質量%以下>
Nは、オーステナイト安定化元素としてフェライト/オーステナイト相バランスを調整する役割があるとともに、Cr、Moとともに溶接部の耐孔食性を改善する作用を有する。ワイヤ中のNの含有量が0.20質量%未満であると、上記作用を十分に得ることができない。したがって、ワイヤ全質量に対するN含有量は、0.20質量%以上とし、0.22質量%以上であることが好ましく、0.24質量%以上であることがより好ましい。一方、ワイヤ中のNの含有量が0.30質量%を超えると、耐気孔欠陥性が低下して、健全な溶接継手を得ることが難しい。したがって、ワイヤ全質量に対するN含有量は、0.40質量%以下とし、0.35質量%以下であることが好ましく、0.29質量%以下であることがより好ましく、0.28質量%以下であることがさらに好ましい。
Nは、オーステナイト安定化元素としてフェライト/オーステナイト相バランスを調整する役割があるとともに、Cr、Moとともに溶接部の耐孔食性を改善する作用を有する。ワイヤ中のNの含有量が0.20質量%未満であると、上記作用を十分に得ることができない。したがって、ワイヤ全質量に対するN含有量は、0.20質量%以上とし、0.22質量%以上であることが好ましく、0.24質量%以上であることがより好ましい。一方、ワイヤ中のNの含有量が0.30質量%を超えると、耐気孔欠陥性が低下して、健全な溶接継手を得ることが難しい。したがって、ワイヤ全質量に対するN含有量は、0.40質量%以下とし、0.35質量%以下であることが好ましく、0.29質量%以下であることがより好ましく、0.28質量%以下であることがさらに好ましい。
<Mn:4.0質量%以下(0質量%を含む)>
Mnは、オーステナイト安定化元素としてフェライト/オーステナイト相バランスを調整する役割があるとともに、脱酸元素として作用する。本実施形態においては、脱酸元素として、ワイヤ中に必ずしもMnを含有させる必要はなく、0質量%であってもよい。ただし、溶接部の相バランスの観点から、ワイヤ全質量に対するMn含有量は、0.2質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。一方、ワイヤ中のMnの含有量が4.0質量%を超えると、MnSを形成し、溶接部の低温靱性が低下する。したがって、ワイヤ全質量に対するMn含有量は、4.0質量%以下とし、3.0質量%以下であることが好ましく、2.0質量%以下であることがより好ましい。
Mnは、オーステナイト安定化元素としてフェライト/オーステナイト相バランスを調整する役割があるとともに、脱酸元素として作用する。本実施形態においては、脱酸元素として、ワイヤ中に必ずしもMnを含有させる必要はなく、0質量%であってもよい。ただし、溶接部の相バランスの観点から、ワイヤ全質量に対するMn含有量は、0.2質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。一方、ワイヤ中のMnの含有量が4.0質量%を超えると、MnSを形成し、溶接部の低温靱性が低下する。したがって、ワイヤ全質量に対するMn含有量は、4.0質量%以下とし、3.0質量%以下であることが好ましく、2.0質量%以下であることがより好ましい。
<Si:2.0質量%以下(0質量%を含む)>
Siは、フェライト安定化元素としてフェライト/オーステナイト相バランスを調整する役割があるとともに、脱酸元素として作用する。本実施形態においては、脱酸元素として、ワイヤ中に必ずしもSiを含有させる必要はなく、0質量%であってもよい。ただし、溶接部の相バランスの観点から、ワイヤ全質量に対するSi含有量は、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましい。一方、ワイヤ中のSiの含有量が2.0質量%を超えると、固溶Si量の増加により溶接部の低温靱性が低下する。したがって、ワイヤ全質量に対するSi含有量は、2.0質量%以下とし、1.8質量%以下であることが好ましく、1.5質量%以下であることがより好ましい。
Siは、フェライト安定化元素としてフェライト/オーステナイト相バランスを調整する役割があるとともに、脱酸元素として作用する。本実施形態においては、脱酸元素として、ワイヤ中に必ずしもSiを含有させる必要はなく、0質量%であってもよい。ただし、溶接部の相バランスの観点から、ワイヤ全質量に対するSi含有量は、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましい。一方、ワイヤ中のSiの含有量が2.0質量%を超えると、固溶Si量の増加により溶接部の低温靱性が低下する。したがって、ワイヤ全質量に対するSi含有量は、2.0質量%以下とし、1.8質量%以下であることが好ましく、1.5質量%以下であることがより好ましい。
<Ti:1.0質量%以下(0質量%を含む)>
Tiは、強力な脱酸元素であり、溶融状態の溶接金属中に残留する介在物と結びつき、酸化物を形成することで、ブローホール発生を抑制することができる。本実施形態においては、後述するMg及びAlの含有量を適切に制御することにより、ブローホールを低減することができるため、脱酸元素としてワイヤ中に必ずしもTiを含有させる必要はなく、0質量%であってもよい。ただし、溶接部の低温靱性を向上させることを目的として、ワイヤ中にTiを含有させる場合に、ワイヤ全質量に対するTi含有量は、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましい。一方、ワイヤ中のTiの含有量が1.0質量%を超えると、余剰のTiが溶融状態の溶接金属中に導入されることになり、余剰Tiの一部が、溶接金属中に存在するNと反応してTiNを形成する。その結果、介在物の凝集及び粗大化を招き、孔食の起点となるリスクが増大するのみならず、母相中に含まれるN量が減少することにより、溶接部の耐孔食性が低下する。したがって、ワイヤ全質量に対するTi含有量は、1.0質量%以下とし、0.9質量%以下であることが好ましく、0.7質量%以下であることがより好ましい。
Tiは、強力な脱酸元素であり、溶融状態の溶接金属中に残留する介在物と結びつき、酸化物を形成することで、ブローホール発生を抑制することができる。本実施形態においては、後述するMg及びAlの含有量を適切に制御することにより、ブローホールを低減することができるため、脱酸元素としてワイヤ中に必ずしもTiを含有させる必要はなく、0質量%であってもよい。ただし、溶接部の低温靱性を向上させることを目的として、ワイヤ中にTiを含有させる場合に、ワイヤ全質量に対するTi含有量は、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましい。一方、ワイヤ中のTiの含有量が1.0質量%を超えると、余剰のTiが溶融状態の溶接金属中に導入されることになり、余剰Tiの一部が、溶接金属中に存在するNと反応してTiNを形成する。その結果、介在物の凝集及び粗大化を招き、孔食の起点となるリスクが増大するのみならず、母相中に含まれるN量が減少することにより、溶接部の耐孔食性が低下する。したがって、ワイヤ全質量に対するTi含有量は、1.0質量%以下とし、0.9質量%以下であることが好ましく、0.7質量%以下であることがより好ましい。
<F:1.0質量%以下(0質量%を含む)>
Fは、ピット、ブローホール等の気孔欠陥を抑制させる作用を有する。本実施形態においては、後述するMg及びAlの含有量を適切に制御することにより、ブローホールを低減することができるため、ワイヤ中に必ずしもFを含有させる必要はなく、0質量%であってもよい。ただし、気孔欠陥の発生をより一層抑制することを目的として、ワイヤ中にFを含有させる場合に、ワイヤ全質量に対するF含有量は、0.02質量%以上であることが好ましく、0.05質量%以上であることがより好ましい。一方、ワイヤ中のFの含有量が1.0質量%を超えても、さらなる耐気孔欠陥性改善効果を得られないばかりか、アーク安定性が低下する。したがって、ワイヤ全質量に対するF含有量は、1.0質量%以下とする。
Fは、ピット、ブローホール等の気孔欠陥を抑制させる作用を有する。本実施形態においては、後述するMg及びAlの含有量を適切に制御することにより、ブローホールを低減することができるため、ワイヤ中に必ずしもFを含有させる必要はなく、0質量%であってもよい。ただし、気孔欠陥の発生をより一層抑制することを目的として、ワイヤ中にFを含有させる場合に、ワイヤ全質量に対するF含有量は、0.02質量%以上であることが好ましく、0.05質量%以上であることがより好ましい。一方、ワイヤ中のFの含有量が1.0質量%を超えても、さらなる耐気孔欠陥性改善効果を得られないばかりか、アーク安定性が低下する。したがって、ワイヤ全質量に対するF含有量は、1.0質量%以下とする。
<[Mg]×5+[Al]:0.50以上5.0以下>
Mg及びAlは、強力な脱酸元素であり、本実施形態における最も重要な元素である。本実施形態においては、ワイヤ中に必ずしもMg及びAlの両方を含有させる必要はなく、Mg及びAlから選択された少なくとも一方を含有すればよい。本発明者らは、MgはAlと比較して、ブローホールの発生を低減する効果が高く、少量含有されている場合であっても上記効果を得ることができることを見出し、下記式(1)により表されるパラメータを導いた。
Mg及びAlは、強力な脱酸元素であり、本実施形態における最も重要な元素である。本実施形態においては、ワイヤ中に必ずしもMg及びAlの両方を含有させる必要はなく、Mg及びAlから選択された少なくとも一方を含有すればよい。本発明者らは、MgはAlと比較して、ブローホールの発生を低減する効果が高く、少量含有されている場合であっても上記効果を得ることができることを見出し、下記式(1)により表されるパラメータを導いた。
[Mg]×5+[Al] ・・・式(1)
ただし、[Mg]は、ワイヤ全質量に対するMg含有量を質量%で表した値であり、[Al]は、ワイヤ全質量に対するAl含有量を質量%で表した値である。
ただし、[Mg]は、ワイヤ全質量に対するMg含有量を質量%で表した値であり、[Al]は、ワイヤ全質量に対するAl含有量を質量%で表した値である。
本実施形態においては、ワイヤ中のMg含有量及びAl含有量に基づき、上記式(1)により算出される値が所望の範囲となるように、Mg及びAlの含有量を規定する。上記式(1)により得られる値が0.50未満であると、ブローホールの発生を低減することができない。したがって、上記式(1)により得られる値は、0.50以上とし、0.70以上であることが好ましく、1.0以上であることがより好ましい。一方、上記式(1)により得られる値が5.0を超えると、作業性が著しく劣化する。したがって、上記式(1)により得られる値は、5.0以下とし、4.0以下であることが好ましく、3.0以下であることがより好ましい。なお、ブローホールの発生をより一層低減する観点から、Mg:0質量%超、Al:0質量%超とするとともに、上記式(1)により得られる値を、1.5以上とすることがさらに好ましい。また、溶接作業性をより一層向上させる観点からは、上記式(1)により得られる値の下限を、1.0以上にすることがさらに好ましい。また、同様に、溶接作業性をより一層向上させる観点から上限を2.5以下とすることがさらに好ましい。
<Mg:0質量%超0.70質量%以下>
上述のとおり、本実施形態においては、ワイヤ中に必ずしもMg及びAlの両方を含有させる必要はないが、ブローホールの発生をより一層低減することを目的として、Mg含有量を規定することが好ましい。ワイヤ中のMg含有量が0質量%超であれば、ブローホールの発生を低減する効果を得ることができる。したがって、ワイヤ全質量に対するMg含有量は、0質量%超であることが好ましく、0.1質量%以上であることがより好ましく、0.2質量%以上であることがさらに好ましい。一方、ワイヤ中のMg含有量が0.70質量%以下であれば、作業性を劣化させることなく、溶接を実施することができる。したがって、ワイヤ全質量に対するMg含有量は、0.70質量%以下であることが好ましく、0.60質量%以下であることがより好ましく、0.50質量%以下であることがさらに好ましい。
上述のとおり、本実施形態においては、ワイヤ中に必ずしもMg及びAlの両方を含有させる必要はないが、ブローホールの発生をより一層低減することを目的として、Mg含有量を規定することが好ましい。ワイヤ中のMg含有量が0質量%超であれば、ブローホールの発生を低減する効果を得ることができる。したがって、ワイヤ全質量に対するMg含有量は、0質量%超であることが好ましく、0.1質量%以上であることがより好ましく、0.2質量%以上であることがさらに好ましい。一方、ワイヤ中のMg含有量が0.70質量%以下であれば、作業性を劣化させることなく、溶接を実施することができる。したがって、ワイヤ全質量に対するMg含有量は、0.70質量%以下であることが好ましく、0.60質量%以下であることがより好ましく、0.50質量%以下であることがさらに好ましい。
<Al:0.10質量%以上0.60質量%以下>
Alは、Mgと同様に強力な脱酸元素であり、本実施形態における重要な元素である。本実施形態においては、ワイヤ中に必ずしもAlを含有させる必要はないが、ブローホールの発生をより一層低減することを目的として、Al含有量を規定することが好ましい。ワイヤ中のAl含有量が0.10質量%以上であれば、ブローホールの発生を低減する効果を得ることができる。したがって、ワイヤ全質量に対するAl含有量は、0.10質量%以上であることが好ましく、0.12質量%以上であることがより好ましい。一方、ワイヤ中のAl含有量が0.60質量%以下であれば、アークが安定となりブローホールも発生しづらい。したがって、ワイヤ全質量に対するAl含有量は、0.60質量%以下であることが好ましく、0.50質量%以下であることがより好ましい。
<[Al]+[Mg]:0.30以上1.20以下>
上述のとおり、本実施形態においては、ワイヤ中に必ずしもMg及びAlの両方を含有させる必要はないが、AlをMgとともにワイヤ中に適切な含有量で含有させることにより、溶接作業性を向上させることができる。
[Al]+[Mg]が0.30以上1.20以下であると、溶接作業性の向上と、ブローホールの発生低減の両方の効果を得ることができる。より詳細には、[Al]+[Mg]により得られる値は、0.30以上とすることが好ましく、0.50以上とすることがより好ましい。一方、[Al]+[Mg]により得られる値は、1.20以下とすることが好ましく、1.0以下とすることがより好ましい。
Alは、Mgと同様に強力な脱酸元素であり、本実施形態における重要な元素である。本実施形態においては、ワイヤ中に必ずしもAlを含有させる必要はないが、ブローホールの発生をより一層低減することを目的として、Al含有量を規定することが好ましい。ワイヤ中のAl含有量が0.10質量%以上であれば、ブローホールの発生を低減する効果を得ることができる。したがって、ワイヤ全質量に対するAl含有量は、0.10質量%以上であることが好ましく、0.12質量%以上であることがより好ましい。一方、ワイヤ中のAl含有量が0.60質量%以下であれば、アークが安定となりブローホールも発生しづらい。したがって、ワイヤ全質量に対するAl含有量は、0.60質量%以下であることが好ましく、0.50質量%以下であることがより好ましい。
<[Al]+[Mg]:0.30以上1.20以下>
上述のとおり、本実施形態においては、ワイヤ中に必ずしもMg及びAlの両方を含有させる必要はないが、AlをMgとともにワイヤ中に適切な含有量で含有させることにより、溶接作業性を向上させることができる。
[Al]+[Mg]が0.30以上1.20以下であると、溶接作業性の向上と、ブローホールの発生低減の両方の効果を得ることができる。より詳細には、[Al]+[Mg]により得られる値は、0.30以上とすることが好ましく、0.50以上とすることがより好ましい。一方、[Al]+[Mg]により得られる値は、1.20以下とすることが好ましく、1.0以下とすることがより好ましい。
本実施形態に係るメタル系フラックス入りワイヤには、さらに、Na、C、Nb及びCuから選択された少なくとも1種を含有させることが好ましい。以下、各成分の上限値及びその限定理由について説明する。
<Na:0.5質量%以下>
Naはアーク安定性を確保する効果があり、本実施形態においてアーク微調整剤としての効果を有する。ワイヤ中にNaを含有させる場合に、ワイヤ中のNaの含有量が0.5質量%以下であれば、アークが強くなりすぎず、吸湿性が劣化することもない。したがって、ワイヤ全質量に対するNa含有量は、0.5質量%以下であることが好ましく、0.3質量%以下であることがより好ましい。
Naはアーク安定性を確保する効果があり、本実施形態においてアーク微調整剤としての効果を有する。ワイヤ中にNaを含有させる場合に、ワイヤ中のNaの含有量が0.5質量%以下であれば、アークが強くなりすぎず、吸湿性が劣化することもない。したがって、ワイヤ全質量に対するNa含有量は、0.5質量%以下であることが好ましく、0.3質量%以下であることがより好ましい。
<C:2.0質量%以下>
CはNb等の元素と結合し、微細析出することで溶接金属の強度を向上させる成分である一方で、耐食性を劣化させる成分でもある。ワイヤ中にCを含有させる場合に、ワイヤ中のCの含有量が2.0質量%以下であれば、溶接金属の耐食性を劣化させることなく、溶接金属の強度を向上させる効果を得ることができる。したがって、ワイヤ全質量に対するC含有量は、2.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましい。
CはNb等の元素と結合し、微細析出することで溶接金属の強度を向上させる成分である一方で、耐食性を劣化させる成分でもある。ワイヤ中にCを含有させる場合に、ワイヤ中のCの含有量が2.0質量%以下であれば、溶接金属の耐食性を劣化させることなく、溶接金属の強度を向上させる効果を得ることができる。したがって、ワイヤ全質量に対するC含有量は、2.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましい。
<Nb:1.0質量%以下>
Nbは、Cと結合して溶接金属の強度を向上させる成分である一方で、結晶粒界に低融点化合物を生成させて耐凝固割れ性を劣化させる成分である。ワイヤ中にNbを含有させる場合に、ワイヤ中のNbの含有量が1.0質量%以下であれば、溶接金属の耐凝固割れ性を劣化させることなく、溶接金属の強度を向上させることができる。したがって、ワイヤ全質量に対するNb含有量は、1.0質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。
Nbは、Cと結合して溶接金属の強度を向上させる成分である一方で、結晶粒界に低融点化合物を生成させて耐凝固割れ性を劣化させる成分である。ワイヤ中にNbを含有させる場合に、ワイヤ中のNbの含有量が1.0質量%以下であれば、溶接金属の耐凝固割れ性を劣化させることなく、溶接金属の強度を向上させることができる。したがって、ワイヤ全質量に対するNb含有量は、1.0質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。
<Cu:5.0質量%以下>
Cuは、溶接金属の強度を高める効果を有する成分である一方で、溶接金属の高温割れ発生の危険性を高めるとともに、過剰な硬化が生じることにより、溶接金属の靱性を劣化させる成分でもある。ワイヤ中にCuを含有させる場合に、ワイヤ中のCuの含有量が5.0質量%以下であれば、溶接金属の高温割れ性及び靱性を劣化させることなく、溶接金属の強度を向上させることができる。したがって、ワイヤ全質量に対するCu含有量は、5.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましい。
Cuは、溶接金属の強度を高める効果を有する成分である一方で、溶接金属の高温割れ発生の危険性を高めるとともに、過剰な硬化が生じることにより、溶接金属の靱性を劣化させる成分でもある。ワイヤ中にCuを含有させる場合に、ワイヤ中のCuの含有量が5.0質量%以下であれば、溶接金属の高温割れ性及び靱性を劣化させることなく、溶接金属の強度を向上させることができる。したがって、ワイヤ全質量に対するCu含有量は、5.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましい。
<O:2.0質量%以下>
Oは、ブローホールを発生させやすくする成分であるとともに、溶接金属中の酸素量を増加させることにより、溶接金属の靱性を低下させる成分でもある。ワイヤ中にOを含有させる場合に、ワイヤ中のOの含有量が2.0質量%以下であれば、ブローホールの発生を増加させることがなく、良好な靱性を有する溶接金属を得ることができる。したがって、ワイヤ全質量に対するO含有量は、2.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましく、0.1質量%以下であることが特に好ましい。
Oは、ブローホールを発生させやすくする成分であるとともに、溶接金属中の酸素量を増加させることにより、溶接金属の靱性を低下させる成分でもある。ワイヤ中にOを含有させる場合に、ワイヤ中のOの含有量が2.0質量%以下であれば、ブローホールの発生を増加させることがなく、良好な靱性を有する溶接金属を得ることができる。したがって、ワイヤ全質量に対するO含有量は、2.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましく、0.1質量%以下であることが特に好ましい。
<Fe:50質量%以上65質量%以下>
Feは、本実施形態に係るメタル系フラックス入りワイヤの主成分であり、所望の特性を有する溶接金属を得るために、Fe含有量を調整することが好ましい。ワイヤ全質量に対するFe含有量は、50質量%以上であることが好ましく、55質量%以上であることがより好ましく、57質量%以上であることがさらに好ましく、58質量%以上であることが特に好ましい。一方、ワイヤ中のFe含有量が65質量%以下であることが実際的である。
Feは、本実施形態に係るメタル系フラックス入りワイヤの主成分であり、所望の特性を有する溶接金属を得るために、Fe含有量を調整することが好ましい。ワイヤ全質量に対するFe含有量は、50質量%以上であることが好ましく、55質量%以上であることがより好ましく、57質量%以上であることがさらに好ましく、58質量%以上であることが特に好ましい。一方、ワイヤ中のFe含有量が65質量%以下であることが実際的である。
なお、本実施形態に係るメタル系フラックス入りワイヤにおいて、Fe、Cr、Ni、Mo、N、Mg、Al、Mn、Si、Ti及びFの含有量の合計は、ワイヤ全質量に対して90質量%以上であることが好ましく、93質量%以上であることがより好ましく、96質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましい。
<残部>
なお、本実施形態に係るメタル系フラックス入りワイヤは、残部として、不可避的不純物の他に、上記効果を妨げない範囲で、種々の金属成分を含有させることができる。金属成分としては、耐食性及び機械性能の観点から、V、W等がワイヤ中に含有されていてもよく、アーク安定性の観点から、K、Li等がワイヤ中に含有されていてもよい。これらの金属成分の合計量としては例えば0.30質量%未満とすることが好ましい。不可避的不純物としては、P、S等が挙げられる。
なお、本実施形態に係るメタル系フラックス入りワイヤは、残部として、不可避的不純物の他に、上記効果を妨げない範囲で、種々の金属成分を含有させることができる。金属成分としては、耐食性及び機械性能の観点から、V、W等がワイヤ中に含有されていてもよく、アーク安定性の観点から、K、Li等がワイヤ中に含有されていてもよい。これらの金属成分の合計量としては例えば0.30質量%未満とすることが好ましい。不可避的不純物としては、P、S等が挙げられる。
<シールドガスの種類及び流量>
本実施形態に係るメタル系フラックス入りワイヤによる溶接時において、使用するシールドガスは特に制限されないが、例えばArガス、炭酸ガス、Arガスと炭酸ガスの混合ガス、Arガスと酸素ガスの混合ガスを用いることができる。ガスの流量も特に制限されないが、例えば15~30L/分とすることができる。
本実施形態に係るメタル系フラックス入りワイヤによる溶接時において、使用するシールドガスは特に制限されないが、例えばArガス、炭酸ガス、Arガスと炭酸ガスの混合ガス、Arガスと酸素ガスの混合ガスを用いることができる。ガスの流量も特に制限されないが、例えば15~30L/分とすることができる。
<溶接姿勢、ワイヤの外皮の厚さ、及びワイヤ径>
また、本実施形態に係るメタル系フラックスワイヤを使用した溶接姿勢は特に限定されず、種々の溶接姿勢で溶接を実施することができる。さらに、本実施形態に係るメタル系フラックス入りワイヤの外皮の厚さ、及びワイヤ径(直径)についても、特に限定されないが、AWS又はJIS等の溶接材料規格に規定された直径のワイヤに適用することができる。
また、本実施形態に係るメタル系フラックスワイヤを使用した溶接姿勢は特に限定されず、種々の溶接姿勢で溶接を実施することができる。さらに、本実施形態に係るメタル系フラックス入りワイヤの外皮の厚さ、及びワイヤ径(直径)についても、特に限定されないが、AWS又はJIS等の溶接材料規格に規定された直径のワイヤに適用することができる。
〔溶接金属〕
本実施形態に係る溶接金属は、上記メタル系フラックス入りワイヤを使用した溶接により得られるものである。溶接条件については特に限定されず、一般的に使用される溶接条件を使用することができる。一般的に使用される溶接条件とは、例えば、JIS Z3184:2003に記載の溶着金属の作製方法に準拠した溶接条件とすることができる。
本実施形態に係る溶接金属は、上記メタル系フラックス入りワイヤを使用した溶接により得られるものである。溶接条件については特に限定されず、一般的に使用される溶接条件を使用することができる。一般的に使用される溶接条件とは、例えば、JIS Z3184:2003に記載の溶着金属の作製方法に準拠した溶接条件とすることができる。
以下、本発明に係る発明例及び比較例を挙げて、本発明の効果を具体的に説明するが、本発明はこれに限定されるものではない。
[メタル系フラックス入りワイヤの製造]
ワイヤの含有成分が種々の含有量となるように、ワイヤ径が1.2mmであるメタル系フラックス入りワイヤを作製した。ワイヤ全質量あたりの化学成分の含有量(質量%)、式(1)及び式([Al]+[Mg])により算出される値を下記表1に示す。なお、ワイヤ中の下記表1に示す化学成分を除く残部は不可避的不純物を含む。また、表1の「-」はその成分を積極的に含有させていないことを意味する。
ワイヤの含有成分が種々の含有量となるように、ワイヤ径が1.2mmであるメタル系フラックス入りワイヤを作製した。ワイヤ全質量あたりの化学成分の含有量(質量%)、式(1)及び式([Al]+[Mg])により算出される値を下記表1に示す。なお、ワイヤ中の下記表1に示す化学成分を除く残部は不可避的不純物を含む。また、表1の「-」はその成分を積極的に含有させていないことを意味する。
[ガスシールドアーク溶接]
図1は、発明例及び比較例のメタル系フラックス入りワイヤを用いて溶接した際の母材の形状を示す模式図である。図1に示すように、板厚が12mmである板材を準備し、一方の面から6mmの深さで溝1aを加工して、母材1を作製した。なお、溝1aの開先角度は60°とし、溝1aの底部1bには、半径3mmのR加工を施し、溝形状をU字状とした。その後、作製したメタル系フラックス入りワイヤを使用して、母材1に対してガスシールドアーク溶接を実施した。溶接条件を以下に示す。
図1は、発明例及び比較例のメタル系フラックス入りワイヤを用いて溶接した際の母材の形状を示す模式図である。図1に示すように、板厚が12mmである板材を準備し、一方の面から6mmの深さで溝1aを加工して、母材1を作製した。なお、溝1aの開先角度は60°とし、溝1aの底部1bには、半径3mmのR加工を施し、溝形状をU字状とした。その後、作製したメタル系フラックス入りワイヤを使用して、母材1に対してガスシールドアーク溶接を実施した。溶接条件を以下に示す。
<溶接条件>
母材の種類:JIS G 4304 SUS821L1
シールドガスの種類、流量:80%Ar-20%CO2の混合ガス、25リットル/分
溶接電流250A
溶接電圧:30V
溶接姿勢:下向き溶接
溶接速度:300mm/分
パス:溝1aに対して2層2パス
母材の種類:JIS G 4304 SUS821L1
シールドガスの種類、流量:80%Ar-20%CO2の混合ガス、25リットル/分
溶接電流250A
溶接電圧:30V
溶接姿勢:下向き溶接
溶接速度:300mm/分
パス:溝1aに対して2層2パス
[評価試験]
各メタル系フラックス入りワイヤについて、溶接作業性を評価するとともに、耐気孔欠陥性を評価した。各評価方法及び評価基準を以下に示す。
各メタル系フラックス入りワイヤについて、溶接作業性を評価するとともに、耐気孔欠陥性を評価した。各評価方法及び評価基準を以下に示す。
<溶接作業性>
溶接時のアークの安定性、スパッタ発生量及びビード形状の官能評価を実施することにより、溶接作業性を評価した。評価基準としては、全ての評価項目について総合的に溶接作業性に優れた結果であったものを「◎:優良」、概ね優れた結果であったが、上記評価項目のいずれか1種が優良のワイヤより劣っていたものを「○:良好」とし、上記評価項目の2種以上が優良の場合より劣っていたものの、実用できるレベルであったものを「△:実用可能」とした。
溶接時のアークの安定性、スパッタ発生量及びビード形状の官能評価を実施することにより、溶接作業性を評価した。評価基準としては、全ての評価項目について総合的に溶接作業性に優れた結果であったものを「◎:優良」、概ね優れた結果であったが、上記評価項目のいずれか1種が優良のワイヤより劣っていたものを「○:良好」とし、上記評価項目の2種以上が優良の場合より劣っていたものの、実用できるレベルであったものを「△:実用可能」とした。
<耐気孔欠陥性>
得られた溶接ビード(300mm)に対して、放射線透過試験を実施し、300mmの長さの領域におけるブローホールの個数を測定することにより、耐気孔欠陥性を評価した。評価基準としては、ブローホールの個数が0~5個であったものを「◎:優良」、ブローホールの個数が6~49個であったものを「○:良好」、ブローホールの個数が50~79個であったものを「△:実用可能」とし、これらを合格と判断した。また、ブローホールの個数が80個以上であったものを「×:不良」とし、不合格と判断した。
溶接作業性及び耐気孔欠陥性の評価結果を下記表2に示す。
得られた溶接ビード(300mm)に対して、放射線透過試験を実施し、300mmの長さの領域におけるブローホールの個数を測定することにより、耐気孔欠陥性を評価した。評価基準としては、ブローホールの個数が0~5個であったものを「◎:優良」、ブローホールの個数が6~49個であったものを「○:良好」、ブローホールの個数が50~79個であったものを「△:実用可能」とし、これらを合格と判断した。また、ブローホールの個数が80個以上であったものを「×:不良」とし、不合格と判断した。
溶接作業性及び耐気孔欠陥性の評価結果を下記表2に示す。
[評価結果]
上記表1及び表2に示すように、発明例No.1~14は、ワイヤの化学成分が、本発明で規定する数値範囲内であるため、ブローホールの発生を低減することができた。特に、発明例No.9~14は、Mg:0質量%超及びAl:0質量%超であるとともに、式
(1):[Mg]×5+[Al]により得られる値が1.5以上であったため、耐気孔欠陥性の評価結果がより一層優れた結果となった。また、発明例No.7~9及び12~14は、式(1)により得られる値が1.0以上、2.5以下であったため、作業性の評価結果がより一層優れた結果となった。
これに対して、比較例No.1~3は、ワイヤの化学成分又は式(1)により算出される値が本発明で規定する数値範囲から外れているため、耐気孔欠陥性の評価結果が不良となった。
上記表1及び表2に示すように、発明例No.1~14は、ワイヤの化学成分が、本発明で規定する数値範囲内であるため、ブローホールの発生を低減することができた。特に、発明例No.9~14は、Mg:0質量%超及びAl:0質量%超であるとともに、式
(1):[Mg]×5+[Al]により得られる値が1.5以上であったため、耐気孔欠陥性の評価結果がより一層優れた結果となった。また、発明例No.7~9及び12~14は、式(1)により得られる値が1.0以上、2.5以下であったため、作業性の評価結果がより一層優れた結果となった。
これに対して、比較例No.1~3は、ワイヤの化学成分又は式(1)により算出される値が本発明で規定する数値範囲から外れているため、耐気孔欠陥性の評価結果が不良となった。
以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
なお、本出願は、2022年6月21日出願の日本特許出願(特願2022-099539)に基づくものであり、その内容は本出願の中に参照として援用される。
1 母材
1a 溝
1a 溝
Claims (7)
- ワイヤ全質量に対して、
Fe:50質量%以上65質量%以下、
Cr:22.0質量%以上29.0質量%以下、
Ni:7.5質量%以上11.0質量%以下、
Mo:1.5質量%以上6.0質量%以下、
N:0.20質量%以上0.40質量%以下、及び、
Mg及びAlから選択された少なくとも一方を含有し、
Mn:4.0質量%以下(0質量%を含む)、
Si:2.0質量%以下(0質量%を含む)、
Ti:1.0質量%以下(0質量%を含む)、
F:1.0質量%以下(0質量%を含む)であり、
ワイヤ全質量に対するMg含有量を質量%で[Mg]、ワイヤ全質量に対するAl含有量を質量%で[Al]と表す場合に、
[Mg]×5+[Al]:0.50以上5.0以下であることを特徴とする、メタル系フラックス入りワイヤ。 - ワイヤ全質量に対して、
Mg:0質量%超0.70質量%以下を含有することを特徴とする、請求項1に記載のメタル系フラックス入りワイヤ。 - ワイヤ全質量に対して、
Al:0.10質量%以上0.60質量%以下、及び、
Mg:0.10質量%以上0.70質量%以下を含有し、
[Al]+[Mg]:0.30以上1.20以下であることを特徴とする、請求項1に記載のメタル系フラックス入りワイヤ。 - さらに、Na、C、Nb及びCuから選択された少なくとも1種を、
ワイヤ全質量に対して、
Na:0.5質量%以下、
C:2.0質量%以下、
Nb:1.0質量%以下、
Cu:5.0質量%以下の範囲で含有することを特徴とする、請求項1に記載のメタル系フラックス入りワイヤ。 - さらに、ワイヤ全質量に対して、
O:2.0質量%以下を含有することを特徴とする、請求項1に記載のメタル系フラックス入りワイヤ。 - さらに、ワイヤ全質量に対して、
O:2.0質量%以下を含有することを特徴とする、請求項4に記載のメタル系フラックス入りワイヤ。 - 請求項1~6のいずれか1項に記載のメタル系フラックス入りワイヤを用いたガスシールドアーク溶接により製造されることを特徴とする、溶接金属。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-099539 | 2022-06-21 | ||
JP2022099539A JP2024000691A (ja) | 2022-06-21 | 2022-06-21 | メタル系フラックス入りワイヤ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023248656A1 true WO2023248656A1 (ja) | 2023-12-28 |
Family
ID=89379694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/018501 WO2023248656A1 (ja) | 2022-06-21 | 2023-05-17 | メタル系フラックス入りワイヤ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024000691A (ja) |
WO (1) | WO2023248656A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022020163A (ja) * | 2020-07-20 | 2022-02-01 | 日本製鉄株式会社 | 二相ステンレス鋼溶接材料 |
WO2022085262A1 (ja) * | 2020-10-23 | 2022-04-28 | 日本製鉄株式会社 | 二相ステンレス鋼溶接継手 |
-
2022
- 2022-06-21 JP JP2022099539A patent/JP2024000691A/ja active Pending
-
2023
- 2023-05-17 WO PCT/JP2023/018501 patent/WO2023248656A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022020163A (ja) * | 2020-07-20 | 2022-02-01 | 日本製鉄株式会社 | 二相ステンレス鋼溶接材料 |
WO2022085262A1 (ja) * | 2020-10-23 | 2022-04-28 | 日本製鉄株式会社 | 二相ステンレス鋼溶接継手 |
Also Published As
Publication number | Publication date |
---|---|
JP2024000691A (ja) | 2024-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5005309B2 (ja) | 高張力鋼用ガスシールドアーク溶接フラックス入りワイヤ | |
US10870178B2 (en) | Flux-cored wire for arc welding of duplex stainless steel and weld metal | |
KR100920549B1 (ko) | 가스 실드 아크 용접용 플럭스 함유 와이어 | |
JP4886440B2 (ja) | 低温靭性に優れた高強度溶接金属 | |
WO2009145347A1 (ja) | 凝固結晶粒を微細にする二相ステンレス鋼溶接用フラックス入りワイヤ | |
JP4787062B2 (ja) | 靭性および耐sr割れ性に優れた溶接金属 | |
JP4209913B2 (ja) | ガスシールドアーク溶接用フラックス入りワイヤ | |
WO2017038610A1 (ja) | ガスシールドアーク溶接用フラックス入りワイヤ | |
WO1998010888A1 (fr) | Materiau d'apport pour la soudure d'aciers inoxydables | |
JP6155810B2 (ja) | ガスシールドアーク溶接用高Niフラックス入りワイヤ | |
JP6891630B2 (ja) | ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法 | |
KR20190037286A (ko) | 가스 실드 아크 용접용 플럭스 코어드 와이어 및 용접 금속 | |
WO2021002259A1 (ja) | オーステナイト系ステンレス鋼フラックス入りワイヤ、溶接金属及び溶接方法 | |
KR102197134B1 (ko) | Ni기 합금 플럭스 코어드 와이어 | |
CN114829060A (zh) | 用于制造lng罐的不锈钢焊丝 | |
WO2020012925A1 (ja) | 2相ステンレス鋼溶接用フラックス入りワイヤ、溶接方法および溶接金属 | |
JPH0810982A (ja) | ガスシールドアーク溶接用フラックス入りワイヤ | |
JP2020015092A (ja) | 2相ステンレス鋼溶接用フラックス入りワイヤ、溶接方法および溶接金属 | |
WO2023248656A1 (ja) | メタル系フラックス入りワイヤ | |
CN111886110B (zh) | 药芯焊丝 | |
JPH07276088A (ja) | 低温鋼用mag溶接フラックス入りワイヤ | |
JP2004261858A (ja) | マルテンサイト系ステンレス鋼管溶接用ワイヤ | |
JP7510104B1 (ja) | 溶接金属、溶接継手、及び溶接構造物 | |
JP2004230392A (ja) | マルテンサイト系ステンレス鋼管用溶接材料およびマルテンサイト系ステンレス鋼管の溶接方法 | |
JPH0899193A (ja) | ガスシールドアーク溶接用フラックス入りワイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23826844 Country of ref document: EP Kind code of ref document: A1 |