WO2023243311A1 - インクジェットヘッド - Google Patents

インクジェットヘッド Download PDF

Info

Publication number
WO2023243311A1
WO2023243311A1 PCT/JP2023/018863 JP2023018863W WO2023243311A1 WO 2023243311 A1 WO2023243311 A1 WO 2023243311A1 JP 2023018863 W JP2023018863 W JP 2023018863W WO 2023243311 A1 WO2023243311 A1 WO 2023243311A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
pressure
downstream
upstream
storage chamber
Prior art date
Application number
PCT/JP2023/018863
Other languages
English (en)
French (fr)
Inventor
敦 槇本
修平 中谷
巨 大塚
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023243311A1 publication Critical patent/WO2023243311A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads

Definitions

  • the present disclosure relates to an inkjet head.
  • Patent Document 1 discloses a drop-on-demand type inkjet head.
  • the inkjet head of Patent Document 1 is of a piezoelectric type, and the volume of the pressure chamber is reduced by applying a voltage to the piezoelectric element and causing it to expand. As a result, the inkjet head applies pressure to the ink within the pressure chamber and discharges the ink to the outside through the nozzle.
  • the piezoelectric element contracts and the volume of the pressure chamber is restored, the liquid level of the ink in the nozzle (so-called meniscus) is raised. As a result, the ligament of the ejected ink is cut.
  • An inkjet head includes a nozzle that discharges ink, a pressure chamber that communicates with the nozzle, a storage chamber that communicates with the pressure chamber via an aperture, and a part of the pressure chamber. a diaphragm having a section, and a pressure variation section that vibrates the diaphragm so as to vary the pressure of ink in the pressure chamber and discharges ink from the pressure chamber to the outside through the nozzle,
  • the storage chamber has a flexible portion that is more deformable than the portion of the diaphragm.
  • Partial plan view of a diaphragm included in an inkjet head of a comparative example A diagram showing pressure changes near the nozzle in the pressure chamber during ink ejection operation by an inkjet head of a comparative example.
  • the ligament of the ink is long, the ligament breaks up from the main ink droplet and mist, which is floating ink, is likely to be generated. In order to improve the printing performance of an inkjet head, it is necessary to suppress the generation of mist.
  • the present disclosure aims to provide an inkjet head that improves printing performance.
  • the Z-axis direction is the height direction of the inkjet head 1
  • the Y-axis direction is the longitudinal direction of the inkjet head 1
  • the X-axis direction is the width direction of the inkjet head 1.
  • FIG. 1 is an exploded perspective view illustrating an inkjet head 1 according to an embodiment.
  • the inkjet head 1 includes a main body section 10 and a pressure variation element unit 60 having a plurality of pressure variation sections 61 (see FIG. 3).
  • a plurality of nozzles 41 are formed on the ejection surface S of the main body 10 .
  • the plurality of nozzles 41 are provided, for example, to form a plurality of nozzle rows.
  • the main body section 10 includes a housing section 20, a flow path plate 30, a nozzle plate 40, and a diaphragm 50.
  • the main body part 10 is formed by overlapping the nozzle plate 40, the flow path plate 30, the diaphragm 50, and the housing part 20 in this order.
  • the housing part 20 is formed, for example, in the shape of a rectangular parallelepiped, and constitutes the upper part of the main body part 10.
  • the housing portion 20 is formed, for example, by cutting alloy steel such as stainless steel.
  • the flow path plate 30 is formed, for example, in the shape of a rectangular parallelepiped, and constitutes the lower part of the main body portion 10.
  • a plurality of pressure chambers 31 are formed in the flow path plate 30 to store ink to be discharged to the outside.
  • the channel plate 30 is formed, for example, by stacking stainless steel plates molded by etching or press working by adhesion, diffusion bonding, or the like.
  • the nozzle plate 40 is arranged on the bottom surface of the channel plate 30 so that its plate surface is perpendicular to the Z-axis direction, and constitutes the bottom surface portion of the main body section 10.
  • the nozzle plate 40 is formed, for example, by molding a stainless steel plate by etching, pressing, laser processing, or the like.
  • the diaphragm 50 is arranged between the housing part 20 and the flow path plate 30 so that its plate surface is perpendicular to the Z-axis direction.
  • the diaphragm 50 is a thin elastic body. As shown in FIG. 1, the diaphragm 50 may be composed of, for example, two plate members spaced apart from each other.
  • the diaphragm 50 is formed of, for example, a stainless steel plate or a nickel electroformed plate.
  • FIG. 2 is a schematic plan view for explaining the ink flow path in the inkjet head 1.
  • FIG. 3 is a partial sectional view illustrating the inkjet head 1, and is a sectional view taken along the ZX plane.
  • FIG. 4 is a sectional view taken along line II in FIG. Note that the inkjet head 1 according to this embodiment is an inkjet head of an ink circulation type.
  • the housing part 20 includes an ink supply path 21, upstream common flow paths 22a, 22b, downstream supply paths 23a, 23b, 23c, 23d, ink discharge paths 24a, 24b, and Accommodation spaces 25a, 25b, 25c, and 25d are formed.
  • the ink supply path 21 is connected to, for example, an ink tank (not shown) that serves as an ink supply source.
  • the ink supply path 21 extends along the Z-axis direction, and is provided at the center of the housing section 20 in the X-axis direction and the Y-axis direction, respectively.
  • the upstream common channels 22a and 22b are connected to the ink supply channel 21.
  • the upstream common flow paths 22a and 22b extend from the ink supply path 21 toward the negative end and positive end of the housing portion 20 in the Y-axis direction, respectively.
  • the downstream supply channels 23a and 23b are provided, for example, on both sides of the upstream common channel 22a in the X-axis direction, and extend toward the negative end of the housing portion 20 in the Y-axis direction.
  • the downstream supply channels 23c and 23d are provided, for example, on both sides of the upstream common channel 22b in the X-axis direction, and extend toward the positive end of the housing portion 20 in the Y-axis direction.
  • the ink discharge paths 24a and 24b are arranged at both ends of the housing portion 20 in the Y-axis direction, respectively.
  • the ink discharge path 24a is connected to downstream supply channels 23a and 23b.
  • the ink discharge path 24a is provided, for example, at the center of the housing portion 20 in the X-axis direction, and extends along the Z-axis direction.
  • the ink discharge path 24b is connected to downstream supply channels 23c and 23d.
  • the ink discharge path 24b is provided, for example, at the center of the housing portion 20 in the X-axis direction, and extends along the Z-axis direction.
  • the accommodation spaces 25a, 25b, 25c, and 25d are spaces in which a plurality of pressure fluctuation parts 61 are accommodated, respectively, and extend along the Y-axis direction.
  • the accommodation space 25a is provided between the upstream common channel 22a and the downstream supply channel 23a
  • the accommodation space 25b is provided between the upstream common channel 22a and the downstream supply channel 23b
  • the accommodation space 25c is provided between the upstream common channel 22b and the downstream supply channel 23c
  • the accommodation space 25d is provided between the upstream common channel 22b and the downstream supply channel 23d.
  • Ink is supplied from the ink tank via the ink supply path 21 and the upstream common flow path 22a to the plurality of pressure chambers 31 arranged on the negative side of the accommodation space 25a and the accommodation space 25b in the Z-axis direction. Further, the ink is supplied to the plurality of pressure chambers 31 arranged on the negative side of the accommodation spaces 25c and 25d in the Z-axis direction via the ink supply path 21 and the upstream common flow path 22b.
  • the ink is discharged to the outside of the inkjet head 1 from the plurality of pressure chambers 31 arranged on the negative side of the housing spaces 25a and 25b in the Z-axis direction via the downstream supply channels 23a and 23b and the ink discharge channel 24a.
  • Ru is discharged to the outside of the inkjet head 1 from the plurality of pressure chambers 31 arranged on the negative side of the housing spaces 25c and 25d in the Z-axis direction via the downstream supply channels 23c and 23d and the ink discharge channel 24b.
  • the channel plate 30 is arranged such that the plurality of discharge units 301 correspond to the plurality of nozzles 41 on a one-to-one basis. That is, the number of nozzles 41 and the number of discharge units 301 are the same.
  • the discharge unit 301 includes a pressure chamber 31 , a first upstream storage chamber 32 , a second upstream storage chamber 33 , a first downstream storage chamber 34 , and a second downstream storage chamber 35 .
  • the pressure chamber 31 is formed, for example, in the shape of a rectangular parallelepiped with long sides extending along the X-axis direction. As shown in FIG. 3, the pressure chamber 31 communicates with the nozzle 41.
  • the first upstream storage chamber 32 is provided on the positive side of the pressure chamber 31 in the X-axis direction.
  • a first upstream restriction 36 is provided between the pressure chamber 31 and the first upstream storage chamber 32, and the first upstream storage chamber 32 communicates with the pressure chamber 31 via the first upstream restriction 36.
  • the first upstream throttle 36 has a smaller dimension in the Z-axis direction than the pressure chamber 31 and the first upstream storage chamber 32.
  • the second upstream storage chamber 33 is provided on the positive side of the first upstream storage chamber 32 in the X-axis direction.
  • a second upstream throttle 37 is provided between the first upstream storage chamber 32 and the second upstream storage chamber 33.
  • the second upstream storage chamber 33 communicates with the upstream common flow path 22 a and also communicates with the first upstream storage chamber 32 via the second upstream throttle 37 .
  • the second upstream throttle 37 has a smaller dimension in the Z-axis direction than the first upstream storage chamber 32 and the second upstream storage chamber 33.
  • the first upstream storage chamber 32 becomes a substantially closed space.
  • the second upstream throttle 37 is provided at a different position from the first upstream throttle 36 in the Z-axis direction.
  • the first upstream throttle 36 is provided closer to the upper wall of the first upstream storage chamber 32, and the second upstream throttle 37 is provided closer to the lower wall in the Z-axis direction. Therefore, it becomes easier to confine pressure waves within the first upstream storage chamber 32.
  • Ink is supplied from the upstream common flow path 22a to the pressure chamber 31 via the second upstream storage chamber 33, the second upstream aperture 37, the first upstream storage chamber 32, and the first upstream aperture 36.
  • the first downstream storage chamber 34 is provided on the negative side of the pressure chamber 31 in the X-axis direction.
  • a first downstream restriction 38 is provided between the pressure chamber 31 and the first downstream storage chamber 34, and the first downstream storage chamber 34 communicates with the pressure chamber 31 via the first downstream restriction 38.
  • the first downstream throttle 38 has a smaller dimension in the Z-axis direction than the pressure chamber 31 and the first downstream storage chamber 34 .
  • the second downstream storage chamber 35 is provided on the negative side of the first downstream storage chamber 34 in the X-axis direction.
  • a second downstream throttle 39 is provided between the first downstream storage chamber 34 and the second downstream storage chamber 35 .
  • the second downstream storage chamber 35 communicates with the downstream supply channel 23 a and also communicates with the first downstream storage chamber 34 via the second downstream throttle 39 .
  • the second downstream throttle 39 has a smaller dimension in the Z-axis direction than the first downstream storage chamber 34 and the second downstream storage chamber 35 .
  • the first downstream storage chamber 34 becomes a substantially closed space.
  • the second downstream throttle 39 is provided at a different position from the first downstream throttle 38 in the Z-axis direction.
  • the first downstream throttle 38 is provided closer to the upper wall of the first downstream storage chamber 34
  • the second downstream throttle 39 is provided closer to the lower wall in the Z-axis direction. Therefore, it becomes easier to confine ink pressure waves within the first downstream storage chamber 34.
  • the ink in the pressure chamber 31 is discharged to the downstream supply channel 23a via the first downstream throttle 38, the first downstream storage chamber 34, the second downstream throttle 39, and the second downstream storage chamber 35.
  • ⁇ Nozzle plate 40> A plurality of nozzles 41 are formed on the nozzle plate 40.
  • the nozzle 41 is a hole through which ink passes during ink ejection, and passes through the nozzle plate 40.
  • the shape of the nozzle 41 is cylindrical. Note that the nozzle 41 may be formed in a tapered shape.
  • the diameter of the nozzle 41 is set according to the desired droplet volume, since the larger the diameter of the nozzle 41, the larger the volume of the ejected ink droplet, and the smaller the diameter, the smaller the droplet volume.
  • the diameter of the nozzle 41 is, for example, 7 ⁇ m or more and 200 ⁇ m or less.
  • the dimension of the nozzle 41 in the Z-axis direction is, for example, 5 ⁇ m or more and 500 ⁇ m or less.
  • the diaphragm 50 constitutes part of the pressure chamber 31, the first upstream storage chamber 32, and the first downstream storage chamber 34.
  • the diaphragm 50 constitutes the upper wall of the pressure chamber 31, the first upstream storage chamber 32, and the first downstream storage chamber 34.
  • the diaphragm 50 is formed, for example, by stacking a lower plate member 51 and an upper plate member 52.
  • the lower plate member 51 and the upper plate member 52 have the same thickness. Note that the lower plate member 51 and the upper plate member 52 may have different thicknesses from each other.
  • the lower plate member 51 covers the pressure chamber 31, the first upstream storage chamber 32, and the first downstream storage chamber 34 from the side opposite to the discharge surface S. Further, in the lower plate member 51, the positive side of the second upstream storage chamber 33 and the second downstream storage chamber 35 in the Z-axis direction is open.
  • the lower plate member 51 is thinner than the channel plate 30, and has a thickness that is, for example, one-third or less of the channel plate 30. Therefore, the lower plate member 51 has lower rigidity than the channel plate 30 and is more easily deformed.
  • the upper plate member 52 is composed of a reinforcing portion 52a and a pressed portion 52b.
  • the reinforcing portion 52a is located in the lower plate member 51 except for the positive side of the pressure chamber 31, the first upstream storage chamber 32, the first downstream storage chamber 34, the first upstream throttle 36, and the first downstream throttle 38 in the Z-axis direction. placed in position.
  • the upper walls of the first upstream storage chamber 32 and the first downstream storage chamber 34 are composed only of the lower plate member 51.
  • the portions of the diaphragm 50 that constitute the upper walls of the first upstream storage chamber 32 and the first downstream storage chamber 34 are referred to as the "upstream deflection section 72" and the “downstream deflection section 73,” respectively.
  • the pressed portion 52b is arranged in a predetermined area on the upper surface of the portion of the lower plate member 51 that covers the pressure chamber 31, and is pressed down by the pressure variation portion 61.
  • the upper wall of the pressure chamber 31 (hereinafter referred to as the "center flexure part 70") has a portion formed only by the lower plate member 51 (hereinafter referred to as the “thin plate part”) and the lower plate member 51. and a portion formed by the pressed portion 52b (hereinafter referred to as the “thick plate portion”).
  • the plurality of pressure fluctuation parts 61 are arranged in the Y direction while being separated from each other in each accommodation space.
  • the pressure variation section 61 is arranged on the pressed portion 52b so as to correspond one-to-one with the pair of the nozzle 41 and the discharge unit 301. That is, in the inkjet head 1, the same number of pressure variation units 61 as the number of sets of nozzles 41 and discharge units 301 are provided.
  • the pressure variation section 61 expands and contracts in the Z-axis direction by applying a voltage through the electrodes. Accordingly, the central bending portion 70 deforms so as to reduce or restore the volume of the pressure chamber 31.
  • the action of expanding the pressure variation section 61 will be referred to as a "pushing action”. Furthermore, when the pressure fluctuation section 61 contracts and restores the volume to the volume of the pressure chamber 31, the inside of the pressure chamber 31 becomes a negative pressure state, and the meniscus inside the nozzle 41 is pulled up to the positive side in the Z-axis direction.
  • the operation of contracting the pressure variation section 61 will be referred to as a "pulling operation.”
  • FIG. 5 is a diagram illustrating the shear rate of ink during an ink ejection operation.
  • the vertical axis represents the amount of expansion of the pressure variation section 61
  • the horizontal axis represents time.
  • FIG. 6 is a diagram showing the relationship between ink viscosity and shear rate.
  • the time zone ⁇ TH in FIG. 5 is a time zone where the ink shear rate is relatively high
  • the time zone ⁇ TL is a time zone where the ink shear rate is relatively low.
  • the ink viscosity changes depending on the shear rate of the ink. Specifically, the higher the shear rate of the ink, the lower the ink viscosity.
  • the lower the viscosity of the ink the more easily the ligament of the ejected ink is cut.
  • the higher the viscosity of the ink the more difficult it is to be cut and the longer the ligament becomes.
  • the diaphragm 50 has an upstream flexure 72 and a downstream flexure 73, and the upstream flexure 72 and the downstream flexure 73 are more easily deformed than the central flexure 70. Due to the effects of the upstream bending section 72 and the downstream bending section 73, the ligament can be cut during the time period when the ink viscosity is low.
  • the effects of the embodiment will be explained in detail while comparing with a comparative example.
  • FIG. 7 is a partial cross-sectional view of the pressure variation unit 61 and the diaphragm 50 included in the inkjet head 1.
  • d1 in FIG. 7 is the thickness of the upstream bending section 72 and the downstream bending section 73.
  • FIG. 8 is a partial plan view of the diaphragm 50 included in the inkjet head 1.
  • W1 in FIG. 8 is the length of the depth of the upstream bending part 72 and the downstream bending part 73
  • L1 in FIG. 8 is the length of the width of the upstream bending part 72 and the downstream bending part 73.
  • the upstream bending section 72 and the downstream bending section 73 function to maintain the pressure chamber 31 in a negative pressure state of a certain value or more for a certain period of time or more.
  • the upstream flexible portion 72 receives positive pressure transmitted from the pressure chamber 31 to the first upstream storage chamber 32 and deforms from the start of the push operation until just before the start of the pull operation. .
  • the downstream bending portion 73 receives positive pressure transmitted from the pressure chamber 31 to the first downstream storage chamber 34 and deforms from the start of the pushing operation to just before the start of the pulling operation.
  • the time integral value (hereinafter referred to as "negative pressure value”) of the negative pressure value of the ink in the pressure chamber 31 is (referred to as “pressure time integral value”) is equal to or higher than a predetermined value.
  • the negative pressure time integral value is the area of the hatched portion in FIG. 9, which will be described later.
  • the upstream bending section 72 and the downstream bending section 73 are easier to deform than the central bending section 70. Specifically, the upstream flexure 72 and the downstream flexure 73 have a larger deformation parameter ⁇ than the central flexure 70.
  • the deformation parameter ⁇ is calculated by the following formula (where E is the Young's modulus, Ls is the short axis of the X- and Y-axis dimensions, R is the long-axis dimension, and d is the Z-axis dimension) 1).
  • the dimension in the short axis direction refers to the shorter of the width or depth
  • the dimension in the long axis direction Dimensions are the longer of width or depth.
  • the dimension in the minor axis direction is the diameter in the minor axis direction
  • the dimension in the major axis direction is the long axis direction. It is the axial diameter.
  • the dimension in the minor axis direction and the dimension in the major axis direction are the diameters of the circles.
  • increases as Young's modulus and thickness d decrease. Further, the longer the dimension Ls in the short axis direction, the larger ⁇ becomes. Further, the longer the dimension R in the major axis direction, the larger ⁇ becomes.
  • the deformation parameter ⁇ 1 of the upstream flexure 72 and the deformation parameter ⁇ 2 of the downstream flexure 73 are larger than the deformation parameter ⁇ 0 of the central flexure 70. More preferably, both ⁇ 1 and ⁇ 2 are 1.5 times or more and 100 times or less of ⁇ 0.
  • FIG. 9 is a diagram showing changes in the pressure of ink near the nozzle 41 in the pressure chamber 31 during the ink ejection operation by the inkjet head 1.
  • the solid line in FIG. 9 shows the change over time in the pressure of ink near the nozzle 41 in the pressure chamber 31, and the broken line shows the change over time in the amount of expansion of the pressure variation section 61.
  • the ink in the pressure chamber 31 means the ink in the vicinity of the nozzle 41 in the pressure chamber 31.
  • the ink pressure shows a positive value
  • the pressure chamber 31 is in a positive pressure state
  • it shows a negative value it is in a negative pressure state.
  • the pressure of the ink in the pressure chamber 31 decreases and becomes negative pressure at time t11.
  • the meniscus within the nozzle 41 begins to be pulled up toward the positive side in the Z-axis direction.
  • the upstream bending section 72 and the downstream bending section 73 are formed to be easily deformed, it takes a relatively long time from when they start to be deformed until they are restored to their original shape. Therefore, after the ink is ejected, the ink in the pressure chamber 31 is maintained in a negative pressure state for a relatively long time (after time t11 and before time t12).
  • the negative pressure time integral value during the negative pressure period immediately after the ink ejection time t10 becomes larger than the predetermined value.
  • the ink ligament is cut off during the negative pressure period immediately after the ejection time t10.
  • This cutting timing is a time before time t13 when the pressure fluctuation section 61 starts to contract, and is a timing when the ink viscosity is low. For this reason, the ligament is likely to be cut.
  • the time from the discharge time t10 to the time when the ligament is cut can be made relatively short. Therefore, the ligament is cut before it becomes long.
  • the deformed upstream bending section 72 and downstream bending section 73 are restored, and the volumes of the first upstream storage chamber 32 and the second upstream storage chamber 33 are restored.
  • the pressure of the ink in the first upstream storage chamber 32 and the first downstream storage chamber 34 increases. This pressure fluctuation propagates to the pressure chamber 31 via the first upstream throttle 36 and the first downstream throttle 38.
  • the pressure of the ink within the pressure chamber 31 increases and changes from negative pressure to positive pressure at time t12.
  • the ink within the pressure chamber 31 begins to advance toward the discharge end of the nozzle 41.
  • the meniscus of the ink in the nozzle 41 has been pulled up to the positive side in the Z-axis direction, so the meniscus at time t12 is located on the positive side in the Z-axis direction with respect to the ejection end of the nozzle 41. That is, the atmosphere exists between the discharge end of the nozzle 41 and the meniscus.
  • the ink in the pressure chamber 31 starts moving toward the discharge end of the nozzle 41, and the ink pushes out the atmosphere in the nozzle 41 from the discharge surface S toward the negative side in the Z-axis direction.
  • This pushed out air is blown onto the flying ink ligament. Therefore, the ligament is pushed toward the negative side in the Z-axis direction by the atmosphere, so that it is accelerated in the traveling direction and tends to aggregate into the main droplet located at the forefront. That is, it becomes difficult for the ligament to separate from the main droplet, making it difficult to generate mist.
  • the flying speed of the entire droplet increases due to the air blowing, the landing position of the ink becomes less likely to vary.
  • the central deflection section 70 restores itself so that the volume of the pressure chamber 31 restores itself, and the pressure of the ink within the pressure chamber 31 decreases to negative pressure.
  • FIG. 10 is a partial cross-sectional view of the pressure fluctuation section 61 and the diaphragm 50 included in the inkjet head 2 of the comparative example.
  • FIG. 11 is a partial plan view of the diaphragm 50 included in the inkjet head 2 of the comparative example.
  • 182 in FIG. 11 is the upper wall of the first upstream storage chamber 32, and 183 is the upper wall of the first downstream storage chamber 34.
  • the upper plate member 52 of the comparative example has a reinforcing portion 152a, and the reinforcing portion 152a is also arranged on the positive side of the first upstream storage chamber 32 and the first downstream storage chamber 34 in the Z-axis direction. Therefore, the upper wall 182 of the first upstream storage chamber 32 and the upper wall 183 of the first downstream storage chamber 34 are entirely constituted by the lower plate member 51 and the reinforcing portion 152a.
  • the upper wall 182 and the upper wall 183 have smaller deformation parameters than the central flexure 70.
  • FIG. 12 is a diagram showing changes in the pressure of ink near the nozzles in the pressure chamber 31 during the ink ejection operation by the inkjet head 2 of the comparative example.
  • the solid line in FIG. 12 shows the change in the pressure of the ink in the pressure chamber 31 over time, and the broken line shows the change in the amount of expansion of the pressure variation section 61 over time.
  • the first upstream storage chamber 32 and the first downstream storage chamber 34 relatively quickly change in size.
  • the pressure of the ink in the first downstream storage chamber 34 begins to decrease. Then, with the pressure fluctuation, the pressure inside the pressure chamber 31 increases and becomes a positive pressure at time t22.
  • the first negative pressure period after ink ejection time t20 (after time t21 and before time t22 in FIG. 12) is shorter than in the embodiment. Therefore, the negative pressure time integral value during the negative pressure period immediately after ink ejection becomes relatively small and becomes less than a predetermined value. Therefore, during this negative pressure period, although the meniscus within the nozzle 41 begins to be pulled up toward the positive side in the Z-axis direction, the ligament is difficult to break.
  • the central deflection section 70 restores itself so that the volume of the pressure chamber 31 increases. Accordingly, at time t24, the ink within the pressure chamber 31 becomes in a negative pressure state, and the meniscus is pulled up to the positive side in the Z-axis direction. Since the negative pressure period after time t24 continues for a relatively long time, the ligament of the ejected ink is cut off.
  • the ligament is cut after time t24. Since time t24 is a time after time t23 when the pressure fluctuation section 61 begins to contract, it can be said that it is a timing when the ink viscosity is high. For this reason, the ligament is difficult to be cut, and the ligament is likely to become long. Furthermore, since the period from the ink ejection time t20 until the ligament is cut is relatively long, the ligament is likely to become even longer.
  • the areas of the first upstream storage chamber 32 and the first downstream storage chamber 34 in the XY plane may be different from each other.
  • one of the upstream bending section 72 and the downstream bending section 73 may have a portion constituted by the reinforcing section 52a and the lower plate member 51.
  • the larger ⁇ 1 and ⁇ 2 are, the larger the amount of deformation of the upstream bending portion 72 and the downstream bending portion 73 becomes, so the negative pressure period immediately after the ink ejection time becomes longer, and as a result, the negative pressure time during this negative pressure period becomes longer.
  • the integral value becomes larger. Furthermore, since the amount of increase in the pressure of the ink within the pressure chamber 31 after cutting the ligament increases, the intensity of air blowing against the flying ligament increases, and the flying speed of the ink increases. As a result, variations in the landing positions of ink droplets are reduced, and printing performance is likely to be improved.
  • ⁇ 1 and ⁇ 2 are preferably 100 times or less than ⁇ 0.
  • the reason why the upper limit is set in this manner is that if ⁇ 1 and ⁇ 2 become too large, the amount of pressure increase in the pressure chamber 31 due to the restoration of the upstream bending portion 72 and the downstream bending portion 73 will become too large, and there is a risk that ink may blow out. This is because there is.
  • the upstream flexure portion 72 and the downstream flexure portion 73 may be configured such that the Young's modulus E is smaller than that of the central flexure portion 70.
  • the upstream flexure 72 and the downstream flexure 73 can be made easier to deform than the central flexure 70.
  • the upstream bending section 72 and the downstream bending section 73 may be configured such that the dimension d in the Z-axis direction is smaller than the central bending section 70.
  • the upstream flexure 72 and the downstream flexure 73 can be made easier to deform than the central flexure 70. Can be done.
  • the upstream bending portion 72 and the downstream bending portion 73 may be configured such that the dimension Ls in the short axis direction is larger than that of the central bending portion 70.
  • the upstream flexible section 72 and the downstream flexible section 73 can be made easier to deform than the central flexible section 70. Can be done.
  • the upstream bending section 72 and the downstream bending section 73 may be configured such that the dimension R in the long axis direction is larger than that of the central bending section 70.
  • the upstream flexure 72 and the downstream flexure 73 can be made easier to deform than the central flexure 70. Can be done.
  • the inkjet head 1 includes a nozzle 41 that discharges ink, a pressure chamber 31 that communicates with the nozzle 41, a first storage chamber 32 that communicates with the pressure chamber 31 via the first aperture, 34, a diaphragm 50 having a portion (center flexure 70) forming a part of the pressure chamber 31; A pressure variation unit 61 that discharges ink to the outside through the nozzle 41 is provided.
  • the first storage chambers 32 and 34 have flexure portions 72 and 73 that are more deformable than the portion of the diaphragm 50 (center flexure portion 70).
  • the pressure of the ink near the nozzle 41 in the pressure chamber 31 can be maintained in a negative pressure period for a relatively long time immediately after ink is ejected. Therefore, the ligament of the ejected ink can be cut at a timing when the ink viscosity is low. Further, the ligament is cut at a relatively early timing after the ink is ejected. Therefore, since the ligament can be shortened, mist is less likely to be generated, and printing performance can be improved.
  • the air inside the nozzle 41 can be sprayed onto the flying ink ligament, which makes it easier for the ligament to aggregate with the main droplet, thereby suppressing the generation of mist. Furthermore, since the flying speed of the ink is increased, variations in the landing positions are suppressed. As a result, printing performance is further improved.
  • the flexure parts 72 and 73 are formed of the diaphragm 50. Therefore, printing performance can be improved with a relatively simple configuration.
  • the flexible portions 72 and 73 deform to increase the volume of the first storage chambers 32 and 34 in response to the pressure variation portion 61 increasing the pressure of ink within the pressure chamber 31. Make the ink pressure negative.
  • the ink in the pressure chamber 31 is maintained in a negative pressure state for a relatively long time immediately after the ink discharge time, and the ligament is cut at this timing.
  • the bending parts 72 and 73 increase the volumes of the first storage chambers 32 and 34, and then restore the volumes of the first storage chambers 32 and 34, thereby making the pressure of the ink in the pressure chamber 31 positive.
  • the flow path plate 30 includes two first storage chambers 32 and 34 for one pressure chamber 31. Further, a set of the pressure chamber 31, the pressure fluctuation section 61, and the two first storage chambers 32 and 34 corresponds to the nozzle 41 on a one-to-one basis.
  • the sets of the pressure chamber 31, the pressure fluctuation section 61, and the two first storage chambers 32 and 34 are arranged in one-to-one correspondence with respect to the nozzle 41.
  • the pressure of ink near the nozzle 41 in the pressure chamber 31 using the plurality of first storage chambers 32 and 34, cutting of the ligament and blowing atmospheric air onto the ligament can be effectively performed. can.
  • the upstream bending portion 72 and the downstream bending portion 73 have deformation parameters ⁇ 1 and ⁇ 2 indicating ease of deformation that are 1.5 times or more and 100 times or less of the deformation parameter ⁇ 0 of the central bending portion 70.
  • the deformation parameters ⁇ 1 and ⁇ 2 are 100 times or less than ⁇ 0, the amount of increase in the ink pressure in the pressure chamber 31 due to the restoration of the upstream bending part 72 and the downstream bending part 73 is suppressed, and when air is sprayed onto the ligament, , it is possible to prevent ink from being ejected.
  • the dimensions in the X, Y, and Z axis directions are limited to some extent, so the deformation parameters ⁇ 1 and ⁇ 2 are also substantially limited. That is, by setting a certain upper limit to ⁇ 1 and ⁇ 2, the inkjet head 1 can be designed realistically. For example, by making the thickness d of the upstream bending portion 72 and the downstream bending portion 73 too thin, it is possible to prevent them from breaking when deformed.
  • the deformation parameters ⁇ 1 and ⁇ 2 become larger as the Young's modulus E and thickness d of the upstream bending portion 72 and the downstream bending portion 73 are smaller, and become larger as the short axis direction dimension Ls and the long axis direction dimension R are long.
  • the diaphragm 50 may be composed of a single plate member, and the thickness may vary depending on the part. Further, the diaphragm 50 may have a uniform thickness, and the material, that is, the Young's modulus, may be changed depending on the region.
  • the upstream bending portion 72 and the downstream bending portion 73 may be formed of a material having a smaller Young's modulus than the central bending portion 70.
  • FIG. 13 is a diagram illustrating a diaphragm 50 according to Modification 1.
  • the entire downstream bending section 73 was composed of only the lower plate member 51, but in the first modification, a part of the downstream deflection section 73 is composed of the lower plate member 51 and the reinforcing section 52a.
  • the downstream bending section 73 is composed of a thin plate section 191 consisting only of the lower plate member 51, and a thick plate section 192 consisting of the lower plate member 51 and the reinforcing section 52a.
  • the width L2 of the thin plate portion 191 is shorter than the width L1 of the downstream bending portion 73 in the embodiment.
  • the deformation parameter ⁇ 2 of the downstream bending portion 73 is smaller than the deformation parameter ⁇ 1 of the upstream bending portion 72.
  • the deformation parameter ⁇ 2 of the downstream flexure part 73 is smaller than the deformation parameter ⁇ 1 of the upstream flexure part 72 as in modification example 1, the deformation parameter ⁇ 1 is 1.5 times or more the deformation parameter ⁇ 0 of the central flexure part 70. Since it is 100 times or less, the same effect as the embodiment can be obtained.
  • the larger ⁇ 2 is, the longer the period of negative pressure in the pressure chamber 31 immediately after ink is ejected, which in turn increases the negative pressure time integral value, making it easier to cut the ligament. Furthermore, the larger ⁇ 2 is, the stronger the air inside the nozzle 41 can be blown against the flying ligament.
  • FIG. 14 is a diagram illustrating a diaphragm 50 according to a second modification.
  • the downstream bending section 73 was composed of a thin plate section 191 composed only of the lower plate member 51 and a thick plate section 192 composed of the lower plate member 51 and the reinforcing section 52a.
  • the entire downstream bending section 73 is composed of the lower plate member 51 and the reinforcing section 52a.
  • the deformation parameter ⁇ 2 of the downstream flexure 73 is smaller than the deformation parameter ⁇ 0 of the central flexure 70.
  • the deformation parameter ⁇ 1 of the upstream flexure portion 72 is 1.5 times or more and 100 times or less than the deformation parameter ⁇ 0 of the central flexure portion 70, the same effects as in the embodiment can be obtained.
  • the second upstream storage chamber 33 and the second downstream storage chamber 35 are provided in the flow path plate 30, but the second upstream storage chamber 33 and the second downstream storage chamber 35 may not be provided.
  • ink is directly supplied from the upstream common flow path 22a to the first upstream common flow path 22a via the second upstream throttle 37, and the ink is supplied from the first downstream storage chamber 34 to the second downstream throttle 39. It may be configured such that it is directly discharged to the downstream common flow path 23a via.
  • the inkjet head 1 may be an inkjet head other than an ink circulation type inkjet head. That is, the first downstream restriction 38, the first downstream storage chamber 34, the second downstream restriction 39, and the second downstream storage chamber 35 may not be formed in the flow path plate 30.
  • a storage chamber that contributes to pressure adjustment within the pressure chamber 31 may be provided separately from the ink supply path.
  • the first upstream storage chamber 32 and the second upstream storage chamber 33 are integrally formed, the second downstream throttle 39 and the second downstream storage chamber 35 are not formed, and only the downstream bending portion 73 of the second downstream storage chamber 35 is formed. , the ink pressure within the pressure chamber 31 may be adjusted.
  • a portion located on the positive side in the Z-axis direction of the second throttles 37, 39, and on the side wall of the first storage chambers 32, 34 may be formed as upstream flexures and downstream flexures, respectively.
  • the portion may be formed into a hollow shape in order to increase the deformation parameter while ensuring the flow path length of the second throttles 37 and 39.
  • the present disclosure can be suitably applied to an inkjet head in which a storage chamber communicating with a pressure chamber is formed.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

インクジェットヘッドは、インクを吐出するノズルと、ノズルと連通する圧力室と、絞りを介して圧力室と連通する貯留室と、圧力室の一部を形成する部位を有する振動板と、圧力室内のインクの圧力が変動するように振動板を振動させ圧力室からノズルを介してインクを外部に吐出させる圧力変動部と、を備える。貯留室は、振動板の部位よりも変形しやすいたわみ部を有する。

Description

インクジェットヘッド
 本開示は、インクジェットヘッドに関する。
 特許文献1には、ドロップオンデマンド型のインクジェットヘッドが開示されている。
 特許文献1のインクジェットヘッドは、圧電方式のものであり、電圧を圧電素子に印加して伸長させることで圧力室の容積を小さくする。これにより、インクジェットヘッドは、圧力室内のインクに圧力を加え、ノズルを介してインクを外部に吐出させる。
 また、圧電素子が収縮して圧力室の容積が復元することで、ノズル内のインクの液面(いわゆる、メニスカス)が引き上げられる。これにより、吐出されたインクのリガメントが切断される。
特開2016-159514号公報
 本開示の一態様に係るインクジェットヘッドは、インクを吐出するノズルと、前記ノズルと連通する圧力室と、絞りを介して前記圧力室と連通する貯留室と、前記圧力室の一部を形成する部位を有する振動板と、前記圧力室内のインクの圧力が変動するように前記振動板を振動させ、前記圧力室から前記ノズルを介してインクを外部に吐出させる圧力変動部と、を備え、前記貯留室は、前記振動板の前記部位よりも変形しやすいたわみ部を有する。
実施形態に係るインクジェットヘッドを例示する分解斜視図 実施形態に係るインクジェットヘッドにおけるインク流路を説明するための模式的な平面図 実施形態に係るインクジェットヘッドを例示する部分断面図 図3のI-I断面図 インク吐出動作中の圧力変動部の伸長量を説明する図 インク粘度とせん断速度の関係を示す図 実施形態に係るインクジェットヘッドが備える圧力変動部及び振動板の部分断面図 実施形態に係るインクジェットヘッドが備える振動板の部分平面図 実施形態に係るインクジェットヘッドによるインクの吐出動作中における圧力室内のノズル近傍の圧力変化を示す図 比較例のインクジェットヘッドが備える圧力変動部及び振動板の部分断面図 比較例のインクジェットヘッドが備える振動板の部分平面図 比較例のインクジェットヘッドによるインクの吐出動作中における圧力室内のノズル近傍の圧力変化を示す図 変形例1に係るインクジェットヘッドが備える振動板の部分平面図 変形例2に係るインクジェットヘッドが備える振動板の部分平面図
 同じインクでも、インクの流速(いわゆる、せん断速度)が低いほどインクの粘度が大きくなる。圧電素子の収縮により圧力室の容積が復元する間、インクのせん断速度が小さくなる。特許文献1のインクジェットヘッドは、インク粘度が大きくなるタイミングで、リガメントを切断しているので、リガメントが切断されにくく、長くなりやすい。
 インクのリガメントが長い場合、リガメントがインクの主滴と分裂して、浮遊インクであるミストが発生しやすくなる。インクジェットヘッドの印刷性能を向上させるためには、ミストの発生を抑制する必要がある。
 本開示は、印刷性能を向上させるインクジェットヘッドを提供することを目的とする。
 以下、本開示の各実施形態及び各変形例について、図面を参照しながら説明する。本開示では、直交座標系(X,Y,Z)を使用して説明する。図1の矢印にて示されるように、Z軸方向がインクジェットヘッド1の高さ方向、Y軸方向がインクジェットヘッド1の長手方向、及び、X軸方向がインクジェットヘッド1の幅方向である。
 [実施形態]
 まず、図1を用いて、第1実施形態に係るインクジェットヘッド1の全体構成を説明する。図1は、実施形態に係るインクジェットヘッド1を例示する分解斜視図である。
 図1に示されているように、インクジェットヘッド1は、本体部10、及び、複数の圧力変動部61(図3参照)を有する圧力変動素子ユニット60を備えている。本体部10の吐出面Sには、複数のノズル41が形成されている。複数のノズル41は、例えば、複数のノズル列を形成するように設けられている。
 本体部10は、ハウジング部20、流路プレート30、ノズルプレート40、及び、振動板50を備える。ノズルプレート40、流路プレート30、振動板50、及び、ハウジング部20の順に重畳されて本体部10が形成される。
 ハウジング部20は、例えば、直方体状に形成されており、本体部10の上部を構成する。ハウジング部20は、例えば、ステンレス鋼などの合金鋼が切削加工されることにより形成されている。
 流路プレート30は、例えば、直方体状に形成され、本体部10の下部を構成する。流路プレート30には、外部に吐出するインクを貯留する複数の圧力室31(図4参照)が形成されている。流路プレート30は、例えば、エッチングまたはプレス加工によって成型されたステンレス板が接着または拡散接合等によって積層されることで形成されている。
 ノズルプレート40は、その板面がZ軸方向に直交するように流路プレート30の底面に配置されており、本体部10の底面部を構成する。ノズルプレート40は、例えば、ステンレス板がエッチング、プレス、または、レーザー加工等によって成型されることで形成される。
 振動板50は、その板面がZ軸方向に直交するように、ハウジング部20と流路プレート30との間に配置されている。振動板50は、薄板状の弾性体である。図1に示されているように、振動板50は、例えば、互いに離間して配置された2枚の板部材で構成されていてもよい。振動板50は、例えば、ステンレス板またはニッケル電鋳板等により形成されている。
 次に、図2~図4を用いて、インクジェットヘッド1の構成について詳細に説明する。図2は、インクジェットヘッド1におけるインク流路を説明するための模式的な平面図である。図3は、インクジェットヘッド1を例示する部分断面図であり、ZX平面による断面図である。図4は、図3のI-I断面図である。なお、本実施形態に係るインクジェットヘッド1は、インク循環方式のインクジェットヘッドである。
 <ハウジング部20>
 図2に示されているように、ハウジング部20には、インク供給路21、上流共通流路22a、22b、下流供給流路23a、23b、23c、23d、インク排出路24a、24b、及び、収容空間25a、25b、25c、25dが形成されている。
 インク供給路21は、例えば、インク供給源となるインクタンク(不図示)に接続されている。インク供給路21は、Z軸方向に沿って延在しており、X軸方向及びY方向におけるハウジング部20の中央部にそれぞれ設けられている。
 上流共通流路22a、22bは、インク供給路21に接続されている。上流共通流路22a、22bは、インク供給路21からハウジング部20のY軸方向負側端及び正側端に向けてそれぞれ延在している。
 下流供給流路23a、23bは、例えば、上流共通流路22aのX軸方向両側に設けられており、ハウジング部20のY軸方向負側端に向けて延在している。
 下流供給流路23c、23dは、例えば、上流共通流路22bのX軸方向両側に設けられており、ハウジング部20のY軸方向正側端に向けて延在している。
 インク排出路24a、24bは、それぞれハウジング部20のY軸方向両端部に配置されている。インク排出路24aは、下流供給流路23a、23bに接続されている。インク排出路24aは、例えば、X軸方向におけるハウジング部20の中央部に設けられ、Z軸方向に沿って延在している。インク排出路24bは、下流供給流路23c、23dに接続されている。インク排出路24bは、例えば、X軸方向におけるハウジング部20の中央部に設けられ、Z軸方向に沿って延在している。
 収容空間25a、25b、25c、25dは、それぞれ複数の圧力変動部61が収容される空間であり、Y軸方向に沿って延在している。例えば、収容空間25aは、上流共通流路22a及び下流供給流路23aの間、収容空間25bは、上流共通流路22a及び下流供給流路23bの間にそれぞれ設けられている。また、収容空間25cは、上流共通流路22b及び下流供給流路23cの間、収容空間25dは、上流共通流路22b及び下流供給流路23dの間にそれぞれ設けられている。
 インクは、インクタンクからインク供給路21及び上流共通流路22aを介して、収容空間25a及び収容空間25bのZ軸方向負側に配置されている複数の圧力室31に供給される。また、インクは、インク供給路21及び上流共通流路22bを介して、収容空間25c、25dのZ軸方向負側に配置されている複数の圧力室31に供給される。
 そして、収容空間25a、25bのZ軸方向負側に配置されている複数の圧力室31から、下流供給流路23a及び23b、並びに、インク排出路24aを介してインクジェットヘッド1の外部に排出される。また、収容空間25c、25dのZ軸方向負側に配置されている複数の圧力室31から、下流供給流路23c及び23d、並びに、インク排出路24bを介してインクジェットヘッド1の外部に排出される。
 <流路プレート30>
 図4に示されているように、流路プレート30は、複数の吐出ユニット301が複数のノズル41と1対1で対応するように配列されている。すなわち、ノズル41と吐出ユニット301の個数は同じである。吐出ユニット301は、圧力室31、第1上流貯留室32、第2上流貯留室33、第1下流貯留室34、及び、第2下流貯留室35で構成されている。
 圧力室31は、例えば、長辺がX軸方向に沿う直方体状に形成されている。図3に示されているように、圧力室31は、ノズル41に連通している。
 第1上流貯留室32は、圧力室31のX軸方向正側に設けられている。圧力室31及び第1上流貯留室32の間には、第1上流絞り36が設けられており、第1上流貯留室32は、第1上流絞り36を介して圧力室31に連通している。第1上流絞り36は、Z軸方向の寸法が、圧力室31及び第1上流貯留室32よりも小さい。
 第2上流貯留室33は、第1上流貯留室32のX軸方向正側に設けられている。第1上流貯留室32及び第2上流貯留室33の間には、第2上流絞り37が設けられている。第2上流貯留室33は、上流共通流路22aに連通するとともに、第2上流絞り37を介して第1上流貯留室32に連通している。第2上流絞り37は、Z軸方向の寸法が、第1上流貯留室32及び第2上流貯留室33よりも小さい。
 第1上流絞り36及び第2上流絞り37が設けられていることで、第1上流貯留室32が略閉空間となる。また、第2上流絞り37は、Z軸方向において第1上流絞り36とは異なる位置に設けられている。例えば、図3では、Z軸方向において、第1上流絞り36が第1上流貯留室32の上壁寄りに設けられ、第2上流絞り37は、下壁寄りに設けられている。よって、第1上流貯留室32内に圧力波を閉じ込めやすくなる。
 インクは、上流共通流路22aから第2上流貯留室33、第2上流絞り37、第1上流貯留室32、及び、第1上流絞り36を介して圧力室31に供給される。
 第1下流貯留室34は、圧力室31のX軸方向負側に設けられている。圧力室31及び第1下流貯留室34の間には、第1下流絞り38が設けられており、第1下流貯留室34は、第1下流絞り38を介して圧力室31に連通している。第1下流絞り38は、Z軸方向の寸法が、圧力室31及び第1下流貯留室34よりも小さい。
 第2下流貯留室35は、第1下流貯留室34のX軸方向負側に設けられている。第1下流貯留室34及び第2下流貯留室35の間には、第2下流絞り39が設けられている。第2下流貯留室35は、下流供給流路23aに連通するとともに、第2下流絞り39を介して第1下流貯留室34に連通している。第2下流絞り39は、Z軸方向の寸法が、第1下流貯留室34及び第2下流貯留室35よりも小さい。
 第1下流絞り38及び第2下流絞り39が設けられていることで、第1下流貯留室34が略閉空間となる。また、第2下流絞り39は、Z軸方向において第1下流絞り38とは異なる位置に設けられている。例えば、図3では、Z軸方向において、第1下流絞り38が第1下流貯留室34の上壁寄りに設けられ、第2下流絞り39が、下壁寄りに設けられている。よって、第1下流貯留室34内にインクの圧力波を閉じ込めやすくなる。
 圧力室31内のインクは、第1下流絞り38、第1下流貯留室34、第2下流絞り39、及び、第2下流貯留室35を介して下流供給流路23aに排出される。
 <ノズルプレート40>
 ノズルプレート40には、複数のノズル41が形成されている。ノズル41は、インク吐出時にインクが通過する穴であり、ノズルプレート40を貫通している。ノズル41の形状は、円筒形状である。なお、ノズル41は、テーパ形状となるように形成されていてもよい。
 ノズル41の直径は、大きいほど、吐出されるインクの液滴体積が大きくなり、小さいほど、液滴体積が小さくなるので、所望の液滴体積に応じて設定される。本実施形態では、ノズル41の直径は、例えば、7μm以上200μm以下である。
 ノズル41のZ軸方向の寸法が長いほど、インク液滴の直進性が向上する。一方、ノズル41通過時の流体抵抗が増加するので、インクが吐出されにくくなる。本実施形態では、ノズル41のZ軸方向の寸法は、例えば、5μm以上500μm以下である。
 <振動板50>
 振動板50は、圧力室31、第1上流貯留室32及び第1下流貯留室34の一部を構成する。本実施形態では、振動板50は、圧力室31、第1上流貯留室32及び第1下流貯留室34の上壁を構成する。振動板50は、例えば、下部板部材51及び上部板部材52が重ねられて形成されている。例えば、下部板部材51及び上部板部材52は、互いに同じ厚さである。なお、下部板部材51及び上部板部材52は、互いに厚さが異なっていてもよい。
 下部板部材51は、吐出面Sとは反対側から、圧力室31、第1上流貯留室32及び第1下流貯留室34を覆っている。また、下部板部材51は、第2上流貯留室33及び第2下流貯留室35のZ軸方向正側が開口している。
 下部板部材51は、流路プレート30よりも薄く、例えば、流路プレート30の3分の1以下の厚さを有する。よって、下部板部材51は、流路プレート30よりも剛性が小さく、変形しやすい。
 上部板部材52は、補強部52a、及び、被押下部52bで構成されている。
 補強部52aは、下部板部材51における、圧力室31、第1上流貯留室32、第1下流貯留室34、第1上流絞り36、及び、第1下流絞り38のZ軸方向正側を除く位置に配置される。
 よって、第1上流貯留室32及び第1下流貯留室34の上壁は、下部板部材51のみによって構成される。以下の説明において、振動板50における第1上流貯留室32及び第1下流貯留室34の上壁を構成する部位を、それぞれ、「上流たわみ部72」及び「下流たわみ部73」と称す。
 被押下部52bは、下部板部材51における圧力室31を覆う部位の上面の所定領域に配置されており、圧力変動部61によって押下される。
 よって、圧力室31の上壁(以下、「中央たわみ部70」と称す。)は、下部板部材51のみによって構成される部位(以下、「薄板部」と称す。)と、下部板部材51及び被押下部52bによって構成される部位(以下、「厚板部」と称す。)とで構成される。
 <圧力変動部61>
 複数の圧力変動部61は、各収容空間において、互いに離隔しつつY方向に配列されている。圧力変動部61は、ノズル41及び吐出ユニット301の組と1対1で対応するように、被押下部52b上に配置されている。すなわち、インクジェットヘッド1において、圧力変動部61は、ノズル41及び吐出ユニット301の組と同数、設けられている。
 圧力変動部61は、電極を介して電圧が印加されることで、Z軸方向に伸縮する。これに伴い、中央たわみ部70が圧力室31の容積を減少または復元するように変形する。
 圧力室31の容積が減少したとき、圧力室31内が正圧状態となり、圧力室31内のインクがノズル41から外部に吐出される。以下、圧力変動部61の伸長させる動作を「押し動作」と称す。また、圧力変動部61が収縮して圧力室31の容積に復元すると、圧力室31内が負圧状態となり、ノズル41内のメニスカスがZ軸方向正側に引き上げられる。以下、圧力変動部61を収縮させる動作を「引き動作」と称す。
 <インクのせん断速度と粘度との関係>
 図5は、インク吐出動作中のインクのせん断速度を説明する図である。図5では、縦軸は圧力変動部61の伸長量であり、横軸が時間である。図6は、インクの粘度とせん断速度の関係を示す図である。図5のΔTHの時間帯が、インクのせん断速度が比較的高い時間帯であり、ΔTLの時間帯が、インクのせん断速度が比較的低い時間帯である。
 圧力変動部61が伸長している間、インクのせん断速度は増加し、インクが吐出されたタイミングで、せん断速度が最大となる。その後、圧力変動部61が収縮(復元)することで、せん断速度が減少していく。
 図6に示されているように、インク粘度は、インクのせん断速度に応じて変化する。具体的には、インクのせん断速度が高くなるほどインク粘度が小さくなる。
 一般的に、インクの粘度が小さいほど吐出インクのリガメントが切断されやすい。一方、インクの粘度が大きいほど、切断されにくく、リガメントが長くなりやすい。
 本実施形態では、振動板50は、上流たわみ部72及び下流たわみ部73を有しており、上流たわみ部72及び下流たわみ部73は、中央たわみ部70よりも変形しやすい。上流たわみ部72及び下流たわみ部73の作用により、インク粘度が小さい時間帯にリガメントを切断できる。以下、比較例と比較しながら実施形態の作用等について詳しく説明する。
 <実施形態によるインク吐出>
 図7は、インクジェットヘッド1が備える圧力変動部61及び振動板50の部分断面図である。図7のd1は、上流たわみ部72及び下流たわみ部73の厚さである。図8は、インクジェットヘッド1が備える振動板50の部分平面図である。図8のW1は、上流たわみ部72及び下流たわみ部73の奥行きの長さであり、図8のL1は、上流たわみ部72及び下流たわみ部73の幅の長さである。
 上流たわみ部72及び下流たわみ部73は、圧力室31を、一定値以上の負の圧力状態で、一定時間以上維持するように機能する。
 より具体的には、上流たわみ部72は、押し動作が開始されてから引き動作が開始される直前までの間に、圧力室31から第1上流貯留室32へ伝わる正圧を受け、変形する。これにより、第1上流貯留室32から圧力室31へ圧力が反射するためには一定時間以上の時間がかかり、その間、圧力室31内のインクの負の圧力値の時間積分値が、所定値以上となるように機能する。また、下流たわみ部73は、押し動作が開始されてから引き動作が開始される直前までの間に、圧力室31から第1下流貯留室34へ伝わる正圧を受け、変形する。これにより、第1下流貯留室34から圧力室31へ圧力が反射するためには一定時間以上の時間がかかり、その間、圧力室31内インクの負の圧力値の時間積分値(以下、「負圧時間積分値」と称す。)が、所定値以上となるように機能する。なお、負圧時間積分値は、後述する図9のハッチング部分の面積である。
 上流たわみ部72及び下流たわみ部73は、中央たわみ部70よりも変形しやすい。具体的には、上流たわみ部72及び下流たわみ部73は、中央たわみ部70よりも大きい変形パラメーターδを有する。なお、変形パラメーターδは、Z軸方向における変形しやすさを示す値であり、Z軸方向に沿って加える力をF、Fを加えた場合のZ軸方向の変位をΔzとしたとき、Δz=δFの関係を有する。
 変形パラメーターδは、ヤング率をE、X軸及びY軸方向の寸法のうちの短軸方向の寸法をLs、長軸方向の寸法をR、Z軸方向の寸法をdとすると、下記式(1)で表すことができる。
 平面視で、中央たわみ部70、上流たわみ部72及び下流たわみ部73が矩形である場合、短軸方向の寸法とは、幅または奥行きうちの短い方の寸法のことであり、長軸方向の寸法とは、幅または奥行きのうちの長い方の寸法のことである。
 例えば、平面視で、中央たわみ部70、上流たわみ部72及び下流たわみ部73が楕円形である場合、短軸方向の寸法は、短軸方向の直径であり、長軸方向の寸法は、長軸方向の直径である。
 また、平面視で、中央たわみ部70、上流たわみ部72及び下流たわみ部73が円形である場合、短軸方向の寸法及び長軸方向の寸法は、当該円の直径である。
 式(1)によれば、δは、ヤング率及び厚さdが小さいほど大きくなる。また、δは、短軸方向の寸法Lsが長いほど、大きくなる。また、δは、長軸方向の寸法Rが長いほど、大きくなる。
 本実施形態では、上流たわみ部72の変形パラメーターδ1及び下流たわみ部73の変形パラメーターδ2は、中央たわみ部70の変形パラメーターδ0よりも大きい。より望ましくは、δ1及びδ2は、いずれも、δ0の1.5倍以上100倍以下である。
 本実施形態では、図8に示されているように、上流たわみ部72及び下流たわみ部73は同じ形状であるので、δ1=δ2が成立する。
 図9は、インクジェットヘッド1によるインクの吐出動作中における圧力室31内のノズル41近傍のインクの圧力変化を示す図である。図9の実線は、圧力室31内のノズル41近傍のインクの圧力の時間変化を示し、破線は、圧力変動部61の伸長量の時間変化を示す。以下、特別説明しない場合、圧力室31内のインクは、圧力室31内のノズル41近傍のインクを意味する。なお、図9において、インクの圧力が正の値を示すとき、圧力室31は正圧状態にあり、負の値を示すとき、負圧状態にある。
 圧力変動部61に電圧が印加されることで、Z軸方向に伸長し(図9の破線)、被押下部52bがZ軸方向負側に押下される。これにより、圧力室31の容積が減少するように、中央たわみ部70が変形し、圧力室31内のインクの圧力が増加する(図9の実線)。圧力変動部61の伸長量が最大値となったタイミング(時刻t10)で、インクがノズル41から外部に飛び出し、リガメントを形成しながらZ軸方向負側に進む。
 圧力室31内のインクの圧力が増加した直後、圧力室31内の圧力変動が、第1上流絞り36及び第1下流絞り38を介して、第1上流貯留室32及び第1下流貯留室34に伝播する。そして、第1上流貯留室32及び第1下流貯留室34の容積が増加するように、上流たわみ部72及び下流たわみ部73が変形する。
 インクが飛び出した反動で、圧力室31内のインクの圧力が減少し、時刻t11で負圧となる。これにより、ノズル41内のメニスカスがZ軸方向正側に引き上げられ始める。また、上流たわみ部72及び下流たわみ部73は、変形しやすく形成されているので、変形し始めてから元の形状に復元するまでに比較的長い時間を要する。よって、インク吐出後、比較的長い時間(時刻t11以降、時刻t12より前)、圧力室31内のインクが負圧状態に維持される。すなわち、インク吐出時刻t10直後の負圧期間(時刻t11以降、時刻t12より前)における負圧時間積分値が、所定値よりも大きくなる。これにより、吐出時刻t10直後の負圧期間において、インクのリガメントが切断される。
 この切断タイミングは、圧力変動部61が収縮し始める時刻t13よりも前の時刻であり、インク粘度が小さいタイミングである。このため、リガメントが切断されやすい。
 また、本実施形態では、吐出時刻t10からリガメントが切断される時刻までの時間を比較的短くできる。よって、リガメントが長くなる前に切断される。
 その後、変形していた上流たわみ部72及び下流たわみ部73が復元し、第1上流貯留室32及び第2上流貯留室33の容積が復元する。これにより、第1上流貯留室32及び第1下流貯留室34内のインクの圧力が増加する。この圧力変動が、第1上流絞り36及び第1下流絞り38を介して、圧力室31に伝播する。そして、圧力室31内のインクの圧力が増加し、時刻t12において、負圧から正圧となる。これにより、圧力室31内のインクがノズル41の吐出端に向けて進行し始める。
 時刻t11以降、ノズル41内のインクのメニスカスはZ軸方向正側に引き上げられているので、時刻t12時点のメニスカスは、ノズル41の吐出端よりも、Z軸方向正側に位置している。すなわち、ノズル41の吐出端とメニスカスとの間には大気が存在する。
 よって、時刻t12以降、圧力室31内のインクがノズル41の吐出端に向けて進行し始めることで、そのインクによりノズル41内の大気が吐出面SからZ軸方向負側に押し出される。この押し出された大気は、飛翔しているインクのリガメントに吹き付けられる。よって、リガメントは大気によりZ軸方向負側に押されるので、進行方向に加速され、最前部に位置する主滴にまとまりやすくなる。すなわち、リガメントが主滴から分離しにくくなり、ミストが発生しにくくなる。さらに、大気の吹き付けにより、液滴全体の飛翔速度が増加するので、インクの着弾位置がばらつきにくくなる。
 時刻t13で、圧力変動部61が収縮し始めると、圧力室31の容積が復元するように、中央たわみ部70が復元し、圧力室31内のインクの圧力が減少し、負圧となる。
 <比較例の吐出>
 まず、図10~図11を用いて、比較例のインクジェットヘッド2の構成について、主にインクジェットヘッド1と異なる点を説明する。
 図10は、比較例のインクジェットヘッド2が備える圧力変動部61及び振動板50の部分断面図である。図11は、比較例のインクジェットヘッド2が備える振動板50の部分平面図である。図11の182は、第1上流貯留室32の上壁であり、183は、第1下流貯留室34の上壁である。
 比較例の上部板部材52は、補強部152aを有しており、補強部152aは、第1上流貯留室32及び第1下流貯留室34のZ軸方向正側にも配置される。よって、第1上流貯留室32の上壁182及び第1下流貯留室34の上壁183は、全体的に下部板部材51及び補強部152aによって構成される。
 比較例において、上壁182及び上壁183は、中央たわみ部70よりも変形パラメーターが小さい。
 図12は、比較例のインクジェットヘッド2によるインクの吐出動作中における圧力室31内のノズル近傍のインクの圧力変化を示す図である。図12の実線は、圧力室31内のインクの圧力の時間変化を示し、破線は、圧力変動部61の伸長量の時間変化を示す。
 圧力変動部61に電圧が印加されることで、Z軸方向に伸長し(図12の破線)、被押下部52bがZ軸方向負側に押下される。これにより、圧力室31の容積が減少するように、中央たわみ部70が変形し、圧力室31内のインクの圧力が増加する(図12の実線)。圧力変動部61の伸長量が最大値となったタイミング(時刻t20)で、インクがノズル41から外部に飛び出し、リガメントを形成しながらZ軸方向負側に進む。
 圧力室31内のインクの圧力が増加するとともに、圧力室31内の圧力変動が第1上流絞り36及び第1下流絞り38を介して、第1上流貯留室32及び第1下流貯留室34に伝播する。これにより、第1上流貯留室32及び第1下流貯留室34内のインクの圧力が増加する。これに伴い、圧力室31内のインクの圧力が減少し、時刻t21で負圧となる。
 しかしながら、上壁182及び上壁183は、第1上流貯留室32及び第1下流貯留室34の容積が大きくなるようにはさほど変形しないので、比較的すぐに、第1上流貯留室32及び第1下流貯留室34内のインクの圧力が減少し始める。そして、その圧力変動に伴い、圧力室31内の圧力が増加し、時刻t22で正圧となる。
 インク吐出時刻t20以降の最初の負圧期間(図12の時刻t21以降、時刻t22より前)は、実施形態と比べて短い。よって、インク吐出直後の負圧期間における負圧時間積分値が比較的小さくなり、所定値以下となってしまう。このため、この負圧期間に、ノズル41内のメニスカスは、Z軸方向正側に引き上げられ始めるものの、リガメントが切断されにくい。
 その後、圧力室31、並びに、第1上流貯留室32及び第1下流貯留室34内のインクの圧力変動が互いに影響を及ぼし合い、圧力室31内のインクの圧力は、増減を繰り返し、正圧状態及び負圧状態の間で状態変化が繰り返される。
 時刻t23で、圧力変動部61が収縮し始めると、圧力室31の容積が増加するように、中央たわみ部70が復元する。これに伴い、時刻t24で、圧力室31内のインクが負圧状態となり、メニスカスがZ軸方向正側に引き上げられる。時刻t24以降の負圧期間は比較的長く続くので、吐出されたインクのリガメントが切断される。
 比較例では、リガメントは、時刻t24以降に切断される。時刻t24は、圧力変動部61が収縮し始めた時刻t23よりも後の時刻であるので、インク粘度が大きいタイミングであると言える。このため、リガメントが切断されにくく、リガメントが長くなりやすい。また、インクの吐出時刻t20からリガメントが切断されるまでの期間が比較的長いので、より一層、リガメントが長くなりやすい。
 なお、実施形態では、必ずしも、δ1=δ2が成立してなくてもよい。例えば、第1上流貯留室32及び第1下流貯留室34のXY平面の面積が互いに異なっていてもよい。または、上流たわみ部72及び下流たわみ部73のうちの一方が、補強部52a及び下部板部材51で構成されている部位を有していてもよい。
 実施形態において、δ1及びδ2は大きいほど、上流たわみ部72及び下流たわみ部73の変形量が大きくなるので、インク吐出時刻直後の負圧期間が長くなり、ひいては、この負圧期間における負圧時間積分値が大きくなる。また、リガメント切断後の圧力室31内のインクの圧力増加量が大きくなるので、飛翔中のリガメントに対する大気の吹き付け強度が大きくなり、インクの飛翔速度が高くなる。ひいては、インクの着弾位置のばらつきが小さくなり、印刷性能が高まりやすい。
 一方、上述したように、δ1及びδ2は、δ0の100倍以下が望ましい。このように上限を設ける理由は、δ1及びδ2が大きくなりすぎると、上流たわみ部72及び下流たわみ部73の復元に伴う圧力室31内の圧力増加量が大きくなりすぎ、インクが吹き出してしまう虞があるからである。
 なお、切断後のリガメントに対する大気の吹き付けのみを考慮すると、上流たわみ部72及び下流たわみ部73はXY平面における面積が広いほど有効である。
 上流たわみ部72及び下流たわみ部73は、ヤング率Eが中央たわみ部70よりも小さくなるように構成されてもよい。上流たわみ部72、下流たわみ部73及び中央たわみ部70の形成材料を適宜選定することで、上流たわみ部72及び下流たわみ部73を、中央たわみ部70よりも変形しやすくすることができる。
 また、上流たわみ部72及び下流たわみ部73は、Z軸方向の寸法dが中央たわみ部70よりも小さくなるように構成されてもよい。上流たわみ部72、下流たわみ部73及び中央たわみ部70のZ軸方向の寸法dを適宜選定することで、上流たわみ部72及び下流たわみ部73を、中央たわみ部70よりも変形しやすくすることができる。
 また、上流たわみ部72及び下流たわみ部73は、短軸方向の寸法Lsが中央たわみ部70よりも大きくなるように構成されてもよい。上流たわみ部72、下流たわみ部73及び中央たわみ部70の短軸方向の寸法Lsを適宜選定することで、上流たわみ部72及び下流たわみ部73を、中央たわみ部70よりも変形しやすくすることができる。
 また、上流たわみ部72及び下流たわみ部73は、長軸方向の寸法Rが中央たわみ部70よりも大きくなるように構成されてもよい。上流たわみ部72、下流たわみ部73及び中央たわみ部70の長軸方向の寸法Rを適宜選定することで、上流たわみ部72及び下流たわみ部73を、中央たわみ部70よりも変形しやすくすることができる。
 以上説明した通り、実施形態に係るインクジェットヘッド1は、インクを吐出するノズル41と、ノズル41と連通する圧力室31と、第1絞りを介して圧力室31と連通する第1貯留室32、34と、圧力室31の一部を形成する部位(中央たわみ部70)を有する振動板50と、圧力室31内のインクの圧力が変動するように振動板50を振動させ、圧力室31からノズル41を介してインクを外部に吐出させる圧力変動部61とを備える。
 第1貯留室32、34は、振動板50の部位(中央たわみ部70)よりも変形しやすいたわみ部72、73を有する。
 これにより、インク吐出直後、圧力室31内のノズル41近傍のインクの圧力を、比較的長い時間、負圧期間に維持することができる。よって、インク粘度が小さいタイミングで吐出インクのリガメントを切断できる。また、インクが吐出されてから比較的早いタイミングでリガメントが切断される。よって、リガメントを短くできるので、ミストが生じにくくなり、印刷性能を向上させることができる。
 また、リガメントの切断後、ノズル41内の大気を飛翔しているインクのリガメントに吹き付けることができるので、リガメントが主滴とまとまりやすくなり、ミストの発生を抑制できる。また、インクの飛翔速度が高くなるので着弾位置のばらつきが抑制される。これらの結果、印刷性能がより一層向上する。
 たわみ部72、73は、振動板50で形成されている。よって、比較的簡単な構成により、印刷性能の向上を図ることができる。
 たわみ部72、73は、圧力変動部61が圧力室31内のインクの圧力を増加させることに応じて第1貯留室32、34の容積を大きくするように変形することで、圧力室31内のインクの圧力を負圧にする。
 このように作用して、インクの吐出時刻直後、圧力室31内のインクを、比較的長い時間、負圧状態に維持し、このタイミングでリガメントを切断する。
 たわみ部72、73は、第1貯留室32、34の容積を大きくした後、第1貯留室32、34の容積を復元することで、圧力室31のインクの圧力を正圧にする。
 このように作用して、吐出インクのリガメントに大気を吹き付けている。
 流路プレート30は、1つの圧力室31に対して2つの第1貯留室32、34を備える。また、ノズル41に対して、圧力室31と圧力変動部61と2つの第1貯留室32、34との組が1対1で対応している。
 このように、ノズル41に対して、圧力室31と圧力変動部61と2つの第1貯留室32、34との組が1対1で対応するように配置されている。これにより、複数の第1貯留室32、34を用いて、圧力室31内のノズル41近傍のインクの圧力を制御することで、リガメントの切断、及び、リガメントに対する大気の吹き付けを効果的に実行できる。
 上流たわみ部72及び下流たわみ部73は、変形しやすさを示す変形パラメーターδ1及びδ2が、中央たわみ部70の変形パラメーターδ0の1.5倍以上100倍以下である。
 変形パラメーターδ1及びδ2を、δ0の1.5倍以上とすることで、リガメントの切断、及び、リガメントに対する大気の吹き付けをより一層効果的に実行できる。
 また、変形パラメーターδ1及びδ2を、δ0の100倍以下とすることで、上流たわみ部72及び下流たわみ部73の復元による圧力室31内のインク圧の増加量を抑制し、リガメントに対する大気吹き付け時に、インクが吐出するのを防止できる。また、インクジェットヘッド1の設計上、X、Y、及び、Z軸方向の寸法がある程度制限を受けるので、実質的に変形パラメーターδ1及びδ2も制限を受ける。すなわち、δ1及びδ2に、一定の上限を設けることで、インクジェットヘッド1を現実的に設計することができる。例えば、上流たわみ部72及び下流たわみ部73の厚さdを薄くしすぎて、変形したときに破れることを防止できる。
 変形パラメーターδ1及びδ2は、上流たわみ部72及び下流たわみ部73のヤング率E及び厚さdが小さいほど大きくなり、短軸方向の寸法Ls及び長軸方向の寸法Rが長いほど大きくなる。
 なお、振動板50は、1枚の板部材で構成され、かつ、部位に応じて厚さが異なっていてもよい。また、振動板50は、均一な厚さを有し、部位に応じて材質、すなわち、ヤング率が変更されてもよい。例えば、上流たわみ部72及び下流たわみ部73を、中央たわみ部70よりもヤング率が小さい材料で形成されていてもよい。
 [変形例1]
 以下、変形例1について、主に実施形態と異なる点を説明する。図13は、変形例1に係る振動板50を例示する図である。
 実施形態では、下流たわみ部73全体が下部板部材51のみで構成されていたが、変形例1では、下流たわみ部73の一部が、下部板部材51及び補強部52aで構成されている。
 下流たわみ部73は、下部板部材51のみで構成される薄板部191、及び、下部板部材51及び補強部52aで構成される厚板部192で構成されている。薄板部191の幅の長さL2は、実施形態の下流たわみ部73の幅の長さL1よりも短い。
 変形例1において、下流たわみ部73の変形パラメーターδ2は、上流たわみ部72の変形パラメーターδ1よりも小さい。
 変形例1のように、下流たわみ部73の変形パラメーターδ2が、上流たわみ部72の変形パラメーターδ1よりも小さかったとしても、変形パラメーターδ1が中央たわみ部70の変形パラメーターδ0の1.5倍以上100倍以下であるので、実施形態と同様の作用効果が得られる。
 ただし、上述したように、δ2は大きい方がインク吐出直後の圧力室31の負圧期間が長く、ひいては、負圧時間積分値が大きくなり、リガメントを切断しやすい。また、δ2が大きい方が、ノズル41内の大気を、飛翔中のリガメントに対して強く吹き付けることができる。
 なお、変形例1において、下流たわみ部73の構成を実施形態と同じにし、上流たわみ部72の構成を、実施形態と比べてδ1が小さくなるように変更しても、同様の作用効果が得られる。
 [変形例2]
 以下、変形例2について、主に変形例1と異なる点を説明する。図14は、変形例2に係る振動板50を例示する図である。
 変形例1では、下流たわみ部73は、下部板部材51のみで構成された薄板部191と、下部板部材51及び補強部52aで構成された厚板部192とで構成されていたが、変形例2では、下流たわみ部73全体が、下部板部材51及び補強部52aで構成されている。
 変形例2では、下流たわみ部73の変形パラメーターδ2は、中央たわみ部70の変形パラメーターδ0よりも小さくなる。しかしながら、上流たわみ部72の変形パラメーターδ1が、中央たわみ部70の変形パラメーターδ0の1.5倍以上100倍以下であるので、実施形態と同様の作用効果が得られる。
 ただし、実施形態のように、第1上流貯留室32の上流たわみ部72、及び、第1下流貯留室34の下流たわみ部73の両方を用いて、圧力室31内のインク圧を制御する方が、リガメント切断及びリガメントに対する大気の吹き付けの点で有利である。
 [その他の変形例]
 上述の各実施形態及び各変形例では、流路プレート30には、第2上流貯留室33及び第2下流貯留室35が設けられているが、第2上流貯留室33及び第2下流貯留室35が設けられていなくてもよい。
 すなわち、流路プレート30は、インクが上流共通流路22aから第2上流絞り37を介して直接第1上流共通流路22aに供給され、かつ、第1下流貯留室34から第2下流絞り39を介して直接下流共通流路23aに排出されるように構成されていてもよい。
 また、インクジェットヘッド1は、インク循環型方式以外のインクジェットヘッドであってもよい。すなわち、流路プレート30には、第1下流絞り38、第1下流貯留室34、第2下流絞り39、及び、第2下流貯留室35が形成されていなくてもよい。
 また、圧力室31内の圧力調整に寄与する貯留室を、インクの供給経路とは別に設けられていてもよい。例えば、第1上流貯留室32及び第2上流貯留室33が一体形成され、第2下流絞り39及び第2下流貯留室35が形成されず、第2下流貯留室35の下流たわみ部73のみにより、圧力室31内のインク圧が調整されてもよい。
 なお、第1貯留室32、34の上壁、または、その一部の代わりに、第2絞り37、39のZ軸方向正側に位置し、かつ、第1貯留室32、34の側壁である部位が、それぞれ、上流たわみ部及び下流たわみ部として形成されていてもよい。その際、当該部位は、第2絞り37、39の流路長を確保しつつ、変形パラメーターを大きくするために、中空状に形成されてもよい。
 上記各実施形態及び各変形例に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記各実施形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示によれば、印刷性能を向上させるインクジェットヘッドを提供することができる。
 本開示は、圧力室に連通する貯留室が形成されているインクジェットヘッドに好適に適用できる。
 1、2 インクジェットヘッド
 10 本体部
 20 ハウジング部
 21 インク供給路
 22a、22b 上流共通流路
 23a、23b、23c、23d 下流供給流路
 24a、24b インク排出路
 25a、25b、25c、25d 収容空間
 30 流路プレート
 31 圧力室
 32 第1上流貯留室
 33 第2上流貯留室
 34 第1下流貯留室
 35 第2下流貯留室
 36 第1上流絞り
 37 第2上流絞り
 38 第1下流絞り
 39 第2下流絞り
 40 ノズルプレート
 41 ノズル
 50 振動板
 51 下部板部材
 52 上部板部材
 52a 補強部
 52b 被押下部
 60 圧力変動素子ユニット
 61 圧力変動部
 70 中央たわみ部
 72 上流たわみ部
 73 下流たわみ部
 152a 補強部
 182、183 上壁
 191 薄板部
 192 厚板部
 S 吐出面

Claims (8)

  1.  インクを吐出するノズルと、
     前記ノズルと連通する圧力室と、
     絞りを介して前記圧力室と連通する貯留室と、
     前記圧力室の一部を形成する部位を有する振動板と、
     前記圧力室内のインクの圧力が変動するように前記振動板を振動させ、前記圧力室から前記ノズルを介してインクを外部に吐出させる圧力変動部と、
     を備え、
     前記貯留室は、前記振動板の前記部位よりも変形しやすいたわみ部を有する、
     インクジェットヘッド。
  2.  前記たわみ部は、前記振動板で形成されている、
     請求項1に記載のインクジェットヘッド。
  3.  1つの前記圧力室に対して2つの前記貯留室を備え、
     前記ノズルに対して、前記圧力室と前記圧力変動部と前記2つの貯留室とからなる組が1対1で対応している、
     請求項1または2に記載のインクジェットヘッド。
  4.  前記たわみ部は、前記振動板の前記部位よりヤング率が小さい、
     請求項1または2に記載のインクジェットヘッド。
  5.  前記たわみ部は、前記振動板の前記部位より厚さが薄い、
     請求項1または2に記載のインクジェットヘッド。
  6.  前記たわみ部は、前記振動板の前記部位より短軸方向の寸法が大きい、
     請求項1または2に記載のインクジェットヘッド。
  7.  前記たわみ部は、前記振動板の前記部位より長軸方向の寸法が大きい、
     請求項1または2に記載のインクジェットヘッド。
  8.  前記たわみ部は、変形しやすさを示すパラメーターが、前記振動板の前記部位の変形パラメーターの1.5倍以上100倍以下である、
     請求項1または2に記載のインクジェットヘッド。
PCT/JP2023/018863 2022-06-16 2023-05-22 インクジェットヘッド WO2023243311A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-097431 2022-06-16
JP2022097431 2022-06-16

Publications (1)

Publication Number Publication Date
WO2023243311A1 true WO2023243311A1 (ja) 2023-12-21

Family

ID=89191057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018863 WO2023243311A1 (ja) 2022-06-16 2023-05-22 インクジェットヘッド

Country Status (1)

Country Link
WO (1) WO2023243311A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287361A (ja) * 2000-04-10 2001-10-16 Seiko Epson Corp インクジェット式記録ヘッド
JP2002086721A (ja) * 2000-09-14 2002-03-26 Seiko Epson Corp インクジェット式記録装置
JP2004148509A (ja) * 2001-10-04 2004-05-27 Seiko Epson Corp 液体噴射ヘッド
US20050030353A1 (en) * 2003-08-07 2005-02-10 Hewlett-Packard Development Company, L.P. Printer ink supply system
JP2012045956A (ja) * 2011-12-08 2012-03-08 Seiko Epson Corp 液体噴射装置
JP2016159514A (ja) * 2015-03-02 2016-09-05 富士フイルム株式会社 液体吐出装置、及び液体吐出ヘッドの異物排出方法
JP2020049818A (ja) * 2018-09-27 2020-04-02 ブラザー工業株式会社 液体吐出ヘッド、及び、液体吐出装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287361A (ja) * 2000-04-10 2001-10-16 Seiko Epson Corp インクジェット式記録ヘッド
JP2002086721A (ja) * 2000-09-14 2002-03-26 Seiko Epson Corp インクジェット式記録装置
JP2004148509A (ja) * 2001-10-04 2004-05-27 Seiko Epson Corp 液体噴射ヘッド
US20050030353A1 (en) * 2003-08-07 2005-02-10 Hewlett-Packard Development Company, L.P. Printer ink supply system
JP2012045956A (ja) * 2011-12-08 2012-03-08 Seiko Epson Corp 液体噴射装置
JP2016159514A (ja) * 2015-03-02 2016-09-05 富士フイルム株式会社 液体吐出装置、及び液体吐出ヘッドの異物排出方法
JP2020049818A (ja) * 2018-09-27 2020-04-02 ブラザー工業株式会社 液体吐出ヘッド、及び、液体吐出装置

Similar Documents

Publication Publication Date Title
US5510816A (en) Method and apparatus for driving ink jet recording head
KR101603807B1 (ko) 펌핑 챔버 내의 압력을 완충하여 가변적인 드롭 크기 분사를 제공하기 위한 방법 및 장치
KR19990045649A (ko) 잉크젯 프린터용 기록헤드의 구동장치 및 구동방법
WO2023243311A1 (ja) インクジェットヘッド
JPH09226106A (ja) インクジェット式記録装置
JP3216664B2 (ja) インクジェット記録装置
TWI454387B (zh) 壓電致動機構
JP5193538B2 (ja) インクジェット装置およびインクジェット方法
JP3044863B2 (ja) インクジェットヘッド
JP6615048B2 (ja) ノズルエリアに高粘度材料を補充するように構成されるプリントヘッド
JP2008126583A (ja) インクジェットヘッド
JP2008105265A (ja) 液体噴射ヘッドの駆動方法、及び、液体噴射装置
JP3129090B2 (ja) インクジェットヘッド
JP2015080945A (ja) インクジェット装置、及びインクジェット方法
JP3296391B2 (ja) インクジェット式記録ヘッド
US6893112B2 (en) Structurally isolated inertial transducers for a printing system
JP4670205B2 (ja) インクジェットヘッド
JP2004322315A (ja) インクジェットプリンタ用記録ヘッド、及び、インクジェットプリンタ
JP2022069086A (ja) 液体吐出装置
JP5810740B2 (ja) 液体吐出装置及び液体吐出方法
JP2008168531A (ja) 液体吐出方法および液体吐出装置
JP2010143065A (ja) 液体吐出方法および液体吐出装置
JP2004082425A (ja) インク滴噴射装置
JPH1024568A (ja) インクジェットヘッド
JPH0436067B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823612

Country of ref document: EP

Kind code of ref document: A1