WO2023246080A1 - 工业废盐和废弃脱硝催化剂资源化利用的方法 - Google Patents

工业废盐和废弃脱硝催化剂资源化利用的方法 Download PDF

Info

Publication number
WO2023246080A1
WO2023246080A1 PCT/CN2023/070608 CN2023070608W WO2023246080A1 WO 2023246080 A1 WO2023246080 A1 WO 2023246080A1 CN 2023070608 W CN2023070608 W CN 2023070608W WO 2023246080 A1 WO2023246080 A1 WO 2023246080A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
salt
industrial waste
filtrate
denitrification catalyst
Prior art date
Application number
PCT/CN2023/070608
Other languages
English (en)
French (fr)
Inventor
刘向辉
何发泉
陈鸥
王永政
王洪亮
郑鹏
Original Assignee
国能龙源环保有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国能龙源环保有限公司 filed Critical 国能龙源环保有限公司
Publication of WO2023246080A1 publication Critical patent/WO2023246080A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1236Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • C22B34/225Obtaining vanadium from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/36Obtaining tungsten
    • C22B34/365Obtaining tungsten from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the field of waste recycling, and specifically relates to a method for resource utilization of industrial waste salt and waste denitrification catalysts.
  • nitrogen oxides are an important precursor that causes photochemical smog, haze and acid rain, so controlling the emission of nitrogen oxides is particularly important.
  • Thermal power plants are one of the main sources of nitrogen oxide emissions.
  • the dry flue gas denitrification method currently used is mainly selective catalytic reduction (SCR).
  • SCR denitrification technology is widely used to reduce nitrogen oxide emissions in coal-fired industrial boilers in my country.
  • the vanadium-titanium series denitrification catalyst plays a key role in reducing nitrogen oxide emissions. SCR catalysts must be replaced after three years of use.
  • waste denitrification catalysts contain a large amount of high value-added valuable metals such as titanium, tungsten and vanadium. They are valuable resources for extracting the above-mentioned valuable metals and have high economic value.
  • waste denitrification catalysts and industrial waste salt have a large output, their recycling and reuse have attracted great attention in related research fields. Therefore, the realization of resource utilization of waste denitrification catalysts and industrial waste salt is of great significance in the aspects of solid waste resource utilization and circular economy.
  • the existing technology uses relatively pure chemicals for the recycling of denitration catalysts, and the recycling cost is high.
  • many industrial waste salts have high salt content, and some salts are important additives in chemical metallurgy. If the two can be used collaboratively to simultaneously recover the precious metals in the waste denitrification catalysts and the high-purity inorganic salts in the industrial waste salt, You can get higher metal separation efficiency and products while reducing recycling costs.
  • the organic matter in some industrial waste salts is also a heat source for metallurgical reactions, which can provide energy for metal extraction and save energy.
  • the purpose of the present invention is to overcome the current problems of difficult recovery of valuable metals in waste denitrification catalysts and inorganic salts in industrial waste salts and high recovery costs, and to provide a method for resource utilization of industrial waste salts and waste denitrification catalysts.
  • This method allows two types of industrial waste to be recycled and processed collaboratively to obtain high-purity titanium dioxide and vanadium-tungsten composite products as well as high-purity inorganic salts.
  • the present invention provides a method for resource utilization of industrial waste salt and waste denitrification catalyst, which method includes the following steps:
  • step (2) Mix the industrial waste salt powder and the waste denitrification catalyst powder obtained in step (1) and calcine it at least once to obtain a calcined product;
  • step (3) Leaching the calcined product obtained in step (2) in water or an alkaline solution, and then filtering to obtain filter residue a and filtrate a;
  • the industrial waste salt originates from waste materials obtained during water treatment in the chemical industry.
  • the calcination conditions include: calcination temperature is 600-1000°C, and calcination time is 1-6 hours.
  • the alkaline solution is at least one of sodium hydroxide solution and ammonia solution, and the molar concentration of hydroxide ions in the solution is 0.001-3mol/L.
  • the reaction conditions include: reaction temperature is 70-90°C, and reaction time is 1-3 h.
  • the organic matter contained in the industrial waste salt promotes the reaction of tungsten and vanadium with the inorganic salts in the industrial waste salt during the mixing and calcining process of the industrial waste salt and the waste denitrification catalyst, and It can provide energy during the combustion process and save energy.
  • the calcined product obtained after calcination can be made loose and porous, which facilitates the crushing of the calcined product and subsequent metal leaching.
  • the soluble inorganic salts can be crystallized to obtain high-purity inorganic salt products.
  • the recovery rate of the inorganic salts in the industrial waste salt is greater than 70%.
  • the purity of the recovered inorganic salt is greater than 99.99%, and the valuable metals in the waste denitrification catalyst are also recovered.
  • the purity of the recovered titanium dioxide product is greater than 92%, the recovery rate of the valuable metal W is greater than 92%, and the recovery rate of the valuable metal V is greater than 92%.
  • the recovery rate is greater than 92%.
  • step (2) Mix the industrial waste salt powder and the waste denitrification catalyst powder obtained in step (1) and calcine it at least once to obtain a calcined product;
  • step (3) Leaching the calcined product obtained in step (2) in water or an alkaline solution, and then filtering to obtain filter residue a and filtrate a;
  • step (3) Wash the filter residue a obtained in step (3), then mix it with an acidic solution to react, and then filter;
  • the valuable metals Ti, W, V and the impurity element Si in the waste denitration catalyst react with NaCl or Na 2 CO 3 in the industrial waste salt during the calcination process of step (2) to obtain the corresponding Titanates, tungstates and vanadates.
  • the calcined product obtained in step (2) is leached in water or an alkaline solution, and the tungstate and vanadate in the calcined product can be dissolved in water or an alkaline solution, so step (3)
  • the components of the filter residue a obtained by filtration in ) include titanate, and the components of the filtrate a include tungstate, vanadate, silicate and NaCl.
  • the step (4) also includes fully calcining the filter residue obtained by filtration at 600-800°C, and then washing the calcined product with an acidic solution and drying it.
  • a titanium dioxide product is obtained, and the purity of the titanium dioxide product is 92%-99%.
  • step (4) of the present invention The chemical reaction formula that mainly occurs in step (4) of the present invention is as follows:
  • the silicate ions in the filtrate can be turned into precipitates and separated and removed.
  • the components of the filtrate b obtained by filtration include tungstate, vanadate and a large amount of NaCl.
  • step (5) of the present invention The chemical reaction formula that mainly occurs in step (5) of the present invention is as follows:
  • the tungstate and vanadate in the filtrate b can be precipitated and separated to obtain the product vanadium-tungsten composite.
  • the filtrate c obtained by filtration contains a large amount of NaCl.
  • step (6) of the present invention The chemical reaction formula that mainly occurs in step (6) of the present invention is as follows:
  • the industrial waste salt originates from waste materials obtained during water treatment in the chemical industry.
  • the industrial waste salt originates from waste materials obtained from water treatment processes in coal chemical industry, leather manufacturing or petrochemical industry.
  • the content of Ca element in the industrial waste salt is ⁇ 3% by weight.
  • the industrial waste salt contains organic components and inorganic components
  • the content of the organic component is 5-35% by weight
  • the content of the inorganic component is 65-95% by weight.
  • the content of the organic component may be 10%, 15%, 20% or 35% by weight
  • the content of the inorganic component may be 65%, 70%, 75% or 80% by weight. weight%.
  • the content of poorly soluble salts in the inorganic component is ⁇ 5% by weight, and the inorganic component contains ⁇ 70% by weight of NaCl and Na 2 CO 3 , such as 70-90% by weight of NaCl and Na 2 CO 3 .
  • the inorganic component contains 75%, 80%, 85% or 90% by weight of NaCl and Na 2 CO 3 .
  • the waste denitration catalyst is derived from waste vanadium-titanium series denitration catalyst.
  • the waste denitration catalyst contains 40-50% by weight of Ti element, 2-6% by weight of Si element, 0.1-1.2% by weight of V element and 2-6% by weight of W element.
  • the pretreatment steps of the waste denitrification catalyst include rinsing, soaking, crystallization and crushing, and the pretreatment steps of the industrial waste salt include rinsing, crystallization and crushing.
  • the pretreatment steps of the spent denitrification catalyst include:
  • the acidic solution in step B is selected from at least one of hydrochloric acid solution, sulfuric acid solution, nitric acid solution and oxalic acid solution.
  • the particle size of the industrial waste salt powder obtained by pretreatment is ⁇ 100 mesh
  • the particle size of the waste denitrification catalyst powder is ⁇ 100 mesh
  • the calcination conditions include: calcination temperature is 600-1000°C, and calcination time is 1-6 hours.
  • the calcination temperature can be 600°C, 700°C, 800°C, 900°C or 1000°C
  • the calcination time can be 1h, 2h, 3h, 4h, 5h or 6h.
  • the leaching conditions include: leaching temperature is 60-90°C, and leaching time is 0.5-3h.
  • the leaching temperature can be 60°C, 70°C, 80°C or 90°C
  • the leaching time can be 0.5h, 1h, 1.5h, 2h, 2.5h or 3h.
  • the alkaline solution is at least one of sodium hydroxide solution and ammonia solution, and the molar concentration of hydroxide ions in the solution is 0.001-3 mol/L.
  • the molar concentration of hydroxide ions in the alkaline solution is 1 mol/L, 1.5 mol/L, 2 mol/L, 2.5 mol/L or 3 mol/L.
  • the acidic solution is selected from at least one of hydrochloric acid solution, sulfuric acid solution and nitric acid solution, and the molar concentration of hydrogen ions in the solution is 0.02-2mol/L.
  • the molar concentration of hydrogen ions in the acidic solution can be 0.02 mol/L, 0.05 mol/L, 0.5 mol/L, 1 mol/L, 1.5 mol/L or 2 mol/L.
  • step (5) at least one of hydrochloric acid solution, sulfuric acid solution, nitric acid solution and oxalic acid solution is used to adjust the pH value of filtrate a to 8.5-10.5.
  • the magnesium salt in step (5) is MgCl 2 .
  • the calcium salt in step (6) is CaCl 2 .
  • the pH value of the filtrate b is adjusted to 9-10.
  • the pH value of filtrate b can be adjusted to 9, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9 or 10.
  • the purity of the finally recovered inorganic salt is greater than 99.99%, and at the same time, the average purity of the titanium dioxide product recovered through the waste denitrification catalyst is greater than 92%, which has The recovery rate of valuable metal W is greater than 92%, and the recovery rate of valuable metal V is greater than 92%.
  • the resource utilization method of industrial waste salt and waste denitrification catalyst according to the present invention has the advantages of high product recovery efficiency, energy saving and simple recovery process, and has great industrial application prospects and good economic benefits.
  • the waste denitrification catalyst used in Examples 1-3 is derived from the waste vanadium-titanium series denitrification catalyst.
  • the contents of Ti element, W element, V element and Si element in the waste denitrification catalyst are as shown in Table 1:
  • the industrial waste salt comes from waste materials produced by leather production lines, and the waste denitration catalyst comes from waste denitration catalysts from coal-fired power plants.
  • step (3) Leach the calcined product obtained in step (2) into a NaOH solution with a molar concentration of 0.05 mol/L.
  • the amount of NaOH solution is 500 mL.
  • the leaching temperature is 90°C and the leaching time is 1 hour. Filter to obtain filter residue a and filtrate a. .
  • the industrial waste salt is derived from waste materials obtained through preliminary treatment of carbonate production and coal chemical wastewater
  • the waste denitrification catalyst is derived from waste denitrification catalysts from coal-fired power plants.
  • the industrial waste salt comes from the chlor-alkali industry and the mixed waste obtained by preliminary treatment of industrial wastewater, and the waste denitrification catalyst comes from the waste denitrification catalyst from coal-fired power plants.
  • step (3) Leach the calcined product obtained in step (2) into a NaOH solution with a molar concentration of 0.5 mol/L.
  • the dosage of the NaOH solution is 1000 mL.
  • the leaching temperature is 80°C.
  • the leaching time is 1 hour. Filter to obtain the filter residue a and the filtrate a. .
  • step (2) The method was carried out according to the method described in Example 1, except that in step (2), the amount of industrial waste salt was 0.5g.
  • step (2) The method was implemented according to the method described in Example 1, except that in step (2), the amount of industrial waste salt was 1 g.
  • step (2) industrial pure NaCl with a NaCl purity of 99% is used instead of industrial waste salt.
  • the addition amount of industrial pure NaCl is 10g.
  • Waste denitrification The amount of catalyst added is 30g.
  • test data is shown in Table 2.
  • the method of the present invention can be used to simultaneously recycle industrial waste salt and waste denitrification catalysts, and the method of the present invention has high product recovery efficiency, energy saving and recycling process flow. It has the advantages of simplicity, great industrial application prospects and good economic benefits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明涉及废弃物回收领域,公开了一种工业废盐和废弃脱硝催化剂资源化利用的方法。该方法包括:(1)将工业废盐与废弃脱硝催化剂预处理得到工业废盐粉体和废弃脱硝催化剂粉体;(2)将工业废盐粉体和废弃脱硝催化剂粉体混合后煅烧;(3)将煅烧产物在水或碱性溶液中浸出,过滤得到滤渣a与滤液a;(4)将滤渣a与酸性溶液反应,然后过滤;(5)将滤液a的pH值调节至8.5-10.5,加入镁盐,过滤得到滤液b;(6)将滤液b的pH值调节至8.5-10.5,加入钙盐,过滤得到滤液c和滤渣;(7)将滤液c浓缩,得到无机盐。该方法可协同处理工业废盐和废弃脱硝催化剂,具有产品回收效率高,节约能源等优点,有很大的工业应用前景。

Description

工业废盐和废弃脱硝催化剂资源化利用的方法
相关申请的交叉引用
本申请要求2022年06月20日提交的中国专利申请202210698595.7的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及废弃物回收领域,具体涉及一种工业废盐和废弃脱硝催化剂资源化利用的方法。
背景技术
目前,氮氧化物是造成光化学烟雾、雾霾和酸雨的重要前驱体,因此控制氮氧化物的排放量尤为重要。火力发电厂是氮氧化物排放的主要来源之一,目前采用的干法烟气脱硝的方法主要是选择性催化还原法(SCR)。SCR脱硝技术广泛应用于我国以燃煤为主的工业锅炉中氮氧化物的减排,钒钛系脱硝催化剂作为SCR系统的重要部分,对氮氧化物的减排起着关键作用。SCR催化剂使用三年后必须更换,钒钛系脱硝催化剂的大量使用,必然带来后续催化剂失活的处置问题,且废弃脱硝催化剂中重金属含量较多对环境有着较大的潜在危害。同时,废弃脱硝催化剂中含有大量的高附加值有价金属钛、钨和钒等,是一种提取上述有价金属的宝贵资源,具有很高的经济价值。
此外,我国各种化工行业都有一系列的工艺过程,很多工艺流程 中都伴随着大量废渣废盐的产生。将这些废盐进行高纯度资源化利用十分困难,同时处理这些工业废盐还面临着严格的环境要求和高昂的处理成本。并且很多化工行业产生的废盐中含有一定量的重金属和有机物等,直接排放对环境存在较大的危害。但是大部分工业废盐中无机盐和其他杂质的含量较高,各种无机盐也是重要的化工原料,有着很大的回收价值。
因为废弃脱硝催化剂和工业废盐这两种废弃物均有较大的产量,它们的回收再利用问题引起了相关研究领域的高度重视。因此,实现废弃脱硝催化剂和工业废盐的资源化利用,在固废资源化和循环经济等方面具有重要意义。
目前现有技术中对脱硝催化剂回收利用方面都采用较纯的化学药剂,回收成本较高。同时不少工业废盐中具有较高的盐含量,部分盐是化学冶金重要的添加剂,如果能够将两者协同利用同时回收废弃脱硝催化剂中的贵重金属以及工业废盐中的高纯度无机盐,就可以得到较高金属分离效率和产品,同时降低回收成本。此外部分工业废盐中有机物也是冶金反应的热源,可以为金属提取提供能量,节约能源。
发明内容
本发明的目的是为了克服现阶段中废弃脱硝催化剂中有价金属和工业废盐中无机盐难回收以及回收成本高等问题,提供一种工业废盐和废弃脱硝催化剂资源化利用的方法。该方法可以让两种工业废料进行协同资源化回收处理,获得高纯度的钛白粉和钒钨复合产品以及 高纯度无机盐。
为了实现上述目的,本发明提供一种工业废盐和废弃脱硝催化剂资源化利用的方法,所述方法包括以下步骤:
(1)将工业废盐与废弃脱硝催化剂分别进行预处理得到工业废盐粉体和废弃脱硝催化剂粉体;
(2)将步骤(1)中得到的工业废盐粉体和废弃脱硝催化剂粉体混合后进行至少一次煅烧,得到煅烧产物;
(3)将步骤(2)得到的煅烧产物在水或者碱性溶液中进行浸出,然后过滤得到滤渣a与滤液a;
(4)将步骤(3)得到的滤渣a进行洗涤,然后与酸性溶液混合进行反应,接着进行过滤;
(5)将滤液a的pH值调节至8.5-10.5,然后加入镁盐进行反应,过滤得到滤液b;
(6)将滤液b的pH值调节至8.5-10.5,然后加入钙盐进行反应,过滤得到滤液c和滤渣;
(7)将步骤(6)中得到的滤液c进行浓缩,得到无机盐。
优选地,在步骤(1)中,所述工业废盐与废弃脱硝催化剂的重量比≥0.05,优选为1:2-8。
优选地,所述工业废盐来源于化工行业水处理过程中得到的废料。
优选地,所述工业废盐来源于煤化工,皮革制造或石油化工中水处理过程得到的废料。
优选地,所述工业废盐中Ca元素的含量≤3重量%。
优选地,所述工业废盐含有有机组分和无机组分,所述有机组分的含量为5-35重量%,所述无机组分的含量为65-95重量%。
优选地,所述无机组分中难溶性盐的含量≤5重量%,无机组分中含有≥70重量%的NaCl和Na 2CO 3
优选地,所述废弃脱硝催化剂来源于废弃钒钛系脱硝催化剂。
优选地,在步骤(1)中,所述废弃脱硝催化剂的预处理步骤包括漂洗、浸泡、结晶和破碎,所述工业废盐的预处理步骤包括漂洗、结晶和破碎。
优选地,预处理得到的所述工业废盐粉体的粒径≤100目,所述脱硝催化剂粉体的粒径≤100目。
优选地,在步骤(2)中,所述煅烧的条件包括:煅烧温度为600-1000℃,煅烧时间为1-6h。
优选地,在步骤(3)中,所述浸出的条件包括:浸出温度为60-90℃,浸出时间为0.5-3h。
优选地,所述碱性溶液为氢氧化钠溶液和氨水溶液中至少一种,溶液中氢氧根离子的摩尔浓度为0.001-3mol/L。
优选地,在步骤(4)中,所述反应条件包括:反应温度为70-90℃,反应时间1-3h。
优选地,所述酸性溶液选自盐酸溶液、硫酸溶液和硝酸溶液中至少一种,溶液中氢离子的摩尔浓度为0.02-2mol/L。
优选地,在步骤(5)中,选用盐酸溶液、硫酸溶液、硝酸溶液和草酸溶液中至少一种将滤液a的pH值调节至8.5-10.5。
优选地,将所述滤液a的pH值调节至9-10。
优选地,在步骤(6)中,选用NaOH溶液、KOH溶液和氨水溶液中至少一种将滤液b的pH值调节至8.5-10.5。
优选地,将所述滤液b的pH值调节至9-10。
相比于现有资源化利用废弃脱硝催化剂和工业废盐的方法,本发明具有以下优点:
1、本发明公开了可以将废弃脱硝催化剂与工业废盐同时进行资源化回收利用的方法,既解决了废弃脱硝催化剂中有价金属回收问题,又开拓了工业废盐回收处理的新途径,充分利用工业废盐中的有用组分与废弃脱硝催化剂中有价金属进行反应,最终达到较高的回收效率。
2、本发明在工业废盐资源化利用过程中,工业废盐中含有的有机物部分在工业废盐与废弃脱硝催化剂混合煅烧过程中促进了钨和钒与工业废盐中无机盐的反应,并且在燃烧过程中可以提供能量,节约能源。此外还可以使得煅烧后得到的煅烧产物疏松多孔,便于煅烧产物粉碎和后续金属浸出等过程。
3、本发明中工业废盐和废弃脱硝催化剂在经过协同资源化处理后,可溶性无机盐可以通过结晶等方式得到高纯度的无机盐产品,工业废盐中无机盐的回收率大于70%,其回收得到的无机盐纯度大于99.99%,同时废弃脱硝催化剂中的有价金属也被回收,回收得到的钛白粉产品纯度大于92%,有价金属W的回收率大于92%,有价金属V的回收率大于92%。
附图说明
图1是本发明的工业废盐和废弃脱硝催化剂资源化利用的方法的流程图。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明提供一种工业废盐和废弃脱硝催化剂资源化利用的方法,所述方法的工艺流程如图1所示,本发明所述方法包括以下步骤:
(1)将工业废盐与废弃脱硝催化剂分别进行预处理得到工业废盐粉体和废弃脱硝催化剂粉体;
(2)将步骤(1)中得到的工业废盐粉体和废弃脱硝催化剂粉体混合后进行至少一次煅烧,得到煅烧产物;
(3)将步骤(2)得到的煅烧产物在水或者碱性溶液中进行浸出,然后过滤得到滤渣a与滤液a;
(4)将步骤(3)得到的滤渣a进行洗涤,然后与酸性溶液混合 进行反应,接着进行过滤;
(5)将滤液a的pH值调节至8.5-10.5,然后加入镁盐进行反应,过滤得到滤液b;
(6)将滤液b的pH值调节至8.5-10.5,然后加入钙盐进行反应,过滤得到滤液c和滤渣;
(7)将步骤(6)中得到的滤液c进行浓缩,得到无机盐。
在本发明所述的方法中,废弃脱硝催化剂中有价金属Ti、W、V以及杂质元素Si在步骤(2)的煅烧过程中与工业废盐中的NaCl或Na 2CO 3反应得到相应的钛酸盐、钨酸盐和钒酸盐。步骤(3)中将步骤(2)得到的煅烧产物在水或碱性溶液中进行浸出,可以将煅烧产物中的钨酸盐和钒酸盐溶解于水或碱性溶液中,因此步骤(3)中过滤得到的滤渣a的成分包括钛酸盐,滤液a的成分包括钨酸盐、钒酸盐、硅酸盐和NaCl。
在本发明所述的方法中,所述步骤(4)中还包括将过滤得到的滤渣在600-800℃的条件下进行充分煅烧,煅烧得到的产物再用酸性溶液进行冲洗,干燥后即可得到钛白粉产品,钛白粉产品的纯度为92%-99%。
在本发明步骤(4)中主要发生的化学反应式如下:
TiO 3 2-+2H +=H 2TiO 3
在本发明所述的方法中,步骤(5)中加入镁盐后,可以将滤液中的硅酸根离子变成沉淀分离去除,过滤得到滤液b的成分包括钨酸盐、钒酸盐和大量的NaCl。
在本发明步骤(5)中主要发生的化学反应式如下:
2H ++SiO 4 2-=H 2SiO 4↓;
Mg 2++SiO 4 2-=MgSiO 4↓。
在本发明所述的方法中,步骤(6)中加入钙盐后,可以将滤液b中的钨酸根以及钒酸根变成沉淀进行分离得到产品钒钨复合物。提取完滤液b中的有价金属后,过滤得到的滤液c中含有大量的NaCl。
在本发明步骤(6)中主要发生的化学反应式如下:
Ca 2++WO 4 2-=CaWO 4↓;
Ca 2++VO 3 2-=CaVO 3↓。
优选地,在步骤(1)中,所述工业废盐与废弃脱硝催化剂的重量比≥0.05,优选为1:2-8。具体的,所述工业废盐与废弃脱硝催化剂的重量比可以为1:2、1:2.5、1:3、1:4、1:5、1:6、1:7或1:8。
优选地,所述工业废盐来源于化工行业水处理过程中得到的废料。
优选地,所述工业废盐来源于煤化工,皮革制造或石油化工中水处理过程得到的废料。
优选地,所述工业废盐中Ca元素的含量≤3重量%。
优选地,所述工业废盐含有有机组分和无机组分,所述有机组分的含量为5-35重量%,所述无机组分的含量为65-95重量%。具体的,所述有机组分的含量可以为10重量%、15重量%、20重量%或35重量%;所述无机组分的含量可以为65重量%、70重量%、75重量%或80重量%。
优选地,所述无机组分中难溶性盐的含量≤5重量%,无机组分 中含有≥70重量%的NaCl和Na 2CO 3,如含有70-90重量%的NaCl和Na 2CO 3
在优选的实施方式中,所述无机组分中含有75重量%、80重量%、85重量%或90重量%的NaCl和Na 2CO 3
优选地,所述废弃脱硝催化剂来源于废弃钒钛系脱硝催化剂。
在优选的实施方式中,所述废弃脱硝催化剂中含有40-50重量%的Ti元素、2-6重量%的Si元素、0.1-1.2重量%的V元素和2-6重量%的W元素。
优选地,在步骤(1)中,所述废弃脱硝催化剂的预处理步骤包括漂洗、浸泡、结晶和破碎,所述工业废盐的预处理步骤包括漂洗、结晶和破碎。
在优选的实施方式中,所述废弃脱硝催化剂的预处理步骤包括:
A、将废弃脱硝催化剂采用高压水漂洗;
B、将高压水漂洗后的废弃脱硝催化剂浸泡在水或酸性溶液中半小时;
C、将步骤B中过滤得到的滤渣进行干燥结晶,然后再进行破碎后过100目筛,得到废弃脱硝催化剂粉体。
优选的,步骤B中所述酸性溶液选自盐酸溶液、硫酸溶液、硝酸溶液和草酸溶液中至少一种。
在优选的实施方式中,所述工业废盐的预处理步骤包括:对工业废盐依次采用有机溶剂和去离子水进行漂洗,接着进行干燥结晶,然后破碎过100目筛得到工业废盐粉体。
优选地,预处理得到的工业废盐粉体的粒径≤100目,废弃脱硝催化剂粉体的粒径≤100目。
优选地,在步骤(2)中,所述煅烧的条件包括:煅烧温度为600-1000℃,煅烧时间为1-6h。具体的,所述煅烧温度可以为600℃、700℃、800℃、900℃或1000℃,所述煅烧时间可以为1h、2h、3h、4h、5h或6h。
在优选的实施方式中,在步骤(2)中,为了使废弃脱硝催化剂中有价金属全部转变为金属盐,利于后续有价金属的浸出,可以进行多次煅烧,优选为2-3次。每次煅烧条件包括:煅烧温度为600-1000℃,煅烧时间为1-6h。
进一步的,每次煅烧后对得到的煅烧产物进行粉碎处理。
优选地,在步骤(3)中,所述浸出的条件包括:浸出温度为60-90℃,浸出时间为0.5-3h。具体的,所述浸出温度可以为60℃、70℃、80℃或90℃,所述浸出时间可以为0.5h、1h、1.5h、2h、2.5h或3h。
优选地,在步骤(3)中,所述碱性溶液为氢氧化钠溶液和氨水溶液中至少一种,溶液中氢氧根离子的摩尔浓度为0.001-3mol/L。具体的,所述碱性溶液中氢氧根离子的摩尔浓度为1mol/L、1.5mol/L、2mol/L、2.5mol/L或3mol/L。
优选地,在步骤(4)中,所述反应的条件包括:反应温度为70-90℃,反应时间为1-3h。具体的,所述反应温度可以为70℃、80℃或90℃,反应时间可以为1h、2h或3h。
优选地,所述酸性溶液选自盐酸溶液、硫酸溶液和硝酸溶液中至 少一种,溶液中氢离子的摩尔浓度为0.02-2mol/L。具体的,所述酸性溶液中氢离子的摩尔浓度可以为0.02mol/L、0.05mol/L、0.5mol/L、1mol/L、1.5mol/L或2mol/L。
优选地,在步骤(5)中,选用盐酸溶液、硫酸溶液、硝酸溶液和草酸溶液中至少一种将滤液a的pH值调节至8.5-10.5。
在优选的实施方式中,步骤(5)中所述镁盐为MgCl 2
优选地,将所述滤液a的pH值调节至9-10。具体的,可以将滤液a的pH值调节至9、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9或10。
优选地,在步骤(6)中,选用NaOH溶液、KOH溶液和氨水溶液中至少一种将滤液b的pH值调节至8.5-10.5。
在优选的实施方式中,步骤(6)中所述钙盐为CaCl 2
优选地,将所述滤液b的pH值调节至9-10。具体的,可以将滤液b的pH值调节至9、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9或10。
在优选的实施方式中,步骤(7)中所述浓缩方式可以采用加热浓缩对溶液中无机盐进行结晶,最后得到的无机盐产品纯度大于99.99%。
本发明的方法采用将废弃脱硝催化剂与工业废盐进行协同资源化处理,回收废弃脱硝催化剂中的有价金属以及工业废盐中的无机盐。工业废盐中的有机物部分在提取废弃脱硝催化剂中有价金属的过程中可以在废弃脱硝催化剂与工业废盐混合煅烧时供能,此外还可以使 得工业废盐与废弃脱硝催化剂混合煅烧得到的煅烧产物疏松多孔,便于后续煅烧产物的粉碎和废弃脱硝催化剂中有价金属的浸出。而在现有的工业废盐资源化回收利用的方法中,工业废盐中的有机物大部分都在资源化处理的第一阶段通过煅烧方法去除,并没有将这一部分的能量加以利用,并且现阶段工业废盐资源化回收利用的方法大多采用多级渗透等方式回收,过程繁琐且成本较高。本发明所述的方法不仅仅为资源化回收工业废盐开辟了一条新途径,也成功的将工业废盐与废弃脱硝催化剂同时进行资源化回收,达到了“以废治废”的目的。另外,本发明中通过调控工业废盐与废弃脱硝催化剂两者的投料量,使最后回收得到的无机盐纯度大于99.99%,同时通过废弃脱硝催化剂回收得到的钛白粉产品平均纯度大于92%,有价金属W的回收率大于92%,有价金属V的回收率大于92%。本发明所述的工业废盐与废弃脱硝催化剂资源化利用的方法具有产品回收效率高,节约能源以及回收工艺流程简便等优点,具有很大的工业应用前景以及良好的经济效益。
以下将通过实施例对本发明进行详细描述,但本发明的保护范围并不局限于此。
实施例1-3中所使用的废弃脱硝催化剂来源于废弃钒钛系脱硝催化剂,废弃脱硝催化剂中Ti元素、W元素、V元素以及Si元素的含量如表1所示:
表1
编号 Ti(wt%) W(wt%) V(wt%) Si(wt%)
实施例1 46.33 3.44 0.17 3.73
实施例2 45.22 3.71 0.53 4.21
实施例3 43.97 3.47 0.46 4.45
实施例1
所述工业废盐来源于皮革产线所产生的废料,所述废弃脱硝催化剂来源于燃煤电厂废弃脱硝催化剂。
具体包括以下步骤:
(1)将工业废盐(有机物含量为19.43%,氯化钠含量为75.33%)用乙醇和水进行漂洗,干燥结晶后破磨,然后将破碎后的工业废盐过100目筛得到工业废盐粉体。将废弃脱硝催化剂先采用高压水漂洗,再将漂洗完的废弃脱硝催化剂在质量浓度为2%的HCl溶液中浸泡半小时,干燥结晶后破碎,将破碎后的废弃催化剂过100目筛得到废弃催化剂粉体。
(2)按配比称取原料,称取工业废盐10g,废弃脱硝催化剂30g(工业废盐与废弃脱硝催化剂的重量比为1:3),混合均匀后放入马弗炉中煅烧。煅烧温度为1000℃,煅烧时间为3h。第一次煅烧结束后,将煅烧后的煅烧产物取出,充分粉碎,粉碎之后再次放入马弗炉中煅烧,煅烧温度为1000℃,煅烧时间为5h。
(3)将步骤(2)得到的煅烧产物在摩尔浓度为0.05mol/L的NaOH溶液中浸出,NaOH溶液用量为500mL,其中浸出温度是90℃,浸出时间1h,过滤得到滤渣a和滤液a。
(4)将滤渣a洗涤干燥后,放入摩尔浓度为0.02mol/L的HCl溶液充分混合进行反应,HCl溶液的用量为200mL,反应温度为80℃,反应时间为2h,反应后过滤得到滤渣,滤渣主要成分为H 2TiO 3
(5)加入硫酸溶液将滤液a的pH值调节至9.5,然后加入0.5g的MgCl 2,静置6h。过滤出沉淀,得到滤液b。
(6)加入NaOH溶液将滤液b的pH值调节至10,然后加入0.6g的CaCl 2,在70℃反应30min后过滤得到滤液c和滤渣。
(7)将步骤(6)中得到的滤液c加热到80℃进行浓缩结晶,浓缩结晶至液体体积为原溶液体积的1/15。
实施例2
所述工业废盐来源于碳酸盐生产和煤化工废水经初步处理得到的废料,所述废弃脱硝催化剂来源于燃煤电厂废弃脱硝催化剂。
具体包括以下步骤:
(1)将工业废盐(NaCl和Na 2CO 3的含量为76.44%,有机物含量为18.3%)用乙醇和水进行漂洗,干燥结晶后破磨,然后将破碎后的工业废盐过100目筛得到工业废盐粉体。将废弃脱硝催化剂先采用高压水漂洗,再将漂洗完的废弃脱硝催化剂在质量浓度为2%的HCl溶液中浸泡半小时,干燥过滤结晶后破碎,然后将破碎后的废弃催化剂过100目筛得到废弃催化剂粉体。
(2)按配比称取原料,称取工业废盐10g,废弃脱硝催化剂25g(工业废盐与废弃脱硝催化剂的重量比为1:2.5),混合均匀后放入 马弗炉中煅烧,煅烧温度为900℃,煅烧时间为6h。
(3)将步骤(2)得到的煅烧产物在摩尔浓度为0.05mol/L的NaOH溶液中浸出,NaOH溶液的用量是500mL,浸出温度是80℃,浸出时间1h,过滤得到滤渣a和滤液a。
(4)将滤渣a洗涤干燥后,与摩尔浓度为0.02mol/L的HCl溶液充分混合进行反应,HCl溶液的用量为200mL,反应温度为70℃,反应时间为3h,反应后过滤得到滤渣,滤渣主要成分为H 2TiO 3
(5)加入盐酸溶液将滤液a的pH值调节至9.5,然后加入0.5g的MgCl 2,静置6h。过滤出沉淀,得到滤液b。
(6)加入KOH溶液将滤液b的pH值调节至10,然后加入0.75g的CaCl 2,在70℃下反应30min后过滤得到滤液c和滤渣。
(7)将步骤(6)中得到的滤液c加热到80℃进行浓缩结晶,浓缩结晶至液体体积为原溶液体积的1/10。
实施例3
所述工业废盐来源于氯碱行业和工业废水经初步处理得到的混合废料,所述废弃脱硝催化剂来源于燃煤电厂废弃脱硝催化剂。
具体包括以下步骤:
(1)将工业废盐(NaCl含量为72.26%,有机物含量为16.39%)用乙醇和水进行漂洗,干燥结晶后破磨,然后将破碎后的工业废盐过100目筛得到工业废盐粉体。将废弃脱硝催化剂先采用高压水漂洗,再将漂洗完的废弃脱硝催化剂在质量浓度为2%的HCl溶液中浸泡半 小时,干燥过滤结晶后破碎,然后将破碎后的废弃催化剂过100目筛得到废弃催化剂粉体。
(2)按配比称取原料,称取工业废盐10g,废弃脱硝催化剂70g(工业废盐与废弃脱硝催化剂的重量比为1:7),混合均匀后放入马弗炉中煅烧,煅烧温度为600℃,煅烧时间2h。第一次煅烧结束后,将煅烧后的煅烧产物取出,充分粉碎,粉碎之后再次放入马弗炉中煅烧,煅烧温度为1000℃,煅烧时间为6h。
(3)将步骤(2)得到的煅烧产物在摩尔浓度为0.5mol/L的NaOH溶液中浸出,NaOH溶液的用量是1000mL,浸出温度是80℃,浸出时间1h,过滤得到滤渣a和滤液a。
(4)将滤渣a洗涤干燥后,与摩尔浓度为0.02mol/L的HCl溶液充分混合进行反应,HCl溶液的用量为400mL,反应温度为70℃,反应时间为3h,反应后洗涤过滤得到滤渣,滤渣主要成分为H 2TiO 3
(5)加入盐酸溶液将滤液a的pH值调节至9.5,然后加入1.1g的MgCl 2,静置6h。过滤出沉淀,得到滤液b。
(6)加入KOH溶液将滤液b的pH值调节至10,然后加入1.5g的CaCl 2,在70℃下反应30min后过滤得到滤液c和滤渣。
(7)将步骤(6)中得到的滤液c加热到80℃进行浓缩结晶,浓缩结晶至液体体积为原溶液体积的1/16。
对比例1
按照实施例1所述的方法进行实施,与之不同的是,在步骤(2) 中,工业废盐的用量为0.5g。
对比例2
按照实施例1所述的方法进行实施,与之不同的是,在步骤(2)中,工业废盐的用量为1g。
对比例3
按照实施例1所述的方法进行实施,与之不同的是,在步骤(2)中,使用NaCl纯度为99%的工业纯NaCl代替工业废盐,工业纯NaCl的加入量为10g,废弃脱硝催化剂的加入量为30g。
测试例
(1)将实施例1-3以及对比例1-3的步骤(4)中最后得到的滤渣干燥后放入马弗炉中煅烧,煅烧温度800℃,煅烧时间2h,对得到的煅烧产物中TiO 2的含量进行检测。
(2)将实施例1-3以及对比例1-3的步骤(6)中得到的滤渣进行漂洗后烘干,收集烘干后得到的产品,对产品中W跟V的含量进行测定,并根据废弃脱硝催化剂的投料量计算W和V的回收率。
(3)将实施例1-3以及对比例1-3的步骤(7)中得到的无机盐烘干粉碎,根据工业废盐中氯化钠的含量计算无机盐的回收率,并测试无机盐纯度。
测试数据如表2所示。
表2
Figure PCTCN2023070608-appb-000001
通过测试例的结果可以看出,采用本发明的方法可以同时对工业废盐和废弃脱硝催化剂进行资源化回收利用,且本发明所述的的方法具有产品回收效率高,节约能源以及回收工艺流程简便等优点,具有很大的工业应用前景以及良好的经济效益。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (12)

  1. 一种工业废盐和废弃脱硝催化剂资源化利用的方法,其特征在于,所述方法包括以下步骤:
    (1)将工业废盐与废弃脱硝催化剂分别进行预处理得到工业废盐粉体和废弃脱硝催化剂粉体;
    (2)将步骤(1)中得到的工业废盐粉体和废弃脱硝催化剂粉体混合后进行至少一次煅烧,得到煅烧产物;
    (3)将步骤(2)得到的煅烧产物在水或者碱性溶液中进行浸出,然后过滤得到滤渣a与滤液a;
    (4)将步骤(3)得到的滤渣a进行洗涤,然后与酸性溶液混合进行反应,接着进行过滤;
    (5)将滤液a的pH值调节至8.5-10.5,然后加入镁盐进行反应,过滤得到滤液b;
    (6)将滤液b的pH值调节至8.5-10.5,然后加入钙盐进行反应,过滤得到滤液c和滤渣;
    (7)将步骤(6)中得到的滤液c进行浓缩,得到无机盐;
    其中,所述工业废盐与废弃脱硝催化剂的重量比≥0.05;
    所述工业废盐含有有机组分和无机组分,所述有机组分的含量为5-35重量%,所述无机组分的含量为65-95重量%;
    所述无机组分中难溶性盐的含量≤5重量%,无机组分中含有≥70重量%的NaCl和Na 2CO 3
    所述废弃脱硝催化剂来源于废弃钒钛系脱硝催化剂,所述废弃脱 硝催化剂中含有40-50重量%的Ti元素、2-6重量%的Si元素、0.1-1.2重量%的V元素和2-6重量%的W元素。
  2. 根据权利要求1所述的工业废盐和废弃脱硝催化剂资源化利用的方法,其特征在于,所述工业废盐来源于化工行业水处理过程中得到的废料。
  3. 根据权利要求1所述的工业废盐和废弃脱硝催化剂资源化利用的方法,其特征在于,所述工业废盐中Ca元素的含量≤3重量%。
  4. 根据权利要求1或2所述的工业废盐和废弃脱硝催化剂资源化利用的方法,其特征在于,在步骤(1)中,所述废弃脱硝催化剂的预处理步骤包括漂洗、浸泡、结晶和破碎,所述工业废盐的预处理步骤包括漂洗、结晶和破碎。
  5. 根据权利要求1所述的工业废盐和废弃脱硝催化剂资源化利用的方法,其特征在于,预处理得到的所述工业废盐粉体的粒径≤100目,所述废弃脱硝催化剂粉体的粒径≤100目。
  6. 根据权利要求1所述的工业废盐和废弃脱硝催化剂资源化利用的方法,其特征在于,在步骤(2)中,所述煅烧的条件包括:煅烧温度为600-1000℃,煅烧时间为1-6h。
  7. 根据权利要求1所述的工业废盐和废弃脱硝催化剂资源化利用的方法,其特征在于,在步骤(3)中,所述浸出的条件包括:浸出温度为60-90℃,浸出时间为0.5-3h。
  8. 根据权利要求1所述的工业废盐和废弃脱硝催化剂资源化利用的方法,其特征在于,所述碱性溶液为氢氧化钠溶液和氨水溶液中至少一种,溶液中氢氧根离子的摩尔浓度为0.001-3mol/L。
  9. 根据权利要求1所述的工业废盐和废弃脱硝催化剂资源化利用的方法,其特征在于,在步骤(4)中,所述反应条件包括:反应温度为70-90℃,反应时间1-3h。
  10. 根据权利要求1所述的工业废盐和废弃脱硝催化剂资源化利用的方法,其特征在于,所述酸性溶液选自盐酸溶液、硫酸溶液和硝酸溶液中至少一种,溶液中氢离子的摩尔浓度为0.02-2mol/L。
  11. 根据权利要求1所述的工业废盐和废弃脱硝催化剂资源化利用的方法,其特征在于,在步骤(5)中,选用盐酸溶液、硫酸溶液、硝酸溶液和草酸溶液中至少一种将滤液a的pH值调节至8.5-10.5。
  12. 根据权利要求1所述的工业废盐和废弃脱硝催化剂资源化利 用的方法,其特征在于,在步骤(6)中,选用NaOH溶液、KOH溶液和氨水溶液中至少一种将滤液b的pH值调节至8.5-10.5。
PCT/CN2023/070608 2022-06-20 2023-01-05 工业废盐和废弃脱硝催化剂资源化利用的方法 WO2023246080A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210698595.7 2022-06-20
CN202210698595.7A CN114774701B (zh) 2022-06-20 2022-06-20 工业废盐和废弃脱硝催化剂资源化利用的方法

Publications (1)

Publication Number Publication Date
WO2023246080A1 true WO2023246080A1 (zh) 2023-12-28

Family

ID=82420494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070608 WO2023246080A1 (zh) 2022-06-20 2023-01-05 工业废盐和废弃脱硝催化剂资源化利用的方法

Country Status (2)

Country Link
CN (1) CN114774701B (zh)
WO (1) WO2023246080A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774701B (zh) * 2022-06-20 2022-09-06 国能龙源环保有限公司 工业废盐和废弃脱硝催化剂资源化利用的方法
CN115876751B (zh) * 2023-02-06 2023-07-21 国能龙源环保有限公司 一种无氟消解测定废弃脱硝催化剂中钛铝钙镁铁元素含量的方法
CN115818725B (zh) * 2023-02-14 2023-05-05 国能龙源环保有限公司 一种利用废弃脱硝催化剂制备三氧化二铁的方法
CN115924967B (zh) * 2023-03-08 2023-05-16 国能龙源环保有限公司 利用钛渣制备钛白粉的方法及其钛白粉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936039A (zh) * 2012-11-15 2013-02-20 攀枝花市晟天钛业有限公司 含钨、钒、钛的蜂窝式scr废催化剂的回收工艺
CN104071832A (zh) * 2014-06-26 2014-10-01 山东鲁北企业集团总公司 从废弃scr脱硝催化剂中提取金属氧化物的方法
CN107512734A (zh) * 2017-08-01 2017-12-26 洛阳理工学院 一种从废弃scr脱硝催化剂中回收钨钼钒和二氧化钛的方法
CN110846717A (zh) * 2019-11-29 2020-02-28 南京科技职业学院 利用含NaCl废盐制备钛酸钠晶须的方法
US20210347649A1 (en) * 2019-11-15 2021-11-11 Go Higher Environment Group Co., Ltd. Industrial waste salt resourceful treatment method and device
CN114774701A (zh) * 2022-06-20 2022-07-22 国能龙源环保有限公司 工业废盐和废弃脱硝催化剂资源化利用的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831075B (zh) * 2015-05-22 2017-03-08 中科过程(北京)科技有限公司 一种废钒钼系scr催化剂的钒、钼分离和提纯方法
CN104805298B (zh) * 2015-05-22 2018-01-16 中科过程(北京)科技有限公司 一种废scr脱硝催化剂的回收处理方法
CN113215419B (zh) * 2021-05-11 2022-11-11 江西理工大学 一种从废scr脱硝催化剂提取有价元素的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936039A (zh) * 2012-11-15 2013-02-20 攀枝花市晟天钛业有限公司 含钨、钒、钛的蜂窝式scr废催化剂的回收工艺
CN104071832A (zh) * 2014-06-26 2014-10-01 山东鲁北企业集团总公司 从废弃scr脱硝催化剂中提取金属氧化物的方法
CN107512734A (zh) * 2017-08-01 2017-12-26 洛阳理工学院 一种从废弃scr脱硝催化剂中回收钨钼钒和二氧化钛的方法
US20210347649A1 (en) * 2019-11-15 2021-11-11 Go Higher Environment Group Co., Ltd. Industrial waste salt resourceful treatment method and device
CN110846717A (zh) * 2019-11-29 2020-02-28 南京科技职业学院 利用含NaCl废盐制备钛酸钠晶须的方法
CN114774701A (zh) * 2022-06-20 2022-07-22 国能龙源环保有限公司 工业废盐和废弃脱硝催化剂资源化利用的方法

Also Published As

Publication number Publication date
CN114774701A (zh) 2022-07-22
CN114774701B (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2023246080A1 (zh) 工业废盐和废弃脱硝催化剂资源化利用的方法
CN109750156B (zh) 一种从废弃scr脱硝催化剂中回收钒、钨/钼和钛元素的方法
CN109279651B (zh) 一种从含钡和铈的废弃scr脱硝催化剂中提取高纯度二氧化钛的方法
CN104263946B (zh) 一种从scr脱硝废催化剂中回收钨、钒、钛的方法
CN103526031B (zh) 一种scr废烟气脱硝催化剂的回收方法
CN104831075B (zh) 一种废钒钼系scr催化剂的钒、钼分离和提纯方法
JP2018524171A (ja) 使用済みscr脱硝触媒のリサイクル方法
CN110218859B (zh) 中温隧道式固态活化提取废脱硝催化剂有价元素的方法
CN106048230B (zh) 一种废scr脱硝催化剂中金属钨和钒的分离、回收方法
CN110578058B (zh) 回收燃煤烟气脱硝废弃催化剂中钛、钨、钒和硅的方法
CN104611564A (zh) 一种从废scr催化剂中回收金属氧化物的方法
CN107185554A (zh) 一种废scr脱硝催化剂清洁再利用的方法
CN104178636B (zh) 一种活化煅烧结合酸性浸出回收SCR废旧催化剂中Ti,V,Mo,Si的方法
CN105274341A (zh) 一种废scr脱硝催化剂中金属钒和钨浸出的方法
CN105565376A (zh) Scr废催化剂的回收工艺
CN112391532A (zh) 利用钠化焙烧处理废scr催化剂的方法
CN112125336B (zh) 一种从废脱硝催化剂中回收纳米钛酸铋、钒酸铋和高纯度钨渣的方法
CN112795780A (zh) 一种石油焦气化灰渣的处理方法
CN106350679B (zh) 一种从废scr脱硝催化剂中回收有价金属钛钒钨的方法
CN115612846A (zh) 一种废弃scr脱硝催化剂回收制备钛钨粉和钒产物的方法
CN114229886A (zh) 一种碱性电池添加剂制备方法
CN112110482B (zh) 一种从废弃scr脱硝催化剂中回收纳米钛酸锶和高纯度钨渣的方法
CN103952534A (zh) 一种利用镍钼矿制备钼酸钠的方法
CN112374541A (zh) 利用废scr催化剂回收仲钨酸铵的方法
CN113215419A (zh) 一种从废scr脱硝催化剂提取有价元素的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825740

Country of ref document: EP

Kind code of ref document: A1