WO2023245413A1 - 环氧塑封料及其制备方法、半导体封装结构、电子装置 - Google Patents

环氧塑封料及其制备方法、半导体封装结构、电子装置 Download PDF

Info

Publication number
WO2023245413A1
WO2023245413A1 PCT/CN2022/100117 CN2022100117W WO2023245413A1 WO 2023245413 A1 WO2023245413 A1 WO 2023245413A1 CN 2022100117 W CN2022100117 W CN 2022100117W WO 2023245413 A1 WO2023245413 A1 WO 2023245413A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
inorganic
epoxy
molding compound
Prior art date
Application number
PCT/CN2022/100117
Other languages
English (en)
French (fr)
Inventor
李磊
刘运吉
蒋尚轩
赵南
付可欣
Original Assignee
华为技术有限公司
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 中国科学院深圳先进技术研究院 filed Critical 华为技术有限公司
Priority to PCT/CN2022/100117 priority Critical patent/WO2023245413A1/zh
Publication of WO2023245413A1 publication Critical patent/WO2023245413A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present application relates to an epoxy plastic encapsulation material and a preparation method thereof, a semiconductor packaging structure and an electronic device including the epoxy plastic encapsulation material.
  • epoxy plastic encapsulation materials are mainly used to protect chips from damage by the external environment, especially damage from external physical effects and chemical effects caused by water vapor, heat, ultraviolet rays, etc.
  • materials that make up the semiconductor packaging structure such as silicon wafers, surface passivation films, lead frames and other devices. Their thermal expansion coefficients are very different from those of epoxy plastic packaging materials.
  • processes such as plastic cooling, high-temperature welding, and hot and cold cycles Or large stress is generated under reliability testing conditions, causing problems such as warping, delamination, cracking of chips or cores, and device failure. Therefore, plastic packaging materials need to have low-stress characteristics.
  • siloxane, modified siloxane, polyethylene glycol diglycidyl ether, etc. are generally used in plastic sealing materials to reduce stress.
  • the stress reduction effect is limited (modulus ⁇ 10 GPa), and the flow length, Gel time, flexural modulus, flexural strength, interface bonding force, etc. all have negative effects to varying degrees, and cannot meet the process parameters and performance parameters required for material application.
  • an epoxy plastic sealing compound including:
  • the epoxy resin pretreated with the stress absorber is a mixture obtained by melt blending the stress absorber and the epoxy resin, and the stress absorber is a styrene-butadiene copolymer or a derivative thereof;
  • the phenolic resin pretreated with inorganic nanofillers is a mixture obtained by melting and blending phenolic resin and inorganic nanofillers;
  • the epoxy resin is 5-15 parts by weight
  • the stress absorber is 0.1-5 parts by weight
  • the inorganic nanofiller is 0.5-10 parts by weight
  • the phenolic resin is 5 -8 parts by weight
  • the inorganic nanofiller and the inorganic micron filler total 65-90 parts by weight
  • the curing accelerator is 0.1-1.5 parts by weight.
  • This application uses styrene-butadiene copolymer or its derivatives as a low-stress absorber to pretreat epoxy resin, and at the same time, adds an appropriate amount and content of nano-sized fillers to assist in toughening and pretreating phenolic resin to reduce stress.
  • the two are combined Special raw material pretreatment steps allow the stress absorber and nanoscale fillers to be fully dispersed in the resin matrix.
  • the epoxy molding compound of this application has a low thermal expansion coefficient and low modulus, which can effectively reduce molding stress, improve packaging reliability, and solve warping, delamination, chip/core cracking, etc. caused by stress during the packaging process. Problems such as device failure, especially for the performance requirements of low modulus under low temperature conditions.
  • the modulus of the epoxy molding compound reaches less than 10 GPa.
  • the epoxy plastic encapsulating material has a small modulus and can effectively meet the reliability requirements of semiconductor packaging devices.
  • the thermal expansion coefficient of the epoxy molding compound below the glass transition temperature is less than or equal to 16 ppm/K.
  • the epoxy molding compound has a low thermal expansion coefficient and a low modulus, which can effectively reduce molding stress and improve packaging reliability.
  • the stress absorber is selected from the group consisting of acrylonitrile-butadiene-styrene copolymer, terminal epoxy styrene-butadiene-styrene block copolymer, epoxy At least one of styrene-butadiene-styrene block copolymer and styrene-butadiene rubber.
  • the phenolic resin pretreated with the inorganic nanofiller further includes a silane coupling agent, and the silane coupling agent coats the surface of the inorganic nanofiller, wherein the silane coupling agent
  • the dosage is 0.1-1.5 parts by weight.
  • Small particle size inorganic nanofillers can improve the dispersion of inorganic nanofillers in the resin matrix through appropriate surface modification, forming a good interface phase, improving fracture toughness through the pinning effect of nanoparticles, and dispersing the stress generated within the material.
  • the silane coupling agent is selected from ⁇ -aminopropyltriethoxysilane, ⁇ -anilinopropyltrimethoxysilane, ⁇ -(2,3-epoxy At least one of propoxy)propyltrimethoxysilane.
  • the particle size of the inorganic nanofiller is 10 nm-100 nm, mainly spherical, and the density is greater than 2.0 ⁇ 10 3 kg/m 3 .
  • the inorganic nanofiller is at least one of silica, alumina, aluminum nitride, and boron nitride.
  • the epoxy molding compound further includes 0.1-1.5 parts by weight of flame retardant, 0.1-1.5 parts by weight of release agent, 0.1-0.5 parts by weight of ion trapping agent, and 0.1-0.5 parts by weight of colorant. 0.5 parts by weight of at least one of them.
  • the flame retardant is a functional additive used to impart flame retardancy to the epoxy molding compound.
  • the ion capture agent is an anion capture agent, which is used to reduce the chloride ion content in the epoxy plastic sealing material to reduce corrosion of metal leads and improve the long-term reliability and stability of the packaged device.
  • the ion trapping agent may be a hydrotalcite compound, but is not limited thereto.
  • the colorant is used to color the epoxy plastic sealant.
  • the present application provides a semiconductor packaging structure, including a semiconductor device and the epoxy plastic encapsulant described in the first aspect of the present application encapsulated on the semiconductor device.
  • the present application provides an electronic device, including a housing and the semiconductor packaging structure described in the second aspect of the application provided in the housing.
  • this application provides a method for preparing epoxy plastic sealing compound, including:
  • the particle size of the inorganic nanofiller is 10 nm-100 nm, mainly spherical, and the density is greater than 2.0 ⁇ 10 3 kg/m 3 .
  • step S2 before blending the phenolic resin and the inorganic nanofiller, the surface of the inorganic nanofiller is pre-coated with a silane coupling agent, wherein the silane coupling agent is 0.1 -1.5 parts by weight.
  • 0.1-1.5 parts by weight of flame retardant, 0.1-1.5 parts by weight of release agent, 0.1-0.5 parts by weight of ion trapping agent and 0.1-0.5 parts by weight of colorant are also added in step S3 share.
  • Figure 1 is a schematic diagram of the toughening mechanism of inorganic nanofiller particles.
  • Figure 2 is a schematic diagram of a semiconductor packaging structure of the present application.
  • the epoxy molding compound in the embodiment of the present application includes: epoxy resin pretreated with stress absorber, phenolic resin pretreated with inorganic nanofiller, inorganic micron filler, and curing accelerator.
  • the epoxy resin pretreated by the stress absorber includes epoxy resin and stress absorber;
  • the phenolic resin pretreated by the inorganic nanofiller includes phenolic resin and inorganic nanofiller.
  • the content of the epoxy resin is 5-15 parts by weight, the content of the stress absorber is 0.1-5 parts by weight, and the content of the inorganic nanofiller is 0.5-10 parts by weight,
  • the content of the phenolic resin is 5-8 parts by weight, the content of the curing accelerator is 0.1-1.5 parts by weight, and the total amount of inorganic nanofillers and inorganic micron fillers is 65-90 parts by weight.
  • the modulus of the epoxy molding compound in the embodiment of the present application can reach less than 10 GPa, and the thermal expansion coefficient is less than or equal to 16 ppm/K (the thermal expansion coefficient here is below the glass transition temperature).
  • the epoxy plastic encapsulating material has a small modulus and can effectively meet the reliability requirements of semiconductor packaging devices.
  • the epoxy resin pretreated with the stress absorber is a mixture obtained by melt blending of the epoxy resin and the stress absorber.
  • a method for preparing epoxy resin pretreated with a stress absorber includes: heating and melting the epoxy resin and the stress absorber respectively, and then mixing them according to a specific mixing ratio (epoxy resin 5-15 parts by weight, stress absorber 0.1 -5 parts by weight), a certain amount of solubilizer can be added, stir evenly and then cool to obtain a premix. After the premix is completely cooled, crush it.
  • the solubilizer can be a conventional silane coupling agent, surfactant, etc., and the added amount of the solubilizer is 0.01%-1% of the total weight of the stress absorber and epoxy resin.
  • the stress absorber is a styrene-butadiene copolymer or a derivative thereof.
  • Two example molecular formulas for styrene-butadiene copolymer are as follows:
  • the stress absorber can be selected from the group consisting of acrylonitrile-butadiene-styrene copolymer, terminal epoxy styrene-butadiene-styrene block copolymer, epoxidized styrene-butadiene At least one of diene-styrene block copolymer and styrene-butadiene rubber.
  • the surface of the inorganic nanofillers is coated with a silane coupling agent, that is, the phenolic resin pretreated with the inorganic nanofillers also includes a silane coupling agent, wherein the The content of silane coupling agent is 0.1-1.5 parts by weight.
  • the silane coupling agent can be selected from ⁇ -aminopropyltriethoxysilane, ⁇ -anilinopropyltrimethoxysilane, ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane of at least one.
  • the inorganic nanofiller has a particle size of nanometer level, a particle size of 10nm-100nm, a main spherical shape, and a density greater than 2.0 ⁇ 10 3 kg/m 3 .
  • Small particle size inorganic nanofillers can improve the dispersion of inorganic nanofillers in the resin matrix through appropriate surface modification (surface coating with silane coupling agent), form a good interface phase, and improve fracture through the nanoparticle pinning effect. Toughness, dispersing the stress generated within the material.
  • the inorganic nanofillers are silica, alumina, aluminum nitride, and boron nitride, but are not limited thereto.
  • the phenolic resin pretreated with inorganic nanofillers is a mixture obtained by melt blending of phenolic resin and inorganic nanofillers.
  • a method for preparing phenolic resin pretreated with inorganic nanofillers includes: modifying the surface of the inorganic nanofillers to wrap the silane coupling agent; mixing the surface-modified inorganic nanofillers with the phenolic resin, and heating and melting the phenolic resin. Resin, stir evenly, cool and pulverize.
  • the inorganic micron filler has a particle size of micron level and a particle size of 1 ⁇ m-100 ⁇ m. Specifically, it can be silica, alumina, aluminum nitride, boron nitride, but is not limited to this.
  • the curing accelerator is used to accelerate the curing reaction of the epoxy molding compound or reduce the curing temperature.
  • the curing accelerator is triphenylphosphine, but is not limited thereto.
  • the epoxy molding compound may optionally include a flame retardant and a release agent, wherein the flame retardant is 0.1-1.5 parts by weight and the release agent is 0.1-1.5 parts by weight.
  • the flame retardant is a functional additive used to impart flame retardancy to the epoxy molding compound.
  • the flame retardant may be a compound of phosphoric acid and alcohol or a compound of phosphoric acid and phenol, but is not limited thereto.
  • the release agent is any one or more of carnauba wax, synthetic wax, mineral wax, etc., but is not limited thereto.
  • the epoxy molding material may also optionally include 0.1-0.5 parts by weight of ion trapping agent.
  • the ion trapping agent may be a hydrotalcite compound, but is not limited thereto.
  • the ion capture agent is an anion capture agent, which is used to reduce the chloride ion content in the epoxy plastic sealing material to reduce corrosion of metal leads and improve the long-term reliability and stability of the packaged device.
  • the epoxy molding compound may optionally include 0.1-0.5 parts by weight of colorant.
  • the colorant is used to color the epoxy plastic sealant.
  • the colorant may be carbon black, titanium dioxide, zinc oxide, or zinc-barium white, but is not limited thereto.
  • This application uses styrene-butadiene copolymer or its derivatives as a low-stress absorber, and at the same time adds an appropriate amount and content of nano-size inorganic fillers to assist in toughening and reduce stress.
  • the two are combined with special raw material pretreatment steps to make Stress absorbers and nanoscale fillers are fully dispersed in the resin matrix.
  • the epoxy molding compound of the present application has a low thermal expansion coefficient and low modulus, which can effectively reduce molding stress, improve packaging reliability, and solve warping, delamination, chip or core cracking, etc. caused by stress during the packaging process. Problems such as device failure, especially for the performance requirements of low modulus under low temperature conditions.
  • Styrene-butadiene copolymer or its derivatives are used as the toughening agent.
  • the toughening agent and the plastic resin matrix phase separate during the gelation process to form an island structure to achieve toughening; adjust the phase separation process to form appropriate islands. Structure is the key to toughening.
  • the solubility parameters of the toughening agent and the resin matrix By adjusting the solubility parameters of the toughening agent and the resin matrix, the island structure formed by phase separation during the gelation process can be controlled; by selecting the styrene-butadiene copolymer or its derivatives As a toughening agent, it has a solubility parameter that is highly compatible with the solubility parameter of the resin matrix of the plastic molding compound. It can phase separate to form the appropriate island structure required for toughening, thereby achieving better toughening effects.
  • This application also provides a semiconductor packaging structure, which includes a semiconductor device and a plastic packaging body for packaging the semiconductor device.
  • the plastic packaging body is formed by melting and solidifying the epoxy plastic packaging material.
  • the semiconductor device may be a chip, a circuit board, etc.
  • a semiconductor packaging structure 100 includes a substrate 10 and a chip 20 disposed on the substrate 10 .
  • the plastic package 30 is disposed on the substrate 10 and completely surrounds the chip 20 . It can be understood that although not shown in the figure, passive components and other chips can also be disposed on the substrate 10 , and the passive components and other chips are wrapped by the plastic package 30 .
  • the epoxy molding compound can be used for Wafer Level Pakaging (WLP), Quad Flat No-leads Package (QFN), Small Out-Line Package (SOP), Ball Grid Array (BGA), Flip-Chip (Flip-Chip), Chip Scale Package (CSP), System In a Package (SIP) and other packaging forms, but are not limited to these .
  • WLP Wafer Level Pakaging
  • QFN Quad Flat No-leads Package
  • SOP Small Out-Line Package
  • BGA Ball Grid Array
  • Flip-Chip Flip-Chip
  • CSP Chip Scale Package
  • SIP System In a Package
  • the present application also provides an electronic device including the above-mentioned semiconductor packaging structure.
  • the electronic device includes a housing and the semiconductor packaging structure disposed in the housing.
  • This application also provides a preparation method for the above-mentioned epoxy plastic sealing compound, including:
  • (S1) Prepare epoxy resin pre-treated with a stress absorber.
  • the epoxy resin and the stress absorber are heated, melted, mixed and stirred, cooled, pulverized, and sieved respectively.
  • the stress absorber is a styrene-butadiene copolymer. Or its derivatives, wherein the epoxy resin is 5-15 parts by weight, and the stress absorber is 0.1-5 parts by weight;
  • the step of preparing the stress absorber-pretreated epoxy resin includes: putting a certain amount of stress absorber and epoxy resin into a container (such as a stainless steel container) respectively, and heating and melting.
  • the heating and melting can be, for example, Heat and melt in a high-temperature blast drying oven for 2-6 hours. After complete melting, add a certain amount of solubilizer, stir evenly at a stirring speed of 100-500 rpm, and then cool to obtain a premix. After the premix is completely cooled, pulverize it and sieve it to remove the residue, for example, sieve it through a 50-mesh sieve and store it for later use.
  • the solubilizing agent can be a conventional silane coupling agent, surfactant, etc., and the added amount of the solubilizing agent is 0.01%-1% of the total weight of the stress absorber and the epoxy resin.
  • the above-mentioned pretreatment of the stress absorber and the epoxy resin can improve the dispersion effect of the stress absorber in the epoxy resin matrix.
  • the heating temperature is above the softening point of the epoxy resin.
  • the steps of preparing phenolic resin pretreated with inorganic nanofillers include: surface treatment of the inorganic nanofillers with a silane coupling agent; adding the surface-treated inorganic nanofillers and phenolic resin into a container (such as a stainless steel container) , and heat and melt the phenolic resin.
  • a container such as a stainless steel container
  • the heat and melt can be carried out in a high-temperature blast drying oven for 2-6 hours. After complete melting, stir evenly at a stirring speed of 200-1000 rpm, and then cool to obtain a premix. After the premix is completely cooled, pulverize it and sieve it to remove the residue, for example, sieve it through a 50-mesh sieve and store it for later use.
  • the surface treatment of inorganic nanofillers using silane coupling agents includes: adding the inorganic nanofillers to a heating mixer, and adding the configured modifier (silane coupling agent) to the mixer at a certain frequency and content during the mixing process, where The mass of the modifier can be 0.5%-2% of the mass of the inorganic nanofiller.
  • the mixer is stirred for a period of time to obtain the silane coupling agent modified nanoscale filler for later use.
  • inorganic nanofiller particles are dispersed in the resin matrix.
  • the effect of inorganic nanofiller particles on polymers (resins) is mainly reflected in three aspects: the presence of inorganic nanoparticles produces a stress concentration effect, inducing the matrix around the particles to produce silver cracks and shear yielding; the large specific surface area of the nanoparticles causes a large number of Chemical or physical defects are easy to form effective chemical or physical bonding with the matrix, enhance interface interaction, and are not easy to debond; the interaction of the stress field between particles will produce a lot of silver streaks and plastic deformation zones, especially in The crack tip (crack tip) absorbs a large amount of energy and the strain energy is dissipated.
  • Inorganic nanoparticles can achieve effective stress transmission, induce matrix craze and shear yielding in large quantities, consume a large amount of energy, and play the role of toughening and strengthening at the same time.
  • the phenomenon of craze is that under the action of tensile stress, the stress concentration occurs in some weak parts of the material, resulting in local plastic deformation and orientation, so that micro grooves or "cracks" appear on the surface or inside the material perpendicular to the direction of stress. The phenomenon.
  • step S3 at least one of 0.1-1.5 parts by weight of flame retardant, 0.1-1.5 parts by weight of release agent, 0.1-0.5 parts by weight of ion trapping agent, and 0.1-0.5 parts by weight of colorant can also be optionally added. species are blended.
  • a certain amount of styrene-butadiene copolymer or its derivatives and epoxy resin are put into a stainless steel container respectively, and heated and melted in a high-temperature blast drying oven for 2 hours. After it is completely melted, add it to a stainless steel iron plate according to a certain mixing ratio, add a certain amount of solubilizer, stir evenly at a stirring speed of 300 rpm, and then pour it into an iron plate to cool. After the premix is completely cooled, crush it and pass it through a 50-mesh sieve. Take the residue from the sieve and store it for later use.
  • the stress absorber 1 is a butadiene-styrene copolymer
  • the stress absorber 2 is a conventional toughening agent-carboxylic acid-terminated nitrile rubber (CTBN)
  • CTBN toughening agent-carboxylic acid-terminated nitrile rubber
  • the inorganic filler 1 is a conventional micron-sized silica filler.
  • Filler 2 is nanoscale silica filler; triphenylphosphine is used as curing accelerator, trimethylphosphate is used as flame retardant, carnauba wax is used as release agent, carbon black is used as colorant, and hydrotalcite compound is used as ion capture agent .
  • Comparative Example 1 The weight ratio (parts by weight) of each component of Comparative Examples 1-3 is as shown in Table 1 below.
  • the difference between Comparative Example 1-3 and Example 1-3 is that: in Comparative Example 1, a conventional toughening agent was added, and no stress absorber of styrene-butadiene copolymer was added; in Comparative Example 2, no inorganic was added Nanofillers, that is, phenolic resin has not been pretreated with inorganic nanofillers 2; in Comparative Example 3, styrene-butadiene copolymer and inorganic nanofillers are added, but the epoxy resin has not been pretreated with styrene-butadiene copolymer. The stress absorber is pre-treated, and the phenolic resin is not pre-treated with inorganic nanofillers 2.
  • Example 1 and Comparative Example 2 when the amount of butadiene-styrene copolymer is the same and the inorganic nanofiller 2 is introduced, the modulus decreases while the flexural strength increases from 93 MPa in Comparative Example 2 to 116MPa in Example 1. Therefore, the introduction of inorganic nanofillers and butadiene-styrene copolymers can reduce the low-temperature modulus while maintaining good flexural strength. Inorganic nanofillers and butadiene-styrene copolymers have a synergistic toughening and strengthening effect. .
  • Example 1 and Comparative Example 3 show that the introduction of the process of pretreating phenolic resin with inorganic nanofillers and pretreating epoxy resin with stress absorbers can further reduce the modulus and improve the bending strength and bonding strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

一种环氧塑封料,包括:应力吸收剂预处理的环氧树脂,为应力吸收剂与环氧树脂熔融共混得到的混合物,所述应力吸收剂为苯乙烯-丁二烯共聚物或其衍生物;无机纳米填料预处理的酚醛树脂,为酚醛树脂和无机纳米填料熔融共混得到的混合物;无机微米填料;固化促进剂。所述环氧塑封料中,环氧树脂为5-15重量份,应力吸收剂为0.1-5重量份,无机纳米填料为0.5-10重量份,酚醛树脂为5-8重量份,无机纳米填料和所述无机微米填料共65-90重量份,固化促进剂为0.1-1.5重量份。本申请还提供该环氧塑封料的制备方法、半导体封装结构和电子装置。无机纳米填料和应力吸收剂的预处理,可进一步降低环氧塑封料的模量。

Description

环氧塑封料及其制备方法、半导体封装结构、电子装置 技术领域
本申请涉及一种环氧塑封料及其制备方法、包括该环氧塑封料的半导体封装结构和电子装置。
背景技术
在半导体封装器件中,环氧塑封料主要用于保护芯片不受外界环境的损害,特别是来自外来的物理作用以及由水汽、热量、紫外线等引起的化学作用的损害。构成半导体封装结构的材料很多,如硅晶片、表面钝化膜、引线框架等各种器件等,它们与环氧塑封料的热膨胀系数相差很大,在塑封冷却、高温焊接、冷热循环等工艺或可靠性测试条件下产生较大应力,造成翘曲、分层、芯片或磁芯开裂、器件失效等问题,因此需要塑封材料具备低应力特性。特别对于能源类封装模组产品,现有常规塑封料在冷热循环下导致器件过应力失效;需要开发模量小于10GPa且热膨胀系数(玻璃化转变温度以下)不高于16ppm/K(与模组器件的热膨胀系数适配)的低应力塑封料以满足产品可靠性要求。
现有技术一般采用硅氧烷、改性硅氧烷、聚乙二醇二缩水甘油醚等应用到塑封料中以降低应力,但降低应力效果有限(模量≥10GPa),且对流动长度、凝胶时间、弯曲模量、弯曲强度、界面粘结力等均有不同程度的负效应,不能满足材料应用所需的工艺参数和性能参数。
发明内容
第一方面,本申请提供一种环氧塑封料,包括:
应力吸收剂预处理的环氧树脂,为应力吸收剂与环氧树脂熔融共混得到的混合物,所述应力吸收剂为苯乙烯-丁二烯共聚物或其衍生物;
无机纳米填料预处理的酚醛树脂,为酚醛树脂和无机纳米填料熔融共混得到的混合物;
无机微米填料;
固化促进剂;
所述环氧塑封料中,所述环氧树脂为5-15重量份,所述应力吸收剂为0.1-5重量份,所述无机纳米填料为0.5-10重量份,所述酚醛树脂为5-8重量份,所述无机纳米填料和所述无机微米填料共65-90重量份,固化促进剂为0.1-1.5重量份。
本申请采用苯乙烯-丁二烯共聚物或其衍生物作为低应力吸收剂预处理环氧树脂,同时添加适量尺寸和含量的纳米尺寸填料辅助增韧预处理酚醛树脂,降低应力,两者结合特殊的原材料预处理步骤,使应力吸收剂和纳米级填料同树脂基体充分分散。本申请的环氧塑封料具有低的热膨胀系数的同时具有低模量,可有效降低塑封应力,提高封装可靠性,解决封装过程中由于应力导致的翘曲、分层、芯片/磁芯开裂、器件失效等问题,尤其针对低温条件下低模量的性能需求。
结合第一方面,在一些实施例中,所述环氧塑封料的模量达到10GPa以下。
所述环氧塑封料具有较小的模量,可有效满足半导体封装器件的可靠性要求。
结合第一方面,在一些实施例中,所述环氧塑封料在玻璃化转变温度以下的热膨胀系数 小于等于16ppm/K。
所述环氧塑封料具有低的热膨胀系数的同时具有低模量,可有效降低塑封应力,提高封装可靠性。结合第一方面,在一些实施例中,所述应力吸收剂选自丙烯腈-丁二烯-苯乙烯共聚物、端环氧基苯乙烯-丁二烯-苯乙烯嵌段共聚物、环氧化苯乙烯-丁二烯-苯乙烯嵌段共聚物、丁苯橡胶中的至少一种。
结合第一方面,在一些实施例中,所述无机纳米填料预处理的酚醛树脂还包括硅烷偶联剂,所述硅烷偶联剂包覆所述无机纳米填料的表面,其中所述硅烷偶联剂为0.1-1.5重量份。
小粒径的无机纳米填料通过适当的表面修饰,可提升无机纳米填料在树脂基体中的分散性,形成良好的界面相,通过纳米颗粒钉扎效应,提高断裂韧性,分散材料内部产生的应力。
结合第一方面,在一些实施例中,所述硅烷偶联剂选自γ-氨丙基三乙氧基硅烷、γ-苯胺基丙基三甲氧基硅烷、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷中的至少一种。
结合第一方面,在一些实施例中,所述无机纳米填料的粒径大小为10nm-100nm,主要为球形,密度大于2.0×10 3kg/m 3
结合第一方面,在一些实施例中,所述无机纳米填料为二氧化硅、氧化铝、氮化铝、氮化硼中的至少一种。
结合第一方面,在一些实施例中,所述环氧塑封料还包括阻燃剂0.1-1.5重量份、脱模剂0.1-1.5重量份、离子捕捉剂0.1-0.5重量份、着色剂0.1-0.5重量份中的至少一种。
所述阻燃剂为用以赋予所述环氧塑封料难燃性的功能性助剂。所述离子捕捉剂为阴离子捕获剂,用以降低环氧塑封料中氯离子含量,以减少对金属引线的腐蚀,提高封装器件的长期可靠稳定性。所述离子捕捉剂可为水滑石化合物,但不以此为限。所述着色剂用以对所述环氧塑封料进行着色。
第二方面,本申请提供一种半导体封装结构,包括半导体器件以及封装在所述半导体器件上的本申请第一方面所述的环氧塑封料。
第三方面,本申请提供一种电子装置,包括壳体和设置在所述壳体中的本申请第二方面所述的半导体封装结构。
第四方面,本申请提供一种环氧塑封料的制备方法,包括:
S1:制备应力吸收剂预处理的环氧树脂,将环氧树脂与应力吸收剂加热熔融、搅拌、冷却、粉碎、过筛,其中所述环氧树脂5-15重量份,所述应力吸收剂0.1-5重量份,所述应力吸收剂为苯乙烯-丁二烯共聚物或其衍生物;
S2:制备无机纳米填料预处理酚醛树脂,将酚醛树脂与无机纳米填料共混、加热熔融、搅拌、冷却、粉碎、过筛,其中所述无机填料65-90重量份,所述酚醛树脂5-8重量份;
S3:将所述应力吸收剂预处理的环氧树脂、所述无机填料预处理酚醛树脂、无机微米填料、固化促进剂0.1-1.5重量份,所述无机微米填料和所述无机纳米填料共65-90重量份,之后依次经在80-130℃下双螺挤压、冷却、粉碎、预压成型。
结合第四方面,在一些实施例中,步骤S2中,所述无机纳米填料的粒径大小为10nm-100nm,主要为球形,密度大于2.0×10 3kg/m 3
结合第四方面,在一些实施例中,步骤S2中,将酚醛树脂与无机纳米填料共混前,所述无机纳米填料的表面预先包覆有硅烷偶联剂,其中所述硅烷偶联剂0.1-1.5重量份。
结合第四方面,在一些实施例中,步骤S3中还添加有阻燃剂0.1-1.5重量份、脱模剂0.1-1.5 重量份、离子捕捉剂0.1-0.5重量份和着色剂0.1-0.5重量份。
附图说明
图1为无机纳米填料粒子的增韧机理示意图。
图2为本申请一种半导体封装结构的示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
现有的环氧塑封料,由于无法达到更低应力、更低温模量的性能,因此难以满足目前的使用需求。
本申请实施例的环氧塑封料包括:应力吸收剂预处理的环氧树脂、无机纳米填料预处理的酚醛树脂、无机微米填料、固化促进剂。所述应力吸收剂预处理的环氧树脂包括环氧树脂和应力吸收剂;所述无机纳米填料预处理的酚醛树脂包括酚醛树脂和无机纳米填料。所述环氧塑封料中,所述环氧树脂的含量为5-15重量份,所述应力吸收剂的含量为0.1-5重量份,所述无机纳米填料的含量为0.5-10重量份,所述酚醛树脂的含量为5-8重量份,固化促进剂的含量为0.1-1.5重量份,无机纳米填料和无机微米填料共为65-90重量份。本申请实施例的环氧塑封料的模量可达到10GPa以下,热膨胀系数小于等于16ppm/K(此处热膨胀系数为玻璃化转变温度以下)。所述环氧塑封料具有较小的模量,可有效满足半导体封装器件的可靠性要求。
所述应力吸收剂预处理的环氧树脂为环氧树脂和应力吸收剂经熔融共混得到的混合物。一实施例中,应力吸收剂预处理的环氧树脂的制备方法包括:环氧树脂和应力吸收剂分别加热熔融后,按照特定的混合比例(环氧树脂5-15重量份,应力吸收剂0.1-5重量份)混合,可加入一定量的增溶剂,搅拌均匀之后冷却得到预混物,待预混物完全冷却后进行粉碎。增溶剂可为常规的硅烷偶联剂、表面活性剂等,且所述增溶剂的添加量为应力吸收剂和环氧树脂总重量的0.01%-1%。
所述应力吸收剂为苯乙烯-丁二烯共聚物或其衍生物。苯乙烯-丁二烯共聚物的两种示例分子式如下所示:
Figure PCTCN2022100117-appb-000001
一实施例中,所述应力吸收剂可选自丙烯腈-丁二烯-苯乙烯共聚物、端环氧基苯乙烯-丁二烯-苯乙烯嵌段共聚物、环氧化苯乙烯-丁二烯-苯乙烯嵌段共聚物、丁苯橡胶中的至少一种。
本实施例中,无机纳米填料预处理的酚醛树脂中,所述无机纳米填料的表面包覆有硅烷偶联剂,即,无机纳米填料预处理的酚醛树脂还包括硅烷偶联剂,其中所述硅烷偶联剂的含量为0.1-1.5重量份。所述硅烷偶联剂可选自γ-氨丙基三乙氧基硅烷、γ-苯胺基丙基三 甲氧基硅烷、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷中的至少一种。本实施例中,所述无机纳米填料为颗粒尺寸为纳米级,粒径大小为10nm-100nm,主要为球形,密度大于2.0×10 3kg/m 3。小粒径的无机纳米填料通过适当的表面修饰(表面包覆硅烷偶联剂),可提升无机纳米填料在树脂基体中的分散性,形成良好的界面相,通过纳米颗粒钉扎效应,提高断裂韧性,分散材料内部产生的应力。所述无机纳米填料为二氧化硅、氧化铝、氮化铝、氮化硼,但不以此为限。
无机纳米填料预处理的酚醛树脂为酚醛树脂和无机纳米填料经熔融共混得到的混合物。一实施例中,无机纳米填料预处理的酚醛树脂的制备方法包括:无机纳米填料表面经改性处理包裹硅烷偶联剂;将表面改性处理后的无机纳米填料与酚醛树脂混合、加热熔融酚醛树脂、搅拌均匀、冷却、粉碎。
所述无机微米填料为颗粒尺寸为微米级,粒径大小为1μm-100μm,具体可为二氧化硅、氧化铝、氮化铝、氮化硼,但不以此为限。
所述固化促进剂用以加速所述环氧塑封料的固化反应或降低固化温度。所述固化促进剂为三苯基膦,但不以此为限。
所述环氧塑封料还可选择性地包括阻燃剂和脱模剂,其中阻燃剂为0.1-1.5重量份,脱模剂为0.1-1.5重量份。
所述阻燃剂为用以赋予所述环氧塑封料难燃性的功能性助剂。所述阻燃剂可为磷酸与醇的化合物或磷酸与苯酚的化合物,但不以此为限。
所述脱模剂为巴西棕榈蜡、合成蜡和矿物质蜡等中的任意一种或几种,但不以此为限。
所述环氧塑封料还可选择性地包括离子捕捉剂0.1-0.5重量份。所述离子捕捉剂可为水滑石化合物,但不以此为限。所述离子捕捉剂为阴离子捕获剂,用以降低环氧塑封料中氯离子含量,以减少对金属引线的腐蚀,提高封装器件的长期可靠稳定性。
所述环氧塑封料还可选择性地包括着色剂0.1-0.5重量份。所述着色剂用以对所述环氧塑封料进行着色。所述着色剂可为炭黑、钛白粉、氧化锌、锌钡白,但不以此为限。
本申请采用苯乙烯-丁二烯共聚物或其衍生物作为低应力吸收剂,同时添加适量尺寸和含量的纳米尺寸无机填料辅助增韧,降低应力,两者结合特殊的原材料预处理步骤,使应力吸收剂和纳米级填料同树脂基体充分分散。本申请的环氧塑封料具有低的热膨胀系数的同时具有低模量,可有效降低塑封应力,提高封装可靠性,解决封装过程中由于应力导致的翘曲、分层、芯片或磁芯开裂、器件失效等问题,尤其针对低温条件下低模量的性能需求。
采用苯乙烯-丁二烯共聚物或其衍生物作为增韧剂,增韧剂和塑封料树脂基体在凝胶化过程中相分离形成海岛结构从而实现增韧;调节相分离过程形成恰当的海岛结构是增韧的关键,通过调节增韧剂与树脂基体的溶解度参数,可以控制凝胶化过程中相分离形成的海岛结构;通过选定所述苯乙烯-丁二烯共聚物或其衍生物作为增韧剂,其具有的溶解度参数,能够与塑封料树脂基体的溶解度参数有较高的适配度,可以相分离形成的增韧所需的恰当的海岛结构,进而增韧效果较佳。
本申请还提供一种半导体封装结构,包括半导体器件以及封装所述半导体器件的塑封体,所述塑封体由所述环氧塑封料熔融后固化形成。所述半导体器件可为芯片、电路板等。例如,如图2所示,一半导体封装结构100,包括基板10以及设置在基板10上的芯片20,所述塑封体30设置在所述基板10上且完全包裹所述芯片20。可以理解的,虽图未示,所述基板10上还可设置无源器件和另外的芯片,且所述无源器件和另外的芯片均被所述塑封体30包裹。 所述环氧塑封料可用于晶元级封装(Wafer Level Pakaging,WLP)、方形扁平无引脚封装(Quad Flat No-leads Package,QFN)、小尺寸封装(Small Out-Line Package,SOP)、球栅阵列(Ball Grid Array,BGA)、倒装芯片(Flip-Chip)、芯片级封装(Chip Scale Package,CSP)、系统级封装(System In a Package,SIP)等封装形式,但不限于此。
本申请还提供一种包括上述半导体封装结构的电子装置,所述电子装置包括壳体以及设置在所述壳体中的所述半导体封装结构。
本申请还提供上述环氧塑封料的制备方法,包括:
(S1)制备应力吸收剂预处理的环氧树脂,将环氧树脂与应力吸收剂分别加热熔融、混合搅拌、冷却、粉碎、过筛,所述应力吸收剂为苯乙烯-丁二烯共聚物或其衍生物,其中所述环氧树脂为5-15重量份,所述应力吸收剂为0.1-5重量份;
(S2)制备无机纳米填料预处理的酚醛树脂,将酚醛树脂与无机纳米填料混合、加热熔融、搅拌、冷却、粉碎、过筛,其中所述无机纳米填料为0.5-10重量份,所述酚醛树脂为5-8重量份;
(S3)将所述应力吸收剂预处理的环氧树脂、所述无机填料预处理酚醛树脂、无机微米填料、固化促进剂0.1-1.5重量份混合,所述无机微米填料和所述无机纳米填料共65-90重量份,之后依次经在80-130℃下双螺挤压、冷却、粉碎、预压成型特定的颗粒形状,例如圆柱体。
一实施例中,制备应力吸收剂预处理的环氧树脂的步骤包括:一定量的应力吸收剂和环氧树脂分别放入到容器(例如不锈钢容器)中,并进行加热熔融,加热熔融例如可在高温的鼓风干燥箱中进行加热熔融2-6h。待完全熔融后,加入一定量的增溶剂,在100-500rpm的搅拌速率下搅拌均匀,之后冷却得到预混物。待预混物完全冷却后,将其粉碎后过筛取筛下物,例如采用50目筛网过筛,存储待用。增溶剂可为常规的硅烷偶联剂、表面活性剂等,且所述增溶剂的添加量为应力吸收剂和环氧树脂二者总重量的0.01%-1%。
将应力吸收剂和环氧树脂进行上述预处理,可以提高应力吸收剂在环氧树脂基体中的分散效果,加热的温度为环氧树脂的软化点之上。
一实施例中,制备无机纳米填料预处理的酚醛树脂的步骤包括:采用硅烷偶联剂对无机纳米填料进行表面处理;经表面处理的无机纳米填料与酚醛树脂加入到容器(例如不锈钢容器)中,并进行加热熔融酚醛树脂,加热熔融例如可在高温的鼓风干燥箱中进行加热熔融2-6h。待完全熔融后,在200-1000rpm的搅拌速率下搅拌均匀,之后冷却得到预混物。待预混物完全冷却后,将其粉碎后过筛取筛下物,例如采用50目筛网过筛,存储待用。
采用硅烷偶联剂对无机纳米填料进行表面处理包括:将无机纳米填料加入加热混合机,配置好的改性剂(硅烷偶联剂)以一定的频率和含量在搅拌过程中加入混合机,其中改性剂的质量可为无机纳米填料质量的0.5%-2%,混合机搅拌一段时间,得到硅烷偶联剂改性纳米级填料备用。
少量的无机纳米填料由于比表面积大,直接添加到树脂中时易团聚,可能起不到增韧的作用,故需要提前将带有表面修饰的纳米级填料同酚醛树脂进行预混合,高温酚醛树脂熔融后采用高速剪切搅拌的方式将纳米级填料同酚醛树脂基体进行预混合,保障无机纳米填料的分散均匀性。
参阅图1所示,树脂基体中分散有无机纳米填料颗粒。无机纳米填料粒子对聚合物(树脂)的作用主要体现在三个方面:无机纳米粒子存在产生应力集中效应,诱发粒子周围基体 产生银纹和剪切屈服;纳米粒子大的比表面积造成具有大量的化学或物理缺陷,易于与基体形成有效的化学或物理键接作用,增强界面相互作用,不易脱粘;粒子间应力场的相互作用,会产生很多的银纹和塑性变形区,尤其是会在裂纹尖端处(裂尖)吸收大量的能量,应变能耗散。无机纳米粒子可以实现有效的应力传输、大量诱发基体银纹及剪切屈服,消耗大量能量,起到同时增韧增强的作用。其中,银纹现象是聚合物在张应力作用下,材料某些薄弱部位出现应力集中而产生局部的塑性形变和取向,以至在材料表面或内部垂直于应力方向上出现微细凹槽或“裂纹”的现象。
步骤S3中还可选择性添加0.1-1.5重量份的阻燃剂、0.1-1.5重量份的脱模剂、0.1-0.5重量份的离子捕捉剂、0.1-0.5重量份的着色剂中的至少一种进行共混。
下面通过具体实施例对本申请实施例进行进一步的说明。
实施例1-3
(1)将经表面处理的纳米级无机填料同酚醛树脂加入到不锈钢容器中,并在高温的鼓风干燥箱中进行加热熔融3h。待酚醛树脂完全熔融后,在600rpm的搅拌速率下搅拌均匀,之后倒入铁盘中冷却。待预混物完全冷却后,将其粉碎并过50目筛网,取筛下物,存储待用。
(2)一定量的苯乙烯-丁二烯共聚物或其衍生物和环氧树脂分别放入到不锈钢容器中,并在高温的鼓风干燥箱中进行加热熔融2h。待完全熔融后,按照一定的混合比例添加到不锈钢铁盘中,并加入一定量的增溶剂,在300rpm的搅拌速率下搅拌均匀,之后倒入铁盘中冷却。待预混物完全冷却后,将其粉碎并过50目筛网,取筛下物,存储待用。
(3)实施例1-3各组分的重量配比(重量份数)如下表1所示,通过高速搅拌机将预混料与其他组分混合均匀,经双螺杆挤出机在120℃下挤出,经冷却粉碎后预压成型,即得半导体封装用低应力环氧塑封料。
其中,应力吸收剂1为丁二烯-苯乙烯共聚物,应力吸收剂2为常规的增韧剂-端羧酸丁腈橡胶(CTBN),无机填料1为常规微米级二氧化硅填料,无机填料2为纳米级二氧化硅填料;固化促进剂采用三苯基膦,阻燃剂采用三甲基磷酸酯,脱模剂采用巴西棕榈蜡,着色剂采用炭黑,离子捕捉剂采用水滑石化合物。
对比例1-3
对比例1-3各组分的重量配比(重量份数)如下表1所示。对比例1-3与实施例1-3的区别在于:对比例1中添加的是常规的增韧剂,未添加苯乙烯-丁二烯共聚物的应力吸收剂;对比例2中未添加无机纳米填料,也即酚醛树脂未经无机纳米填料2预处理;对比例3中添加有苯乙烯-丁二烯共聚物和无机纳米填料,但环氧树脂未经苯乙烯-丁二烯共聚物的应力吸收剂预处理,且酚醛树脂未经无机纳米填料2预处理。
表1实施例1-3与对比例1-3
Figure PCTCN2022100117-appb-000002
Figure PCTCN2022100117-appb-000003
依据实施例1-3与对比例1(采用常规的增韧剂-CTBN)的测试结果可知,丁二烯-苯乙烯共聚物作为应力吸收剂引入可以有效在有效降低环氧塑封料的模量(弯曲模量、低温、常温、高温模量)的同时,保持环氧塑封料的好的粘结强度和弯曲强度。
实施例1和对比例2相比,丁二烯-苯乙烯共聚物添加量一样的情况下,无机纳米填料2引入的情况下,模量降低的同时,弯曲强度从对比例2的93MPa提升到实施例1的116MPa。因此无机纳米填料与丁二烯-苯乙烯共聚物的引入,可以再降低低温模量的同时,保持好的弯曲强度,无机纳米填料与丁二烯-苯乙烯共聚物具有协同增韧增强的作用。
实施例1与对比例3的测试结果表明,无机纳米填料预处理酚醛树脂和应力吸收剂预处理环氧树脂工艺的引入,可进一步降低模量,提升弯曲强度和粘接强度。
需要说明的是,以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施方式及实施方式中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种环氧塑封料,其特征在于,包括:
    应力吸收剂预处理的环氧树脂,为应力吸收剂与环氧树脂熔融共混得到的混合物,所述应力吸收剂为苯乙烯-丁二烯共聚物或其衍生物;
    无机纳米填料预处理的酚醛树脂,为酚醛树脂和无机纳米填料熔融共混得到的混合物;
    无机微米填料;
    固化促进剂;
    所述环氧塑封料中,所述环氧树脂为5-15重量份,所述应力吸收剂为0.1-5重量份,所述无机纳米填料为0.5-10重量份,所述酚醛树脂为5-8重量份,所述无机纳米填料和所述无机微米填料共65-90重量份,固化促进剂为0.1-1.5重量份。
  2. 根据权利要求1所述的环氧塑封料,其特征在于,所述环氧塑封料的模量达到10GPa以下。
  3. 根据权利要求1或2所述的环氧塑封料,其特征在于,所述环氧塑封料在玻璃化转变温度以下的热膨胀系数小于等于16ppm/K。
  4. 根据权利要求1至3中任一项所述的环氧塑封料,其特征在于,所述应力吸收剂选自丙烯腈-丁二烯-苯乙烯共聚物、端环氧基苯乙烯-丁二烯-苯乙烯嵌段共聚物、环氧化苯乙烯-丁二烯-苯乙烯嵌段共聚物、丁苯橡胶中的至少一种。
  5. 根据权利要求1至4中任一项所述的环氧塑封料,其特征在于,所述无机纳米填料预处理的酚醛树脂还包括硅烷偶联剂,所述硅烷偶联剂包覆所述无机纳米填料的表面,其中所述硅烷偶联剂为0.1-1.5重量份。
  6. 根据权利要求5所述的环氧塑封料,其特征在于,所述硅烷偶联剂选自γ-氨丙基三乙氧基硅烷、γ-苯胺基丙基三甲氧基硅烷、γ-(2,3-环氧丙氧)丙基三甲氧基硅烷中的至少一种。
  7. 根据权利要求1至6中任一项所述的环氧塑封料,其特征在于,所述无机纳米填料的粒径大小为10nm-100nm,主要为球形,密度大于2.0×10 3kg/m 3
  8. 根据权利要求1至7中任一项所述的环氧塑封料,其特征在于,所述无机纳米填料为二氧化硅、氧化铝、氮化铝、氮化硼中的至少一种。
  9. 根据权利要求1至8中任一项所述的环氧塑封料,其特征在于,所述环氧塑封料还包括阻燃剂0.1-1.5重量份、脱模剂0.1-1.5重量份、离子捕捉剂0.1-0.5重量份、着色剂0.1-0.5重量份中的至少一种。
  10. 一种半导体封装结构,其特征在于,包括半导体器件以及封装在所述半导体器件上的塑封体,所述塑封体由如权利要求1至9中任一项所述的环氧塑封料熔融后固化形成。
  11. 一种电子装置,包括壳体,其特征在于,还包括设置在所述壳体中的如权利要求10所述的半导体封装结构。
  12. 一种环氧塑封料的制备方法,其特征在于,包括:
    S1:制备应力吸收剂预处理的环氧树脂,将环氧树脂与应力吸收剂加热熔融、搅拌、冷却、粉碎、过筛,其中所述环氧树脂5-15重量份,所述应力吸收剂0.1-5重量份,所述应力吸收剂为苯乙烯-丁二烯共聚物或其衍生物;
    S2:制备无机纳米填料预处理酚醛树脂,将酚醛树脂与无机纳米填料共混、加热熔融、搅拌、冷却、粉碎、过筛,其中所述无机填料65-90重量份,所述酚醛树脂5-8重量份;
    S3:将所述应力吸收剂预处理的环氧树脂、所述无机填料预处理酚醛树脂、无机微米填料、固化促进剂0.1-1.5重量份,所述无机微米填料和所述无机纳米填料共65-90重量份,之后依次经在80-130℃下双螺挤压、冷却、粉碎、预压成型。
  13. 根据权利要求12所述的环氧塑封料的制备方法,其特征在于,步骤S2中,所述无机纳米填料的粒径大小为10nm-100nm,主要为球形,密度大于2.0×10 3kg/m 3
  14. 根据权利要求12或13所述的环氧塑封料的制备方法,其特征在于,步骤S2中,将酚醛树脂与无机纳米填料共混前,所述无机纳米填料的表面预先包覆有硅烷偶联剂,其中所述硅烷偶联剂0.1-1.5重量份。
  15. 根据权利要求12至14中任一项所述的环氧塑封料的制备方法,其特征在于,步骤S3中还选择性添加阻燃剂0.1-1.5重量份、脱模剂0.1-1.5重量份、离子捕捉剂0.1-0.5重量份和着色剂0.1-0.5重量份中的至少一种进行共混。
PCT/CN2022/100117 2022-06-21 2022-06-21 环氧塑封料及其制备方法、半导体封装结构、电子装置 WO2023245413A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100117 WO2023245413A1 (zh) 2022-06-21 2022-06-21 环氧塑封料及其制备方法、半导体封装结构、电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100117 WO2023245413A1 (zh) 2022-06-21 2022-06-21 环氧塑封料及其制备方法、半导体封装结构、电子装置

Publications (1)

Publication Number Publication Date
WO2023245413A1 true WO2023245413A1 (zh) 2023-12-28

Family

ID=89378736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100117 WO2023245413A1 (zh) 2022-06-21 2022-06-21 环氧塑封料及其制备方法、半导体封装结构、电子装置

Country Status (1)

Country Link
WO (1) WO2023245413A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916174A (en) * 1988-01-06 1990-04-10 Kabushiki Kaisha Toshiba Rubber-modified phenolic resin composition and method of manufacturing the same
CN102432980A (zh) * 2011-10-19 2012-05-02 江苏华海诚科新材料有限公司 半导体封装用的环氧树脂组合物及其制备方法
CN105778410A (zh) * 2014-12-18 2016-07-20 北京首科化微电子有限公司 包含三嵌段聚合物的环氧塑封料
CN106589834A (zh) * 2016-12-29 2017-04-26 中国科学院深圳先进技术研究院 环氧塑封料及其制备方法与应用
CN107446316A (zh) * 2016-05-31 2017-12-08 比亚迪股份有限公司 一种环氧塑封料组合物,环氧塑封料及其制备方法
CN109467881A (zh) * 2018-10-31 2019-03-15 科化新材料泰州有限公司 一种半导体封装用超耐热、高导热环氧塑封料
CN111073217A (zh) * 2019-12-23 2020-04-28 科化新材料泰州有限公司 一种半导体封装用高导热低应力环氧塑封料
CN111117540A (zh) * 2019-12-23 2020-05-08 科化新材料泰州有限公司 一种有机膨润土改性半导体封装用高强度高耐热环氧塑封料及其制备方法
CN111978726A (zh) * 2020-07-28 2020-11-24 江南大学 一种热固性树脂组合物及其制备方法和用途
CN112538236A (zh) * 2020-12-10 2021-03-23 深圳先进电子材料国际创新研究院 一种环氧塑封料及其制备方法和应用
CN112852107A (zh) * 2021-03-16 2021-05-28 聚拓导热材料(无锡)有限公司 一种高介电低损耗高导热绝缘型环氧塑封料及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916174A (en) * 1988-01-06 1990-04-10 Kabushiki Kaisha Toshiba Rubber-modified phenolic resin composition and method of manufacturing the same
CN102432980A (zh) * 2011-10-19 2012-05-02 江苏华海诚科新材料有限公司 半导体封装用的环氧树脂组合物及其制备方法
CN105778410A (zh) * 2014-12-18 2016-07-20 北京首科化微电子有限公司 包含三嵌段聚合物的环氧塑封料
CN107446316A (zh) * 2016-05-31 2017-12-08 比亚迪股份有限公司 一种环氧塑封料组合物,环氧塑封料及其制备方法
CN106589834A (zh) * 2016-12-29 2017-04-26 中国科学院深圳先进技术研究院 环氧塑封料及其制备方法与应用
CN109467881A (zh) * 2018-10-31 2019-03-15 科化新材料泰州有限公司 一种半导体封装用超耐热、高导热环氧塑封料
CN111073217A (zh) * 2019-12-23 2020-04-28 科化新材料泰州有限公司 一种半导体封装用高导热低应力环氧塑封料
CN111117540A (zh) * 2019-12-23 2020-05-08 科化新材料泰州有限公司 一种有机膨润土改性半导体封装用高强度高耐热环氧塑封料及其制备方法
CN111978726A (zh) * 2020-07-28 2020-11-24 江南大学 一种热固性树脂组合物及其制备方法和用途
CN112538236A (zh) * 2020-12-10 2021-03-23 深圳先进电子材料国际创新研究院 一种环氧塑封料及其制备方法和应用
CN112852107A (zh) * 2021-03-16 2021-05-28 聚拓导热材料(无锡)有限公司 一种高介电低损耗高导热绝缘型环氧塑封料及其制备方法

Similar Documents

Publication Publication Date Title
TWI623561B (zh) 用於封裝半導體裝置的組成物及使用其封裝的半導體裝置
JP4053152B2 (ja) 熱硬化性樹脂組成物及びその半導体装置
JP4460968B2 (ja) 樹脂組成物の製造方法
JP4264991B2 (ja) 熱硬化性樹脂組成物及び半導体装置
JP2020125399A (ja) 半導体封止用樹脂組成物および半導体装置
US20090062449A1 (en) Thermally conductive underfill formulations
JPH09100394A (ja) エポキシ樹脂組成物及び樹脂封止型半導体装置
JP4973322B2 (ja) エポキシ樹脂組成物及び半導体装置
JP2007067164A (ja) 半導体封止用エポキシ樹脂組成物及びその製造方法
WO2023245413A1 (zh) 环氧塑封料及其制备方法、半导体封装结构、电子装置
JP2023109966A (ja) 半導体封止用樹脂組成物および半導体装置
TWI793258B (zh) 半導體密封用樹脂組成物、半導體裝置、及半導體密封用樹脂組成物之製造方法
JPH0321647A (ja) 樹脂組成物および該組成物を用いた樹脂封止型電子装置
JPH02261856A (ja) 半導体封止用エポキシ樹脂組成物及び樹脂封止形半導体装置
JPH08199045A (ja) エポキシ樹脂組成物の製造方法並びにその樹脂組成物を用いた半導体装置
JP2021187868A (ja) 熱硬化性樹脂組成物、及び電子装置
JP3041673B2 (ja) 半導体装置封止用樹脂組成物及び半導体装置
JP2004115747A (ja) ヒートシンク形成用樹脂組成物および電子部品封止装置
JP5201451B2 (ja) 半導体封止用エポキシ樹脂組成物
JP2002179763A (ja) エポキシ樹脂組成物
CN116997608A (zh) 模塑用环氧树脂组合物
JP2006022188A (ja) エポキシ樹脂組成物及びその製造方法並びに半導体装置
JPH03140322A (ja) 半導体封止用エポキシ樹脂成形材料及び樹脂封止型半導体装置
JP2003138106A (ja) エポキシ樹脂組成物
JP2006143784A (ja) エポキシ樹脂組成物及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947193

Country of ref document: EP

Kind code of ref document: A1