WO2023243517A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2023243517A1
WO2023243517A1 PCT/JP2023/021193 JP2023021193W WO2023243517A1 WO 2023243517 A1 WO2023243517 A1 WO 2023243517A1 JP 2023021193 W JP2023021193 W JP 2023021193W WO 2023243517 A1 WO2023243517 A1 WO 2023243517A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
outdoor
air conditioner
outdoor heat
Prior art date
Application number
PCT/JP2023/021193
Other languages
English (en)
French (fr)
Inventor
隼人 布
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023243517A1 publication Critical patent/WO2023243517A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Definitions

  • the present disclosure relates to an air conditioner.
  • An air conditioner with a large capacity outdoor heat exchanger that functions as an evaporator is sometimes used to ensure sufficient capacity during heating operation even when the outside air temperature is low, such as in a cold region.
  • the outdoor heat exchanger will function as a refrigerant condenser, but a large amount of liquid refrigerant will be present in the outdoor heat exchanger, which has a large volume. , the amount of refrigerant charged into the refrigerant circuit tends to increase.
  • the air conditioner according to the first aspect includes a first heat exchanger, a second heat exchanger, and a switching section.
  • the switching unit switches between the first operation and the second operation.
  • the first heat exchanger functions as a refrigerant condenser
  • the second heat exchanger functions as a refrigerant evaporator.
  • the first heat exchanger functions as a refrigerant evaporator
  • the second heat exchanger functions as a refrigerant condenser.
  • the internal volume of the first heat exchanger is smaller than the internal volume of the second heat exchanger.
  • the internal volume of the region through which the refrigerant flows in the second heat exchanger during the second operation is smaller than the internal volume of the region through which the refrigerant flows in the second heat exchanger during the first operation.
  • the second heat exchanger which has a larger internal volume than the first heat exchanger, functions as a refrigerant evaporator, so it is easy to ensure the capacity during the first operation.
  • the internal volume of the region through which the refrigerant flows in the second heat exchanger is the same as that in the second heat exchanger during the first operation. It is small compared to the internal volume of the area through which the refrigerant flows. Therefore, the amount of liquid refrigerant held in the second heat exchanger during the second operation can be kept small. Therefore, it becomes possible to reduce the amount of refrigerant filled into the air conditioner.
  • the air conditioner according to the second aspect is the air conditioner according to the first aspect, and the second heat exchanger is an air heat exchanger that performs heat exchange between the refrigerant flowing inside and the air flowing outside. It is.
  • the first heat exchanger It has a larger internal volume than an exchanger, so it is easier to secure capacity.
  • the air conditioner according to the third aspect is the air conditioner according to the second aspect, and further includes a blower section.
  • the blower is capable of providing air flow throughout the second heat exchanger.
  • the air flow is supplied to the entire second heat exchanger, so it is easy to ensure the amount of heat exchange.
  • the air conditioner according to the fourth aspect is the air conditioner according to the third aspect, in which during the second operation, the flow path through which the refrigerant flows through the second heat exchanger is viewed from the direction of the air flow formed by the blowing section. do not overlap each other.
  • This air conditioner can efficiently exchange heat even if the internal volume of the refrigerant passage area of the second heat exchanger during the second operation is smaller than during the first operation.
  • the air conditioner according to the fifth aspect is the air conditioner according to any one of the first to fourth aspects, and during the first operation, the refrigerant flows through the entire internal volume of the second heat exchanger.
  • the air conditioner according to the sixth aspect is the air conditioner according to any one of the first to fourth aspects, and in the first operation, the second heat exchanger has two or more channels through which the refrigerant flows. are doing.
  • This air conditioner can reduce pressure loss in the second heat exchanger that functions as an evaporator during the first operation.
  • the air conditioner according to the seventh aspect is the air conditioner according to any one of the first to sixth aspects, and the second heat exchanger has a plurality of heat exchanger tubes. During the second operation, the second heat exchanger has one or more heat transfer tubes through which refrigerant does not flow.
  • This air conditioner can reduce the amount of liquid refrigerant held in the second heat exchanger during the second operation in which the second heat exchanger functions as a refrigerant condenser.
  • the air conditioner according to the eighth aspect is the air conditioner according to any one of the first to seventh aspects, wherein the internal volume of the first heat exchanger is 2/3 of the internal volume of the second heat exchanger. It is as follows.
  • This air conditioner can keep the amount of refrigerant charged small even when the internal volume of the second heat exchanger is large.
  • the air conditioner according to the ninth aspect is the air conditioner according to any one of the first to eighth aspects, and the second heat exchanger is a heat source side heat exchanger.
  • the first heat exchanger is a user-side heat exchanger.
  • This air conditioner can obtain a large amount of heat during the first operation in the second heat exchanger, which has a larger internal volume than the first heat exchanger.
  • the air conditioner according to the tenth aspect is the air conditioner according to any one of the first to ninth aspects, and the refrigerant is a combustible refrigerant.
  • this air conditioner can reduce the amount of refrigerant charged.
  • the air conditioner according to the eleventh aspect is the air conditioner according to the tenth aspect, in which the combustible refrigerant includes one or more selected from the group consisting of R290, R600, and R600a. included.
  • This air conditioner can reduce the risk of ignition even when using a refrigerant that is easily combustible.
  • FIG. 2 is a schematic configuration diagram of a refrigerant circuit. It is a schematic control block block diagram of an air conditioner.
  • FIG. 1 is a schematic configuration diagram of a refrigerant circuit
  • FIG. 2 is a schematic control block configuration diagram.
  • the air conditioner 1 is a refrigeration cycle device that harmonizes the air in a target space by performing a vapor compression refrigeration cycle.
  • the air conditioner 1 of this embodiment can be used, for example, in cold regions where the heating load is greater than the cooling load throughout the year.
  • the air conditioner 1 mainly includes an outdoor unit 20, an indoor unit 30, a liquid side refrigerant connection pipe 6 and a gas side refrigerant connection pipe 5 that connect the outdoor unit 20 and the indoor unit 30, a heat load circuit 50, and an input circuit. It has a remote controller (not shown) as a device and an output device, and a controller 7 that controls the operation of the air conditioner 1.
  • a refrigeration cycle is performed in which the refrigerant sealed in the refrigerant circuit 10 is compressed, cooled or condensed, depressurized, heated or evaporated, and then compressed again.
  • the refrigerant circuit 10 is filled with refrigerant for performing a vapor compression type refrigeration cycle.
  • the refrigerant is a combustible refrigerant. Examples of flammable refrigerants include highly flammable refrigerants of classes A3 and B3, flammable refrigerants of classes A2 and B2, and slightly flammable refrigerants of classes A2L and B2L in the ASHRAE Safety Group.
  • the refrigerant may be one or more selected from the group consisting of R290, R600, and R600a.
  • the refrigerant circuit 10 is filled with a refrigerant having a higher specific gravity than air. Further, the refrigerant circuit 10 is filled with refrigerating machine oil together with the mixed refrigerant.
  • Outdoor unit 20 The outdoor unit 20 is connected to the indoor unit 30 via the liquid side refrigerant communication pipe 6 and the gas side refrigerant communication pipe 5, and constitutes a part of the refrigerant circuit 10.
  • the outdoor unit 20 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 40, a first on-off valve 43, a second on-off valve 44, an outdoor expansion valve 24, and an outdoor fan 25. , an accumulator 49, a liquid side closing valve 29, and a gas side closing valve 28.
  • the outdoor unit 20 is placed outdoors.
  • the compressor 21 is a device that compresses low-pressure refrigerant in the refrigeration cycle until it becomes high pressure.
  • a hermetic structure compressor in which a positive displacement compression element (not shown), such as a rotary type or a scroll type, is rotationally driven by a compressor motor is used.
  • the compressor motor is used to change the capacity, and the operating frequency can be controlled by an inverter.
  • the four-way switching valve 22 switches between a cooling operation connection state and a heating operation connection state by switching the connection state.
  • the four-way switching valve 22 connects the discharge side of the compressor 21 and the outdoor heat exchanger 40, and connects the suction side of the compressor 21 to the gas side closing valve 28. More specifically, in the cooling operation connected state, the discharge side of the compressor 21 is connected to a branch point A, which will be described later.
  • the four-way switching valve 22 connects the discharge side of the compressor 21 to the gas side closing valve 28 and connects the suction side of the compressor 21 to the outdoor heat exchanger 40 . More specifically, in the heating operation connected state, the suction side of the compressor 21 is connected to a branch point A, which will be described later.
  • the accumulator 49 is provided between the four-way switching valve 22 and the suction side of the compressor 21. This prevents the compressor 21 from sucking in liquid refrigerant.
  • the outdoor heat exchanger 40 is a heat source side heat exchanger that partially functions as a condenser for high-pressure refrigerant in the refrigeration cycle during cooling operation, and functions as a whole as an evaporator for low-pressure refrigerant in the refrigeration cycle during heating operation.
  • the outdoor heat exchanger 40 includes a first outdoor heat exchanger 41 and a second outdoor heat exchanger 42 that are connected in parallel to each other in the refrigerant circuit 10 .
  • the outdoor heat exchanger 40 for both the first outdoor heat exchanger 41 and the second outdoor heat exchanger 42, is an air heat exchanger that exchanges heat between the refrigerant flowing inside and the air passing outside. It is.
  • the outdoor heat exchanger 40 includes a plurality of heat exchanger tubes connected to a header and a plurality of fins fixed to the plurality of heat exchanger tubes for both the first outdoor heat exchanger 41 and the second outdoor heat exchanger 42. ,have.
  • the internal volume of the outdoor heat exchanger 40 is larger than the internal volume of the indoor heat exchanger 31, and may be 1.5 times or more the internal volume of the indoor heat exchanger 31, and is larger than the internal volume of the indoor heat exchanger 31. It is preferable that it is 2.0 times or more.
  • the internal volume of the outdoor heat exchanger 40 may be, for example, 3 L or more and 10 L or less, or 4 L or more and 7 L or less.
  • the internal volume of the outdoor heat exchanger 40 is the sum of the internal volume of the first outdoor heat exchanger 41 and the internal volume of the second outdoor heat exchanger 42.
  • the internal volume of the first outdoor heat exchanger 41 and the second outdoor heat exchanger 42 refers to the volume of fluid when the header and the heat exchanger tubes are filled with fluid.
  • the first outdoor heat exchanger 41 functions as a high-pressure refrigerant condenser in the refrigeration cycle
  • the first outdoor heat exchanger 41 and the second outdoor heat exchanger 42 function as a condenser. Both serve as low-pressure refrigerant evaporators in the refrigeration cycle.
  • the first outdoor heat exchanger 41 is provided between the four-way switching valve 22 and the outdoor expansion valve 24.
  • a branch point A is provided between the four-way switching valve 22 and the gas refrigerant side end of the first outdoor heat exchanger 41 to branch the refrigerant flow path.
  • a branch point B is provided between the liquid refrigerant side end of the first outdoor heat exchanger 41 and the outdoor expansion valve 24 to branch the refrigerant flow path.
  • the gas refrigerant side end of the second outdoor heat exchanger 42 is connected to the branch point A, and the liquid refrigerant side end of the second outdoor heat exchanger 42 is connected to the branch point B.
  • the first outdoor heat exchanger 41 and the first outdoor heat exchanger 41 are connected in parallel.
  • a first on-off valve 43 that can be opened and closed is provided between the gas refrigerant side end of the second outdoor heat exchanger 42 and the branch point A.
  • a second on-off valve 44 that can be opened and closed is provided between the liquid refrigerant side of the second outdoor heat exchanger 42 and the branch point B.
  • the outdoor fan 25 draws outdoor air into the outdoor unit 20, exchanges heat with the refrigerant in the outdoor heat exchanger 40, and then generates an air flow to be discharged to the outside.
  • the outdoor fan 25 is rotationally driven by an outdoor fan motor.
  • the outdoor fan 25 includes a plurality of fans.
  • the outdoor fan 25 including the plurality of fans supplies an air flow formed by driving to the entire outdoor heat exchanger 40 . More specifically, the air flow formed by the outdoor fan 25 is supplied to the entire first outdoor heat exchanger 41 and also to the entire second outdoor heat exchanger 42 .
  • the first outdoor heat exchanger 41 is arranged on the windward side of the second outdoor heat exchanger 42 in the air flow direction formed by the outdoor fan 25.
  • the outdoor expansion valve 24 is provided between the liquid side end of the outdoor heat exchanger 40 and the liquid side closing valve 29.
  • the outdoor expansion valve 24 may be a mechanical expansion valve used with a capillary tube or a temperature-sensitive tube, but is preferably an electric expansion valve whose opening degree can be controlled.
  • the liquid-side closing valve 29 is a manual valve disposed at the connection portion of the outdoor unit 20 with the liquid-side refrigerant communication pipe 6.
  • the gas side closing valve 28 is a manual valve arranged at the connection portion between the outdoor unit 20 and the gas side refrigerant communication pipe 5.
  • the outdoor unit 20 has an outdoor unit control section 27 that controls the operation of each part constituting the outdoor unit 20.
  • the outdoor unit control section 27 includes a microcomputer including a processor such as a CPU (Central Processing Unit), and a memory such as a ROM and a RAM.
  • the outdoor unit control section 27 is connected to the indoor unit control section 34 of each indoor unit 30 via a communication line, and sends and receives control signals and the like.
  • the outdoor unit 20 includes a discharge pressure sensor 61, a discharge temperature sensor 62, a suction pressure sensor 63, a suction temperature sensor 64, a first outdoor heat exchanger temperature sensor 65, a second outdoor heat exchanger temperature sensor 66, an outside air temperature sensor 67, etc. It is provided. Each of these sensors is electrically connected to the outdoor unit control section 27 and transmits a detection signal to the outdoor unit control section 27.
  • the discharge pressure sensor 61 detects the pressure of refrigerant flowing through a discharge pipe connecting the discharge side of the compressor 21 and one of the connection ports of the four-way switching valve 22.
  • the discharge temperature sensor 62 detects the temperature of the refrigerant flowing through the discharge pipe.
  • the suction pressure sensor 63 detects the pressure of refrigerant flowing through the suction pipe connecting the suction side of the compressor 21 and one of the connection ports of the four-way switching valve 22.
  • the suction temperature sensor 64 detects the temperature of the refrigerant flowing through the suction pipe.
  • the first outdoor heat exchanger temperature sensor 65 detects the temperature of the refrigerant flowing between the liquid refrigerant side end of the first outdoor heat exchanger 41 and the branch point B.
  • the second outdoor heat exchanger temperature sensor 66 detects the temperature of the refrigerant flowing between the liquid refrigerant side end of the second outdoor heat exchanger 42 and the branch point B.
  • the outside air temperature sensor 67 detects the outdoor air temperature before passing through the outdoor heat exchanger 40.
  • the heat load circuit 50 is a circuit in which a heat medium, which is a fluid, circulates.
  • the heat medium is not particularly limited, and examples thereof include fluids such as water and brine.
  • the heat load circuit 50 includes a heat load section 51 and a pump 52.
  • the heat load section 51 is a section that processes the cooling load during the cooling operation, and a section that processes the heating load during the heating operation.
  • Examples of the heat load section 51 include a floor heating panel during heating operation, a coil portion of a fan coil unit for supplying cold air using a blower fan during cooling operation, and the like.
  • the pump 52 circulates the heat medium in the heat load circuit 50, and can control the flow rate.
  • the heat load circuit 50 supplies the heat medium cooled by exchanging heat with the refrigerant in the indoor heat exchanger 31 to the heat load section 51.
  • the heat medium warmed by processing the cooling load in the heat load section 51 is supplied to the indoor heat exchanger 31 again.
  • the heat load circuit 50 supplies the heat medium heated by exchanging heat with the refrigerant in the indoor heat exchanger 31 to the heat load section 51.
  • the heat medium cooled by processing the heating load in the heat load section 51 is supplied to the indoor heat exchanger 31 again.
  • the indoor unit 30 is provided near the air-conditioned space.
  • the indoor unit 30 is connected to the outdoor unit 20 via the liquid side refrigerant communication pipe 6 and the gas side refrigerant communication pipe 5, and constitutes a part of the refrigerant circuit 10.
  • the indoor unit 30 is placed indoors.
  • the indoor unit 30 has an indoor heat exchanger 31.
  • the indoor heat exchanger 31 has a liquid side connected to the liquid side refrigerant communication pipe 6, and a gas side end connected to the gas side refrigerant communication pipe 5.
  • the indoor heat exchanger 31 is a heat exchanger that functions as an evaporator for low-pressure refrigerant in the refrigeration cycle during cooling operation, and as a condenser for high-pressure refrigerant in the refrigeration cycle during heating operation.
  • the indoor heat exchanger 31 is a heat exchanger that exchanges heat between the refrigerant flowing inside and the heat medium flowing through the heat load circuit 50.
  • the indoor heat exchanger 31 of this embodiment is a plate heat exchanger in which a plurality of plate-like members are stacked, and regions where a refrigerant flows and regions where a heat medium flows are arranged alternately.
  • the internal volume of the indoor heat exchanger 31 is smaller than the internal volume of the outdoor heat exchanger 40, and may be 2/3 or less of the internal volume of the outdoor heat exchanger 40, and may be half of the internal volume of the outdoor heat exchanger 40. It is preferable that it is below.
  • the internal volume of the indoor heat exchanger 31 may be, for example, 1 L or more and 4 L or less, or 1.5 L or more and 2.5 L or less.
  • the internal volume of the indoor heat exchanger 31 refers to the space in the indoor heat exchanger 31 excluding the space through which the heat medium flows, and refers to the volume of the space through which the refrigerant flows.
  • the internal volume of the indoor heat exchanger 31 refers to the volume of fluid when the space in the indoor heat exchanger 31 through which the refrigerant flows is filled with fluid.
  • the indoor unit 30 has an indoor unit control section 34 that controls the operation of each section configuring the indoor unit 30 and each section configuring the heat load circuit 50.
  • the indoor unit control section 34 includes a microcomputer including a processor such as a CPU (Central Processing Unit), and a memory such as a ROM and a RAM.
  • the indoor unit control section 34 is connected to the outdoor unit control section 27 via a communication line, and sends and receives control signals and the like.
  • the indoor unit 30 is provided with an indoor liquid-side heat exchanger temperature sensor 71, an indoor gas-side heat exchanger temperature sensor 73, a heat medium temperature sensor 53, and the like. Each of these sensors is electrically connected to the indoor unit control section 34 and transmits a detection signal to the indoor unit control section 34.
  • the indoor liquid side heat exchanger temperature sensor 71 detects the temperature of the refrigerant flowing through the outlet of the liquid refrigerant side of the indoor heat exchanger 31, which is the side opposite to the side to which the four-way switching valve 22 is connected.
  • the indoor gas side heat exchanger temperature sensor 73 detects the temperature of the refrigerant flowing through the outlet of the gas refrigerant side of the indoor heat exchanger 31, which is the side to which the four-way switching valve 22 is connected.
  • the heat medium temperature sensor 53 detects the temperature of the heat medium flowing through the outlet of the indoor heat exchanger 31.
  • the controller 7 that controls the operation of the air conditioner 1 is configured by connecting the outdoor unit control section 27 and the indoor unit control section 34 via a communication line. ing.
  • the controller 7 mainly includes a processor such as a CPU (Central Processing Unit), and a memory such as a ROM or RAM. Note that various processes and controls by the controller 7 are realized by each part included in the outdoor unit control section 27 and/or the indoor unit control section 34 functioning in an integrated manner.
  • a processor such as a CPU (Central Processing Unit)
  • a memory such as a ROM or RAM. Note that various processes and controls by the controller 7 are realized by each part included in the outdoor unit control section 27 and/or the indoor unit control section 34 functioning in an integrated manner.
  • Driving mode The driving mode will be explained below.
  • the operation modes include a cooling operation mode, a heating operation mode, and a defrost operation mode.
  • the controller 7 determines whether the mode is a cooling operation mode or a heating operation mode based on instructions received from a remote controller or the like, and executes the mode. Further, the controller 7 executes the defrost operation mode when a predetermined defrost start condition is satisfied during the execution of the heating operation mode. Then, when a predetermined defrost termination condition is satisfied during execution of the defrost operation mode, the controller 7 terminates the defrost operation and restarts the heating operation mode.
  • the defrost start condition is not particularly limited, and can be determined based on, for example, the continuous operation time of the heating operation or the outside air temperature. Further, the defrost termination condition is not particularly limited, and includes, for example, that a predetermined time has passed since the defrost operation mode was started, or that the temperature of the outdoor heat exchanger 40 has fallen below a predetermined value.
  • the air conditioner 1 used in an environment where the cooling load is relatively small, it is possible to handle the cooling load without using the entire area of the outdoor heat exchanger 40 as a condenser. Note that during cooling operation, only one of the first on-off valve 43 and the second on-off valve 44 may be closed. Moreover, the outdoor fan 25 is controlled to be in a driving state. The flow rate of the pump 52 of the heat load circuit 50 is controlled based on, for example, the temperature of the heat medium detected by the heat medium temperature sensor 53 and the set temperature in the heat load section 51 .
  • the operating frequency of the compressor 21 is controlled by performing capacity control according to the cooling load required by the indoor unit 30.
  • the gas refrigerant discharged from the compressor 21 passes through the four-way switching valve 22 and flows into the gas side end of the first outdoor heat exchanger 41.
  • the gas refrigerant that has flowed into the gas side end of the first outdoor heat exchanger 41 exchanges heat with the outdoor air supplied by the outdoor fan 25 in the first outdoor heat exchanger 41, condenses, and becomes a liquid refrigerant. and flows out from the liquid side end of the first outdoor heat exchanger 41.
  • the refrigerant flowing out from the liquid side end of the first outdoor heat exchanger 41 is depressurized when passing through the outdoor expansion valve 24.
  • the outdoor expansion valve 24 is controlled, for example, so that the degree of superheat of the refrigerant sucked into the compressor 21 becomes a predetermined target value of the degree of superheat.
  • the degree of superheat of the refrigerant sucked into the compressor 21 is determined, for example, by subtracting the saturation temperature corresponding to the suction pressure (the pressure detected by the suction pressure sensor 63) from the suction temperature (the temperature detected by the suction temperature sensor 64). be able to.
  • the refrigerant whose pressure has been reduced by the outdoor expansion valve 24 flows into the indoor unit 30 via the liquid-side closing valve 29 and the liquid-side refrigerant communication pipe 6.
  • the refrigerant that has flowed into the indoor unit 30 flows into the indoor heat exchanger 31, where it exchanges heat with the heat medium circulating in the heat load circuit 50, evaporates, and becomes a gas refrigerant that generates indoor heat. It flows out from the gas side end of the exchanger 31.
  • the gas refrigerant flowing out from the gas side end of the indoor heat exchanger 31 flows into the gas side refrigerant communication pipe 5.
  • the refrigerant flowing through the gas side refrigerant communication pipe 5 passes through the gas side closing valve 28, the four-way switching valve 22, and the accumulator 49, and is sucked into the compressor 21 again.
  • (5-2) Heating operation mode In the air conditioner 1, in the heating operation mode, the four-way switching valve 22 is connected to the discharge side of the compressor 21 and the gas side closing valve 28, while the suction of the compressor 21 is connected. A heating operation connection state is established in which the side and the outdoor heat exchanger 40 are connected, and the refrigerant filled in the refrigerant circuit 10 is mainly transferred to the compressor 21, the indoor heat exchanger 31, the outdoor expansion valve 24, and the outdoor heat exchanger 40. Circulate in this order.
  • in the heating operation mode in order to flow the refrigerant throughout the outdoor heat exchanger 40, more specifically, to flow the refrigerant through both the first outdoor heat exchanger 41 and the second outdoor heat exchanger 42.
  • both the first on-off valve 43 and the second on-off valve 44 are controlled to be in the open state.
  • the air conditioner 1 is used in an environment with a relatively large heating load, by using the entire area of the outdoor heat exchanger 40 as an evaporator, it becomes possible to handle the large heating load.
  • the outdoor fan 25 is controlled to be in a driving state.
  • the flow rate of the pump 52 of the heat load circuit 50 is controlled based on, for example, the temperature of the heat medium detected by the heat medium temperature sensor 53 and the set temperature in the heat load section 51 .
  • the capacity of the compressor 21 is controlled according to the heating load required by the indoor unit 30, and the operating frequency is controlled.
  • the gas refrigerant discharged from the compressor 21 flows through the four-way switching valve 22 and the gas-side refrigerant communication pipe 5, and then flows into the indoor unit 30.
  • the refrigerant that has flowed into the indoor unit 30 flows into the gas side end of the indoor heat exchanger 31, where it exchanges heat with the heat medium circulating through the heat load circuit 50 and condenses, forming a gas-liquid two.
  • the refrigerant becomes a phase refrigerant or a liquid refrigerant and flows out from the liquid side end of the indoor heat exchanger 31.
  • the refrigerant flowing out from the liquid side end of the indoor heat exchanger 31 flows into the liquid side refrigerant communication pipe 6.
  • the refrigerant flowing through the liquid-side refrigerant communication pipe 6 flows into the outdoor unit 20, passes through the liquid-side closing valve 29, and is depressurized at the outdoor expansion valve 24 until it reaches a low pressure in the refrigeration cycle.
  • the outdoor expansion valve 24 is controlled, for example, so that the degree of superheat of the refrigerant sucked into the compressor 21 becomes a predetermined target value of the degree of superheat.
  • the refrigerant whose pressure has been reduced by the outdoor expansion valve 24 flows into the liquid side ends of the first outdoor heat exchanger 41 and the second outdoor heat exchanger 42, respectively.
  • the refrigerant flowing from the liquid side end of the first outdoor heat exchanger 41 exchanges heat with the outdoor air supplied by the outdoor fan 25 in the first outdoor heat exchanger 41, evaporates, and becomes a gas refrigerant. It flows out from the gas side end of the first outdoor heat exchanger 41.
  • the refrigerant flowing from the liquid side end of the second outdoor heat exchanger 42 exchanges heat with the outdoor air supplied by the outdoor fan 25 and evaporates into a gas refrigerant. Then, it flows out from the gas side end of the second outdoor heat exchanger 42.
  • the four-way switching valve 22 is connected to the discharge side of the compressor 21, the first outdoor heat exchanger 41, and the second outdoor heat exchanger 42.
  • a cooling operation connection state is established in which the suction side of the compressor 21 and the gas side closing valve 28 are connected while both are connected to the compressor 21 and the gas side shutoff valve 28.
  • the heat exchanger 41, the second outdoor heat exchanger 42, the outdoor expansion valve 24, and the indoor heat exchanger 31 are circulated in this order.
  • the first on-off valve 43 and the second on-off valve 44 are operated in order to remove frost attached to the first outdoor heat exchanger 41 and the second outdoor heat exchanger 42.
  • the refrigerant is supplied to both the first outdoor heat exchanger 41 and the second outdoor heat exchanger 42 . Furthermore, during the defrost operation, the outdoor fan 25 is stopped. Further, during the defrost operation, the pump 52 of the heat load circuit 50 is stopped.
  • refrigerant is sucked into the compressor 21 in the refrigerant circuit 10, compressed, and then discharged.
  • the compressor 21 is controlled to have a predetermined maximum frequency, for example, in order to melt the frost early.
  • the gas refrigerant discharged from the compressor 21 passes through the four-way switching valve 22 and flows into the first outdoor heat exchanger 41 and the second outdoor heat exchanger 42, respectively.
  • the gas refrigerant that has flowed into the gas side end of the first outdoor heat exchanger 41 is condensed by melting the frost attached to the first outdoor heat exchanger 41, and becomes a liquid refrigerant or a gas-liquid two-layer refrigerant. It flows out from the liquid side end of the first outdoor heat exchanger 41.
  • the gas refrigerant that has flowed into the gas side end of the second outdoor heat exchanger 42 is condensed by melting the frost attached to the second outdoor heat exchanger 42, and becomes a liquid refrigerant or a gas-liquid two-layer refrigerant. It flows out from the liquid side end of the second outdoor heat exchanger 42.
  • the refrigerant flowing out from the liquid side end of the first outdoor heat exchanger 41 and the refrigerant flowing out from the liquid side end of the second outdoor heat exchanger 42 are depressurized when passing through the outdoor expansion valve 24 after merging.
  • the refrigerant whose pressure has been reduced by the outdoor expansion valve 24 flows into the indoor unit 30 via the liquid side closing valve 29 and the liquid side refrigerant communication pipe 6.
  • the refrigerant that has flowed into the indoor unit 30 flows into the indoor heat exchanger 31, where it exchanges heat with the heat medium of the thermal load circuit 50, evaporates, and becomes a gas refrigerant that is transferred to the indoor heat exchanger. It flows out from the gas side end of 31.
  • the gas refrigerant flowing out from the gas side end of the indoor heat exchanger 31 flows into the gas side refrigerant communication pipe 5.
  • the refrigerant flowing through the gas side refrigerant communication pipe 5 passes through the gas side closing valve 28, the four-way switching valve 22, and the accumulator 49, and is sucked into the compressor 21 again.
  • the entire outdoor heat exchanger 40 which has a larger internal volume than the indoor heat exchanger 31, functions as a refrigerant evaporator during heating operation, so the capacity during heating operation is is easy to secure. Therefore, even when the device is used in an environment with a large heating load, such as in a cold region, the heating load can be easily handled. Further, during cooling operation, the air conditioner 1 causes only the first outdoor heat exchanger 41 of the outdoor heat exchangers 40 to function as a refrigerant condenser, and the second outdoor heat exchanger 42 functions as a refrigerant condenser. Don't make it work.
  • the amount of liquid refrigerant contained in the outdoor heat exchanger 40 can be kept small, and the amount of refrigerant filled into the air conditioner 1 can be reduced. Furthermore, when the air conditioner 1 is used in an environment where the cooling load is smaller than the heating load, such as in a cold region, even if only the first outdoor heat exchanger 41 of the outdoor heat exchangers 40 is used. , it is easy to handle the cooling load.
  • the amount of refrigerant charged into the air conditioner 1 can be kept small while making it easier to handle the heat loads of the heating load and the cooling load.
  • the amount of leakage can be kept small. Thereby, it is possible to suppress the concentration of the leaked refrigerant from increasing when the refrigerant leaks, and it is possible to reduce the risk of ignition.
  • the amount of surplus refrigerant in the air conditioner 1 can be kept small, it is not necessary to provide a receiver for storing liquid refrigerant in the refrigerant circuit 10 where the liquid refrigerant or gas-liquid two-phase refrigerant flows. It is possible to eliminate the receiver, or even if the receiver is provided, the internal volume can be kept small.
  • the outdoor heat exchanger 40 is an air heat exchanger with a larger internal volume than the indoor heat exchanger 31, so it is easy to secure a heat source even during heating operation in a cold region.
  • the air flow formed by the outdoor fan 25 is supplied to the entire first outdoor heat exchanger 41 and also to the entire second outdoor heat exchanger 42. Therefore, whether the refrigerant is allowed to flow through both the first outdoor heat exchanger 41 and the second outdoor heat exchanger 42 or only the first outdoor heat exchanger 41, in either case, the outdoor fan 25
  • the air flow is used to perform heat exchange in the entire first outdoor heat exchanger 41 and heat exchange in the entire second outdoor heat exchanger 42, or to perform heat exchange in the entire first outdoor heat exchanger 41. It becomes possible to perform heat exchange.
  • the refrigerant flow path that passes through the outdoor heat exchanger 40 includes a refrigerant flow path that passes through the first outdoor heat exchanger 41 and a second outdoor heat exchanger 42. Multiple flow paths with refrigerant flow paths result. This makes it possible to reduce pressure loss when the refrigerant passes, compared to a case where the outdoor heat exchanger 40 is configured to have one refrigerant flow path.
  • the outdoor heat exchanger 40 includes a first outdoor heat exchanger 41 and a second outdoor heat exchanger 42, and the first outdoor heat exchanger 41 has an air flow formed by the outdoor fan 25.
  • the explanation has been given by taking as an example the air conditioner 1 disposed on the windward side of the second outdoor heat exchanger 42 in the direction.
  • the outdoor heat exchanger may be divided into more than two heat exchangers.
  • the outdoor heat exchanger may be configured to have more than two refrigerant flow paths.
  • the arrangement of the plurality of heat exchangers included in the outdoor heat exchanger is not limited to the arrangement in which they are lined up in the air flow direction of the outdoor fan 25.
  • the outdoor heat exchanger examples include an outdoor heat exchanger 140 shown in FIG. 3, in which a plurality of heat transfer tube groups arranged vertically are arranged in three rows in the air flow direction. It may be. Further, the outdoor heat exchanger may include a first outdoor heat exchanger 40a, a second outdoor heat exchanger 40b, and a third outdoor heat exchanger 40c, like this outdoor heat exchanger 140. . Here, it is preferable that the heat exchanger tubes arranged in rows adjacent to each other in the air flow direction are shifted in position so as not to overlap each other when viewed from the air flow direction.
  • the outdoor heat exchanger 140 is divided into three flow paths through which the refrigerant flows, as shown in FIG. Specifically, in the first outdoor heat exchanger 141, after flowing from the middle stage position on the leeward side and flowing through the heat exchanger tubes, when turning back at the end, it moves to the upper stage and flows through the upper stage heat exchanger tubes, and then turns back and flows through the heat exchanger tubes. and flows through the upper heat transfer tube on the windward side. In the second outdoor heat exchanger 142, the water flows from the lower stage on the leeward side, flows through the heat exchanger tubes, turns back at the end, flows through the lower heat exchanger tubes, and then moves to the middle stage on the windward side when turning back. Flows through heat transfer tubes.
  • the refrigerant does not flow through the first outdoor heat exchanger 141 and the second outdoor heat exchanger 142, but flows only through the third outdoor heat exchanger 143.
  • the refrigerant flows only in a part of the outdoor heat exchanger 140 during cooling operation, by flowing the refrigerant to the third outdoor heat exchanger 143, the entire air flow supplied from the outdoor fan 25 is heated. It can be used for exchange.
  • the third outdoor heat exchanger 143 is provided between the branch point A and the branch point B, and the first on-off valve 43 and the second on-off valve 44 are connected to each other.
  • the first outdoor heat exchanger 141 and the second outdoor heat exchanger 142 can be connected in parallel.
  • the indoor heat exchanger 31 may be an air heat exchanger. Specifically, the indoor heat exchanger 31 may exchange heat with air supplied from an indoor fan in order to adjust the air temperature of the space in which the indoor heat exchanger 31 is placed. .
  • the air conditioner 1 may be, for example, one in which a plurality of indoor units 30 are connected to the outdoor unit 20 in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

充填冷媒量を削減することが可能な空気調和装置を提供する。室内熱交換器(31)と、室外熱交換器(40)と、室内熱交換器(31)を冷媒の凝縮器として機能させ、室外熱交換器(40)を冷媒の蒸発器として機能させる暖房運転と、室内熱交換器(31)を冷媒の蒸発器として機能させ、室外熱交換器(40)を冷媒の凝縮器として機能させる冷房運転と、を切り換える四路切換弁(22)と、を備え、室内熱交換器(31)の内容積は室外熱交換器(40)の内容積よりも小さく、冷房運転時に室外熱交換器(40)において冷媒が流れる領域の内容積は、暖房運転時に室外熱交換器(40)において冷媒が流れる領域の内容積よりも小さい、空気調和装置(1)。

Description

空気調和装置
 本開示は、空気調和装置に関する。
 近年、地球環境保護の観点から、寒冷地においても、空気を熱源として暖房運転を行う空気調和装置の導入が進められている。
 このような寒冷地で用いられる空気調和装置としては、例えば、特許文献1(国際公開第2020/208776号)に記載の空気調和装置のように、室内の暖房負荷に合わせて暖房能力を調整するものが提案されている。
 寒冷地のように外気温度が低い場合においても暖房運転時の能力が十分に確保されるように、蒸発器として機能する室外熱交換器の容積が大きな空気調和装置が用いられる場合がある。この空気調和装置を用いて冷房運転を行う場合には、室外熱交換器は冷媒の凝縮器として機能することになるが、容積が大きな室外熱交換器に多くの液冷媒が存在することになり、冷媒回路に充填される冷媒量が増大しがちになる。
 第1観点に係る空気調和装置は、第1熱交換器と、第2熱交換器と、切換部と、を備える。切換部は、第1運転と第2運転を切り換える。第1運転は、第1熱交換器を冷媒の凝縮器として機能させ、第2熱交換器を冷媒の蒸発器として機能させる。第2運転は、第1熱交換器を冷媒の蒸発器として機能させ、第2熱交換器を冷媒の凝縮器として機能させる。第1熱交換器の内容積は、第2熱交換器の内容積よりも小さい。第2運転時に第2熱交換器において冷媒が流れる領域の内容積は、第1運転時に第2熱交換器において冷媒が流れる領域の内容積よりも小さい。
 この空気調和装置は、第1運転では第1熱交換器よりも内容積の大きな第2熱交換器を冷媒の蒸発器として機能させるため、第1運転時における能力を確保しやすい。また、空気調和装置は、第2熱交換器を冷媒の凝縮器として機能させる第2運転時には、第2熱交換器において冷媒が流れる領域の内容積が、第1運転時に第2熱交換器において冷媒が流れる領域の内容積と比べて小さい。このため、第2運転時に第2熱交換器に保持される液冷媒量を少なく抑えることができる。したがって、空気調和装置に充填される冷媒量を低減させることが可能になる。
 第2観点に係る空気調和装置は、第1観点の空気調和装置であって、第2熱交換器は、内部を流れる冷媒と外部を流れる空気との間で熱交換を行わせる空気熱交換器である。
 この空気調和装置は、第1運転を行う際に蒸発器として機能する第2熱交換器を流れる冷媒が、寒冷地における温度の低い外気と熱交換を行わせる場合であっても、第1熱交換器よりも内容積が大きいため、能力を確保しやすい。
 第3観点に係る空気調和装置は、第2観点の空気調和装置であって、送風部をさらに備えている。送風部は、第2熱交換器の全体に空気流れを供給可能である。
 この空気調和装置は、第2熱交換器の全体に空気流れが供給されるため、熱交換量を確保しやすい。
 第4観点に係る空気調和装置は、第3観点の空気調和装置であって、第2運転時には、第2熱交換器を冷媒が流れる流路は、送風部が形成する空気流れの方向から見た場合において互いに重ならない。
 この空気調和装置は、第2運転時における第2熱交換器の冷媒通過領域の内容積が、第1運転時よりも小さい場合であっても、効率よく熱交換させることが可能になる。
 第5観点に係る空気調和装置は、第1観点から第4観点のいずれかの空気調和装置であって、第1運転時には、第2熱交換器の内容積の全てに冷媒が流れる。
 この空気調和装置は、第1運転を行う際に蒸発器として機能する第2熱交換器において、能力を確保しやすい。
 第6観点に係る空気調和装置は、第1観点から第4観点のいずれかの空気調和装置であって、第1運転時には、第2熱交換器は、冷媒が流れる流路を2つ以上有している。
 この空気調和装置は、第1運転を行う際に蒸発器として機能する第2熱交換器において、圧力損失を低減させることができる。
 第7観点に係る空気調和装置は、第1観点から第6観点のいずれかの空気調和装置であって、第2熱交換器は、複数の伝熱管を有している。第2運転時には、第2熱交換器は、冷媒が流れない伝熱管を1つ以上有している。
 この空気調和装置は、第2熱交換器を冷媒の凝縮器として機能させる第2運転時において、第2熱交換器に保持される液冷媒量を少なく抑えることができる。
 第8観点に係る空気調和装置は、第1観点から第7観点のいずれかの空気調和装置であって、第1熱交換器の内容積は、第2熱交換器の内容積の2/3以下である。
 この空気調和装置は、第2熱交換器の内容積が大きな場合であっても、充填される冷媒量を小さく抑えることができる。
 第9観点に係る空気調和装置は、第1観点から第8観点のいずれかの空気調和装置であって、第2熱交換器は、熱源側熱交換器である。第1熱交換器は、利用側熱交換器である。
 この空気調和装置は、第1熱交換器よりも内容積の大きな第2熱交換器において、第1運転時に多くの熱を得ることができる。
 第10観点に係る空気調和装置は、第1観点から第9観点のいずれかの空気調和装置であって、冷媒は、燃焼性を有する冷媒である。
 この空気調和装置は、燃焼性を有する冷媒を用いる場合であっても、その充填量を低減させることが可能になる。
 第11観点に係る空気調和装置は、第10観点の空気調和装置であって、燃焼性を有する冷媒には、R290、R600、および、R600aからなる群より選択される1種または2種以上が含まれる。
 この空気調和装置は、燃焼しやすい冷媒を用いる場合であっても、着火のリスクを低減させることができる。
冷媒回路の概略構成図である。 空気調和装置の概略制御ブロック構成図である。 他の実施形態Aに係る室外熱交換器の概略外観構成図である。 他の実施形態Aに係る室外熱交換器の暖房運転時の冷媒流れを示す図である。
 以下、冷媒回路の概略構成図である図1、概略制御ブロック構成図である図2を参照しつつ、空気調和装置1について説明する。
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことで、対象空間の空気を調和させる冷凍サイクル装置である。本実施形態の空気調和装置1は、例えば、年間を通じて、冷房負荷よりも暖房負荷の方が大きな寒冷地等において用いることができる。
 空気調和装置1は、主として、室外ユニット20と、室内ユニット30と、室外ユニット20と室内ユニット30を接続する液側冷媒連絡配管6およびガス側冷媒連絡配管5と、熱負荷回路50と、入力装置および出力装置としての図示しないリモコンと、空気調和装置1の動作を制御するコントローラ7と、を有している。
 空気調和装置1では、冷媒回路10内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という冷凍サイクルが行われる。本実施形態では、冷媒回路10には、蒸気圧縮式の冷凍サイクルを行うための冷媒が充填されている。当該冷媒は、燃焼性を有する冷媒である。燃焼性を有する冷媒としては、例えば、ASHRAE Safety Groupにおける、クラスA3、B3の強燃性冷媒、クラスA2、B2の可燃性冷媒、クラスA2L、B2Lの微燃性冷媒等が挙げられる。より具体的には、冷媒は、R290、R600、および、R600aからなる群より選択される1種または2種以上であってよい。なお、本実施形態では、冷媒回路10には、空気よりも比重の大きな冷媒が充填されている。また、冷媒回路10には、当該混合冷媒と共に、冷凍機油が充填されている。
 (1)室外ユニット20
 室外ユニット20は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室内ユニット30と接続されており、冷媒回路10の一部を構成している。室外ユニット20は、主として、圧縮機21と、四路切換弁22と、室外熱交換器40と、第1開閉弁43と、第2開閉弁44と、室外膨張弁24と、室外ファン25と、アキュムレータ49と、液側閉鎖弁29と、ガス側閉鎖弁28と、を有している。本実施形態では、室外ユニット20は屋外に配置される。
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21として、ロータリ式やスクロール式等の容積式の圧縮要素(図示省略)が圧縮機モータによって回転駆動される密閉式構造の圧縮機が使用されている。圧縮機モータは、容量を変化させるためのものであり、インバータにより運転周波数の制御が可能である。
 四路切換弁22は、接続状態を切り換えることで、冷房運転接続状態と暖房運転接続状態とを切り換える。四路切換弁22は、冷房運転接続状態では、圧縮機21の吐出側と室外熱交換器40とを接続しつつ、圧縮機21の吸入側とガス側閉鎖弁28とを接続する。より具体的には、冷房運転接続状態では、圧縮機21の吐出側と後述の分岐点Aが接続される。また、四路切換弁22は、暖房運転接続状態では、圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ、圧縮機21の吸入側と室外熱交換器40とを接続する。より具体的には、暖房運転接続状態では、圧縮機21の吸入側と後述の分岐点Aが接続される。
 アキュムレータ49は、四路切換弁22と圧縮機21の吸入側との間に設けられている。これにより、圧縮機21が液状態の冷媒を吸入することが抑制される。
 室外熱交換器40は、冷房運転時には一部が冷凍サイクルにおける高圧の冷媒の凝縮器として機能し、暖房運転時には全体が冷凍サイクルにおける低圧の冷媒の蒸発器として機能する熱源側熱交換器である。室外熱交換器40は、冷媒回路10において互いに並列に接続された第1室外熱交換器41と第2室外熱交換器42とを有している。室外熱交換器40は、第1室外熱交換器41と第2室外熱交換器42のいずれについても、内部を流れる冷媒を、外部を通過する空気との間で熱交換させる、空気熱交換器である。室外熱交換器40は、第1室外熱交換器41と第2室外熱交換器42のいずれについても、ヘッダに接続された複数の伝熱管と、複数の伝熱管に固定された複数のフィンと、を有している。室外熱交換器40の内容積は、室内熱交換器31の内容積よりも大きく、室内熱交換器31の内容積の1.5倍以上であってよく、室内熱交換器31の内容積の2.0倍以上であることが好ましい。室外熱交換器40の内容積としては、例えば、3L以上10L以下であってよく、4L以上7L以下であってもよい。なお、室外熱交換器40の内容積とは、第1室外熱交換器41の内容積と第2室外熱交換器42の内容積の合計である。第1室外熱交換器41や第2室外熱交換器42の内容積とは、ヘッダと伝熱管の内部に流体を充填させた場合の流体の体積のことをいう。
 本実施形態では、冷房運転時には、第1室外熱交換器41が冷凍サイクルにおける高圧の冷媒の凝縮器として機能し、暖房運転時には、第1室外熱交換器41と第2室外熱交換器42の両方が冷凍サイクルにおける低圧の冷媒の蒸発器として機能する。第1室外熱交換器41は、四路切換弁22と室外膨張弁24との間に設けられている。四路切換弁22と第1室外熱交換器41のガス冷媒側の端部との間には、冷媒流路を分岐させる分岐点Aが設けられている。第1室外熱交換器41の液冷媒側の端部と室外膨張弁24との間には、冷媒流路を分岐させる分岐点Bが設けられている。第2室外熱交換器42は、第2室外熱交換器42のガス冷媒側の端部が分岐点Aに接続され、第2室外熱交換器42の液冷媒側の端部が分岐点Bに接続されることにより、第1室外熱交換器41と並列に接続されている。第2室外熱交換器42のガス冷媒側の端部と分岐点Aとの間には、開閉制御が可能な第1開閉弁43が設けられている。第2室外熱交換器42の液冷媒側と分岐点Bとの間には、開閉制御が可能な第2開閉弁44が設けられている。
 室外ファン25は、室外ユニット20内に室外の空気を吸入して、室外熱交換器40において冷媒と熱交換させた後に、外部に排出するための空気流れを生じさせる。室外ファン25は、室外ファンモータによって回転駆動される。本実施形態では、室外ファン25は、複数のファンを有して構成されている。これらの複数のファンを備える室外ファン25は、駆動により形成される空気流れを、室外熱交換器40の全体に供給する。より具体的には、室外ファン25が形成する空気流れは、第1室外熱交換器41の全体に供給されると共に、第2室外熱交換器42の全体にも供給される。なお、本実施形態では、第1室外熱交換器41は、室外ファン25が形成する空気流れ方向において、第2室外熱交換器42の風上側に配置されている。
 室外膨張弁24は、室外熱交換器40の液側端部と液側閉鎖弁29との間に設けられている。室外膨張弁24は、キャピラリーチューブ又は感温筒と共に用いられる機械式膨張弁であってもよいが、制御により弁開度を調節可能な電動膨張弁であることが好ましい。
 液側閉鎖弁29は、室外ユニット20における液側冷媒連絡配管6との接続部分に配置された手動弁である。
 ガス側閉鎖弁28は、室外ユニット20におけるとガス側冷媒連絡配管5との接続部分に配置された手動弁である。
 室外ユニット20は、室外ユニット20を構成する各部の動作を制御する室外ユニット制御部27を有している。室外ユニット制御部27は、CPU(Central Processing Unit)等のプロセッサと、ROMやRAM等のメモリ等を含むマイクロコンピュータを有している。室外ユニット制御部27は、各室内ユニット30の室内ユニット制御部34と通信線を介して接続されており、制御信号等の送受信を行う。
 室外ユニット20には、吐出圧力センサ61、吐出温度センサ62、吸入圧力センサ63、吸入温度センサ64、第1室外熱交温度センサ65、第2室外熱交温度センサ66、外気温度センサ67等が設けられている。これらの各センサは、室外ユニット制御部27と電気的に接続されており、室外ユニット制御部27に対して検出信号を送信する。吐出圧力センサ61は、圧縮機21の吐出側と四路切換弁22の接続ポートの1つとを接続する吐出配管を流れる冷媒の圧力を検出する。吐出温度センサ62は、吐出配管を流れる冷媒の温度を検出する。吸入圧力センサ63は、圧縮機21の吸入側と四路切換弁22の接続ポートの1つとを接続する吸入配管を流れる冷媒の圧力を検出する。吸入温度センサ64は、吸入配管を流れる冷媒の温度を検出する。第1室外熱交温度センサ65は、第1室外熱交換器41の液冷媒側端部と分岐点Bとの間を流れる冷媒の温度を検出する。第2室外熱交温度センサ66は、第2室外熱交換器42の液冷媒側端部と分岐点Bとの間を流れる冷媒の温度を検出する。外気温度センサ67は、室外熱交換器40を通過する前の屋外の空気温度を検出する。
 (2)熱負荷回路50
 熱負荷回路50は、内部を流体である熱媒体が循環する回路である。熱媒体としては、特に限定されず、例えば、水、ブライン等の流体が挙げられる。
 熱負荷回路50は、熱負荷部51と、ポンプ52と、を有している。
 熱負荷部51は、冷房運転時の冷房負荷を処理する部分であり、暖房運転時の暖房負荷を処理する部分である。熱負荷部51は、例えば、暖房運転時の床暖房パネルや、冷房運転時に送風ファンを用いて冷風を供給するためのファンコイルユニットのコイル部分等が挙げられる。
 ポンプ52は、熱負荷回路50において熱媒体を循環させるものであり、流量制御が可能なものである。
 冷房運転時には、熱負荷回路50では、室内熱交換器31において冷媒と熱交換することで冷却された熱媒体を熱負荷部51に供給する。熱負荷部51において冷房負荷を処理することで暖められた熱媒体は、再び室内熱交換器31に供給される。
 暖房運転時には、熱負荷回路50では、室内熱交換器31において冷媒と熱交換することで暖められた熱媒体を熱負荷部51に供給する。熱負荷部51において暖房負荷を処理することで冷やされ熱媒体は、再び室内熱交換器31に供給される。
 (3)室内ユニット30
 室内ユニット30は、空調対象空間の近傍に設けられている。室内ユニット30は、液側冷媒連絡配管6およびガス側冷媒連絡配管5を介して室外ユニット20と接続されており、冷媒回路10の一部を構成している。本実施形態では、室内ユニット30は屋内に配置される。
 室内ユニット30は、室内熱交換器31を有している。
 室内熱交換器31は、液側が、液側冷媒連絡配管6と接続され、ガス側端が、ガス側冷媒連絡配管5とを接続されている。室内熱交換器31は、冷房運転時には冷凍サイクルにおける低圧の冷媒の蒸発器として機能し、暖房運転時には冷凍サイクルにおける高圧の冷媒の凝縮器として機能する熱交換器である。
 室内熱交換器31は、内部を流れる冷媒を、熱負荷回路50を流れる熱媒体と熱交換させる熱交換器である。本実施形態の室内熱交換器31は、複数の板状部材が積層されることで、冷媒が流れる領域と、熱媒体が流れる領域と、が交互に配置された、プレート熱交換器である。室内熱交換器31の内容積は、室外熱交換器40の内容積よりも小さく、室外熱交換器40の内容積の2/3以下であってよく、室外熱交換器40の内容積の半分以下であることが好ましい。室内熱交換器31の内容積としては、例えば、1L以上4L以下であってよく、1.5L以上2.5L以下であってもよい。なお、室内熱交換器31の内容積とは、室内熱交換器31のうち熱媒体が流れる空間を除いた空間であって、冷媒が流れる空間の体積をいう。具体的には、室内熱交換器31の内容積とは、室内熱交換器31のうち冷媒が流れる空間に流体を充填させた場合の流体の体積のことをいう。
 また、室内ユニット30は、室内ユニット30を構成する各部および熱負荷回路50を構成する各部の動作を制御する室内ユニット制御部34を有している。室内ユニット制御部34は、CPU(Central Processing Unit)等のプロセッサと、ROMやRAM等のメモリ等を含むマイクロコンピュータを有している。室内ユニット制御部34は、室外ユニット制御部27と通信線を介して接続されており、制御信号等の送受信を行う。
 室内ユニット30には、室内液側熱交温度センサ71、室内ガス側熱交温度センサ73、熱媒体温度センサ53等が設けられている。これらの各センサは、室内ユニット制御部34と電気的に接続されており、室内ユニット制御部34に対して検出信号を送信する。室内液側熱交温度センサ71は、室内熱交換器31のうち四路切換弁22が接続されている側とは反対側である液冷媒側の出口を流れる冷媒の温度を検出する。室内ガス側熱交温度センサ73は、室内熱交換器31のうち四路切換弁22が接続されている側であるガス冷媒側の出口を流れる冷媒の温度を検出する。熱媒体温度センサ53は、室内熱交換器31の出口を流れる熱媒体の温度を検出する。
 (4)コントローラ7の詳細
 空気調和装置1では、室外ユニット制御部27と室内ユニット制御部34が通信線を介して接続されることで、空気調和装置1の動作を制御するコントローラ7が構成されている。
 コントローラ7は、主として、CPU(Central Processing Unit)等のプロセッサと、ROMやRAM等のメモリ等を有している。なお、コントローラ7による各種処理や制御は、室外ユニット制御部27および/又は室内ユニット制御部34に含まれる各部が一体的に機能することによって実現されている。
 (5)運転モード
 以下、運転モードについて説明する。
 運転モードとしては、冷房運転モードと暖房運転モードとデフロスト運転モードとが設けられている。
 コントローラ7は、リモコン等から受け付けた指示に基づいて、冷房運転モードか暖房運転モードかを判断し、実行する。また、コントローラ7は、暖房運転モード実行中に所定のデフロスト開始条件を満たした場合に、デフロスト運転モードを実行する。そして、コントローラ7は、デフロスト運転モード実行中に、所定のデフロスト終了条件を満たした場合に、デフロスト運転を終了して、暖房運転モードを再開させる。デフロスト開始条件は、特に限定されず、例えば、暖房運転の連続運転時間や外気温度に基づいて定めることができる。また、デフロスト終了条件は、特に限定されず、デフロスト運転モードを開始してから所定時間が経過したことや、室外熱交換器40の温度が所定値以下になったこと等が挙げられる。
 (5-1)冷房運転モード
 空気調和装置1では、冷房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側と室外熱交換器40のうちの第1室外熱交換器41とを接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、第1室外熱交換器41、室外膨張弁24、室内熱交換器31の順に循環させる。なお、冷房運転時には、第1開閉弁43と第2開閉弁44とは、閉止され、第2室外熱交換器42には冷媒が流れない。冷房負荷が比較的小さな環境で用いられる空気調和装置1としては、室外熱交換器40の全部の領域を凝縮器として使用しなくても、冷房負荷を処理することが可能である。なお、冷房運転時には、第1開閉弁43と第2開閉弁44とのいずれか一方のみが閉止されてもよい。また、室外ファン25は、駆動状態に制御される。熱負荷回路50のポンプ52は、例えば、熱媒体温度センサ53が検知する熱媒体の温度と熱負荷部51における設定温度に基づいて、流量が制御される。
 冷房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21は、室内ユニット30で要求される冷却負荷に応じた容量制御が行われることにより、運転周波数が制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を経て、第1室外熱交換器41のガス側端に流入する。
 第1室外熱交換器41のガス側端に流入したガス冷媒は、第1室外熱交換器41において、室外ファン25によって供給される室外側空気と熱交換を行って凝縮し、液冷媒となって第1室外熱交換器41の液側端から流出する。
 第1室外熱交換器41の液側端から流出した冷媒は、室外膨張弁24を通過する際に減圧される。なお、室外膨張弁24は、例えば、圧縮機21に吸入される冷媒の過熱度が所定の過熱度目標値となるように制御される。ここで、圧縮機21の吸入冷媒の過熱度は、例えば、吸入圧力(吸入圧力センサ63の検出圧力)に相当する飽和温度を、吸入温度(吸入温度センサ64の検出温度)から差し引くことにより求めることができる。
 室外膨張弁24で減圧された冷媒は、液側閉鎖弁29および液側冷媒連絡配管6を経て、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31に流入し、室内熱交換器31において、熱負荷回路50を循環する熱媒体と熱交換を行って蒸発し、ガス冷媒となって室内熱交換器31のガス側端から流出する。室内熱交換器31のガス側端から流出したガス冷媒は、ガス側冷媒連絡配管5に流れていく。
 ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22、アキュムレータ49を経て、再び、圧縮機21に吸入される。
 (5-2)暖房運転モード
 空気調和装置1では、暖房運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側とガス側閉鎖弁28とを接続しつつ圧縮機21の吸入側と室外熱交換器40とを接続する暖房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、室内熱交換器31、室外膨張弁24、室外熱交換器40の順に循環させる。ここで、暖房運転モードでは、室外熱交換器40の全体に冷媒を流すために、より具体的には、第1室外熱交換器41と第2室外熱交換器42の両方に冷媒を流すために、第1開閉弁43と第2開閉弁44の両方が開状態に制御される。暖房負荷が比較的大きな環境で用いられる空気調和装置1であるが、室外熱交換器40の全部の領域を蒸発器として使用することにより、当該大きな暖房負荷を処理することが可能となる。また、室外ファン25は、駆動状態に制御される。熱負荷回路50のポンプ52は、例えば、熱媒体温度センサ53が検知する熱媒体の温度と熱負荷部51における設定温度に基づいて、流量が制御される。
 暖房運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。
 圧縮機21は、室内ユニット30で要求される暖房負荷に応じた容量制御が行われ、運転周波数が制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22およびガス側冷媒連絡配管5を流れた後、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31のガス側端に流入し、室内熱交換器31において、熱負荷回路50を循環する熱媒体と熱交換を行って凝縮し、気液二相状態の冷媒または液冷媒となって室内熱交換器31の液側端から流出する。室内熱交換器31の液側端から流出した冷媒は、液側冷媒連絡配管6に流れていく。
 液側冷媒連絡配管6を流れた冷媒は、室外ユニット20に流入し、液側閉鎖弁29を通過し、室外膨張弁24において冷凍サイクルにおける低圧になるまで減圧される。なお、室外膨張弁24は、例えば、圧縮機21に吸入される冷媒の過熱度が所定の過熱度目標値となるように制御される。
 室外膨張弁24で減圧された冷媒は、第1室外熱交換器41と第2室外熱交換器42のそれぞれの液側端に分かれて流入する。
 第1室外熱交換器41の液側端から流入した冷媒は、第1室外熱交換器41において、室外ファン25によって供給される室外空気と熱交換を行って蒸発し、ガス冷媒となって第1室外熱交換器41のガス側端から流出する。同様に、第2室外熱交換器42の液側端から流入した冷媒は、第2室外熱交換器42において、室外ファン25によって供給される室外空気と熱交換を行って蒸発し、ガス冷媒となって第2室外熱交換器42のガス側端から流出する。
 第1室外熱交換器41のガス冷媒側端部から流出した冷媒と、第2室外熱交換器42のガス冷媒側端部から流出した冷媒は、合流した後、四路切換弁22とアキュムレータ49を経て、再び、圧縮機21に吸入される。
 (5-3)デフロスト運転モード
 空気調和装置1では、デフロスト運転モードでは、四路切換弁22の接続状態を圧縮機21の吐出側と第1室外熱交換器41と第2室外熱交換器42との両方を接続しつつ圧縮機21の吸入側とガス側閉鎖弁28とを接続する冷房運転接続状態とし、冷媒回路10に充填されている冷媒を、主として、圧縮機21、第1室外熱交換器41および第2室外熱交換器42、室外膨張弁24、室内熱交換器31の順に循環させる。なお、デフロスト運転時には、冷房運転時とは異なり、第1室外熱交換器41と第2室外熱交換器42に付着した霜を除去するために、第1開閉弁43と第2開閉弁44が開けられ、第1室外熱交換器41と第2室外熱交換器42の両方に冷媒が供給される。また、デフロスト運転時には、室外ファン25は、停止される。また、デフロスト運転時には、熱負荷回路50のポンプ52は、停止される。
 デフロスト運転モードが開始されると、冷媒回路10内において、冷媒が圧縮機21に吸入されて圧縮された後に吐出される。圧縮機21は、霜を早期に融解させるために、例えば、所定の最大周波数となるように制御される。
 圧縮機21から吐出されたガス冷媒は、四路切換弁22を経て、第1室外熱交換器41と第2室外熱交換器42にそれぞれ流入する。第1室外熱交換器41のガス側端に流入したガス冷媒は、第1室外熱交換器41に付着した霜を融解させることで凝縮し、液冷媒または気液二層状態の冷媒となって第1室外熱交換器41の液側端から流出する。第2室外熱交換器42のガス側端に流入したガス冷媒は、第2室外熱交換器42に付着した霜を融解させることで凝縮し、液冷媒または気液二層状態の冷媒となって第2室外熱交換器42の液側端から流出する。
 第1室外熱交換器41の液側端から流出した冷媒と第2室外熱交換器42の液側端から流出した冷媒は、合流した後に、室外膨張弁24を通過する際に減圧される。室外膨張弁24で減圧された冷媒は、液側閉鎖弁29および液側冷媒連絡配管6を経て、室内ユニット30に流入する。
 室内ユニット30に流入した冷媒は、室内熱交換器31に流入し、室内熱交換器31において、熱負荷回路50の熱媒体と熱交換を行って蒸発し、ガス冷媒となって室内熱交換器31のガス側端から流出する。室内熱交換器31のガス側端から流出したガス冷媒は、ガス側冷媒連絡配管5に流れていく。
 ガス側冷媒連絡配管5を流れた冷媒は、ガス側閉鎖弁28、四路切換弁22、アキュムレータ49を経て、再び、圧縮機21に吸入される。
 (6)特徴
 本実施形態の空気調和装置1では、暖房運転では室内熱交換器31よりも内容積の大きな室外熱交換器40の全体を冷媒の蒸発器として機能させるため、暖房運転時における能力が確保されやすい。このため、寒冷地等の暖房負荷が大きな環境で用いられている場合においても、暖房負荷を処理しやすい。また、空気調和装置1は、冷房運転時には、室外熱交換器40のうちの第1室外熱交換器41のみを冷媒の凝縮器として機能させ、第2室外熱交換器42は冷媒の凝縮器として機能させない。これにより、冷房運転時には、室外熱交換器40に内在する液冷媒の量を少なく抑えることができ、空気調和装置1に充填される冷媒量を低減させることが可能になる。また、寒冷地等の冷房負荷が暖房負荷よりも小さい環境で空気調和装置1が用いられる場合には、室外熱交換器40のうちの第1室外熱交換器41のみを用いる場合であっても、当該冷房負荷を処理しやすい。
 このように、暖房負荷と冷房負荷の熱負荷を処理しやすくしつつも、空気調和装置1に充填される冷媒量を小さく抑えることができる。特に、冷媒として燃焼性を有する冷媒を用いる場合においては、万が一冷媒漏洩が生じたとしても、その漏洩量を小さく抑えることができる。これにより、冷媒漏洩時において漏洩冷媒の濃度が高まることを抑制することができ、着火リスクを低減させることが可能になる。
 そして、空気調和装置1における余剰冷媒の量を少なく抑えることができるため、冷媒回路10において、液冷媒または気液二相状態の冷媒が流れる箇所に液冷媒を貯留するためのレシーバを設ける必要を無くすることができるか、当該レシーバを設けたとしても、その内容積を小さく抑えることが可能になる。
 また、空気調和装置1では、室外熱交換器40は、室内熱交換器31よりも内容積が大きい空気熱交換器であるため、寒冷地における暖房運転時においても熱源を確保しやすい。
 また、空気調和装置1は、室外ファン25が形成する空気流れが、第1室外熱交換器41の全体に供給されると共に、第2室外熱交換器42の全体にも供給される。このため、第1室外熱交換器41と第2室外熱交換器42の両方に冷媒を流す場合も、第1室外熱交換器41だけに冷媒を流す場合も、いずれの場合も、室外ファン25による空気流れを用いて、第1室外熱交換器41の全体での熱交換と第2室外熱交換器42の全体での熱交換を行わせるか、第1室外熱交換器41の全体での熱交換を行わせることが可能になる。
 また、空気調和装置1では、暖房運転時に、室外熱交換器40を通過する冷媒流路として、第1室外熱交換器41を通過する冷媒流路と、第2室外熱交換器42を通過する冷媒流路との複数の流路が生じる。これにより、室外熱交換器40が1本の冷媒流路となるように構成されている場合と比較して、冷媒が通過する際の圧力損失を低減することが可能になっている。
 (7)他の実施形態
 (7-1)他の実施形態A
 上記実施形態では、室外熱交換器40が第1室外熱交換器41と第2室外熱交換器42とを有しており、第1室外熱交換器41が、室外ファン25が形成する空気流れ方向において、第2室外熱交換器42の風上側に配置された空気調和装置1を例に挙げて説明した。
 これに対して、室外熱交換器としては、2つより多くの複数の熱交換器に分かれて構成されていてもよい。具体的には、室外熱交換器が、2つより多くの冷媒流路を有するように構成されていてもよい。
 また、室外熱交換器が有する複数の熱交換器の配置は、室外ファン25の空気流れ方向に並んだ配置には限られない。
 室外熱交換器としては、例えば、図3に示す室外熱交換器140のように、縦に複数並んで設けられた伝熱管群が、空気流れ方向に3列にならんで設けられた熱交換器であってもよい。また、室外熱交換器としては、この室外熱交換器140のように、第1室外熱交換器40aと第2室外熱交換器40bと第3室外熱交換器40cを有するものであってもよい。ここで、空気流れ方向において互いに隣り合う列に配置される伝熱管は、空気流れ方向から見た場合に互いに重ならないように位置をずらして配置されていることが好ましい。
 室外熱交換器140は、例えば、暖房運転時には、図4に示すように、3つの流路に分かれて冷媒が流れる。具体的には、第1室外熱交換器141では、風下側中段の位置から流入して伝熱管を流れた後、端部で折り返す際に上段に移動して上段の伝熱管を流れ、さらに折り返して風上側上段の伝熱管を流れる。また、第2室外熱交換器142では、風下側下段の位置から流入して伝熱管を流れた後、端部で折り返して下段の伝熱管を流れ、さらに折り返す際に風上側中段に移動して伝熱管を流れる。また、第3室外熱交換器143では、風下側上段の位置から流入して伝熱管を流れた後、端部で折り返す際に中段に移動して伝熱管を流れ、さらに折り返す際に風上側下段に移動して伝熱管を流れる。そして、冷房運転時には、第1室外熱交換器141と第2室外熱交換器142には冷媒を流さず、第3室外熱交換器143のみに冷媒を流す。これにより、冷房運転時に室外熱交換器140の一部にのみ冷媒が流れる場合においても、第3室外熱交換器143に冷媒を流すことにより、室外ファン25から供給される空気流れの全体を熱交換に利用することが可能になる。
 上記実施形態において室外熱交換器140を用いる場合には、例えば、分岐点Aと分岐点Bとの間に第3室外熱交換器143を設け、第1開閉弁43と第2開閉弁44との間に第1室外熱交換器141と第2室外熱交換器142とを並列接続することができる。
 (7-2)他の実施形態B
 上記実施形態では、室内熱交換器31を流れる冷媒が、熱負荷回路50を循環する熱媒体と熱交換を行う熱交換器である場合を例に挙げて説明した。
 これに対して、室内熱交換器31は空気熱交換器であってもよい。具体的には、室内熱交換器31は、室内熱交換器31が配置されている空間の空気温度を調節するために、室内ファンから供給された空気と熱交換を行うものであってもよい。
 (7-3)他の実施形態C
 上記実施形態では、室内ユニット30が1つだけ設けられている空気調和装置1を例に挙げて説明した。
 これに対して、空気調和装置1としては、例えば、複数の室内ユニット30が室外ユニット20に対して互いに並列に接続されたものであってもよい。
 (付記)
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
  1 空気調和装置
  7 コントローラ(制御部)
 10、10a、10b、10c 冷媒回路
 20 室外ユニット
 21 圧縮機
 22 四路切換弁(切換部)
 24 室外膨張弁
 25 室外ファン(送風部)
 27 室外ユニット制御部
 30 室内ユニット
 31 室内熱交換器(第1熱交換器)
 34 室内ユニット制御部
 40 室外熱交換器(第2熱交換器)
 41 第1室外熱交換器
 42 第2室外熱交換器
 43 第1開閉弁
 44 第2開閉弁
 49 アキュムレータ
 50 熱負荷回路
 51 熱負荷部
 52 ポンプ
 61 吐出圧力センサ
 62 吐出温度センサ
 63 吸入圧力センサ
 64 吸入温度センサ
 65 第1室外熱交温度センサ
 66 第2室外熱交温度センサ
 67 外気温度センサ
 71 室内液側熱交温度センサ
 73 室内ガス側熱交温度センサ
国際公開第2020/208776号

Claims (11)

  1.  第1熱交換器(31)と、
     第2熱交換器(40)と、
     前記第1熱交換器を冷媒の凝縮器として機能させ、前記第2熱交換器を冷媒の蒸発器として機能させる第1運転と、前記第1熱交換器を冷媒の蒸発器として機能させ、前記第2熱交換器を冷媒の凝縮器として機能させる第2運転と、を切り換える切換部(22)と、
    を備え、
     前記第1熱交換器の内容積は、前記第2熱交換器の内容積よりも小さく、
     前記第2運転時に前記第2熱交換器において冷媒が流れる領域の内容積は、前記第1運転時に前記第2熱交換器において冷媒が流れる領域の内容積よりも小さい、
    空気調和装置(1)。
  2.  前記第2熱交換器は、内部を流れる前記冷媒と外部を流れる空気との間で熱交換を行わせる空気熱交換器である、
    請求項1に記載の空気調和装置。
  3.  前記第2熱交換器の全体に空気流れを供給可能な送風部(25)をさらに備えた、
    請求項2に記載の空気調和装置。
  4.  前記第2運転時には、前記第2熱交換器を前記冷媒が流れる流路は、前記送風部が形成する空気流れの方向から見た場合において互いに重ならない、
    請求項3に記載の空気調和装置。
  5.  前記第1運転時には、前記第2熱交換器の内容積の全てに前記冷媒が流れる、
    請求項1から4のいずれか1項に記載の空気調和装置。
  6.  前記第1運転時には、前記第2熱交換器は、前記冷媒が流れる流路を2つ以上有している、
    請求項1から4のいずれか1項に記載の空気調和装置。
  7.  前記第2熱交換器は、複数の伝熱管を有しており、
     前記第2運転時には、前記第2熱交換器は、前記冷媒が流れない前記伝熱管を1つ以上有している、
    請求項1から6のいずれか1項に記載の空気調和装置。
  8.  前記第1熱交換器の内容積は、前記第2熱交換器の内容積の2/3以下である、
    請求項1から7のいずれか1項に記載の空気調和装置。
  9.  前記第2熱交換器は、熱源側熱交換器であり、
     前記第1熱交換器は、利用側熱交換器である、
    請求項1から8のいずれか1項に記載の空気調和装置。
  10.  前記冷媒は、燃焼性を有する冷媒である、
    請求項1から9のいずれか1項に記載の空気調和装置。
  11.  前記燃焼性を有する冷媒には、R290、R600、および、R600aからなる群より選択される1種または2種以上が含まれる、
    請求項10に記載の空気調和装置。
PCT/JP2023/021193 2022-06-14 2023-06-07 空気調和装置 WO2023243517A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022095970A JP7448848B2 (ja) 2022-06-14 2022-06-14 空気調和装置
JP2022-095970 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023243517A1 true WO2023243517A1 (ja) 2023-12-21

Family

ID=89191181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021193 WO2023243517A1 (ja) 2022-06-14 2023-06-07 空気調和装置

Country Status (2)

Country Link
JP (1) JP7448848B2 (ja)
WO (1) WO2023243517A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201208A (ja) * 1993-01-04 1994-07-19 Toshiba Corp 空気調和機
JP2002295915A (ja) * 2001-03-30 2002-10-09 Mitsubishi Electric Corp 空気調和機
JP2013113498A (ja) * 2011-11-29 2013-06-10 Hitachi Appliances Inc 空気調和機
WO2015059945A1 (ja) * 2013-10-24 2015-04-30 三菱電機株式会社 空気調和装置
US20150338160A1 (en) * 2014-05-20 2015-11-26 Lg Electronics Inc. Turbo chiller and chiller system including the same
WO2016113850A1 (ja) * 2015-01-13 2016-07-21 三菱電機株式会社 空気調和装置
WO2019008664A1 (ja) * 2017-07-04 2019-01-10 三菱電機株式会社 冷凍サイクル装置
WO2021161729A1 (ja) * 2020-02-10 2021-08-19 パナソニックIpマネジメント株式会社 熱交換器およびそれを用いた空気調和機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201208A (ja) * 1993-01-04 1994-07-19 Toshiba Corp 空気調和機
JP2002295915A (ja) * 2001-03-30 2002-10-09 Mitsubishi Electric Corp 空気調和機
JP2013113498A (ja) * 2011-11-29 2013-06-10 Hitachi Appliances Inc 空気調和機
WO2015059945A1 (ja) * 2013-10-24 2015-04-30 三菱電機株式会社 空気調和装置
US20150338160A1 (en) * 2014-05-20 2015-11-26 Lg Electronics Inc. Turbo chiller and chiller system including the same
WO2016113850A1 (ja) * 2015-01-13 2016-07-21 三菱電機株式会社 空気調和装置
WO2019008664A1 (ja) * 2017-07-04 2019-01-10 三菱電機株式会社 冷凍サイクル装置
WO2021161729A1 (ja) * 2020-02-10 2021-08-19 パナソニックIpマネジメント株式会社 熱交換器およびそれを用いた空気調和機

Also Published As

Publication number Publication date
JP7448848B2 (ja) 2024-03-13
JP2023182392A (ja) 2023-12-26

Similar Documents

Publication Publication Date Title
KR101161240B1 (ko) 공기 조화 장치
AU2008208346B2 (en) Air conditioner
JP5627606B2 (ja) ヒートポンプシステム
JP5992089B2 (ja) 空気調和装置
US9032747B2 (en) Multi-mode air conditioner with refrigerant cycle and heat medium cycle
GB2569898A (en) Air conditioner
JP6493432B2 (ja) 空気調和装置
EP2759785A1 (en) Refrigeration device
JP5992088B2 (ja) 空気調和装置
JP6987234B2 (ja) 冷凍サイクル装置
MXPA02006289A (es) Sistema de acondicionamiento de aire del tipo bomba termica de gas, multiform.
US8959940B2 (en) Refrigeration cycle apparatus
JP5908183B1 (ja) 空気調和装置
WO2006013938A1 (ja) 冷凍装置
JP6479181B2 (ja) 空気調和装置
US9810466B2 (en) Heat pump system
US7908878B2 (en) Refrigerating apparatus
US20230057478A1 (en) Refrigeration cycle apparatus
EP2541170A1 (en) Air-conditioning hot-water-supply system
US20120204585A1 (en) Air-conditioning apparatus
US9587861B2 (en) Air-conditioning apparatus
JP2004170023A (ja) 多室形空気調和機の制御方法
JP2002174463A (ja) 冷凍装置
JP7448848B2 (ja) 空気調和装置
JP4888583B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823809

Country of ref document: EP

Kind code of ref document: A1