WO2021002259A1 - オーステナイト系ステンレス鋼フラックス入りワイヤ、溶接金属及び溶接方法 - Google Patents

オーステナイト系ステンレス鋼フラックス入りワイヤ、溶接金属及び溶接方法 Download PDF

Info

Publication number
WO2021002259A1
WO2021002259A1 PCT/JP2020/024814 JP2020024814W WO2021002259A1 WO 2021002259 A1 WO2021002259 A1 WO 2021002259A1 JP 2020024814 W JP2020024814 W JP 2020024814W WO 2021002259 A1 WO2021002259 A1 WO 2021002259A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
weld metal
wire
content
Prior art date
Application number
PCT/JP2020/024814
Other languages
English (en)
French (fr)
Inventor
秀徳 名古
石▲崎▼ 圭人
純一 河田
雄太 木下
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020005418A external-priority patent/JP2021007982A/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020217041948A priority Critical patent/KR20220008917A/ko
Priority to CN202080048234.7A priority patent/CN114173985A/zh
Priority to CA3144335A priority patent/CA3144335A1/en
Priority to US17/624,049 priority patent/US20220355421A1/en
Priority to EP20834267.5A priority patent/EP3974098A4/en
Publication of WO2021002259A1 publication Critical patent/WO2021002259A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0227Rods, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to an austenitic stainless steel flux-containing wire, a weld metal, and a welding method capable of obtaining a weld metal having excellent ultra-low temperature toughness.
  • liquefied natural gas (LNG: Liquid Natural Gas) has been widely used as an energy source from the viewpoint of reducing carbon dioxide (greenhouse gas) emissions, and construction of storage tanks for storing liquefied natural gas has also been promoted. There is. Since such a storage tank needs to store liquefied natural gas at -162 ° C or lower, which is the temperature range of the liquid, the base metal and the weld metal constituting the structure (tank, etc.) are, for example, around -196 ° C. It is required to have excellent ultra-low temperature toughness in the temperature range of.
  • austenitic stainless steel is known as a steel material having toughness at an extremely low temperature, and as a welding method for obtaining a weld metal having the same composition as the above-mentioned stainless steel, gas tungsten arc welding (GTAW: Gas Tungsten Arc Welding) is used. ) Is commonly used.
  • GTAW Gas Tungsten Arc Welding
  • Patent Document 1 MIG welding (MIG welding: Metal Inert Gas Welding), which can obtain excellent welding workability by reducing the content of unavoidable impurities Al, B, and O in the wire, is described.
  • MIG welding Metal Inert Gas Welding
  • Patent Document 2 discloses a flux-cored wire for welding stainless steel, which can improve welding workability and prevent high-temperature cracking by controlling the flux composition.
  • Patent Document 3 by adjusting the C content in the stainless steel outer skin and the content of the metal component and the flux component in the wire, a weld metal having stable low temperature toughness can be obtained for low temperature.
  • Flux-cored wires for gas shielded arc welding of steel are disclosed.
  • the wires described in Patent Document 1 and Patent Document 2 do not consider cryogenic toughness, it is difficult to apply them to the construction of storage tanks for liquefied natural gas and the like. Further, the wire described in Patent Document 3 has good low temperature toughness at ⁇ 140 ° C., but it cannot be said that the toughness at -196 ° C., which is a lower temperature, is sufficient. Therefore, there is a demand for the development of a wire and a welding method capable of obtaining a weld metal having further excellent ultra-low temperature toughness as compared with the conventional welding wire.
  • the present invention has been made in view of the above-mentioned circumstances, and provides a wire containing austenitic stainless steel flux capable of obtaining a weld metal having excellent ultra-low temperature toughness, a weld metal having excellent ultra-low temperature toughness, and a welding method.
  • the purpose is to provide.
  • transformation-induced plasticity transformation Induced Plasticity
  • the present inventors can obtain a weld metal having extremely excellent ultra-low temperature toughness by appropriately adjusting the total amount of the C content and the N content in the weld metal and the Mn content. I found.
  • the present inventors have also found that by limiting the metal components in the wire and the weld metal to a predetermined range, it is possible to suppress an excessive increase in strength and the like, and as a result, improve the extremely low temperature toughness. It was. Furthermore, it has also been found that the welding efficiency can be improved by performing arc welding with a predetermined shield gas using a wire having various metal contents adjusted as described above. The present invention has been made based on these findings.
  • a flux-cored wire in which a steel outer skin is filled with flux Per total wire mass C: 0.018% by mass or less, Si: 0.57% by mass or more and 1.00% by mass or less, Mn: 0.70% by mass or more and 3.00% by mass or less, P: 0.021% by mass or less, Ni: 7.00% by mass or more and 13.00% by mass or less, Cr: 12.00% by mass or more and 21.00% by mass or less, N: 0.030% by mass or less, The rest is Fe and unavoidable impurities, A wire containing austenitic stainless steel flux, characterized in that X 1 calculated by the following formula (1) is 17.5 or more and 22.0 or less.
  • X 1 [Ni] W +0.5 x [Cr] W +1.6 x [Mn] W +0.5 x [Si] W +15 x [C] W ... (1)
  • [Ni] W , [Cr] W , [Mn] W , [Si] W and [C] W are Ni, Cr and Mn in the wire per total mass of the wire, respectively. , Si and C content (mass%).
  • Preferred embodiments of the present invention relating to an austenitic stainless steel flux-cored wire relate to the following [2] to [6].
  • [2] Furthermore, per total wire mass, The austenitic stainless steel flux-cored wire according to the above [1], which contains Li 2 O: 0.13% by mass or more.
  • [3] Furthermore, per total wire mass, Al: 2.00% by mass or less, Mg: 2.00% by mass or less, REM: 0.70% by mass or less, Ca: 0.50% by mass or less, The austenitic stainless steel flux-cored wire according to the above [1] or [2], which contains at least one of Zr: 0.40% by mass or less.
  • [5] Furthermore, per total wire mass, Cu: 1.0% by mass or less, Mo: 1.0% by mass or less, Ti: 0.5% by mass or less, W: 1.0% by mass or less, B: The austenitic stainless steel flux-containing wire according to any one of the above [1] to [4], which contains at least one of 0.01% by mass or less. [6] Further, it contains at least one selected from Si oxide, Al oxide, Ti oxide, and Zr oxide. Per total wire mass Any of the above [1] to [5], wherein the total amount of the Si oxide, the Al oxide, the Ti oxide, and the Zr oxide is more than 0% by mass and 5% by mass or less. The austenitic stainless steel flux-containing wire described in one.
  • the above object of the present invention is achieved by the configuration of the following [7] relating to the weld metal.
  • [7] Per total mass of weld metal C: 0.065% by mass or less, Si: 0.59% by mass or more and 1.00% by mass or less, Mn: 0.80% by mass or more and 3.00% by mass or less, P: 0.025% by mass or less, Ni: 8.00% by mass or more and 15.00% by mass or less, Cr: 15.00% by mass or more and 24.00% by mass or less, N: 0.080% by mass or less, O: 0.030% by mass or less, The rest is Fe and unavoidable impurities, A weld metal, characterized in that X 2 calculated by the following formula (2) is 18.8 or more and 23.0 or less.
  • Preferred embodiments of the present invention relating to weld metal relate to the following [8] to [10].
  • X 3 [C] M + [N] M ... (3)
  • [C] M and [N] M represent the contents (mass%) of C and N in the weld metal, respectively, per the total mass of the weld metal.
  • the above object of the present invention is achieved by the configuration of the following [11] relating to the welding method.
  • [11] Using the austenitic stainless steel flux-cored wire according to any one of the above [1] to [6], As shielding gas, the one selected from 100 vol% Ar gas, Ar-CO 2 mixed gas of Ar-O 2 mixed gas and CO 2 gas O 2 gas containing less than 20 vol% containing less than 5 vol% A welding method characterized by using and welding.
  • the extremely low temperature toughness of the weld metal can be further improved. Further, according to the welding method of the present invention, a weld metal having excellent extremely low temperature toughness can be obtained, and the welding efficiency can be improved.
  • FIG. 1 is a schematic view showing a welding method in this embodiment.
  • FIG. 2 is a schematic view showing a sampling position of a test piece of the Charpy impact test.
  • the flux-cored wire according to the present embodiment has a steel outer skin (hoop) filled with flux.
  • the flux-cored wire comprises a tubular steel rind and a flux filled inside the rind.
  • the flux-cored wire may be in any form of a seamless type having no seam on the outer skin, a seam type having a seam on the outer skin such as a C cross section and a laminated cross section.
  • the thickness of the steel outer skin and the wire diameter (diameter) of the flux-filled wire according to the present embodiment are not particularly limited, but from the viewpoint of wire feeding stability, the preferable wire diameter is 1. It is 0 to 2.8 mm, and a more preferable wire diameter is 1.2 to 2.4 mm.
  • each element for obtaining a weld metal having a required property may be added from either a steel outer skin or a filling flux. Therefore, unless otherwise specified in the following description, the amount of each component in the flux-cored wire is the total amount of the components contained in the steel outer skin and the flux, and the total weight of the wire (in the steel outer skin and the inner skin). It is specified by the value as the content per (total amount of flux).
  • the chemical composition (mass ratio) of the flux-cored wire is a design value, but a flux-cored wire having substantially the same composition as the design value can be obtained.
  • the chemical composition of the wire is identified by identifying the composition of the flux particles by an electron probe microanalyzer or X-ray diffraction method and chemically analyzing the solution in which the entire wire is dissolved (ICP emission spectroscopic analysis, atomic absorptiometry, etc.). be able to.
  • the chemical composition of the weld metal which will be described later, can also be identified in the same manner.
  • C is a component that stabilizes the austenite phase in the weld metal and makes it difficult for transformation to the martensite phase to occur.
  • C is also a component that contributes to increasing the strength of the weld metal. If the C content in the wire exceeds 0.018% by mass, the strength is excessively increased, and it becomes difficult to obtain excellent ultra-low temperature toughness. Further, in the flux-cored wire according to the present embodiment, as will be described later, it is preferable to reduce the total amount of the C content and the N content in the weld metal in order to further improve the low temperature toughness.
  • the C content in the wire is 0.018% by mass or less, preferably 0.015% by mass or less, and more preferably 0.010% by mass or less.
  • Si 0.57% by mass or more and 1.00% by mass or less> Si is a component having an effect of promoting deoxidation. If the Si content in the wire is less than 0.57% by mass, the deoxidizing effect is insufficient and the amount of oxygen in the weld metal increases, so that excellent ultra-low temperature toughness cannot be obtained. Therefore, the Si content in the wire is 0.57% by mass or more, preferably 0.60% by mass or more, and more preferably 0.65% by mass or more. On the other hand, if the Si content in the wire exceeds 1.00% by mass, the strength of the weld metal increases excessively, so that excellent ultra-low temperature toughness cannot be obtained. Therefore, the Si content in the wire is 1.00% by mass or less, preferably 0.90% by mass or less, and more preferably 0.85% by mass or less.
  • Mn is an austenite stabilizing element and is a component having an effect of removing oxygen in the weld metal as slag as a deoxidizer and improving mechanical strength. If the Mn content in the wire is less than 0.70% by mass, the deoxidizing effect is insufficient and the amount of oxygen in the weld metal increases, so that excellent ultra-low temperature toughness cannot be obtained. Therefore, the Mn content in the wire is 0.70% by mass or more, preferably 0.90% by mass or more, and more preferably 1.00% by mass or more.
  • the Mn content in the wire exceeds 3.00% by mass, the strength of the weld metal is excessively increased and the extremely low temperature toughness is lowered. Therefore, the Mn content in the wire is 3.00% by mass or less, preferably 2.50% by mass or less, and more preferably 2.20% by mass or less.
  • P 0.021% by mass or less (including 0% by mass)>
  • P is an impurity element.
  • the P content in the wire is 0.021% by mass or less, preferably 0.020% by mass or less, and more preferably 0.019% by mass or less.
  • Ni is a component that stabilizes the austenite phase in the weld metal and makes it difficult for transformation to the martensite phase to occur. If the Ni content in the wire is less than 7.00% by mass, the austenite phase becomes unstable and a ferrite transformation occurs partially as it is welded (that is, at the stage when welding is completed). As a result, the austenite phase, which is the premise of the TRIP (Transformation Induced plasticity) effect, is insufficient at the time of fracture growth, and the extremely low temperature toughness is lowered.
  • TRIP Transformation Induced plasticity
  • the Ni content in the wire is 7.00% by mass or more, preferably 7.50% by mass or more, and more preferably 8.00% by mass or more.
  • the Ni content in the wire exceeds 13.00% by mass, the austenite phase is excessively stabilized and the TRIP effect cannot be exhibited at the time of fracture growth, so that excellent ultra-low temperature toughness can be obtained.
  • the Ni content in the wire is 13.00% by mass or less, preferably 12.80% by mass or less, and more preferably 12.50% by mass or less.
  • Cr is a component that stabilizes the ferrite phase in the weld metal and makes it difficult for transformation to the martensite phase to occur. If the Cr content in the wire is less than 12.00% by mass, the ferrite phase becomes unstable and the TRIP effect cannot be exhibited when fracture cracks grow, so that excellent ultra-low temperature toughness cannot be obtained. Therefore, the Cr content in the wire is 12.00% by mass or more, preferably 13.00% by mass or more, and more preferably 14.00% by mass or more. On the other hand, when the Cr content in the wire exceeds 21.00% by mass, the ferrite phase is excessively stabilized, and ferrite transformation occurs partially as it is welded.
  • the austenite phase which is the premise of the TRIP effect, is insufficient at the time of fracture growth, and the extremely low temperature toughness is lowered. Therefore, the Cr content in the wire is 21.00% by mass or less, preferably 20.50% by mass or less, and more preferably 20.00% by mass or less.
  • N 0.030% by mass or less (including 0% by mass)>
  • N is a component that stabilizes the austenite phase in the weld metal and makes it difficult for transformation to the martensite phase to occur.
  • N is also a component that contributes to increasing the strength of the weld metal. If the N content in the wire exceeds 0.030% by mass, the strength is excessively increased, and it becomes difficult to obtain excellent ultra-low temperature toughness. Further, in the flux-cored wire according to the present embodiment, as will be described later, it is preferable to reduce the total amount of the C content and the N content in the weld metal in order to further improve the low temperature toughness.
  • the N content in the wire is 0.030% by mass or less, preferably 0.025% by mass or less, and more preferably 0.020% by mass or less.
  • Fe and unavoidable impurities Other components that can be contained in the flux-cored wire according to the present embodiment include Fe and unavoidable impurities, and examples of the unavoidable impurities include As, Sb, Sn, Bi, S, Nb, V, and O. Can be mentioned.
  • ⁇ X 1 17.5 or more and 22.0 or less calculated by the formula (1)>
  • TRIP that transforms from the austenite phase to the martensite phase at the time of fracture growth is expressed, and extremely low temperature toughness is achieved.
  • the above-mentioned components in the wire are adjusted in a predetermined range, and each element is adjusted so that X 1 calculated by the following formula (1) is in a desired range.
  • X 1 [Ni] W +0.5 x [Cr] W +1.6 x [Mn] W +0.5 x [Si] W +15 x [C] W ...
  • [Ni] W , [Cr] W , [Mn] W , [Si] W and [C] W are Ni, Cr and Mn in the wire per total mass of the wire, respectively. , Si and C content (mass%).
  • X 1 calculated by the formula (1) is 17.5 or more, preferably 18.0 or more, and more preferably 18.5 or more.
  • X 1 calculated by the formula (1) exceeds 22.0, the austenite phase is excessively stabilized and the TRIP effect cannot be exhibited at the time of fracture growth, so that excellent ultra-low temperature toughness is obtained.
  • X 1 calculated by the formula (1) is set to 22.0 or less, preferably 21.0 or less, and more preferably 20.0 or less.
  • the flux-cored wire according to the present embodiment is composed of the above elements, Fe and unavoidable impurities, but the following components may be contained as optional components in a predetermined content.
  • the flux-containing wire according to the present embodiment further contains at least one of Al, Mg, REM, Ca, and Zr in a predetermined range. May be. The limited range of each component will be described below.
  • the flux-cored wire according to this embodiment may further contain Al. However, if the Al content in the wire exceeds 2.00% by mass, the welding workability is lowered. Therefore, when Al is contained in the wire, the Al content in the wire is 2.00% by mass or less, preferably 1.80% by mass or less, and more preferably 1.50% by mass or less.
  • the flux-cored wire according to the present embodiment may further contain Mg. However, if the Mg content in the wire exceeds 2.00% by mass, the welding workability is lowered. Therefore, when Mg is contained in the wire, the Mg content in the wire is 2.00% by mass or less, preferably 1.50% by mass or less, and more preferably 0.60% by mass or less.
  • the flux-cored wire according to this embodiment may further contain REM. However, if the REM content in the wire exceeds 0.70% by mass, the welding workability is lowered. Therefore, when REM is contained in the wire, the REM content in the wire is 0.70% by mass or less, preferably 0.60% by mass or less, and more preferably 0.50% by mass or less.
  • the REM in the flux-filled wire according to the present embodiment means 15 lanthanoid series rare earth elements from La to Lu in the periodic table. These elements may be added alone or in combination of two or more. Further, in the flux-cored wire according to the present embodiment, La and Ce are preferably used as the REM.
  • the flux-cored wire according to the present embodiment may further contain Ca. However, if the Ca content in the wire exceeds 0.50% by mass, the welding workability is lowered. Therefore, when Ca is contained in the wire, the Ca content in the wire is 0.50% by mass or less, preferably 0.40% by mass or less, and more preferably 0.30% by mass or less.
  • the flux-cored wire according to the present embodiment may further contain Zr. However, if the Zr content in the wire exceeds 0.40% by mass, the welding workability is lowered. Therefore, when Zr is contained in the wire, the Zr content in the wire is 0.40% by mass or less, preferably 0.30% by mass or less, and more preferably 0.20% by mass or less.
  • Na and K, F, Li 2 O, BaF 2 , SrF 2 , CaF 2 , and Fe 2 O 3 are components that can improve welding workability, the flux-cored wire according to the present embodiment is used. Further, at least one of Na and K, F, Li 2 O, BaF 2 , SrF 2 , CaF 2 and Fe 2 O 3 may be contained in a predetermined range. The limited range of each component will be described below.
  • the flux-cored wire according to the present embodiment is used for welding work. From the viewpoint of enhancing the properties, one or both of Na and K may be further contained. However, if the Na and K contents in the wire exceed 0.60% by mass in total, the welding workability is rather lowered. Therefore, when either one or both of Na and K are contained in the wire, the total content of either or both of Na and K in the wire is 0.60% by mass or less, preferably 0. It is 40% by mass or less, more preferably 0.30% by mass or less.
  • the flux-cored wire has improved welding workability. From the viewpoint of enhancing, F may be further contained. However, if the F content in the wire exceeds 0.50% by mass, the welding workability is rather lowered. Therefore, when F is contained in the wire, the F content in the wire is 0.50% by mass or less, preferably 0.40% by mass or less, and more preferably 0.30% by mass or less.
  • F is added from below to BaF 2, SrF 2, and CaF 2 other compounds, for example NaF and K 2 SiF 6, cryolite (Na 3 AlF 6), And can be added from compounds such as Na 2 SiF 6 .
  • Li 2 O is a component capable of improving welding workability such as improving arc stability and stabilizing droplet migration and bead formation
  • the flux-cored wire according to the present embodiment is used for welding work.
  • Li 2 O may be further contained as a slag forming agent.
  • Li 2 O When Li 2 O is contained in the wire at an appropriate content, it is separated into Li ions and oxygen ions in the arc during welding, and then Li ions and nitrogen are combined to form a Li nitride. Is formed. Since this Li nitride is finally discharged as slag from the weld metal, when a predetermined amount of Li 2 O is contained in the wire, as a result, the C content and the N content in the weld metal are contained. The total amount of and can be reduced. Therefore, in order to further improve the low temperature toughness, it is preferable to contain Li 2 O in the wire in a content of 0.13% by mass or more, and more preferably 0.14% by mass or more.
  • the Li 2 O content in the wire exceeds 0.50% by mass, the welding workability is rather lowered. Therefore, when Li 2 O is contained in the wire, the Li 2 O content in the wire is preferably 0.50% by mass or less, more preferably 0.40% by mass or less, and 0. It is more preferably 30% by mass or less.
  • BaF 2 is a component capable of improving welding workability such as improving arc stability and stabilizing droplet migration and bead formation
  • the flux-cored wire according to the present embodiment has welding workability.
  • BaF 2 may be further contained as a slag forming agent from the viewpoint of enhancing the above.
  • the BaF 2 content in the wire exceeds 10.0% by mass, the welding workability is rather lowered. Therefore, when BaF 2 is contained in the wire, the BaF 2 content in the wire is 10.0% by mass or less, preferably 9.0% by mass or less, and more preferably 8.0% by mass or less. ..
  • SrF 2 10.0% by mass or less (including 0% by mass)> Since SrF 2 is a component capable of improving welding workability such as improving arc stability and stabilizing droplet migration and bead formation, the flux-cored wire according to the present embodiment has welding workability. SrF 2 may be further contained as a slag forming agent from the viewpoint of enhancing the above. However, if the SrF 2 content in the wire exceeds 10.0% by mass, the welding workability is rather lowered. Therefore, when SrF 2 is contained in the wire, the SrF 2 content in the wire is 10.0% by mass or less, preferably 9.0% by mass or less, and more preferably 7.0% by mass or less. ..
  • CaF 2 is a component capable of improving welding workability such as improving arc stability and stabilizing droplet migration and bead formation
  • the flux-cored wire according to the present embodiment has welding workability.
  • CaF 2 may be further contained as a slag forming agent from the viewpoint of enhancing the above.
  • the CaF 2 content in the wire exceeds 10.0% by mass, the welding workability is rather lowered. Therefore, when CaF 2 is contained in the wire, the CaF 2 content in the wire is 10.0% by mass or less, preferably 9.0% by mass or less, and more preferably 7.0% by mass or less. ..
  • Fe 2 O 3 is a component capable of improving welding workability such as improving arc stability and stabilizing droplet migration and bead formation
  • the flux-cored wire according to the present embodiment is welded.
  • Fe 2 O 3 may be further contained as a slag forming agent.
  • the Fe 2 O 3 content in the wire exceeds 2.00% by mass, the welding workability is rather lowered. Therefore, when Fe 2 O 3 is contained in the wire, the Fe 2 O 3 content in the wire is 2.00% by mass or less, preferably 1.50% by mass or less, and more preferably 1.00% by mass. % Or less.
  • the flux-cored wire according to the present embodiment further enhances the strength of Cu, Mo, W, Ti and B. At least one of the above may be contained in a predetermined range. However, if it is added in an amount exceeding a predetermined amount, the strength is excessively increased and the toughness is lowered.
  • the contents of Cu, Mo and W in the wire are 1.0% by mass or less, preferably 0.8% by mass or less. More preferably, it is 0.5% by mass or less.
  • the Ti content in the wire is 0.5% by mass or less, preferably 0.3% by mass or less, and more preferably 0.2% by mass or less.
  • the B content in the wire is 0.01% by mass or less, preferably 0.008% by mass or less, and more preferably 0.005% by mass or less.
  • the flux-containing wire according to the present embodiment may further contain Si oxide, Al oxide, Ti oxide, Zr oxide and the like as other components other than the above-mentioned optional components.
  • the total amount thereof can be included in the range of, for example, more than 0% by mass and 5% by mass or less.
  • the weld metal according to the present embodiment can be formed by welding using the above-mentioned austenitic stainless steel flux-cored wire.
  • the chemical composition of the weld metal according to the present embodiment will be described in detail as to the reason for adding the component and the reason for limiting the composition.
  • Each element is defined by the total amount of components contained in the welding metal in a predetermined region that is not affected by the composition of the base metal, as the content per total mass of the welding metal.
  • C 0.065% by mass or less (including 0% by mass)>
  • C is a component that stabilizes the austenite phase in the weld metal and makes it difficult for transformation to the martensite phase to occur.
  • C is also a component that contributes to increasing the strength of the weld metal. If the C content in the weld metal exceeds 0.065% by mass, the strength is excessively increased, and it becomes difficult to obtain excellent ultra-low temperature toughness. Therefore, the C content in the weld metal is 0.065% by mass or less, preferably 0.050% by mass or less, and more preferably 0.045% by mass or less.
  • Si 0.59% by mass or more and 1.00% by mass or less> Si is a component having an effect of promoting deoxidation. If the Si content in the weld metal is less than 0.59% by mass, the deoxidizing effect is insufficient and the amount of oxygen in the weld metal increases, so that excellent ultra-low temperature toughness cannot be obtained. Therefore, the Si content in the weld metal is 0.59% by mass or more, preferably 0.60% by mass or more, and more preferably 0.61% by mass or more. On the other hand, if the Si content in the weld metal exceeds 1.00% by mass, the strength of the weld metal increases excessively, so that excellent ultra-low temperature toughness cannot be obtained. Therefore, the content of metallic Si in the weld metal is 1.00% by mass or less, preferably 0.90% by mass or less, and more preferably 0.80% by mass or less.
  • Mn is an austenite stabilizing element and is a component having an effect of removing oxygen in the weld metal as slag as a deoxidizer and improving mechanical strength. If the Mn content in the weld metal is less than 0.80% by mass, the deoxidizing effect is insufficient and the amount of oxygen in the weld metal increases, so that excellent ultra-low temperature toughness cannot be obtained. Therefore, the Mn content in the weld metal is 0.80% by mass or more, preferably 0.90% by mass or more, and more preferably 1.00% by mass or more.
  • the Mn content in the weld metal exceeds 3.00% by mass, the strength of the weld metal increases excessively and the extremely low temperature toughness decreases. Therefore, the Mn content in the weld metal is 3.00% by mass or less, preferably 2.20% by mass or less, and more preferably 1.80% by mass or less.
  • P 0.025% by mass or less (including 0% by mass)>
  • P is an impurity element.
  • the P content in the weld metal is 0.025% by mass or less, preferably 0.022% by mass or less, and more preferably 0.020% by mass or less.
  • Ni is a component that stabilizes the austenite phase in the weld metal and makes it difficult for transformation to the martensite phase to occur. If the Ni content in the weld metal is less than 8.00% by mass, the austenite phase becomes unstable and ferrite transformation occurs partially as it is welded. As a result, the austenite phase, which is the premise of the TRIP effect, is insufficient at the time of fracture growth, and the extremely low temperature toughness is lowered. Therefore, the Ni content in the weld metal is 8.00% by mass or more, preferably 8.20% by mass or more, and more preferably 9.00% by mass or more.
  • the Ni content in the weld metal exceeds 15.00% by mass, the austenite phase is excessively stabilized and the TRIP effect cannot be exhibited at the time of fracture growth, so that excellent ultra-low temperature toughness can be obtained. I can't. Therefore, the Ni content in the weld metal is 15.00% by mass or less, preferably 13.00% by mass or less, and more preferably 12.00% by mass or less.
  • Cr is a component that stabilizes the ferrite phase in the weld metal and makes it difficult for transformation to the martensite phase to occur. If the Cr content in the weld metal is less than 15.00% by mass, the ferrite phase becomes unstable and the TRIP effect cannot be exhibited when fracture cracks grow, so that excellent ultra-low temperature toughness cannot be obtained. Therefore, the Cr content in the weld metal is 15.00% by mass or more, preferably 15.50% by mass or more, and more preferably 16.00% by mass or more.
  • the Cr content in the weld metal exceeds 24.00% by mass, the ferrite phase is excessively stabilized, and ferrite transformation occurs partially as it is welded.
  • the austenite phase which is the premise of the TRIP effect, is insufficient at the time of fracture growth, and the extremely low temperature toughness is lowered. Therefore, the Cr content in the weld metal is 24.00% by mass or less, preferably 21.00% by mass or less, and more preferably 20.00% by mass or less.
  • N 0.080% by mass or less (including 0% by mass)>
  • N is a component that stabilizes the austenite phase in the weld metal and makes it difficult for transformation to the martensite phase to occur.
  • N is also a component that contributes to increasing the strength of the weld metal. If the N content in the weld metal exceeds 0.080% by mass, the strength is excessively increased, and it becomes difficult to obtain excellent ultra-low temperature toughness. Therefore, the N content in the weld metal is 0.080% by mass or less, preferably 0.050% by mass or less, and more preferably 0.030% by mass or less.
  • O 0.030% by mass or less (including 0% by mass)>
  • O is an element that forms an oxide in the weld metal.
  • the O content in the weld metal exceeds 0.030% by mass, the oxide increases, the fracture starting from the oxide is likely to occur, and the toughness is lowered. Therefore, the O content in the weld metal is 0.030% by mass or less, preferably 0.027% by mass or less, and more preferably 0.022% by mass or less.
  • Fe and unavoidable impurities Other components that can be contained in the weld metal according to the present embodiment include Fe and unavoidable impurities, and examples of the unavoidable impurities include Nb, V, As, Sb, Sn, Bi, and S.
  • ⁇ X 2 18.8 or more and 23.0 or less calculated by the formula (2)>
  • TRIP that transforms from the austenite phase to the martensite phase at the time of fracture growth is expressed, resulting in extremely low temperature toughness.
  • the above-mentioned components in the weld metal are adjusted in a predetermined range, and each element is adjusted so that X 2 calculated by the following formula (2) is in a desired range.
  • X 2 calculated by the formula (2) is set to 18.8 or more, preferably 19.8 or more, and more preferably 20.5 or more.
  • X 2 calculated by the formula (2) exceeds 23.0, the austenite phase is excessively stabilized and the TRIP effect cannot be exhibited at the time of fracture growth, so that excellent ultra-low temperature toughness is obtained.
  • X 2 calculated by the formula (2) is set to 23.0 or less, preferably 22.8 or less, and more preferably 22.6 or less.
  • ⁇ X 3 0.054 or less calculated by the formula (3) and Mn: 0.90% by mass or more>
  • HCP Hagonal Close-Packed: dense hexagonal structure
  • ⁇ -martensite is more likely to be generated.
  • ⁇ -martensite promotes TRIP by becoming a precursor of TRIP that transforms austenite into BCC (body-centered cubic) martensite at the time of fracture growth, resulting in even more polarities. Low temperature toughness can be improved.
  • the weld metal according to the present embodiment is composed of the above elements, Fe and unavoidable impurities, but the following components may be contained as optional components in a predetermined content.
  • the weld metal according to this embodiment further contains at least one of Al, Mg, REM, Ca, and Zr in a predetermined range. May be. The limited range of each component will be described below.
  • the weld metal according to this embodiment may further contain Al. However, if the Al content in the weld metal exceeds 0.80% by mass, the welding workability is lowered. Therefore, when Al is contained in the weld metal, the Al content in the weld metal is 0.80% by mass or less, preferably 0.70% by mass or less, and more preferably 0.50% by mass or less. ..
  • the weld metal according to this embodiment may further contain Mg. However, if the Mg content in the weld metal exceeds 0.040% by mass, the welding workability is lowered. Therefore, when Mg is contained in the weld metal, the Mg content in the weld metal is 0.040% by mass or less, preferably 0.030% by mass or less, and more preferably 0.020% by mass or less. ..
  • the weld metal according to this embodiment may further contain REM. However, if the REM content in the weld metal exceeds 0.080% by mass, the welding workability is lowered. Therefore, when REM is contained in the weld metal, the REM content in the weld metal is 0.080% by mass or less, preferably 0.050% by mass or less, and more preferably 0.030% by mass or less. ..
  • the REM in the weld metal according to the present embodiment means 15 lanthanoid series rare earth elements from La to Lu in the periodic table. These elements may be added alone or in combination of two or more. Further, in the weld metal according to the present embodiment, La and Ce are preferably used as the REM.
  • the welding metal according to this embodiment may further contain Ca. However, if the Ca content in the weld metal exceeds 0.005% by mass, the welding workability is lowered. Therefore, when Ca is contained in the weld metal, the Ca content in the weld metal is 0.005% by mass or less, preferably 0.004% by mass or less, and more preferably 0.003% by mass or less. ..
  • the weld metal according to this embodiment may further contain Zr. However, if the Zr content in the weld metal exceeds 0.100% by mass, the welding workability is lowered. Therefore, when Zr is contained in the weld metal, the Zr content in the weld metal is 0.100% by mass or less, preferably 0.080% by mass or less, and more preferably 0.050% by mass or less. ..
  • the weld metal according to the present embodiment further contains Cu, Mo, W, Ti and B from the viewpoint of increasing the strength. It may contain at least one kind. However, if it is contained in an amount exceeding a predetermined amount, the strength is excessively increased and the toughness is lowered.
  • the contents of Cu, Mo, W, Ti and B in the weld metal are 1.0% by mass or less, preferably 0.8% by mass or less. It is more preferably 0.5% by mass or less.
  • the Ti content in the weld metal is 0.5% by mass or less, preferably 0.3% by mass or less, and more preferably 0.2% by mass or less.
  • the B content in the weld metal is 0.01% by mass or less, preferably 0.008% by mass or less, and more preferably 0.005% by mass or less.
  • the method for producing the flux-cored wire according to the present embodiment is not particularly limited, but for example, it can be produced by the method shown below.
  • a steel strip constituting the steel outer skin is prepared, and the steel strip is formed by a forming roll while being fed in the longitudinal direction to form a U-shaped open pipe.
  • the steel exodermis is filled with a flux containing various raw materials so as to have a predetermined component composition, and then processed so that the cross section becomes circular.
  • the wire is drawn by cold working to obtain a flux-cored wire having a wire diameter of, for example, 1.2 to 2.4 mm. Annealing may be performed during the cold working.
  • the present invention also relates to a gas shielded arc welding method.
  • the austenitic stainless steel flux-containing wire according to the present embodiment described above can be applied to various welding methods, but gas shielded arc welding (FCAW) is superior in welding efficiency as compared with gas tungsten arc welding. : It can be suitably used for Lux Cored Arc Welding). It should be noted that the welding conditions other than the welding methods shown below can be the same as those generally used, and thus detailed description thereof will be omitted.
  • the welding method according to the present embodiment is welding by gas shield arc welding using the above-mentioned austenite-based stainless steel flux-containing wire, and as the shield gas, 100% by volume Ar gas and 20 O 2 gas are used.
  • the shield gas 100% by volume Ar gas and 20 O 2 gas are used.
  • the content of the O 2 gas is preferably 10% by volume or less.
  • an Ar—CO 2 mixed gas is used as the shield gas, the content of the CO 2 gas is preferably 2% by volume or less.
  • FIG. 1 is a schematic view showing a welding method in this embodiment.
  • two carbon steel sheets 1 having a plate thickness of 20 mm are prepared, processed so that the groove angle is 45 °, and then the surface of the groove portion is used by using the produced wire.
  • Two to three layers of buttering layers 1a and 2a were formed on the surface of the backing material 2, and the carbon steel plate 1 was arranged so as to be a V groove. Then, welding was carried out under the welding conditions shown below to form the weld metal 3 at the groove portion.
  • the chemical composition of the carbon steel sheet 1 used as the base material is shown in Table 2 below.
  • Test steel sheet Carbon steel sheet SM490 Welding current: 200-300A Welding voltage: 28-30V Welding speed: 30-50 cm / min Welding heat input: 7-16 kJ / cm Contact tip distance: 15-20 mm
  • FIG. 2 is a schematic view showing a sampling position of a test piece of the Charpy impact test.
  • a Charpy V-notch test piece 4 having a V-notch formed at a right angle to the welding line according to JIS Z2242 was taken from a position at a depth of 10 mm from the surface of the steel plate 1.
  • the absorbed energy vE (J) was measured by carrying out a Charpy impact test at -196 ° C. and 0 ° C. for each test piece, and the extremely low temperature toughness was evaluated.
  • the test pieces were collected at three locations, and the average value was calculated.
  • the wire Nos. A to N are weld metals having excellent extremely low temperature toughness because the content of the wire component per total mass of the wire and X 1 calculated by the above formula (1) are within the numerical range specified in the present invention. I was able to get.
  • the test piece No. of the weld metal which is an example of the invention. 1 to 14 are Charpy at -196 ° C. because the content of the weld metal component per total mass of the weld metal and X 2 calculated by the above formula (2) are within the numerical range specified in the present invention.
  • the impact absorption energy (vE-196 ° C. ) was 36 J or more, and the toughness at extremely low temperature was excellent.
  • the wire No. In A to I at least a part of Al, Mg, REM, Ca, and Zr is further added to the wire, but since the content thereof is within the numerical range specified as the preferable condition of the present invention, it is removed. Excellent ultra-low temperature toughness could be obtained due to the acid effect. Further, the weld metal test piece No. 8 and No. As for No. 9, since the contents of Al, Mg, REM, Ca and Zr are within the numerical range specified as the preferable conditions of the present invention, excellent ultra-low temperature toughness could be obtained.
  • the weld metal test piece No. The contents of Mg, REM, Ca and Zr were not measured for 1 to 7 and 10 to 14, but since these elements are not contained in the carbon steel sheet which is the welding base material, they are contained in the wire. It is presumed that Mg, REM, Ca, and Zr in the weld metal are also within the numerical range specified as the preferable conditions of the present invention from the contained components.
  • the weld metal test piece No. 8 and No. No. 9 did not measure the Charpy impact absorption energy (vE 0 ° C. ) at 0 ° C., but it was excellent even at 0 ° C. because the Charpy impact absorption energy (vE -196 ° C. ) at -196 ° C showed an excellent value. It is presumed to show the value.
  • the wire No. In A to I since Li 2 O was added to the wire within the numerical range specified as a preferable condition of the present invention, that is, 0.13% by mass or more, the N content in the weld metal was reduced. Therefore, the weld metal test piece No. 1
  • the ⁇ 9, Mn content of the weld metal is 0.90% by mass or more, and, in the numerical range X 3 calculated by the equation (3) is defined as the preferred conditions of this invention, namely 0.054
  • the wire No. In A to I at least a part of Na, F, Li 2 O, BaF 2 , SrF 2 , and Fe 2 O 3 is further added to the wire, and each of these contents is a preferable condition of the present invention. Since it was within the specified numerical range, the welding workability was improved.
  • the wire No. which is a comparative example.
  • Wire No. T and No. V has excellent ultra-low temperature toughness because the Si content per total wire mass is less than the lower limit of the range of the present invention and X 1 calculated by the formula (1) exceeds the upper limit of the range of the present invention. It was not possible to obtain the weld metal to have.
  • Wire No. U is a weld metal having excellent ultra-low temperature toughness because the Mn content and N content per total wire mass and X 1 calculated by the formula (1) exceed the upper limit of the range of the present invention. I could't get it.
  • Wire No. As for W since X 1 calculated by the formula (1) is less than the lower limit of the range of the present invention, it was not possible to obtain a weld metal having excellent ultra-low temperature toughness.
  • the weld metal test piece No. No. 22 did not measure the Charpy impact absorption energy (vE -196 ° C. ) at -196 ° C., but the Charpy impact absorption energy (vE 0 ° C. ) at 0 ° C. showed an extremely low value. Is presumed to show a lower value.
  • the weld metal test piece No. 15-18 and No. No. 20 has excellent ultra-low temperature toughness because the Si content per total mass of the weld metal is less than the lower limit of the range of the present invention and X 2 calculated by the formula (2) exceeds the upper limit of the range of the present invention. Welded metal with toughness could not be obtained.
  • Welded metal test piece No. In No. 19 the Si content per total mass of the weld metal is less than the lower limit of the range of the present invention, and the O content per total mass of the weld metal and X 2 calculated by the formula (2) set the upper limit of the range of the present invention. Since it exceeds the limit, it was not possible to obtain a weld metal having excellent ultra-low temperature toughness.
  • Welded metal test piece No. No. 21 is a weld metal having excellent ultra-low temperature toughness because the Mn content and N content per total mass of the weld metal and X 2 calculated by the formula (2) exceed the upper limit of the range of the present invention. I could't get it.
  • Welded metal test piece No. In No. 22 since the O content per total mass of the weld metal exceeds the upper limit of the range of the present invention, it was not possible to obtain a weld metal having excellent ultra-low temperature toughness.

Abstract

極低温靱性が優れた溶接金属を得ることができるオーステナイト系ステンレス鋼フラックス入りワイヤ、優れた極低温靱性を有する溶接金属及び溶接方法を提供する。鋼製外皮にフラックスが充填されたフラックス入りワイヤであって、ワイヤ全質量あたり、Si、Mn、Ni、Cr、C、P及びNをそれぞれ所定範囲で含有するとともに、残部がFe及び不可避的不純物であり、下記式(1)により算出されるXが17.5以上22.0以下である、オーステナイト系ステンレス鋼フラックス入りワイヤ。X=[Ni]+0.5×[Cr]+1.6×[Mn]+0.5×[Si]+15×[C]・・・(1) ただし、式(1)中において、[Ni]、[Cr]、[Mn]、[Si]及び[C]は、それぞれ、ワイヤ全質量あたり、ワイヤ中のNi、Cr、Mn、Si及びCの含有量(質量%)を表す。

Description

オーステナイト系ステンレス鋼フラックス入りワイヤ、溶接金属及び溶接方法
 本発明は、極低温靱性に優れる溶接金属を得ることができるオーステナイト系ステンレス鋼フラックス入りワイヤ、溶接金属及び溶接方法に関する。
 近年、二酸化炭素(温室効果ガス)の排出を削減する観点から、エネルギー源として液化天然ガス(LNG:Liquefied Natural Gas)が汎用されており、液化天然ガスを貯蔵する貯蔵タンクの建設も進められている。このような貯蔵タンクは、液体の温度域である-162℃以下で液化天然ガスを貯蔵する必要があるため、構造物(タンク等)を構成する母材及び溶接金属は、例えば-196℃付近の温度領域における優れた極低温靱性を有していることが要求される。
 極低温での靱性を有する鋼材としては、例えばオーステナイト系ステンレス鋼が公知であり、上記ステンレス鋼と同様の組成を有する溶接金属を得る溶接方法としては、ガスタングステンアーク溶接(GTAW:Gas Tungsten Arc Welding)が一般的に使用されている。
 しかしながら、ガスタングステンアーク溶接は溶接金属の溶着速度が遅いため、施工効率が悪いという問題点がある。
 そこで、特許文献1には、ワイヤ中の不可避的不純物であるAl、B及びOの含有量を低減することにより、優れた溶接作業性を得ることができるミグ溶接(MIG溶接:Metal Inert Gas Welding)用のオーステナイト系ステンレス鋼ワイヤが開示されている。
 また、特許文献2には、フラックスの組成を制御することにより、溶接作業性を向上させるとともに、高温割れを防止することができるステンレス鋼溶接用フラックス入りワイヤが開示されている。
 さらに、特許文献3には、ステンレス鋼外皮中のC含有量並びにワイヤ中の金属成分及びフラックス成分の含有量を調整することにより、安定した低温靱性を有する溶接金属を得ることができる、低温用鋼のガスシールドアーク溶接用フラックス入りワイヤが開示されている。
日本国特開平6-690号公報 日本国特開2002-1580号公報 日本国特開2019-887号公報
 しかし、特許文献1及び特許文献2に記載のワイヤは、いずれも極低温靱性については考慮されていないため、液化天然ガス等の貯蔵用タンクの建設に適用することは困難である。また、特許文献3に記載のワイヤは、-140℃において良好な低温靱性を有するものであるが、より低温である-196℃の靱性が十分であるとはいえない。
 したがって、従来の溶接ワイヤと比較して、より一層極低温靱性が優れた溶接金属を得ることができるワイヤ及び溶接方法の開発が要求されている。
 本発明は、上述した状況に鑑みてなされたものであり、極低温靱性が優れた溶接金属を得ることができるオーステナイト系ステンレス鋼フラックス入りワイヤ、優れた極低温靱性を有する溶接金属及び溶接方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究した結果、ワイヤ又は溶接金属中のNi、Cr、Mn、Si及びCの含有量を用いた式により算出される値を適切に調整することにより、破壊亀裂進展時にオーステナイト相からマルテンサイト相に変態する変態誘起塑性(TRIP:Transformation Induced Plasticity)を発現させることができ、極低温靱性を向上させることができることを見出した。
 また、本発明者らは、溶接金属中のC含有量とN含有量との合計量、並びにMn含有量を適切に調整することにより、極低温靱性が極めて優れた溶接金属を得ることができることを見出した。
 さらに、本発明者らは、ワイヤ及び溶接金属中の金属成分を所定の範囲に制限することにより、強度等の過剰な上昇を抑制し、その結果、極低温靱性を向上させることができることも見出した。また更に、種々の金属含有量を上記の通り調整したワイヤを用いて、所定のシールドガスでアーク溶接を実施することにより、溶接効率を向上させることができることも見出した。本発明は、これら知見に基づいてなされたものである。
 本発明の上記目的は、オーステナイト系ステンレス鋼フラックス入りワイヤに係る下記[1]の構成により達成される。
[1] 鋼製外皮にフラックスが充填されたフラックス入りワイヤであって、
 ワイヤ全質量あたり、
 C:0.018質量%以下、
 Si:0.57質量%以上1.00質量%以下、
 Mn:0.70質量%以上3.00質量%以下、
 P:0.021質量%以下、
 Ni:7.00質量%以上13.00質量%以下、
 Cr:12.00質量%以上21.00質量%以下、
 N:0.030質量%以下、
 残部がFe及び不可避的不純物であり、
 下記式(1)により算出されるXが17.5以上22.0以下であることを特徴とする、オーステナイト系ステンレス鋼フラックス入りワイヤ。
 X=[Ni]+0.5×[Cr]+1.6×[Mn]+0.5×[Si]+15×[C]・・・(1)
 ただし、式(1)中において、[Ni]、[Cr]、[Mn]、[Si]及び[C]は、それぞれ、ワイヤ全質量あたり、ワイヤ中のNi、Cr、Mn、Si及びCの含有量(質量%)を表す。
 オーステナイト系ステンレス鋼フラックス入りワイヤに係る本発明の好ましい実施形態は、下記[2]~[6]に関する。
[2] さらに、ワイヤ全質量あたり、
 LiO:0.13質量%以上、を含有することを特徴とする上記[1]に記載のオーステナイト系ステンレス鋼フラックス入りワイヤ。
[3] さらに、ワイヤ全質量あたり、
 Al:2.00質量%以下、
 Mg:2.00質量%以下、
 REM:0.70質量%以下、
 Ca:0.50質量%以下、
 Zr:0.40質量%以下、の少なくとも1種を含有することを特徴とする上記[1]又は[2]に記載のオーステナイト系ステンレス鋼フラックス入りワイヤ。
[4] さらに、ワイヤ全質量あたり、
 Na及びKのいずれか一方又は両方の合計:0.60質量%以下、
 F:0.50質量%以下、
 LiO:0.50質量%以下、
 BaF:10.0質量%以下、
 SrF:10.0質量%以下、
 CaF:10.0質量%以下、
 Fe:2.00質量%以下、の少なくとも1種を含有することを特徴とする上記[1]~[3]のいずれか1つに記載のオーステナイト系ステンレス鋼フラックス入りワイヤ。
[5] さらに、ワイヤ全質量あたり、
 Cu:1.0質量%以下、
 Mo:1.0質量%以下、
 Ti:0.5質量%以下、
 W:1.0質量%以下、
 B:0.01質量%以下、の少なくとも1種を含有することを特徴とする上記[1]~[4]のいずれか1つに記載のオーステナイト系ステンレス鋼フラックス入りワイヤ。
[6] さらに、Si酸化物、Al酸化物、Ti酸化物、及びZr酸化物から選択された少なくとも1種を含有し、
 ワイヤ全質量あたり、
 前記Si酸化物、前記Al酸化物、前記Ti酸化物、及び前記Zr酸化物の合計量が0質量%超5質量%以下であることを特徴とする上記[1]~[5]のいずれか1つに記載のオーステナイト系ステンレス鋼フラックス入りワイヤ。
 また、本発明の上記目的は、溶接金属に係る下記[7]の構成により達成される。
[7] 溶接金属全質量あたり、
 C:0.065質量%以下、
 Si:0.59質量%以上1.00質量%以下、
 Mn:0.80質量%以上3.00質量%以下、
 P:0.025質量%以下、
 Ni:8.00質量%以上15.00質量%以下、
 Cr:15.00質量%以上24.00質量%以下、
 N:0.080質量%以下、
 O:0.030質量%以下、
 残部がFe及び不可避的不純物であり、
 下記式(2)により算出されるXが18.8以上23.0以下であることを特徴とする、溶接金属。
 X=[Ni]+0.5×[Cr]+1.6×[Mn]+0.5×[Si]+15×[C]・・・(2)
 ただし、式(2)中において、[Ni]、[Cr]、[Mn]、[Si]及び[C]は、それぞれ、溶接金属全質量あたり、溶接金属中のNi、Cr、Mn、Si及びCの含有量(質量%)を表す。
 溶接金属に係る本発明の好ましい実施形態は、下記[8]~[10]に関する。
[8] 溶接金属全質量あたり、
 前記Mn:0.90質量%以上であり、
 下記式(3)により算出されるXが0.054以下であることを特徴とする、上記[7]に記載の溶接金属。
 X=[C]+[N]・・・(3)
 ただし、式(3)中において、[C]及び[N]は、それぞれ、溶接金属全質量あたり、溶接金属中のC及びNの含有量(質量%)を表す。
[9] さらに、溶接金属全質量あたり、
 Al:0.80質量%以下、
 Mg:0.040質量%以下、
 REM:0.080質量%以下、
 Ca:0.005質量%以下、
 Zr:0.100質量%以下、の少なくとも1種を含有することを特徴とする上記[7]又は[8]に記載の溶接金属。
[10] さらに、溶接金属全質量あたり、
 Cu:1.0質量%以下、
 Mo:1.0質量%以下、
 W:1.0質量%以下、
 Ti:0.5質量%以下、
 B:0.01質量%以下、の少なくとも1種を含有することを特徴とする上記[7]~[9]のいずれか1つに記載の溶接金属。
 また、本発明の上記目的は、溶接方法に係る下記[11]の構成により達成される。
[11] 上記[1]~[6]のいずれか1つに記載のオーステナイト系ステンレス鋼フラックス入りワイヤを使用し、
 シールドガスとして、100体積%Arガス、Oガスを20体積%以下含有するAr-O混合ガス及びCOガスを5体積%以下含有するAr-CO混合ガスから選択される1種を使用して溶接することを特徴とする溶接方法。
 本発明のオーステナイト系ステンレス鋼フラックス入りワイヤによれば、溶接金属の極低温靱性をより一層向上させることができる。また、本発明の溶接方法によれば、極低温靱性が優れた溶接金属を得ることができるとともに、溶接の施工効率を向上させることができる。
図1は、本実施例における溶接方法を示す模式図である。 図2は、シャルピー衝撃試験の試験片の採取位置を示す模式図である。
 以下、本発明を実施するための形態(本実施形態)について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変更して実施することができる。
 まず、本実施形態に係るフラックス入りワイヤについて説明する。
〔フラックス入りワイヤ〕
 本実施形態に係るフラックス入りワイヤは、鋼製外皮(フープ)内にフラックスが充填されたものである。詳細には、フラックス入りワイヤは、筒状の鋼製外皮と、その外皮の内部に充填されるフラックスとからなる。なお、フラックス入りワイヤは、外皮に継目のないシームレスタイプ、C断面、重ね断面等のように外皮に継目のあるシームタイプのいずれの形態であってもよい。
 なお、本実施形態に係るフラックス入りワイヤの鋼製外皮の厚さ、及びワイヤ径(直径)は、特に限定されるものではないが、ワイヤ送給安定性の観点から、好ましいワイヤ径は1.0~2.8mmであり、より好ましいワイヤ径は1.2~2.4mmである。
 次に、本実施形態に係るフラックス入りワイヤの化学成分組成について、その成分添加理由及び組成限定理由について詳細に説明する。なお、所要の特性を有する溶接金属を得るための各元素は、鋼製外皮、充填フラックスのいずれから添加されていても良い。したがって、以下の説明において特に断りのない限り、フラックス入りワイヤ中の各成分量は鋼製外皮中及びフラックス中に含有される成分の合計量を、ワイヤ全質量(鋼製外皮と、外皮内のフラックスの合計量)あたりの含有量とした値で規定される。
 また、本明細書において、フラックス入りワイヤの化学成分組成(質量割合)はいずれも設計値であるが、該設計値と概ね同組成のフラックス入りワイヤが得られる。また、ワイヤの化学成分組成は、電子線マイクロアナライザやX線回折法によるフラックス粒子の組成同定とワイヤ全体を溶解した溶液の化学分析(ICP発光分光分析法、原子吸光光度法等)により同定することができる。なお、後述する溶接金属の化学成分組成についても同様にして同定することができる。
<C:0.018質量%以下(0質量%を含む)>
 Cは、溶接金属中でオーステナイト相を安定化させて、マルテンサイト相への変態を起こりにくくさせる成分である。また、Cは、溶接金属の強度上昇に寄与する成分でもある。
 ワイヤ中のC含有量が0.018質量%を超えると、強度が過剰に上昇して、優れた極低温靱性を得ることが困難となる。また、本実施形態に係るフラックス入りワイヤにおいては、後述するように、低温靱性をより一層向上させるために、溶接金属中のC含有量とN含有量との合計量を低減することが好ましい。したがって、溶接金属中のC含有量とN含有量との合計量を低減するためには、ワイヤ中のC含有量を低減することが好ましい。したがって、ワイヤ中のC含有量は0.018質量%以下とし、好ましくは0.015質量%以下とし、より好ましくは0.010質量%以下とする。
<Si:0.57質量%以上1.00質量%以下>
 Siは、脱酸を促進させる効果を有する成分である。
 ワイヤ中のSi含有量が0.57質量%未満では、脱酸効果が不足して、溶接金属中の酸素量が上昇するため、優れた極低温靱性を得ることができない。したがって、ワイヤ中のSi含有量は0.57質量%以上とし、好ましくは0.60質量%以上とし、より好ましくは0.65質量%以上とする。
 一方、ワイヤ中のSi含有量が1.00質量%を超えると、溶接金属の強度が過剰に上昇するため、優れた極低温靱性を得ることができない。したがって、ワイヤ中のSi含有量は1.00質量%以下とし、好ましくは0.90質量%以下とし、より好ましくは0.85質量%以下とする。
<Mn:0.70質量%以上3.00質量%以下>
 Mnは、オーステナイト安定化元素であるとともに、脱酸剤として溶接金属中の酸素をスラグとして除去し、機械的強度を向上させる効果を有する成分である。
 ワイヤ中のMn含有量が0.70質量%未満では、脱酸効果が不足して、溶接金属中の酸素量が上昇するため、優れた極低温靱性を得ることができない。したがって、ワイヤ中のMn含有量は0.70質量%以上とし、好ましくは0.90質量%以上とし、より好ましくは1.00質量%以上とする。
 一方、ワイヤ中のMn含有量が3.00質量%を超えると、溶接金属の強度が過剰に上昇して、極低温靱性が低下する。したがって、ワイヤ中のMn含有量は3.00質量%以下とし、好ましくは2.50質量%以下とし、より好ましくは2.20質量%以下とする。
<P:0.021質量%以下(0質量%を含む)>
 本実施形態に係るフラックス入りワイヤにおいて、Pは不純物元素である。
 ワイヤ中のP含有量が0.021質量%を超えると、粒界が脆化して、極低温靱性が低下する。したがって、ワイヤ中のP含有量は0.021質量%以下とし、好ましくは0.020質量%以下とし、より好ましくは0.019質量%以下とする。
<Ni:7.00質量%以上13.00質量%以下>
 Niは、溶接金属中でオーステナイト相を安定化させて、マルテンサイト相への変態を起こりにくくさせる成分である。
 ワイヤ中のNi含有量が7.00質量%未満では、オーステナイト相が不安定となって、溶接まま(すなわち、溶接が終わった段階)で、部分的にフェライト変態が起こる。その結果、破壊亀裂進展時にTRIP(Transformation Induced plasticity)効果の前提となるオーステナイト相が不足し、極低温靱性が低下する。したがって、ワイヤ中のNi含有量は7.00質量%以上とし、好ましくは7.50質量%以上とし、より好ましくは8.00質量%以上とする。
 一方、ワイヤ中のNi含有量が13.00質量%を超えると、オーステナイト相が過度に安定化して、破壊亀裂進展時にTRIP効果を発現させることができないため、優れた極低温靱性を得ることができない。したがって、ワイヤ中のNi含有量は13.00質量%以下とし、好ましくは12.80質量%以下とし、より好ましくは12.50質量%以下とする。
<Cr:12.00質量%以上21.00質量%以下>
 Crは、溶接金属中でフェライト相を安定化させて、マルテンサイト相への変態を起こりにくくさせる成分である。
 ワイヤ中のCr含有量が12.00質量%未満では、フェライト相が不安定となって、破壊亀裂進展時にTRIP効果を発現させることができないため、優れた極低温靱性を得ることができない。したがって、ワイヤ中のCr含有量は12.00質量%以上とし、好ましくは13.00質量%以上とし、より好ましくは14.00質量%以上とする。
 一方、ワイヤ中のCr含有量が21.00質量%を超えると、フェライト相が過度に安定化して、溶接ままで、部分的にフェライト変態が起こる。その結果、破壊亀裂進展時にTRIP効果の前提となるオーステナイト相が不足し、極低温靱性が低下する。したがって、ワイヤ中のCr含有量は21.00質量%以下とし、好ましくは20.50質量%以下とし、より好ましくは20.00質量%以下とする。
<N:0.030質量%以下(0質量%を含む)>
 Nは、溶接金属中でオーステナイト相を安定化させて、マルテンサイト相への変態を起こりにくくさせる成分である。また、Nは溶接金属の強度上昇に寄与する成分でもある。
 ワイヤ中のN含有量が0.030質量%を超えると、強度が過剰に上昇して、優れた極低温靱性を得ることが困難となる。また、本実施形態に係るフラックス入りワイヤにおいては、後述するように、低温靱性をより一層向上させるために、溶接金属中のC含有量とN含有量との合計量を低減することが好ましい。したがって、溶接金属中のC含有量とN含有量との合計量を低減するためには、ワイヤ中のN含有量を低減することが好ましい。したがって、ワイヤ中のN含有量は0.030質量%以下とし、好ましくは0.025質量%以下とし、より好ましくは0.020質量%以下とする。
<残部:Fe及び不可避的不純物>
 本実施形態に係るフラックス入りワイヤに含有しうるその他の成分としては、Fe及び不可避的不純物があり、不可避的不純物としては、例えばAs、Sb、Sn、Bi、S、Nb、V及びO等が挙げられる。
<式(1)により算出されるX:17.5以上22.0以下>
 上述の通り、ワイヤ中のNi、Cr、Mn、Si及びCの含有量をバランスよく調整することにより、破壊亀裂進展時にオーステナイト相からマルテンサイト相に変態するTRIPを発現させて、極低温靱性を向上させることができる。すなわち、本実施形態はワイヤ中の上記成分を所定の範囲で調整するとともに、下記式(1)により算出されるXが所望の範囲となるように各元素を調整するものである。
 X=[Ni]+0.5×[Cr]+1.6×[Mn]+0.5×[Si]+15×[C]・・・(1)
 ただし、式(1)中において、[Ni]、[Cr]、[Mn]、[Si]及び[C]は、それぞれ、ワイヤ全質量あたり、ワイヤ中のNi、Cr、Mn、Si及びCの含有量(質量%)を表す。
 式(1)により算出されるXが17.5未満であると、オーステナイト相が不安定となって、溶接ままで、部分的にフェライト変態が起こる。その結果、破壊亀裂進展時にTRIP効果の前提となるオーステナイト相が不足し、極低温靱性が低下する。したがって、式(1)により算出されるXは17.5以上とし、好ましくは18.0以上とし、より好ましくは18.5以上とする。
 一方、式(1)により算出されるXが22.0を超えると、オーステナイト相が過度に安定化して、破壊亀裂進展時にTRIP効果を発現させることができないため、優れた極低温靱性を得ることができない。したがって、式(1)により算出されるXは22.0以下とし、好ましくは21.0以下とし、より好ましくは20.0以下とする。
 以上の通り、本実施形態に係るフラックス入りワイヤは上記各元素、Fe及び不可避的不純物からなるが、以下に示す成分を、任意成分として所定の含有量で含有していてもよい。
 Al、Mg、REM、Ca、及びZrは脱酸元素であるため、本実施形態に係るフラックス入りワイヤは、更にAl、Mg、REM、Ca、及びZrの少なくとも1種を所定の範囲で含有していてもよい。以下に各成分の限定範囲について説明する。
<Al:2.00質量%以下(0質量%を含む)>
 Alは脱酸元素であるため、本実施形態に係るフラックス入りワイヤは、更にAlを含有していてもよい。しかし、ワイヤ中のAl含有量が2.00質量%を超えると、溶接作業性が低下する。したがって、ワイヤ中にAlを含有させる場合は、ワイヤ中のAl含有量は2.00質量%以下とし、好ましくは1.80質量%以下とし、より好ましくは1.50質量%以下とする。
<Mg:2.00質量%以下(0質量%を含む)>
 Mgは脱酸元素であるため、本実施形態に係るフラックス入りワイヤは、更にMgを含有していてもよい。しかし、ワイヤ中のMg含有量が2.00質量%を超えると、溶接作業性が低下する。したがって、ワイヤ中にMgを含有させる場合は、ワイヤ中のMg含有量は2.00質量%以下とし、好ましくは1.50質量%以下とし、より好ましくは0.60質量%以下とする。
<REM:0.70質量%以下(0質量%を含む)>
 REM(希土類元素)は脱酸元素であるため、本実施形態に係るフラックス入りワイヤは更にREMを含有していてもよい。しかし、ワイヤ中のREM含有量が0.70質量%を超えると、溶接作業性が低下する。したがって、ワイヤ中にREMを含有させる場合は、ワイヤ中のREM含有量は0.70質量%以下とし、好ましくは0.60質量%以下とし、より好ましくは0.50質量%以下とする。
 なお、本実施形態に係るフラックス入りワイヤ中のREMは、周期律表のLaからLuまでの15のランタノイド系列希土類元素を意味する。これらの元素は単独で添加しても良いし、二種類以上を併用しても良い。また、本実施形態に係るフラックス入りワイヤにおいては、REMとしてLa及びCeが好適に用いられる。
<Ca:0.50質量%以下(0質量%を含む)>
 Caは脱酸元素であるため、本実施形態に係るフラックス入りワイヤは更にCaを含有していてもよい。しかし、ワイヤ中のCa含有量が0.50質量%を超えると、溶接作業性が低下する。したがって、ワイヤ中にCaを含有させる場合は、ワイヤ中のCa含有量は0.50質量%以下とし、好ましくは0.40質量%以下とし、より好ましくは0.30質量%以下とする。
<Zr:0.40質量%以下(0質量%を含む)>
 Zrは脱酸元素であるため、本実施形態に係るフラックス入りワイヤは更にZrを含有していてもよい。しかし、ワイヤ中のZr含有量が0.40質量%を超えると、溶接作業性が低下する。したがって、ワイヤ中にZrを含有させる場合は、ワイヤ中のZr含有量は0.40質量%以下とし、好ましくは0.30質量%以下とし、より好ましくは0.20質量%以下とする。
 Na及びK、F、LiO、BaF、SrF、CaF、並びにFeは、溶接作業性を向上させることができる成分であるため、本実施形態に係るフラックス入りワイヤは、更にNa及びK、F、LiO、BaF、SrF、CaF、並びにFeの少なくとも1種を所定の範囲で含有していてもよい。以下に各成分の限定範囲について説明する。
<Na及びKのいずれか一方又は両方の合計:0.60質量%以下(0質量%を含む)>
 Na及びKは、アーク安定性を向上させ、溶滴移行及びビード形成を安定化する等、溶接作業性を向上させることができる元素であるため、本実施形態に係るフラックス入りワイヤは、溶接作業性を高める観点で、更にNa及びKのいずれか一方又は両方を含有していてもよい。しかし、ワイヤ中のNa及びK含有量が合計で0.60質量%を超えると、かえって溶接作業性が低下する。したがって、ワイヤ中にNa及びKのいずれか一方又は両方を含有させる場合は、ワイヤ中のNa及びKのいずれか一方又は両方の合計の含有量は0.60質量%以下とし、好ましくは0.40質量%以下とし、より好ましくは0.30質量%以下とする。
<F:0.50質量%以下(0質量%を含む)>
 Fは、アーク安定性を向上させ、溶滴移行及びビード形成を安定化する等、溶接作業性を向上させることができる元素であるため、本実施形態に係るフラックス入りワイヤは、溶接作業性を高める観点で、更にFを含有していてもよい。しかし、ワイヤ中のF含有量が0.50質量%を超えると、かえって溶接作業性が低下する。したがって、ワイヤ中にFを含有させる場合は、ワイヤ中のF含有量は0.50質量%以下とし、好ましくは0.40質量%以下とし、より好ましくは0.30質量%以下とする。なお、ここで規制するFとは、後述するBaF、SrF、及びCaF以外の化合物から添加されるFであり、例えばNaFやKSiF、氷晶石(NaAlF)、及びNaSiF等の化合物から添加できる。
<LiO:0.13質量%以上0.50質量%以下>
 LiOは、アーク安定性を向上させ、溶滴移行及びビード形成を安定化する等、溶接作業性を向上させることができる成分であるため、本実施形態に係るフラックス入りワイヤは、溶接作業性を高める観点で、スラグ形成剤として、更にLiOを含有していてもよい。
 なお、後述するように、本実施形態に係るフラックス入りワイヤにおいては、低温靱性をより一層向上させるために、溶接金属中のC含有量とN含有量との合計量を低減することが好ましい。ワイヤ中に適切な含有量でLiOが含有されていると、溶接時のアーク中において、Liイオンと酸素イオンとに分離し、その後、Liイオンと窒素とが結合して、Li窒化物が形成される。このLi窒化物は、最終的に溶接金属の中からスラグとして排出されるため、ワイヤ中に所定量のLiOが含有されると、結果として、溶接金属中のC含有量とN含有量との合計量を低減することができる。したがって、低温靱性をより一層向上させるためには、ワイヤ中に0.13質量%以上の含有量でLiOを含有させることが好ましく、0.14質量%以上であることがより好ましい。
 一方、ワイヤ中のLiO含有量が0.50質量%を超えると、かえって溶接作業性が低下する。したがって、ワイヤ中にLiOを含有させる場合は、ワイヤ中のLiO含有量は0.50質量%以下であることが好ましく、0.40質量%以下であることがより好ましく、0.30質量%以下であることが更に好ましい。
<BaF:10.0質量%以下(0質量%を含む)>
 BaFは、アーク安定性を向上させ、溶滴移行及びビード形成を安定化する等、溶接作業性を向上させることができる成分であるため、本実施形態に係るフラックス入りワイヤは、溶接作業性を高める観点で、スラグ形成剤として更にBaFを含有していてもよい。しかし、ワイヤ中のBaF含有量が10.0質量%を超えると、かえって溶接作業性が低下する。したがって、ワイヤ中にBaFを含有させる場合は、ワイヤ中のBaF含有量は10.0質量%以下とし、好ましくは9.0質量%以下とし、より好ましくは8.0質量%以下とする。
<SrF:10.0質量%以下(0質量%を含む)>
 SrFは、アーク安定性を向上させ、溶滴移行及びビード形成を安定化する等、溶接作業性を向上させることができる成分であるため、本実施形態に係るフラックス入りワイヤは、溶接作業性を高める観点で、スラグ形成剤として更にSrFを含有していてもよい。しかし、ワイヤ中のSrF含有量が10.0質量%を超えると、かえって溶接作業性が低下する。したがって、ワイヤ中にSrFを含有させる場合は、ワイヤ中のSrF含有量は10.0質量%以下とし、好ましくは9.0質量%以下とし、より好ましくは7.0質量%以下とする。
<CaF:10.0質量%以下(0質量%を含む)>
 CaFは、アーク安定性を向上させ、溶滴移行及びビード形成を安定化する等、溶接作業性を向上させることができる成分であるため、本実施形態に係るフラックス入りワイヤは、溶接作業性を高める観点で、スラグ形成剤として更にCaFを含有していてもよい。しかし、ワイヤ中のCaF含有量が10.0質量%を超えると、かえって溶接作業性が低下する。したがって、ワイヤ中にCaFを含有させる場合は、ワイヤ中のCaF含有量は10.0質量%以下とし、好ましくは9.0質量%以下とし、より好ましくは7.0質量%以下とする。
<Fe:2.00質量%以下(0質量%を含む)>
 Feは、アーク安定性を向上させ、溶滴移行及びビード形成を安定化する等、溶接作業性を向上させることができる成分であるため、本実施形態に係るフラックス入りワイヤは、溶接作業性を高める観点で、スラグ形成剤として更にFeを含有していてもよい。しかし、ワイヤ中のFe含有量が2.00質量%を超えると、かえって溶接作業性が低下する。したがって、ワイヤ中にFeを含有させる場合は、ワイヤ中のFe含有量は2.00質量%以下とし、好ましくは1.50質量%以下とし、より好ましくは1.00質量%以下とする。
<Cu:1.0質量%以下、Mo:1.0質量%以下、W:1.0質量%以下、Ti:0.5質量%以下、B:0.01質量%以下(0質量%を含む)>
 Cu、Mo、W、Ti及びBは、溶接金属の強度向上に有効な成分であるため、本実施形態に係るフラックス入りワイヤは、強度を高める観点で、更にCu、Mo、W、Ti及びBの少なくとも1種を所定の範囲で含有していてもよい。しかし、所定の量を超えて添加されると、強度が過剰に上昇して靱性低下を招く。したがって、ワイヤ中にCu、Mo、W、Ti及びBを含有させる場合は、ワイヤ中のCu、Mo、W含有量はそれぞれ1.0質量%以下とし、好ましくは0.8質量%以下とし、より好ましくは0.5質量%以下とする。また、ワイヤ中のTi含有量は0.5質量%以下とし、好ましくは0.3質量%以下とし、より好ましくは0.2質量%以下とする。また、ワイヤ中のB含有量は0.01質量%以下とし、好ましくは0.008質量%以下とし、より好ましくは0.005質量%以下とする。
<その他の成分>
 また、本実施形態に係るフラックス入りワイヤは、上記した任意成分以外のその他の成分として、更にSi酸化物、Al酸化物、Ti酸化物、及びZr酸化物等を含有していてもよい。なお、これらの合計量として、例えば、0質量%超5質量%以下の範囲で含むことができる。
〔溶接金属〕
 本実施形態に係る溶接金属は、上記したオーステナイト系ステンレス鋼フラックス入りワイヤを用いて溶接することにより形成することができる。以下、本実施形態に係る溶接金属の化学成分組成について、その成分添加理由及び組成限定理由について詳細に説明する。
 なお、各元素は、母材の組成に影響されない所定の領域の溶接金属中に含有される成分の合計量を、溶接金属全質量あたりの含有量とした値で規定される。
<C:0.065質量%以下(0質量%を含む)>
 Cは、溶接金属中でオーステナイト相を安定化させて、マルテンサイト相への変態を起こりにくくさせる成分である。また、Cは、溶接金属の強度上昇に寄与する成分でもある。
 溶接金属中のC含有量が0.065質量%を超えると、強度が過剰に上昇して、優れた極低温靱性を得ることが困難となる。したがって、溶接金属中のC含有量は0.065質量%以下とし、好ましくは0.050質量%以下とし、より好ましくは0.045質量%以下とする。
<Si:0.59質量%以上1.00質量%以下>
 Siは、脱酸を促進させる効果を有する成分である。
 溶接金属中のSi含有量が0.59質量%未満では、脱酸効果が不足して、溶接金属中の酸素量が上昇するため、優れた極低温靱性を得ることができない。したがって、溶接金属中のSi含有量は0.59質量%以上とし、好ましくは0.60質量%以上とし、より好ましくは0.61質量%以上とする。
 一方、溶接金属中のSi含有量が1.00質量%を超えると、溶接金属の強度が過剰に上昇するため、優れた極低温靱性を得ることができない。したがって、溶接金属中の金属Siの含有量は1.00質量%以下とし、好ましくは0.90質量%以下とし、より好ましくは0.80質量%以下とする。
<Mn:0.80質量%以上3.00質量%以下>
 Mnは、オーステナイト安定化元素であるとともに、脱酸剤として溶接金属中の酸素をスラグとして除去し、機械的強度を向上させる効果を有する成分である。
 溶接金属中のMn含有量が0.80質量%未満では、脱酸効果が不足して、溶接金属中の酸素量が上昇するため、優れた極低温靱性を得ることができない。したがって、溶接金属中のMn含有量は0.80質量%以上とし、好ましくは0.90質量%以上とし、より好ましくは1.00質量%以上とする。
 一方、溶接金属中のMn含有量が3.00質量%を超えると、溶接金属の強度が過剰に上昇して、極低温靱性が低下する。したがって、溶接金属中のMn含有量は3.00質量%以下とし、好ましくは2.20質量%以下とし、より好ましくは1.80質量%以下とする。
<P:0.025質量%以下(0質量%を含む)>
 本実施形態に係る溶接金属において、Pは不純物元素である。
 溶接金属中のP含有量が0.025質量%を超えると、粒界が脆化して、極低温靱性が低下する。したがって、溶接金属中のP含有量は0.025質量%以下とし、好ましくは0.022質量%以下とし、より好ましくは0.020質量%以下とする。
<Ni:8.00質量%以上15.00質量%以下>
 Niは、溶接金属中でオーステナイト相を安定化させて、マルテンサイト相への変態を起こりにくくさせる成分である。
 溶接金属中のNi含有量が8.00質量%未満では、オーステナイト相が不安定となって、溶接ままで、部分的にフェライト変態が起こる。その結果、破壊亀裂進展時にTRIP効果の前提となるオーステナイト相が不足し、極低温靱性が低下する。したがって、溶接金属中のNi含有量は8.00質量%以上とし、好ましくは8.20質量%以上とし、より好ましくは9.00質量%以上とする。
 一方、溶接金属中のNi含有量が15.00質量%を超えると、オーステナイト相が過度に安定化して、破壊亀裂進展時にTRIP効果を発現させることができないため、優れた極低温靱性を得ることができない。したがって、溶接金属中のNi含有量は15.00質量%以下とし、好ましくは13.00質量%以下とし、より好ましくは12.00質量%以下とする。
<Cr:15.00質量%以上24.00質量%以下>
 Crは、溶接金属中でフェライト相を安定化させて、マルテンサイト相への変態を起こりにくくさせる成分である。
 溶接金属中のCr含有量が15.00質量%未満では、フェライト相が不安定となって、破壊亀裂進展時にTRIP効果を発現させることができないため、優れた極低温靱性を得ることができない。したがって、溶接金属中のCr含有量は15.00質量%以上とし、好ましくは15.50質量%以上とし、より好ましくは16.00質量%以上とする。
 一方、溶接金属中のCr含有量が24.00質量%を超えると、フェライト相が過度に安定化して、溶接ままで、部分的にフェライト変態が起こる。その結果、破壊亀裂進展時にTRIP効果の前提となるオーステナイト相が不足し、極低温靱性が低下する。したがって、溶接金属中のCr含有量は24.00質量%以下とし、好ましくは21.00質量%以下とし、より好ましくは20.00質量%以下とする。
<N:0.080質量%以下(0質量%を含む)>
 Nは、溶接金属中でオーステナイト相を安定化させて、マルテンサイト相への変態を起こりにくくさせる成分である。また、Nは、溶接金属の強度上昇に寄与する成分でもある。
 溶接金属中のN含有量が0.080質量%を超えると、強度が過剰に上昇して、優れた極低温靱性を得ることが困難となる。したがって、溶接金属中のN含有量は0.080質量%以下とし、好ましくは0.050質量%以下とし、より好ましくは0.030質量%以下とする。
<O:0.030質量%以下(0質量%を含む)>
 Oは、溶接金属中で酸化物を形成する元素である。
 溶接金属中のO含有量が0.030質量%を超えると、酸化物が増加し、酸化物を起点とする破壊が発生しやすくなって靱性を低下させる。したがって、溶接金属中のO含有量は0.030質量%以下とし、好ましくは0.027質量%以下とし、より好ましくは0.022質量%以下とする。
<残部:Fe及び不可避的不純物>
 本実施形態に係る溶接金属に含有しうるその他の成分としては、Fe及び不可避的不純物があり、不可避的不純物としては、例えばNb、V、As、Sb、Sn、Bi及びS等が挙げられる。
<式(2)により算出されるX:18.8以上23.0以下>
 上述の通り、溶接金属中のNi、Cr、Mn、Si及びCの含有量をバランスよく調整することにより、破壊亀裂進展時にオーステナイト相からマルテンサイト相に変態するTRIPを発現させて、極低温靱性を向上させることができる。すなわち、本実施形態は溶接金属中の上記成分を所定の範囲で調整するとともに、下記式(2)により算出されるXが所望の範囲となるように各元素を調整するものである。
 X=[Ni]+0.5×[Cr]+1.6×[Mn]+0.5×[Si]+15×[C]・・・(2)
 ただし、式(2)中において、[Ni]、[Cr]、[Mn]、[Si]及び[C]は、それぞれ、溶接金属全質量あたり、溶接金属中のNi、Cr、Mn、Si及びCの含有量(質量%)を表す。
 式(2)により算出されるXが18.8未満であると、オーステナイト相が不安定となって、溶接ままで、部分的にフェライト変態が起こる。その結果、破壊亀裂進展時にTRIP効果の前提となるオーステナイト相が不足し、極低温靱性が低下する。したがって、式(2)により算出されるXは18.8以上とし、好ましくは19.8以上とし、より好ましくは20.5以上とする。
 一方、式(2)により算出されるXが23.0を超えると、オーステナイト相が過度に安定化して、破壊亀裂進展時にTRIP効果を発現させることができないため、優れた極低温靱性を得ることができない。したがって、式(2)により算出されるXは23.0以下とし、好ましくは22.8以下とし、より好ましくは22.6以下とする。
<式(3)により算出されるX:0.054以下、かつ、Mn:0.90質量%以上>
 溶接金属における上記Xの値を調整した上で、更に、溶接金属中のC含有量とN含有量との合計量を低減するとともに、Mn含有量を適切に調整すると、オーステナイトの積層欠陥エネルギーが低下し、HCP(Hexagonal Close-Packed:稠密六方構造)マルテンサイト(εマルテンサイト)がより一層生成しやすくなる。εマルテンサイトは、破壊亀裂進展時に、オーステナイトからBCC(body-centered cubic:体心立方格子構造)マルテンサイトに変態するTRIPの前駆体となることで、TRIPを促進し、その結果、より一層極低温靱性を向上させることができる。
 上記効果は、下記式(3)により算出されるXが0.054以下であるとともに、溶接金属中のMn含有量が0.90質量%以上である場合に得ることができる。したがって、溶接金属中において、Xは0.054以下、かつ、Mnは0.90質量%以上であることが好ましい。なお、Xは0.052以下であることがより好ましく、0.050以下であることが更に好ましい。また、Mnは1.00質量%以上であることが更に好ましい。
 X=[C]+[N]・・・(3)
 ただし、式(3)中において、[C]及び[N]は、それぞれ、溶接金属全質量あたり、溶接金属中のC及びNの含有量(質量%)を表す。
 以上の通り、本実施形態に係る溶接金属は上記各元素、Fe及び不可避的不純物からなるが、以下に示す成分を、任意成分として所定の含有量で含有していてもよい。
 Al、Mg、REM、Ca、及びZrは、脱酸元素であるため、本実施形態に係る溶接金属は、更にAl、Mg、REM、Ca、及びZrの少なくとも1種を所定の範囲で含有していてもよい。以下に各成分の限定範囲について説明する。
<Al:0.80質量%以下(0質量%を含む)>
 Alは脱酸元素であるため、本実施形態に係る溶接金属は、更にAlを含有していてもよい。しかし、溶接金属中のAl含有量が0.80質量%を超えると、溶接作業性が低下する。したがって、溶接金属中にAlを含有させる場合は、溶接金属中のAl含有量は0.80質量%以下とし、好ましくは0.70質量%以下とし、より好ましくは0.50質量%以下とする。
<Mg:0.040質量%以下(0質量%を含む)>
 Mgは脱酸元素であるため、本実施形態に係る溶接金属は、更にMgを含有していてもよい。しかし、溶接金属中のMg含有量が0.040質量%を超えると、溶接作業性が低下する。したがって、溶接金属中にMgを含有させる場合は、溶接金属中のMg含有量は0.040質量%以下とし、好ましくは0.030質量%以下とし、より好ましくは0.020質量%以下とする。
<REM:0.080質量%以下(0質量%を含む)>
 REM(希土類元素)は脱酸元素であるため、本実施形態に係る溶接金属は、更にREMを含有していてもよい。しかし、溶接金属中のREM含有量が0.080質量%を超えると、溶接作業性が低下する。したがって、溶接金属中にREMを含有させる場合は、溶接金属中のREM含有量は0.080質量%以下とし、好ましくは0.050質量%以下とし、より好ましくは0.030質量%以下とする。
 なお、本実施形態に係る溶接金属中のREMは、周期律表のLaからLuまでの15のランタノイド系列希土類元素を意味する。これらの元素は単独で添加しても良いし、二種類以上を併用しても良い。また、本実施形態に係る溶接金属においては、REMとしてLa及びCeが好適に用いられる。
<Ca:0.005質量%以下(0質量%を含む)>
 Caは脱酸元素であるため、本実施形態に係る溶接金属は、更にCaを含有していてもよい。しかし、溶接金属中のCa含有量が0.005質量%を超えると、溶接作業性が低下する。したがって、溶接金属中にCaを含有させる場合は、溶接金属中のCa含有量は0.005質量%以下とし、好ましくは0.004質量%以下とし、より好ましくは0.003質量%以下とする。
<Zr:0.100質量%以下(0質量%を含む)>
 Zrは脱酸元素であるため、本実施形態に係る溶接金属は、更にZrを含有していてもよい。しかし、溶接金属中のZr含有量が0.100質量%を超えると、溶接作業性が低下する。したがって、溶接金属中にZrを含有させる場合は、溶接金属中のZr含有量は0.100質量%以下とし、好ましくは0.080質量%以下とし、より好ましくは0.050質量%以下とする。
<Cu:1.0質量%以下、Mo:1.0質量%以下、W:1.0質量%以下、Ti:0.5質量%以下、B:0.01質量%以下(0質量%を含む)>
 Cu、Mo、W、Ti及びBは、溶接金属の強度向上に有効な成分であるため、本実施形態に係る溶接金属は、強度を高める観点で、更にCu、Mo、W、Ti及びBの少なくとも1種を含有していてもよい。しかし、所定の量を超えて含有されると、強度が過剰に上昇して靱性低下を招く。したがって、溶接金属中にCu、Mo、W、Ti及びBを含有させる場合は、溶接金属中のCu、Mo、W含有量はそれぞれ1.0質量%以下とし、好ましくは0.8質量%以下とし、より好ましくは0.5質量%以下とする。また、溶接金属中のTi含有量は0.5質量%以下とし、好ましくは0.3質量%以下とし、より好ましくは0.2質量%以下とする。また、溶接金属中のB含有量は0.01質量%以下とし、好ましくは0.008質量%以下とし、より好ましくは0.005質量%以下とする。
〔フラックス入りワイヤの製造方法〕
 本実施形態に係るフラックス入りワイヤの製造方法としては、特に限定されるものではないが、例えば、以下に示す方法で製造することができる。
 まず、鋼製外皮を構成する鋼帯を準備し、この鋼帯を長手方向に送りながら成形ロールにより成形して、U字状のオープン管にする。次に、所定の成分組成となるように、各種原料を配合したフラックスを鋼製外皮に充填し、その後、断面が円形になるように加工する。その後、冷間加工により伸線し、例えば1.2~2.4mmのワイヤ径のフラックス入りワイヤとする。なお、冷間加工途中に焼鈍を施してもよい。
〔溶接方法〕
 本発明は、ガスシールドアーク溶接方法に関するものでもある。上記した本実施形態に係るオーステナイト系ステンレス鋼フラックス入りワイヤは、種々の溶接方法に適用することができるが、ガスタングステンアーク溶接と比較して、溶接の施工効率が優れたガスシールドアーク溶接(FCAW:Flux Cored Arc Welding)用として好適に用いることができる。なお、以下に示す溶接方法以外の溶接条件に関しては、一般的に使用されている条件と同様にすることができるため、詳細な説明は省略する。
 上記オーステナイト系ステンレス鋼フラックス入りワイヤを使用して、ガスシールドアーク溶接により溶接する場合に、シールドガスとして、100体積%Arガス、Ar-O混合ガス又はAr-CO混合ガスを用いることができる。ただし、所定の濃度を超えるOガス、COガスを含む混合ガスを使用すると、溶接金属中の酸素量が上昇するため、優れた極低温靱性を得ることができない。
 また、本実施形態に係るフラックス入りワイヤにおいては、溶接金属中のC含有量とN含有量との合計量を低減することが好ましいが、COガス含有量が多いシールドガスを使用して溶接を行うと、溶接金属中のC含有量が増加するため、シールドガス中のCOガス含有量は少ない方が好ましい。
 したがって、本実施形態に係る溶接方法は、上記オーステナイト系ステンレス鋼フラックス入りワイヤを使用してガスシールドアーク溶接により溶接するものであり、シールドガスとしては、100体積%Arガス、Oガスを20体積%以下含有するAr-O混合ガス及びCOガスを5体積%以下含有するAr-CO混合ガスから選択される1種のガスを使用して溶接することができる。
 なお、シールドガスとしてAr-O混合ガスを用いる場合、Oガスの含有量は10体積%以下であることが好ましい。また、シールドガスとしてAr-CO混合ガスを用いる場合、COガスの含有量は2体積%以下であることが好ましい。
 以下、実施例を挙げて本発明についてより詳細に説明するが、本発明はこれに限定されるものではない。
[ワイヤの製造]
 AWS A5.22/A5.22Mに準拠して、鋼製外皮にフラックスが充填された種々の化学成分組成を有するフラックス入りワイヤを作製した。得られたフラックス入りワイヤ中に含有される化学成分の含有量を、下記表1に示す。なお、表1に示すワイヤの化学成分組成はいずれも設計値である。また、表1中において「0」とは、ワイヤ作製時に該成分を意図的に添加していないことを示す。また、ワイヤNo.J~N、No.V及びNo.Wは、その他の成分としてSi酸化物、Al酸化物、Ti酸化物、及びZr酸化物等を含有している(表1の「その他」の欄を参照)。
Figure JPOXMLDOC01-appb-T000001
[ワイヤの評価]
 作製したフラックス入りワイヤを用いて、ガスシールドアーク溶接を実施することにより、溶接金属の極低温靱性を評価した。
 図1は、本実施例における溶接方法を示す模式図である。図1に示すように、板厚が20mmである2枚の炭素鋼板1を準備し、開先角度が45°となるように加工した後、作製したワイヤを使用して、開先部の表面と裏当て材2の表面に2~3層のバタリング層1a、2aを形成し、炭素鋼板1をV開先となるように配置した。その後、以下に示す溶接条件で溶接を実施し、開先部に溶接金属3を形成した。母材とした炭素鋼板1の化学成分組成を、下記表2に示す。
(溶接条件)
 供試鋼板:炭素鋼板 SM490
 溶接電流:200-300A
 溶接電圧:28-30V
 溶接速度:30-50cm/分
 溶接入熱:7-16kJ/cm
 コンタクトチップ距離:15~20mm
 電源極性:DC-EN又はDC-EP
 溶接姿勢:下向
 シールドガス:98体積%Ar-2体積%O、90体積%Ar-10体積%O、98体積%Ar-2体積%CO、90体積%Ar-10体積%CO、80体積%Ar-20体積%CO、100体積%CO
Figure JPOXMLDOC01-appb-T000002
(シャルピー衝撃試験)
 上記ガスシールドアーク溶接により得られた溶接金属3から、試験片を採取した。
 図2は、シャルピー衝撃試験の試験片の採取位置を示す模式図である。図2に示すように、鋼板1の表面から10mmの深さの位置から、溶接線に直角にJIS Z2242に準じてVノッチを形成した、シャルピーVノッチ試験片4を採取した。
 その後、各試験片に対して-196℃及び0℃でシャルピー衝撃試験を実施することにより吸収エネルギーvE(J)を測定し、極低温靱性を評価した。試験片は、3箇所で採取し、平均値を算出した。なお、0℃におけるシャルピー衝撃吸収エネルギー(vE0℃)が80Jを超え、かつ、-196℃におけるシャルピー衝撃吸収エネルギー(vE-196℃)が36Jを超えたものを、極低温靱性に優れると評価した。
 さらに、作製した溶接金属3の中央部から切粉を採取し、化学成分組成を分析した。
 各試験片における溶接金属の化学成分組成を下記表3に示し、溶接条件及びシャルピー衝撃試験による吸収エネルギーの測定結果を下記表4に示す。なお、下記表3中において、「0」とは、ワイヤ作製時及び溶接時に該成分を意図的に添加していないか、又は、検出限界以下であることを示し、下記表3及び表4中において、「-」は、分析又は測定を実施していないことを示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記表1、表3及び表4に示すように、発明例であるワイヤNo.A~Nは、ワイヤ全質量あたりのワイヤ成分の含有量、及び上述の式(1)により算出されるXが、本発明で規定する数値範囲内であるため、極低温靱性に優れる溶接金属を得ることができた。
 また、発明例である溶接金属の試験片No.1~14は、溶接金属全質量あたりの溶接金属成分の含有量、及び上述の式(2)により算出されるXが、本発明で規定する数値範囲内であるため、-196℃におけるシャルピー衝撃吸収エネルギー(vE-196℃)が36J以上となり、極低温靱性に優れていた。
 さらに、試験片No.1~14は、本発明で規定する溶接方法を用いているので、優れた溶接作業性を得ることができた。
 また、ワイヤNo.A~Iは、ワイヤ中に更にAl、Mg、REM、Ca、Zrの少なくとも一部が添加されているが、これらの含有量が本発明の好ましい条件として規定する数値範囲内であるため、脱酸効果により優れた極低温靱性を得ることができた。さらに、溶接金属の試験片No.8及びNo.9についても、Al、Mg、REM、Ca、Zrの含有量が、本発明の好ましい条件として規定する数値範囲内であるため、優れた極低温靱性を得ることができた。
 なお、溶接金属の試験片No.1~7、及び10~14については、Mg、REM、Ca及びZrの含有量を測定していないが、溶接母材である炭素鋼板にはこれらの元素は含まれてないため、ワイヤに含有される含有成分から、溶接金属中のMg、REM、Ca、Zrについても、本発明の好ましい条件として規定する数値範囲内であると推測される。
 また、溶接金属の試験片No.8及びNo.9は、0℃におけるシャルピー衝撃吸収エネルギー(vE0℃)は測定していないが、-196℃におけるシャルピー衝撃吸収エネルギー(vE-196℃)が優れた値を示しているため、0℃でも優れた値を示すと推測される。
 続いて、発明例のうち、ワイヤNo.A~Iは、ワイヤ中に本発明の好ましい条件として規定する数値範囲内、すなわち0.13質量%以上でLiOが添加されているため、溶接金属中のN含有量が低減された。よって、溶接金属の試験片No.1~9については、溶接金属中のMn含有量が0.90質量%以上、かつ、式(3)により算出されるXが本発明の好ましい条件として規定する数値範囲内、すなわち0.054以下を満足するため、-196℃におけるシャルピー衝撃吸収エネルギー(vE-196℃)が57Jを超える、より優れた極低温靱性を得ることができた。
 なお、発明例のうち、溶接金属の試験片No.10~13については、上記Xが0.054を超えたため、また、溶接金属の試験片No.14については、溶接金属中のMn含有量が0.90質量%未満であったため、vE-196℃は57J以下の値となった。
 さらに、ワイヤNo.A~Iは、ワイヤ中に更にNa、F、LiO、BaF、SrF、Feの少なくとも一部が添加されているが、これらの各含有量が本発明の好ましい条件として規定する数値範囲内であるため、溶接作業性が良好となった。
 一方、比較例であるワイヤNo.O~Sは、ワイヤ全質量あたりのSi含有量が本発明範囲の下限未満であるため、優れた極低温靱性を有する溶接金属を得ることができなかった。
 ワイヤNo.T及びNo.Vは、ワイヤ全質量あたりのSi含有量が本発明範囲の下限未満であるとともに、式(1)により算出されるXが本発明範囲の上限を超えているため、優れた極低温靱性を有する溶接金属を得ることができなかった。
 ワイヤNo.Uは、ワイヤ全質量あたりのMn含有量及びN含有量、並びに、式(1)により算出されるXが本発明範囲の上限を超えているため、優れた極低温靱性を有する溶接金属を得ることができなかった。
 ワイヤNo.Wは、式(1)により算出されるXが本発明範囲の下限未満であるため、優れた極低温靱性を有する溶接金属を得ることができなかった。
 なお、溶接金属の試験片No.22は、-196℃におけるシャルピー衝撃吸収エネルギー(vE-196℃)を測定していないが、0℃におけるシャルピー衝撃吸収エネルギー(vE0℃)が極めて低い値を示しているため、-196℃においてもより低い値を示すと推測される。
 また、溶接金属の試験片No.15~18及びNo.20は、溶接金属全質量あたりのSi含有量が本発明範囲の下限未満であるとともに、式(2)により算出されるXが本発明範囲の上限を超えているため、優れた極低温靱性を有する溶接金属を得ることができなかった。
 溶接金属の試験片No.19は、溶接金属全質量あたりのSi含有量が本発明範囲の下限未満であるとともに、溶接金属全質量あたりのO含有量及び式(2)により算出されるXが本発明範囲の上限を超えているため、優れた極低温靱性を有する溶接金属を得ることができなかった。
 溶接金属の試験片No.21は、溶接金属全質量あたりのMn含有量及びN含有量、並びに式(2)により算出されるXが本発明範囲の上限を超えているため、優れた極低温靱性を有する溶接金属を得ることができなかった。
 溶接金属の試験片No.22は、溶接金属全質量あたりのO含有量が本発明範囲の上限を超えているため、優れた極低温靱性を有する溶接金属を得ることができなかった。
 溶接金属の試験片No.23は、式(2)により算出されるXが本発明範囲の下限未満であるため、優れた極低温靱性を有する溶接金属を得ることができなかった。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2019年7月1日出願の日本特許出願(特願2019-123039)及び2020年1月16日出願の日本特許出願(特願2020-005418)に基づくものであり、その内容は本出願の中に参照として援用される。
1 炭素鋼板
1a、2a バタリング層
2 裏当て材
3 溶接金属
4 試験片

Claims (7)

  1.  鋼製外皮にフラックスが充填されたフラックス入りワイヤであって、
     ワイヤ全質量あたり、
     C:0.018質量%以下、
     Si:0.57質量%以上1.00質量%以下、
     Mn:0.70質量%以上3.00質量%以下、
     P:0.021質量%以下、
     Ni:7.00質量%以上13.00質量%以下、
     Cr:12.00質量%以上21.00質量%以下、
     N:0.030質量%以下、
     残部がFe及び不可避的不純物であり、
     下記式(1)により算出されるXが17.5以上22.0以下であることを特徴とする、オーステナイト系ステンレス鋼フラックス入りワイヤ。
     X=[Ni]+0.5×[Cr]+1.6×[Mn]+0.5×[Si]+15×[C]・・・(1)
     ただし、式(1)中において、[Ni]、[Cr]、[Mn]、[Si]及び
    [C]は、それぞれ、ワイヤ全質量あたり、ワイヤ中のNi、Cr、Mn、Si及びCの含有量(質量%)を表す。
  2.  さらに、ワイヤ全質量あたり、
     LiO:0.13質量%以上、を含有することを特徴とする請求項1に記載のオーステナイト系ステンレス鋼フラックス入りワイヤ。
  3.  さらに、ワイヤ全質量あたり、
     下記(a)~(d)から選ばれる少なくとも1つを含有することを特徴とする請求項1又は2に記載のオーステナイト系ステンレス鋼フラックス入りワイヤ。
    (a)Al:2.00質量%以下、Mg:2.00質量%以下、REM:0.70質量%以下、Ca:0.50質量%以下、Zr:0.40質量%以下、の少なくとも1種
    (b)Na及びKのいずれか一方又は両方の合計:0.60質量%以下、F:0.50質量%以下、LiO:0.50質量%以下、BaF:10.0質量%以下、SrF:10.0質量%以下、CaF:10.0質量%以下、Fe:2.00質量%以下、の少なくとも1種
    (c)Cu:1.0質量%以下、Mo:1.0質量%以下、W:1.0質量%以下、Ti:0.5質量%以下、B:0.01質量%以下、の少なくとも1種
    (d)Si酸化物、Al酸化物、Ti酸化物、及びZr酸化物から選択された少なくとも1種を合計量が0質量%超5質量%以下
  4.  溶接金属全質量あたり、
     C:0.065質量%以下、
     Si:0.59質量%以上1.00質量%以下、
     Mn:0.80質量%以上3.00質量%以下、
     P:0.025質量%以下、
     Ni:8.00質量%以上15.00質量%以下、
     Cr:15.00質量%以上24.00質量%以下、
     N:0.080質量%以下、
     O:0.030質量%以下、
     残部がFe及び不可避的不純物であり、
     下記式(2)により算出されるXが18.8以上23.0以下であることを特徴とする、溶接金属。
     X=[Ni]+0.5×[Cr]+1.6×[Mn]+0.5×[Si]+15×[C]・・・(2)
     ただし、式(2)中において、[Ni]、[Cr]、[Mn]、[Si]及び
    [C]は、それぞれ、溶接金属全質量あたり、溶接金属中のNi、Cr、Mn、Si及びCの含有量(質量%)を表す。
  5.  溶接金属全質量あたり、
     前記Mn:0.90質量%以上であり、
     下記式(3)により算出されるXが0.054以下であることを特徴とする、請求項4に記載の溶接金属。
     X=[C]+[N]・・・(3)
     ただし、式(3)中において、[C]及び[N]は、それぞれ、溶接金属全質量あたり、溶接金属中のC及びNの含有量(質量%)を表す。
  6.  さらに、溶接金属全質量あたり、
     下記(e)及び(f)から選ばれる少なくとも1つを含有することを特徴とする請求項4又は5に記載の溶接金属。
    (e)Al:0.80質量%以下、Mg:0.040質量%以下、REM:0.080質量%以下、Ca:0.005質量%以下、Zr:0.100質量%以下、の少なくとも1種
    (f)Cu:1.0質量%以下、Mo:1.0質量%以下、W:1.0質量%以下、Ti:0.5質量%以下、B:0.01質量%以下、の少なくとも1種
  7.  請求項1又は2に記載のオーステナイト系ステンレス鋼フラックス入りワイヤを使用し、
     シールドガスとして、100体積%Arガス、Oガスを20体積%以下含有するAr-O混合ガス及びCOガスを5体積%以下含有するAr-CO混合ガスから選択される1種を使用して溶接することを特徴とする溶接方法。
PCT/JP2020/024814 2019-07-01 2020-06-24 オーステナイト系ステンレス鋼フラックス入りワイヤ、溶接金属及び溶接方法 WO2021002259A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217041948A KR20220008917A (ko) 2019-07-01 2020-06-24 오스테나이트계 스테인리스강 플럭스 코어드 와이어, 용접 금속 및 용접 방법
CN202080048234.7A CN114173985A (zh) 2019-07-01 2020-06-24 奥氏体系不锈钢药芯焊丝、焊接金属和焊接方法
CA3144335A CA3144335A1 (en) 2019-07-01 2020-06-24 Austenitic stainless steel flux-cored wire, weld metal, and welding method
US17/624,049 US20220355421A1 (en) 2019-07-01 2020-06-24 Austenitic stainless steel flux-cored wire, weld metal, and welding method
EP20834267.5A EP3974098A4 (en) 2019-07-01 2020-06-24 AUSTENITIC STAINLESS STEEL CORED WIRE, WELDED METAL AND WELDING PROCESS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-123039 2019-07-01
JP2019123039 2019-07-01
JP2020-005418 2020-01-16
JP2020005418A JP2021007982A (ja) 2019-07-01 2020-01-16 オーステナイト系ステンレス鋼フラックス入りワイヤ、溶接金属及び溶接方法

Publications (1)

Publication Number Publication Date
WO2021002259A1 true WO2021002259A1 (ja) 2021-01-07

Family

ID=74101300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024814 WO2021002259A1 (ja) 2019-07-01 2020-06-24 オーステナイト系ステンレス鋼フラックス入りワイヤ、溶接金属及び溶接方法

Country Status (6)

Country Link
US (1) US20220355421A1 (ja)
EP (1) EP3974098A4 (ja)
KR (1) KR20220008917A (ja)
CN (1) CN114173985A (ja)
CA (1) CA3144335A1 (ja)
WO (1) WO2021002259A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113732577A (zh) * 2021-08-18 2021-12-03 上海中船临港船舶装备有限公司 基于质量的焊丝余量检测与焊接过程控制系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653897A (en) * 1979-10-04 1981-05-13 Nippon Steel Corp Austenite stainless welding wire superior in resistance to high-temperature creep
JPH06690A (ja) 1980-05-22 1994-01-11 Kobe Steel Ltd Mig溶接用オーステナイト系ステンレス鋼ワイヤ
JP2002001580A (ja) 2000-06-07 2002-01-08 Kisswell:Kk オーステナイト系ステンレス鋼溶接用フラックス入りワイヤ
JP2012055899A (ja) * 2010-09-06 2012-03-22 Kobe Steel Ltd フラックス入り溶接ワイヤ及びこれを用いた肉盛溶接のアーク溶接方法
JP2018089678A (ja) * 2016-12-07 2018-06-14 日鐵住金溶接工業株式会社 ステンレス鋼溶接用フラックス入りワイヤ
JP2019000887A (ja) 2017-06-19 2019-01-10 日鐵住金溶接工業株式会社 低温用鋼のガスシールドアーク溶接用フラックス入りワイヤ
JP2019123039A (ja) 2018-01-16 2019-07-25 株式会社平山製作所 穴あけ装置
JP2020005418A (ja) 2018-06-28 2020-01-09 中国電力株式会社 モールド操作工具

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3889903B2 (ja) * 1999-07-27 2007-03-07 日本冶金工業株式会社 高耐食オーステナイト系ステンレス鋼用フラックス入りワイヤ
JP4995888B2 (ja) * 2009-12-15 2012-08-08 株式会社神戸製鋼所 ステンレス鋼アーク溶接フラックス入りワイヤ
CN102059470B (zh) * 2010-12-17 2013-03-06 中国船舶重工集团公司第七二五研究所 一种高锰低热裂纹敏感性的高强度全奥氏体电焊条
CN102601546A (zh) * 2012-03-15 2012-07-25 江苏中江焊丝有限公司 不锈钢药芯焊丝
JP6257193B2 (ja) * 2013-07-12 2018-01-10 株式会社神戸製鋼所 肉盛溶接用フラックス入りワイヤ
WO2016158870A1 (ja) * 2015-03-27 2016-10-06 新日鐵住金ステンレス株式会社 ステンレス鋼溶接継ぎ手および燃料改質器用ステンレス鋼
JP2017148821A (ja) * 2016-02-22 2017-08-31 株式会社神戸製鋼所 2相ステンレス鋼向けアーク溶接用フラックス入りワイヤおよび溶接金属

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653897A (en) * 1979-10-04 1981-05-13 Nippon Steel Corp Austenite stainless welding wire superior in resistance to high-temperature creep
JPH06690A (ja) 1980-05-22 1994-01-11 Kobe Steel Ltd Mig溶接用オーステナイト系ステンレス鋼ワイヤ
JP2002001580A (ja) 2000-06-07 2002-01-08 Kisswell:Kk オーステナイト系ステンレス鋼溶接用フラックス入りワイヤ
JP2012055899A (ja) * 2010-09-06 2012-03-22 Kobe Steel Ltd フラックス入り溶接ワイヤ及びこれを用いた肉盛溶接のアーク溶接方法
JP2018089678A (ja) * 2016-12-07 2018-06-14 日鐵住金溶接工業株式会社 ステンレス鋼溶接用フラックス入りワイヤ
JP2019000887A (ja) 2017-06-19 2019-01-10 日鐵住金溶接工業株式会社 低温用鋼のガスシールドアーク溶接用フラックス入りワイヤ
JP2019123039A (ja) 2018-01-16 2019-07-25 株式会社平山製作所 穴あけ装置
JP2020005418A (ja) 2018-06-28 2020-01-09 中国電力株式会社 モールド操作工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3974098A4

Also Published As

Publication number Publication date
EP3974098A4 (en) 2022-10-05
CN114173985A (zh) 2022-03-11
CA3144335A1 (en) 2021-01-07
KR20220008917A (ko) 2022-01-21
US20220355421A1 (en) 2022-11-10
EP3974098A1 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
JP5005309B2 (ja) 高張力鋼用ガスシールドアーク溶接フラックス入りワイヤ
KR101674743B1 (ko) 가스 실드 아크 용접용 플럭스 내장 와이어 및 극저온용 강의 용접 방법 및 용접 조인트의 제조 방법
US20220281024A1 (en) Flux-cored wire, manufacturing method of welded joint, and welded joint
US10870178B2 (en) Flux-cored wire for arc welding of duplex stainless steel and weld metal
US9962794B2 (en) Flux cored welding electrode for 5-9% nickel steel
JP6953869B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
KR20170140798A (ko) 가스 실드 아크 용접용 플럭스 내장 와이어
JP6155810B2 (ja) ガスシールドアーク溶接用高Niフラックス入りワイヤ
KR20230133347A (ko) 서브머지드 아크 용접 이음
JP6801494B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、および溶接継手の製造方法
JP6690786B1 (ja) ソリッドワイヤ及び溶接継手の製造方法
JP2019048324A (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
WO2021002259A1 (ja) オーステナイト系ステンレス鋼フラックス入りワイヤ、溶接金属及び溶接方法
WO2022130759A1 (ja) サブマージアーク溶接用ワイヤおよびそれを用いた溶接継手部の製造方法
JP6958139B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP6953870B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
WO2020012925A1 (ja) 2相ステンレス鋼溶接用フラックス入りワイヤ、溶接方法および溶接金属
JP6953930B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP2021007982A (ja) オーステナイト系ステンレス鋼フラックス入りワイヤ、溶接金属及び溶接方法
JP2019104020A (ja) 立向エレクトロガスアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
WO2020105530A1 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP2022157587A (ja) フラックス入りワイヤ及び溶接継手の製造方法
JP2020015092A (ja) 2相ステンレス鋼溶接用フラックス入りワイヤ、溶接方法および溶接金属
CN113613829A (zh) Ni基合金药芯焊丝
JP2004230392A (ja) マルテンサイト系ステンレス鋼管用溶接材料およびマルテンサイト系ステンレス鋼管の溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3144335

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20217041948

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020834267

Country of ref document: EP

Effective date: 20211222