WO2023245639A1 - 快充型负极活性材料及其制备方法、负极极片、二次电池及用电装置 - Google Patents

快充型负极活性材料及其制备方法、负极极片、二次电池及用电装置 Download PDF

Info

Publication number
WO2023245639A1
WO2023245639A1 PCT/CN2022/101194 CN2022101194W WO2023245639A1 WO 2023245639 A1 WO2023245639 A1 WO 2023245639A1 CN 2022101194 W CN2022101194 W CN 2022101194W WO 2023245639 A1 WO2023245639 A1 WO 2023245639A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
active material
fast
negative active
negative electrode
Prior art date
Application number
PCT/CN2022/101194
Other languages
English (en)
French (fr)
Inventor
吴益扬
白文龙
叶永煌
武宝珍
吴凯
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22947406.9A priority Critical patent/EP4451363A1/en
Priority to PCT/CN2022/101194 priority patent/WO2023245639A1/zh
Priority to JP2024521843A priority patent/JP2024537572A/ja
Priority to CN202280005863.0A priority patent/CN116806376B/zh
Priority to KR1020247011747A priority patent/KR20240054369A/ko
Publication of WO2023245639A1 publication Critical patent/WO2023245639A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the field of battery technology, and specifically relates to a fast-charging negative active material and its preparation method, negative electrode plates, secondary batteries and electrical devices.
  • the purpose of this application is to provide a fast-charging negative active material and a preparation method thereof, a negative electrode sheet, a secondary battery and an electrical device, which can significantly improve the secondary battery's energy density on the premise of having high energy density. of fast charging capabilities.
  • a first aspect of the present application provides a fast-charging negative active material, wherein the fast-charging negative active material includes carbon-based material particles, a coating layer located on at least part of the surface of the carbon-based material particles, and a coating layer dispersed in the carbon-based material particles.
  • the ferroelectric material in the cladding layer includes conductive carbon material, and at least part of the ferroelectric material protrudes from the surface of the cladding layer.
  • the average thickness of the coating layer is H nm
  • the volume average particle size Dv50 of the ferroelectric material is d 1 nm
  • the fast-charge negative active material satisfies: 0.25 ⁇ H/d 1 ⁇ 1.1, optionally, 0.25 ⁇ ? H/d 1 ⁇ ? 0.5. This is beneficial to the secondary battery having high fast charging capability, high energy density and good cycle performance at the same time.
  • the volume average particle size Dv50 of the ferroelectric material is d 1 nm, 0 ⁇ d 1 ⁇ ? 200, optionally, 0 ⁇ d 1 ⁇ ? 100. Therefore, less ferroelectric materials can be used for the same specific surface area, thereby reducing the energy density loss of the secondary battery.
  • the mass ratio of the ferroelectric material to the carbon-based material particles is ⁇ 1 , and ⁇ 1 is (0.5-10):100, optionally (1-3):100 . This is advantageous for the secondary battery to have both high fast charging capability and high energy density.
  • the mass ratio of the coating layer to the carbon-based material particles is ⁇ 2 , and ⁇ 2 is (2-10):100, optionally (2-5):100 . This is beneficial to the negative active material having high fast charging capability while also having high gram capacity, high first Coulombic efficiency and high compaction density.
  • the mass ratio of the ferroelectric material to the carbon-based material particles is ⁇ 1
  • the mass ratio of the coating layer to the carbon-based material particles is ⁇ 2
  • ⁇ 1 : ⁇ 2 is 1:6 to 4:1, optionally 1:4 to 2:1. This is beneficial to the secondary battery that can simultaneously have high fast charging capability, high energy density and high cycle capacity retention rate.
  • the graphitization degree of the coating layer is 45% to 80%.
  • the conductive carbon material in the cladding layer includes amorphous carbon, optionally including hard carbon. This can further improve the rapid charging capability of the secondary battery.
  • the carbon-based material particles have a graphitization degree of 88% to 96%.
  • the volume average particle diameter Dv50 of the carbon-based material particles is d 2 ⁇ m, 5 ⁇ ? d 2 ⁇ ? 20, optionally, 8 ⁇ ? d 2 ⁇ ? 15. This enables the secondary battery to have higher rapid charging capability.
  • the ferroelectric material includes one selected from the group consisting of perovskite structure oxides, tungsten bronze-type compounds, bismuth oxide-type layered structure compounds, lithium niobate and lithium tantalate, or Various combinations.
  • the second aspect of this application provides a method for preparing a fast-charging negative active material, including the step of: S10, providing carbon-based material particles, a carbon source and a ferroelectric material.
  • the carbon source includes selected from pitch, resin , one or more combinations of biomass materials; S20, uniformly mix the carbon-based material particles, the carbon source and the ferroelectric material, and perform a carbonization and sintering treatment on at least a part of the carbon-based material particles.
  • the surface forms a cladding layer including conductive carbon material, wherein the ferroelectric material is dispersed in the cladding layer and at least part of the ferroelectric material protrudes from the surface of the cladding layer.
  • the carbonization sintering temperature in S20 is 700°C to 1800°C, optionally 1000°C to 1300°C.
  • the carbonization and sintering time in S20 is 1h to 15h, optionally 6h to 14h.
  • the carbon-based material particles are prepared by the following method: S101, provide coke powder, and put the coke powder into a reaction vessel; S102, perform graphitization treatment on the coke powder to obtain Carbon-based material particles.
  • a third aspect of the present application provides a negative electrode sheet, including a negative electrode current collector and a negative electrode film layer disposed on at least one surface of the negative electrode current collector, wherein the negative electrode film layer includes the fast-charging type of the first aspect of the application.
  • Negative active material or fast-charging negative active material prepared by the method of the second aspect of the present application.
  • a fifth aspect of the present application provides an electrical device, including the secondary battery of the fourth aspect of the present application.
  • FIG. 2 is a schematic diagram of an embodiment of the secondary battery of the present application.
  • FIG. 3 is an exploded schematic view of the embodiment of the secondary battery of FIG. 2 .
  • FIG. 5 is a schematic diagram of an embodiment of the battery pack of the present application.
  • FIG. 6 is an exploded schematic view of the embodiment of the battery pack shown in FIG. 5 .
  • FIG. 7 is a schematic diagram of an embodiment of a power consumption device including the secondary battery of the present application as a power source.
  • Ranges disclosed herein are defined in terms of lower and upper limits. A given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive of the endpoints, and may be arbitrarily combined, that is, any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, understand that ranges of 60-110 and 80-120 are also expected. Furthermore, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, then the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range “a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range “0-5" means that all real numbers between "0-5" have been listed in this article, and "0-5" is just an abbreviation of these numerical combinations.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed sequentially, or may include steps (b) and (a) performed sequentially.
  • step (c) means that step (c) may be added to the method in any order.
  • the method may include steps (a), (b) and (c). , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b), etc.
  • condition "A or B” is satisfied by any of the following conditions: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; Or both A and B are true (or exist).
  • the electrode kinetics process usually includes the following steps. (1) Liquid phase mass transfer step in the electrolyte phase: solvated lithium ions in the electrolyte diffuse and transfer to the surface of the graphite particles; (2) Surface conversion step: During the first charge, the solvated lithium ions are adsorbed on the surface of the graphite particles and react and A solid electrolyte interface (SEI) film is formed. During the subsequent charging process, the solvated lithium ions are adsorbed on the surface of the SEI film.
  • SEI solid electrolyte interface
  • the lithium ions reach the surface of the graphite particles; (3) Charge exchange step: Lithium ions are obtained from the surface of the graphite particles. The electrons and form the lithium-embedded product; (4) The solid-phase mass transfer step of the lithium-intercalated product: the lithium-intercalated product diffuses from the surface of the graphite particles to the interior in a solid phase to complete the charging process.
  • the inventor of this application conducted a detailed study on the electrode dynamics process during charging of secondary batteries, and found that an important factor affecting the improvement of graphite's fast charging capability is the influence of electrolyte solvation.
  • the electrolyte is usually obtained by uniformly mixing lithium salts and solvent molecules. Therefore, the electrolyte usually includes three components: solvent molecules, anions, and solvated lithium ions. Before the lithium ions reach the surface of the graphite particles and are embedded in the graphite particles during the charging process, the solvated lithium ions need to undergo a desolvation process to remove the solvent molecules, but this process has a high kinetic energy barrier, for example, about 50kJ/mol to 70kJ/mol.
  • lithium dendrites and “dead lithium” is another important factor affecting the improvement of the fast charging capability of secondary batteries.
  • the lithium ions that cannot be inserted into the negative electrode can only be Electrons are obtained on the surface of the negative electrode, forming silvery white metallic lithium elements, namely "lithium dendrites".
  • lithium dendrites not only reduces the performance of the secondary battery, such as shortening the cycle life, but also in severe cases can form sharp shapes that pierce the isolation film and cause a short circuit within the battery, which may cause catastrophic consequences such as combustion and explosion.
  • the continuously deposited metallic lithium element will also fall off the surface of the negative electrode, thus forming "dead lithium" that cannot continue to participate in the reaction, resulting in a reduction in the energy density of the secondary battery.
  • the fast-charge negative active material includes carbon-based material particles, a coating layer located on at least a portion of the surface of the carbon-based material particles, and a ferroelectric material dispersed in the coating layer.
  • the coating layer includes conductive carbon Material, at least part of the ferroelectric material protrudes from the surface of the cladding layer.
  • the negative active material of the present application has good dynamic properties and can improve the fast charging capability of the secondary battery without sacrificing the high energy density of the secondary battery. Although the mechanism is not clear yet, the inventor speculates that the possible reasons include the following points.
  • the coating layer includes a conductive carbon material with good electrical conductivity, which can increase the solid phase diffusion rate of the lithium-embedded product from the surface of the particle to the interior, so that the negative active material has good dynamic properties.
  • the conductive carbon material and carbon-based material particles in the coating layer are active components and can contribute to the capacity, while the ferroelectric material is an inactive component and cannot contribute to the capacity.
  • It can reduce the kinetic energy barrier of the desolvation process, accelerate the speed of lithium ions reaching the surface of carbon-based material particles, and reduce the resistance of lithium ions to be embedded in the negative electrode.
  • the negative active material of the present application disperses the ferroelectric material in the coating layer, and also makes at least part of the ferroelectric material protrude from the surface of the coating layer.
  • the ferroelectric material has a larger exposed surface area and a greater contact area with the electrolyte. More, so that the kinetic energy barrier of the desolvation process can be reduced when the amount is small. Therefore, the secondary battery using the negative active material of the present application can have high fast charging capability without sacrificing high energy density.
  • the negative active material of the present application can reduce the kinetic energy barrier of the desolvation process, accelerate the speed of lithium ions reaching the surface of carbon-based material particles, and reduce the resistance of lithium ions to be embedded in the negative electrode on the premise of containing less inactive components;
  • the applied negative active material can also increase the rate of solid-phase diffusion of lithium-intercalated products from the particle surface to the interior. Therefore, the negative active material of the present application has good dynamic properties, can withstand high-rate charging, and improves the fast charging capability of the secondary battery without sacrificing the high energy density of the secondary battery.
  • the dielectric constant of the ferroelectric material is above 100.
  • the ferroelectric material has a high dielectric constant, its surface can provide a new path for the desolvation process of solvated lithium ions, and the higher the dielectric constant of the ferroelectric material, the lower the desolvation process. The better the kinetic energy barrier is, but its effect will not continue to increase.
  • the higher the dielectric constant the higher the requirements for the preparation process of ferroelectric materials, which also increases the production cost.
  • the dielectric constant of the ferroelectric material may be 100 to 100,000, for example, 100 to 50,000, 100 to 25,000, 100 to 10,000, 100 to 5,000, 100 to 4,000, 100 to 3000, 100 to 2000, 100 to 1000, 100 to 500, 150 to 50000, 150 to 25000, 150 to 10000, 150 to 5000, 150 to 4000, 150 to 3000, 150 to 2000, 150 to 1000, 150 to 500, 200 to 50000, 200 to 25000, 200 to 10000, 200 to 5000, 200 to 4000, 200 to 3000, 200 to 2000 or 200 to 1000.
  • the dielectric constant of a ferroelectric material refers to the dielectric constant at room temperature (25 ⁇ 5°C), which has a well-known meaning in the art and can be tested using instruments and methods known in the art.
  • C represents the capacitance, in Farad (F);
  • d represents the sample thickness, in cm;
  • A represents the sample area, in cm 2 ;
  • the test conditions can be 1KHz, 1.0V, 25 ⁇ 5°C.
  • the test standard can be based on GB/T 11297.11-2015.
  • the ferroelectric material is insoluble in water and has a high Curie temperature, for example, usually above 80°C. As a result, the effect of ferroelectric materials can be better exerted during the use of secondary batteries.
  • the perovskite structure oxide may include BaTiO 3 , Ba 1-x1 Sr x1 TiO 3 (0 ⁇ x1 ⁇ ?1), SrTiO 3 , PbTiO 3 , PbZr y1 Ti 1-y1 O 3 (0 ⁇ y1 ⁇ 1), one or a combination of BaZr y2 Ti 1-y2 O 3 (0 ⁇ y2 ⁇ 1), KNbO 3 and NaNbO 3 .
  • the tungsten bronze-type compound may have a molecular formula M z WO 3 .
  • M includes one or more combinations selected from Na, K, Rb and Cs, 0 ⁇ z ⁇ 1.
  • the tungsten bronze compound may include one or a combination of more selected from Na z1 WO 3 (0 ⁇ z1 ⁇ 1), K z2 WO 3 (0 ⁇ z2 ⁇ 1).
  • the bismuth oxide type layered structure compound has a molecular formula (Bi 2 O 2 ) (C n-1 D n O 3n+1 ).
  • C includes one or more combinations selected from Na, K, Ba, Sr, Pb, Ca, Ln and Bi
  • D includes selected from Zr, Cr, Nb, Ta, Mo, W, Fe, Ti and V One or a combination of more of them, 2 ⁇ n ⁇ ? 5.
  • the bismuth oxide layered structure compound may be one or a combination of more of SrBi 2 Nb 2 O 9 , SrBi 2 Ta 2 O 9 , SrBi 2 Nb 2 O 9 , and Bi 4 Ti 3 O 12 .
  • the mass ratio of the ferroelectric material to the carbon-based material particles is ⁇ 1 , and ⁇ 1 is (0.5 ⁇ 10):100.
  • ⁇ 1 is (0.5 ⁇ 9):100, (0.5 ⁇ 8):100, (0.5 ⁇ 7):100, (0.5 ⁇ 6):100, (0.5 ⁇ 5):100, (0.5 ⁇ 4):100, (0.5 ⁇ 3):100, (1 ⁇ 9):100, (1 ⁇ 8):100, (1 ⁇ 7):100, (1 ⁇ 6):100, (1 ⁇ 5) :100, (1 ⁇ 4):100 or (1 ⁇ 3):100.
  • ⁇ 1 When ⁇ 1 is within a suitable range, it is beneficial for the secondary battery to have both high fast charging capability and high energy density. And it can also effectively avoid the following situations: when ⁇ 1 is larger, the content of inactive components in the negative active material particles increases and the content of active components decreases, which may cause the secondary battery to lose more energy density; ⁇ 1 is larger When ⁇ 1 is large, the ferroelectric material may also cover more of the surface of the negative active material, thereby reducing the surface active sites of the negative active material, which may also lead to poor fast charging capability and cycle performance of the secondary battery; when ⁇ 1 is small, iron The content of the electrical material is small, and its effect in reducing the kinetic energy barrier of the desolvation process may not be obvious, which may not be conducive to improving the fast charging capability of the secondary battery.
  • ⁇ 2 When ⁇ 2 is within a suitable range, it is beneficial for the negative active material to have high fast charging capability as well as high gram capacity, high first Coulombic efficiency and high compaction density, so that the secondary battery can simultaneously have high fast charging capability, high Energy density and high cycle capacity retention. And it can also effectively avoid the following situations: when ⁇ 2 is large, the coating layer is thicker and the conductive carbon material content is high. Since the conductive carbon material has more pores and a larger specific surface area, the negative active material and the electrolyte will be separated. There are many interface side reactions between them; at the same time, when ⁇ 2 is large, the surface morphology of the conductive carbon material is rough and there are many surface defects, which makes the negative active material difficult to compact.
  • ⁇ 1 : ⁇ 2 When ⁇ 1 : ⁇ 2 is within a suitable range, it is beneficial for the negative active material to have high fast charging capability as well as high gram capacity, high first Coulombic efficiency and high compaction density, so that the secondary battery can have high fast charging at the same time. capacity, high energy density and high cycle capacity retention. And it can also effectively avoid the following situation: when ⁇ 1 : ⁇ 2 is larger, the content of inactive components in the negative active material particles increases and the content of active components decreases, which may cause the secondary battery to lose more energy density.
  • the cladding layer includes conductive carbon material.
  • the conductive carbon material includes amorphous carbon.
  • Amorphous carbon refers to a transition-state carbon material with a low degree of graphitization and crystallization, which is approximately amorphous (or has no fixed shape and periodic structure). It can be processed by carbon sources (such as asphalt, resin, biomass materials, etc.) Obtained by carbonization and sintering treatment.
  • the interlayer spacing of amorphous carbon is large, and it does not cause volume shrinkage and expansion effects during the extraction and insertion of lithium ions. Therefore, its crystal structure is more stable, allowing the negative electrode active material to have good dynamic properties and withstand large loads. Rate charging can improve the rapid charging capability of secondary batteries.
  • the amorphous carbon includes soft carbon, hard carbon or combinations thereof.
  • the conductive carbon material includes hard carbon, thereby further improving the fast charging capability of the secondary battery.
  • the carbon-based material particles include one or a combination of one or more selected from graphite (eg, artificial graphite, natural graphite, oxidized graphite, etc.), mesocarbon microspheres, hard carbon, and soft carbon. , optionally selected from graphite.
  • graphite eg, artificial graphite, natural graphite, oxidized graphite, etc.
  • mesocarbon microspheres hard carbon
  • soft carbon optionally selected from graphite.
  • graphite has the advantages of stable cycle performance and high gram capacity, which can also enable secondary batteries to have high energy density and high cycle stability.
  • the coating layer has a graphitization degree of 45% to 80%.
  • the carbon-based material particles have a degree of graphitization of 88% to 96%.
  • the inventor's research has found that when the coating layer and the carbon-based material particles also satisfy the graphitization degree within the above range, it will help the crystal structure of the coating layer and the carbon-based material particles to be reasonably matched, thereby effectively improving the lithium
  • the solid-phase diffusion rate of ions improves the rapid charging capability and cycle performance of secondary batteries.
  • the morphology of the carbon-based material particles is primary particles, secondary particles, or a combination thereof. Secondary particles are usually obtained by agglomeration of primary particles.
  • the ratio of the volume average particle diameter Dv50 of the primary particle to the volume average particle diameter Dv50 of the secondary particles it consists of is 0.2 to 0.5.
  • the volume average particle diameter Dv50 of the carbon-based material particles is d 2 ⁇ m, 5 ⁇ ? d 2 ⁇ 20, optionally, 8 ⁇ ? d 2 ⁇ 15.
  • the volume average particle size Dv50 of the carbon-based material particles is within a suitable range, it is beneficial for the negative active material of the present application to have higher electrochemical activity, thereby enabling the secondary battery to have higher rapid charging capability.
  • the capacity and energy density of the secondary battery may become worse; when the volume average particle size Dv50 of the carbon-based material particles is larger, the number of active sites on the particle surface decreases, and the path for the lithium-embedded product to diffuse from the solid phase on the particle surface to the interior is longer. This may be detrimental to the improvement of the fast charging capability of the secondary battery.
  • the powder compaction density of the fast-charge negative active material under a force of 20,000N is 1.5g/cm 3 to 1.9g/cm 3 , optionally 1.5g/cm 3 to 1.7g /cm 3 .
  • the negative electrode film layer can have a higher compaction density, and the secondary battery can have a higher energy density.
  • the negative electrode film layer can also have a strong ability to maintain the pore structure during the cycle, thereby making the electrolyte wettability of the negative electrode sheet better. Good, it can better improve the cycle performance of secondary batteries.
  • the graphitization degree of a material has a well-known meaning in the art, and can be tested using instruments and methods known in the art.
  • an X-ray diffractometer such as Bruker D8Discover
  • the degree of graphitization of the material is calculated as 0.3354) ⁇ 100%.
  • d 002 is the interlayer spacing of the (002) crystal plane in the crystal structure of the material expressed in nanometers (nm).
  • the specific surface area of a material has a well-known meaning in the art, and can be tested using instruments and methods known in the art.
  • the nitrogen adsorption specific surface area analysis test can pass the Tri-Star3020 specific surface area pore size of the American Micromeritics company. Analytical tester is performed.
  • the powder compaction density of the material is a meaning known in the art, and can be tested using instruments and methods known in the art.
  • An exemplary test method is as follows: weigh 1g of material, add it to a mold with a base area of 1.327cm2 , pressurize it to 2000kg (equivalent to 20000N), maintain the pressure for 30s, then release the pressure, maintain it for 10s, then record and calculate the material's Powder compaction density under 20000N force.
  • the above-mentioned various parameter tests for the negative electrode active material can be done by sampling and testing before coating, or by sampling and testing from the negative electrode film layer after cold pressing.
  • the sampling can be carried out as follows: arbitrarily select a cold-pressed negative electrode film layer, and sample the negative active material (for example, you can choose Blade scraping powder sampling); place the collected negative active material powder in deionized water, then filter and dry it, and then sinter the dried negative active material at a certain temperature and time (for example, 400°C, 2h), remove the binder and conductive agent to obtain the negative active material test sample.
  • the second aspect of the embodiment of the present application provides a method for preparing the fast-charging negative active material of the first aspect of the present application, which includes the steps: S10, providing carbon-based material particles, a carbon source and a ferroelectric material; S20, preparing the said Carbon-based material particles, the carbon source and the ferroelectric material are uniformly mixed, and a coating layer including conductive carbon material is formed on at least part of the surface of the carbon-based material particles through carbonization and sintering, wherein the ferroelectric material is dispersed The ferroelectric material is in the cladding layer and at least part of the ferroelectric material protrudes from the surface of the cladding layer.
  • carbon source refers to a compound capable of forming conductive carbon materials.
  • the carbon source includes one or a combination of more selected from organic carbon sources and inorganic carbon sources.
  • the carbon source is an organic carbon source.
  • the carbon source includes one or a combination of one or more selected from pitch, resin, and biomass materials.
  • the asphalt includes one or a combination of one or more selected from coal asphalt and petroleum asphalt, optionally petroleum asphalt.
  • the resin includes one or a combination of more selected from phenolic resin and epoxy resin.
  • the biomass material refers to a material derived from living organisms such as animals, plants, and microorganisms. It is mainly composed of organic polymer substances. Its chemical composition is mainly composed of three elements: carbon, hydrogen and oxygen. For example, it can It is polysaccharide (such as starch, sucrose polymer, glucose polymer, cellulose, etc.).
  • the carbonization sintering temperature in S20 is 700°C to 1800°C, more optionally 1000°C to 1300°C.
  • the carbonization and sintering time in S20 is 1h to 15h, optionally 6h to 14h.
  • the carbon source can be carbonized, and a coating layer containing a conductive carbon material can be formed on at least part of the surface of the carbon-based material particles, and at the same time, the coating layer
  • the layers can also have suitable thickness and degree of graphitization.
  • the carbon-based material particles can be commercially available products, or alternatively, are prepared by the following method: S101, provide coke powder, and put the coke powder into a reaction vessel; S102, add the coke powder to the reaction vessel.
  • the coke powder is graphitized to obtain carbon-based material particles.
  • the coke powder can be a commercially available product, or alternatively, is prepared by the following method: S1011, coking the coke raw material to obtain coke; S1012, crushing, shaping, and classifying the obtained coke, Obtain coke powder.
  • coke raw material refers to the component that can be processed to obtain “coke”, that is, the raw material used to prepare coke;
  • coke refers to the product obtained by coking the coke raw material;
  • coke powder and coke powder are the same as “coke powder”.
  • Coke is completely the same in composition, the difference is that “coke powder” refers to “coke” in the form of powder with a certain particle size, that is, “coke” is obtained after "coke” is crushed and processed.
  • the coke obtained in S1011 includes one or a combination of more selected from the group consisting of petroleum-based non-needle coke, petroleum-based needle coke, coal-based non-needle coke, and coal-based needle coke. More optionally, the coke obtained in S1011 includes one or more combinations of petroleum-based non-needle coke (such as petroleum-based calcined coke, petroleum-based green coke), petroleum-based needle coke. In particular, the coke obtained in S1011 is petroleum-based coke.
  • the use of appropriate coke energy allows the prepared carbon-based material particles to have an appropriate number of end faces and defects, thereby having better ion transmission and electron transmission properties and higher structural stability, thereby improving the rapid charging of secondary batteries. capacity and cycle performance.
  • the coking process of the coke raw material in S1011 is performed in a delayed coking device.
  • the delayed coking device includes a heating furnace and a coke tower.
  • the delayed coking process means that the coke raw material is quickly heated to the required coking treatment temperature in the heating furnace, and then enters the coke tower, where it undergoes preheating, cold coking and other processes. Generate focus.
  • the obtained coke can be crushed using equipment and methods known in the art, such as air flow mill, mechanical mill, roller mill or other crushing equipment.
  • S101 also includes: adding a binder to the reaction vessel, uniformly mixing the binder and the coke powder and then granulating. Adding a binder can make the obtained carbon-based material particles have a better degree of secondary particles, which is beneficial to improving the ion transmission and electron transmission properties of the negative active material while also making it have higher structural stability.
  • the mass percentage of the binder is 3% to 12%, more optionally 5% to 8%, based on the total mass of the coke powder.
  • the content of the binder is within an appropriate range to avoid excessive agglomeration of particles.
  • the binder includes one or a combination of more selected from coal pitch, petroleum pitch, mesophase pitch, phenolic resin, epoxy resin, and petroleum resin.
  • the granulation process can be carried out using equipment and methods known in the art, such as granulators.
  • the granulator usually includes a stirred reactor and a module for temperature control of the reactor. By regulating the stirring speed, heating rate, granulation temperature, cooling rate, etc. during the granulation process, the degree of granulation and the structural strength of the particles can be controlled, so that the volume average particle size Dv50 of the finally prepared carbon-based material particles can be at a certain value. within the required range.
  • the graphitization treatment time in S102 may be 20h to 48h.
  • Graphitization treatment can make the carbon-based material particles have a suitable degree of graphitization to increase the gram capacity of the negative active material; graphitization treatment can also make the carbon-based material particles have a smaller lattice expansion rate to improve structural stability; Graphitization treatment can also effectively eliminate bulk structural defects in carbon-based material particles to improve the cycle stability of secondary batteries.
  • Graphitization treatment can be carried out using equipment and methods known in the art, such as a graphitization furnace, in particular an Acheson graphitization furnace. After the graphitization process is completed, a small amount of oversized particles formed by agglomeration during the graphitization process can also be removed by screening. This can prevent oversized particles from affecting the processing performance of the obtained negative electrode active material, such as the stability of the negative electrode slurry. , coating performance, etc.
  • the preparation method of the fast-charging negative active material includes the steps of: placing coke powder and a binder into a reaction vessel and uniformly mixing them before granulating; and subjecting the obtained granulated product to graphitization. , obtain carbon-based material particles; uniformly mix the obtained carbon-based material particles with a carbon source and a ferroelectric material, and form a coating layer including a conductive carbon material on at least part of the surface of the carbon-based material particles through carbonization and sintering, wherein , the ferroelectric material is dispersed in the cladding layer and at least part of the ferroelectric material protrudes from the surface of the cladding layer.
  • the negative electrode film layer may also include other negative electrode active materials known in the art for secondary batteries.
  • the other negative active materials include one or a combination of one or more selected from natural graphite, artificial graphite, soft carbon, hard carbon, silicon-based materials, tin-based materials, and lithium titanate.
  • the silicon-based material may include one or a combination of more selected from the group consisting of elemental silicon, silicon oxide, silicon-carbon composite, silicon-nitride composite and silicon alloy material.
  • the tin-based material may include one or a combination of more selected from the group consisting of elemental tin, tin oxide and tin alloy materials.
  • the negative electrode film layer optionally further includes a negative electrode binder.
  • the negative electrode binder may include styrene-butadiene rubber (SBR), water-soluble unsaturated resin SR-1B, water-based acrylic resin ( For example, polyacrylic acid (PAA), polymethacrylic acid (PMAA), polyacrylic acid sodium (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA) and carboxymethyl chitosan (CMCS).
  • SBR styrene-butadiene rubber
  • SR-1B water-soluble unsaturated resin
  • PAA polyacrylic acid
  • PMAA polymethacrylic acid
  • PAAS polyacrylic acid sodium
  • PAM polyacrylamide
  • PVA polyvinyl alcohol
  • SA sodium alginate
  • CMCS carboxymethyl chitosan
  • the mass percentage of the negative electrode binder is less than 5%.
  • the negative electrode film layer optionally includes other additives.
  • other auxiliaries may include thickeners, such as sodium carboxymethylcellulose (CMC-Na), PTC thermistor materials, and the like.
  • CMC-Na sodium carboxymethylcellulose
  • PTC thermistor materials such as sodium carboxymethylcellulose (CMC-Na), PTC thermistor materials, and the like.
  • the mass percentage of the other additives is less than 2%.
  • the negative electrode current collector may be a metal foil or a composite current collector.
  • the metal foil copper foil or copper alloy foil can be used.
  • the composite current collector may include a polymer material base layer and a metal material layer formed on at least one surface of the polymer material base layer.
  • the metal material may include copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver. and a combination of one or more silver alloys.
  • the polymer material base layer may include polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate ( One or a combination of one or more of PBT), polystyrene (PS) and polyethylene (PE).
  • the negative electrode film layer is usually formed by coating the negative electrode slurry on the negative electrode current collector, drying, and cold pressing.
  • the negative electrode slurry is usually formed by dispersing the negative electrode active material, optional conductive agent, optional binder, and other optional additives in a solvent and stirring evenly.
  • the solvent may be N-methylpyrrolidone (NMP) or deionized water, but is not limited thereto.
  • the negative electrode plate does not exclude other additional functional layers in addition to the negative electrode film layer.
  • the negative electrode sheet described in the present application further includes a conductive undercoat layer (for example, made of Conductive agent and adhesive).
  • the negative electrode sheet described in this application further includes a protective layer covering the surface of the negative electrode film layer.
  • the fourth aspect of the embodiment of the present application provides a secondary battery, which includes the negative electrode plate of the third aspect of the present application.
  • Secondary batteries also known as rechargeable batteries or storage batteries, refer to batteries that can be recharged to activate active materials and continue to be used after the battery is discharged.
  • a secondary battery includes an electrode assembly and an electrolyte.
  • the electrode assembly usually includes a positive electrode plate, a negative electrode plate and a separator.
  • the isolation film is placed between the positive electrode piece and the negative electrode piece. It mainly prevents short circuit between the positive electrode and the negative electrode and allows lithium ions to pass through.
  • the electrolyte plays a role in conducting lithium ions between the positive electrode piece and the negative electrode piece.
  • the secondary battery of the present application may be a lithium-containing secondary battery, and in particular, may be a lithium-ion secondary battery.
  • the negative electrode sheet used in the secondary battery of the present application is the negative electrode sheet of any embodiment of the third aspect of the present application.
  • Examples of the lithium-containing phosphate with an olivine structure may include lithium iron phosphate, a composite material of lithium iron phosphate and carbon, a lithium manganese phosphate, a composite material of lithium manganese phosphate and carbon, a lithium manganese iron phosphate, a lithium manganese iron phosphate and A composite material of carbon and a combination of one or more of its respective modifying compounds.
  • the cathode active material may include a combination of one or more of the lithium transition metal oxide shown in Formula 1 and its modified compounds.
  • the modified compounds of each of the above-mentioned positive electrode active materials may be doping modifications and/or surface coating modifications of the positive electrode active materials.
  • the positive electrode film layer optionally further includes a positive electrode conductive agent.
  • a positive electrode conductive agent includes selected from the group consisting of superconducting carbon, conductive graphite, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, A combination of one or more of graphene and carbon nanofibers.
  • the mass percentage of the cathode conductive agent is less than 5%.
  • the positive electrode film layer optionally further includes a positive electrode binder.
  • the positive electrode binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene, etc.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • vinylidene fluoride-tetrafluoroethylene etc.
  • the mass percentage of the cathode binder is less than 5% based on the total mass of the cathode film layer.
  • the positive electrode current collector may be a metal foil or a composite current collector.
  • the metal foil aluminum foil or aluminum alloy foil can be used.
  • the composite current collector may include a polymer material base layer and a metal material layer formed on at least one surface of the polymer material base layer.
  • the metal material may include aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver. and a combination of one or more silver alloys.
  • the polymer material base layer may include polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate ( One or a combination of one or more of PBT), polystyrene (PS) and polyethylene (PE).
  • the positive electrode film layer is usually formed by coating the positive electrode slurry on the positive electrode current collector, drying, and cold pressing.
  • the positive electrode slurry is usually formed by dispersing the positive electrode active material, optional conductive agent, optional binder and any other components in a solvent and stirring evenly.
  • the solvent may be N-methylpyrrolidone (NMP), but is not limited thereto.
  • the electrolyte solution of the present application can be an electrolyte solution known in the art and used for secondary batteries.
  • the electrolyte solution includes lithium salt and organic solvent.
  • isolation membrane there is no particular restriction on the type of isolation membrane in this application, and any well-known porous structure isolation membrane with good chemical stability and mechanical stability can be used.
  • the material of the isolation membrane may include one or a combination of more selected from the group consisting of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the isolation film may be a single-layer film or a multi-layer composite film. When the isolation film is a multi-layer composite film, the materials of each layer may be the same or different.
  • the positive electrode piece, the isolation film and the negative electrode piece can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer packaging.
  • the outer packaging can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, etc.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the soft bag may be made of plastic, such as one or a combination of polypropylene (PP), polybutylene terephthalate (PBT) and polybutylene succinate (PBS). .
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and side plates connected to the bottom plate, and the bottom plate and the side plates enclose to form a receiving cavity.
  • the housing 51 has an opening communicating with the accommodation cavity, and the cover plate 53 is used to cover the opening to close the accommodation cavity.
  • the positive electrode piece, the negative electrode piece and the isolation film can be formed into the electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the containing cavity.
  • the electrolyte soaks into the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and can be adjusted according to needs.
  • the positive electrode sheet, the separator, the negative electrode sheet, and the electrolyte may be assembled to form a secondary battery.
  • the positive electrode sheet, isolation film, and negative electrode sheet can be formed into an electrode assembly through a winding process or a lamination process.
  • the electrode assembly is placed in an outer package, dried, and then injected with electrolyte. After vacuum packaging, standing, and Through processes such as formation and shaping, secondary batteries are obtained.
  • the secondary batteries according to the present application can be assembled into battery modules.
  • the number of secondary batteries contained in the battery module can be multiple, and the specific number can be adjusted according to the application and capacity of the battery module.
  • FIG. 4 is a schematic diagram of the battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of secondary batteries 5 can be fixed by fasteners.
  • the battery module 4 may further include a housing having a receiving space in which a plurality of secondary batteries 5 are received.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be adjusted according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 arranged in the battery box.
  • the battery box includes an upper box 2 and a lower box 3 .
  • the upper box 2 is used to cover the lower box 3 and form a closed space for accommodating the battery module 4 .
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • a fifth aspect of the embodiment of the present application provides an electrical device, which includes at least one of a secondary battery, a battery module and a battery pack of the present application.
  • the secondary battery, battery module and battery pack may be used as a power source for the electrical device or as an energy storage unit for the electrical device.
  • the electrical device may be, but is not limited to, mobile devices (such as mobile phones, laptops, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric Golf carts, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc.
  • the power-consuming device can select a secondary battery, a battery module or a battery pack according to its usage requirements.
  • FIG. 7 is a schematic diagram of an electrical device as an example.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, etc.
  • battery packs or battery modules can be used.
  • the power-consuming device may be a mobile phone, a tablet computer, a laptop computer, etc.
  • the electrical device is usually required to be light and thin, and secondary batteries can be used as power sources.
  • the secondary battery of Comparative Example 1 was prepared similarly to Example 1 except that conventional uncoated artificial graphite was used as the negative electrode active material. Specifically, artificial graphite is prepared according to the following method.
  • the petroleum residue is subjected to delayed coking at 490°C to 510°C to obtain petroleum non-needle coke.
  • the raw coke is crushed, shaped and classified to obtain coke powder.
  • the obtained coke powder is mixed with a binder.
  • Coal pitch is mixed and then granulated; the obtained granulated product is placed in a graphite crucible, and then the graphite crucible is placed in the Acheson graphitization furnace.
  • Resistor materials are filled around the graphite crucible, and electricity is applied to allow current to flow through the resistor.
  • the material generates heat energy and is graphitized at about 3000°C for about 30 hours to obtain artificial graphite particles.
  • the volume average particle size Dv50 of artificial graphite particles is approximately 9.8 ⁇ m, and the degree of graphitization is approximately 92%.
  • the secondary battery of Comparative Example 2 was prepared similarly to Example 1, except that the negative active material was prepared according to the following method.
  • the temperature in the highest temperature zone is about 1150°C, and the operating time in the highest temperature zone is about 12 hours, so that at least part of the artificial graphite particles are in the orbital kiln.
  • An amorphous carbon coating layer is formed on the surface to obtain the negative active material.
  • the obtained button cell was left to stand for 12 hours, it was discharged at 25°C with a constant current of 0.05C to 0.005V, left to stand for 10 minutes, and then discharged to a constant current of 0.005V with a current of 50 ⁇ A, left to stand for 10min, and then discharged to a constant current of 10 ⁇ A. Discharge to 0.005V; then charge to 2V with a constant current of 0.1C, and record the charging capacity.
  • the ratio of the charging capacity to the mass of the negative active material is the initial gram capacity of the negative active material.
  • the secondary battery prepared above was charged at a constant current of 0.33C to the charge cut-off voltage of 4.4V, then charged at a constant voltage to a current of 0.05C, left to stand for 5 minutes, and then discharged at a constant current of 0.33C to the discharge cut-off voltage. 2.8V, record its actual capacity as C0.
  • the charging windows below are recorded as C10%SOC, C20%SOC, C30%SOC, C40%SOC, C50%SOC, C60%SOC, C70%SOC, C80%SOC, according to the formula (60/C20%SOC+60 /C30%SOC+60/C40%SOC+60/C50%SOC+60/C60%SOC+60/C70%SOC+60/C80%SOC) ⁇ 10% calculation shows that the secondary battery is charged from 10% SOC to Charging time T for 80% SOC. The shorter the charging time T, the better the fast charging performance of the secondary battery.
  • Table 2 gives the negative active material preparation parameters of Examples 1 to 16.
  • Table 3 shows the test results of Examples 1 to 16 and Comparative Examples 1 to 4 according to the above performance test method.
  • Comparative Example 2 uses amorphous carbon-coated artificial graphite as the negative active material, which can improve the fast charging performance and cycle performance of secondary batteries to a certain extent, but the improvement effect is limited and cannot satisfy people. Requirements for higher fast charging capabilities and longer cycle life of secondary batteries.
  • Comparative Example 3 also added ferroelectric materials to the negative electrode slurry, which can further improve the fast charging performance and cycle performance of the secondary battery.
  • the improvement effect is limited and cannot satisfy people's expectations for secondary batteries. Requirements for higher fast charging capabilities and longer cycle life. The possible reason is that by physically mixing the ferroelectric material into the negative electrode slurry, on the one hand, the density of the ferroelectric material is high and it is easy to settle in the negative electrode slurry, making it difficult to form a stable negative electrode slurry, which affects the production yield and negative electrode performance.
  • Comparative Example 4 uses barium titanate-coated artificial graphite as the negative active material, but the negative active material is obtained by direct ball milling, which improves the performance of the secondary battery to a certain extent compared with Comparative Example 1. Fast charging performance and cycle performance, but the improvement effect is limited and cannot meet people's requirements for higher fast charging capabilities and longer cycle life of secondary batteries. The possible reason is that, on the one hand, the direct ball milling method combines artificial graphite particles and ferroelectric material particles by impacting and grinding them to form a negative active material, but high-energy ball milling will destroy the shape of the artificial graphite particles that have been formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本申请提供一种快充型负极活性材料及其制备方法、负极极片、二次电池及用电装置。所述快充型负极活性材料包括碳基材料颗粒、位于所述碳基材料颗粒至少一部分表面的包覆层以及分散于所述包覆层中的铁电材料,所述包覆层包括导电碳材料,至少部分铁电材料凸出于所述包覆层的表面。本申请提供的快充型负极活性材料具有良好的动力学性能,能够承受大倍率充电,并提升二次电池的快速充电能力,同时不牺牲二次电池高能量密度。

Description

快充型负极活性材料及其制备方法、负极极片、二次电池及用电装置 技术领域
本申请属于电池技术领域,具体涉及一种快充型负极活性材料及其制备方法、负极极片、二次电池及用电装置。
背景技术
近年来,二次电池被广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。随着二次电池的应用及推广,人们对二次电池快速充电能力的要求越来越高,而负极活性材料作为二次电池的重要组成部分,对二次电池的充电能力有较大影响。目前,石墨是二次电池最常用的负极活性材料之一,但是,常规石墨的快速充电能力已经接近瓶颈,无法满足人们对二次电池更高快速充电能力的要求。
发明内容
本申请的目的在于提供一种快充型负极活性材料及其制备方法、负极极片、二次电池及用电装置,其能使二次电池在具有高能量密度的前提下,还具有大幅提升的快速充电能力。
本申请第一方面提供一种快充型负极活性材料,其中,所述快充型负极活性材料包括碳基材料颗粒、位于所述碳基材料颗粒至少一部分表面的包覆层以及分散于所述包覆层中的铁电材料,所述包覆层包括导电碳材料,至少部分铁电材料凸出于所述包覆层的表面。
本申请的负极活性材料能够在含有较少非活性组分的前提下,降低去溶剂化过程的动能势垒,加快锂离子达到碳基材料颗粒表面的速度、降低锂离子嵌入负极的阻力;本申请的负极活性材料还能够增加嵌锂生成物从颗粒表面固相扩散至内部的速率。因此,本申请的负极活性材料具有良好的动力学性能,能够承受大倍率充电,并提升二次电池的快速充电能力,同时不牺牲二次电池高能量密度。
在本申请的任意实施方式中,所述包覆层的平均厚度为H nm,所述铁电材料的体积平均粒径Dv50为d 1nm,并且所述快充型负极活性材料满足:0.25≤H/d 1≤1.1,可选地,0.25≤?H/d 1≤?0.5。由此有利于二次电池同时具有高快速充电能力、高能量密度和良好的循环性能。
在本申请的任意实施方式中,所述铁电材料的体积平均粒径Dv50为d 1nm,0<d 1≤?200,可选地,0<d 1≤?100。由此在相同比表面积时所采用的铁电材料可以更少,从而能够降低二次电池的能量密度损失。
在本申请的任意实施方式中,所述包覆层的平均厚度为H nm,20≤?H≤?100,可选地,20≤?H≤?50。由此二次电池能够同时具有高快速充电能力、高能量密度和高循环容量保持率。
在本申请的任意实施方式中,所述铁电材料与所述碳基材料颗粒的质量比为α 1,α 1为(0.5~10):100,可选地为(1~3):100。由此有利于二次电池同时具有高快速充电能力和高能量密度。
在本申请的任意实施方式中,所述包覆层与所述碳基材料颗粒的质量比为α 2,α 2为(2~10):100,可选地为(2~5):100。由此有利于负极活性材料具有高快速充电能力的同时还具有高克容量、高首次库伦效率和高压实密度。
在本申请的任意实施方式中,所述铁电材料与所述碳基材料颗粒的质量比为α 1,所述包覆层与所述碳基材料颗粒的质量比为α 2,α 12为1:6至4:1,可选地为1:4至2:1。由此有利于二次电池能够同时具有高快速充电能力、高能量密度和高循环容量保持率。
在本申请的任意实施方式中,所述包覆层的石墨化度为45%至80%。
在本申请的任意实施方式中,所述包覆层中的导电碳材料包括无定形碳,可选地包括硬碳。由此能进一步提高二次电池的快速充电能力。
在本申请的任意实施方式中,所述碳基材料颗粒的石墨化度为88%至96%。
在本申请的任意实施方式中,所述碳基材料颗粒的体积平均粒径Dv50为d 2μm,5≤?d 2≤?20,可选地,8≤?d 2≤?15。由此能使二次电池具有更高的快速充电能力。
在本申请的任意实施方式中,所述碳基材料颗粒的形貌为一次颗粒、二次颗粒或其组合,可选地,在所述二次颗粒形貌的碳基材料颗粒中,所述一次颗粒的体积平均粒径Dv50与其所组成的二次颗粒的体积平均粒径Dv50的比值为0.2至0.5。由此有利于碳基材料颗粒在具有良好的离子传输和电子传输性能的同时还具有较高的结构稳定性。
在本申请的任意实施方式中,所述碳基材料颗粒包括选自石墨、中间相碳微球、硬碳和软碳中的一种或多种的组合,可选地选自石墨。由此能使二次电池具有高能量密度和高循环稳定性。
在本申请的任意实施方式中,所述铁电材料的介电常数为100以上,可选地为100至100000。由此能够更好地降低去溶剂化过程的动能势垒,提高二次电池的快速充电能力。
在本申请的任意实施方式中,所述铁电材料的居里温度为80℃以上。由此能够更好地降低去溶剂化过程的动能势垒,提高二次电池的快速充电能力。
在本申请的任意实施方式中,所述铁电材料包括选自钙钛矿结构氧化物、钨青铜型化合物、铋氧化物型层状结构化合物、铌酸锂和钽酸锂中的一种或多种的组合。
在本申请的任意实施方式中,所述快充型负极活性材料的体积平均粒径Dv50为5μm至20μm,可选地为8μm至15μm。由此有利于负极活性材料具有更好的离子传输和电子传输性能以及快速充电性能。
在本申请的任意实施方式中,所述快充型负极活性材料的比表面积为0.8m 2/g至1.3m 2/g,可选地为0.9m 2/g至1.2m 2/g。由此能使二次电池具有更高的快速充电能力。
在本申请的任意实施方式中,所述快充型负极活性材料在20000N作用力下的粉体压实密度为1.5g/cm 3至1.9g/cm 3,可选地为1.5g/cm 3至1.7g/cm 3。由此能使二次电池 具有较高的能量密度和改善的循环性能。
本申请第二方面提供一种快充型负极活性材料的制备方法,包括步骤:S10,提供碳基材料颗粒、碳源和铁电材料,可选地,所述碳源包括选自沥青、树脂、生物质材料中的一种或多种的组合;S20,将所述碳基材料颗粒、所述碳源和所述铁电材料均匀混合,经碳化烧结处理在所述碳基材料颗粒至少一部分表面形成包括导电碳材料的包覆层,其中,所述铁电材料分散于所述包覆层中并且至少部分铁电材料凸出于所述包覆层的表面。
在本申请的任意实施方式中,S20中的碳化烧结温度为700℃至1800℃,可选地为1000℃至1300℃。
在本申请的任意实施方式中,S20中的碳化烧结时间为1h至15h,可选地为6h至14h。
在本申请的任意实施方式中,所述碳基材料颗粒通过以下方法制备:S101,提供焦粉末,将所述焦粉末放入反应容器中;S102,对所述焦粉末进行石墨化处理,得到碳基材料颗粒。
本申请第三方面提供一种负极极片,包括负极集流体以及设置在所述负极集流体至少一个表面上的负极膜层,其中,所述负极膜层包括本申请第一方面的快充型负极活性材料或通过本申请第二方面的方法制备的快充型负极活性材料。
本申请第四方面提供一种二次电池,包括本申请第三方面的负极极片。
本申请第五方面提供一种用电装置,包括本申请第四方面的二次电池。
本申请提供的快充型负极活性材料具有良好的动力学性能,能够承受大倍率充电,并提升二次电池的快速充电能力,同时不牺牲二次电池高能量密度。本申请的用电装置包括本申请提供的二次电池,因而至少具有与所述二次电池相同的优势。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请的快充型负极活性材料的一实施方式的示意图。
图2是本申请的二次电池的一实施方式的示意图。
图3是图2的二次电池的实施方式的分解示意图。
图4是本申请的电池模块的一实施方式的示意图。
图5是本申请的电池包的一实施方式的示意图。
图6是图5所示的电池包的实施方式的分解示意图。
图7是包含本申请的二次电池作为电源的用电装置的一实施方式的示意图。
在附图中,附图未必按照实际的比例绘制。附图标记说明如下:1电池包,2上箱体,3下箱体,4电池模块,5二次电池,51壳体,52电极组件,53盖板,10快充型负极活性材料,101碳基材料颗粒,102包覆层,103铁电材料。
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的快充型负极活性材料及其制备方法、负极极片、二次电池及用电装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案,并且这样的技术方案应被认为包含在本申请的公开内容中。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案,并且这样的技术方案应被认为包含在本申请的公开内容中。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
在本申请中,术语“多个”、“多种”是指两个或两种以上。
在本申请中,“约”某个数值表示一个范围,表示该数值±10%的范围。
提升二次电池快速充电能力的关键在于提升负极活性材料和负极极片的性能。在二次电池充电过程中,以石墨为例,电极动力学过程通常包括以下几个步骤。(1)电解 质相中的液相传质步骤:电解液中的溶剂化锂离子向石墨颗粒表面扩散传递;(2)表面转化步骤:首次充电时溶剂化锂离子吸附在石墨颗粒表面发生反应并形成固体电解质界面(SEI)膜,后续充电过程中溶剂化锂离子吸附在SEI膜表面,经过去溶剂化过程后锂离子达到石墨颗粒表面;(3)电荷交换步骤:锂离子从石墨颗粒表面得到电子并形成嵌锂生成物;(4)嵌锂生成物固相传质步骤:嵌锂生成物从石墨颗粒表面固相扩散至内部,完成充电过程。
现有研究普遍认为嵌锂生成物固相扩散速率较慢,因此认为上述步骤(4)为负极电极动力学过程的控制步骤,进而现有研究主要集中在如何增加嵌锂生成物的固相扩散速率和缩短固相扩散距离。例如,为了提升石墨的快速充电能力,现有技术采用的做法主要包括:(1)在石墨表面刻蚀孔隙,以增加表面活性位点和锂离子的嵌入通道,由此缩短锂离子扩散距离;(2)用无定形碳包覆石墨,以增加石墨表层的层间距、增加锂离子的扩散速率。但上述方法对二次电池快速充电能力提升效果有限。
本申请的发明人详细研究了二次电池充电时的电极动力学过程,发现影响石墨快速充电能力提升的一个重要因素是电解液溶剂化作用的影响。电解液通常是将锂盐和溶剂分子等均匀混合得到,由此电解液中通常包括溶剂分子、阴离子以及溶剂化锂离子三种组分。在充电过程中锂离子达到石墨颗粒表面并嵌入石墨颗粒之前,溶剂化锂离子需要经历去溶剂化过程以脱去溶剂分子,但是该过程存在较高的动能势垒,例如约为50kJ/mol至70kJ/mol。
此外,“锂枝晶”和“死锂”的产生是影响二次电池快速充电能力提升的另一个重要因素。在二次电池充电过程中,当负极嵌锂空间不足、锂离子嵌入负极阻力太大、锂离子过快的从正极脱出但无法等量嵌入负极等异常发生时,无法嵌入负极的锂离子只能在负极表面得到电子,从而形成银白色的金属锂单质,即“锂枝晶”。锂枝晶的形成不仅使二次电池性能下降,例如循环寿命缩短等,而且严重时会形成尖锐形貌刺穿隔离膜导致电池内短路,从而有可能引起燃烧、爆炸等灾难性后果。同时不断沉积的金属锂单质还会从负极表面脱落,由此形成不能继续参与反应的“死锂”,导致二次电池能量密度降低。
本申请的发明人在研究二次电池充电时的电极动力学过程中还发现,由于去溶剂化过程存在较高的动能势垒,由此限制了锂离子达到石墨颗粒表面的速度、增加了锂离子嵌入负极的阻力,特别地,当二次电池以大倍率快速充电时更容易诱发“锂枝晶”和“死锂”。
本申请的发明人经过大量研究,提出一种新型的快充型负极活性材料,其能使二次电池在具有高能量密度的前提下,还具有大幅提升的快速充电能力。
负极活性材料
具体地,本申请实施方式第一方面提供了一种快充型负极活性材料。
所述快充型负极活性材料包括碳基材料颗粒、位于所述碳基材料颗粒至少一部分表面的包覆层以及分散于所述包覆层中的铁电材料,所述包覆层包括导电碳材料,至少部分铁电材料凸出于所述包覆层的表面。
本申请的负极活性材料具有良好的动力学性能,能提升二次电池的快速充电能力,同时不牺牲二次电池的高能量密度。尽管机理尚不明确,发明人推测可能的原因包括如 下几点。
第一,本申请的负极活性材料表面具有铁电材料,其具有自发极化强度,并且自发极化强度能在外部电场逆转时反转,由此能降低溶剂化锂离子去溶剂化过程的动能势垒,加快锂离子达到碳基材料颗粒表面的速度、降低锂离子嵌入负极的阻力。由此本申请的负极活性材料具有良好的动力学性能,能够承受大倍率充电,从而能够提升二次电池的快速充电能力。
第二,在本申请的负极活性材料中,至少部分铁电材料凸出于包覆层的表面,由此该部分铁电材料既能直接接触电解液,又能接触碳基材料颗粒。铁电材料与电解液接触的面感应为负电,与碳基材料颗粒接触的面感应为正电,由此能够更好地降低去溶剂化过程的动能势垒,加快锂离子达到碳基材料颗粒表面的速度、降低锂离子嵌入负极的阻力,由此本申请的负极活性材料具有良好的动力学性能,能够承受大倍率充电,从而能够提升二次电池的快速充电能力。
第三,随着充电过程的进行,负极嵌入的锂逐渐增多,而嵌锂生成物从颗粒表面固相扩散至内部的时需要克服的活化能增加,固相扩散更加困难。在本申请的负极活性材料中,包覆层包括导电性良好的导电碳材料,由此能增加嵌锂生成物从颗粒表面固相扩散至内部的速率,使负极活性材料具有良好的动力学性能。
第四,在本申请的负极活性材料中,包覆层中的导电碳材料以及碳基材料颗粒均为活性组分,能够贡献容量,而铁电材料为非活性组分,不能贡献容量,但是能够降低去溶剂化过程的动能势垒,加快锂离子达到碳基材料颗粒表面的速度、降低锂离子嵌入负极的阻力。本申请的负极活性材料使铁电材料分散在包覆层中,并且还使至少部分铁电材料凸出于包覆层的表面,由此铁电材料暴露表面积较多,与电解液的接触面积较多,从而能够在用量较少时实现降低去溶剂化过程的动能势垒的作用。因此,采用本申请负极活性材料的二次电池在具有较高快速充电能力的同时,还能不牺牲高能量密度。
本申请的负极活性材料能够在含有较少非活性组分的前提下,降低去溶剂化过程的动能势垒,加快锂离子达到碳基材料颗粒表面的速度、降低锂离子嵌入负极的阻力;本申请的负极活性材料还能够增加嵌锂生成物从颗粒表面固相扩散至内部的速率。因此,本申请的负极活性材料具有良好的动力学性能,能够承受大倍率充电,并提升二次电池的快速充电能力,同时不牺牲二次电池高能量密度。
在一些实施例中,可选地,所有铁电材料均凸出于所述包覆层的表面。由此铁电材料暴露表面积更多,与电解液的接触面积增加,能够在用量更少时实现降低去溶剂化过程的动能势垒的作用。
在一些实施例中,所述包覆层的平均厚度为H nm,所述铁电材料的体积平均粒径Dv50为d 1nm,并且所述快充型负极活性材料满足:0.25≤H/d 1≤?1.1。H/d 1小于1.1时,能使至少部分铁电材料凸出于包覆层的表面,由此增加了与电解液的接触面积,从而能够在用量较少时实现降低去溶剂化过程的动能势垒的作用。H/d 1小于0.25时,铁电材料与电解液的接触面积较多,能够更好地实现降低去溶剂化过程的动能势垒的作用,但是此时负极活性材料整体不易压实,导致负极极片的离子传导能力和电子传导能力可能变差,进而可能影响二次电池的快速充电能力、能量密度和循环性能。因此,H/d 1在合适的范围内时,有利于二次电池同时具有高快速充电能力、高能量密度和良好的循环性能。可选 地,0.25≤H/d 1≤?1.0,0.25≤H/d 1≤?0.9,0.25≤H/d 1≤?0.8,0.25≤H/d 1≤?0.7,0.25≤H/d 1≤0.6,0.25≤H/d 1≤?0.5,0.25≤H/d 1≤?0.4,0.30≤?H/d 1≤?0.9,0.30≤H/d 1≤?0.8,0.30≤H/d 1≤?0.7,0.30≤?H/d 1≤?0.6,0.30≤?H/d 1≤0.5,0.30≤?H/d 1≤?0.4,0.35≤H/d 1≤0.9,0.35≤H/d 1≤?0.8,0.35≤H/d 1≤?0.7,0.35≤H/d 1≤?0.6或0.35≤H/d 1≤?0.5。
在一些实施例中,所述铁电材料的体积平均粒径Dv50为d 1nm,0<d 1≤?200。可选地,0<d 1≤180,0<d 1≤160,0<d 1≤140,0<d 1≤120,0<d 1≤100,0<d 1≤80,0<d 1≤?60,0<d 1≤40,20≤d 1≤180,20≤d 1≤160,20≤d 1≤?140,20≤d 1≤?120,20≤d 1≤?100,20≤d 1≤?80,20≤?d 1≤60,20≤d 1≤?40,30≤d 1≤180,30≤?d 1≤160,30≤d 1≤140,30≤d 1≤120,30≤?d 1≤?100,30≤?d 1≤?80或30≤d 1≤?60。铁电材料的体积平均粒径Dv50越小,其比表面积越大,因此在相同比表面积时所采用的铁电材料可以更少,由此能够降低二次电池的能量密度损失。
在一些实施例中,所述包覆层的平均厚度为H nm,20≤?H≤?100。包覆层包括导电性良好的导电碳材料,由此能增加嵌锂生成物从颗粒表面固相扩散至内部的速率,使负极活性材料具有良好的动力学性能。因此,包覆层的厚度较厚时,能够提升二次电池的快速充电能力,但是包覆层中的导电碳材料的孔隙较多、表面缺陷较多且比表面积较大,由此包覆层的厚度较厚时,负极活性材料与电解液之间的界面副反应较多,容易导致负极活性材料的首次库伦效率较低且容量衰减较快。因此,包覆层的平均厚度在合适的范围内时,有利于负极活性材料具有高快速充电能力的同时还具有高克容量和高首次库伦效率,进而二次电池能够同时具有高快速充电能力、高能量密度和高循环容量保持率。可选地,20≤H≤?95,20≤?H≤?90,20≤?H≤?85,20≤?H≤?80,20≤?H≤?75,20≤?H≤?70,20≤H≤?65,20≤?H≤?60,20≤?H≤?55,20≤?H≤?50,20≤?H≤?45或20≤?H≤?40。
在一些实施例中,可选地,所述铁电材料的介电常数为100以上。铁电材料具有高介电常数时,其表面可为溶剂化锂离子的去溶剂化过程提供一条新的路径,并且铁电材料的介电常数越高,其起到的降低去溶剂化过程的动能势垒的作用效果越好,但是其作用效果不会一直持续增加,同时介电常数越高,对铁电材料的制备工艺要求越来越高,由此还增加了生产成本。在一些实施例中,可选地,所述铁电材料的介电常数可以为100至100000,例如可以为100至50000,100至25000,100至10000,100至5000,100至4000,100至3000,100至2000,100至1000,100至500,150至50000,150至25000,150至10000,150至5000,150至4000,150至3000,150至2000,150至1000,150至500,200至50000,200至25000,200至10000,200至5000,200至4000,200至3000,200至2000或200至1000。
在本申请中,铁电材料的介电常数是指室温(25±5℃)下的介电常数,其具有本领域公知的含义,可以用本领域已知的仪器及方法进行测试。例如可以将铁电材料制备成圆形试样后,采用LCR测试仪测试电容量C并根据公式:介电常数ε=(C×d)/(ε 0×A)计算得到。C表示电容量,单位为法拉(F);d表示试样厚度,单位为cm;A表示试样面积,单位为cm 2;ε 0表示真空介电常数,ε 0=8.854×10 -14F/cm。在本申请中,测试条件可以为1KHz、1.0V、25±5℃。测试标准可依据GB/T 11297.11-2015。制备试样时可参考中国专利申请CN114217139A。
在一些实施例中,可选地,所述铁电材料的介电常数高于所述电解液的介电常数, 由此能够更好地降低去溶剂化过程的动能势垒,提高二次电池的快速充电能力。
在一些实施例中,所述铁电材料不溶于水、具有较高的居里温度,例如通常在80℃以上。由此能够在二次电池使用过程中,更好地发挥铁电材料的作用效果。
在一些实施例中,可选地,所述铁电材料包括选自钙钛矿结构氧化物、钨青铜型化合物、铋氧化物型层状结构化合物、铌酸锂(LiNbO 3)和钽酸锂(LiTaO 3)中的一种或多种的组合。更可选地,所述铁电材料选自钙钛矿结构氧化物。
可选地,所述钙钛矿结构氧化物具有分子式Ba 1-xA xTi 1-yB yO 3。A包括选自Pb、Sr、Ca、K、Na和Cd中的一种或多种的组合,B包括选自Sn、Hf、Zr、Ce、Nb和Th中的一种或多种的组合,0≤?x≤?1,0≤?y≤1。例如,所述钙钛矿结构氧化物可以包括选自BaTiO 3、Ba 1-x1Sr x1TiO 3(0≤x1≤?1)、SrTiO 3、PbTiO 3、PbZr y1Ti 1-y1O 3(0≤y1≤1)、BaZr y2Ti 1-y2O 3(0<y2<1)、KNbO 3、NaNbO 3中的一种或多种的组合。
可选地,所述钨青铜型化合物可具有分子式M zWO 3。M包括选自Na、K、Rb和Cs中的一种或多种的组合,0<z<1。例如,所述钨青铜型化合物可以包括选自Na z1WO 3(0<z1<1)、K z2WO 3(0<z2<1)中的一种或多种的组合。
可选地,所述铋氧化物型层状结构化合物具有分子式(Bi 2O 2)(C n-1D nO 3n+1)。C包括选自Na、K、Ba、Sr、Pb、Ca、Ln和Bi中的一种或多种的组合,D包括选自Zr、Cr、Nb、Ta、Mo、W、Fe、Ti和V中的一种或多种的组合,2≤n≤?5。例如,所述铋氧化物型层状结构化合物可以为SrBi 2Nb 2O 9、SrBi 2Ta 2O 9、SrBi 2Nb 2O 9、Bi 4Ti 3O 12中的一种或多种的组合。
在一些实施例中,所述铁电材料与所述碳基材料颗粒的质量比为α 1,α 1为(0.5~10):100。可选地,α 1为(0.5~9):100,(0.5~8):100,(0.5~7):100,(0.5~6):100,(0.5~5):100,(0.5~4):100,(0.5~3):100,(1~9):100,(1~8):100,(1~7):100,(1~6):100,(1~5):100,(1~4):100或(1~3):100。
α 1在合适的范围内时,有利于二次电池同时具有高快速充电能力和高能量密度。并且还能有效避免以下情况:α 1较大时,负极活性材料颗粒中非活性组分含量增加,活性组分的含量减少,由此可能使二次电池损失较多的能量密度;α 1较大时,铁电材料还可能覆盖负极活性材料较多表面,由此减少了负极活性材料表面活性位点,从而还可能导致二次电池快速充电能力和循环性能变差;α 1较小时,铁电材料含量较少,其降低去溶剂化过程的动能势垒的作用可能不明显,由此可能不利于提升二次电池的快速充电能力。
在一些实施例中,所述包覆层与所述碳基材料颗粒的质量比为α 2,α 2为(2~10):100。可选地,α 2为(2~9):100,(2~8):100,(2~7):100,(2~6):100,(2~5):100,(3~9):100,(3~8):100,(3~7):100,(3~6):100或(3~5):100。
α 2在合适的范围内时,有利于负极活性材料具有高快速充电能力的同时还具有高克容量、高首次库伦效率和高压实密度,进而二次电池能够同时具有高快速充电能力、高能量密度和高循环容量保持率。并且还能有效避免以下情况:α 2较大时,包覆层较厚,导电碳材料含量较高,由于导电碳材料的孔隙较多且比表面积较大,由此导致负极活性材料与电解液之间的界面副反应较多;同时,α 2较大时,导电碳材料的表面形貌粗糙且表面缺陷较多,由此使得负极活性材料不易压实,此外由于导电碳材料的表面缺陷结构不稳定,还容易导致负极活性材料的首次库伦效率较低且容量衰减较快,进而还可能使得 二次电池的容量发挥和循环性能变差;α 2较小时,不利于锂离子的快速嵌入和脱出,进而可能不利于提升二次电池的快速充电能力。
在一些实施例中,所述铁电材料与所述碳基材料颗粒的质量比为α 1,所述包覆层与所述碳基材料颗粒的质量比为α 2,α 12为1:6至4:1,可选地为1:4至2:1
α 12在合适的范围内时,有利于负极活性材料具有高快速充电能力的同时还具有高克容量、高首次库伦效率和高压实密度,进而二次电池能够同时具有高快速充电能力、高能量密度和高循环容量保持率。并且还能有效避免以下情况:α 12较大时,负极活性材料颗粒中非活性组分含量增加,活性组分的含量减少,由此可能使二次电池损失较多的能量密度,同时还不利于锂离子的快速嵌入和脱出;α 12较小时,铁电材料含量较少,其降低去溶剂化过程的动能势垒的作用可能不明显,由此可能使二次电池的快速充电能力变差,同时还容易导致负极活性材料的首次库伦效率较低、容量衰减较快。
包覆层包括导电碳材料。可选地,所述导电碳材料包括无定形碳。无定形碳是指石墨化晶化程度较低,近似非晶形态(或无固定形状和周期性结构规律)的过渡态碳材料,其可以经碳源(例如沥青、树脂、生物质材料等)碳化烧结处理得到。无定形碳的层间距较大,并且其在锂离子脱出和嵌入过程中不会引起体积收缩和膨胀效应,由此其晶体结构更稳定,能使负极活性材料具有良好的动力学性能和承受大倍率充电,从而能够提高二次电池的快速充电能力。所述无定形碳包括软碳、硬碳或其组合。可选地,在一些实施例中,所述导电碳材料包括包括硬碳,由此能进一步提高二次电池的快速充电能力。
在一些实施例中,所述碳基材料颗粒包括选自石墨(例如,人造石墨、天然石墨、氧化石墨等)、中间相碳微球、硬碳和软碳中的一种或多种的组合,可选地选自石墨。石墨具有循环性能稳定和克容量高的优势,由此还能使二次电池具有高能量密度和高循环稳定性。
在一些实施例中,所述包覆层的石墨化度为45%至80%。
在一些实施例中,所述碳基材料颗粒的石墨化度为88%至96%。
发明人研究发现,当包覆层和碳基材料颗粒还满足石墨化度在上述范围内时,有助于包覆层和碳基材料颗粒的晶型结构得到合理匹配,由此能有效提高锂离子的固相扩散速率,从而改善二次电池快速充电能力和循环性能。
在一些实施例中,所述碳基材料颗粒的形貌为一次颗粒、二次颗粒或其组合。二次颗粒通常由一次颗粒团聚得到。可选地,在所述二次颗粒形貌的碳基材料颗粒中,所述一次颗粒的体积平均粒径Dv50与其所组成的二次颗粒的体积平均粒径Dv50的比值为0.2至0.5。当碳基材料颗粒为二次颗粒形貌并且调节一次颗粒的体积平均粒径Dv50与其所组成的二次颗粒的体积平均粒径Dv50的比值在合适的范围内,有利于碳基材料颗粒具有较好的二次颗粒程度,从而能在具有良好的离子传输和电子传输性能的同时还具有较高的结构稳定性。
在一些实施例中,所述碳基材料颗粒的体积平均粒径Dv50为d 2μm,5≤?d 2≤20,可选地,8≤?d 2≤15。碳基材料颗粒的体积平均粒径Dv50在合适的范围内时,有利于本申请的负极活性材料具有较高的电化学活性,由此能使二次电池具有更高的快速充电能力。并且还能有效避免以下情况:碳基材料颗粒的体积平均粒径Dv50较小时,负极活性材料 的克容量较低、压实密度较低,由此不利于高能量密度电池的设计;同时碳基材料颗粒的体积平均粒径Dv50较小时,其比表面积较大、反应活性较高,由此导致负极活性材料与电解液之间的界面副反应可能增加,进而导致活性锂离子不可逆消耗增加,二次电池的容量发挥和能量密度可能变差;碳基材料颗粒的体积平均粒径Dv50较大时,颗粒表面活性位点减少,嵌锂生成物从颗粒表面固相扩散至内部的路径较长,由此可能不利于二次电池快速充电能力的提升。
在一些实施例中,所述快充型负极活性材料的体积平均粒径Dv50为5μm至20μm,可选地为8μm至15μm。通过调节负极活性材料的体积平均粒径Dv50在合适的范围内,有利于负极活性材料具有更好的离子传输和电子传输性能以及快速充电性能,同时还具有较高的粉体压实密度。
在一些实施例中,所述快充型负极活性材料的比表面积为0.8m 2/g至1.3m 2/g,可选地为0.9m 2/g至1.2m 2/g。通过调节负极活性材料的比表面积在合适的范围内,能减少采用其的负极极片与电解液之间的界面副反应,同时还能使采用其的负极极片具有合适的电化学反应活性,由此能使二次电池具有更高的快速充电能力。
在一些实施例中,所述快充型负极活性材料在20000N作用力下的粉体压实密度为1.5g/cm 3至1.9g/cm 3,可选地为1.5g/cm 3至1.7g/cm 3。通过调节负极活性材料的粉体压实密度在合适的范围内,能使负极膜层具有较高的压实密度,进而二次电池具有较高的能量密度。此外,通过调节负极活性材料的粉体压实密度在合适的范围内,还能使负极膜层在循环过程中具有较强的维持孔道结构的能力,由此负极极片的电解液浸润性更好,能更好地提升二次电池的循环性能。
在本申请中,包覆层的平均厚度为本领域公知的含义,可以用本领域已知的仪器及方法进行测试,例如可以采用透射电子显微镜得到TEM(Transmission Electron Microscope)图片,然后在TEM图片上量取多个(例如30个以上)不同位置的厚度,并取其平均值作为包覆层的平均厚度。
在本申请中,材料的体积平均粒径Dv50为本领域公知的含义,其表示材料累计体积分布百分数达到50%时所对应的粒径,可以用本领域已知的仪器及方法进行测试。例如可以参照GB/T 19077-2016粒度分布激光衍射法,采用激光粒度分析仪方便地测试,如英国马尔文仪器有限公司的Mastersizer 2000E型激光粒度分析仪。
在本申请中,材料的石墨化度为本领域公知的含义,可以用本领域已知的仪器及方法进行测试。例如可以使用X射线衍射仪(如Bruker D8Discover)进行测试,测试可参考JIS K 0131-1996、JB/T 4220-2011,得到d 002,然后根据公式g=(0.344-d 002)/(0.344-0.3354)×100%计算得出材料的石墨化度。在上述公式中,d 002是以纳米(nm)表示的材料晶体结构中(002)晶面的层间距。
在本申请中,材料的比表面积为本领域公知的含义,可以用本领域已知的仪器及方法进行测试。例如可以参照GB/T 19587-2017,采用氮气吸附比表面积分析测试方法测试,并用BET(BrunauerEmmett Teller)法计算得出,氮气吸附比表面积分析测试可以通过美国Micromeritics公司的Tri-Star3020型比表面积孔径分析测试仪进行。
在本申请中,材料的粉体压实密度为本领域公知的含义,可以用本领域已知的仪器及方法进行测试。例如可以参照标准GB/T24533-2009,通过电子压力试验机(例如 UTM7305型)测试。示例性测试方法如下:称取1g材料,加入底面积为1.327cm 2的模具中,加压至2000kg(相当于20000N),保压30s,然后卸压,保持10s,然后记录并计算得到材料在20000N作用力下的粉体压实密度。
需要说明的是,上述针对负极活性材料的各种参数测试,可以在涂布前取样测试,也可以从冷压后的负极膜层中取样测试。当负极活性材料测试样品是从经冷压后的负极膜层中取样时,作为示例,可以按如下步骤进行取样:任意选取一冷压后的负极膜层,对负极活性材料取样(例如可以选用刀片刮粉取样);将上述收集到的负极活性材料粉末置于去离子水中,之后进行抽滤、烘干,再将烘干后的负极活性材料在一定温度及时间下烧结(例如400℃,2h),去除粘结剂和导电剂,即得到负极活性材料测试样品。
下面结合附图说明本申请的快充型负极活性材料。图1是本申请的快充型负极活性材料10的一实施方式的示意图。如图1所示,快充型负极活性材料10包括碳基材料颗粒101、位于碳基材料颗粒101至少一部分表面的包覆层102以及分散于包覆层102中的铁电材料103,包覆层102包括导电碳材料,并且至少部分铁电材料103凸出于包覆层102的表面。
制备方法
本申请实施方式第二方面提供一种本申请第一方面的快充型负极活性材料的制备方法,其包括步骤:S10,提供碳基材料颗粒、碳源和铁电材料;S20,将所述碳基材料颗粒、所述碳源和所述铁电材料均匀混合,经碳化烧结处理在所述碳基材料颗粒至少一部分表面形成包括导电碳材料的包覆层,其中,所述铁电材料分散于所述包覆层中并且至少部分铁电材料凸出于所述包覆层的表面。
在本申请中,“碳源”是指能够形成导电碳材料的化合物。所述碳源包括选自有机碳源、无机碳源中的一种或多种的组合。可选地,所述碳源为有机碳源。
在一些实施例中,可选地,所述碳源包括选自沥青、树脂、生物质材料中的一种或多种的组合。作为示例,所述沥青包括选自煤沥青、石油沥青中的一种或多种的组合,可选地为石油沥青。作为示例,所述树脂包括选自酚醛树脂、环氧树脂中的一种或多种的组合。作为示例,所述生物质材料是指由动物、植物及微生物等生命体衍生得到的材料,主要由有机高分子物质组成,在化学成分上主要由碳、氢和氧三种元素组成,例如可以为多糖(如淀粉、蔗糖聚合物、葡萄糖聚合物、纤维素等)。
在一些实施例中,可选地,S20中的碳化烧结温度为700℃至1800℃,更可选地为1000℃至1300℃。
在一些实施例中,可选地,S20中的碳化烧结时间为1h至15h,可选地为6h至14h。
在S20中,通过将碳化烧结温度和碳化烧结时间控制在以上范围内,能使碳源碳化,并在碳基材料颗粒的至少一部分表面形成包含导电碳材料的包覆层,同时所述包覆层还能够具有合适的厚度和石墨化度。
在一些实施例中,所述碳基材料颗粒可以是市售产品,或者可选地,通过以下方法制备:S101,提供焦粉末,将所述焦粉末放入反应容器中;S102,对所述焦粉末进行石墨化处理,得到碳基材料颗粒。
在一些实施例中,所述焦粉末可以是市售产品,或者可选地,通过以下方法制备: S1011,将焦原料焦化处理得到焦;S1012,将得到的焦进行粉碎、整形、分级处理,得到焦粉末。
在本申请中,“焦原料”是指可以经处理得到“焦”的组分,即用于制备焦的原料;“焦”是指焦原料经焦化处理得到的产物;“焦粉末”与“焦”在组成上完全一致,不同之处在于“焦粉末”是指以一定颗粒尺寸的粉末形式存在的“焦”,即“焦”经破碎等处理后得到“焦粉末”。
可选地,所述焦原料可包括选自石油系原料、煤系原料中的一种或多种的组合。作为示例,所述石油系原料包括选自重油、渣油、减压渣油中的一种或多种的组合,所述煤系原料主要包括煤沥青。重油、渣油、减压渣油通常是在石油炼油工艺产生,煤沥青通常是在煤干馏工艺产生。
可选地,S1011中所得到的焦包括选自石油系非针状焦、石油系针状焦、煤系非针状焦、煤系针状焦中的一种或多种的组合。更可选地,S1011中所得到的焦包括石油系非针状焦(例如石油煅后焦、石油系生焦)、石油系针状焦中的一种或多种的组合。特别地,S1011中所得到的焦为石油系生焦。采用合适的焦能使所制备的碳基材料颗粒具有合适数量的端面和缺陷,进而具有较好的离子传输和电子传输性能以及较高的结构稳定性,由此能提高二次电池的快速充电能力和循环性能。
可选地,S1011中焦原料的焦化处理在延迟焦化装置中进行。延迟焦化装置包括加热炉和焦炭塔,延迟焦化工艺是指将焦原料先在加热炉中快速加热到所需焦化处理温度,然后进入焦炭塔,并在焦炭塔中经过预热、冷焦等工艺生成焦。
可选地,S1012中可以采用本领域已知的设备和方法对所得到的焦进行破碎,例如采用气流磨、机械磨、辊压磨或其他破碎设备。
破碎后所得到的焦粉末的形貌可包括块状、球状和类球状中的一种或多种的组合。破碎完成后,再通过整形以便将焦粉末的棱角打磨。整形程度越大,粉末颗粒越接近球形,这样能增加碳基材料颗粒表面的活性位点。整形处理还有利于后续的造粒工艺,使所得碳基材料颗粒中的二次颗粒部分具有较高的结构稳定性。整形处理可以采用本领域已知的设备和方法进行,例如整形机或其他整形设备。
破碎和整形过程中常常会产生较多的过小颗粒,有时还会存在过大颗粒,因而可根据需求进行分级处理,以除去粉末中的过小颗粒和过大颗粒。分级处理后能得到具有较好粒径分布的焦粉末,以便于后续的造粒工艺。分级处理可以采用本领域已知的设备和方法进行,例如分级筛、重力分级机、离心分级机等。
在一些实施方式中,可选地,S101还包括:向反应容器中加入粘结剂,将所述粘结剂与所述焦粉末均匀混合后进行造粒。加入粘结剂可以使所得到的碳基材料颗粒具有较好的二次颗粒程度,有利于在提高负极活性材料离子传输和电子传输性能的同时,使其还具有较高的结构稳定性。
可选地,所述粘结剂的质量百分含量为3%至12%,更可选地为5%至8%,基于所述焦粉末的总质量计。粘结剂的含量在合适的范围内,可以避免颗粒过度团聚。
可选地,所述粘结剂包括选自煤沥青、石油沥青、中间相沥青、酚醛树脂、环氧树脂、石油树脂中的一种或多种的组合。
造粒处理可以采用本领域已知的设备和方法进行,例如造粒机。造粒机通常包括 搅拌反应釜和对反应釜进行温度控制的模块。通过调控造粒过程中的搅拌转速、升温速率、造粒温度、降温速率等,能调控造粒程度和颗粒的结构强度,能使最终制备得到的碳基材料颗粒的体积平均粒径Dv50在所需范围内。
在一些实施例中,可选地,S102中的石墨化处理温度可为2400℃至3200℃,更可选地为2800℃至3200℃或2900℃至3100℃。
在一些实施例中,可选地,S102中的石墨化处理时间可为20h至48h。
石墨化处理能使碳基材料颗粒具有合适的石墨化度,以提高负极活性材料的克容量;石墨化处理还能使碳基材料颗粒具有较小的晶格膨胀率,以提高结构稳定性;石墨化处理还能有效消除碳基材料颗粒中的体相结构缺陷,以提高二次电池的循环稳定性。
石墨化处理可以采用本领域已知的设备和方法进行,例如石墨化炉,特别地采用艾奇逊石墨化炉。在石墨化处理结束后,还可以通过筛分除去石墨化处理过程中团聚形成的少量过大颗粒,这样可以防止过大颗粒影响所得到的负极活性材料的加工性能,如负极浆料的稳定性、涂布性能等。
在一些实施例中,所述快充型负极活性材料的制备方法包括步骤:将焦粉末和粘结剂放入反应容器中均匀混合后进行造粒;将所得到的造粒产物进行石墨化处理,得到碳基材料颗粒;将所得到的碳基材料颗粒与碳源和铁电材料均匀混合,经碳化烧结处理在所述碳基材料颗粒至少一部分表面形成包括导电碳材料的包覆层,其中,所述铁电材料分散于所述包覆层中并且至少部分铁电材料凸出于所述包覆层的表面。
本申请的快充型负极活性材料的制备方法工艺简单、生产成本低廉,并且能与当前碳基材料颗粒,特别地为人造石墨的制备工艺兼容,由此不需要额外增加生产设备和工艺步骤。通过本申请的方法制备快充型负极活性材料时,铁电材料不易凝集,由此能使得溶剂化锂离子的去溶剂化效果作用于整个负极活性材料,从而有利于负极活性材料具有更高的快速充电能力和更长的使用寿命。
本申请的快充型负极活性材料的制备方法中使用的一些原料及其含量等可以参考本申请实施方式第一方面的快充型负极活性材料,此处不再赘述。
负极极片
本申请实施方式第三方面提供一种负极极片,所述负极极片包括负极集流体以及设置在所述负极集流体至少一个表面上的负极膜层,所述负极膜层包括本申请实施方式第一方面的快充型负极活性材料或通过本申请实施方式第二方面的方法制备的快充型负极活性材料。例如,所述负极集流体具有在自身厚度方向相对的两个表面,所述负极膜层设置在所述负极集流体的两个相对表面中的任意一者或两者上。
在一些实施例中,所述负极膜层还可以包括本领域公知的用于二次电池的其他负极活性材料。作为示例,所述其他负极活性材料包括选自天然石墨、人造石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂中的一种或多种的组合。所述硅基材料可包括选自单质硅、硅氧化物、硅碳复合物、硅氮复合物和硅合金材料中的一种或多种的组合。所述锡基材料可包括选自单质锡、锡氧化物和锡合金材料中的一种或多种的组合。
在一些实施例中,所述负极膜层还可选地包括负极导电剂。本申请对所述负极导电剂的种类没有特别的限制,作为示例,所述负极导电剂可包括选自超导碳、导电石墨、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯和碳纳米纤维中的一种或多种的组合。 在一些实施例中,基于所述负极膜层的总质量计,所述负极导电剂的质量百分含量在5%以下。
在一些实施例中,所述负极膜层还可选地包括负极粘结剂。本申请对所述负极粘结剂的种类没有特别的限制,作为示例,所述负极粘结剂可包括选自丁苯橡胶(SBR)、水溶性不饱和树脂SR-1B、水性丙烯酸类树脂(例如,聚丙烯酸PAA、聚甲基丙烯酸PMAA、聚丙烯酸钠PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)和羧甲基壳聚糖(CMCS)中的一种或多种的组合。在一些实施例中,基于所述负极膜层的总质量计,所述负极粘结剂的质量百分含量在5%以下。
在一些实施例中,所述负极膜层还可选地包括其他助剂。作为示例,其他助剂可包括增稠剂,例如,羧甲基纤维素钠(CMC-Na)、PTC热敏电阻材料等。在一些实施例中,基于所述负极膜层的总质量计,所述其他助剂的质量百分含量在2%以下。
在一些实施例中,所述负极集流体可采用金属箔片或复合集流体。作为金属箔片的示例,可采用铜箔或铜合金箔。复合集流体可包括高分子材料基层以及形成于高分子材料基层至少一个表面上的金属材料层,作为示例,金属材料可包括选自铜、铜合金、镍、镍合金、钛、钛合金、银和银合金中的一种或多种的组合,高分子材料基层可包括选自聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)和聚乙烯(PE)中的一种或多种的组合。
所述负极膜层通常是将负极浆料涂布在负极集流体上,经干燥、冷压而成的。所述负极浆料通常是将负极活性材料、可选的导电剂、可选地粘结剂、其他可选的助剂分散于溶剂中并搅拌均匀而形成的。溶剂可以是N-甲基吡咯烷酮(NMP)或去离子水,但不限于此。
所述负极极片并不排除除了所述负极膜层之外的其他附加功能层。例如在某些实施例中,本申请所述的负极极片还包括夹在所述负极集流体和所述负极膜层之间、设置于所述负极集流体表面的导电底涂层(例如由导电剂和粘结剂组成)。在另外一些实施例中,本申请所述的负极极片还包括覆盖在所述负极膜层表面的保护层。
二次电池
本申请实施方式第四方面提供了一种二次电池,其包括本申请第三方面的负极极片。
二次电池又称为充电电池或蓄电池,是指在电池放电后可通过充电的方式使活性材料激活而继续使用的电池。二次电池包括电极组件和电解液,电极组件通常包括正极极片、负极极片和隔离膜。隔离膜设置在正极极片和负极极片之间,主要起到防止正极和负极短路的作用,同时可以使锂离子通过。电解液在正极极片和负极极片之间起到传导锂离子的作用。本申请的二次电池可为含锂二次电池,特别地,可为锂离子二次电池。
[负极极片]
本申请的二次电池中使用的负极极片为本申请第三方面任一实施例的负极极片。
[正极极片]
在一些实施例中,所述正极极片包括正极集流体以及设置在所述正极集流体至少一个表面上的正极膜层。例如,所述正极集流体具有在自身厚度方向相对的两个表面,所述正极膜层设置于所述正极集流体的两个相对表面中的任意一者或两者上。
所述正极膜层包括正极活性材料,所述正极活性材料可采用本领域公知的用于二次电池的正极活性材料。例如,所述正极活性材料可包括选自锂过渡金属氧化物、橄榄石结构的含锂磷酸盐及其各自的改性化合物中的一种或多种的组合。锂过渡金属氧化物的示例可包括选自锂钴氧化物、锂镍氧化物、锂锰氧化物、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物、锂镍钴铝氧化物及其各自的改性化合物中的一种或多种的组合。橄榄石结构的含锂磷酸盐的示例可包括选自磷酸铁锂、磷酸铁锂与碳的复合材料、磷酸锰锂、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料及其各自的改性化合物中的一种或多种的组合。
在一些实施例中,为了进一步提高二次电池的能量密度,所述正极活性材料可以包括式1所示的锂过渡金属氧化物及其改性化合物中的一种或多种的组合。
Li aNi bCo cM dO eA f   式1
在式1中,0.8≤a≤1.2,0.5≤b<1,0<c<1,0<d<1,1≤e≤2,0≤f≤1,M包括选自Mn、Al、Zr、Zn、Cu、Cr、Mg、Fe、V、Ti和B中的一种或多种的组合,A包括选自N、F、S和Cl中的一种或多种的组合。
在本申请中,上述各正极活性材料的改性化合物可以是对所述正极活性材料进行掺杂改性和/或表面包覆改性。
在一些实施例中,所述正极膜层还可选地包括正极导电剂。本申请对所述正极导电剂的种类没有特别的限制,作为示例,所述正极导电剂包括选自超导碳、导电石墨、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯和碳纳米纤维中的一种或多种的组合。在一些实施例中,基于所述正极膜层的总质量计,所述正极导电剂的质量百分含量在5%以下。
在一些实施例中,所述正极膜层还可选地包括正极粘结剂。本申请对所述正极粘结剂的种类没有特别的限制,作为示例,所述正极粘结剂可包括选自聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物和含氟丙烯酸酯类树脂中的一种或多种的组合。在一些实施例中,基于所述正极膜层的总质量计,所述正极粘结剂的质量百分含量在5%以下。
在一些实施例中,所述正极集流体可采用金属箔片或复合集流体。作为金属箔片的示例,可采用铝箔或铝合金箔。复合集流体可包括高分子材料基层以及形成于高分子材料基层至少一个表面上的金属材料层,作为示例,金属材料可包括选自铝、铝合金、镍、镍合金、钛、钛合金、银和银合金中的一种或多种的组合,高分子材料基层可包括选自聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)和聚乙烯(PE)中的一种或多种的组合。
所述正极膜层通常是将正极浆料涂布在正极集流体上,经干燥、冷压而成的。所述正极浆料通常是将正极活性材料、可选的导电剂、可选的粘结剂以及任意的其他组分分散于溶剂中并搅拌均匀而形成的。溶剂可以是N-甲基吡咯烷酮(NMP),但不限于此。[电解液]
本申请的电解液可采用本领域公知的用于二次电池的电解液。所述电解液包括锂盐和有机溶剂。
作为示例,所述锂盐可包括选自六氟磷酸锂(LiPF 6)、四氟硼酸锂(LiBF 4)、高氯酸锂(LiClO 4)、六氟砷酸锂(LiAsF 6)、双氟磺酰亚胺锂(LiFSI)、双三氟甲磺酰亚胺锂(LiTFSI)、三氟甲磺酸锂(LiTFS)、二氟草酸硼酸锂(LiDFOB)、二草酸硼酸锂(LiBOB)、二氟磷酸锂(LiPO 2F 2)、二氟二草酸磷酸锂(LiDFOP)和四氟草酸磷酸锂(LiTFOP)中的一种或多种的组合。
作为示例,所述有机溶剂可包括选自碳酸乙烯酯(EC)、碳酸亚丙酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸亚丁酯(BC)、甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、丁酸甲酯(MB)、丁酸乙酯(EB)、1,4-丁内酯(GBL)、环丁砜(SF)、二甲砜(MSM)、甲乙砜(EMS)和二乙砜(ESE)中的一种或多种的组合。
[隔离膜]
本申请对所述隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施例中,所述隔离膜的材质可以包括选自玻璃纤维、无纺布、聚乙烯、聚丙烯和聚偏二氟乙烯中的一种或多种的组合。所述隔离膜可以是单层薄膜,也可以是多层复合薄膜。当所述隔离膜为多层复合薄膜时,各层的材料相同或不同。
在一些实施例中,所述正极极片、所述隔离膜和所述负极极片可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施例中,所述二次电池可包括外包装。该外包装可用于封装上述电极组件及电解液。
在一些实施例中,所述二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。所述二次电池的外包装也可以是软包,例如袋式软包。所述软包的材质可以是塑料,如聚丙烯(PP)、聚对苯二甲酸丁二醇酯(PBT)和聚丁二酸丁二醇酯(PBS)中的一种或多种的组合。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。如图2是作为一个示例的方形结构的二次电池5。
在一些实施例中,如图3所示,外包装可包括壳体51和盖板53。壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53用于盖设所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,可根据需求来调节。
本申请的二次电池的制备方法是公知的。在一些实施例中,可将正极极片、隔离膜、负极极片和电解液组装形成二次电池。作为示例,可将正极极片、隔离膜、负极极片经卷绕工艺或叠片工艺形成电极组件,将电极组件置于外包装中,烘干后注入电解液,经过真空封装、静置、化成、整形等工序,得到二次电池。
在本申请的一些实施例中,根据本申请的二次电池可以组装成电池模块,电池模 块所含二次电池的数量可以为多个,具体数量可根据电池模块的应用和容量来调节。
图4是作为一个示例的电池模块4的示意图。如图4所示,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施例中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以根据电池包的应用和容量进行调节。
图5和图6是作为一个示例的电池包1的示意图。如图5和图6所示,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2用于盖设下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
用电装置
本申请实施方式第五方面提供一种用电装置,所述用电装置包括本申请的二次电池、电池模块和电池包中的至少一种。所述二次电池、电池模块和电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以但不限于是移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等。
所述用电装置可以根据其使用需求来选择二次电池、电池模块或电池包。
图7是作为一个示例的用电装置的示意图。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的用电装置可以是手机、平板电脑、笔记本电脑等。该用电装置通常要求轻薄化,可以采用二次电池作为电源。
实施例
下述实施例更具体地描述了本申请公开的内容,这些实施例仅仅用于阐述性说明,因为在本申请公开内容的范围内进行各种修改和变化对本领域技术人员来说是明显的。除非另有声明,以下实施例中所报道的所有份、百分比和比值都是基于质量计,而且实施例中使用的所有试剂都可商购获得或是按照常规方法进行合成获得,并且可直接使用而无需进一步处理,以及实施例中使用的仪器均可商购获得。
实施例1
步骤(1):负极活性材料的制备
S10,将石油渣油在490℃~510℃条件下延迟焦化处理,得到石油非针状焦生焦;对生焦进行粉碎、整形、分级处理,得到焦粉末;将所获得的焦粉末与粘结剂煤沥青混合,然后进行造粒;将所获得的造粒产物置于石墨坩埚中,然后将石墨坩埚置于艾奇逊石墨化炉,向石墨坩埚周围填入电阻料,通电使电流流经电阻料产生热能,在3000℃左右进行约30h石墨化处理,得到人造石墨颗粒。人造石墨颗粒的体积平均粒径Dv50约为9.8μm、石墨化度约为92%。
S20,将所获得的人造石墨颗粒与碳源石油沥青(加入质量以残碳值计)、铁电材料BaTiO 3(体积平均粒径Dv50为200nm、介电常数为2000)按照质量比100:3:3均匀混合后在轨道窑内进行碳化烧结处理,最高温区温度约1150℃,最高温区下的运行时间约12h,以在人造石墨颗粒至少一部分表面形成无定形碳包覆层,得到负极活性材料。在所获得的负极活性材料中,BaTiO 3分散于包覆层中并且至少部分BaTiO 3凸出于包覆层表面。
步骤(2):负极极片的制备
将上述制备的负极活性材料、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC-Na)、导电剂炭黑按质量比96.8:1.2:1.2:0.8在适量的溶剂去离子水中充分搅拌混合,形成均匀的负极浆料;将负极浆料均匀涂覆于负极集流体铜箔的表面上,经干燥、冷压后,得到负极极片。涂覆量为0.162kg/m 2,压实密度为1.65g/cm 3
步骤(3):正极极片的制备
将正极活性材料LiNi 0.5Co 0.2Mn 0.3O 2(NCM523)、导电剂炭黑、粘结剂聚偏氟乙烯(PVDF)按质量比96.2:1.8:2在适量的溶剂NMP中充分搅拌混合,形成均匀的正极浆料;将正极浆料均匀涂覆于正极集流体铝箔的表面上,经干燥、冷压后,得到正极极片。涂覆量为0.256kg/m 2,压实密度为3.4g/cm 3
步骤(4):电解液的制备
将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按照按体积比1:1:1进行混合得到有机溶剂,接着将充分干燥的LiPF 6溶解于上述有机溶剂中,配制成浓度为1mol/L的电解液。
步骤(5):隔离膜的制备
采用多孔聚乙烯膜作为隔离膜。
步骤(6):二次电池的制备
将正极极片、隔离膜、负极极片按顺序堆叠并卷绕,得到电极组件;将电极组件置于外包装中,干燥后注入电解液,经过真空封装、静置、化成、整形等工序,得到二次电池。
实施例2至16
实施例2至16的二次电池按照与实施例1类似的方法相似制备,不同之处在于调整了“负极活性材料的制备”中的相关参数,具体参数详见表2。
对比例1
对比例1的二次电池按照与实施例1类似的方法相似制备,不同的是使用常规无包覆层的人造石墨作为负极活性材料。具体地,人造石墨按照下述方法制备。
将石油渣油在490℃~510℃条件下延迟焦化处理,得到石油非针状焦生焦;对生焦进行粉碎、整形、分级处理,得到焦粉末;将所获得的焦粉末与粘结剂煤沥青混合,然后进行造粒;将所获得的造粒产物置于石墨坩埚中,然后将石墨坩埚置于艾奇逊石墨化炉,向石墨坩埚周围填入电阻料,通电使电流流经电阻料产生热能,在3000℃左右进行约30h石墨化处理,得到人造石墨颗粒。人造石墨颗粒的体积平均粒径Dv50约为9.8μm、石墨化度约为92%。
对比例2
对比例2的二次电池按照与实施例1类似的方法相似制备,不同的是负极活性材料按照下述方法制备。
S10,将石油渣油在490℃~510℃条件下延迟焦化处理,得到石油非针状焦生焦;对生焦进行粉碎、整形、分级处理,得到焦粉末;将所获得的焦粉末与粘结剂煤沥青混合,然后进行造粒;将所获得的造粒产物置于石墨坩埚中,然后将石墨坩埚置于艾奇逊石墨化炉,向石墨坩埚周围填入电阻料,通电使电流流经电阻料产生热能,在3000℃左右进行约30h石墨化处理,得到人造石墨颗粒。人造石墨颗粒的体积平均粒径Dv50约为9.8μm、石墨化度约为92%。
S20,将所获得的人造石墨颗粒与碳源石油沥青混合后在轨道窑内进行碳化烧结处理,最高温区温度约1150℃,最高温区下的运行时间约12h,以在人造石墨颗粒至少一部分表面形成无定形碳包覆层,得到负极活性材料。
对比例3
对比例3的二次电池按照与实施例1类似的方法相似制备,不同的是负极活性材料和负极极片按照下述方法制备。
步骤(1):负极活性材料的制备
S10,将石油渣油在490℃~510℃条件下延迟焦化处理,得到石油非针状焦生焦;对生焦进行粉碎、整形、分级处理,得到焦粉末;将所获得的焦粉末与粘结剂煤沥青混合,然后进行造粒;将所获得的造粒产物置于石墨坩埚中,然后将石墨坩埚置于艾奇逊石墨化炉,向石墨坩埚周围填入电阻料,通电使电流流经电阻料产生热能,在3000℃左右进行约30h石墨化处理,得到人造石墨颗粒。人造石墨颗粒的体积平均粒径Dv50约为9.8μm、石墨化度约为92%。
S20,将所获得的人造石墨颗粒与碳源石油沥青混合后在轨道窑内进行碳化烧结处理,最高温区温度约1150℃,最高温区下的运行时间约12h,以在人造石墨颗粒至少一部分表面形成无定形碳包覆层,得到负极活性材料。
步骤(2):负极极片的制备
将上述制备的负极活性材料、铁电材料BaTiO 3(体积平均粒径Dv50为85nm)、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC-Na)、导电剂炭黑按照质量比93.8:3:1.2:1.2:0.8在适量的溶剂去离子水中充分搅拌混合,形成均匀的负极浆料;将负极浆料均匀涂覆于负极集流体铜箔的表面上,经干燥、冷压后,得到负极极片。
对比例4
对比例4的二次电池按照与实施例1类似的方法相似制备,不同的是负极活性材料按照下述方法制备。
S10,将石油渣油在490℃~510℃条件下延迟焦化处理,得到石油非针状焦生焦;对生焦进行粉碎、整形、分级处理,得到焦粉末;将所获得的焦粉末与粘结剂煤沥青混合,然后进行造粒;将所获得的造粒产物置于石墨坩埚中,然后将石墨坩埚置于艾奇逊石墨化炉,向石墨坩埚周围填入电阻料,通电使电流流经电阻料产生热能,在3000℃左右进行约30h石墨化处理,得到人造石墨颗粒。人造石墨颗粒的体积平均粒径Dv50约为9.8μm、石墨化度约为92%。
S20,将所获得的人造石墨颗粒与碳源石油沥青混合后在轨道窑内进行碳化烧结 处理,最高温区温度约1150℃,最高温区下的运行时间约12h,以在人造石墨颗粒至少一部分表面形成无定形碳包覆层。
S30,将所获得的具有无定形碳包覆层的人造石墨颗粒与铁电材料BaTiO 3(体积平均粒径Dv50为85nm)按照质量比97:3球磨均匀混合后,放入行星式球磨机,在环境温度为25℃、300转/分钟的转速下球磨2h后取出,得到负极活性材料。
测试部分
(1)体积平均粒径Dv50测试
取一定量上述制备的负极活性材料样品,通过Mastersizer2000E型激光粒度分析仪测试体积平均粒径Dv50。测试标准依据GB/T19077-2016。
(2)比表面积测试
取一定量上述制备的负极活性材料样品,通过美国Micromeritics公司的Tri-Star 3020型比表面积孔径分析测试仪测试比表面积。比表面积的计算方法为BET(BrunauerEmmett Teller)法。测试标准依据GB/T 19587-2017。
(3)粉体压实密度测试
取一定量上述制备的负极活性材料样品,加入UTM7305型电子压力试验机的底面积为1.327cm 2的模具中,加压至2000kg(相当于20000N),保压30s,然后卸压,保持10s,然后记录并计算得到负极活性材料在20000N作用力下的粉体压实密度。测试标准依据GB/T24533-2009。
(4)石墨化度测试
取一定量上述制备的负极活性材料样品,采用Bruker D8DiscoverX射线衍射仪进行测试,分别得到包覆层和碳基材料颗粒的(002)晶面的层间距d 002,然后根据公式g=(0.344-d 002)/(0.344-0.3354)×100%,计算得出包覆层的石墨化度g 1和碳基材料颗粒的石墨化度g 2。测试标准依据JISK 0131-1996和JB/T4220-2011。
(5)包覆层平均厚度测试
取一定量上述制备的负极活性材料样品,从单个颗粒中间切取100nm左右薄片,然后对薄片进行透射电子显微镜分析测试,得到TEM图片,然后在TEM图片上量取多个(例如5个以上)不同位置的厚度,并测试至少6个负极活性材料样品,取测试结果的平均值作为包覆层的平均厚度。
(6)初始克容量测试
将上述制备的负极活性材料、导电剂炭黑、粘结剂聚偏氟乙烯(PVDF)按质量比91.6:1.8:6.6与溶剂N-甲基吡咯烷酮(NMP)中混合均匀,制成浆料;将制备好的浆料涂覆于铜箔上,于烘箱中干燥后备用;之后以金属锂片为对电极,以聚乙烯(PE)薄膜作为隔离膜,滴入几滴与上述二次电池相同的电解液,并在氩气保护的手套箱中组装成CR2430型扣式电池。
将所得扣式电池静置12h后,在25℃下,以0.05C恒流放电至0.005V,静置10min,以50μA的电流再恒流放电至0.005V,静置10min,以10μA再恒流放电至0.005V;然后以0.1C恒流充电至2V,记录充电容量。充电容量与负极活性材料质量的比值即为负极活性材料的初始克容量。
(7)二次电池快速充电性能测试
在25℃下,将上述制备的二次电池以0.33C恒流充电至充电截止电压4.4V,之后恒压充电至电流为0.05C,静置5min,再以0.33C恒流放电至放电截止电压2.8V,记录其实际容量为C0。
然后将二次电池依次以0.5C0、1C0、1.5C0、2C0、2.5C0、3C0、3.5C0、4C0、4.5C0恒流充电至全电池充电截止电压4.4V或者0V负极截止电位(以先达到者为准),每次充电完成后需以1C0放电至全电池放电截止电压2.8V,记录不同充电倍率下充电至10%、20%、30%……80%SOC(State of Charge,荷电状态)时所对应的负极电位,绘制出不同SOC态下的倍率-负极电位曲线,线性拟合后得出不同SOC态下负极电位为0V时所对应的充电倍率,该充电倍率即为该SOC态下的充电窗口,分别记为C10%SOC、C20%SOC、C30%SOC、C40%SOC、C50%SOC、C60%SOC、C70%SOC、C80%SOC,根据公式(60/C20%SOC+60/C30%SOC+60/C40%SOC+60/C50%SOC+60/C60%SOC+60/C70%SOC+60/C80%SOC)×10%计算得到该二次电池从10%SOC充电至80%SOC的充电时间T。充电时间T越短,则代表二次电池的快速充电性能越优秀。
(8)循环性能测试
在25℃下,将上述制备的二次电池以0.33C恒流充电至充电截止电压4.4V,之后恒压充电至电流为0.05C,静置5min,再以0.33C恒流放电至放电截止电压2.8V,记录其初始容量为C0。然后按照表1所示策略进行充电,以0.33C放电,记录每次循环的放电容量Cn,直至循环容量保持率(即Cn/C0×100%)为80%,记录循环圈数。循环圈数越多,则代表二次电池的循环性能越好。
表1
二次电池的荷电状态SOC 充电倍率(C)
0~10% 0.33
10%~20% 5.2
20%~30% 4.5
30%~40% 4.2
40%~50% 3.3
50%~60% 2.6
60%~70% 2.0
70%~80% 1.5
80%~100% 0.33
表2给出实施例1至16的负极活性材料制备参数。
表3出实施例1至16和对比例1至4按照上述性能测试方法得到的测试结果。
Figure PCTCN2022101194-appb-000001
Figure PCTCN2022101194-appb-000002
综合表3的测试结果可知,本申请的负极活性材料具有良好的动力学性能,能缩短二次电池的快速充电时间、延长二次电池的循环寿命,同时不牺牲负极活性材料的高克容量。
与对比例1相比,对比例2采用无定形碳包覆的人造石墨作为负极活性材料,其可以在一定程度上改善二次电池的快速充电性能和循环性能,但改善效果有限,无法满足人们对二次电池更高快速充电能力和更长循环寿命的要求。
与对比例2相比,对比例3还在负极浆料中加入了铁电材料,由此能进一步改善二次电池的快速充电性能和循环性能,但改善效果有限,无法满足人们对二次电池更高快速充电能力和更长循环寿命的要求。可能的原因在于,通过在负极浆料中物理混合加入铁电材料,一方面由于铁电材料的密度大容易在负极浆料中沉降,难以形成稳定的负极浆料,影响生产优率和负极极片的质量;另一方面,采用物理混合的方式加入铁电材料会导致部分铁电材料和负极活性材料在负极极片中没有形成物理接触,进而无法发挥铁电材料的作用,由此导致对二次电池快速充电性能和循环性能的改善效果有限。
与对比例1相比,对比例4采用钛酸钡包覆的人造石墨作为负极活性材料,但是负极活性材料通过直接球磨法得到,与对比例1相比在一定程度上改善了二次电池的快速充电性能和循环性能,但改善效果有限,无法满足人们对二次电池更高快速充电能力和更长循环寿命的要求。可能的原因在于,一方面,直接球磨法是通过对人造石墨颗粒和铁电材料颗粒进行撞击和研磨而将二者复合在一起形成负极活性材料,但是高能球磨会破坏已经成型的人造石墨颗粒形貌,由此可能造成表面无定形碳包覆层脱落,影响负极活性材料的快速充电性能,另一方面,负极活性材料表面被破坏后,还会导致电解液(特别是溶剂)嵌入负极活性材料,增加活性锂离子的不可逆消耗,由此还降低了二次电池的循环性能。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (17)

  1. 一种快充型负极活性材料,其中,所述快充型负极活性材料包括碳基材料颗粒、位于所述碳基材料颗粒至少一部分表面的包覆层以及分散于所述包覆层中的铁电材料,所述包覆层包括导电碳材料,至少部分铁电材料凸出于所述包覆层的表面。
  2. 根据权利要求1所述的快充型负极活性材料,其中,所述包覆层的平均厚度为H nm,所述铁电材料的体积平均粒径Dv50为d 1nm,并且所述快充型负极活性材料满足:0.25≤H/d 1≤1.1,可选地,0.25≤H/d 1≤0.5。
  3. 根据权利要求1-2中任一项所述的快充型负极活性材料,其中,
    所述铁电材料的体积平均粒径Dv50为d 1nm,0<d 1≤200,可选地,0<d 1≤100;和/或,
    所述包覆层的平均厚度为Hnm,20≤H≤100,可选地,20≤H≤50。
  4. 根据权利要求1-3中任一项所述的快充型负极活性材料,其中,
    所述铁电材料与所述碳基材料颗粒的质量比为α 1,α 1为(0.5~10):100,可选地为(1~3):100;和/或,
    所述包覆层与所述碳基材料颗粒的质量比为α 2,α 2为(2~10):100,可选地为(2~5):100。
  5. 根据权利要求1-4中任一项所述的快充型负极活性材料,其中,所述铁电材料与所述碳基材料颗粒的质量比为α 1,所述包覆层与所述碳基材料颗粒的质量比为α 2,α 12为1:6至4:1,可选地为1:4至2:1。
  6. 根据权利要求1-5中任一项所述的快充型负极活性材料,其中,
    所述包覆层的石墨化度为45%至80%;和/或,
    所述碳基材料颗粒的石墨化度为88%至96%。
  7. 根据权利要求1-6中任一项所述的快充型负极活性材料,其中,所述碳基材料颗粒的体积平均粒径Dv50为d 2μm,5≤d 2≤20,可选地,8≤d 2≤15。
  8. 根据权利要求1-7中任一项所述的快充型负极活性材料,其中,所述碳基材料颗粒的形貌为一次颗粒、二次颗粒或其组合,
    可选地,在所述二次颗粒形貌的碳基材料颗粒中,所述一次颗粒的体积平均粒径Dv50与其所组成的二次颗粒的体积平均粒径Dv50的比值为0.2至0.5。
  9. 根据权利要求1-8中任一项所述的快充型负极活性材料,其中,
    所述铁电材料的介电常数为100以上,可选地为100至100000;和/或,
    所述铁电材料的居里温度为80℃以上。
  10. 根据权利要求1-9中任一项所述的快充型负极活性材料,其中,
    所述碳基材料颗粒包括选自石墨、中间相碳微球、硬碳和软碳中的一种或多种的组合,可选地选自石墨;和/或,
    所述包覆层中的导电碳材料包括无定形碳,可选地包括硬碳;和/或,
    所述铁电材料包括选自钙钛矿结构氧化物、钨青铜型化合物、铋氧化物型层状结构化合物、铌酸锂和钽酸锂中的一种或多种的组合。
  11. 根据权利要求1-10中任一项所述的快充型负极活性材料,其中,所述快充型负极活性材料满足如下条件(1)至(3)中的至少一者:
    (1)所述快充型负极活性材料的体积平均粒径Dv50为5μm至20μm,可选地为8μm至15μm;
    (2)所述快充型负极活性材料的比表面积为0.8m 2/g至1.3m 2/g,可选地为0.9m 2/g至1.2m 2/g;
    (3)所述快充型负极活性材料在20000N作用力下的粉体压实密度为1.5g/cm 3至1.9g/cm 3,可选地为1.5g/cm 3至1.7g/cm 3
  12. 一种快充型负极活性材料的制备方法,包括步骤:
    S10,提供碳基材料颗粒、碳源和铁电材料,可选地,所述碳源包括选自沥青、树脂、生物质材料中的一种或多种的组合;
    S20,将所述碳基材料颗粒、所述碳源和所述铁电材料均匀混合,经碳化烧结处理在所述碳基材料颗粒至少一部分表面形成包括导电碳材料的包覆层,其中,所述铁电材料分散于所述包覆层中并且至少部分铁电材料凸出于所述包覆层的表面。
  13. 根据权利要求12所述的方法,其中,
    S20中的碳化烧结温度为700℃至1800℃,可选地为1000℃至1300℃;和/或,
    S20中的碳化烧结时间为1h至15h,可选地为6h至14h。
  14. 根据权利要求12-13中任一项所述的方法,其中,所述碳基材料颗粒通过以下方法制备:
    S101,提供焦粉末,将所述焦粉末放入反应容器中;
    S102,对所述焦粉末进行石墨化处理,得到碳基材料颗粒。
  15. 一种负极极片,包括负极集流体以及设置在所述负极集流体至少一个表面上的负极膜层,其中,所述负极膜层包括权利要求1-11中任一项所述的快充型负极活性材料或通过权利要求12-14中任一项所述的方法制备的快充型负极活性材料。
  16. 一种二次电池,包括权利要求15所述的负极极片。
  17. 一种用电装置,包括权利要求16所述的二次电池。
PCT/CN2022/101194 2022-06-24 2022-06-24 快充型负极活性材料及其制备方法、负极极片、二次电池及用电装置 WO2023245639A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22947406.9A EP4451363A1 (en) 2022-06-24 2022-06-24 Fast-charging negative electrode active material and preparation method therefor, negative electrode sheet, secondary battery, and electric device
PCT/CN2022/101194 WO2023245639A1 (zh) 2022-06-24 2022-06-24 快充型负极活性材料及其制备方法、负极极片、二次电池及用电装置
JP2024521843A JP2024537572A (ja) 2022-06-24 2022-06-24 急速充電式負極活性材料及びその作製方法、負極シート、二次電池及び電力消費装置
CN202280005863.0A CN116806376B (zh) 2022-06-24 2022-06-24 快充型负极活性材料及其制备方法、负极极片、二次电池及用电装置
KR1020247011747A KR20240054369A (ko) 2022-06-24 2022-06-24 급속 충전형 부극 활성 재료 및 이의 제조 방법, 부극 시트, 이차 전지 및 전기 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101194 WO2023245639A1 (zh) 2022-06-24 2022-06-24 快充型负极活性材料及其制备方法、负极极片、二次电池及用电装置

Publications (1)

Publication Number Publication Date
WO2023245639A1 true WO2023245639A1 (zh) 2023-12-28

Family

ID=88079803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101194 WO2023245639A1 (zh) 2022-06-24 2022-06-24 快充型负极活性材料及其制备方法、负极极片、二次电池及用电装置

Country Status (5)

Country Link
EP (1) EP4451363A1 (zh)
JP (1) JP2024537572A (zh)
KR (1) KR20240054369A (zh)
CN (1) CN116806376B (zh)
WO (1) WO2023245639A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117878429B (zh) * 2024-03-11 2024-07-19 蜂巢能源科技股份有限公司 一种电池及电池设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101855756A (zh) * 2008-12-02 2010-10-06 科卡姆有限公司 用于锂蓄电池的壳核型阳极活性材料及其制备方法以及包含所述材料的锂蓄电池
JP2016039114A (ja) * 2014-08-11 2016-03-22 トヨタ自動車株式会社 非水電解質二次電池
JP2016134267A (ja) * 2015-01-19 2016-07-25 トヨタ自動車株式会社 リチウムイオン二次電池
JP2017054615A (ja) * 2015-09-07 2017-03-16 トヨタ自動車株式会社 被覆負極活物質
CN110299556A (zh) * 2018-03-22 2019-10-01 株式会社东芝 电极、二次电池、电池组和车辆
CN114217139A (zh) 2021-12-16 2022-03-22 安徽中创电子信息材料有限公司 一种钛酸钡粉末介电常数的测试方法
CN114408915A (zh) * 2021-12-21 2022-04-29 惠州市禾腾能源科技有限公司 一种高能量密度石墨复合材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904290B (zh) * 2012-12-28 2016-11-23 华为技术有限公司 水系锂离子电池复合电极及其制备方法、水系锂离子电池
KR20220012024A (ko) * 2020-07-22 2022-02-03 에스케이온 주식회사 리튬 이차 전지
CN112133887A (zh) * 2020-10-09 2020-12-25 昆山宝创新能源科技有限公司 准固态电池极片及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101855756A (zh) * 2008-12-02 2010-10-06 科卡姆有限公司 用于锂蓄电池的壳核型阳极活性材料及其制备方法以及包含所述材料的锂蓄电池
JP2016039114A (ja) * 2014-08-11 2016-03-22 トヨタ自動車株式会社 非水電解質二次電池
JP2016134267A (ja) * 2015-01-19 2016-07-25 トヨタ自動車株式会社 リチウムイオン二次電池
JP2017054615A (ja) * 2015-09-07 2017-03-16 トヨタ自動車株式会社 被覆負極活物質
CN110299556A (zh) * 2018-03-22 2019-10-01 株式会社东芝 电极、二次电池、电池组和车辆
CN114217139A (zh) 2021-12-16 2022-03-22 安徽中创电子信息材料有限公司 一种钛酸钡粉末介电常数的测试方法
CN114408915A (zh) * 2021-12-21 2022-04-29 惠州市禾腾能源科技有限公司 一种高能量密度石墨复合材料及其制备方法

Also Published As

Publication number Publication date
EP4451363A1 (en) 2024-10-23
CN116806376A (zh) 2023-09-26
KR20240054369A (ko) 2024-04-25
JP2024537572A (ja) 2024-10-11
CN116806376B (zh) 2024-09-20

Similar Documents

Publication Publication Date Title
CN113207316B (zh) 人造石墨、二次电池、制备方法及装置
JP7461476B2 (ja) 負極活性材料、その製造方法、二次電池及び二次電池を含む装置
US20240322139A1 (en) Negative electrode plate, secondary battery, battery module, battery pack, and electrical device
JP2023505134A (ja) 二次電池、当該二次電池を含む電池モジュール、電池パック及び装置
US20230369591A1 (en) Negative-electrode active material and preparation method thereof, secondary battery, and battery module, battery pack, and apparatus containing such secondary battery
CN116799166A (zh) 负极活性材料及其制备方法和包含其的装置
WO2023123300A1 (zh) 硬碳及其制备方法、含有其的二次电池及用电装置
WO2023245639A1 (zh) 快充型负极活性材料及其制备方法、负极极片、二次电池及用电装置
CN114223072B (zh) 负极活性材料及其制备方法、二次电池和包含二次电池的装置
WO2023124913A1 (zh) 负极活性材料、其制备方法及其相关的二次电池和装置
WO2023044866A1 (zh) 硅碳负极材料、负极极片、二次电池、电池模块、电池包和用电装置
CN115838170A (zh) 改性石墨、制备方法以及包含该改性石墨的二次电池和用电装置
WO2024007159A1 (zh) 电极组件、二次电池、电池模块、电池包及用电装置
CN115810724B (zh) 复合石墨材料及其制备方法、负极极片、二次电池
US20230282829A1 (en) Artificial graphite and prepartion method thereof, negative electrode plate, secondary battery, battery module, battery pack and electrical device
WO2023133662A1 (zh) 改性石墨及其制备方法、碳包覆负极活性材料及其制备方法、负极极片、二次电池、电池模块、电池包及用电装置
WO2024108573A1 (zh) 碳材料及其制备方法、以及含有其的二次电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247011747

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2024521843

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022947406

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022947406

Country of ref document: EP

Effective date: 20240717