WO2023248571A1 - 2段変速機 - Google Patents

2段変速機 Download PDF

Info

Publication number
WO2023248571A1
WO2023248571A1 PCT/JP2023/013464 JP2023013464W WO2023248571A1 WO 2023248571 A1 WO2023248571 A1 WO 2023248571A1 JP 2023013464 W JP2023013464 W JP 2023013464W WO 2023248571 A1 WO2023248571 A1 WO 2023248571A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
friction plate
rotation
reduction ratio
clutch
Prior art date
Application number
PCT/JP2023/013464
Other languages
English (en)
French (fr)
Inventor
明弘 山本
槙吾 木村
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to JP2023544665A priority Critical patent/JP7375993B1/ja
Publication of WO2023248571A1 publication Critical patent/WO2023248571A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure

Definitions

  • the present disclosure relates to a two-stage transmission for switching the reduction ratio between an input member and an output member into two stages, high and low.
  • Electric motors which are the power source for electric vehicles and hybrid vehicles, differ from internal combustion engines (engines) that run by directly burning fossil fuels, and the torque and rotational speed characteristics of their output shafts are favorable for use in automobiles. Since the maximum torque is generated at startup, it is not necessarily necessary to provide a transmission like a typical automobile that uses an internal combustion engine as a drive source.
  • acceleration performance and high-speed performance can be improved by providing a transmission.
  • the relationship between the vehicle's running speed and acceleration can be made smoother, similar to that of a car equipped with a gasoline engine and equipped with a transmission in the power transmission system. can do. This point will be explained with reference to FIG. 30.
  • the acceleration (G) and running speed (km/h) of the electric vehicle will change.
  • the relationship is as shown by the solid line a in FIG. In other words, although the acceleration performance at low speeds is excellent, high speed driving becomes impossible.
  • a power transmission device with a small reduction ratio is disposed between the output shaft and the input section, this relationship becomes as shown by the chain line b in FIG. 30. In other words, high-speed driving is possible, but acceleration performance at low speeds is impaired.
  • JP-A No. 05-116549 discloses an electric vehicle in which the torque of the output shaft of an electric motor is increased by a two-stage transmission consisting of a pair of planetary gear mechanisms and a pair of brakes and transmitted to a differential gear.
  • a structure of a drive device for a vehicle is disclosed.
  • the components of a pair of planetary gear mechanisms are switched between a rotatable state and a non-rotatable state based on switching between a connected state and a disconnected state of a pair of brakes.
  • the reduction ratio between the output shaft of the electric motor and the differential gear can be switched between high and low levels.
  • the present disclosure aims to realize a structure that can prevent the occurrence of shift shock in a two-stage transmission in which the reduction ratio can be switched to two stages, high and low. .
  • a two-speed transmission includes an input member, an output member, and an electric friction engagement device.
  • the electric friction engagement device includes a first clutch member, a second clutch member, a friction engagement portion, an elastic biasing member, a cam device, and an electric actuator.
  • the second clutch member is supported coaxially with the first clutch member so as to be rotatable relative to the first clutch member.
  • the frictional engagement portion includes at least one first friction plate and at least one second friction plate that are supported for relative displacement in the axial direction, and the first clutch member and the second clutch It is provided between the members.
  • the frictional engagement portion switches to a connected state in which torque is transmitted between the first clutch member and the second clutch member by pressing the first friction plate and the second friction plate against each other. , and by releasing the force pressing the first friction plate and the second friction plate against each other, the first clutch member and the second clutch member are switched to a disconnected state in which no torque is transmitted between the first clutch member and the second clutch member. .
  • the elastic biasing member is provided between the first clutch member or the second clutch member and the friction engagement portion, and is configured to press the first friction plate and the second friction plate against each other. to be elastically biased.
  • the cam device includes a drive cam and a driven cam that is supported so as to be rotatable relative to the drive cam and to be displaced relative to the drive cam in the axial direction.
  • the cam device is configured to move the elastic biasing member toward the first friction plate by relatively displacing the driven cam in a direction in which an axial distance from the driving cam increases as the driving cam rotates. and the second friction plate in a direction that releases the force pressing them together.
  • the electric actuator has a shift motor and a reduction gear, and the shift motor rotationally drives the drive cam via the reduction gear.
  • the two-stage transmission provides a high speed reduction ratio between the input member and the output member based on switching between the connected state and the disconnected state of the frictional engagement portion. It is configured to switch between a reduction ratio mode and a low reduction ratio mode in which the reduction ratio between the input member and the output member is small.
  • the elastic biasing member adjusts the phase in the rotational direction of the drive cam between the first friction plate and the first friction plate. It has a function of detecting the piston touch point where the piston starts to be pressed in the direction of releasing the force pressing the two friction plates against each other.
  • the two-stage transmission is configured such that when the shift motor rotationally drives the drive cam via the reduction gear in order to switch the frictional engagement portion from the connected state to the disconnected state.
  • the first friction plate and the second friction plate are pressed against each other to set a phase in the rotational direction of the drive cam when the increase rate becomes equal to or less than a second threshold after exceeding the piston touch point. It has a function to detect the clutch touch point where the matching force becomes 0.
  • the two-stage transmission may change the amount of rotation of the drive cam rotationally driven by the shift motor via the reduction gear to the first and/or a function of adjusting based on the piston touch point detected by the second function and/or the clutch touch point detected by the second function.
  • the electric friction engagement device includes a return spring that elastically biases the first friction plate and the second friction plate in a direction to separate them from each other. Can be done.
  • the two-stage transmission may include a drive source that rotationally drives the input member, and controls the output torque and rotation speed of the drive source and the rotation speed of the shift motor. By doing so, it is possible to provide a function of switching from the high reduction ratio mode to the low reduction ratio mode while preventing the rotational torque of the output member from changing discontinuously.
  • the high reduction ratio mode is switched to the low reduction ratio mode while maintaining the rotational torque of the output member within a predetermined range, that is, while maintaining the rotational torque of the output member substantially constant. function can be provided.
  • a two-stage transmission includes a first member and a second member that are arranged coaxially with each other, and a mode select member that rotates or displaces in the axial direction as the drive cam rotates. and a free mode in which rotation of the first member with respect to the second member is allowed regardless of a relative rotation direction between the first member and the second member; It is possible to provide a rotation transmission state switching device having a lock mode in which rotation of the first member with respect to the second member is prevented regardless of the relative rotation direction of the rotation transmission state switching device.
  • the rotation transmission state switching device switches between the free mode and the lock mode based on the rotation or axial displacement of the mode select member.
  • the rotation transmission state switching device allows only rotation of the first member in a predetermined direction with respect to the second member, and A one-way clutch mode may be provided in which rotation of the member in a direction opposite to the predetermined direction is prevented.
  • the two-stage transmission is configured to switch the frictional engagement portion from the disconnected state to the connected state, and/or to switch the frictional engagement portion from the connected state to the disconnected state. It is possible to have a function of setting the rotation transmission state switching device to the one-way clutch mode while switching to the one-way clutch mode.
  • the two-speed transmission presses the first friction plate and the second friction plate against each other when switching the friction engagement portion from the disconnected state to the connected state.
  • the rotation transmission state switching device has a function of switching the rotation transmission state switching device from the free mode or the lock mode to the one-way clutch mode at the same time as or before starting to increase the matching force.
  • the two-stage transmission includes a force that presses the first friction plate and the second friction plate against each other when switching the friction engagement portion from the connected state to the disconnected state.
  • the rotation transmission state switching device may be provided with a function of switching the rotation transmission state switching device from the free mode or the lock mode to the one-way clutch mode at the same time as starting to reduce the force, or before starting to reduce the force. .
  • a two-speed transmission includes a sun gear connected to the input member so as to rotate integrally with the input member, and a ring gear disposed around the sun gear coaxially with the sun gear. , a carrier connected to the output member so as to rotate integrally with the output member, meshing with the sun gear and the ring gear, and allowing the carrier to rotate about its own central axis.
  • the planetary gear mechanism may include a plurality of planetary gears supported by the planetary gear mechanism.
  • one of the first friction plate and the second friction plate is supported such that it can be displaced relative to the sun gear or the input member in the axial direction and cannot rotate relative to the sun gear or the input member.
  • the other of the first friction plate and the second friction plate is supported so as to be movable relative to the carrier or the output member in the axial direction, but not relative rotation.
  • one of the first member and the second member is supported such that relative rotation is not possible with respect to a portion that does not rotate during use, and the other of the first member and the second member is , is supported so as not to rotate relative to the ring gear.
  • FIG. 1 is a cross-sectional view schematically showing a drive system incorporating a two-speed transmission as an example of an embodiment of the present disclosure.
  • FIG. 2(a) is a diagram showing the torque transmission path in the low reduction ratio mode of the two-speed transmission of this example
  • FIG. 2(b) is a diagram showing the torque transmission path in the high reduction ratio mode of the two-speed transmission of this example.
  • FIG. 3 is a diagram showing a torque transmission path.
  • FIG. 3 is a perspective view of the two-speed transmission of this example.
  • FIG. 4 is a sectional view of the two-speed transmission of this example.
  • FIG. 5 is a perspective view showing the planetary gear mechanism removed from the two-speed transmission of this example.
  • FIG. 6 is a sectional view showing the planetary gear mechanism removed from the two-speed transmission of this example.
  • FIG. 7 is an exploded perspective view of the two-speed transmission of this example.
  • FIG. 8 is an exploded perspective view showing a worm and two support bearings taken out from the electric friction engagement device constituting the two-speed transmission of this example.
  • FIG. 9 is an exploded perspective view showing the first friction plate and the second friction plate taken out from the electric friction engagement device.
  • FIG. 10 is an enlarged view of the X section in FIG.
  • FIG. 11 is a perspective view showing the drive cam taken out from the electric friction engagement device.
  • FIG. 12 is an exploded perspective view showing the driven cam and rolling elements taken out from the electric friction engagement device.
  • FIG. 13(a) is a perspective view showing the flange portion of the rotating member and the pressing member taken out from the two-stage transmission of this example
  • FIG. 13(b) is a perspective view showing the flange portion of the rotating member and the pressing member taken out.
  • FIG. 14(A) to 14(D) are schematic diagrams of the cam device of the electric friction engagement device viewed from the outside in the radial direction.
  • FIG. 15 is a perspective view of the rotation transmission state switching device constituting the two-stage transmission of this example, viewed from the other side in the axial direction.
  • FIG. 16 is an exploded perspective view of the rotation transmission state switching device.
  • FIG. 17 is an end view of the rotation transmission state switching device viewed from the other axial side with the select plate removed.
  • FIG. 18 is an enlarged view of the Y section in FIG. 17.
  • FIG. 19(A) is a schematic diagram showing the engagement relationship between the first engagement claw, the second engagement claw, the engagement recess, and the protrusion in the free mode of the rotation transmission state switching device.
  • 19(B) is a schematic diagram showing the engagement relationship in the lock mode
  • FIG. 19(C) is a schematic diagram showing the engagement relationship in the one-way clutch mode.
  • FIG. 20 is a diagram schematically showing the mode of the electric friction engagement device and the mode of the rotation transmission state switching device in the two-speed transmission of this example.
  • 21(a) and 21(b) are lines showing the relationship between the rotation angle of the drive cam and the output torque and current value of the shift motor when switching the electric friction engagement device from the connection mode to the disconnection mode.
  • 21(a) is a diagram showing the case when the first friction plate and the second friction plate are new and not worn
  • FIG. 21(b) is a diagram showing the case where the first friction plate and the second friction plate are new. It is a figure which shows the case where the wear of a board has progressed significantly.
  • FIG. 22 is a sectional view showing a state in which the electric friction engagement device is switched to the connection mode.
  • FIG. 23 is a cross-sectional view showing a state in which the pressing member and the piston are in contact with each other during switching from the connection mode to the disconnection mode of the electric friction engagement device.
  • FIG. 24 is a sectional view showing a state in which the electric friction engagement device is switched to cutting mode.
  • FIG. 25 is a flowchart showing the operation when switching the two-speed transmission of this example from the high reduction ratio mode to the low reduction ratio mode.
  • FIG. 26 is a diagram showing changes over time in each parameter when switching the two-speed transmission of this example from the high reduction ratio mode to the low reduction ratio mode.
  • FIG. 27 is a sectional view showing a part of a two-speed transmission of a comparative example.
  • FIG. 28 is a diagram schematically showing a connected state and a disconnected state of the first frictional engagement device and the second frictional engagement device in a two-speed transmission of a comparative example.
  • FIG. 29 is a diagram corresponding to FIG. 20 regarding a two-speed transmission according to a modification of this example.
  • FIG. 30 is a diagram for explaining the effect of incorporating a transmission into a drive device using an electric motor as a drive source.
  • the two-speed transmission 1 of this example is arranged between a drive source 2 constituted by an electric motor and a differential device 3, and increases the output torque of the drive source 2, that is, reduces rotation.
  • the signal is transmitted to the differential device 3 as is without being increased.
  • each element constituting the drive source 2, differential device 3, and two-speed transmission 1 is schematically shown to facilitate understanding of the present disclosure.
  • the two-speed transmission 1 of this example includes an input member 4 that can be rotationally driven by a drive source 2, an output member 5 that is connected to a differential device 3 so as to be able to transmit torque, and an electric friction engagement device 7. Equipped with.
  • the electric friction engagement device 7 includes a first clutch member and an input member 4, or a second clutch member that is connected to enable transmission of torque from the input member 4, and a friction engagement portion. 26, an elastic biasing member 27, a cam device 28, and an electric actuator 29.
  • the first clutch member is constituted by the rotating member 6.
  • the second clutch member is constituted by the input member 4.
  • the input member 4 which corresponds to the input member and the second clutch member of the present disclosure, is constituted by a housing that houses the two-speed transmission 1, and rotates with respect to a fixed part 10 that does not rotate during use. freely supported.
  • the input member 4 has a cylindrical (hollow) shape.
  • the input member 4 also has an input gear 13 that meshes with a drive gear 12 provided on the output shaft 11 of the drive source 2 at one end in the axial direction (right side in FIG. 1).
  • the input member 4, which corresponds to the second clutch member is coaxial with the rotating member 6, which is the first clutch member, and can rotate relative to the rotating member 6, which is the first clutch member.
  • the output member 5 is supported radially inside the input member 4 so as to be rotatable relative to the input member 4. Further, the output member 5 has an output gear 14 at one end in the axial direction. The output gear 14 meshes with a gear provided at the input section of the differential device 3.
  • the rotating member 6 corresponding to the first clutch member is supported by the fixed portion 10 coaxially with the input member 4 and the output member 5 and capable of relative rotation with respect to the input member 4 and the output member 5.
  • the rotating member 6 has a small-diameter flange portion 15 that protrudes radially outward in the axially intermediate portion, and is located on the other side in the axial direction (left side in FIG. 1) than the small-diameter flange portion 15. It has a flange portion 16 that protrudes radially outward at the located portion.
  • the flange portion 16 includes a first circular ring portion 18 having a hollow circular plate shape, a first cylindrical portion 19 bent from the radially outer end of the first circular ring portion 18 toward the other side in the axial direction, and a first circular ring portion 18 .
  • a second annular ring part 20 in the shape of a hollow circular plate bent radially outward from the other axial end of the cylindrical part 19; It has a second cylindrical portion 21 bent toward the side.
  • the first annular portion 18 has partially arc-shaped through holes 17 at a plurality of locations in the radially intermediate portion thereof, through which the partially cylindrical portion 63 of the pressing member 58 constituting the electric friction engagement device 7 is inserted.
  • the rotating member 6 is constructed by externally fitting and fixing a stepped cylindrical member 23 to a shaft member 22 having a small diameter flange portion 15.
  • the stepped cylindrical member 23 has a flange portion 16 and a radially inner end of the first circular ring portion 18 of the flange portion 16. It has a small diameter cylindrical portion 24 bent toward the side.
  • the female spline portion 25 provided on the inner peripheral surface of the small diameter cylindrical portion 24 is supported and fixed by spline engagement with the male spline portion provided on the outer peripheral surface of the shaft member 22 .
  • the rotating member can also be constructed by coupling and fixing the stepped cylindrical member and the shaft member by press fitting, welding, or the like.
  • the electric friction engagement device 7 is provided between the input member 4 and the rotating member 6, and has a connection mode in which torque is transmitted between the input member 4 and the rotating member 6, and a disconnection mode in which torque is not transmitted. Switch between modes.
  • the friction engagement portion 26 constituting the electric friction engagement device 7 includes at least one first friction plate 30 and at least one second friction plate 31 that are supported so as to be relatively movable in the axial direction. , is provided between the first clutch member (rotating member 6) and the second clutch member (input member 4).
  • the friction engagement portion 26 presses the first friction plate 30 and the second friction plate 31 against each other to generate torque between the first clutch member (rotating member 6) and the second clutch member (input member 4).
  • the state is switched to a connected state in which the first clutch member (rotating member 6) and the second clutch member (input member 4) rotate as one unit.
  • the friction engagement part 26 releases the force pressing the first friction plate 30 and the second friction plate 31 against each other, so that the first clutch member (rotating member 6) and the second clutch member (input The state is switched to a disconnected state in which no torque is transmitted between the first clutch member (rotating member 6) and the second clutch member (input member 4), in which the first clutch member (rotating member 6) and the second clutch member (input member 4) rotate relative to each other.
  • the friction engagement section 26 alternately stacks a plurality of first friction plates 30 supported by the rotating member 6 and a plurality of second friction plates 31 supported by the input member 4. It consists of a multi-disc clutch.
  • the plurality of first friction plates 30 are supported on the outer circumferential surface of the first cylindrical portion 19 so as to be able to be displaced in the axial direction but not to rotate relative to the first cylindrical portion 19 .
  • the plurality of second friction plates 31 are supported on the inner circumferential surface of the other end of the input member 4 in the axial direction so as to be able to be displaced in the axial direction but not to rotate relative to the input member 4.
  • the elastic biasing member 27 is provided between the first clutch member (rotating member 6) or the second clutch member (input member 4) and the friction engagement portion 26, and is provided between the first friction plate 30 and the second friction engagement portion 26.
  • the plate 31 is elastically urged in the direction of pressing the plate 31 against each other.
  • the elastic biasing member 27 is provided between the rotating member 6 and the frictional engagement portion 26, and includes a piston 32 and an elastic member 33.
  • the piston 32 is supported so as to be movable in the axial direction relative to the rotating member 6.
  • the piston 32 is configured in the shape of a hollow circular plate, and the piston 32 is arranged around a portion of the rotating member 6 between the small diameter flange portion 15 and the flange portion 16 in the axial direction. is supported.
  • the piston 32 connects the end surface of the radially outer portion on the other axial side to the first friction plate 30 or the second friction plate 31 that is located closest to one side in the axial direction among the first friction plate 30 and the second friction plate 31. They are opposed to each other on one side in the axial direction.
  • the elastic member 33 is provided between the rotating member 6 and the piston 32.
  • the elastic member 33 is held between the other axial side surface of the small diameter flange portion 15 of the rotating member 6 and one axial side surface of the piston 32 in an elastically compressed state. That is, the elastic biasing member 27 causes the first friction plate 30 or the second friction plate 31 on one side in the axial direction to be pushed on the other side in the axial direction via the piston 32 by the force of the elastic member 33 to restore elasticity.
  • the first friction plate 30 and the second friction plate 31 are elastically urged in a direction in which they are pressed against each other.
  • the elastic member 33 is composed of at least one disc spring (two disc springs in this example).
  • the specific configuration of the elastic member is not particularly limited.
  • the elastic member can also be constituted by at least one coil spring.
  • the cam device 28 includes a driving cam 34 and a driven cam 35 supported so as to be rotatable relative to the driving cam 34 and displaced relative to the axial direction.
  • the cam device 28 moves the elastic biasing member 27 toward the first friction plate 30 based on the relative displacement of the driven cam 35 in the direction in which the axial distance from the drive cam 34 increases as the drive cam 34 rotates. and the second friction plate 31 in a direction that releases the force pressing them against each other.
  • the drive cam 34 is supported by the rotating member 6 such that it can rotate relative to the rotating member 6 and the input member 4, but cannot be displaced in the axial direction relative to the rotating member 6.
  • the drive cam 34 enables relative rotation to the rotating member 6 by a cylindrical member 37, a radial bearing 38, and an angular contact ball bearing 39. Supported.
  • the cylindrical member 37 has a cylindrical portion 40 and an outward flange portion 41 bent radially outward from the other end of the cylindrical portion 40 in the axial direction.
  • the cylindrical member 37 has an outward flange portion 41 supported and fixed to the fixed portion 10 by screwing or the like.
  • the radial bearing 38 includes an inner ring 42 that is externally fitted and fixed to the other end of the rotating member 6 in the axial direction, an outer ring 43 that is internally fitted and fixed to the cylindrical portion 40 of the cylindrical member 37, and the inner ring 42 and the outer ring 43. It has a plurality of rolling elements 44 that are rotatably disposed between them.
  • the radial bearing 38 is constituted by a double-row deep groove ball bearing using balls as the rolling elements 44.
  • the radial bearing is not particularly limited as long as it allows relative rotation between the first member and the cam device and can support the axial biasing force of the elastic biasing member.
  • the radial bearing is a deep groove ball bearing, a radial angular bearing, etc. It can also be constructed using a ball bearing or a radial tapered roller bearing.
  • the angular contact ball bearing 39 has an inner ring 45 fitted and fixed to the cylindrical portion 40 of the cylindrical member 37, an outer ring 46 fitted and fixed to the drive cam 34, and a rotatable member between the inner ring 45 and the outer ring 46. It has a plurality of balls 47 arranged.
  • the driven cam 35 is arranged around the rotating member 6 so that it can only be displaced in the axial direction.
  • the driven cam 35 has a hollow circular plate shape, and is supported with respect to the fixed portion 10 so as to be movable in the axial direction.
  • a female spline portion 51 provided on the inner peripheral surface of the driven cam 35 is spline-engaged with a male spline portion 52 provided on the outer peripheral surface of one axial portion of the cylindrical portion 40 of the cylindrical member 37.
  • the method of supporting the driven cam relative to the fixed part is not particularly limited as long as the driven cam can be supported relative to the fixed part so that it can only be displaced in the axial direction.
  • the driven cam can be displaced in the axial direction relative to the fixed part by keying a convex part provided on one of the driven cam and the fixed part and a groove provided on the other. It can also be supported.
  • the driven cam 35 has rectangular holes 53 that penetrate in the axial direction at multiple locations (three locations in the illustrated example) in the circumferential direction of the radially intermediate portion, and the rectangular holes 53 It has substantially semicircular plate-shaped support plate portions 54a and 54b that protrude from both radial side portions toward the other side in the axial direction.
  • the radially outer support plate portion 54a is provided with a support hole 55 which is a circular hole penetrating in the radial direction
  • the radially inner support plate portion 54b is provided with a radially outer surface.
  • the driven cam 35 faces the piston 32 of the elastic biasing member 27 via the thrust bearing 57 and the pressing member 58.
  • the thrust bearing 57 is provided between the pressing member 58 and the driven cam 35.
  • the thrust bearing 57 includes a pair of bearing rings 59a and 59b, and a plurality of rolling elements 60 that are rotatably disposed between the pair of bearing rings 59a and 59b.
  • the bearing ring 59b on the other axial side is supported and fixed to the driven cam 35.
  • the pressing member 58 includes a cylindrical base 62 and a partial cylindrical portion 63 that protrudes toward one side in the axial direction from a plurality of locations (three locations in the illustrated example) in the circumferential direction at one end of the base 62 in the axial direction. has.
  • a bearing ring 59a on one side in the axial direction of the pair of bearing rings 59a and 59b of the thrust bearing 57 is supported and fixed to the other end of the base 62 in the axial direction.
  • the partial cylindrical portion 63 is inserted into the through hole 17 of the rotating member 6, and the tip portion (one end in the axial direction) of the partial cylindrical portion 63 is inserted into the radially intermediate portion of the other axial side surface of the piston 32. They are facing each other.
  • a preload applying means 61 for applying preload to the thrust bearing 57 is provided between the pressing member 58 and the rotating member 6.
  • the preload applying means 61 is held between the pressing member 58 and the other axial side surface of the first circular ring portion 18 of the flange portion 16 constituting the rotating member 6 in an elastically compressed state.
  • the elasticity of the preload applying means 61 is smaller than the elastic restoring force of the elastic member 33.
  • the preload applying means 61 can be constituted by, for example, at least one disc spring or at least one coil spring. In this example, the preload applying means 61 is constituted by one coil spring.
  • the cam device 28 includes a plurality of (three in this example) rolling elements 36 and a driving device provided on the driving cam 34 as a means for relatively displacing the driving cam 34 and the driven cam 35.
  • a cam surface 48 is provided.
  • the drive cam surface 48 is configured by alternately arranging the same number of concave portions and convex portions in the circumferential direction on the radially inner portion of one axial side surface of the drive cam 34.
  • the drive cam surface 48 includes a first bottom portion 48a, a first inclined surface portion 48b, a first flat surface portion 48c, a second inclined surface portion 48d, a second bottom portion 48e,
  • the third inclined surface portion 48f, the second flat surface portion 48g, and the fourth intermediate inclined surface portion 48h are repeatedly arranged in this order as many times as the rolling elements 36 (three times in this example).
  • the first flat surface portion 48c and the second flat surface portion 48g are located on the farthest side in the axial direction, that is, located at the tip of the convex portion, and the first bottom portion 48a and the second bottom portion 48e is located on the farthest side in the axial direction.
  • the angle of inclination of the third slope portion 48f and the fourth slope portion 48h with respect to the virtual plane P perpendicular to the central axis of the drive cam 34 is larger than that of the first slope portion 48b with respect to the virtual plane P.
  • the angle of inclination of the first inclined surface portion 48b, the angle of inclination of the third inclined surface portion 48f and the fourth inclined surface portion 48h are both large enough to allow the rolling elements 36 to move either by rolling down or by riding on them. It is set to The third inclined surface portion 48f and the fourth inclined surface portion 48h have opposite inclination directions and the same inclination angle.
  • the inclination angles of the third inclined surface portion 48f and the fourth inclined surface portion 48h can also be made different from each other. Further, the inclination angle of the first inclined surface portion 48b and the inclination angles of the third inclined surface portion 48f and the fourth inclined surface portion 48h may be made the same.
  • the angle of inclination of the second inclined surface portion 48d with respect to the virtual plane P can be set to any size as long as the rolling elements 36 can ride on it.
  • Each of the rolling elements 36 has a cylindrical shape, and is supported via a cylindrical support shaft 64 and a plurality of rollers 65 to be rotatable on the support plate portions 54a and 54b. That is, the outer end of the support shaft 64 in the radial direction centering on the central axis of the driven cam 35 is fitted and fixed into the support hole 55 of the support plate portion 54a on the radially outer side, and the support shaft 64, the inner end in the radial direction centered on the central axis of the driven cam 35 is fitted and fixed in the support recess 56 of the radially inner support plate portion 54b.
  • the plurality of rollers 65 are rotatably held between the inner peripheral surface of the rolling element 36 and the outer peripheral surface of the axially intermediate portion of the support shaft 64. Thereby, the rolling element 36 is supported by the driven cam 35 such that it can freely rotate (rotate) about the rotation axis C that is oriented in the radial direction about the central axis of the driven cam 35 .
  • each of the rolling elements 36 has its outer peripheral surface in rolling contact with a drive cam surface 48 provided on the other axial side surface of the drive cam 34 .
  • the drive cam 34 is rotationally driven to increase or decrease the amount of the rolling elements 36 that run over the first bottom 48a or the second bottom 48e of the drive cam surface 48, thereby increasing or decreasing the amount of the driven
  • the cam 35 is moved in the axial direction to switch the friction engagement portion 26 between a connected state and a disconnected state.
  • the rolling element 36 is placed on the first flat surface portion 48c or the second flat surface portion 48g of the drive cam surface 48, as shown in FIGS. 14(B) and 14(D). or increase the amount of riding on the first slope portion 48b, second slope portion 48d, third slope portion 48f, or fourth slope portion 48h.
  • the rolling element 36 is connected to the first bottom portion 48a or the second bottom portion of the drive cam surface 48 as shown in FIGS. 14(A) and 14(C). It is positioned at the bottom portion 48e, or the amount of riding on the first slope portion 48b, the second slope portion 48d, the third slope portion 48f, or the fourth slope portion 48h is reduced.
  • the driven cam 35 can be reliably displaced in the axial direction based on the rotation of the drive cam 34, and the mode switching of the two-speed transmission 1 can be performed with high precision. be able to.
  • rollers are used as the rolling elements 36, and the rolling elements 36 are oriented in a radial direction with respect to the driven cam 35, centered on the central axis of the driven cam 35. Rotation (rotation) around the rotation axis C is freely supported. Therefore, slippage can be prevented from occurring at the rolling contact portion between the outer peripheral surface of the rolling element 36 and the drive cam surface 48, and the driven cam 35 can be reliably displaced in the axial direction based on the rotation of the drive cam 34. be able to. As a result, mode switching of the two-speed transmission 1 can be performed with high accuracy.
  • balls can also be used as the rolling elements constituting the cam device.
  • the cam device 28 is configured by sandwiching a rolling element 36 between a driving cam 34 and a driven cam 35, but when implementing the present disclosure, the cam device 28 is configured by an elastic biasing member. is not particularly limited, and any other known means may be applied as long as it can press the first friction plate and the second friction plate in a direction that releases the force pressing them against each other.
  • a cam device a structure in which rolling elements are arranged between the driving cam surface of the driving cam and the driven cam surface of the driven cam, or a structure in which the driving cam surface of the driving cam and the driven cam surface of the driven cam are directly connected.
  • the driven cam has an engaging (sliding) structure, or a driven cam that has a guide groove extending in the circumferential direction on the outer peripheral surface and changing in the axial direction, and is engaged with the driven cam to enable displacement along the guide groove. It is possible to adopt a structure having a drive cam having an engaging convex portion.
  • the electric actuator 29 has a shift motor 66 and a reduction gear 67 , and the shift motor 66 rotationally drives the drive cam 34 via the reduction gear 67 .
  • the reduction gear 67 is configured by a worm reduction gear. That is, the reducer 67 is configured by meshing worm teeth provided on the outer circumferential surface of a worm 68 connected to the output shaft of the shift motor 66 with wheel teeth 49 provided on the outer circumferential surface of the drive cam 34. Ru.
  • the worm 68 is rotatably supported with respect to the fixed portion 10 by a pair of support bearings 69a and 69b.
  • the reducer 67 may be constructed by meshing a spur gear or bevel gear provided on the output shaft of the electric motor with a spur gear or bevel gear provided on the drive cam, or may be configured by meshing a spur gear or bevel gear provided on the output shaft of the electric motor. It can also be constructed by passing a belt or chain between the drive cam and the drive cam.
  • a return spring 70 is further provided between the first friction plate 30 and the second friction plate 31, and is biased elastically in a direction to increase the distance between the first friction plate 30 and the second friction plate 31. It is being The elasticity of the return spring 70 is smaller than the elastic restoring force of the elastic member 33 of the elastic biasing member 27. When the frictional engagement portion 26 is cut, the distance between the first friction plate 30 and the second friction plate 31 increases due to the action of the return spring 70, making it possible to reliably cut the frictional engagement portion 26. It becomes.
  • the two-speed transmission 1 of this example has a high reduction ratio mode in which the reduction ratio between the input member 4 and the output member 5 is large based on switching between the connected state and the disconnected state of the friction engagement portion 26; It is configured to switch between a low reduction ratio mode in which the reduction ratio between the input member 4 and the output member 5 is small.
  • the rotation of the first clutch member (rotating member 6) is prevented, and the first clutch member (rotating member 6) and the second clutch member (input member 4) are allowed to rotate relative to each other.
  • the first clutch member (rotating member 6) and the second clutch member (input member 4) rotate together.
  • the mode of the electric friction engagement device 7 can be switched based on rotationally driving one drive cam 34 by the electric actuator 29. That is, the two-stage transmission 1 of this example does not require a hydraulic system for controlling frictional engagement devices such as clutches and brakes. Therefore, in electric vehicles and hybrid vehicles, it is possible to simplify the system, reduce costs, and improve electricity consumption performance.
  • the shift motor 66 rotationally drives the drive cam 34 via the reducer 67 in order to switch the friction engagement portion 26 from the connected state to the disconnected state
  • the shift motor 66 The elastic biasing member 27 controls the phase of the rotational direction of the drive cam 34 when the output torque or current value starts to increase at an increase rate equal to or higher than the first threshold value. It has a first function of detecting the piston touch point ⁇ p at which the piston starts to be pressed in the direction of releasing the force pressing them against each other (the fastening force F of the frictional engagement portion 26 begins to decrease).
  • the two-speed transmission 1 of this example rotates the drive cam 34 via the reducer 67 by the shift motor 66 in order to switch the friction engagement portion 26 from the connected state to the disconnected state.
  • the phase in the rotational direction of the drive cam 34 when the increase rate becomes equal to or less than the second threshold after the piston touch point ⁇ p is exceeded is determined by the first friction plate 30 and the second friction plate 31. It has a second function of detecting the clutch touch point ⁇ f at which the force (fastening force F of the frictional engagement portion 26) that presses the two together becomes zero.
  • the two-stage transmission 1 of this example changes the amount of rotation of the drive cam 34, which is rotationally driven by the shift motor 66 via the reduction gear 67, to the first and a third function of adjusting based on the piston touch point ⁇ p detected by the second function and/or the clutch touch point ⁇ f detected by the second function.
  • the two-stage transmission 1 of this example uses the output torque and rotation speed Rs of the drive source 2 and the rotation speed of the shift motor 66 in order to prevent the occurrence of a shift shock caused by switching from a high reduction ratio mode to a low reduction ratio mode. It has a function of controlling the number of rotations (amount of rotation) and switching the two-stage transmission 1 to a reduction ratio switching mode. This makes it possible to switch from the high reduction ratio mode to the low reduction ratio mode while preventing the rotational torque of the output member 5 from changing discontinuously.
  • the two-stage transmission 1 of this example further includes a rotation transmission state switching device 8 and a planetary reduction mechanism 9.
  • the two-stage transmission 1 of this example changes the torque transmitted through the planetary reduction mechanism 9 by switching between the mode of the electric friction engagement device 7 and the mode of the rotation transmission state switching device 8. Switch the transmission route.
  • the rotating member 6 corresponding to the first clutch member is connected to the rotating member 6 via the rotation transmission state switching device 8, the cam device 28, and the radial bearing 38 for rotatably supporting the drive cam 34 with respect to the rotating member 6. , are rotatably supported relative to the fixed part 10.
  • the rotation transmission state switching device 8 includes a first member 71 and a second member 72 that are arranged coaxially with each other, and a mode select member 73 that rotates as the drive cam 34 rotates. Be prepared.
  • the rotation transmission state switching device 8 of this example has a free mode in which rotation of the first member 71 with respect to the second member 72 is allowed regardless of the relative rotational direction between the first member 71 and the second member 72; In addition to the lock mode in which the rotation of the first member 71 with respect to the second member 72 is prevented regardless of the relative rotation direction between the member 71 and the second member 72, the lock mode in which the first member 71 is rotated in a predetermined direction with respect to the second member 72 is activated. It has a one-way clutch mode that only allows rotation. Specifically, the rotation transmission state switching device 8 of this example switches between a free mode, a lock mode, and a one-way clutch mode based on the rotation of the mode select member 73.
  • the first member 71 has a gear-shaped uneven portion 76 on its outer peripheral surface, in which engagement recesses 74 and protrusions 75 are alternately arranged in the circumferential direction.
  • the first member 71 has an outer diameter side uneven engaging portion 77 formed by alternately arranging concave portions and convex portions in the circumferential direction on the inner circumferential surface.
  • the first member 71 is connected to the rotating member 6 by engaging the outer diameter side uneven engagement portion 77 with the inner diameter side uneven engagement portion 78 provided on the outer peripheral surface of the second cylindrical portion 21 of the rotating member 6. It is supported so that it cannot rotate relative to the other, and rotates integrally with the rotating member 6.
  • the second member 72 is supported around the first member 71 coaxially with the first member 71 and rotatable relative to the first member 71.
  • the inner circumferential surface of the second member 72 faces the tip end surface of the convex portion 75 of the first member 71 with a gap therebetween.
  • the second member 72 has, on its outer peripheral surface, an inner diameter side uneven engaging portion 79 formed by alternately arranging concave portions and convex portions in the circumferential direction.
  • the second member 72 disables relative rotation with respect to the fixed portion 10 by engaging the inner diameter side uneven engagement portion 79 with the outer diameter side uneven engagement portion provided on the inner peripheral surface of the fixed portion 10. is supported by
  • the second member 72 includes a base portion 80 having a rectangular cross-sectional shape, and a cylindrical portion 81 that protrudes from the radially outer end of one axial side surface of the base portion 80 toward one side in the axial direction over the entire circumference.
  • the base 80 has a plurality of first holding recesses 82 and a plurality of second holding recesses 83 (six in the illustrated example) arranged alternately in the circumferential direction.
  • the first holding recesses 82 opens to the inner circumferential surface of the base portion 80 and the other axial side surface.
  • the first holding recess 82 includes a spring holding part 84a and a pedestal part 85a.
  • the spring holding portion 84a has a long axis arranged in a direction that extends radially outward toward one side in the circumferential direction (clockwise front side in FIGS. 17 to 19) when viewed from the other side in the axial direction. It has a substantially rectangular opening shape.
  • the pedestal portion 85a has a substantially circular opening shape when viewed from the other side in the axial direction, and is disposed adjacent to the other side in the circumferential direction (the rear side in the clockwise direction in FIGS. 17 to 19) of the spring holding portion 84a. There is.
  • Each second holding recess 83 is open to the inner circumferential surface and the other axial side surface of the base 80, and includes a spring holding portion 84b and a pedestal portion 85b.
  • the second holding recess 83 has a shape that is symmetrical to the first holding recess 82 with respect to a virtual plane that includes the central axis of the second member 72 when viewed from the other side in the axial direction.
  • the rotation transmission state switching device 8 includes a first claw member 86 and a second claw member 87 between the first member 71 and the second member 72 in order to realize a free mode, a lock mode, and a one-way clutch mode. , a first claw biasing member 88 and a second claw biasing member 89.
  • the numbers of the first claw member 86, the second claw member 87, the first claw biasing member 88, and the second claw biasing member 89 are plural and the same number.
  • Each first claw member 86 includes a first base 90 and a first engagement claw 91.
  • the first base portion 90 has a substantially cylindrical shape and is supported (pivotally supported) on the pedestal portion 85a of the first holding recess portion 82 so as to be able to swing about a pivot axis parallel to the central axis of the second member 72. ing.
  • the first engaging claw 91 is formed into a substantially flat plate shape and extends from the first base 90 toward one side in the circumferential direction.
  • the first engaging pawl 91 has its other axial portion facing (engaged with) the outer peripheral surface of the annular convex portion 92 of the mode select member 73 and its axially one side portion facing the concave and convex portion of the first member 71. 76 (engaged so as to be able to engage and disengage from the engagement recess 74).
  • Each of the second claw members 87 includes a second base portion 93 that is swingably supported by the pedestal portion 85b of the second holding recess portion 83, and a second claw member that extends from the second base portion 93 toward the other side in the circumferential direction.
  • An engaging claw 94 is provided.
  • the second claw member 87 has a shape that is symmetrical to the first engagement claw 91 with respect to a virtual plane including the central axis of the second member 72 when viewed from the other side in the axial direction, and has a shape that is symmetrical to the first engagement claw 91. It is arranged symmetrically with the claw 91.
  • the first claw biasing member 88 elastically urges the first engagement claw 91 of the first claw member 86 in the direction of engaging the engagement recess 74 of the first member 71. That is, the first claw biasing member 88 is rotated relative to the first claw member 86 in the direction in which the first claw member 86 swings clockwise in FIG. Gives a biasing force.
  • the first claw biasing member 88 is made of an elastic member such as a coil spring, and is connected to the bottom surface (the surface facing inward in the radial direction) of the spring holding portion 84a of the first holding recess 82 and the first claw biasing member 88. It is held in an elastically compressed state between it and the radially outer surface of the dowel 91.
  • the second claw biasing member 89 is made of an elastic member similar to the first claw biasing member 88, and when viewed from the other side in the axial direction, the second claw biasing member 89 has a first It is arranged symmetrically with the claw biasing member 88. That is, the second claw biasing member 89 is held in an elastically compressed state between the bottom surface of the spring holding portion 84b of the second holding recess 83 and the radially outer surface of the second engaging claw 94. and elastically biases the second engagement claw 94 of the second claw member 87 in a direction to engage the engagement recess 74 of the first member 71.
  • the mode select member 73 includes a substantially circular plate-shaped base 95 and an annular protrusion that protrudes over the entire circumference from a radially intermediate portion of the other axial side of the base 95 toward the other axial side. 92.
  • the base portion 95 has plate-side engagement holes 96 at a plurality of locations (three locations in the illustrated example) at equal intervals in the circumferential direction in the radially intermediate portion of the other axial side surface.
  • One end of the pin portion 50 in the axial direction is fitted (engaged) into each plate-side engagement hole 96 without wobbling. That is, the mode select member 73 rotates integrally with the drive cam 34 (in the same direction and at the same speed).
  • the annular convex portion 92 has protrusions 97 that protrude radially outward at multiple locations in the circumferential direction on the outer peripheral surface. That is, the annular convex portion 92 has a gear-shaped concavo-convex portion 98 formed by alternately arranging protrusions 97 and concave portions in the circumferential direction on the outer peripheral surface.
  • the first member 71, the second member 72, and the mode select member 73 are configured to be able to rotate relative to each other by means of the lid body 99 and the retaining ring 100, and to prevent relative displacement in the axial direction (inadvertent separation in the axial direction). 2) are combined to form a rotation transmission state switching device 8.
  • a ring-shaped lid 99 is supported by screws on one axial side of the second member 72.
  • the other axial side surface of the radially inner portion of the lid body 99 is opposed to one axial side surface of the first member 71 . This prevents the first member 71 from being displaced to one side in the axial direction with respect to the second member 72.
  • the annular convex portion 92 of the mode select member 73 is arranged radially inward of the other axial side portion of the base portion 80 of the second member 72, and the distal end surface (one axial side surface) of the annular convex portion 92 is connected to the first member 71. in sliding contact with or closely opposing the other axial side surface of the second member 72 , and one axial side surface of the radially outer portion of the base 95 slidingly contacting or closely opposing the other axial side surface of the base 80 of the second member 72 A retaining ring 100 is secured to the other end of the inner peripheral surface of the cylindrical portion 81 of the second member 72 in the axial direction. This prevents the first member 71 and the mode select member 73 from being displaced to the other side in the axial direction with respect to the second member 72.
  • the rotation transmission state switching device 8 changes the engagement state between the first engagement claw 91 of the first claw member 86 and the engagement recess 74 of the first member 71 and the second engagement state based on the rotation of the mode selection member 73. By switching the engagement state between the second engagement claw 94 of the claw member 87 and the engagement recess 74, the free mode, lock mode, and one-way clutch mode can be switched.
  • ⁇ Free mode> In the free mode, the circumferential phase of the mode select member 73 with respect to the second member 72 is adjusted, and as shown in FIG. The member 88 is pushed up radially outward against the elasticity of the member 88, and the second engaging claw 94 is pushed up radially outward against the elasticity of the second claw biasing member 89.
  • ⁇ Lock mode> In the lock mode, the circumferential phase of the mode select member 73 with respect to the second member 72 is adjusted, and as shown in FIG. and located at a portion of the second claw member 87 that is circumferentially removed from the second engaging claw 94 . That is, in the circumferential direction, the recessed portion of the uneven portion 98 and the first engaging claw 91 and the second engaging claw 94 are made to match in phase.
  • the rotation transmission state switching device 8 operates as a ratchet type one-way clutch.
  • the predetermined direction coincides with the normal rotation direction of the input member 4.
  • the normal rotation direction of the input member 4 refers to the rotation direction of the input member 4 when moving the automobile forward.
  • the planetary reduction mechanism 9 includes a sun gear 101, a ring gear 102, a carrier 103, and a plurality of planetary gears 104. That is, in this example, the planetary reduction mechanism 9 is configured by a single pinion type planetary gear mechanism.
  • the sun gear 101 is connected to the rotating member 6 so that torque can be transmitted thereto.
  • the sun gear 101 is provided at one end of the rotating member 6 in the axial direction.
  • the ring gear 102 is arranged around the sun gear 101 and coaxially with the sun gear 101, and is connected to the input member 4 so as to be able to transmit torque.
  • the ring gear 102 is provided at an axially intermediate portion of the input member 4.
  • the carrier 103 is disposed between the sun gear 101 and the ring gear 102 in the radial direction, coaxially with the sun gear 101 and the ring gear 102, and is connected to the output member 5 so as to be able to transmit torque.
  • Each of the plurality of planetary gears 104 meshes with the sun gear 101 and the ring gear 102, and is supported by the carrier 103 so as to be able to rotate (rotate) about its own central axis.
  • the planetary speed reduction mechanism includes a sun roller, a ring roller disposed around the sun roller, and a rolling surface that is disposed between the sun roller and the ring roller in the radial direction, and that is an outer peripheral surface. It can also be constructed by a friction roller mechanism having a planetary roller frictionally engaged with the outer circumferential surface of the sun roller and the inner circumferential surface of the ring roller.
  • the reduction ratio between the input member 4 and the output member 5 is reduced.
  • mode and a high reduction ratio mode in which the reduction ratio is larger than the low reduction ratio mode are switched.
  • the two-speed transmission 1 of this example passes through a reduction ratio switching mode during switching from the high reduction ratio mode to the low reduction ratio mode. Further, the two-stage transmission 1 of this example can also be switched to a neutral mode in which torque is not transmitted between the input member 4 and the output member 5, and a parking mode in which the rotation of the output member 5 is locked.
  • the rolling elements 36 are positioned at the first bottom portion 48a of the drive cam surface 48, and the driven cam 35 is moved in the axial direction with respect to the drive cam 34. Displace it in the direction in which the gap becomes smaller (the other side in the axial direction). As a result, the force of the elastic biasing member 27 to press the piston 32 toward one side in the axial direction is lost.
  • the piston 32, the thrust bearing 57, and the pressing member 58 are pressed toward the other axial side, and the piston 32 pushes the piston 32 toward the other side in the axial direction.
  • the first friction plate 30 or the second friction plate 31 is pressed toward the other side in the axial direction.
  • the engagement recess 74 of the first member 71 is disengaged from the first engagement claw 91 and the second engagement claw 94, and the rotation transmission state switching device 8 is moved between the first member 71 and the second engagement claw 94.
  • the first member 71 is switched to a free mode in which rotation of the first member 71 with respect to the second member 72 is permitted regardless of the relative rotational direction with respect to the member 72.
  • rotation of the rotating member 6 with respect to the fixed portion 10 is permitted, and rotation of the sun gear 101 is permitted.
  • the rotational direction and rotational speed of the sun gear 101, ring gear 102, and carrier 103 are the same, and the entire planetary reduction mechanism 9 rotates as one, resulting in a so-called glued state. Therefore, the rotational torque of the input member 4 is transmitted to the input member 4, the carrier 103, and the output member 5 in this order, and is taken out from the output member 5, as shown by the thick line in FIG. 2(a).
  • the rolling elements 36 are positioned on the first flat surface portion 48c of the drive cam surface 48, and the driven cam 35 is aligned with the axis of the drive cam 34. Displace it in the direction in which the directional interval increases (toward one side in the axial direction).
  • the elastic member 33 is elastically compressed, and the first friction plate 30 The force that presses the and second friction plates 31 against each other is lost.
  • the distance between the first friction plate 30 and the second friction plate 31 is widened, and the friction engagement portion 26 is cut, thereby switching the electric friction engagement device 7 to the cutting mode.
  • the input member 4 and the rotating member 6 come to rotate relative to each other, and the sun gear 101 and the ring gear 102 can rotate relative to each other.
  • the protruding portion 97 is located at a portion circumferentially away from the first engaging claw 91 and the second engaging claw 94.
  • the engagement recess 74 of the first member 71 engages with the first engagement claw 91 and the second engagement claw 94, and the rotation transmission state switching device 8 switches between the first member 71 and the second member 72.
  • the first member 71 is switched to a lock mode in which rotation of the first member 71 with respect to the second member 72 is prevented regardless of the relative rotation direction with respect to the second member 72.
  • rotation of rotating member 6 with respect to fixed portion 10 is prevented, and rotation of sun gear 101 is prevented.
  • the rotational torque of the input member 4 is determined by the rotational motion of the input member 4, the ring gear 102, and the planetary gear 104, and the revolution of the planetary gear 104 based on the engagement with the sun gear 101, as shown by the thick line in FIG. 2(b).
  • the motion is transmitted to the carrier 103 and the output member 5 in this order, and is taken out from the output member 5.
  • the reduction ratio between input member 4 and output member 5 in the high reduction ratio mode is determined by the gear ratio between ring gear 102 and sun gear 101 (number of teeth of ring gear 102/number of teeth of sun gear 101).
  • the mode switching of the electric friction engagement device and the mode switching of the rotation transmission state switching device can be performed by separate actuators.
  • the two-stage transmission 1 of this example has a reduction ratio switching mode in order to be able to switch from a high reduction ratio mode to a low reduction ratio mode while preventing the rotational torque of the output member 5 from changing discontinuously. Furthermore, it is equipped with.
  • ⁇ Reduction ratio switching mode> When switching from the high reduction ratio mode to the low reduction ratio mode of the two-stage transmission 1 is started, first, the rotation is The transmission state switching device 8 allows the first member 71 to rotate only in the predetermined direction (the predetermined direction in FIG. 19(C)) relative to the second member 72, and prevents rotation in the opposite direction to the predetermined direction. Switches to one-way clutch mode.
  • the electric friction engagement device 7 starts switching from the disconnection mode to the connection mode. While the electric friction engagement device 7 is switching from the disconnection mode to the connection mode, the rolling elements 36 change from the state shown in FIG. 14(B) to the state shown in FIG. 14(A) based on the rotation of the drive cam 34. goes down the first inclined surface portion 48b of the drive cam surface 48.
  • the second member 72 of the rotation transmission state switching device 8 moves in the opposite direction to the predetermined direction.
  • the applied torque gradually decreases.
  • the rotation transmission state switching device 8 since the rotation transmission state switching device 8 is switched to the one-way clutch mode, the second member 72 does not rotate even if torque is applied to the second member 72 in a direction opposite to the predetermined direction.
  • the direction of the torque applied to the second member 72 is reversed (the torque in the predetermined direction is applied to the second member 72). At that moment, the second member 72 is allowed to rotate in the predetermined direction.
  • the rolling elements 36 are positioned on the second flat surface portion 48g of the drive cam surface 48, and the axial distance between the driven cam 35 and the drive cam 34 is increased. direction (one side in the axial direction).
  • the distance between the first friction plate 30 and the second friction plate 31 is widened, and the friction engagement portion 26 is cut, thereby switching the electric friction engagement device 7 to the cutting mode.
  • the input member 4 and the rotating member 6 come to rotate relative to each other, and the sun gear 101 and the ring gear 102 can rotate relative to each other.
  • the rotation transmission state switching device 8 Based on switching the electric friction engagement device 7 to the connection mode and simultaneously adjusting the phase of the mode select member 73 in the circumferential direction with respect to the second member 72, the rotation transmission state switching device 8 switches between the first member 71 and the first member 71.
  • the first member 71 is switched to a free mode in which rotation of the first member 71 with respect to the second member 72 is permitted regardless of the relative rotation direction with respect to the second member 72.
  • rotation of the rotating member 6 with respect to the fixed portion 10 is permitted, and rotation of the sun gear 101 is permitted.
  • the rotation transmission state switching device 8 switches the first member 71 relative to the second member 72 regardless of the relative rotational direction between the first member 71 and the second member 72. Switches to lock mode where rotation is prevented. As a result, rotation of rotating member 6 with respect to fixed portion 10 is prevented, and rotation of sun gear 101 is prevented.
  • a drive source 2 and a shift motor are used to prevent the rotational torque of the output member 5 from discontinuously (rapidly) changing when switching from a high reduction ratio mode to a low reduction ratio mode, thereby preventing a shift shock from occurring.
  • the control of 66 will be explained using FIGS. 25 and 26. Below, an example will be described in which the rotational torque of the output member 5 is maintained substantially constant before and after switching from the high reduction ratio mode to the low reduction ratio mode.
  • the electric actuator 29 drives the drive cam 34 to rotate.
  • the transmission state switching device 8 is switched to the one-way clutch mode, and the phase of the drive cam 34 in the rotational direction is moved to the clutch touch point ⁇ f (S1).
  • the clutch touch point ⁇ f is the point at which the elastic biasing member 27 begins to generate a force that presses the first friction plate 30 and the second friction plate 31 against each other.
  • the clutch touch point ⁇ f is the point at which the other end of the piston 32 in the axial direction starts to come into contact with the first friction plate 30 or the second friction plate 31 located furthest to one side in the axial direction, that is, the clutch touch point ⁇ f This is the point where the clearance C f (see FIG. 24) becomes 0.
  • the clutch touch point ⁇ f is determined in advance by a function described later.
  • the electric actuator 29 rotates the drive cam 34 at a predetermined number of rotations (rotational speed) to reduce the amount by which the rolling element 36 rides up from the first bottom portion 48a.
  • the pressing force between the second friction plate 31 and the second friction plate 31, that is, the fastening force F of the friction engagement portion 26 is gradually increased.
  • the output torque of the drive source 2 is gradually increased.
  • the output torque of the drive source 2 is maintained constant, in the torque phase, as the fastening force F of the frictional engagement part 26 increases, the torque transmitted to the frictional engagement part 26 increases. As a result, the rotational torque of the output member 5 decreases.
  • the fastening force F of the frictional engagement part 26 is increased so that the rotational torque of the output member 5 can be maintained almost constant regardless of the increase in the fastening force F of the frictional engagement part 26. In other words, the output torque of the drive source 2 is gradually increased in accordance with the amount of rotation of the drive cam 34.
  • the relationship between the amount of rotation of the drive cam 34 and the amount of increase in the output torque of the drive source 2 is determined in advance by experiment or calculation.
  • the rotation speed of the drive cam 34 in S2 is made smaller than the rotation speed of the drive cam 34 in S1.
  • the number of rotations of the drive cam 34 in S2 can be the same as the number of rotations of the drive cam 34 in S1, or can be made larger than the number of rotations of the drive cam 34 in S1.
  • the drive cam 34 is rotated by a predetermined angle, and at the same time, the output torque of the drive source 2 is increased by an amount corresponding to the amount of rotation of the drive cam 34.
  • the next step S3 it is determined whether the torque phase has ended.
  • the clutch torque transmitted to the frictional engagement part 26 increases, causing the second member 72 of the rotation transmission state switching device 8 to move in the opposite direction to the predetermined direction.
  • the torque applied in the direction gradually decreases.
  • the direction of the torque applied to the second member 72 is reversed (the torque in the predetermined direction is applied to the second member 72).
  • the second member 72 is allowed to rotate in the predetermined direction, and the sun gear 101 is allowed to rotate.
  • the rotation speed Rs of the output shaft 11 of the drive source 2 begins to decrease.
  • the output torque of the drive source 2 is quickly reduced to encourage further reduction in the rotation speed Rs of the output shaft 11 (S4-1).
  • the amount of decrease in the output torque of the drive source 2 is not particularly limited as long as it can promote a further decrease in the rotation speed Rs of the output shaft 11.
  • the output torque of the drive source 2 can be reduced to 0 or a negative value.
  • the rotational torque of the input member 4 reaches the target torque, which is the rotational torque that the output member 5 should output when the two-stage transmission 1 has completed switching to the low reduction ratio mode.
  • the output torque of the drive source 2 is increased so that (S4-2).
  • the rotational torque of the output member 5 is approximately constant before and after switching from the high reduction ratio mode to the low reduction ratio mode, the rotational torque of the input member 4 changes from the high reduction ratio mode to the low reduction ratio mode.
  • the output torque of the drive source 2 is increased until it becomes equal to the rotational torque of the output member 5 at the start of switching.
  • the speed at which the output torque of the drive source 2 is increased is not particularly limited as long as the rotational torque of the input member 4 can be increased to the target torque by the completion of the inertia phase.
  • the output torque of the drive source 2 can be controlled according to the difference (differential rotation) ⁇ R between the rotation speed Rin of the input member 4 and the rotation speed Rout of the output member 5. More specifically, as the rotational speed Rs of the output shaft 11 decreases, the rotational speed Rin of the input member 4 decreases, and as the differential rotation ⁇ R becomes smaller, the output torque of the drive source 2 is increased, and the differential rotation When ⁇ R becomes 0, the rotational torque of the input member 4 can be controlled to reach the target torque.
  • the electric actuator 29 rotates the drive cam 34 to a predetermined phase in the circumferential direction, the rolling element 36 is positioned at the first bottom 48a of the drive cam surface 48, and the driven cam 35 is rotated to the position of the drive cam 34. and the other side in the axial direction, which is the direction in which the axial distance between the two ends decreases.
  • This ensures a piston clearance Cp between one end of the pressing member 58 in the axial direction and the other axial side of the piston 32.
  • the piston clearance C p is set to be greater than or equal to 0, preferably greater than 0.
  • the two-stage transmission 1 is switched from the high reduction ratio mode to the low reduction ratio mode. Thereafter, by maintaining the phase of the drive cam 34 in the circumferential direction, the two-stage transmission 1 is maintained in the low reduction ratio mode.
  • the rotational torque of the output member 5 is (suddenly) changed even when switching between the high reduction ratio mode and the low reduction ratio mode. This can prevent the shift shock from occurring.
  • the timing of controlling the output torque and rotation speed Rs of the drive source 2 and the rotation speed (rotation amount) of the shift motor 66 is important.
  • the elastic The amount of pressure required by the biasing member 27 on the first friction plate 30 or the second friction plate 31 on one side in the axial direction toward the other side in the axial direction increases.
  • FIG. 21(a) and 21(b) show the rotation angle ⁇ of the drive cam 34, the output torque T of the shift motor 66, and the current value A when switching the electric friction engagement device 7 from the connection mode to the disconnection mode.
  • FIG. 21(a) shows the case when the first friction plate 30 and the second friction plate 31 are new and not worn
  • FIG. 21(b) shows the case where the first friction plate 30 and the second friction plate 31 are worn. This shows a case in which the disease has progressed significantly.
  • the piston touch point ⁇ p is defined as the point at which the elastic biasing member 27 contacts the first friction plate 30 and the second friction plate 31 when the drive cam 34 is rotated in the direction in which the friction engagement portion 26 is switched from the connected state to the disconnected state. This is the point at which the two parts begin to be pressed in the direction of releasing the force pressing them against each other.
  • the piston touch point ⁇ p is between one end of the pressing member 58 in the axial direction and the end of the piston 32 when the drive cam 34 is rotated in the direction of switching the frictional engagement portion 26 from the disconnected state to the connected state. This is the point at which a piston clearance C p (see FIG. 22) begins to occur between the piston and the other axial side surface.
  • the two-speed transmission 1 of this example has a function to prevent shift shock regardless of wear of the first friction plate 30 and the second friction plate 31.
  • the two-stage transmission 1 of this example has a first function of detecting a piston touch point ⁇ p , a second function of detecting a clutch touch point ⁇ f , and a high reduction ratio mode and a low reduction ratio mode.
  • a third function is provided for adjusting the amount of rotation of the drive cam 34 based on the piston touch point ⁇ p and/or the clutch touch point ⁇ f when switching between the ratio mode and the ratio mode.
  • the two-speed transmission 1 of this example detects the piston touch point ⁇ p and the clutch touch point ⁇ f based on the current value A of the shift motor 66 when switching the electric friction engagement device 7 from the connection mode to the disconnection mode. do.
  • the rolling elements 36 of the cam device 28 are located at the first bottom portion 48a of the drive cam surface 48.
  • a piston clearance Cp exists between one axial end of the pressing member 58 and the other axial side of the piston 32. Based on the existence of this piston clearance Cp , displacement of the piston 32 to the other side in the axial direction is permitted. Therefore, the piston 32 is elastically pressed toward the other side in the axial direction by the force of the elastic member 33 to restore elasticity, and the piston 32 pushes the first friction plate 30 or the second friction plate on the most axial side. 31 toward the other side in the axial direction, the first friction plate 30 and the second friction plate 31 are pressed against each other.
  • the drive cam 34 is rotated in the predetermined direction based on the shift motor 66 being energized, and the amount by which the rolling element 36 runs over the first bottom portion 48a is reduced. I will continue to increase it.
  • the current value A of the shift motor 66 is approximately constant except for the starting current that flows temporarily (range ⁇ in FIGS. 21(a) and 21(b)).
  • the first function starts energizing the shift motor 66 in order to switch the electric friction engagement device 7 from the connection mode to the disconnection mode.
  • the first threshold value can be determined in advance through experiments, simulations, and the like.
  • the rate of increase in the current value A is the amount of increase ⁇ A in the current value A per unit rotation angle ⁇ of the drive cam 34.
  • the amount of increase ⁇ A in the current value A per unit time can also be used for determination.
  • the fastening force F of the frictional engagement portion 26 gradually decreases, and when the fastening force F reaches 0, from that moment on, as shown in FIG.
  • a clutch clearance C f begins to occur between the first friction plate 30 or the second friction plate 31 located on one side in the axial direction.
  • the clutch clearance C f begins to occur, almost all of the elastic restoring force of the elastic member 33 is supported by the cam device 28 via the pressing member 58 and the thrust bearing 57 .
  • the current value A of the shift motor 66 increases slowly and logarithmically (range ⁇ in FIGS. 21(a) and 21(b)). That is, the rate of increase in current value A in range ⁇ is smaller than the rate of increase in current value A in range ⁇ .
  • the phase ⁇ in the rotational direction of the drive cam 34 when the rate of increase in the current value A of the shift motor 66 becomes equal to or less than a predetermined second threshold is detected as the clutch touch point ⁇ f at which the clutch clearance C f becomes 0. do.
  • the second threshold is smaller than the first threshold. The second threshold value can be determined in advance by experiment, simulation, or the like.
  • Detection of the piston touch point ⁇ p and the clutch touch point ⁇ f can be performed at any timing as long as it does not impede the running of the automobile equipped with the two-speed transmission 1. Specifically, this is carried out at timings such as immediately after turning on the ignition key, during kickdown acceleration, when engine braking is activated, or when switching a two-speed transmission from low reduction ratio mode to high reduction ratio mode. can do.
  • the two-stage transmission 1 of this example controls the amount of rotation of the drive cam 34 rotated by the shift motor 66 via the reducer 67 when switching between the high reduction ratio mode and the low reduction ratio mode.
  • the adjustment is made based on the piston touch point ⁇ p detected by the second function and/or the clutch touch point ⁇ f detected by the second function.
  • the target value of the phase regarding the rotation direction of the drive cam 34 is set.
  • the clutch touch point ⁇ f detected by the second function is used.
  • the corrected Shift control can be performed based on the piston touch point ⁇ p and the clutch touch point ⁇ f . Therefore, according to the two-stage transmission 1 of this example, the occurrence of shift shock can be prevented regardless of the wear of the first friction plate 30 and the second friction plate 31.
  • FIG. 27 shows a part of a two-speed transmission of a comparative example.
  • the two-speed transmission of the comparative example includes a first friction engagement device 105 that switches whether relative rotation is possible between the input member 4 and the rotating member 6, in other words, whether relative rotation is possible between the ring gear 102 and the sun gear 101, and a fixed transmission.
  • a second friction engagement device 106 is provided for switching whether or not the rotating member 6 can rotate with respect to the portion 10, in other words, whether or not the sun gear 101 can rotate. That is, in the two-speed transmission of the comparative example, instead of the rotation transmission state switching device 8 of the two-speed transmission of the present example, the first friction plate 30 and the second friction plate 31 are pressed against each other and separated from each other.
  • a second frictional engagement device 106 that switches modes is employed.
  • the first friction is The mode of the engagement device 105 and the mode of the second frictional engagement device 106 are switched.
  • the first driven cam 107 and the second driven cam 108 are displaced in mutually different phases as the drive cam 34z rotates (displaced (moved forward and backward) in mutually opposite directions in the axial direction).
  • the electric friction engagement device 7 is switched from the disconnection mode to the connection mode in order to switch from the high reduction ratio mode to the low reduction ratio mode based on the rotation of the drive cam 34.
  • the rotation transmission state switching device 8 is set to the one-way clutch mode. Therefore, in order to switch the electric friction engagement device 7 from the disconnection mode to the connection mode, the fastening force F of the friction engagement part 26 is gradually increased, and at the moment when the direction of the torque applied to the sun gear 101 is reversed, the fastening force F of the friction engagement part 26 is gradually increased. Rotation in the predetermined direction is allowed. Therefore, torque loss in the two-speed transmission 1 can be suppressed while suppressing shift shock caused by mode switching.
  • the reduction ratio between the input member 4 and the output member 5 is such that the fastening force F of the frictional engagement portion 26 is applied to both axial side surfaces of the first friction plate 30 and the axis of the second friction plate 31.
  • the reduction ratio is the same as the reduction ratio in the high reduction ratio mode.
  • the fastening force F of the frictional engagement portion 26 is such that torque can be transmitted without causing slippage at the abutting portions between both axial side surfaces of the first friction plate 30 and both axial side surfaces of the second friction plate 31.
  • the reduction ratio is the same as the reduction ratio in the low reduction ratio mode, that is, 1.
  • the input member 4 and The reduction ratio between the output member 5 and the output member 5 has a value depending on the magnitude of the input torque, the rotation speed, and the like.
  • the second member 72 of the rotation transmission state switching device 8 When the input member 4 is rotating in the normal rotation direction and the high reduction ratio mode is being switched to the reduction ratio switching mode, the second member 72 of the rotation transmission state switching device 8 is configured to rotate in the predetermined direction. Torque is applied in the opposite direction.
  • rotation of the second member 72 in the opposite direction to the predetermined direction is prevented even during switching from the lock mode to the one-way clutch mode. That is, the reduction ratio between the input member 4 and the output member 5 during switching from the high reduction ratio mode to the reduction ratio switching mode is the same as the reduction ratio in the high reduction ratio mode.
  • the second member 72 of the rotation transmission state switching device 8 When the input member 4 is rotating in the normal rotation direction and during switching from the reduction ratio switching mode to the low reduction ratio mode, the second member 72 of the rotation transmission state switching device 8 is configured to rotate in the predetermined direction. Torque is added to. Here, in the rotation transmission state switching device 8, rotation of the second member 72 in the predetermined direction is allowed even during switching from the one-way clutch mode to the free mode.
  • a state in which the cam device 28 generates a pressing force that is, a state in which the driven cam 35 presses the piston 32 toward one side in the axial direction via the thrust bearing 57 and the pressing member 58 (as shown in FIG. 2(b) state)
  • a force directed toward one side in the axial direction is applied to the thrust bearing 57.
  • a reaction force caused by the driven cam 35 pressing the piston 32 toward one side in the axial direction is applied to the radial bearing 38 through the rolling elements 36 and the drive cam 34 toward the other side in the axial direction.
  • the bearing ring 59a on one side in the axial direction constituting the thrust bearing 57 is supported by the rotating member 6 via the pressing member 58 and the piston 32, and the bearing ring 59b on the other side in the axial direction is supported by the cam device 28 and the angular ball. It is supported by the fixed part 10 via a bearing 39 and a cylindrical member 37. Further, an inner ring 42 constituting the radial bearing 38 is fitted and fixed to the rotating member 6, and an outer ring 43 is supported by the drive cam 34 of the cam device 28 via a cylindrical member 37 and an angular ball bearing 39. has been done.
  • the cam device 28 is in a state where the pressing force is generated, that is, the piston 32 is pressed toward one side in the axial direction, the axial dimension of the elastic member 33 is elastically contracted, and the first friction
  • the rotation transmission state switching device 8 enters the lock mode.
  • the high reduction ratio mode in which the electric friction engagement device 7 is disconnected and the rotation transmission state switching device 8 is switched to the lock mode, relative rotation of the rotating member 6 with respect to the fixed portion 10 is prevented.
  • the pressing force generated by the cam device 28 is applied from the driven cam 35 to the rotating member 6 in one direction in the axial direction via the pressing member 58, the thrust bearing 57, the piston 32, and the elastic member 33.
  • a reaction force caused by the pressing force generated by the cam device 28 is applied from the drive cam 34 to the rotating member 6 in the other axial direction via the radial bearing 38 . In this way, the axial force caused by the pressing force generated by the cam device 28 is canceled out within the rotating member 6.
  • the thrust bearing 57 And the radial bearing 38 does not rotate. Therefore, excessive torque loss in the thrust bearing 57 and the radial bearing 38 can be prevented from occurring, and the torque transmission efficiency of the two-stage transmission 1 can be ensured favorably.
  • the two-speed transmission of the present disclosure can also be applied to a structure including a rotation transmission state switching device that does not have a one-way clutch mode, that is, has only a free mode and a lock mode.
  • a rotation transmission state switching device that does not have a one-way clutch mode, that is, has only a free mode and a lock mode.
  • the electric friction engagement device is switched from lock mode to free mode. Switch from disconnected mode to connected mode.

Abstract

【課題】減速比を高低の2段階に切り換えることができる2段変速機において、変速ショックの発生を防止する。 【解決手段】2段変速機1は、ピストンタッチポイントθpを検出する機能、および/または、クラッチタッチポイントθfを検出する機能と、高減速比モードと低減速比モードとを切り換える際に、減速機67を介してシフトモータ66により回転駆動する駆動カム34の回転量を、ピストンタッチポイントθpおよび/またはクラッチタッチポイントθfに基づいて調整する機能とを備える。

Description

2段変速機
 本開示は、入力部材と出力部材との間の減速比を高低の2段階に切り換えるための2段変速機に関する。
 近年における化石燃料の消費量低減化の流れを受けて、電気自動車やハイブリッド自動車の研究が進み、一部で実施されている。電気自動車やハイブリッド自動車の動力源である電動モータは、化石燃料を直接燃焼させることにより動く内燃機関(エンジン)とは異なり、出力軸のトルクおよび回転速度の特性が自動車用として好ましい、すなわち、一般的に起動時に最大トルクを発生するため、必ずしも内燃機関を駆動源とする一般的な自動車のような変速機を設ける必要はない。
 ただし、電動モータを駆動源とする場合でも、変速機を設けることにより、加速性能および高速性能を改善することができる。具体的には、変速機を設けることで、車両の走行速度と加速度との関係を、ガソリンエンジンを搭載し、かつ、動力の伝達系統中に変速機を設けた自動車に近い、滑らかなものにすることができる。この点について、図30を参照しつつ説明する。
 たとえば、電動モータの出力軸と、駆動輪に繋がるデファレンシャルギヤの入力部との間に、減速比の大きな動力伝達装置を配置すると、電気自動車の加速度(G)と走行速度(km/h)との関係は、図30の実線aのようになる。すなわち、低速時の加速性能は優れているが、高速走行ができなくなる。これに対して、前記出力軸と前記入力部との間に減速比の小さな動力伝達装置を配置すると、この関係は、図30の鎖線bのようになる。すなわち、高速走行は可能になるが、低速時の加速性能が損なわれる。
 これに対して、前記出力軸と前記入力部との間に変速機を設け、車速に応じてこの変速機の減速比を変えれば、実線aのうちで点Pよりも左側部分と、鎖線bのうちで点Pよりも右側部分を連続させたような特性を得られる。この特性は、図30に破線cで示した、同程度の出力を有するガソリンエンジン車とほぼ同等であり、加速性能および高速性能に関して、動力の伝達系統中に変速機を設けたガソリンエンジン車と同等の性能を得られることが分かる。
 特開平05-116549号には、電動モータの出力軸のトルクを、1対の遊星歯車機構と1対のブレーキとを組み合わせてなる2段変速機により増大させてデファレンシャルギヤに伝達する、電気自動車用駆動装置の構造が開示されている。この電気自動車用駆動装置では、1対のブレーキの接続状態と切断状態とを切り換えることに基づいて、1対の遊星歯車機構の構成要素が回転可能な状態と回転不能な状態とを切り換えることで、電動モータの出力軸とデファレンシャルギヤとの間の減速比を、高低の2段階に切換可能としている。
特開平05-116549号
 電気自動車を含む自動車では、減速比を切り換える際のショック(変速ショック)の発生を防止することが、乗り心地性能などを確保する面から重要である。特開平05-116549号に記載の電気自動車用駆動装置において、1対のブレーキの接続状態と切断状態とを切り換えるタイミングと、駆動源であるモータの出力トルクおよび回転数とを適切に制御すれば、出力軸の回転トルクを一定に維持したまま、減速比を切り換えることができ、変速ショックの発生を防止することができる。
 ただし、特開平05-116549号に記載の電気自動車用駆動装置では、長期間にわたる使用に伴い、1対のブレーキを構成する摩擦係合要素が摩耗すると、それぞれのブレーキを接続するために必要な摩擦係合要素の押し付け量が変化し、初期値からずれてしまう可能性がある。この結果、減速比を切り換える際に、1対のブレーキの接続状態と切断状態とを切り換えるタイミングを精度よく制御することができず、変速ショックを生じる可能性がある。
 本開示は、上述のような事情に鑑みて、減速比を高低の2段階に切り換えることができる2段変速機において、変速ショックの発生を防止することができる構造を実現することを目的としている。
 本開示の一態様にかかる2段変速機は、入力部材と、出力部材と、電動摩擦係合装置とを備える。
 前記電動摩擦係合装置は、第1クラッチ部材と、第2クラッチ部材と、摩擦係合部と、弾性付勢部材と、カム装置と、電動アクチュエータとを備える。
 前記第2クラッチ部材は、前記第1クラッチ部材と同軸に、かつ、該第1クラッチ部材に対する相対回転を可能に支持されている。
 前記摩擦係合部は、軸方向の相対変位を可能に支持された、少なくとも1枚の第1摩擦板および少なくとも1枚の第2摩擦板を有し、前記第1クラッチ部材と前記第2クラッチ部材との間に備えられている。前記摩擦係合部は、前記第1摩擦板と前記第2摩擦板とを互いに押し付け合わせることで、前記第1クラッチ部材と前記第2クラッチ部材との間でトルクを伝達する接続状態に切り換わり、かつ、前記第1摩擦板と前記第2摩擦板とを互いに押し付け合う力を解放することで、前記第1クラッチ部材と前記第2クラッチ部材との間でトルクを伝達しない切断状態に切り換わる。
 前記弾性付勢部材は、前記第1クラッチ部材または前記第2クラッチ部材と前記摩擦係合部との間に備えられ、かつ、前記第1摩擦板と前記第2摩擦板とを互いに押し付け合う方向に弾性的に付勢する。
 前記カム装置は、駆動カムと、該駆動カムに対する相対回転および軸方向の相対変位を可能に支持された被駆動カムとを有する。前記カム装置は、前記駆動カムの回転に伴い、該被駆動カムを該駆動カムとの軸方向間隔が拡がる方向に相対変位させることに基づいて、前記弾性付勢部材を、前記第1摩擦板と前記第2摩擦板とを互いに押し付け合う力を解除する方向に押圧する。
 前記電動アクチュエータは、シフトモータおよび減速機を有し、該シフトモータにより、該減速機を介して前記駆動カムを回転駆動する。
 本開示の一態様にかかる2段変速機は、前記摩擦係合部の前記接続状態と前記切断状態とを切り換えることに基づいて、前記入力部材と前記出力部材との間の減速比が大きい高減速比モードと、前記入力部材と前記出力部材との間の減速比が小さい低減速比モードとを切り換えるように構成されている。
 本開示の一態様にかかる2段変速機は、前記摩擦係合部を前記接続状態から前記切断状態に切り換えるべく、前記シフトモータにより前記減速機を介して前記駆動カムを回転駆動する際に、前記シフトモータの出力トルクまたは電流値が第1閾値以上の増加率で増大し始めたときの、前記駆動カムの回転方向に関する位相を、前記弾性付勢部材が、前記第1摩擦板と前記第2摩擦板とを互いに押し付け合う力を解除する方向に押圧され始めるピストンタッチポイントとして検出する機能を有する。
 追加的にあるいは代替的に、該2段変速機は、前記摩擦係合部を前記接続状態から前記切断状態に切り換えるべく、前記シフトモータにより前記減速機を介して前記駆動カムを回転駆動する際に、前記ピストンタッチポイントを超えた後、前記増加率が第2閾値以下となったときの、前記駆動カムの回転方向に関する位相を、前記第1摩擦板と前記第2摩擦板とを互いに押し付け合う力が0になるクラッチタッチポイントとして検出する機能を有する。
 さらに、該2段変速機は、前記高減速比モードと前記低減速比モードとを切り換える際に、前記減速機を介して前記シフトモータにより回転駆動する前記駆動カムの回転量を、前記第1の機能により検出した前記ピストンタッチポイントおよび/または前記第2の機能により検出した前記クラッチタッチポイントに基づいて調整する機能とを有する。
 本開示の一態様にかかる2段変速機では、前記電動摩擦係合装置は、前記第1摩擦板と前記第2摩擦板とを互いに離隔させる方向に弾性的に付勢するリターンスプリングを有することができる。
 本開示の一態様にかかる2段変速機は、前記入力部材を回転駆動する駆動源を備えることができ、かつ、前記駆動源の出力トルクおよび回転数と、前記シフトモータの回転数とを制御することにより、前記出力部材の回転トルクが不連続に変化することを防止しつつ、前記高減速比モードから前記低減速比モードに切り換える機能を備えることができる。   
 より具体的には、前記出力部材の回転トルクを所定の範囲内に維持しつつ、すなわち前記出力部材の回転トルクをほぼ一定に維持しつつ、前記高減速比モードから前記低減速比モードに切り換える機能を備えることができる。
 本開示の一態様にかかる2段変速機は、互いに同軸に配置された第1部材および第2部材と、前記駆動カムの回転に伴い、回転または軸方向に変位するモードセレクト部材とを有し、かつ、前記第1部材と前記第2部材との相対回転方向にかかわらず、前記第2部材に対する前記第1部材の回転が許容されるフリーモードと、前記第1部材と前記第2部材との相対回転方向にかかわらず、前記第2部材に対する前記第1部材の回転が阻止されるロックモードとを有する回転伝達状態切換装置を備えることができる。
 前記回転伝達状態切換装置は、前記モードセレクト部材の回転または軸方向変位に基づいて、前記フリーモードと前記ロックモードとを切り換える。
 本開示の一態様にかかる2段変速機では、前記回転伝達状態切換装置は、前記第2部材に対する前記第1部材の所定方向の回転のみが許容され、かつ、前記第2部材に対する前記第1部材の前記所定方向と反対方向の回転が阻止されるワンウェイクラッチモードを有することができる。
 本開示の一態様にかかる2段変速機は、前記摩擦係合部を前記切断状態から前記接続状態に切り換えている間中、および/または、前記摩擦係合部を前記接続状態から前記切断状態に切り換えている間中、前記回転伝達状態切換装置を前記ワンウェイクラッチモードとする機能を有することができる。
 換言すれば、本開示の一態様にかかる2段変速機は、前記摩擦係合部を前記切断状態から前記接続状態に切り換える際に、前記第1摩擦板と前記第2摩擦板とを互いに押し付け合う力を上昇させ始めるのと同時か、もしくは、該力を上昇させ始めるよりも前に、前記回転伝達状態切換装置を、前記フリーモードもしくは前記ロックモードから前記ワンウェイクラッチモードに切り換える機能を有する。
 追加的にあるいは代替的に、該2段変速機は、前記摩擦係合部を前記接続状態から前記切断状態に切り換える際に、前記第1摩擦板と前記第2摩擦板とを互いに押し付け合う力を減少させ始めるのと同時か、もしくは、該力を減少させ始めるよりも前に、前記回転伝達状態切換装置を、前記フリーモードもしくは前記ロックモードから前記ワンウェイクラッチモードに切り換える機能を備えることができる。
 本開示の一態様にかかる2段変速機は、前記入力部材に対し該入力部材と一体的に回転するように接続されたサンギヤと、前記サンギヤの周囲に該サンギヤと同軸に配置されたリングギヤと、前記出力部材に対し該出力部材と一体的に回転するように接続されたキャリアと、前記サンギヤと前記リングギヤとに噛合し、かつ、前記キャリアに、自身の中心軸を中心とする回転を可能に支持された複数個のプラネタリギヤとを有する遊星歯車機構を備えることができる。
 この場合、前記第1摩擦板と前記第2摩擦板とのうちの一方が、前記サンギヤまたは前記入力部材に対し軸方向の相対変位を可能に、かつ、相対回転を不能に支持され、前記第1摩擦板と前記第2摩擦板とのうちの他方が、前記キャリアまたは前記出力部材に対し軸方向の相対変位を可能に、かつ、相対回転を不能に支持される。
 さらに、前記第1部材と前記第2部材とのうちの一方が、使用時にも回転しない部分に対して相対回転を不能に支持され、前記第1部材と前記第2部材とのうちの他方が、前記リングギヤに対して相対回転を不能に支持される。
 本開示の一態様にかかる2段変速機によれば、変速ショックの発生を防止することができる。
図1は、本開示の実施の形態の1例の2段変速機を組み込んだ駆動系を模式的に示す断面図である。 図2(a)は、本例の2段変速機の低減速比モードにおけるトルクの伝達経路を示す図であり、図2(b)は、本例の2段変速機の高減速比モードにおけるトルクの伝達経路を示す図である。 図3は、本例の2段変速機の斜視図である。 図4は、本例の2段変速機の断面図である。 図5は、本例の2段変速機から遊星歯車機構を取り外して示す斜視図である。 図6は、本例の2段変速機から遊星歯車機構を取り外して示す断面図である。 図7は、本例の2段変速機の分解斜視図である。 図8は、本例の2段変速機を構成する電動摩擦係合装置からウォームと2個の支持軸受とを取り出して示す分解斜視図である。 図9は、前記電動摩擦係合装置から第1摩擦板と第2摩擦板とを取り出して示す分解斜視図である。 図10は、図4のX部拡大図である。 図11は、前記電動摩擦係合装置から駆動カムを取り出して示す斜視図である。 図12は、前記電動摩擦係合装置から被駆動カムと転動体とを取り出して示す分解斜視図である。 図13(a)は、本例の2段変速機から回転部材のフランジ部と押圧部材を取り出して示す斜視図であり、図13(b)は、前記回転部材のフランジ部と押圧部材を取り出して示す分解斜視図である。 図14(A)~図14(D)は、前記電動摩擦係合装置のカム装置を径方向外側から見た模式図である。 図15は、本例の2段変速機を構成する回転伝達状態切換装置を軸方向他側から見た斜視図である。 図16は、前記回転伝達状態切換装置の分解斜視図である。 図17は、前記回転伝達状態切換装置を、セレクトプレートを取り外して軸方向他側から見た端面図である。 図18は、図17のY部拡大図である。 図19(A)は、前記回転伝達状態切換装置についての、フリーモードにおける、第1係合爪および第2係合爪と、係合凹部と、突起部との係合関係を示す模式図であり、図19(B)は、ロックモードにおける前記係合関係を示す模式図であり、図19(C)は、ワンウェイクラッチモードにおける前記係合関係を示す模式図である。 図20は、本例の2段変速機における、電動摩擦係合装置のモードと回転伝達状態切換装置のモードとを模式的に示す線図である。 図21(a)および図21(b)は、前記電動摩擦係合装置を接続モードから切断モードに切り換える際の、駆動カムの回転角度とシフトモータの出力トルクおよび電流値との関係を示す線図であり、図21(a)は、第1摩擦板および第2摩擦板が摩耗していない新品時の場合を示す図であり、図21(b)は、第1摩擦板および第2摩擦板の摩耗が大幅に進行した場合を示す図である。 図22は、前記電動摩擦係合装置が接続モードに切り換えられた状態を示す断面図である。 図23は、前記電動摩擦係合装置の接続モードから切断モードへの切り換え中、押圧部材とピストンとが接触した状態を示す断面図である。 図24は、前記電動摩擦係合装置が切断モードに切り換えられた状態を示す断面図である。 図25は、本例の2段変速機を、高減速比モードから低減速比モードに切り換える際の動作を示すフローチャートである。 図26は、本例の2段変速機を、高減速比モードから低減速比モードに切り換える際の、各パラメータの時間変化を表す線図である。 図27は、比較例の2段変速機の一部を取り出して示す断面図である。 図28は、比較例の2段変速機について、第1の摩擦係合装置と第2の摩擦係合装置との接続状態と切断状態とを模式的に示す線図である。 図29は、本例の変形例の2段変速機についての図20に相当する図である。 図30は、電動モータを駆動源とする駆動装置に変速機を組み込むことによる効果を説明するための線図である。
 本開示の実施の形態の1例について、図1~図26を用いて説明する。本例の2段変速機1は、電動モータにより構成される駆動源2と、差動装置3との間に配置されて、駆動源2の出力トルクを増大する、すなわち回転を減速するか、または、増大せずにそのまま差動装置3に伝達する。
 図1~図2(b)では、本開示に対する理解を容易にするために、駆動源2、差動装置3、および2段変速機1を構成する各要素を、模式的に表している。
 本例の2段変速機1は、駆動源2により回転駆動可能である入力部材4と、差動装置3にトルクの伝達を可能に接続されている出力部材5と、電動摩擦係合装置7とを備える。
 電動摩擦係合装置7は、第1クラッチ部材と、入力部材4により構成される、あるいは、入力部材4からのトルクの伝達を可能に接続されている、第2クラッチ部材と、摩擦係合部26と、弾性付勢部材27と、カム装置28と、電動アクチュエータ29とを備える。本例では、第1クラッチ部材は、回転部材6により構成される。また、第2クラッチ部材は、入力部材4により構成される。
 本例では、本開示の入力部材および第2クラッチ部材に相当する入力部材4は、2段変速機1を収容するハウジングなどにより構成され、かつ、使用時にも回転しない固定部分10に対して回転自在に支持されている。入力部材4は、筒状(中空)に構成されている。また、入力部材4は、軸方向片側(図1の右側)の端部に、駆動源2の出力軸11に備えられた駆動歯車12と噛合する入力歯車13を有する。
 また、第2クラッチ部材に相当する入力部材4は、第1クラッチ部材である回転部材6と同軸に、かつ、第1クラッチ部材である回転部材6に対する相対回転が可能である。
 本例では、出力部材5は、入力部材4の径方向内側に入力部材4に対する相対回転を可能に支持されている。また、出力部材5は、軸方向片側の端部に出力歯車14を有する。出力歯車14は、差動装置3の入力部に備えられた歯車に噛合している。
 本例では、第1クラッチ部材に相当する回転部材6は、入力部材4および出力部材5と同軸に、かつ、入力部材4および出力部材5に対する相対回転を可能に、固定部分10に支持されている。
 本例では、回転部材6は、軸方向中間部に、径方向外側に向けて突出した小径フランジ部15を有し、かつ、小径フランジ部15よりも軸方向他側(図1の左側)に位置する部分に、径方向外側に向けて突出したフランジ部16を有する。
 フランジ部16は、中空円形板状の第1円輪部18と、第1円輪部18の径方向外側の端部から軸方向他側に向けて折れ曲がった第1円筒部19と、第1円筒部19の軸方向他側の端部から径方向外側に向けて折れ曲がった中空円形板状の第2円輪部20と、第2円輪部20の径方向外側の端部から軸方向他側に向けて折れ曲がった第2円筒部21とを有する。第1円輪部18は、径方向中間部複数箇所に、電動摩擦係合装置7を構成する押圧部材58の部分円筒部63を挿通するための部分円弧形の通孔17を有する。
 本例では、回転部材6は、小径フランジ部15を有する軸部材22に、段付円筒部材23を外嵌固定することにより構成されている。図13(a)および図13(b)に示すように、段付円筒部材23は、フランジ部16と、該フランジ部16の第1円輪部18の径方向内側の端部から軸方向他側に向けて折れ曲がった小径円筒部24とを有する。小径円筒部24の内周面に備えられた雌スプライン部25は、軸部材22の外周面に備えられた雄スプライン部にスプライン係合させることにより、支持固定されている。ただし、段付円筒部材と軸部材とを、圧入や溶接などにより結合固定することで、回転部材を構成することもできる。
 本例では、電動摩擦係合装置7は、入力部材4と回転部材6との間に備えられ、入力部材4と回転部材6との間でトルクを伝達する接続モードと、トルクを伝達しない切断モードとを切り換える。
 電動摩擦係合装置7を構成する摩擦係合部26は、軸方向の相対変位を可能に支持された、少なくとも1枚の第1摩擦板30および少なくとも1枚の第2摩擦板31を有し、第1クラッチ部材(回転部材6)と第2クラッチ部材(入力部材4)との間に備えられている。
 摩擦係合部26は、第1摩擦板30と第2摩擦板31とを互いに押し付け合わせることで、第1クラッチ部材(回転部材6)と第2クラッチ部材(入力部材4)との間でトルクを伝達する接続状態、すなわち第1クラッチ部材(回転部材6)と第2クラッチ部材(入力部材4)とが一体となって回転する状態に切り換わる。これに対し、摩擦係合部26は、第1摩擦板30と第2摩擦板31とを互いに押し付け合う力を解放することで、第1クラッチ部材(回転部材6)と第2クラッチ部材(入力部材4)との間でトルクを伝達しない切断状態、すなわち第1クラッチ部材(回転部材6)と第2クラッチ部材(入力部材4)とが相対回転する状態に切り換わる。
 本例では、摩擦係合部26は、回転部材6に支持された複数枚の第1摩擦板30と、入力部材4に支持された複数枚の第2摩擦板31とを、交互に重ね合わせてなる多板クラッチにより構成されている。
 複数枚の第1摩擦板30は、第1円筒部19の外周面に、軸方向変位を可能に、かつ、第1円筒部19に対する相対回転を不能に支持されている。
 複数枚の第2摩擦板31は、入力部材4の軸方向他側の端部内周面に、軸方向変位を可能に、かつ、入力部材4に対する相対回転を不能に支持されている。
 弾性付勢部材27は、第1クラッチ部材(回転部材6)または第2クラッチ部材(入力部材4)と摩擦係合部26との間に備えられ、かつ、第1摩擦板30と第2摩擦板31とを互いに押し付け合う方向に弾性的に付勢する。本例では、弾性付勢部材27は、回転部材6と摩擦係合部26との間に備えられ、ピストン32と、弾性部材33とを有する。
 ピストン32は、回転部材6に対する軸方向変位を可能に支持されている。本例では、ピストン32は、中空円形板状に構成され、かつ、回転部材6のうち、軸方向に関して小径フランジ部15とフランジ部16との間部分の周囲に、回転部材6に対する軸方向変位を可能に支持されている。ピストン32は、径方向外側部分の軸方向他側の端面を、第1摩擦板30および第2摩擦板31のうちで最も軸方向片側に位置する第1摩擦板30または第2摩擦板31の軸方向片側面に対向させている。
 弾性部材33は、回転部材6とピストン32との間に備えられている。本例では、弾性部材33は、回転部材6の小径フランジ部15の軸方向他側面と、ピストン32の軸方向片側面との間に、弾性的に圧縮された状態で挟持されている。すなわち、弾性付勢部材27は、弾性部材33が弾性的に復元しようとする力により、ピストン32を介して、最も軸方向片側の第1摩擦板30または第2摩擦板31を軸方向他側に向けて押圧することで、第1摩擦板30と第2摩擦板31とを互いに押し付け合う方向に弾性的に付勢している。
 本例では、弾性部材33は、少なくとも1枚(本例では2枚)の皿ばねにより構成されている。ただし、本開示を実施する場合、弾性部材の具体的な構成は、特に限定されるものではない。たとえば、弾性部材を、少なくとも1個のコイルばねにより構成することもできる。
 カム装置28は、駆動カム34と、該駆動カム34に対する相対回転および軸方向の相対変位を可能に支持された被駆動カム35とを有する。カム装置28は、駆動カム34の回転に伴い、被駆動カム35を駆動カム34との軸方向間隔が拡がる方向に相対変位させることに基づいて、弾性付勢部材27を、第1摩擦板30と第2摩擦板31とを互いに押し付け合う力を解除する方向に押圧する。
 本例では、駆動カム34は、回転部材6に対し、該回転部材6および入力部材4に対する回転を可能に、かつ、回転部材6に対する軸方向変位を不能に支持されている。具体的には、駆動カム34は、図4などに示すように、筒状部材37とラジアル軸受38とアンギュラ玉軸受39とにより、回転部材6に対して該回転部材6に対する相対回転を可能に支持されている。
 筒状部材37は、円筒部40と、該円筒部40の軸方向他側の端部から径方向外側に向けて折れ曲がった外向フランジ部41とを有する。筒状部材37は、外向フランジ部41を固定部分10に対して、ねじ止めなどにより支持固定される。
 ラジアル軸受38は、回転部材6の軸方向他側の端部に外嵌固定された内輪42と、筒状部材37の円筒部40に内嵌固定された外輪43と、内輪42と外輪43との間に転動自在に配置された複数個の転動体44とを有する。図示の例では、ラジアル軸受38は、転動体44として玉を使用した複列深溝玉軸受により構成されている。ただし、ラジアル軸受は、第1部材とカム装置との相対回転を可能とし、かつ、弾性付勢部材による軸方向の付勢力を支承できる限り、特に限定されず、たとえば、深溝玉軸受、ラジアルアンギュラ玉軸受、もしくはラジアル円すいころ軸受などにより構成することもできる。
 アンギュラ玉軸受39は、筒状部材37の円筒部40に外嵌固定された内輪45と、駆動カム34に内嵌固定された外輪46と、内輪45と外輪46との間に転動自在に配置された複数個の玉47とを有する。
 被駆動カム35は、回転部材6の周囲に、軸方向変位のみ可能に配置されている。本例では、被駆動カム35は、中空円形板形状を有し、固定部分10に対して軸方向変位を可能に支持されている。本例では、被駆動カム35の内周面に備えられた雌スプライン部51を、筒状部材37の円筒部40の軸方向片側部分の外周面に備えられた雄スプライン部52にスプライン係合させることで、被駆動カム35を固定部分10に対して軸方向変位を可能に支持している。
 ただし、固定部分に対する被駆動カムの支持方法は、被駆動カムを固定部分に対し、軸方向変位のみ可能に支持することができれば、特に限定されない。たとえば、被駆動カムと固定部分とのうちの一方に備えられた凸部と、他方に備えられた凹溝とをキー係合させるなどにより、被駆動カムを固定部分に対して軸方向変位可能に支持することもできる。
 被駆動カム35は、図12に示すように、径方向中間部の円周方向複数箇所(図示の例では3箇所)に、軸方向に貫通する矩形孔53を有し、かつ、矩形孔53のそれぞれの径方向両側部分から軸方向他側に向けて突出する略半円形板状の支持板部54a、54bを有する。支持板部54a、54bのうち、径方向外側の支持板部54aは、径方向に貫通する円孔である支持孔55を備え、かつ、径方向内側の支持板部54bは、径方向外側面に、円形の開口を有する支持凹部56を備える。
 被駆動カム35は、スラスト軸受57と押圧部材58とを介して、弾性付勢部材27のピストン32に対向している。
 スラスト軸受57は、押圧部材58と被駆動カム35との間に備えられている。スラスト軸受57は、1対の軌道輪59a、59bと、該1対の軌道輪59a、59b同士の間に転動自在に配置された複数個の転動体60とを有する。1対の軌道輪59a、59bのうち、軸方向他側の軌道輪59bは、被駆動カム35に対し支持固定されている。
 押圧部材58は、円筒状の基部62と、基部62の軸方向片側の端部の円周方向複数箇所(図示の例では3箇所)から、軸方向片側に向けて突出した部分円筒部63とを有する。基部62の軸方向他側の端部には、スラスト軸受57の1対の軌道輪59a、59bのうちの軸方向片側の軌道輪59aが支持固定されている。部分円筒部63は、回転部材6の通孔17に挿通されており、該部分円筒部63の先端部(軸方向片側の端部)は、ピストン32の軸方向他側面の径方向中間部に対向している。
 本例では、押圧部材58と回転部材6との間に、スラスト軸受57に予圧を付与するための予圧付与手段61が備えられている。予圧付与手段61は、押圧部材58と、回転部材6を構成するフランジ部16の第1円輪部18の軸方向他側面との間に弾性的に圧縮した状態で挟持されている。これにより、図2(b)に示すように、ピストン32を、弾性部材33の弾性復元力に抗して、軸方向片側に向けて押圧した状態においても、スラスト軸受57に予圧を付与するとともに、スラスト軸受57が弾性付勢部材27とカム装置28との間から脱落することを防止している。
 なお、予圧付与手段61の弾力は、弾性部材33の弾性復元力よりも小さくなっている。予圧付与手段61は、たとえば、少なくとも1枚の皿ばねや、少なくとも1個のコイルばねにより構成することができる。本例では、予圧付与手段61は、1個のコイルばねにより構成されている。
 本例では、カム装置28は、駆動カム34と被駆動カム35とを相対変位させるための手段として、複数個(本例では3個)の転動体36と、駆動カム34に備えられた駆動カム面48とを備えている。
 図11に示すように、駆動カム面48は、駆動カム34の軸方向片側面の径方向内側部分に、凹部と凸部とを同数ずつ、円周方向に交互に配置することにより構成される。駆動カム面48は、図14(A)~図14(D)に示すように、第1底部48a、第1傾斜面部48b、第1平坦面部48c、第2傾斜面部48d、第2底部48e、第3傾斜面部48f、第2平坦面部48g、および第4中傾斜面部48hの順に、転動体36の個数回(本例では3回)だけ繰り返し配置して構成される。
 駆動カム面48のうち、第1平坦面部48cおよび第2平坦面部48gが、軸方向に関して最も片側に位置し、すなわち凸部の先端部に位置し、かつ、第1底部48aおよび第2底部48eが、軸方向に関して最も他側に位置する。駆動カム34の中心軸に直交する仮想平面Pに対する第3傾斜面部48fおよび第4傾斜面部48hの傾斜角度は、仮想平面Pに対する第1傾斜面部48bよりも大きい。
 第1傾斜面部48bの傾斜角度と、第3傾斜面部48fおよび第4傾斜面部48hの傾斜角度とはいずれも、転動体36が転がり落ちるように移動することも乗り上げるように移動することもできる大きさに設定されている。第3傾斜面部48fと第4傾斜面部48hとは傾斜方向を反対とし、傾斜角度を互いに同じとしている。
 ただし、第3傾斜面部48fと第4傾斜面部48hの傾斜角度を互いに異ならせることもできる。また、第1傾斜面部48bの傾斜角度と、第3傾斜面部48fおよび第4傾斜面部48hの傾斜角度とを互いに同じとすることもできる。
 仮想平面Pに対する第2傾斜面部48dの傾斜角度は、転動体36が乗り上げることができる限り、任意の大きさに設定することができる。
 転動体36のそれぞれは、円筒形状を有し、円柱状の支持軸64と複数個のころ65とを介して、支持板部54a、54bに対し自転を自在に支持されている。すなわち、支持軸64のうち、被駆動カム35の中心軸を中心とする径方向に関する外側の端部を、径方向外側の支持板部54aの支持孔55に内嵌固定し、かつ、支持軸64のうち、被駆動カム35の中心軸を中心とする径方向に関する内側の端部を、径方向内側の支持板部54bの支持凹部56に内嵌固定している。
 複数個のころ65は、転動体36の内周面と支持軸64の軸方向中間部外周面との間に転動自在に挟持されている。これにより、転動体36は、被駆動カム35の中心軸を中心とする放射方向を向いた自転軸Cを中心とする回転(自転)を自在に、被駆動カム35に支持されている。
 転動体36を被駆動カム35に支持した状態で、転動体36の軸方向片側部分は、矩形孔53の内側に配置される。転動体36のそれぞれは、外周面を、駆動カム34の軸方向他側面に備えられた駆動カム面48に転がり接触させている。
 本例の2段変速機1では、駆動カム34を回転駆動し、駆動カム面48のうちの第1底部48aまたは第2底部48eからの転動体36の乗り上げ量を増減させることで、被駆動カム35を軸方向に移動させ、摩擦係合部26の接続状態と切断状態とを切り換える。
 摩擦係合部26を切断状態とする場合、図14(B)および図14(D)に示すように、転動体36を、駆動カム面48の第1平坦面部48cもしくは第2平坦面部48gに位置させるか、または、第1傾斜面部48b、第2傾斜面部48d、第3傾斜面部48f、もしくは第4傾斜面部48hへの乗り上げ量を増大させる。
 被駆動カム35を駆動カム34との軸方向間隔が拡がる方向である軸方向片側に移動させることで、スラスト軸受57と押圧部材58とを介して、弾性付勢部材27のピストン32を軸方向片側に向けて押圧し、弾性部材33を弾性的に圧縮する。これにより、第1摩擦板30と第2摩擦板31とを互いに押し付け合う力を減少させ、最終的には喪失させる。このようにして、摩擦係合部26が切断されることで、電動摩擦係合装置7が切断モードに切り換わる。
 これに対して、摩擦係合部26を接続状態とする場合、図14(A)および図14(C)に示すように、転動体36を、駆動カム面48の第1底部48aまたは第2底部48eに位置させるか、または、第1傾斜面部48b、第2傾斜面部48d、第3傾斜面部48f、もしくは第4傾斜面部48hへの乗り上げ量を減少させる。
 これにより、被駆動カム35を駆動カム34との軸方向間隔が縮まる方向である軸方向他側に移動させることで、弾性付勢部材27のピストン32を軸方向片側に向けて押圧する力を減少させる。ピストン32を軸方向片側に向けて押圧する力が減少すると、主に第1摩擦板30および弾性部材33の弾性復元力により、ピストン32とスラスト軸受57と押圧部材58とが、軸方向他側に向けて押圧され、かつ、ピストン32により、最も軸方向片側の第1摩擦板30または第2摩擦板31が軸方向他側に向けて押圧される。したがって、第1摩擦板30と第2摩擦板31とが互いに押し付け合って、摩擦係合部26が接続されることで、電動摩擦係合装置7が接続モードに切り換わる。
 本例の2段変速機1では、駆動カム34を回転させることに基づいて、被駆動カム35を確実に軸方向に変位させることができ、2段変速機1のモード切り換えを、精度よく行うことができる。
 転動体として玉を使用した場合、駆動カムを回転させた場合に、転動体の表面と、駆動カム面との転がり接触部に滑りが生じる可能性がある。転動体の表面と、駆動カム面との転がり接触部に滑りが生じた場合、被駆動カムが軸方向に変位できなくなったり、駆動カムの回転量に対する被駆動カムの軸方向変位量を十分に確保できなくなったりする可能性がある。
 本例の2段変速機1では、転動体36として、ローラを使用し、かつ、転動体36を被駆動カム35に対し、該被駆動カム35の中心軸を中心とする放射方向を向いた自転軸Cを中心とする回転(自転)を自在に支持している。このため、転動体36の外周面と、駆動カム面48との転がり接触部に滑りが生じることを防止でき、駆動カム34の回転に基づいて、被駆動カム35を確実に軸方向に変位させることができる。この結果、2段変速機1のモード切換を精度よく行うことができる。ただし、前述したように、カム装置を構成する転動体として、玉を使用することもできる。
 本例では、カム装置28は、駆動カム34と被駆動カム35との間に転動体36を挟持することにより構成されているが、本開示を実施する場合、カム装置は、弾性付勢部材を、第1摩擦板と第2摩擦板とを互いに押し付け合う力を解除する方向に押圧することができる限り、特に限定されず、その他の公知の任意の手段を適用することも可能である。
 たとえば、カム装置として、駆動カムの駆動カム面と被駆動カムの被駆動カム面との間に転動体を配置した構造、駆動カムの駆動カム面と被駆動カムの被駆動カム面とを直接係合(摺動)させた構造、または、外周面に円周方向に伸長し、かつ、軸方向に変化するガイド溝を有する被駆動カムと、前記ガイド溝に沿った変位を可能に係合する係合凸部を有する駆動カムとを有する構造などを採用することができる。
 電動アクチュエータ29は、シフトモータ66および減速機67を有し、シフトモータ66により、減速機67を介して駆動カム34を回転駆動する。
 本例では、減速機67は、ウォーム減速機により構成されている。すなわち、減速機67は、シフトモータ66の出力軸に接続されたウォーム68の外周面に備えられたウォーム歯を、駆動カム34の外周面に備えられたホイール歯49に噛合させることにより構成される。ウォーム68は、1対の支持軸受69a、69bにより、固定部分10に対して回転可能に支持されている。
 ただし、減速機67は、電動モータの出力軸に備えられた平歯車または傘歯車と、駆動カムに備えられた平歯車または傘歯車とを噛合させることにより構成したり、電動モータの出力軸と駆動カムとの間にベルトまたはチェーンをかけ渡すことで構成したりすることもできる。
 本例では、第1摩擦板30と第2摩擦板31との間に、第1摩擦板30と第2摩擦板31との間隔を拡げる方向に弾性的に付勢するリターンスプリング70がさらに備えられている。リターンスプリング70の弾力は、弾性付勢部材27の弾性部材33の弾性復元力よりも小さくなっている。摩擦係合部26を切断状態とする場合に、リターンスプリング70の作用により、第1摩擦板30と第2摩擦板31との間隔が広がり、摩擦係合部26を確実に切断させることが可能となっている。
 本例の2段変速機1は、摩擦係合部26の接続状態と切断状態とを切り換えることに基づいて、入力部材4と出力部材5との間の減速比が大きい高減速比モードと、入力部材4と出力部材5との間の減速比が小さい低減速比モードとを切り換えるように構成されている。
 高減速比モードでは、第1クラッチ部材(回転部材6)の回転が阻止され、第1クラッチ部材(回転部材6)と第2クラッチ部材(入力部材4)とが相対回転可能となる。低減速比モードでは、第1クラッチ部材(回転部材6)と第2クラッチ部材(入力部材4)とが一体となって回転する。
 本例の2段変速機1では、電動アクチュエータ29により、1個の駆動カム34を回転駆動することに基づいて、電動摩擦係合装置7のモードを切り換えることができる。すなわち、本例の2段変速機1では、クラッチやブレーキなどの摩擦係合装置を制御するための油圧システムが必要ない。このため、電気自動車やハイブリッド自動車において、システムを簡略化してコストを低減でき、かつ、電費性能を向上することができる。
 本例の2段変速機1は、摩擦係合部26を接続状態から前記切断状態に切り換えるべく、シフトモータ66により、減速機67を介して駆動カム34を回転駆動する際に、シフトモータ66の出力トルクまたは電流値が第1閾値以上の増加率で増大し始めたときの、駆動カム34の回転方向に関する位相を、弾性付勢部材27が、第1摩擦板30と第2摩擦板31とを互いに押し付け合う力を解除する方向に押圧され始める(摩擦係合部26の締結力Fが低下し始める)ピストンタッチポイントθとして検出する第1の機能を有する。
 追加的にあるいは代替的に、本例の2段変速機1は、摩擦係合部26を、接続状態から切断状態に切り換えるべく、シフトモータ66により、減速機67を介して駆動カム34を回転駆動する際に、ピストンタッチポイントθを超えた後、前記増加率が第2閾値以下となったときの、駆動カム34の回転方向に関する位相を、第1摩擦板30と第2摩擦板31とを互いに押し付け合う力(摩擦係合部26の締結力F)が0になるクラッチタッチポイントθとして検出する第2の機能を有する。
 さらに、本例の2段変速機1は、高減速比モードと低減速比モードとを切り換える際に、減速機67を介してシフトモータ66により回転駆動する駆動カム34の回転量を、第1の機能により検出した前記ピストンタッチポイントθおよび/または第2の機能により検出したクラッチタッチポイントθに基づいて調整する第3の機能とを有する。
 本例の2段変速機1は、高減速比モードから低減速比モードへの切り換えに伴う変速ショックの発生を防止するべく、駆動源2の出力トルクおよび回転数Rsと、シフトモータ66の回転数(回転量)とを制御するとともに、2段変速機1を減速比切換モードに切り換える機能を有する。これにより、出力部材5の回転トルクが不連続に変化することを防止しつつ、高減速比モードから低減速比モードに切り換えることが可能となる。
 本例の2段変速機1について、追加的な構成要素について説明した上で、前記各機能についてさらに説明する。
本例の2段変速機1は、回転伝達状態切換装置8と、遊星減速機構9とをさらに備える。
 より具体的には、本例の2段変速機1は、電動摩擦係合装置7のモードと、回転伝達状態切換装置8のモードとを切り換えることで、遊星減速機構9中を伝達するトルクの伝達経路を切り換える。
 なお、第1クラッチ部材に相当する回転部材6は、回転伝達状態切換装置8と、カム装置28と、駆動カム34を回転部材6に対し回転可能に支持するためのラジアル軸受38とを介して、固定部分10に対し回転可能に支持されている。
 回転伝達状態切換装置8は、図15~図18に示すように、互いに同軸に配置された第1部材71および第2部材72と、駆動カム34の回転に伴い回転するモードセレクト部材73とを備える。
 本例の回転伝達状態切換装置8は、第1部材71と第2部材72との相対回転方向にかかわらず、第2部材72に対する第1部材71の回転が許容されるフリーモードと、第1部材71と第2部材72との相対回転方向にかかわらず、第2部材72に対する第1部材71の回転が阻止されるロックモードとに加え、第2部材72に対する第1部材71の所定方向の回転のみが許容されるワンウェイクラッチモードを有する。具体的には、本例の回転伝達状態切換装置8は、モードセレクト部材73の回転に基づいて、フリーモードとロックモードとワンウェイクラッチモードとが切り換わる。
 第1部材71は、外周面に、円周方向に関して係合凹部74と凸部75とを交互に配置してなる、歯車状の凹凸部76を有する。第1部材71は、内周面に、円周方向に凹部と凸部とを交互に配置してなる外径側凹凸係合部77を有する。第1部材71は、外径側凹凸係合部77を、回転部材6の第2円筒部21の外周面に備えられた内径側凹凸係合部78に係合することにより、回転部材6に対して相対回転を不能に支持されており、回転部材6と一体的に回転する。
 第2部材72は、第1部材71の周囲に第1部材71と同軸に、かつ、第1部材71に対する相対回転を可能に支持されている。第2部材72の内周面は、第1部材71の凸部75の先端面に隙間を介して対向している。第2部材72は、外周面に、円周方向に凹部と凸部とを交互に配置してなる内径側凹凸係合部79を有する。第2部材72は、内径側凹凸係合部79を、固定部分10の内周面に備えらえた外径側凹凸係合部に係合することにより、固定部分10に対して相対回転を不能に支持されている。
 第2部材72は、矩形の断面形状を有する基部80と、基部80の軸方向片側面の径方向外側の端部から軸方向片側に向けて全周にわたり突出した円筒部81とを備える。
 基部80は、円周方向に関して交互に配置された、複数個ずつ(図示の例では6個ずつ)の第1保持凹部82および第2保持凹部83を有する。
 それぞれの第1保持凹部82は、基部80の内周面と軸方向他側面とに開口する。第1保持凹部82は、ばね保持部84aと、台座部85aとを備える。ばね保持部84aは、軸方向他側から見て、円周方向片側(図17~図19の時計方向前側)に向かうほど径方向外側に向かう方向に伸長する方向に長軸が配置された、略矩形の開口形状を有する。台座部85aは、軸方向他側から見て略円形の開口形状を有し、ばね保持部84aの円周方向他側(図17~図19の時計方向後側)に隣接して配置されている。
 それぞれの第2保持凹部83は、基部80の内周面と軸方向他側面とに開口し、ばね保持部84bと、台座部85bとを備える。第2保持凹部83は、軸方向他側から見た場合に、第2部材72の中心軸を含む仮想平面に関して、第1保持凹部82と対称な形状を有する。
 回転伝達状態切換装置8は、フリーモードとロックモードとワンウェイクラッチモードとを実現するために、第1部材71と第2部材72との間に、第1爪部材86および第2爪部材87と、第1爪付勢部材88および第2爪付勢部材89とを有する。本例では、第1爪部材86、第2爪部材87、第1爪付勢部材88、および第2爪付勢部材89の個数は複数かつ同数である。
 それぞれの第1爪部材86は、第1基部90と、第1係合爪91とを備える。
 第1基部90は、略円柱状に構成され、第1保持凹部82の台座部85aに、第2部材72の中心軸と平行な枢軸を中心とする揺動を可能に支持(枢支)されている。
 第1係合爪91は、略平板状に構成され、第1基部90から円周方向片側に向けて延出している。第1係合爪91は、軸方向他側部分を、モードセレクト部材73の環状凸部92の外周面に対向(係合)させ、かつ、軸方向片側部分を、第1部材71の凹凸部76に対向(係合凹部74に対する係脱を可能に係合)させている。
 それぞれの第2爪部材87は、第2保持凹部83の台座部85bに揺動可能に支持された第2基部93と、第2基部93から円周方向他側に向けて延出する第2係合爪94とを備える。第2爪部材87は、軸方向他側から見た場合に、第2部材72の中心軸を含む仮想平面に関して、第1係合爪91と対称な形状を有し、かつ、第1係合爪91と対称に配置される。
 第1爪付勢部材88は、第1爪部材86の第1係合爪91を、第1部材71の係合凹部74に係合させる方向に弾性的に付勢する。すなわち、第1爪付勢部材88は、第1爪部材86に対し、第1爪部材86が第1基部90の中心軸(枢軸)を中心として、図18の時計方向に揺動する方向の付勢力を付与する。具体的には、第1爪付勢部材88は、コイルばねなどの弾性部材により構成され、第1保持凹部82のばね保持部84aの底面(径方向内側を向いた面)と、第1係合爪91の径方向外側面との間に、弾性的に圧縮された状態で保持されている。
 第2爪付勢部材89は、第1爪付勢部材88と同様の弾性部材により構成され、軸方向他側から見た場合に、第2部材72の中心軸を含む仮想平面に関して、第1爪付勢部材88と対称に配置される。すなわち、第2爪付勢部材89は、第2保持凹部83のばね保持部84bの底面と、第2係合爪94の径方向外側面との間に、弾性的に圧縮された状態で保持され、第2爪部材87の第2係合爪94を、第1部材71の係合凹部74に係合させる方向に弾性的に付勢する。
 モードセレクト部材73は、図16に示すように、略円輪板状の基部95と、基部95の軸方向他側面の径方向中間部から軸方向他側に向けて全周にわたり突出した環状凸部92とを備える。
 基部95は、軸方向他側面のうち、径方向中間部の円周方向等間隔複数箇所(図示の例では3箇所)に、プレート側係合孔96を有する。それぞれのプレート側係合孔96には、ピン部50の軸方向片側の端部ががたつきなく内嵌(係合)される。すなわち、モードセレクト部材73は、駆動カム34と一体的に(同じ方向に同じ速度で)回転する。
 環状凸部92は、外周面の円周方向複数箇所に、径方向外側に向けて突出した突出部97を有する。すなわち、環状凸部92は、外周面に、円周方向に関して突出部97と凹部とを交互に配置してなる、歯車状の凹凸部98を有する。
 第1部材71および第2部材72と、モードセレクト部材73とは、蓋体99および止め輪100により、相対回転可能に、かつ、軸方向の相対変位を不能に(軸方向に不用意に分離しないように)組み合わされて、回転伝達状態切換装置8を構成する。
 第1部材71を、第2部材72の基部80の軸方向片側部分の径方向内側に配置した状態で、第2部材72の軸方向片側面に、円輪状の蓋体99をねじ止めにより支持固定し、蓋体99の径方向内側部分の軸方向他側面を、第1部材71の軸方向片側面に対向させている。これにより、第2部材72に対する第1部材71の軸方向片側への変位が阻止される。
 モードセレクト部材73の環状凸部92を、第2部材72の基部80の軸方向他側部分の径方向内側に配置し、環状凸部92の先端面(軸方向片側面)を第1部材71の軸方向他側面に摺接または近接対向させ、かつ、基部95の径方向外側部分の軸方向片側面を、第2部材72の基部80の軸方向他側面に摺接または近接対向させた状態で、第2部材72の円筒部81の内周面の軸方向他側の端部に止め輪100を係止している。これにより、第2部材72に対する第1部材71およびモードセレクト部材73の軸方向他側への変位が阻止される。
 回転伝達状態切換装置8は、モードセレクト部材73の回転に基づいて、第1爪部材86の第1係合爪91と第1部材71の係合凹部74との係合状態、および、第2爪部材87の第2係合爪94と係合凹部74との係合状態を切り換えることで、フリーモードとロックモードとワンウェイクラッチモードとを切り換え可能に構成されている。
 <フリーモード>
 フリーモードでは、第2部材72に対するモードセレクト部材73の円周方向の位相を調整し、図19(A)に示すように、突出部97により、第1係合爪91を第1爪付勢部材88の弾力に抗して径方向外側に向けて押し上げ、かつ、第2係合爪94を第2爪付勢部材89の弾力に抗して径方向外側に向けて押し上げる。
 これにより、第1部材71の係合凹部74と、第1係合爪91および第2係合爪94との係合が外れる。この状態では、第1部材71と第2部材72との相対回転方向にかかわらず、第2部材72に対する第1部材71の回転が許容される。すなわち、第1部材71の回転方向にかかわらず、固定部分10に対する第1部材71の回転が許容される。
 <ロックモード>
 ロックモードでは、第2部材72に対するモードセレクト部材73の円周方向の位相を調整し、図19(B)に示すように、突出部97を、第1爪部材86の第1係合爪91および第2爪部材87の第2係合爪94から円周方向に外れた部分に位置させる。すなわち、円周方向に関して、凹凸部98のうちの凹部と、第1係合爪91および第2係合爪94との位相を一致させる。
 これにより、第1部材71の係合凹部74と、第1係合爪91および第2係合爪94とが係合する。この状態では、第1部材71と第2部材72との相対回転方向にかかわらず、第2部材72に対する第1部材71の回転が阻止される。すなわち、第1部材71の回転方向にかかわらず、固定部分10に対する第1部材71の回転が阻止される。
 <ワンウェイクラッチモード>
 ワンウェイクラッチモードでは、第2部材72に対するモードセレクト部材73の円周方向の位相を調整し、図19(C)に示すように、突出部97により、第2係合爪94のみを第2爪付勢部材89の弾力に抗して径方向外側に向けて押し上げる。
 これにより、第1部材71の係合凹部74と、第1係合爪91とが係合し、かつ、係合凹部74と第2係合爪94との係合が外れる。この状態では、第2部材72に対する第1部材71の前記所定方向(図19(C)の時計方向)の回転のみが許容され、かつ、前記所定方向と反対方向(図19(C)の反時計方向)の回転が阻止される。
 すなわち、第1部材71が、第2部材72に対し前記所定方向に回転しようとすると、凹凸部76の凸部75により、第1係合爪91が第1爪付勢部材88の弾力に抗して径方向外側に押し上げられる。この結果、第1部材71の前記所定方向への回転が許容される。これに対し、第1部材71が、第2部材72に対し前記所定方向と反対方向に回転しようとした場合には、係合凹部74と第1係合爪91との係合により、第1部材71の前記所定方向と反対方向への回転が阻止される。要するに、回転伝達状態切換装置8は、ラチェット式のワンウェイクラッチとして動作する。
 なお、前記所定方向は、入力部材4の正転方向と一致する。入力部材4の正転方向とは、自動車を前進させる際の入力部材4の回転方向をいう。
 遊星減速機構9は、サンギヤ101と、リングギヤ102と、キャリア103と、複数個のプラネタリギヤ104とを有する。すなわち、本例では、遊星減速機構9は、シングルピニオン式の遊星歯車機構により構成されている。
 サンギヤ101は、回転部材6にトルク伝達を可能に接続されている。本例では、サンギヤ101は、回転部材6の軸方向片側の端部に備えられている。
 リングギヤ102は、サンギヤ101の周囲に、該サンギヤ101と同軸に配置され、かつ、入力部材4にトルク伝達を可能に接続されている。本例では、リングギヤ102は、入力部材4の軸方向中間部に備えられている。
 キャリア103は、径方向に関してサンギヤ101とリングギヤ102との間に、該サンギヤ101および該リングギヤ102と同軸に配置され、かつ、出力部材5にトルク伝達を可能に接続されている。
 複数個のプラネタリギヤ104のそれぞれは、サンギヤ101とリングギヤ102とに噛合し、かつ、キャリア103に、自身の中心軸を中心とする回転(自転)を可能に支持されている。
 本開示を実施する場合、遊星減速機構として、ダブルピニオン式の遊星歯車機構を採用することもできる。あるいは、遊星減速機構を、サンローラと、前記サンローラの周囲に配置されたリングローラと、径方向に関して前記サンローラと前記リングローラとの間に配置され、かつ、外周面である転動面を、前記サンローラの外周面と前記リングローラの内周面とに摩擦係合させたプラネタリローラとを有する摩擦ローラ機構により構成することもできる。
 本例の2段変速機1では、電動摩擦係合装置7のモードおよび回転伝達状態切換装置8のモードを切り換えることにより、入力部材4と出力部材5との間の減速比が小さい低減速比モードと、低減速比モードに比べて減速比が大きい高減速比モードとを切り換えることが可能となっている。
 また、本例の2段変速機1は、高減速比モードから低減速比モードへの切換途中において、減速比切換モードを経由する。さらに、本例の2段変速機1は、入力部材4と出力部材5との間でトルクを伝達しないニュートラルモード、および、出力部材5の回転をロックするパーキングモードにも切り換えることができる。
 <低減速比モード>
 2段変速機1を低減速比モードに切り換えるには、電動摩擦係合装置7を接続モードに切り換え、かつ、回転伝達状態切換装置8をフリーモードに切り換える。
 本例では、電動アクチュエータ29により駆動カム34を回転させることに基づいて、転動体36を、駆動カム面48の第1底部48aに位置させ、被駆動カム35を、駆動カム34との軸方向間隔が縮まる方向(軸方向他側)に向けて変位させる。これにより、弾性付勢部材27のピストン32を軸方向片側に向けて押圧する力を喪失させる。
 主に第1摩擦板30および弾性部材33の弾性復元力により、ピストン32とスラスト軸受57と押圧部材58とが、軸方向他側に向けて押圧され、かつ、ピストン32により、最も軸方向片側の第1摩擦板30または第2摩擦板31が軸方向他側に向けて押圧される。
 これにより、第1摩擦板30と第2摩擦板31とが互いに押し付け合って、摩擦係合部26が接続されることで、電動摩擦係合装置7が接続モードに切り換わる。この結果、入力部材4と回転部材6とが一体的に回転するようになり、サンギヤ101とリングギヤ102とが一体的に回転するようになる。
 電動摩擦係合装置7を接続モードに切り換えると同時に、第2部材72に対するモードセレクト部材73の円周方向に関する位相を調整することに基づいて、図19(A)に示すように、突出部97により、第1係合爪91を径方向外側に向けて押し上げ、かつ、第2係合爪94を径方向外側に向けて押し上げる。
 これにより、第1部材71の係合凹部74と、第1係合爪91および第2係合爪94との係合が外れて、回転伝達状態切換装置8は、第1部材71と第2部材72との相対回転方向にかかわらず、第2部材72に対する第1部材71の回転が許容されるフリーモードに切り換わる。この結果、固定部分10に対する回転部材6の回転が許容され、サンギヤ101の回転が許容される。
 低減速比モードでは、サンギヤ101とリングギヤ102とキャリア103との回転方向および回転速度が同じとなり、遊星減速機構9全体が一体となって回転する、所謂のり付け状態となる。したがって、入力部材4の回転トルクは、図2(a)に太線で示すように、入力部材4、キャリア103、および出力部材5の順に伝達されて、出力部材5から取り出される。
 <高減速比モード>
 2段変速機1を高減速比モードに切り換えるには、電動摩擦係合装置7を切断モードに切り換え、かつ、回転伝達状態切換装置8をロックモードに切り換える。
 本例では、電動アクチュエータ29により駆動カム34を回転させることに基づいて、転動体36を、駆動カム面48の第1平坦面部48cに位置させ、被駆動カム35を、駆動カム34との軸方向間隔が拡がる方向(軸方向片側)に向けて変位させる。これにより、スラスト軸受57と押圧部材58とを介して、弾性付勢部材27のピストン32を軸方向片側に向けて押圧することで、弾性部材33を弾性的に圧縮し、第1摩擦板30と第2摩擦板31とを互いに押し付け合う力を喪失させる。
 リターンスプリング70の作用により、第1摩擦板30と第2摩擦板31との間隔が広がり、摩擦係合部26が切断されることで、電動摩擦係合装置7が切断モードに切り換わる。この結果、入力部材4と回転部材6とが相対回転するようになり、サンギヤ101とリングギヤ102とが相対回転可能になる。
 電動摩擦係合装置7を切断モードに切り換えると同時に、第2部材72に対するモードセレクト部材73の円周方向に関する位相を調整することに基づいて、図19(B)に示すように、突出部97を、第1係合爪91および第2係合爪94から円周方向に外れた部分に位置させる。
 これにより、第1部材71の係合凹部74と、第1係合爪91および第2係合爪94とが係合し、回転伝達状態切換装置8は、第1部材71と第2部材72との相対回転方向にかかわらず、第2部材72に対する第1部材71の回転が阻止されるロックモードに切り換わる。この結果、固定部分10に対する回転部材6の回転が阻止され、サンギヤ101の回転が阻止される。
 高減速比モードでは、入力部材4の回転トルクは、図2(b)に太線で示すように、入力部材4、リングギヤ102、プラネタリギヤ104の自転運動、サンギヤ101との噛合に基づくプラネタリギヤ104の公転運動、キャリア103、および出力部材5の順に伝達されて、出力部材5から取り出される。高減速比モードにおける、入力部材4と出力部材5との間の減速比は、リングギヤ102とサンギヤ101との歯車比(リングギヤ102の歯数/サンギヤ101の歯数)により決定される。
 本例の2段変速機1では、電動アクチュエータ29により、1個の駆動カム34を回転駆動することに基づいて、電動摩擦係合装置7のモードのみならず、回転伝達状態切換装置8のモードを切り換えることができる。
 なお、本開示の2段変速機を実施する場合、電動摩擦係合装置のモード切り換えと、回転伝達状態切換装置のモード切り換えとを、別々のアクチュエータにより行うこともできる。
 本例の2段変速機1は、出力部材5の回転トルクが不連続に変化することを防止しつつ、高減速比モードから低減速比モードに切り換えられるようにするために、減速比切換モードをさらに備える。
 <減速比切換モード>
 2段変速機1の高減速比モードから低減速比モードへの切り換えが開始されると、まず、第2部材72に対するモードセレクト部材73の円周方向に関する位相を調整することに基づいて、回転伝達状態切換装置8は、第2部材72に対する第1部材71の前記所定方向(図19(C)の所定方向)の回転のみを許容し、かつ、前記所定方向と反対方向の回転を阻止するワンウェイクラッチモードに切り換わる。
 回転伝達状態切換装置8がワンウェイクラッチモードに切り換わると同時に、あるいは、ワンウェイクラッチモードに切り換わった後、電動摩擦係合装置7を切断モードから接続モードへの切り換えを開始する。電動摩擦係合装置7の切断モードから接続モードへの切換中においては、駆動カム34の回転に基づき、図14(B)に示す状態から図14(A)に示す状態へと、転動体36は、駆動カム面48の第1傾斜面部48bを下っていく。
 転動体36の、駆動カム面48の第1底部48aから乗り上げ量が徐々に減少することに伴い、第1摩擦板30と第2摩擦板31とが互いに押し付け合う力が徐々に大きくなる(摩擦係合部26の締結力Fが徐々に大きくなる)。このとき、入力部材4は、第2摩擦板31の軸方向両側面を、第1摩擦板30の軸方向両側面に滑らせながら(摺接させながら)回転する。
 入力部材4の正転方向への回転中に、摩擦係合部26の締結力Fが徐々に増大していくと、回転伝達状態切換装置8の第2部材72に前記所定方向と反対方向に加わるトルクが徐々に減少していく。このとき、回転伝達状態切換装置8は、ワンウェイクラッチモードに切り換えられているため、第2部材72に前記所定方向と反対方向にトルクが加わっても、第2部材72は回転しない。第2部材72に前記所定方向と反対方向に加わるトルクが徐々に減少して0となった後、第2部材72に加わるトルクの方向が逆転する(第2部材72に前記所定方向のトルクが加わる)と、その瞬間に、第2部材72の前記所定方向への回転が許容される。
 <ニュートラルモード>
 2段変速機1をニュートラルモードに切り換えるには、電動摩擦係合装置7を切断モードに切り換え、かつ、回転伝達状態切換装置8をフリーモードに切り換える。
 電動アクチュエータ29により駆動カム34を回転させることに基づいて、転動体36を、駆動カム面48の第2平坦面部48gに位置させ、被駆動カム35を、駆動カム34との軸方向間隔が拡がる方向(軸方向片側)に向けて変位させる。これにより、スラスト軸受57と押圧部材58とを介して、弾性付勢部材27のピストン32を軸方向片側に向けて押圧することで、弾性部材33を弾性的に圧縮し、第1摩擦板30と第2摩擦板31とを互いに押し付け合う力を喪失させる。
 リターンスプリング70の作用により、第1摩擦板30と第2摩擦板31との間隔が広がり、摩擦係合部26が切断されることで、電動摩擦係合装置7が切断モードに切り換わる。この結果、入力部材4と回転部材6とが相対回転するようになり、サンギヤ101とリングギヤ102とが相対回転可能になる。
 電動摩擦係合装置7を接続モードに切り換えると同時に、第2部材72に対するモードセレクト部材73の円周方向に関する位相を調整することに基づいて、回転伝達状態切換装置8は、第1部材71と第2部材72との相対回転方向にかかわらず、第2部材72に対する第1部材71の回転が許容されるフリーモードに切り換わる。この結果、固定部分10に対する回転部材6の回転が許容され、サンギヤ101の回転が許容される。
 ニュートラルモードでは、入力部材4と出力部材5とが互いに空転し、入力部材4と出力部材5との間でトルクが伝達されなくなる。
 <パーキングロックモード>
 2段変速機1をパーキングロックモードに切り換えるには、電動摩擦係合装置7を接続モードに切り換え、かつ、回転伝達状態切換装置8をロックモードに切り換える。
 電動摩擦係合装置7が接続モードに切り換わることにより、回転部材6に対する入力部材4の回転が阻止され、サンギヤ101に対するリングギヤ102の回転が阻止される。
 電動摩擦係合装置7を接続モードに切り換えると同時に、回転伝達状態切換装置8は、第1部材71と第2部材72との相対回転方向にかかわらず、第2部材72に対する第1部材71の回転が阻止されるロックモードに切り換わる。この結果、固定部分10に対する回転部材6の回転が阻止され、サンギヤ101の回転が阻止される。
 パーキングロックモードでは、入力部材4と出力部材5との回転がロックされる。
 高減速比モードから低減速比モードへの切換時に、出力部材5の回転トルクが不連続(急激)に変化することを防止して変速ショックの発生を防止するための、駆動源2およびシフトモータ66の制御について、図25および図26を用いて説明する。以下では、高減速比モードから低減速比モードへの切換前後で、出力部材5の回転トルクをほぼ一定に維持する場合の例について説明する。
 車両の走行速度やアクセル開度などの条件に基づいて、高減速比モードから低減速比モードへの切り換えが開始されると、まず、電動アクチュエータ29により駆動カム34を回転駆動することで、回転伝達状態切換装置8をワンウェイクラッチモードに切り換え、かつ、駆動カム34の回転方向に関する位相を、クラッチタッチポイントθまで移動させる(S1)。
 クラッチタッチポイントθは、弾性付勢部材27が、第1摩擦板30と第2摩擦板31とを互いに押し付け合う力が発生し始める点である。換言すれば、クラッチタッチポイントθは、ピストン32の軸方向他側の端部と、最も軸方向片側に位置する第1摩擦板30または第2摩擦板31とが接触し始める点、すなわちクラッチクリアランスC(図24参照)が0となる点である。本例では、クラッチタッチポイントθは、後述する機能により、予め求めておく。
 駆動カム34の回転方向に関する位相を、クラッチタッチポイントθまで移動させると、トルクフェーズ(S2)に移行する。トルクフェーズでは、電動アクチュエータ29により、駆動カム34を所定の回転数(回転速度)で回転駆動し、転動体36の、第1底部48aからの乗り上げ量を減少させることで、第1摩擦板30と第2摩擦板31との押し付け力、すなわち摩擦係合部26の締結力Fを徐々に増大させていく。これと同時に、駆動源2の出力トルクを徐々に増大させていく。
 すなわち、仮に駆動源2の出力トルクを一定に維持した場合、トルクフェーズにおいては、摩擦係合部26の締結力Fの増大に伴い、該摩擦係合部26に伝達されるトルクが増大していくため、出力部材5の回転トルクが減少していってしまう。本例の2段変速機1では、摩擦係合部26の締結力Fの増大にかかわらず、出力部材5の回転トルクをほぼ一定に維持できるように、摩擦係合部26の締結力Fの増大、すなわち駆動カム34の回転量に応じて、駆動源2の出力トルクを徐々に増大させる。
 駆動カム34の回転量と、駆動源2の出力トルクの増大量との関係は、予め実験や計算により求めておく。本例では、S2における駆動カム34の回転数を、S1における駆動カム34の回転数よりも小さくしている。ただし、S2における駆動カム34の回転数を、S1における駆動カム34の回転数と同じとすることもできるし、S1における駆動カム34の回転数よりも大きくすることもできる。
 S2では、より具体的には、駆動カム34を所定角度だけ回転させると同時に、駆動源2の出力トルクを、駆動カム34の回転量に応じた分だけ増大させる。次のS3で、トルクフェーズが終了しているか否かを判定する。
 トルクフェーズでは、摩擦係合部26の締結力Fの増大に伴い、摩擦係合部26に伝達されるクラッチトルクが増大し、回転伝達状態切換装置8の第2部材72に前記所定方向と反対方向に加わるトルクが徐々に減少していく。第2部材72に前記所定方向と反対方向に加わるトルクが徐々に減少して0となった後、第2部材72に加わるトルクの方向が逆転する(第2部材72に前記所定方向のトルクが加わる)と、その瞬間に、第2部材72の前記所定方向への回転が許容され、サンギヤ101の回転が許容される。サンギヤ101が回転すると、駆動源2の出力軸11の回転数Rsが減少し始める。
 本例の2段変速機1では、駆動源2の出力軸11に取り付けられた回転センサの出力信号に基づいて、該出力軸11の回転数Rsが所定値以上減少したと判断される場合に、トルクフェーズが終了したと判定する。この判定は、駆動源2の出力軸11に取り付けられた回転センサに基づいて行う。
 出力軸11の回転数Rsがほぼ一定である、すなわち出力軸11の回転数Rsの減少量が所定値よりも小さく、トルクフェーズが終了していないと判断された場合、S2に戻る。
 S3において、出力軸11の回転数Rsの減少量が所定値以上であり、トルクフェーズが終了していると判定された場合には、イナーシャフェーズ(S4-1~S4-3)に移行する。
 イナーシャフェーズでは、まず、駆動源2の出力トルクを速やかに減少させ、出力軸11の回転数Rsのさらなる減少を促す(S4-1)。駆動源2の出力トルクの減少量は、出力軸11の回転数Rsのさらなる減少を促進できる限り、特に限定されるものではない。具体的には、たとえば、駆動源2の出力トルクを、0、あるいは、負の値まで減少させることができる。
 出力軸11の回転数Rsが減少し始めたら、入力部材4の回転トルクが、2段変速機1の低減速比モードへの切換完了状態において出力部材5が出力すべき回転トルクである目標トルクとなるよう、駆動源2の出力トルクを増大させる(S4-2)。本例では、高減速比モードから低減速比モードへの切換前後で、出力部材5の回転トルクをほぼ一定としているため、入力部材4の回転トルクが、高減速比モードから低減速比モードへの切換開始時の出力部材5の回転トルクに等しくなるまで、駆動源2の出力トルクを増大させる。
 駆動源2の出力トルクを増大させる速さは、イナーシャフェーズ完了までに、入力部材4の回転トルクを目標トルクまで増大させられる限り、特に限定されない。たとえば、入力部材4の回転数Rinと出力部材5の回転数Routとの差分(差回転)ΔRに応じて、駆動源2の出力トルクを制御することができる。より具体的には、出力軸11の回転数Rsの減少に伴い、入力部材4の回転数Rinが減少し、差回転ΔRが小さくなるにしたがって、駆動源2の出力トルクを増大させ、差回転ΔRが0になった時点で、入力部材4の回転トルクが目標トルクになるように制御することができる。
 次に、S4-3では、入力部材4の回転数Rinと、出力部材5の回転数Routとが等しいか否かを判定する。具体的には、入力部材4の回転数Rinと、出力部材5の回転数Routとの差分(差回転)ΔRが、所定の範囲内に収まっているか否かを判定する。この判定は、出力軸11または入力部材4と出力部材5とにそれぞれ取り付けられた回転センサの出力信号に基づいて行われる。
 差回転ΔRが、所定の範囲内に収まっていない、すなわち入力部材4の回転数Rinと、出力部材5の回転数Routとが等しくないと判定された場合、所定時間経過後、再びS4-3を実行する。
 差回転ΔRが、所定の範囲内に収まっている、すなわち入力部材4の回転数Rinと、出力部材5の回転数Routとが等しいと判定された場合、イナーシャフェーズが終了したものと判断し、次のS5に移行する。
 S5では、電動アクチュエータ29により駆動カム34を、所定の円周方向に関する位相まで回転させ、転動体36を、駆動カム面48の第1底部48aに位置させ、被駆動カム35を、駆動カム34との軸方向間隔が縮まる方向である軸方向他側に向けて変位させる。これにより、押圧部材58の軸方向片側の端部と、ピストン32の軸方向他側面との間のピストンクリアランスCを確保する。換言すれば、ピストンクリアランスCを0以上、好ましくは0よりも大きくする。
 転動体36を第1底部48aに移動させた後は、終了に進む。以上により、2段変速機1を、高減速比モードから低減速比モードに切り換える。その後は、駆動カム34の円周方向に関する位相を維持することで、2段変速機1を低減速比モードに維持する。
 本例の2段変速機1では、駆動源2およびシフトモータ66を制御することにより、高減速比モードと低減速比モードとを切り換える際にも、出力部材5の回転トルクが(急激)に変化することを防止して変速ショックの発生を防止することができる。ただし、変速ショックの発生を防止するためには、駆動源2の出力トルクおよび回転数Rs、並びに、シフトモータ66の回転数(回転量)を制御するタイミングが重要になる。
 たとえば、駆動カム34の回転方向に関する位相がクラッチタッチポイントθまで達していないにもかかわらず、S2に移行し、駆動源2の出力トルクを増大させてしまうと、図26(F)に破線で示すように、出力部材5の回転トルクが不用意に増大してしまう可能性がある。
 ここで、2段変速機1の使用に伴い、第1摩擦板30および第2摩擦板31の摩耗量が増大していくと、電動摩擦係合装置7を接続モードに切り換えるための、弾性付勢部材27による、最も軸方向片側の第1摩擦板30または第2摩擦板31の軸方向他側への必要押圧量が増大する。
 換言すれば、電動摩擦係合装置7を切断モードに切り換える際の、カム装置28による、ピストン32の軸方向片側への必要押圧量が減少する。この結果、駆動カム34の回転角度θとシフトモータ66の電流値Aとの関係は、図21(a)に示す状態から図21(b)に示す状態へと変化する。すなわち、第1摩擦板30および第2摩擦板31の摩耗量が増大すると、クラッチタッチポイントθが小さくなる。
 図21(a)および図21(b)は、電動摩擦係合装置7を接続モードから切断モードに切り換える際の、駆動カム34の回転角度θとシフトモータ66の出力トルクTおよび電流値Aとの関係を示す線図である。図21(a)は、第1摩擦板30および第2摩擦板31が摩耗していない新品時の場合を示し、図21(b)は、第1摩擦板30および第2摩擦板31の摩耗が大幅に進行した場合を示している。
 第1摩擦板30および第2摩擦板31の摩耗量が増大すると、ピストンタッチポイントθも小さくなる。ピストンタッチポイントθは、摩擦係合部26を接続状態から切断状態に切り換える方向に駆動カム34を回転させる場合に、弾性付勢部材27が、第1摩擦板30と第2摩擦板31とを互いに押し付け合う力を解除する方向に押圧され始める点である。換言すれば、ピストンタッチポイントθは、摩擦係合部26を切断状態から接続状態に切り換える方向に駆動カム34を回転させる場合に、押圧部材58の軸方向片側の端部と、ピストン32の軸方向他側面との間のピストンクリアランスC(図22参照)が生じ始める点である。
 本例の2段変速機1は、第1摩擦板30および第2摩擦板31の摩耗にかかわらず、変速ショックを防止するための機能を備える。具体的には、本例の2段変速機1は、ピストンタッチポイントθを検出する第1の機能と、クラッチタッチポイントθを検出する第2の機能と、高減速比モードと低減速比モードとを切り換える際に、駆動カム34の回転量を、ピストンタッチポイントθおよび/またはクラッチタッチポイントθに基づいて調整する第3の機能とを備える。
 図21(a)および図21(b)からも明らかなとおり、電動摩擦係合装置7のモード切換時、シフトモータ66の出力トルクTと、シフトモータ66の電流値Aとは、同じ傾向で変化する。本例の2段変速機1は、ピストンタッチポイントθおよびクラッチタッチポイントθを、電動摩擦係合装置7を接続モードから切断モードに切り換える際のシフトモータ66の電流値Aに基づいて検出する。
 電動摩擦係合装置7が接続モードに切り換えられた状態では、カム装置28の転動体36は、駆動カム面48の第1底部48aに位置する。この状態では、図22に示すように、押圧部材58の軸方向片側の端部と、ピストン32の軸方向他側面との間にピストンクリアランスCが存在している。このピストンクリアランスCの存在に基づいて、ピストン32の軸方向他側への変位が許容されている。したがって、弾性部材33が弾性的に復元しようとする力により、ピストン32が軸方向他側に弾性的に押圧され、該ピストン32により、最も軸方向片側の第1摩擦板30または第2摩擦板31を軸方向他側に向けて押圧されることで、第1摩擦板30と第2摩擦板31とが互いに押し付け合う。
 電動摩擦係合装置7を接続モードから切断モードに切り換えるには、シフトモータ66への通電に基づき、駆動カム34を前記所定方向に回転させ、第1底部48aからの転動体36の乗り上げ量を増大させていく。このとき、シフトモータ66の電流値Aは、一時的に流れる起動電流を除き、ほぼ一定となる(図21(a)および図21(b)中の範囲α)。
 第1底部48aからの転動体36の乗り上げ量を増大させることで、押圧部材58を軸方向片側に向けて移動させていくと、図23に示すように、押圧部材58の軸方向片側の端部が、ピストン32の軸方向他側面に接触する。換言すれば、ピストンクリアランスCが0になる。
 図23に示す状態から、さらにシフトモータ66により、駆動カム34を前記所定方向に回転駆動すると、被駆動カム35により、押圧部材58を介して、ピストン32が、弾性部材33の弾性復元力に抗して、軸方向片側に向けて押圧される。この状態では、弾性部材33の弾性復元力の一部が、押圧部材58およびスラスト軸受57を介して、カム装置28により支承され、かつ、残りが、摩擦係合部26と回転伝達状態切換装置8とを介して固定部分10により支承される。
 ピストン32が軸方向片側に向けて押圧されていくと、主に第2摩擦板31および弾性部材33の弾性復元力に基づいて、第1摩擦板30と第2摩擦板31とを互いに押し付け合う力が徐々に低下していく。すなわち、摩擦係合部26の締結力Fが徐々に低下していく。
 摩擦係合部26の締結力Fを徐々に低下させていく間、シフトモータ66の電流値Aは、ほぼ一定の増加率(傾き)で増加していく(図21(a)および図21(b)中の範囲β)。すなわち、範囲βにおける電流値Aの増加率は、範囲αにおける電流値Aの増加率よりも大きくなっている。
 本例の2段変速機1では、第1の機能により、該電動摩擦係合装置7を接続モードから切断モードに切り換えるべく、シフトモータ66に通電を開始した後、シフトモータ66の電流値Aが、所定の第1閾値以上の増加率で増大し始めるときの駆動カム34の回転方向に関する位相(基準位置(たとえば、転動体36が凹部の底部に位置する初期位置)からの回転角度)θを、ピストンクリアランスCが0になるピストンタッチポイントθとして検出する。第1閾値は、予め実験やシミュレーションなどによって求めることができる。
 電流値Aの増加率は、駆動カム34の単位回転角度Δθ当たりの電流値Aの増加量ΔAである。駆動カム34を一定の回転速度で前記所定方向に回転させる場合、単位時間当たりの電流値Aの増加量ΔAを判定に使用することもできる。
 摩擦係合部26の締結力Fが徐々に低下していき、該締結力Fが0になると、その瞬間から、図24に示すように、ピストン32の軸方向他側の端部と、最も軸方向片側に位置する第1摩擦板30または第2摩擦板31との間にクラッチクリアランスCが生じ始める。クラッチクリアランスCが生じ始めると、弾性部材33の弾性復元力のほぼすべてを、押圧部材58およびスラスト軸受57を介して、カム装置28により支承することになる。
 クラッチクリアランスCが生じ始めた後は、シフトモータ66の電流値Aは、緩やかに、かつ、対数的に増加する(図21(a)および図21(b)中の範囲γ)。すなわち、範囲γにおける電流値Aの増加率は、範囲βにおける電流値Aの増加率よりも小さくなっている。
 本例の2段変速機1では、第2の機能により、電動摩擦係合装置7を接続モードから切断モードに切り換え際、駆動カム34の回転方向に関する位相がピストンタッチポイントθを超えた後、シフトモータ66の電流値Aの増加率が、所定の第2閾値以下となったときの駆動カム34の回転方向に関する位相θを、クラッチクリアランスCが0になるクラッチタッチポイントθとして検出する。なお、第2閾値は、第1閾値よりも小さい。第2閾値は、予め実験やシミュレーションなどによって求めることができる。
 ピストンタッチポイントθおよびクラッチタッチポイントθの検出は、2段変速機1を搭載した自動車の走行に支障がない限り、任意のタイミングで実施することができる。具体的には、たとえば、イグニッションキーをONした直後や、キックダウン加速中やエンジンブレーキ作動時のように、2段変速機を低減速比モードから高減速比モードに切り換えるときなどのタイミングで実施することができる。
 ただし、上記操作を車両の走行中に実施しようとした場合、駆動カム34を任意の回転速度で駆動することができないなどの問題がある。このため、ピストンタッチポイントθおよびクラッチタッチポイントθの検出は、イグニッションキーをONした直後などの車両停止中に実施することが好ましい。
 本例の2段変速機1は、高減速比モードと低減速比モードとを切り換える際に、減速機67を介してシフトモータ66により回転駆動する駆動カム34の回転量を、第1の機能により検出したピストンタッチポイントθおよび/または第2の機能により検出したクラッチタッチポイントθに基づいて調整する。具体的には、たとえば、高減速比モードから低減速比モードへの切換前後で、出力部材5の回転トルクをほぼ一定に維持する場合、S1において、駆動カム34の回転方向に関する位相の目標値として、第2の機能により検出したクラッチタッチポイントθを使用する。
 本例の2段変速機1では、第1摩擦板30および第2摩擦板31の摩耗に伴って、ピストンタッチポイントθおよびクラッチタッチポイントθが初期位置から変化した場合でも、修正後のピストンタッチポイントθおよびクラッチタッチポイントθに基づいて、変速制御を実施することができる。このため、本例の2段変速機1によれば、第1摩擦板30および第2摩擦板31の摩耗にかかわらず、変速ショックの発生を防止することができる。
 本例の2段変速機1では、高減速比モードから低減速比モードへの切り換え途中に、減速比切換モードを経由しているため、モード切り換えに伴う変速ショックを抑えつつ、トルク損失を抑えることができる。この理由について、図27および図28を参照しつつ説明する。
 図27は、比較例の2段変速機の一部を示している。比較例の2段変速機は、入力部材4と回転部材6との相対回転の可否、換言すればリングギヤ102とサンギヤ101との相対回転の可否を切り換える第1の摩擦係合装置105と、固定部分10に対する回転部材6の回転の可否、換言すればサンギヤ101の回転の可否を切り換える第2の摩擦係合装置106とを備える。すなわち、比較例の2段変速機は、本例の2段変速機の回転伝達状態切換装置8に代えて、第1摩擦板30と第2摩擦板31とを押し付けたり離隔させたりすることでモードを切り換える、第2の摩擦係合装置106を採用している。
 比較例では、電動アクチュエータによりカム装置28zの駆動カム34zを回転駆動し、第1の被駆動カム107と第2の被駆動カム108とを軸方向に変位させることに基づいて、第1の摩擦係合装置105のモードと第2の摩擦係合装置106のモードとを切り換える。第1の被駆動カム107と第2の被駆動カム108とは、駆動カム34zの回転に伴って互いに異なる位相で変位する(軸方向に関して互いに反対方向に変位(進退)する)。
 比較例の2段変速機において、減速比が大きい高減速比モードから減速比が小さい低減速比モードへの切換中は、図28に示すように、第1の摩擦係合装置105の締結力が徐々に大きくなり、かつ、第2の摩擦係合装置106の締結力が徐々に小さくなる。このため、高減速比モードから低減速比モードへの切換中に、第2の摩擦係合装置106の締結力が徐々に小さくなって十分ではなくなると、サンギヤ101がプラネタリギヤ104の公転に引き摺られ、回転部材6と固定部分10との間でトルクの損失が発生する。
 比較例の2段変速機においても、第1の摩擦係合装置105の締結力が徐々に大きくなることに伴い、サンギヤ101に前記所定方向と反対方向に加わるトルクが徐々に減少して0となった後、サンギヤ101に加わるトルクの向きが逆転する。しかしながら、比較例の2段変速機では、サンギヤ101に加わるトルクの向きが逆転し、プラネタリギヤ104の公転方向とサンギヤ101の回転方向とが一致した瞬間には、第2の摩擦係合装置106の締結力は十分に大きくすることができない。このため、サンギヤ101は、固定部分10に対して引き摺られ、サンギヤ101と固定部分10との間でトルクの損失が発生する。
 これに対して、本例の2段変速機1では、駆動カム34の回転に基づいて、高減速比モードから低減速比モードに切り換えるべく、電動摩擦係合装置7を切断モードから接続モードへと切り換え始めるよりも前に、回転伝達状態切換装置8をワンウェイクラッチモードとしている。このため、電動摩擦係合装置7を切断モードから接続モードへ切り換えるべく、摩擦係合部26の締結力Fを徐々に大きくし、サンギヤ101に加わるトルクの方向が逆転した瞬間に、サンギヤ101の前記所定方向への回転を許容できるようにしている。このため、モード切り換えに伴う変速ショックを抑えつつ、2段変速機1におけるトルク損失を抑えることができる。
 減速比切換モードにおける、入力部材4と出力部材5との間の減速比は、摩擦係合部26の締結力Fが、第1摩擦板30の軸方向両側面と第2摩擦板31の軸方向両側面との当接部においてトルクの損失が生じない程度に小さい状態では、高減速比モードにおける減速比と同じである。一方、摩擦係合部26の締結力Fが、第1摩擦板30の軸方向両側面と第2摩擦板31の軸方向両側面との当接部で滑りを生じることなくトルクを伝達できる程度の大きさまで増大した状態では、低減速比モードにおける減速比と同じ、すなわち1である。
 摩擦係合部26の締結力Fが、第1摩擦板30の軸方向両側面と第2摩擦板31の軸方向両側面との当接部において滑りを生じる程度の状態では、入力部材4と出力部材5との間の減速比は、入力トルクの大きさや回転速度などに応じた値となる。
 入力部材4が正転方向に回転している状態であって、高減速比モードから減速比切換モードへの切換中においては、回転伝達状態切換装置8の第2部材72には、前記所定方向と反対方向にトルクが加わる。ここで、回転伝達状態切換装置8においては、第2部材72の前記所定方向と反対方向への回転は、ロックモードからワンウェイクラッチモードへの切り換え途中においても阻止される。すなわち、高減速比モードから減速比切換モードへの切換中における、入力部材4と出力部材5との間の減速比は、高減速比モードにおける減速比と同じである。
 入力部材4が正転方向に回転している場合であって、減速比切換モードから低減速比モードへの切換中においては、回転伝達状態切換装置8の第2部材72には、前記所定方向にトルクが加わる。ここで、回転伝達状態切換装置8においては、第2部材72の前記所定方向への回転は、ワンウェイクラッチモードからフリーモードへの切り換え途中においても許容される。
 入力部材4が逆転方向に回転する場合、すなわち本例の2段変速機1を搭載した自動車の後退時に、車両が高速で走行することはほとんどない。このため、入力部材4が逆転方向に回転している場合に、高減速比モードから低減速比モードへの切換時に、正転方向への回転時のように、電動摩擦係合装置7をワンウェイクラッチモードにすることで、サンギヤ101に加わるトルクの方向が逆転した瞬間に、該サンギヤ101の回転を許容する減速比切換モードに切り換える必要性は乏しい。
 入力部材4が正転方向に回転する場合であっても、低減速比モードから高減速比モードへの切換時は、主に車両は減速状態にある。この場合、入力部材4から出力部材5への動力の伝達は行われないため、2段変速機1を減速比切換モードに切り換える必要性は乏しい。
 さらに、本例の2段変速機1によれば、トルクの伝達効率を良好に確保することができる。この理由について、次に説明する。
 カム装置28が押圧力を発生した状態、すなわち被駆動カム35により、スラスト軸受57と押圧部材58とを介して、ピストン32を軸方向片側に向けて押圧した状態(図2(b)に示す状態)では、スラスト軸受57に軸方向片側を向いた力が加わる。また、被駆動カム35によりピストン32を軸方向片側に向けて押圧することに伴う反力が、転動体36と駆動カム34とを介して、ラジアル軸受38に軸方向他側に向けて加わる。
 スラスト軸受57を構成する軸方向片側の軌道輪59aは、押圧部材58とピストン32とを介して回転部材6に支持され、かつ、軸方向他側の軌道輪59bは、カム装置28とアンギュラ玉軸受39と筒状部材37とを介して固定部分10に支持されている。また、ラジアル軸受38を構成する内輪42は、回転部材6に外嵌固定され、かつ、外輪43は、筒状部材37とアンギュラ玉軸受39とを介して、カム装置28の駆動カム34に支持されている。
 本例の2段変速機1では、カム装置28が押圧力を発生した状態、すなわちピストン32が軸方向片側に向けて押圧され、弾性部材33の軸方向寸法が弾性的に縮まり、第1摩擦板30と第2摩擦板31とが互いに押し付け合う力を解除されて電動摩擦係合装置7が切断された状態においては、回転伝達状態切換装置8がロックモードになる。電動摩擦係合装置7が切断され、かつ、回転伝達状態切換装置8がロックモードに切り換わった高減速比モードでは、固定部分10に対する回転部材6の相対回転が阻止される。
 この状態では、スラスト軸受57を構成する軸方向片側の軌道輪59aと軸方向他側の軌道輪59bとは相対回転せず、かつ、ラジアル軸受38を構成する内輪42と外輪43とは相対回転しない。要するに、スラスト軸受57およびラジアル軸受38に軸方向(図2(b)の左右方向)の力が加わり、転がり抵抗が大きくなった状態では、スラスト軸受57を構成する軸方向片側の軌道輪59aと軸方向他側の軌道輪59bとは相対回転せず、かつ、ラジアル軸受38を構成する内輪42と外輪43とは相対回転しない。このため、スラスト軸受57およびラジアル軸受38でのトルク損失の発生を防止することができる。
 なお、カム装置28が発生した押圧力は、被駆動カム35から、押圧部材58およびスラスト軸受57とピストン32と弾性部材33とを介して、回転部材6に軸方向片側向きに加わる。これに対し、カム装置28が押圧力を発生することに伴う反力は、駆動カム34から、ラジアル軸受38を介して、回転部材6に軸方向他側向きに加わる。このように、カム装置28が押圧力を発生することに伴う軸方向の力は、回転部材6内で打ち消し合う(相殺される)。
 一方、回転伝達状態切換装置8がフリーモードに切り換わり、固定部分10に対する回転部材6の相対回転が許容された状態(図2(a)に示す状態)においては、電動摩擦係合装置7は接続されており、カム装置28は押圧力を発生していない。この状態では、スラスト軸受57およびラジアル軸受38に、カム装置28が押圧力を発生することに伴う軸方向(図2(a)の左右方向)の力が加わっていないため、スラスト軸受57およびラジアル軸受38の転がり抵抗が徒に大きくなることはなく、トルク損失が過度に大きくなることもない。
 本例の2段変速機1では、モード切換中の短い時間を除き、カム装置28が押圧力を発生することに伴う軸方向の力が加わり、転がり抵抗が大きくなった状態で、スラスト軸受57およびラジアル軸受38が回転することはない。したがって、スラスト軸受57およびラジアル軸受38での過大なトルク損失の発生を防止することができて、2段変速機1のトルクの伝達効率を良好に確保することができる。
 ただし、本開示の2段変速機は、ワンウェイクラッチモードを有しない、すなわちフリーモードおよびロックモードのみを有する回転伝達状態切換装置を備える構造に適用することもできる。このような変形例では、高減速比モードから低減速比モードに切り換える際、図29に示すように、回転伝達状態切換装置をロックモードからフリーモードに切り換えた後で、電動摩擦係合装置を切断モードから接続モードに切り換える。
  1 2段変速機
  2 駆動源
  3 差動装置
  4 入力部材
  5 出力部材
  6 回転部材
  7 電動摩擦係合装置
  8 回転伝達状態切換装置
  9 遊星減速機構
 10 固定部分
 11 出力軸
 12 駆動歯車
 13 入力歯車
 14 出力歯車
 15 小径フランジ部
 16 フランジ部
 17 通孔
 18 第1円輪部
 19 第1円筒部
 20 第2円輪部
 21 第2円筒部
 22 軸部材
 23 段付円筒部材
 24 小径円筒部
 25 雌スプライン部
 26 摩擦係合部
 27 弾性付勢部材
 28、28z カム装置
 29 電動アクチュエータ
 30 第1摩擦板
 31 第2摩擦板
 32 ピストン
 33 弾性部材
 34、34z 駆動カム
 35 被駆動カム
 36 転動体
 37 筒状部材
 38 ラジアル軸受
 39 アンギュラ玉軸受
 40 円筒部
 41 外向フランジ部
 42 内輪
 43 外輪
 44 転動体
 45 内輪
 46 外輪
 47 玉
 48 駆動カム面
  48a 第1底部
  48b 第1傾斜面部
  48c 第1平坦面部
  48d 第2傾斜面部
  48e 第2底部
  48f 第3傾斜面部
  48g 第2平坦面部
  48h 第4傾斜面部
 49 ホイール歯
 50 ピン部
 51 雌スプライン部
 52 雄スプライン部
 53 矩形孔
 54a、54b 支持板部
 55 支持孔
 56 支持凹部
 57 スラスト軸受
 58 押圧部材
 59a、59b 軌道輪
 60 転動体
 61 予圧付与手段
 62 基部
 63 部分円筒部
 64 支持軸
 65 ころ
 66 シフトモータ
 67 減速機
 68 ウォーム
 69a、69b 支持軸受
 70 リターンスプリング
 71 第1部材
 72 第2部材
 73 モードセレクト部材
 74 係合凹部
 75 凸部
 76 凹凸部
 77 外径側凹凸係合部
 78 内径側凹凸係合部
 79 内径側凹凸係合部
 80 基部
 81 円筒部
 82 第1保持凹部
 83 第2保持凹部
 84a、84b ばね保持部
 85a、85b 台座部
 86 第1爪部材
 87 第2爪部材
 88 第1爪付勢部材
 89 第2爪付勢部材
 90 第1基部
 91 第1係合爪
 92 環状凸部
 93 第2基部
 94 第2係合爪
 95 基部
 96 プレート側係合孔
 97 突出部
 98 凹凸部
 99 蓋体
100 止め輪
101 サンギヤ
102 リングギヤ
103 キャリア
104 プラネタリギヤ
105 第1の摩擦係合装置
106 第2の摩擦係合装置
107 第1の被駆動カム
108 第2の被駆動カム

Claims (7)

  1.  入力部材と、
     出力部材と、
     電動摩擦係合装置と、
    を備え、
     前記電動摩擦係合装置は、
      第1クラッチ部材と、
      前記第1クラッチ部材と同軸に、かつ、該第1クラッチ部材に対する相対回転を可能に支持された第2クラッチ部材と、
      軸方向の相対変位を可能に支持された、少なくとも1枚の第1摩擦板および少なくとも1枚の第2摩擦板を有し、前記第1クラッチ部材と前記第2クラッチ部材との間に備えられ、前記第1摩擦板と前記第2摩擦板とを互いに押し付け合わせることで、前記第1クラッチ部材と前記第2クラッチ部材との間でトルクを伝達する接続状態に切り換わり、かつ、前記第1摩擦板と前記第2摩擦板とを互いに押し付け合う力を解放することで、前記第1クラッチ部材と前記第2クラッチ部材との間でトルクを伝達しない切断状態に切り換わる摩擦係合部と、
      前記第1クラッチ部材または前記第2クラッチ部材と前記摩擦係合部との間に備えられ、かつ、前記第1摩擦板と前記第2摩擦板とを互いに押し付け合う方向に弾性的に付勢する弾性付勢部材と、
      駆動カムと、該駆動カムに対する相対回転および軸方向の相対変位を可能に支持された被駆動カムとを有し、該駆動カムの回転に伴い、該被駆動カムを該駆動カムとの軸方向間隔が拡がる方向に相対変位させることに基づいて、前記弾性付勢部材を、前記第1摩擦板と前記第2摩擦板とを互いに押し付け合う力を解除する方向に押圧するカム装置と、
      シフトモータおよび減速機を有し、該シフトモータにより、該減速機を介して前記駆動カムを回転駆動する電動アクチュエータと、
    を備え、
     前記摩擦係合部の接続状態と切断状態とを切り換えることに基づいて、前記入力部材と前記出力部材との間の減速比が大きい高減速比モードと、前記入力部材と前記出力部材との間の減速比が小さい低減速比モードとを切り換えるように構成され、
     前記摩擦係合部を前記接続状態から前記切断状態に切り換えるべく、前記シフトモータにより、前記減速機を介して前記駆動カムを回転駆動する際に、前記シフトモータの出力トルクまたは電流値が第1閾値以上の増加率で増大し始めたときの、前記駆動カムの回転方向に関する位相を、前記弾性付勢部材が、前記第1摩擦板と前記第2摩擦板とを互いに押し付け合う力を解除する方向に押圧され始めるピストンタッチポイントとして検出する機能、および/または、前記摩擦係合部を前記接続状態から前記切断状態に切り換えるべく、前記シフトモータにより前記減速機を介して前記駆動カムを回転駆動する際に、前記ピストンタッチポイントを超えた後、前記増加率が第2閾値以下となったときの、前記駆動カムの回転方向に関する位相を、前記第1摩擦板と前記第2摩擦板とを互いに押し付け合う力が0になるクラッチタッチポイントとして検出する機能と、
     前記高減速比モードと前記低減速比モードとを切り換える際に、前記減速機を介して前記シフトモータにより回転駆動する前記駆動カムの回転量を、前記ピストンタッチポイントおよび/または前記クラッチタッチポイントに基づいて調整する機能と、
    を備える、
    2段変速機。
  2.  前記電動摩擦係合装置は、前記第1摩擦板と前記第2摩擦板とを互いに離隔させる方向に弾性的に付勢するリターンスプリングを有する、請求項1に記載の2段変速機。
  3.  前記入力部材を回転駆動する駆動源を備え、
     前記駆動源の出力トルクおよび回転数と、前記シフトモータの回転数とを制御することにより、前記出力部材の回転トルクが不連続に変化することを防止しつつ、前記高減速比モードから前記低減速比モードに切り換える機能を備える、
    請求項1または2に記載の2段変速機。
  4.  互いに同軸に配置された第1部材および第2部材と、前記駆動カムの回転に伴い、回転または軸方向に変位するモードセレクト部材とを有し、かつ、前記第1部材と前記第2部材との相対回転方向にかかわらず、前記第2部材に対する前記第1部材の回転が許容されるフリーモードと、前記第1部材と前記第2部材との相対回転方向にかかわらず、前記第2部材に対する前記第1部材の回転が阻止されるロックモードとを有する回転伝達状態切換装置を備え、
     前記回転伝達状態切換装置は、前記モードセレクト部材の回転または軸方向変位に基づいて、前記フリーモードと前記ロックモードとを切り換える、
    請求項1~3のいずれかに記載の2段変速機。
  5.  前記回転伝達状態切換装置が、前記第2部材に対する前記第1部材の所定方向の回転のみが許容され、かつ、前記第2部材に対する前記第1部材の前記所定方向と反対方向の回転が阻止されるワンウェイクラッチモードを有する、請求項4に記載の2段変速機。
  6.  前記摩擦係合部を前記切断状態から前記接続状態に切り換えている間中、および/または、前記摩擦係合部を前記接続状態から前記切断状態に切り換えている間中、前記回転伝達状態切換装置を前記ワンウェイクラッチモードとする機能を備える、請求項5に記載の2段変速機。
  7.  前記入力部材に対し該入力部材と一体的に回転するように接続されたサンギヤと、前記サンギヤの周囲に該サンギヤと同軸に配置されたリングギヤと、前記出力部材に対し該出力部材と一体的に回転するように接続されたキャリアと、前記サンギヤと前記リングギヤとに噛合し、かつ、前記キャリアに、自身の中心軸を中心とする回転を可能に支持された複数個のプラネタリギヤとを有する遊星歯車機構を備え、
     前記第1摩擦板と前記第2摩擦板とのうちの一方が、前記サンギヤまたは前記入力部材に対し軸方向の相対変位を可能に、かつ、相対回転を不能に支持されており、
     前記第1摩擦板と前記第2摩擦板とのうちの他方が、前記キャリアまたは前記出力部材に対し軸方向の相対変位を可能に、かつ、相対回転を不能に支持されており、
     前記第1部材と前記第2部材とのうちの一方が、使用時にも回転しない部分に対して相対回転を不能に支持されており、および、
     前記第1部材と前記第2部材とのうちの他方が、前記リングギヤに対して相対回転を不能に支持されている、
    請求項4~6のいずれかに記載の2段変速機。
PCT/JP2023/013464 2022-06-21 2023-03-31 2段変速機 WO2023248571A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023544665A JP7375993B1 (ja) 2022-06-21 2023-03-31 2段変速機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-099905 2022-06-21
JP2022099905 2022-06-21

Publications (1)

Publication Number Publication Date
WO2023248571A1 true WO2023248571A1 (ja) 2023-12-28

Family

ID=89379501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013464 WO2023248571A1 (ja) 2022-06-21 2023-03-31 2段変速機

Country Status (1)

Country Link
WO (1) WO2023248571A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020190280A (ja) * 2019-05-21 2020-11-26 日本精工株式会社 動力伝達経路切換装置および2段変速機
WO2021117867A1 (ja) * 2019-12-13 2021-06-17 日本精工株式会社 動力伝達経路切換装置および2段変速機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020190280A (ja) * 2019-05-21 2020-11-26 日本精工株式会社 動力伝達経路切換装置および2段変速機
WO2021117867A1 (ja) * 2019-12-13 2021-06-17 日本精工株式会社 動力伝達経路切換装置および2段変速機

Similar Documents

Publication Publication Date Title
US9033851B2 (en) Motor drive assembly for a vehicle and a motor vehicle
JPH11325125A (ja) 制御可能な2方向オ―バランニングクラッチ組立体
JP6996667B2 (ja) 動力伝達経路切換装置および2段変速機
US9261169B2 (en) Automatic transmission controller
CN104379956A (zh) 机械致动的方向感知型滚子离合器
JP2023041927A (ja) 動力伝達経路切換装置
JP7375993B1 (ja) 2段変速機
WO2023248571A1 (ja) 2段変速機
WO2024018887A1 (ja) 2段変速機、該2段変速機のμ-V特性の学習方法、および該2段変速機の変速制御方法
EP0728958B1 (en) A clutch device
JPH0617853A (ja) 回転伝達装置
JP2581965B2 (ja) 動力伝達装置
WO2023135870A1 (ja) 動力伝達経路切換装置および2段変速機
JP2005140145A (ja) ハイブリッド車両の動力伝達装置
JP2000104759A (ja) 駆動力伝達装置
JP7028386B1 (ja) 動力伝達経路切換装置および2段変速機
WO2022074958A1 (ja) 2段変速機
US11982340B2 (en) Two-speed transmission
WO2024014343A1 (ja) 電動摩擦係合装置、並びに、そのタッチポイント検出方法および異常検知方法
CN113586697B (zh) 扭矩管理器
JP4360789B2 (ja) 車両のディファレンシャル装置
CN113586696B (zh) 一种分动器的执行机构
JP3705067B2 (ja) 多段変速装置
JP4848978B2 (ja) ベルト式無段変速機
JP2023129819A (ja) 前後輪駆動力配分装置及び前後輪駆動力配分装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826760

Country of ref document: EP

Kind code of ref document: A1